summaryrefslogtreecommitdiffstats
path: root/src/ui/tool/node.cpp
blob: 57be0af9569c4b33762484a63018a88129878169 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
// SPDX-License-Identifier: GPL-2.0-or-later
/* Authors:
 *   Krzysztof Kosiński <tweenk.pl@gmail.com>
 *   Jon A. Cruz <jon@joncruz.org>
 *
 * Copyright (C) 2009 Authors
 * Released under GNU GPL v2+, read the file 'COPYING' for more information.
 */

#include <atomic>
#include <iostream>
#include <stdexcept>
#include <boost/utility.hpp>

#include <glib/gi18n.h>
#include <gdk/gdkkeysyms.h>

#include <2geom/bezier-utils.h>

#include "desktop.h"
#include "multi-path-manipulator.h"
#include "snap.h"

#include "display/control/canvas-item-group.h"
#include "display/control/canvas-item-curve.h"

#include "ui/tool/control-point-selection.h"
#include "ui/tool/event-utils.h"
#include "ui/tool/path-manipulator.h"
#include "ui/tools/node-tool.h"
#include "ui/widget/canvas.h"

namespace {

Inkscape::CanvasItemCtrlType nodeTypeToCtrlType(Inkscape::UI::NodeType type)
{
    Inkscape::CanvasItemCtrlType result = Inkscape::CANVAS_ITEM_CTRL_TYPE_NODE_CUSP;
    switch(type) {
        case Inkscape::UI::NODE_SMOOTH:
            result = Inkscape::CANVAS_ITEM_CTRL_TYPE_NODE_SMOOTH;
            break;
        case Inkscape::UI::NODE_AUTO:
            result = Inkscape::CANVAS_ITEM_CTRL_TYPE_NODE_AUTO;
            break;
        case Inkscape::UI::NODE_SYMMETRIC:
            result = Inkscape::CANVAS_ITEM_CTRL_TYPE_NODE_SYMETRICAL;
            break;
        case Inkscape::UI::NODE_CUSP:
        default:
            result = Inkscape::CANVAS_ITEM_CTRL_TYPE_NODE_CUSP;
            break;
    }
    return result;
}

/**
 * @brief provides means to estimate float point rounding error due to serialization to svg
 *
 *  Keeps cached value up to date with preferences option `/options/svgoutput/numericprecision`
 *  to avoid costly direct reads
 * */
class SvgOutputPrecisionWatcher : public Inkscape::Preferences::Observer {
public:
    /// Returns absolute \a value`s rounding serialization error based on current preferences settings
    static double error_of(double value) {
        return value * instance().rel_error;
    }

    void notify(const Inkscape::Preferences::Entry &new_val) override {
        int digits = new_val.getIntLimited(6, 1, 16);
        set_numeric_precision(digits);
    }

private:
  SvgOutputPrecisionWatcher() : Observer("/options/svgoutput/numericprecision"), rel_error(1) {
        Inkscape::Preferences::get()->addObserver(*this);
        int digits = Inkscape::Preferences::get()->getIntLimited("/options/svgoutput/numericprecision", 6, 1, 16);
        set_numeric_precision(digits);
    }

    ~SvgOutputPrecisionWatcher() override {
        Inkscape::Preferences::get()->removeObserver(*this);
    }
    /// Update cached value of relative error with number of significant digits
    void set_numeric_precision(int digits) {
        double relative_error = 0.5; // the error is half of last digit
        while (digits > 0) {
            relative_error /= 10;
            digits--;
        }
        rel_error = relative_error;
    }

    static SvgOutputPrecisionWatcher &instance() {
        static SvgOutputPrecisionWatcher _instance;
        return _instance;
    }

    std::atomic<double> rel_error; /// Cached relative error
};

/// Returns absolute error of \a point as if serialized to svg with current preferences
double serializing_error_of(const Geom::Point &point) {
    return SvgOutputPrecisionWatcher::error_of(point.length());
}

/**
 * @brief Returns true if three points are collinear within current serializing precision
 *
 * The algorithm of collinearity check is explicitly used to calculate the check error.
 *
 * This function can be sufficiently reduced or even removed completely if `Geom::are_collinear`
 * would declare it's check algorithm as part of the public API.
 *
 * */
bool are_collinear_within_serializing_error(const Geom::Point &A, const Geom::Point &B, const Geom::Point &C) {
    const double tolerance_factor = 10; // to account other factors which increase uncertainty
    const double tolerance_A = serializing_error_of(A) * tolerance_factor;
    const double tolerance_B = serializing_error_of(B) * tolerance_factor;
    const double tolerance_C = serializing_error_of(C) * tolerance_factor;
    const double CB_length = (B - C).length();
    const double AB_length = (B - A).length();
    Geom::Point C_reflect_scaled = B + (B - C) / CB_length * AB_length;
    double tolerance_C_reflect_scaled = tolerance_B
                                        + (tolerance_B + tolerance_C)
                                          * (1 + (tolerance_A + tolerance_B) / AB_length)
                                          * (1 + (tolerance_C + tolerance_B) / CB_length);
    return Geom::are_near(C_reflect_scaled, A, tolerance_C_reflect_scaled + tolerance_A);
}

} // namespace

namespace Inkscape {
namespace UI {

const double NO_POWER = 0.0;
const double DEFAULT_START_POWER = 1.0/3.0;

ControlPoint::ColorSet Node::node_colors = {
    {0xbfbfbf00, 0x000000ff}, // normal fill, stroke
    {0xff000000, 0x000000ff}, // mouseover fill, stroke
    {0xff000000, 0x000000ff}, // clicked fill, stroke
    //
    {0x0000ffff, 0x000000ff}, // normal fill, stroke when selected
    {0xff000000, 0x000000ff}, // mouseover fill, stroke when selected
    {0xff000000, 0x000000ff}  // clicked fill, stroke when selected
};

ControlPoint::ColorSet Handle::_handle_colors = {
    {0xffffffff, 0x000000ff}, // normal fill, stroke
    {0xff000000, 0x000000ff}, // mouseover fill, stroke
    {0xff000000, 0x000000ff}, // clicked fill, stroke
    //
    {0xffffffff, 0x000000ff}, // normal fill, stroke
    {0xff000000, 0x000000ff}, // mouseover fill, stroke
    {0xff000000, 0x000000ff}  // clicked fill, stroke
};

std::ostream &operator<<(std::ostream &out, NodeType type)
{
    switch(type) {
    case NODE_CUSP: out << 'c'; break;
    case NODE_SMOOTH: out << 's'; break;
    case NODE_AUTO: out << 'a'; break;
    case NODE_SYMMETRIC: out << 'z'; break;
    default: out << 'b'; break;
    }
    return out;
}

/** Computes an unit vector of the direction from first to second control point */
static Geom::Point direction(Geom::Point const &first, Geom::Point const &second) {
    return Geom::unit_vector(second - first);
}

Geom::Point Handle::_saved_other_pos(0, 0);

double Handle::_saved_length = 0.0;

bool Handle::_drag_out = false;

Handle::Handle(NodeSharedData const &data, Geom::Point const &initial_pos, Node *parent)
    : ControlPoint(data.desktop, initial_pos, SP_ANCHOR_CENTER,
                   Inkscape::CANVAS_ITEM_CTRL_TYPE_ROTATE,
                   _handle_colors, data.handle_group)
    , _handle_line(new Inkscape::CanvasItemCurve(data.handle_line_group))
    , _parent(parent)
    , _degenerate(true)
{
    setVisible(false);
}

Handle::~Handle()
{
    delete _handle_line;
}

void Handle::setVisible(bool v)
{
    ControlPoint::setVisible(v);
    if (v) {
        _handle_line->show();
    } else {
        _handle_line->hide();
    }
}

void Handle::move(Geom::Point const &new_pos)
{
    Handle *other = this->other();
    Node *node_towards = _parent->nodeToward(this); // node in direction of this handle
    Node *node_away = _parent->nodeAwayFrom(this); // node in the opposite direction
    Handle *towards = node_towards ? node_towards->handleAwayFrom(_parent) : nullptr;
    Handle *towards_second = node_towards ? node_towards->handleToward(_parent) : nullptr;
    double bspline_weight = 0.0;

    if (Geom::are_near(new_pos, _parent->position())) {
        // The handle becomes degenerate.
        // Adjust node type as necessary.
        if (other->isDegenerate()) {
            // If both handles become degenerate, convert to parent cusp node
            _parent->setType(NODE_CUSP, false);
        } else {
            // Only 1 handle becomes degenerate
            switch (_parent->type()) {
            case NODE_AUTO:
            case NODE_SYMMETRIC:
                _parent->setType(NODE_SMOOTH, false);
                break;
            default:
                // do nothing for other node types
                break;
            }
        }
        // If the segment between the handle and the node in its direction becomes linear,
        // and there are smooth nodes at its ends, make their handles collinear with the segment.
        if (towards && towards_second->isDegenerate()) {
            if (node_towards->type() == NODE_SMOOTH) {
                towards->setDirection(*_parent, *node_towards);
            }
            if (_parent->type() == NODE_SMOOTH) {
                other->setDirection(*node_towards, *_parent);
            }
        }
        setPosition(new_pos);

        // move the handle and its opposite the same proportion
        if(_pm()._isBSpline()){
            setPosition(_pm()._bsplineHandleReposition(this, false));
            bspline_weight = _pm()._bsplineHandlePosition(this, false);
            this->other()->setPosition(_pm()._bsplineHandleReposition(this->other(), bspline_weight));
        }
        return;
    }

    if (_parent->type() == NODE_SMOOTH && Node::_is_line_segment(_parent, node_away)) {
        // restrict movement to the line joining the nodes
        Geom::Point direction = _parent->position() - node_away->position();
        Geom::Point delta = new_pos - _parent->position();
        // project the relative position on the direction line
        Geom::Coord direction_length = Geom::L2sq(direction);
        Geom::Point new_delta;
        if (direction_length == 0) {
            // joining line has zero length - any direction is okay, prevent division by zero
            new_delta = delta;
        } else {
            new_delta = (Geom::dot(delta, direction) / direction_length) * direction;
        }
        setRelativePos(new_delta);

        // move the handle and its opposite the same proportion
        if(_pm()._isBSpline()){ 
            setPosition(_pm()._bsplineHandleReposition(this, false));
            bspline_weight = _pm()._bsplineHandlePosition(this, false);
            this->other()->setPosition(_pm()._bsplineHandleReposition(this->other(), bspline_weight));
        }
        
        return;
    }

    switch (_parent->type()) {
    case NODE_AUTO:
        _parent->setType(NODE_SMOOTH, false);
        // fall through - auto nodes degrade into smooth nodes
    case NODE_SMOOTH: {
        // for smooth nodes, we need to rotate the opposite handle
        // so that it's collinear with the dragged one, while conserving length.
        other->setDirection(new_pos, *_parent);
        } break;
    case NODE_SYMMETRIC:
        // for symmetric nodes, place the other handle on the opposite side
        other->setRelativePos(-(new_pos - _parent->position()));
        break;
    default: break;
    }
    setPosition(new_pos);

    // move the handle and its opposite the same proportion
    if(_pm()._isBSpline()){
        setPosition(_pm()._bsplineHandleReposition(this, false));
        bspline_weight = _pm()._bsplineHandlePosition(this, false);
        this->other()->setPosition(_pm()._bsplineHandleReposition(this->other(), bspline_weight));
    }
    Inkscape::UI::Tools::sp_update_helperpath(_desktop);
}

void Handle::setPosition(Geom::Point const &p)
{
    ControlPoint::setPosition(p);
    _handle_line->set_coords(_parent->position(), position());

    // update degeneration info and visibility
    if (Geom::are_near(position(), _parent->position()))
        _degenerate = true;
    else _degenerate = false;

    if (_parent->_handles_shown && _parent->visible() && !_degenerate) {
        setVisible(true);
    } else {
        setVisible(false);
    }
}

void Handle::setLength(double len)
{
    if (isDegenerate()) return;
    Geom::Point dir = Geom::unit_vector(relativePos());
    setRelativePos(dir * len);
}

void Handle::retract()
{
    move(_parent->position());
}

void Handle::setDirection(Geom::Point const &from, Geom::Point const &to)
{
    setDirection(to - from);
}

void Handle::setDirection(Geom::Point const &dir)
{
    Geom::Point unitdir = Geom::unit_vector(dir);
    setRelativePos(unitdir * length());
}

/**
 * See also: Node::node_type_to_localized_string(NodeType type)
 */
char const *Handle::handle_type_to_localized_string(NodeType type)
{
    switch(type) {
    case NODE_CUSP:
        return _("Corner node handle");
    case NODE_SMOOTH:
        return _("Smooth node handle");
    case NODE_SYMMETRIC:
        return _("Symmetric node handle");
    case NODE_AUTO:
        return _("Auto-smooth node handle");
    default:
        return "";
    }
}

bool Handle::_eventHandler(Inkscape::UI::Tools::ToolBase *event_context, GdkEvent *event)
{
    switch (event->type)
    {
    case GDK_KEY_PRESS:

        switch (shortcut_key(event->key))
        {
        case GDK_KEY_s:
        case GDK_KEY_S:

            /* if Shift+S is pressed while hovering over a cusp node handle,
               hold the handle in place; otherwise, process normally.
               this handle is guaranteed not to be degenerate. */

            if (held_only_shift(event->key) && _parent->_type == NODE_CUSP) {

                // make opposite handle collinear,
                // but preserve length, unless degenerate
                if (other()->isDegenerate())
                    other()->setRelativePos(-relativePos());
                else
                    other()->setDirection(-relativePos());
                _parent->setType(NODE_SMOOTH, false);

                // update display
                _parent->_pm().update();

                // update undo history
                _parent->_pm()._commit(_("Change node type"));

                return true;
            }
            break;

        case GDK_KEY_y:
        case GDK_KEY_Y:

            /* if Shift+Y is pressed while hovering over a cusp, smooth, or auto node handle,
               hold the handle in place; otherwise, process normally.
               this handle is guaranteed not to be degenerate. */

            if (held_only_shift(event->key) && (_parent->_type == NODE_CUSP ||
                                                _parent->_type == NODE_SMOOTH ||
                                                _parent->_type == NODE_AUTO)) {

                // make opposite handle collinear, and of equal length
                other()->setRelativePos(-relativePos());
                _parent->setType(NODE_SYMMETRIC, false);

                // update display
                _parent->_pm().update();

                // update undo history
                _parent->_pm()._commit(_("Change node type"));

                return true;
            }
            break;
        }
        break;

    case GDK_2BUTTON_PRESS:

        // double-click event to set the handles of a node
        // to the position specified by DEFAULT_START_POWER
        handle_2button_press();
        break;
    }

    return ControlPoint::_eventHandler(event_context, event);
}

// this function moves the handle and its opposite to the position specified by DEFAULT_START_POWER
void Handle::handle_2button_press(){
    if(_pm()._isBSpline()){
        setPosition(_pm()._bsplineHandleReposition(this, DEFAULT_START_POWER));
        this->other()->setPosition(_pm()._bsplineHandleReposition(this->other(), DEFAULT_START_POWER));
        _pm().update();
    }
}

bool Handle::grabbed(GdkEventMotion *)
{
    _saved_other_pos = other()->position();
    _saved_length = _drag_out ? 0 : length();
    _pm()._handleGrabbed();
    return false;
}

void Handle::dragged(Geom::Point &new_pos, GdkEventMotion *event)
{
    Geom::Point parent_pos = _parent->position();
    Geom::Point origin = _last_drag_origin();
    SnapManager &sm = _desktop->namedview->snap_manager;
    bool snap = held_shift(*event) ? false : sm.someSnapperMightSnap();
    std::optional<Inkscape::Snapper::SnapConstraint> ctrl_constraint;

    // with Alt, preserve length
    if (held_alt(*event)) {
        new_pos = parent_pos + Geom::unit_vector(new_pos - parent_pos) * _saved_length;
        snap = false;
    }
    // with Ctrl, constrain to M_PI/rotationsnapsperpi increments from vertical
    // and the original position.
    if (held_control(*event)) {
        Inkscape::Preferences *prefs = Inkscape::Preferences::get();
        int snaps = 2 * prefs->getIntLimited("/options/rotationsnapsperpi/value", 12, 1, 1000);

        // note: if snapping to the original position is only desired in the original
        // direction of the handle, change to Ray instead of Line
        Geom::Line original_line(parent_pos, origin);
        Geom::Line perp_line(parent_pos, parent_pos + Geom::rot90(origin - parent_pos));
        Geom::Point snap_pos = parent_pos + Geom::constrain_angle(
            Geom::Point(0,0), new_pos - parent_pos, snaps, Geom::Point(1,0));
        Geom::Point orig_pos = original_line.pointAt(original_line.nearestTime(new_pos));
        Geom::Point perp_pos = perp_line.pointAt(perp_line.nearestTime(new_pos));

        Geom::Point result = snap_pos;
        ctrl_constraint = Inkscape::Snapper::SnapConstraint(parent_pos, parent_pos - snap_pos);
        if (Geom::distance(orig_pos, new_pos) < Geom::distance(result, new_pos)) {
            result = orig_pos;
            ctrl_constraint = Inkscape::Snapper::SnapConstraint(parent_pos, parent_pos - orig_pos);
        }
        if (Geom::distance(perp_pos, new_pos) < Geom::distance(result, new_pos)) {
            result = perp_pos;
            ctrl_constraint = Inkscape::Snapper::SnapConstraint(parent_pos, parent_pos - perp_pos);
        }
        new_pos = result;
        // move the handle and its opposite in X fixed positions depending on parameter "steps with control" 
        // by default in live BSpline
        if(_pm()._isBSpline()){
            setPosition(new_pos);
            int steps = _pm()._bsplineGetSteps();
            new_pos=_pm()._bsplineHandleReposition(this,ceilf(_pm()._bsplineHandlePosition(this, false)*steps)/steps);
        }
    }

    std::vector<Inkscape::SnapCandidatePoint> unselected;
    // if the snap adjustment is activated and it is not BSpline
    if (snap && !_pm()._isBSpline()) {
        ControlPointSelection::Set &nodes = _parent->_selection.allPoints();
        for (auto node : nodes) {
            Node *n = static_cast<Node*>(node);
            unselected.push_back(n->snapCandidatePoint());
        }
        sm.setupIgnoreSelection(_desktop, true, &unselected);

        Node *node_away = _parent->nodeAwayFrom(this);
        if (_parent->type() == NODE_SMOOTH && Node::_is_line_segment(_parent, node_away)) {
            Inkscape::Snapper::SnapConstraint cl(_parent->position(),
                _parent->position() - node_away->position());
            Inkscape::SnappedPoint p;
            p = sm.constrainedSnap(Inkscape::SnapCandidatePoint(new_pos, SNAPSOURCE_NODE_HANDLE), cl);
            new_pos = p.getPoint();
        } else if (ctrl_constraint) {
            // NOTE: this is subtly wrong.
            // We should get all possible constraints and snap along them using
            // multipleConstrainedSnaps, instead of first snapping to angle and then to objects
            Inkscape::SnappedPoint p;
            p = sm.constrainedSnap(Inkscape::SnapCandidatePoint(new_pos, SNAPSOURCE_NODE_HANDLE), *ctrl_constraint);
            new_pos = p.getPoint();
        } else {
            sm.freeSnapReturnByRef(new_pos, SNAPSOURCE_NODE_HANDLE);
        }
        sm.unSetup();
    }


    // with Shift, if the node is cusp, rotate the other handle as well
    if (_parent->type() == NODE_CUSP && !_drag_out) {
        if (held_shift(*event)) {
            Geom::Point other_relpos = _saved_other_pos - parent_pos;
            other_relpos *= Geom::Rotate(Geom::angle_between(origin - parent_pos, new_pos - parent_pos));
            other()->setRelativePos(other_relpos);
        } else {
            // restore the position
            other()->setPosition(_saved_other_pos);
        }
    }
    // if it is BSpline, but SHIFT or CONTROL are not pressed, fix it in the original position
    if(_pm()._isBSpline() && !held_shift(*event) && !held_control(*event)){
        new_pos=_last_drag_origin();
    }
    _pm().update();
}

void Handle::ungrabbed(GdkEventButton *event)
{
    // hide the handle if it's less than dragtolerance away from the node
    // however, never do this for cancelled drag / broken grab
    // TODO is this actually a good idea?
    if (event) {
        Inkscape::Preferences *prefs = Inkscape::Preferences::get();
        int drag_tolerance = prefs->getIntLimited("/options/dragtolerance/value", 0, 0, 100);

        Geom::Point dist = _desktop->d2w(_parent->position()) - _desktop->d2w(position());
        if (dist.length() <= drag_tolerance) {
            move(_parent->position());
        }
    }

    // HACK: If the handle was dragged out, call parent's ungrabbed handler,
    // so that transform handles reappear
    if (_drag_out) {
        _parent->ungrabbed(event);
    }
    _drag_out = false;

    _pm()._handleUngrabbed();
}

bool Handle::clicked(GdkEventButton *event)
{
    _pm()._handleClicked(this, event);
    return true;
}

Handle const *Handle::other() const
{
    return const_cast<Handle *>(this)->other();
}

Handle *Handle::other()
{
    if (this == &_parent->_front) {
        return &_parent->_back;
    } else {
        return &_parent->_front;
    }
}

static double snap_increment_degrees() {
    Inkscape::Preferences *prefs = Inkscape::Preferences::get();
    int snaps = prefs->getIntLimited("/options/rotationsnapsperpi/value", 12, 1, 1000);
    return 180.0 / snaps;
}

Glib::ustring Handle::_getTip(unsigned state) const
{
    /* a trick to mark as BSpline if the node has no strength;
       we are going to use it later to show the appropriate messages.
       we cannot do it in any different way because the function is constant. */
    Handle *h = const_cast<Handle *>(this);
    bool isBSpline = _pm()._isBSpline();
    bool can_shift_rotate = _parent->type() == NODE_CUSP && !other()->isDegenerate();
    Glib::ustring s = C_("Path handle tip",
                         "node control handle");   // not expected

    if (state_held_alt(state) && !isBSpline) {
        if (state_held_control(state)) {
            if (state_held_shift(state) && can_shift_rotate) {
                s = format_tip(C_("Path handle tip",
                    "<b>Shift+Ctrl+Alt</b>: "
                    "preserve length and snap rotation angle to %g° increments, "
                    "and rotate both handles"),
                    snap_increment_degrees());
            }
            else {
                s = format_tip(C_("Path handle tip",
                    "<b>Ctrl+Alt</b>: "
                    "preserve length and snap rotation angle to %g° increments"),
                    snap_increment_degrees());
            }
        }
        else {
            if (state_held_shift(state) && can_shift_rotate) {
                s = C_("Path handle tip",
                    "<b>Shift+Alt</b>: preserve handle length and rotate both handles");
            }
            else {
                s = C_("Path handle tip",
                    "<b>Alt</b>: preserve handle length while dragging");
            }
        }
    }
    else {
        if (state_held_control(state)) {
            if (state_held_shift(state) && can_shift_rotate && !isBSpline) {
                s = format_tip(C_("Path handle tip",
                    "<b>Shift+Ctrl</b>: "
                    "snap rotation angle to %g° increments, and rotate both handles"),
                    snap_increment_degrees());
            }
            else if (isBSpline) {
                s = C_("Path handle tip",
                    "<b>Ctrl</b>: "
                    "Snap handle to steps defined in BSpline Live Path Effect");
            }
            else {
                s = format_tip(C_("Path handle tip",
                    "<b>Ctrl</b>: "
                    "snap rotation angle to %g° increments, click to retract"),
                    snap_increment_degrees());
            }
        }
        else if (state_held_shift(state) && can_shift_rotate && !isBSpline) {
            s = C_("Path handle tip",
                "<b>Shift</b>: rotate both handles by the same angle");
        }
        else if (state_held_shift(state) && isBSpline) {
            s = C_("Path handle tip",
                "<b>Shift</b>: move handle");
        }
        else {
            char const *handletype = handle_type_to_localized_string(_parent->_type);
            char const *more;

            if (can_shift_rotate && !isBSpline) {
                more = C_("Path handle tip",
                          "Shift, Ctrl, Alt");
            }
            else if (isBSpline) {
                more = C_("Path handle tip",
                          "Ctrl");
            }
            else {
                more = C_("Path handle tip",
                          "Ctrl, Alt");
            }

            if (_parent->type() == NODE_CUSP) {
                s = format_tip(C_("Path handle tip",
                                  "<b>%s</b>: "
                                  "drag to shape the path"  ", "
                                  "hover to lock"  ", "
                                  "Shift+S to make smooth"    ", "
                                  "Shift+Y to make symmetric" ". "
                                  "(more: %s)"),
                               handletype, more);
            }
            else if (_parent->type() == NODE_SMOOTH) {
                s = format_tip(C_("Path handle tip",
                                  "<b>%s</b>: "
                                  "drag to shape the path"  ", "
                                  "hover to lock"  ", "
                                  "Shift+Y to make symmetric" ". "
                                  "(more: %s)"),
                               handletype, more);
            }
            else if (_parent->type() == NODE_AUTO) {
                s = format_tip(C_("Path handle tip",
                                  "<b>%s</b>: "
                                  "drag to make smooth, "
                                  "hover to lock"  ", "
                                  "Shift+Y to make symmetric" ". "
                                  "(more: %s)"),
                               handletype, more);
            }
            else if (_parent->type() == NODE_SYMMETRIC) {
                s = format_tip(C_("Path handle tip",
                                  "<b>%s</b>: "
                                  "drag to shape the path" ". "
                                  "(more: %s)"),
                               handletype, more);
            }
            else if (isBSpline) {
                double power = _pm()._bsplineHandlePosition(h);
                s = format_tip(C_("Path handle tip",
                                  "<b>BSpline node handle</b> (%.3g power): "
                                  "Shift-drag to move, "
                                  "double-click to reset. "
                                  "(more: %s)"),
                               power, more);
            }
            else {
                s = C_("Path handle tip",
                       "<b>unknown node handle</b>");   // not expected
            }
        }
    }

    return (s);
}

Glib::ustring Handle::_getDragTip(GdkEventMotion */*event*/) const
{
    Geom::Point dist = position() - _last_drag_origin();
    // report angle in mathematical convention
    double angle = Geom::angle_between(Geom::Point(-1,0), position() - _parent->position());
    angle += M_PI; // angle is (-M_PI...M_PI] - offset by +pi and scale to 0...360
    angle *= 360.0 / (2 * M_PI);
    
    Inkscape::Util::Quantity x_q = Inkscape::Util::Quantity(dist[Geom::X], "px");
    Inkscape::Util::Quantity y_q = Inkscape::Util::Quantity(dist[Geom::Y], "px");
    Inkscape::Util::Quantity len_q = Inkscape::Util::Quantity(length(), "px");
    Glib::ustring x = x_q.string(_desktop->namedview->display_units);
    Glib::ustring y = y_q.string(_desktop->namedview->display_units);
    Glib::ustring len = len_q.string(_desktop->namedview->display_units);
    Glib::ustring ret = format_tip(C_("Path handle tip",
        "Move handle by %s, %s; angle %.2f°, length %s"), x.c_str(), y.c_str(), angle, len.c_str());
    return ret;
}

Node::Node(NodeSharedData const &data, Geom::Point const &initial_pos) :
    SelectableControlPoint(data.desktop, initial_pos, SP_ANCHOR_CENTER,
                           Inkscape::CANVAS_ITEM_CTRL_TYPE_NODE_CUSP,
                           *data.selection,
                           node_colors, data.node_group),
    _front(data, initial_pos, this),
    _back(data, initial_pos, this),
    _type(NODE_CUSP),
    _handles_shown(false)
{
    _canvas_item_ctrl->set_name("CanvasItemCtrl:Node");
    // NOTE we do not set type here, because the handles are still degenerate
}

Node const *Node::_next() const
{
    return const_cast<Node*>(this)->_next();
}

// NOTE: not using iterators won't make this much quicker because iterators can be 100% inlined.
Node *Node::_next()
{
    NodeList::iterator n = NodeList::get_iterator(this).next();
    if (n) {
        return n.ptr();
    } else {
        return nullptr;
    }
}

Node const *Node::_prev() const
{
    return const_cast<Node *>(this)->_prev();
}

Node *Node::_prev()
{
    NodeList::iterator p = NodeList::get_iterator(this).prev();
    if (p) {
        return p.ptr();
    } else {
        return nullptr;
    }
}

void Node::move(Geom::Point const &new_pos)
{
    // move handles when the node moves.
    Geom::Point old_pos = position();
    Geom::Point delta = new_pos - position();

    // save the previous nodes strength to apply it again once the node is moved 
    double nodeWeight = NO_POWER;
    double nextNodeWeight = NO_POWER;
    double prevNodeWeight = NO_POWER;
    Node *n = this;
    Node * nextNode = n->nodeToward(n->front());
    Node * prevNode = n->nodeToward(n->back());
    nodeWeight = fmax(_pm()._bsplineHandlePosition(n->front(), false),_pm()._bsplineHandlePosition(n->back(), false));
    if(prevNode){
        prevNodeWeight = _pm()._bsplineHandlePosition(prevNode->front());
    }
    if(nextNode){
        nextNodeWeight = _pm()._bsplineHandlePosition(nextNode->back());
    }

    // Save original position for post-processing
    _unfixed_pos = std::optional<Geom::Point>(position());

    setPosition(new_pos);
    _front.setPosition(_front.position() + delta);
    _back.setPosition(_back.position() + delta);

    // move the affected handles. First the node ones, later the adjoining ones.
    if(_pm()._isBSpline()){
        _front.setPosition(_pm()._bsplineHandleReposition(this->front(),nodeWeight));
        _back.setPosition(_pm()._bsplineHandleReposition(this->back(),nodeWeight));
        if(prevNode){
            prevNode->front()->setPosition(_pm()._bsplineHandleReposition(prevNode->front(), prevNodeWeight));
        }
        if(nextNode){
            nextNode->back()->setPosition(_pm()._bsplineHandleReposition(nextNode->back(), nextNodeWeight));
        }
    }
}

void Node::transform(Geom::Affine const &m)
{
    // save the previous nodes strength to apply it again once the node is moved 
    double nodeWeight = NO_POWER;
    double nextNodeWeight = NO_POWER;
    double prevNodeWeight = NO_POWER;
    Node *n = this;
    Node * nextNode = n->nodeToward(n->front());
    Node * prevNode = n->nodeToward(n->back());
    nodeWeight = _pm()._bsplineHandlePosition(n->front());
    if(prevNode){
        prevNodeWeight = _pm()._bsplineHandlePosition(prevNode->front());
    }
    if(nextNode){
        nextNodeWeight = _pm()._bsplineHandlePosition(nextNode->back());
    }

    // Save original position for post-processing
    _unfixed_pos = std::optional<Geom::Point>(position());

    setPosition(position() * m);
    _front.setPosition(_front.position() * m);
    _back.setPosition(_back.position() * m);

    // move the involved handles. First the node ones, later the adjoining ones.
    if(_pm()._isBSpline()){
        _front.setPosition(_pm()._bsplineHandleReposition(this->front(), nodeWeight));
        _back.setPosition(_pm()._bsplineHandleReposition(this->back(), nodeWeight));
        if(prevNode){
            prevNode->front()->setPosition(_pm()._bsplineHandleReposition(prevNode->front(), prevNodeWeight));
        }
        if(nextNode){
            nextNode->back()->setPosition(_pm()._bsplineHandleReposition(nextNode->back(), nextNodeWeight));
        }
    }
}

Geom::Rect Node::bounds() const
{
    Geom::Rect b(position(), position());
    b.expandTo(_front.position());
    b.expandTo(_back.position());
    return b;
}

/**
 * Affine transforms keep handle invariants for smooth and symmetric nodes,
 * but smooth nodes at ends of linear segments and auto nodes need special treatment
 *
 * Call this function once you have finished called ::move or ::transform on ALL nodes
 * that are being transformed in that one operation to avoid problematic bugs.
 */
void Node::fixNeighbors()
{
    if (!_unfixed_pos)
        return;

    Geom::Point const new_pos = position();

    // This method restores handle invariants for neighboring nodes,
    // and invariants that are based on positions of those nodes for this one.

    // Fix auto handles
    if (_type == NODE_AUTO) _updateAutoHandles();
    if (*_unfixed_pos != new_pos) {
        if (_next() && _next()->_type == NODE_AUTO) _next()->_updateAutoHandles();
        if (_prev() && _prev()->_type == NODE_AUTO) _prev()->_updateAutoHandles();
    }

    /* Fix smooth handles at the ends of linear segments.
       Rotate the appropriate handle to be collinear with the segment.
       If there is a smooth node at the other end of the segment, rotate it too. */
    Handle *handle, *other_handle;
    Node *other;
    if (_is_line_segment(this, _next())) {
        handle = &_back;
        other = _next();
        other_handle = &_next()->_front;
    } else if (_is_line_segment(_prev(), this)) {
        handle = &_front;
        other = _prev();
        other_handle = &_prev()->_back;
    } else return;

    if (_type == NODE_SMOOTH && !handle->isDegenerate()) {
        handle->setDirection(other->position(), new_pos);
    }
    // also update the handle on the other end of the segment
    if (other->_type == NODE_SMOOTH && !other_handle->isDegenerate()) {
        other_handle->setDirection(new_pos, other->position());
    }

    _unfixed_pos.reset();
}

void Node::_updateAutoHandles()
{
    // Recompute the position of automatic handles. For endnodes, retract both handles.
    // (It's only possible to create an end auto node through the XML editor.)
    if (isEndNode()) {
        _front.retract();
        _back.retract();
        return;
    }

    // auto nodes automatically adjust their handles to give
    // an appearance of smoothness, no matter what their surroundings are.
    Geom::Point vec_next = _next()->position() - position();
    Geom::Point vec_prev = _prev()->position() - position();
    double len_next = vec_next.length(), len_prev = vec_prev.length();
    if (len_next > 0 && len_prev > 0) {
        // "dir" is an unit vector perpendicular to the bisector of the angle created
        // by the previous node, this auto node and the next node.
        Geom::Point dir = Geom::unit_vector((len_prev / len_next) * vec_next - vec_prev);
        // Handle lengths are equal to 1/3 of the distance from the adjacent node.
        _back.setRelativePos(-dir * (len_prev / 3));
        _front.setRelativePos(dir * (len_next / 3));
    } else {
        // If any of the adjacent nodes coincides, retract both handles.
        _front.retract();
        _back.retract();
    }
}

void Node::showHandles(bool v)
{
    _handles_shown = v;
    if (!_front.isDegenerate()) {
        _front.setVisible(v);
    }
    if (!_back.isDegenerate()) {
        _back.setVisible(v);
    }

}

void Node::updateHandles()
{
    _handleControlStyling();

    _front._handleControlStyling();
    _back._handleControlStyling();
}


void Node::setType(NodeType type, bool update_handles)
{
    if (type == NODE_PICK_BEST) {
        pickBestType();
        updateState(); // The size of the control might have changed
        return;
    }

    // if update_handles is true, adjust handle positions to match the node type
    // handle degenerate handles appropriately
    if (update_handles) {
        switch (type) {
        case NODE_CUSP:
            // nothing to do
            break;
        case NODE_AUTO:
            // auto handles make no sense for endnodes
            if (isEndNode()) return;
            _updateAutoHandles();
            break;
        case NODE_SMOOTH: {
            // ignore attempts to make smooth endnodes.
            if (isEndNode()) return;
            // rotate handles to be collinear
            // for degenerate nodes set positions like auto handles
            bool prev_line = _is_line_segment(_prev(), this);
            bool next_line = _is_line_segment(this, _next());
            if (_type == NODE_SMOOTH) {
                // For a node that is already smooth and has a degenerate handle,
                // drag out the second handle without changing the direction of the first one.
                if (_front.isDegenerate()) {
                    double dist = Geom::distance(_next()->position(), position());
                    _front.setRelativePos(Geom::unit_vector(-_back.relativePos()) * dist / 3);
                }
                if (_back.isDegenerate()) {
                    double dist = Geom::distance(_prev()->position(), position());
                    _back.setRelativePos(Geom::unit_vector(-_front.relativePos()) * dist / 3);
                }
            } else if (isDegenerate()) {
                _updateAutoHandles();
            } else if (_front.isDegenerate()) {
                // if the front handle is degenerate and next path segment is a line, make back collinear;
                // otherwise, pull out the other handle to 1/3 of distance to prev.
                if (next_line) {
                    _back.setDirection(*_next(), *this);
                } else if (_prev()) {
                    Geom::Point dir = direction(_back, *this);
                    _front.setRelativePos(Geom::distance(_prev()->position(), position()) / 3 * dir);
                }
            } else if (_back.isDegenerate()) {
                if (prev_line) {
                    _front.setDirection(*_prev(), *this);
                } else if (_next()) {
                    Geom::Point dir = direction(_front, *this);
                    _back.setRelativePos(Geom::distance(_next()->position(), position()) / 3 * dir);
                }
            } else {
                /* both handles are extended. make collinear while keeping length.
                   first make back collinear with the vector front ---> back,
                   then make front collinear with back ---> node.
                   (not back ---> front, because back's position was changed in the first call) */
                _back.setDirection(_front, _back);
                _front.setDirection(_back, *this);
            }
            } break;
        case NODE_SYMMETRIC:
            if (isEndNode()) return; // symmetric handles make no sense for endnodes
            if (isDegenerate()) {
                // similar to auto handles but set the same length for both
                Geom::Point vec_next = _next()->position() - position();
                Geom::Point vec_prev = _prev()->position() - position();
                double len_next = vec_next.length(), len_prev = vec_prev.length();
                double len = (len_next + len_prev) / 6; // take 1/3 of average
                if (len == 0) return;

                Geom::Point dir = Geom::unit_vector((len_prev / len_next) * vec_next - vec_prev);
                _back.setRelativePos(-dir * len);
                _front.setRelativePos(dir * len);
            } else {
                // Both handles are extended. Compute average length, use direction from
                // back handle to front handle. This also works correctly for degenerates
                double len = (_front.length() + _back.length()) / 2;
                Geom::Point dir = direction(_back, _front);
                _front.setRelativePos(dir * len);
                _back.setRelativePos(-dir * len);
            }
            break;
        default: break;
        }
        // in node type changes, for BSpline traces, we can either maintain them
        // with NO_POWER power in border mode, or give them the default power in curve mode.
        if(_pm()._isBSpline()){
            double weight = NO_POWER;
            if(_pm()._bsplineHandlePosition(this->front()) != NO_POWER ){
                weight = DEFAULT_START_POWER;
            }
            _front.setPosition(_pm()._bsplineHandleReposition(this->front(), weight));
            _back.setPosition(_pm()._bsplineHandleReposition(this->back(), weight));
        }
    }
    _type = type;
    _setControlType(nodeTypeToCtrlType(_type));
    updateState();
}

void Node::pickBestType()
{
    _type = NODE_CUSP;
    bool front_degen = _front.isDegenerate();
    bool back_degen = _back.isDegenerate();
    bool both_degen = front_degen && back_degen;
    bool neither_degen = !front_degen && !back_degen;
    do {
        // if both handles are degenerate, do nothing
        if (both_degen) break;
        // if neither are degenerate, check their respective positions
        if (neither_degen) {
            // for now do not automatically make nodes symmetric, it can be annoying
            /*if (Geom::are_near(front_delta, -back_delta)) {
                _type = NODE_SYMMETRIC;
                break;
            }*/
            if (are_collinear_within_serializing_error(_front.position(), position(), _back.position())) {
                _type = NODE_SMOOTH;
                break;
            }
        }
        // check whether the handle aligns with the previous line segment.
        // we know that if front is degenerate, back isn't, because
        // both_degen was false
        if (front_degen && _next() && _next()->_back.isDegenerate()) {
            if (are_collinear_within_serializing_error(_next()->position(), position(), _back.position())) {
                _type = NODE_SMOOTH;
                break;
            }
        } else if (back_degen && _prev() && _prev()->_front.isDegenerate()) {
            if (are_collinear_within_serializing_error(_prev()->position(), position(), _front.position())) {
                _type = NODE_SMOOTH;
                break;
            }
        }
    } while (false);
    _setControlType(nodeTypeToCtrlType(_type));
    updateState();
}

bool Node::isEndNode() const
{
    return !_prev() || !_next();
}

void Node::sink()
{
    _canvas_item_ctrl->set_z_position(0);
}

NodeType Node::parse_nodetype(char x)
{
    switch (x) {
    case 'a': return NODE_AUTO;
    case 'c': return NODE_CUSP;
    case 's': return NODE_SMOOTH;
    case 'z': return NODE_SYMMETRIC;
    default: return NODE_PICK_BEST;
    }
}

bool Node::_eventHandler(Inkscape::UI::Tools::ToolBase *event_context, GdkEvent *event)
{
    int dir = 0;

    switch (event->type)
    {
    case GDK_SCROLL:
        if (event->scroll.direction == GDK_SCROLL_UP) {
            dir = 1;
        } else if (event->scroll.direction == GDK_SCROLL_DOWN) {
            dir = -1;
        } else if (event->scroll.direction == GDK_SCROLL_SMOOTH) {
            dir = event->scroll.delta_y > 0 ? -1 : 1;
        } else {
            break;
        }
        if (held_control(event->scroll)) {
            _linearGrow(dir);
        } else {
            _selection.spatialGrow(this, dir);
        }
        return true;
    case GDK_KEY_PRESS:
        switch (shortcut_key(event->key))
        {
        case GDK_KEY_Page_Up:
            dir = 1;
            break;
        case GDK_KEY_Page_Down:
            dir = -1;
            break;
        default: goto bail_out;
        }

        if (held_control(event->key)) {
            _linearGrow(dir);
        } else {
            _selection.spatialGrow(this, dir);
        }
        return true;

    default:
        break;
    }
    
    bail_out:
    return ControlPoint::_eventHandler(event_context, event);
}

void Node::_linearGrow(int dir)
{
    // Interestingly, we do not need any help from PathManipulator when doing linear grow.
    // First handle the trivial case of growing over an unselected node.
    if (!selected() && dir > 0) {
        _selection.insert(this);
        return;
    }

    NodeList::iterator this_iter = NodeList::get_iterator(this);
    NodeList::iterator fwd = this_iter, rev = this_iter;
    double distance_back = 0, distance_front = 0;

    // Linear grow is simple. We find the first unselected nodes in each direction
    // and compare the linear distances to them.
    if (dir > 0) {
        if (!selected()) {
            _selection.insert(this);
            return;
        }

        // find first unselected nodes on both sides
        while (fwd && fwd->selected()) {
            NodeList::iterator n = fwd.next();
            distance_front += Geom::bezier_length(*fwd, fwd->_front, n->_back, *n);
            fwd = n;
            if (fwd == this_iter)
                // there is no unselected node in this cyclic subpath
                return;
        }
        // do the same for the second direction. Do not check for equality with
        // this node, because there is at least one unselected node in the subpath,
        // so we are guaranteed to stop.
        while (rev && rev->selected()) {
            NodeList::iterator p = rev.prev();
            distance_back += Geom::bezier_length(*rev, rev->_back, p->_front, *p);
            rev = p;
        }

        NodeList::iterator t; // node to select
        if (fwd && rev) {
            if (distance_front <= distance_back) t = fwd;
            else t = rev;
        } else {
            if (fwd) t = fwd;
            if (rev) t = rev;
        }
        if (t) _selection.insert(t.ptr());

    // Linear shrink is more complicated. We need to find the farthest selected node.
    // This means we have to check the entire subpath. We go in the direction in which
    // the distance we traveled is lower. We do this until we run out of nodes (ends of path)
    // or the two iterators meet. On the way, we store the last selected node and its distance
    // in each direction (if any). At the end, we choose the one that is farther and deselect it.
    } else {
        // both iterators that store last selected nodes are initially empty
        NodeList::iterator last_fwd, last_rev;
        double last_distance_back = 0, last_distance_front = 0;

        while (rev || fwd) {
            if (fwd && (!rev || distance_front <= distance_back)) {
                if (fwd->selected()) {
                    last_fwd = fwd;
                    last_distance_front = distance_front;
                }
                NodeList::iterator n = fwd.next();
                if (n) distance_front += Geom::bezier_length(*fwd, fwd->_front, n->_back, *n);
                fwd = n;
            } else if (rev && (!fwd || distance_front > distance_back)) {
                if (rev->selected()) {
                    last_rev = rev;
                    last_distance_back = distance_back;
                }
                NodeList::iterator p = rev.prev();
                if (p) distance_back += Geom::bezier_length(*rev, rev->_back, p->_front, *p);
                rev = p;
            }
            // Check whether we walked the entire cyclic subpath.
            // This is initially true because both iterators start from this node,
            // so this check cannot go in the while condition.
            // When this happens, we need to check the last node, pointed to by the iterators.
            if (fwd && fwd == rev) {
                if (!fwd->selected()) break;
                NodeList::iterator fwdp = fwd.prev(), revn = rev.next();
                double df = distance_front + Geom::bezier_length(*fwdp, fwdp->_front, fwd->_back, *fwd);
                double db = distance_back + Geom::bezier_length(*revn, revn->_back, rev->_front, *rev);
                if (df > db) {
                    last_fwd = fwd;
                    last_distance_front = df;
                } else {
                    last_rev = rev;
                    last_distance_back = db;
                }
                break;
            }
        }

        NodeList::iterator t;
        if (last_fwd && last_rev) {
            if (last_distance_front >= last_distance_back) t = last_fwd;
            else t = last_rev;
        } else {
            if (last_fwd) t = last_fwd;
            if (last_rev) t = last_rev;
        }
        if (t) _selection.erase(t.ptr());
    }
}

void Node::_setState(State state)
{
    // change node size to match type and selection state
    _canvas_item_ctrl->set_size_extra(selected() ? 2 : 0);
    switch (state) {
        // These were used to set "active" and "prelight" flags but the flags weren't being used.
        case STATE_NORMAL:
        case STATE_MOUSEOVER:
            break;
        case STATE_CLICKED:
            // show the handles when selecting the nodes
            if(_pm()._isBSpline()){
                this->front()->setPosition(_pm()._bsplineHandleReposition(this->front()));
                this->back()->setPosition(_pm()._bsplineHandleReposition(this->back()));
            }
            break;
    }
    SelectableControlPoint::_setState(state);
}

bool Node::grabbed(GdkEventMotion *event)
{
    if (SelectableControlPoint::grabbed(event)) {
        return true;
    }

    // Dragging out handles with Shift + drag on a node.
    if (!held_shift(*event)) {
        return false;
    }

    Geom::Point evp = event_point(*event);
    Geom::Point rel_evp = evp - _last_click_event_point();

    // This should work even if dragtolerance is zero and evp coincides with node position.
    double angle_next = HUGE_VAL;
    double angle_prev = HUGE_VAL;
    bool has_degenerate = false;
    // determine which handle to drag out based on degeneration and the direction of drag
    if (_front.isDegenerate() && _next()) {
        Geom::Point next_relpos = _desktop->d2w(_next()->position())
            - _desktop->d2w(position());
        angle_next = fabs(Geom::angle_between(rel_evp, next_relpos));
        has_degenerate = true;
    }
    if (_back.isDegenerate() && _prev()) {
        Geom::Point prev_relpos = _desktop->d2w(_prev()->position())
            - _desktop->d2w(position());
        angle_prev = fabs(Geom::angle_between(rel_evp, prev_relpos));
        has_degenerate = true;
    }
    if (!has_degenerate) {
        return false;
    }

    Handle *h = angle_next < angle_prev ? &_front : &_back;

    h->setPosition(_desktop->w2d(evp));
    h->setVisible(true);
    h->transferGrab(this, event);
    Handle::_drag_out = true;
    return true;
}

void Node::dragged(Geom::Point &new_pos, GdkEventMotion *event)
{
    // For a note on how snapping is implemented in Inkscape, see snap.h.
    SnapManager &sm = _desktop->namedview->snap_manager;
    // even if we won't really snap, we might still call the one of the
    // constrainedSnap() methods to enforce the constraints, so we need
    // to setup the snapmanager anyway; this is also required for someSnapperMightSnap()
    sm.setup(_desktop);

    // do not snap when Shift is pressed
    bool snap = !held_shift(*event) && sm.someSnapperMightSnap();

    Inkscape::SnappedPoint sp;
    std::vector<Inkscape::SnapCandidatePoint> unselected;
    if (snap) {
        /* setup
         * TODO We are doing this every time a snap happens. It should once be done only once
         *      per drag - maybe in the grabbed handler?
         * TODO Unselected nodes vector must be valid during the snap run, because it is not
         *      copied. Fix this in snap.h and snap.cpp, then the above.
         * TODO Snapping to unselected segments of selected paths doesn't work yet. */

        // Build the list of unselected nodes.
        typedef ControlPointSelection::Set Set;
        Set &nodes = _selection.allPoints();
        for (auto node : nodes) {
            if (!node->selected()) {
                Node *n = static_cast<Node*>(node);
                Inkscape::SnapCandidatePoint p(n->position(), n->_snapSourceType(), n->_snapTargetType());
                unselected.push_back(p);
            }
        }
        sm.unSetup();
        sm.setupIgnoreSelection(_desktop, true, &unselected);
    }

    // Snap candidate point for free snapping; this will consider snapping tangentially
    // and perpendicularly and therefore the origin or direction vector must be set
    Inkscape::SnapCandidatePoint scp_free(new_pos, _snapSourceType());

    std::optional<Geom::Point> front_point, back_point;
    Geom::Point origin = _last_drag_origin();
    Geom::Point dummy_cp;
    if (_front.isDegenerate()) { // If there is no handle for the path segment towards the next node, then this segment is straight
        if (_is_line_segment(this, _next())) {
            front_point = _next()->position() - origin;
            if (_next()->selected()) {
                dummy_cp = _next()->position() - position();
                scp_free.addVector(dummy_cp);
            } else {
                dummy_cp = _next()->position();
                scp_free.addOrigin(dummy_cp);
            }
        }
    } else { // .. this path segment is curved
        front_point = _front.relativePos();
        scp_free.addVector(*front_point);
    }
    if (_back.isDegenerate()) { // If there is no handle for the path segment towards the previous node, then this segment is straight
        if (_is_line_segment(_prev(), this)) {
            back_point = _prev()->position() - origin;
            if (_prev()->selected()) {
                dummy_cp = _prev()->position() - position();
                scp_free.addVector(dummy_cp);
            } else {
                dummy_cp = _prev()->position();
                scp_free.addOrigin(dummy_cp);
            }
        }
    } else { // .. this path segment is curved
        back_point = _back.relativePos();
        scp_free.addVector(*back_point);
    }

    if (held_control(*event)) {
        // We're about to consider a constrained snap, which is already limited to 1D
        // Therefore tangential or perpendicular snapping will not be considered, and therefore
        // all calls above to scp_free.addVector() and scp_free.addOrigin() can be neglected
        std::vector<Inkscape::Snapper::SnapConstraint> constraints;
        if (held_alt(*event)) { // with Ctrl+Alt, constrain to handle	 lines
            Inkscape::Preferences *prefs = Inkscape::Preferences::get();
            int snaps = prefs->getIntLimited("/options/rotationsnapsperpi/value", 12, 1, 1000);
            double min_angle = M_PI / snaps;

            // If the node is cusp and both handles are retracted (degenerate; straight line segment at both sides of the node), then snap to those line segments
            if (isDegenerate()) { // Cusp node with both handles retracted
				if (front_point) {
					constraints.emplace_back(origin, *front_point);
				}
				if (back_point) {
					constraints.emplace_back(origin, *back_point);
				}
            }

            // For smooth nodes, we will also snap to normals of handle lines. For cusp nodes this would be unintuitive and confusing
            // Only snap to the normals when they are further than snap increment away from the second handle constraint
            if (_type != NODE_CUSP) {
            	std::optional<Geom::Point> fperp_point = Geom::rot90(*front_point);
            	if (fperp_point && (!back_point ||
					(fabs(Geom::angle_between(*fperp_point, *back_point)) > min_angle &&
					 fabs(Geom::angle_between(*fperp_point, *back_point)) < M_PI - min_angle)))
				{
					constraints.emplace_back(origin, *fperp_point);
				}

            	std::optional<Geom::Point> bperp_point = Geom::rot90(*back_point);
				if (bperp_point && (!front_point ||
					(fabs(Geom::angle_between(*bperp_point, *front_point)) > min_angle &&
					 fabs(Geom::angle_between(*bperp_point, *front_point)) < M_PI - min_angle)))
				{
					constraints.emplace_back(origin, *bperp_point);
				}
            }

            sp = sm.multipleConstrainedSnaps(Inkscape::SnapCandidatePoint(new_pos, _snapSourceType()), constraints, held_shift(*event));
        } else {
            // with Ctrl, constrain to axes
            constraints.emplace_back(origin, Geom::Point(1, 0));
            constraints.emplace_back(origin, Geom::Point(0, 1));
            sp = sm.multipleConstrainedSnaps(Inkscape::SnapCandidatePoint(new_pos, _snapSourceType()), constraints, held_shift(*event));
        }
        new_pos = sp.getPoint();
    } else if (snap) {
        Inkscape::SnappedPoint sp = sm.freeSnap(scp_free);
        new_pos = sp.getPoint();
    }

    sm.unSetup();

    SelectableControlPoint::dragged(new_pos, event);
}

bool Node::clicked(GdkEventButton *event)
{
    if(_pm()._nodeClicked(this, event))
        return true;
    return SelectableControlPoint::clicked(event);
}

Inkscape::SnapSourceType Node::_snapSourceType() const
{
    if (_type == NODE_SMOOTH || _type == NODE_AUTO)
        return SNAPSOURCE_NODE_SMOOTH;
    return SNAPSOURCE_NODE_CUSP;
}
Inkscape::SnapTargetType Node::_snapTargetType() const
{
    if (_type == NODE_SMOOTH || _type == NODE_AUTO)
        return SNAPTARGET_NODE_SMOOTH;
    return SNAPTARGET_NODE_CUSP;
}

Inkscape::SnapCandidatePoint Node::snapCandidatePoint()
{
    return SnapCandidatePoint(position(), _snapSourceType(), _snapTargetType());
}

Handle *Node::handleToward(Node *to)
{
    if (_next() == to) {
        return front();
    }
    if (_prev() == to) {
        return back();
    }
    g_error("Node::handleToward(): second node is not adjacent!");
    return nullptr;
}

Node *Node::nodeToward(Handle *dir)
{
    if (front() == dir) {
        return _next();
    }
    if (back() == dir) {
        return _prev();
    }
    g_error("Node::nodeToward(): handle is not a child of this node!");
    return nullptr;
}

Handle *Node::handleAwayFrom(Node *to)
{
    if (_next() == to) {
        return back();
    }
    if (_prev() == to) {
        return front();
    }
    g_error("Node::handleAwayFrom(): second node is not adjacent!");
    return nullptr;
}

Node *Node::nodeAwayFrom(Handle *h)
{
    if (front() == h) {
        return _prev();
    }
    if (back() == h) {
        return _next();
    }
    g_error("Node::nodeAwayFrom(): handle is not a child of this node!");
    return nullptr;
}

Glib::ustring Node::_getTip(unsigned state) const
{
    bool isBSpline = _pm()._isBSpline();
    Handle *h = const_cast<Handle *>(&_front);
    Glib::ustring s = C_("Path node tip",
                         "node handle");   // not expected

    if (state_held_shift(state)) {
        bool can_drag_out = (_next() && _front.isDegenerate()) ||
                            (_prev() &&  _back.isDegenerate());

        if (can_drag_out) {
            /*if (state_held_control(state)) {
                s = format_tip(C_("Path node tip",
                    "<b>Shift+Ctrl:</b> drag out a handle and snap its angle "
                    "to %f° increments"), snap_increment_degrees());
            }*/
            s = C_("Path node tip",
                "<b>Shift</b>: drag out a handle, click to toggle selection");
        }
        else {
            s = C_("Path node tip",
                   "<b>Shift</b>: click to toggle selection");
        }
    }

    else if (state_held_control(state)) {
        if (state_held_alt(state)) {
            s = C_("Path node tip",
                   "<b>Ctrl+Alt</b>: move along handle lines, click to delete node");
        }
        else {
            s = C_("Path node tip",
            "<b>Ctrl</b>: move along axes, click to change node type");
        }
    }

    else if (state_held_alt(state)) {
        s = C_("Path node tip",
               "<b>Alt</b>: sculpt nodes");
    }

    else {   // No modifiers: assemble tip from node type
        char const *nodetype = node_type_to_localized_string(_type);
        double power = _pm()._bsplineHandlePosition(h);

        if (_selection.transformHandlesEnabled() && selected()) {
            if (_selection.size() == 1) {
                if (!isBSpline) {
                    s = format_tip(C_("Path node tip",
                                      "<b>%s</b>: "
                                      "drag to shape the path" ". "
                                      "(more: Shift, Ctrl, Alt)"),
                                   nodetype);
                }
                else {
                    s = format_tip(C_("Path node tip",
                                      "<b>BSpline node</b> (%.3g power): "
                                      "drag to shape the path" ". "
                                      "(more: Shift, Ctrl, Alt)"),
                                   power);
                }
            }
            else {
                s = format_tip(C_("Path node tip",
                                  "<b>%s</b>: "
                                  "drag to shape the path"   ", "
                                  "click to toggle scale/rotation handles" ". "
                                  "(more: Shift, Ctrl, Alt)"),
                               nodetype);
            }
        }
        else if (!isBSpline) {
            s = format_tip(C_("Path node tip",
                              "<b>%s</b>: "
                              "drag to shape the path"   ", "
                              "click to select only this node" ". "
                              "(more: Shift, Ctrl, Alt)"),
                           nodetype);
        }
        else {
            s = format_tip(C_("Path node tip",
                              "<b>BSpline node</b> (%.3g power): "
                              "drag to shape the path"   ", "
                              "click to select only this node" ". "
                              "(more: Shift, Ctrl, Alt)"),
                           power);
        }
    }

    return (s);
}

Glib::ustring Node::_getDragTip(GdkEventMotion */*event*/) const
{
    Geom::Point dist = position() - _last_drag_origin();
    
    Inkscape::Util::Quantity x_q = Inkscape::Util::Quantity(dist[Geom::X], "px");
    Inkscape::Util::Quantity y_q = Inkscape::Util::Quantity(dist[Geom::Y], "px");
    Glib::ustring x = x_q.string(_desktop->namedview->display_units);
    Glib::ustring y = y_q.string(_desktop->namedview->display_units);
    Glib::ustring ret = format_tip(C_("Path node tip", "Move node by %s, %s"), x.c_str(), y.c_str());
    return ret;
}

/**
 * See also: Handle::handle_type_to_localized_string(NodeType type)
 */
char const *Node::node_type_to_localized_string(NodeType type)
{
    switch (type) {
    case NODE_CUSP:
        return _("Corner node");
    case NODE_SMOOTH:
        return _("Smooth node");
    case NODE_SYMMETRIC:
        return _("Symmetric node");
    case NODE_AUTO:
        return _("Auto-smooth node");
    default:
        return "";
    }
}

bool Node::_is_line_segment(Node *first, Node *second)
{
    if (!first || !second) return false;
    if (first->_next() == second)
        return first->_front.isDegenerate() && second->_back.isDegenerate();
    if (second->_next() == first)
        return second->_front.isDegenerate() && first->_back.isDegenerate();
    return false;
}

NodeList::NodeList(SubpathList &splist)
    : _list(splist)
    , _closed(false)
{
    this->ln_list = this;
    this->ln_next = this;
    this->ln_prev = this;
}

NodeList::~NodeList()
{
    clear();
}

bool NodeList::empty()
{
    return ln_next == this;
}

NodeList::size_type NodeList::size()
{
    size_type sz = 0;
    for (ListNode *ln = ln_next; ln != this; ln = ln->ln_next) ++sz;
    return sz;
}

bool NodeList::closed()
{
    return _closed;
}

bool NodeList::degenerate()
{
    return closed() ? empty() : ++begin() == end();
}

NodeList::iterator NodeList::before(double t, double *fracpart)
{
    double intpart;
    *fracpart = std::modf(t, &intpart);
    int index = intpart;

    iterator ret = begin();
    std::advance(ret, index);
    return ret;
}

NodeList::iterator NodeList::before(Geom::PathTime const &pvp)
{
    iterator ret = begin();
    std::advance(ret, pvp.curve_index);
    return ret;
}

NodeList::iterator NodeList::insert(iterator pos, Node *x)
{
    ListNode *ins = pos._node;
    x->ln_next = ins;
    x->ln_prev = ins->ln_prev;
    ins->ln_prev->ln_next = x;
    ins->ln_prev = x;
    x->ln_list = this;
    return iterator(x);
}

void NodeList::splice(iterator pos, NodeList &list)
{
    splice(pos, list, list.begin(), list.end());
}

void NodeList::splice(iterator pos, NodeList &list, iterator i)
{
    NodeList::iterator j = i;
    ++j;
    splice(pos, list, i, j);
}

void NodeList::splice(iterator pos, NodeList &/*list*/, iterator first, iterator last)
{
    ListNode *ins_beg = first._node, *ins_end = last._node, *at = pos._node;
    for (ListNode *ln = ins_beg; ln != ins_end; ln = ln->ln_next) {
        ln->ln_list = this;
    }
    ins_beg->ln_prev->ln_next = ins_end;
    ins_end->ln_prev->ln_next = at;
    at->ln_prev->ln_next = ins_beg;

    ListNode *atprev = at->ln_prev;
    at->ln_prev = ins_end->ln_prev;
    ins_end->ln_prev = ins_beg->ln_prev;
    ins_beg->ln_prev = atprev;
}

void NodeList::shift(int n)
{
    // 1. make the list perfectly cyclic
    ln_next->ln_prev = ln_prev;
    ln_prev->ln_next = ln_next;
    // 2. find new begin
    ListNode *new_begin = ln_next;
    if (n > 0) {
        for (; n > 0; --n) new_begin = new_begin->ln_next;
    } else {
        for (; n < 0; ++n) new_begin = new_begin->ln_prev;
    }
    // 3. relink begin to list
    ln_next = new_begin;
    ln_prev = new_begin->ln_prev;
    new_begin->ln_prev->ln_next = this;
    new_begin->ln_prev = this;
}

void NodeList::reverse()
{
    for (ListNode *ln = ln_next; ln != this; ln = ln->ln_prev) {
        std::swap(ln->ln_next, ln->ln_prev);
        Node *node = static_cast<Node*>(ln);
        Geom::Point save_pos = node->front()->position();
        node->front()->setPosition(node->back()->position());
        node->back()->setPosition(save_pos);
    }
    std::swap(ln_next, ln_prev);
}

void NodeList::clear()
{
    // ugly but more efficient clearing mechanism
    std::vector<ControlPointSelection *> to_clear;
    std::vector<std::pair<SelectableControlPoint *, long> > nodes;
    long in = -1;
    for (iterator i = begin(); i != end(); ++i) {
        SelectableControlPoint *rm = static_cast<Node*>(i._node);
        if (std::find(to_clear.begin(), to_clear.end(), &rm->_selection) == to_clear.end()) {
            to_clear.push_back(&rm->_selection);
            ++in;
        }
        nodes.emplace_back(rm, in);
    }
    for (size_t i = 0, e = nodes.size(); i != e; ++i) {
        to_clear[nodes[i].second]->erase(nodes[i].first, false);
    }
    std::vector<std::vector<SelectableControlPoint *> > emission;
    for (long i = 0, e = to_clear.size(); i != e; ++i) {
        emission.emplace_back();
        for (size_t j = 0, f = nodes.size(); j != f; ++j) {
            if (nodes[j].second != i)
                break;
            emission[i].push_back(nodes[j].first);
        }
    }

    for (size_t i = 0, e = emission.size(); i != e; ++i) {
        to_clear[i]->signal_selection_changed.emit(emission[i], false);
    }

    for (iterator i = begin(); i != end();)
        erase (i++);
}

NodeList::iterator NodeList::erase(iterator i)
{
    // some gymnastics are required to ensure that the node is valid when deleted;
    // otherwise the code that updates handle visibility will break
    Node *rm = static_cast<Node*>(i._node);
    ListNode *rmnext = rm->ln_next, *rmprev = rm->ln_prev;
    ++i;
    delete rm;
    rmprev->ln_next = rmnext;
    rmnext->ln_prev = rmprev;
    return i;
}

// TODO this method is very ugly!
// converting SubpathList to an intrusive list might allow us to get rid of it
void NodeList::kill()
{
    for (SubpathList::iterator i = _list.begin(); i != _list.end(); ++i) {
        if (i->get() == this) {
            _list.erase(i);
            return;
        }
    }
}

NodeList &NodeList::get(Node *n) {
    return n->nodeList();
}
NodeList &NodeList::get(iterator const &i) {
    return *(i._node->ln_list);
}


} // namespace UI
} // namespace Inkscape

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :