diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:06:44 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:06:44 +0000 |
commit | ed5640d8b587fbcfed7dd7967f3de04b37a76f26 (patch) | |
tree | 7a5f7c6c9d02226d7471cb3cc8fbbf631b415303 /basegfx/source/polygon | |
parent | Initial commit. (diff) | |
download | libreoffice-upstream.tar.xz libreoffice-upstream.zip |
Adding upstream version 4:7.4.7.upstream/4%7.4.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'basegfx/source/polygon')
-rw-r--r-- | basegfx/source/polygon/WaveLine.cxx | 52 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dlinegeometry.cxx | 1056 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dpolygon.cxx | 1498 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dpolygonclipper.cxx | 826 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dpolygoncutandtouch.cxx | 1079 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dpolygontools.cxx | 3578 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dpolygontriangulator.cxx | 435 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dpolypolygon.cxx | 441 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dpolypolygoncutter.cxx | 1149 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dpolypolygontools.cxx | 656 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dsvgpolypolygon.cxx | 931 | ||||
-rw-r--r-- | basegfx/source/polygon/b2dtrapezoid.cxx | 1160 | ||||
-rw-r--r-- | basegfx/source/polygon/b3dpolygon.cxx | 1617 | ||||
-rw-r--r-- | basegfx/source/polygon/b3dpolygontools.cxx | 830 | ||||
-rw-r--r-- | basegfx/source/polygon/b3dpolypolygon.cxx | 400 | ||||
-rw-r--r-- | basegfx/source/polygon/b3dpolypolygontools.cxx | 588 |
16 files changed, 16296 insertions, 0 deletions
diff --git a/basegfx/source/polygon/WaveLine.cxx b/basegfx/source/polygon/WaveLine.cxx new file mode 100644 index 000000000..bc85c4536 --- /dev/null +++ b/basegfx/source/polygon/WaveLine.cxx @@ -0,0 +1,52 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + */ + +#include <basegfx/polygon/WaveLine.hxx> +#include <basegfx/point/b2dpoint.hxx> + +namespace basegfx +{ +BASEGFX_DLLPUBLIC B2DPolygon createWaveLinePolygon(basegfx::B2DRectangle const& rRectangle) +{ + basegfx::B2DPolygon aPolygon; + + double fWaveHeight = rRectangle.getHeight(); + // Wavelength depends on the wave height so it looks nice + double fHalfWaveLength = fWaveHeight + 1.0; + double fWaveAmplitude = fWaveHeight / 2.0; + + double fLastX = rRectangle.getMinX(); + double fBaseY = rRectangle.getMinY() + fWaveAmplitude; + double fDirection = 1.0; + + // In quadratic bezier the curve is 1/2 of the control height + // so we need to compensate for that. + constexpr double fHeightCompensation = 2.0; + + aPolygon.append(basegfx::B2DPoint(fLastX, fBaseY)); + + for (double fI = fHalfWaveLength; fI <= rRectangle.getWidth(); fI += fHalfWaveLength) + { + basegfx::B2DPoint aPoint(fLastX + fHalfWaveLength, fBaseY); + basegfx::B2DPoint aControl(fLastX + (fHalfWaveLength / 2.0), + fBaseY + fDirection * fWaveAmplitude * fHeightCompensation); + + aPolygon.appendQuadraticBezierSegment(aControl, aPoint); + + fLastX = aPoint.getX(); // next iteration + fDirection *= -1.0; // fDirection iterates between 1 and -1 + } + + return aPolygon; +} + +} // end of namespace basegfx + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dlinegeometry.cxx b/basegfx/source/polygon/b2dlinegeometry.cxx new file mode 100644 index 000000000..6dda8f9e7 --- /dev/null +++ b/basegfx/source/polygon/b2dlinegeometry.cxx @@ -0,0 +1,1056 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <osl/diagnose.h> +#include <sal/log.hxx> +#include <basegfx/polygon/b2dlinegeometry.hxx> +#include <basegfx/point/b2dpoint.hxx> +#include <basegfx/vector/b2dvector.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/polygon/b2dpolypolygontools.hxx> +#include <basegfx/range/b2drange.hxx> +#include <basegfx/matrix/b2dhommatrix.hxx> +#include <basegfx/curve/b2dcubicbezier.hxx> +#include <basegfx/matrix/b2dhommatrixtools.hxx> +#include <com/sun/star/drawing/LineCap.hpp> +#include <basegfx/polygon/b2dpolypolygoncutter.hxx> +#include <basegfx/polygon/b2dpolygontriangulator.hxx> + +namespace basegfx::utils +{ + B2DPolyPolygon createAreaGeometryForLineStartEnd( + const B2DPolygon& rCandidate, + const B2DPolyPolygon& rArrow, + bool bStart, + double fWidth, + double fCandidateLength, + double fDockingPosition, // 0->top, 1->bottom + double* pConsumedLength, + double fShift) + { + B2DPolyPolygon aRetval; + assert((rCandidate.count() > 1) && "createAreaGeometryForLineStartEnd: Line polygon has too few points"); + assert((rArrow.count() > 0) && "createAreaGeometryForLineStartEnd: Empty arrow utils::PolyPolygon"); + assert((fWidth > 0.0) && "createAreaGeometryForLineStartEnd: Width too small"); + assert((fDockingPosition >= 0.0 && fDockingPosition <= 1.0) && + "createAreaGeometryForLineStartEnd: fDockingPosition out of range [0.0 .. 1.0]"); + + if(fWidth < 0.0) + { + fWidth = -fWidth; + } + + if(rCandidate.count() > 1 && rArrow.count() && !fTools::equalZero(fWidth)) + { + if(fDockingPosition < 0.0) + { + fDockingPosition = 0.0; + } + else if(fDockingPosition > 1.0) + { + fDockingPosition = 1.0; + } + + // init return value from arrow + aRetval.append(rArrow); + + // get size of the arrow + const B2DRange aArrowSize(getRange(rArrow)); + + // build ArrowTransform; center in X, align with axis in Y + B2DHomMatrix aArrowTransform(basegfx::utils::createTranslateB2DHomMatrix( + -aArrowSize.getCenter().getX(), -aArrowSize.getMinimum().getY())); + + // scale to target size + const double fArrowScale(fWidth / (aArrowSize.getWidth())); + aArrowTransform.scale(fArrowScale, fArrowScale); + + // get arrow size in Y + B2DPoint aUpperCenter(aArrowSize.getCenter().getX(), aArrowSize.getMaximum().getY()); + aUpperCenter *= aArrowTransform; + const double fArrowYLength(B2DVector(aUpperCenter).getLength()); + + // move arrow to have docking position centered + aArrowTransform.translate(0.0, -fArrowYLength * fDockingPosition + fShift); + + // prepare polygon length + if(fTools::equalZero(fCandidateLength)) + { + fCandidateLength = getLength(rCandidate); + } + + // get the polygon vector we want to plant this arrow on + const double fConsumedLength(fArrowYLength * (1.0 - fDockingPosition) - fShift); + const B2DVector aHead(rCandidate.getB2DPoint(bStart ? 0 : rCandidate.count() - 1)); + const B2DVector aTail(getPositionAbsolute(rCandidate, + bStart ? fConsumedLength : fCandidateLength - fConsumedLength, fCandidateLength)); + + // from that vector, take the needed rotation and add rotate for arrow to transformation + const B2DVector aTargetDirection(aHead - aTail); + const double fRotation(atan2(aTargetDirection.getY(), aTargetDirection.getX()) + M_PI_2); + + // rotate around docking position + aArrowTransform.rotate(fRotation); + + // move arrow docking position to polygon head + aArrowTransform.translate(aHead.getX(), aHead.getY()); + + // transform retval and close + aRetval.transform(aArrowTransform); + aRetval.setClosed(true); + + // if pConsumedLength is asked for, fill it + if(pConsumedLength) + { + *pConsumedLength = fConsumedLength; + } + } + + return aRetval; + } +} // end of namespace + +namespace basegfx +{ + // anonymous namespace for local helpers + namespace + { + bool impIsSimpleEdge(const B2DCubicBezier& rCandidate, double fMaxCosQuad, double fMaxPartOfEdgeQuad) + { + // isBezier() is true, already tested by caller + const B2DVector aEdge(rCandidate.getEndPoint() - rCandidate.getStartPoint()); + + if(aEdge.equalZero()) + { + // start and end point the same, but control vectors used -> balloon curve loop + // is not a simple edge + return false; + } + + // get tangentA and scalar with edge + const B2DVector aTangentA(rCandidate.getTangent(0.0)); + const double fScalarAE(aEdge.scalar(aTangentA)); + + if(fTools::lessOrEqual(fScalarAE, 0.0)) + { + // angle between TangentA and Edge is bigger or equal 90 degrees + return false; + } + + // get self-scalars for E and A + const double fScalarE(aEdge.scalar(aEdge)); + const double fScalarA(aTangentA.scalar(aTangentA)); + const double fLengthCompareE(fScalarE * fMaxPartOfEdgeQuad); + + if(fTools::moreOrEqual(fScalarA, fLengthCompareE)) + { + // length of TangentA is more than fMaxPartOfEdge of length of edge + return false; + } + + if(fTools::lessOrEqual(fScalarAE * fScalarAE, fScalarA * fScalarE * fMaxCosQuad)) + { + // angle between TangentA and Edge is bigger or equal angle defined by fMaxCos + return false; + } + + // get tangentB and scalar with edge + const B2DVector aTangentB(rCandidate.getTangent(1.0)); + const double fScalarBE(aEdge.scalar(aTangentB)); + + if(fTools::lessOrEqual(fScalarBE, 0.0)) + { + // angle between TangentB and Edge is bigger or equal 90 degrees + return false; + } + + // get self-scalar for B + const double fScalarB(aTangentB.scalar(aTangentB)); + + if(fTools::moreOrEqual(fScalarB, fLengthCompareE)) + { + // length of TangentB is more than fMaxPartOfEdge of length of edge + return false; + } + + if(fTools::lessOrEqual(fScalarBE * fScalarBE, fScalarB * fScalarE * fMaxCosQuad)) + { + // angle between TangentB and Edge is bigger or equal defined by fMaxCos + return false; + } + + return true; + } + + void impSubdivideToSimple(const B2DCubicBezier& rCandidate, B2DPolygon& rTarget, double fMaxCosQuad, double fMaxPartOfEdgeQuad, sal_uInt32 nMaxRecursionDepth) + { + if(!nMaxRecursionDepth || impIsSimpleEdge(rCandidate, fMaxCosQuad, fMaxPartOfEdgeQuad)) + { + rTarget.appendBezierSegment(rCandidate.getControlPointA(), rCandidate.getControlPointB(), rCandidate.getEndPoint()); + } + else + { + B2DCubicBezier aLeft, aRight; + rCandidate.split(0.5, &aLeft, &aRight); + + impSubdivideToSimple(aLeft, rTarget, fMaxCosQuad, fMaxPartOfEdgeQuad, nMaxRecursionDepth - 1); + impSubdivideToSimple(aRight, rTarget, fMaxCosQuad, fMaxPartOfEdgeQuad, nMaxRecursionDepth - 1); + } + } + + B2DPolygon subdivideToSimple(const B2DPolygon& rCandidate, double fMaxCosQuad, double fMaxPartOfEdgeQuad) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(rCandidate.areControlPointsUsed() && nPointCount) + { + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DPolygon aRetval; + B2DCubicBezier aEdge; + + // prepare edge for loop + aEdge.setStartPoint(rCandidate.getB2DPoint(0)); + aRetval.append(aEdge.getStartPoint()); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + // fill B2DCubicBezier + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aEdge.setControlPointA(rCandidate.getNextControlPoint(a)); + aEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex)); + aEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex)); + + // get rid of unnecessary bezier segments + aEdge.testAndSolveTrivialBezier(); + + if(aEdge.isBezier()) + { + // before splitting recursively with internal simple criteria, use + // ExtremumPosFinder to remove those + std::vector< double > aExtremumPositions; + + aExtremumPositions.reserve(4); + aEdge.getAllExtremumPositions(aExtremumPositions); + + const sal_uInt32 nCount(aExtremumPositions.size()); + + if(nCount) + { + if(nCount > 1) + { + // create order from left to right + std::sort(aExtremumPositions.begin(), aExtremumPositions.end()); + } + + for(sal_uInt32 b(0); b < nCount;) + { + // split aEdge at next split pos + B2DCubicBezier aLeft; + const double fSplitPos(aExtremumPositions[b++]); + + aEdge.split(fSplitPos, &aLeft, &aEdge); + aLeft.testAndSolveTrivialBezier(); + + // consume left part + if(aLeft.isBezier()) + { + impSubdivideToSimple(aLeft, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6); + } + else + { + aRetval.append(aLeft.getEndPoint()); + } + + if(b < nCount) + { + // correct the remaining split positions to fit to shortened aEdge + const double fScaleFactor(1.0 / (1.0 - fSplitPos)); + + for(sal_uInt32 c(b); c < nCount; c++) + { + aExtremumPositions[c] = (aExtremumPositions[c] - fSplitPos) * fScaleFactor; + } + } + } + + // test the shortened rest of aEdge + aEdge.testAndSolveTrivialBezier(); + + // consume right part + if(aEdge.isBezier()) + { + impSubdivideToSimple(aEdge, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6); + } + else + { + aRetval.append(aEdge.getEndPoint()); + } + } + else + { + impSubdivideToSimple(aEdge, aRetval, fMaxCosQuad, fMaxPartOfEdgeQuad, 6); + } + } + else + { + // straight edge, add point + aRetval.append(aEdge.getEndPoint()); + } + + // prepare edge for next step + aEdge.setStartPoint(aEdge.getEndPoint()); + } + + // copy closed flag and check for double points + aRetval.setClosed(rCandidate.isClosed()); + aRetval.removeDoublePoints(); + + return aRetval; + } + else + { + return rCandidate; + } + } + + B2DPolygon createAreaGeometryForEdge( + const B2DCubicBezier& rEdge, + double fHalfLineWidth, + bool bStartRound, + bool bEndRound, + bool bStartSquare, + bool bEndSquare, + basegfx::triangulator::B2DTriangleVector* pTriangles) + { + // create polygon for edge + // Unfortunately, while it would be geometrically correct to not add + // the in-between points EdgeEnd and EdgeStart, it leads to rounding + // errors when converting to integer polygon coordinates for painting + if(rEdge.isBezier()) + { + // prepare target and data common for upper and lower + B2DPolygon aBezierPolygon; + const B2DVector aPureEdgeVector(rEdge.getEndPoint() - rEdge.getStartPoint()); + const double fEdgeLength(aPureEdgeVector.getLength()); + const bool bIsEdgeLengthZero(fTools::equalZero(fEdgeLength)); + B2DVector aTangentA(rEdge.getTangent(0.0)); aTangentA.normalize(); + B2DVector aTangentB(rEdge.getTangent(1.0)); aTangentB.normalize(); + const B2DVector aNormalizedPerpendicularA(getPerpendicular(aTangentA)); + const B2DVector aNormalizedPerpendicularB(getPerpendicular(aTangentB)); + + // create upper displacement vectors and check if they cut + const B2DVector aPerpendStartA(aNormalizedPerpendicularA * -fHalfLineWidth); + const B2DVector aPerpendEndA(aNormalizedPerpendicularB * -fHalfLineWidth); + double fCutA(0.0); + const CutFlagValue aCutA(utils::findCut( + rEdge.getStartPoint(), aPerpendStartA, + rEdge.getEndPoint(), aPerpendEndA, + CutFlagValue::ALL, &fCutA)); + const bool bCutA(aCutA != CutFlagValue::NONE); + + // create lower displacement vectors and check if they cut + const B2DVector aPerpendStartB(aNormalizedPerpendicularA * fHalfLineWidth); + const B2DVector aPerpendEndB(aNormalizedPerpendicularB * fHalfLineWidth); + double fCutB(0.0); + const CutFlagValue aCutB(utils::findCut( + rEdge.getEndPoint(), aPerpendEndB, + rEdge.getStartPoint(), aPerpendStartB, + CutFlagValue::ALL, &fCutB)); + const bool bCutB(aCutB != CutFlagValue::NONE); + + // check if cut happens + const bool bCut(bCutA || bCutB); + B2DPoint aCutPoint; + + // create left edge + if(bStartRound || bStartSquare) + { + if(bStartRound) + { + basegfx::B2DPolygon aStartPolygon(utils::createHalfUnitCircle()); + + aStartPolygon.transform( + utils::createScaleShearXRotateTranslateB2DHomMatrix( + fHalfLineWidth, fHalfLineWidth, + 0.0, + atan2(aTangentA.getY(), aTangentA.getX()) + M_PI_2, + rEdge.getStartPoint().getX(), rEdge.getStartPoint().getY())); + aBezierPolygon.append(aStartPolygon); + } + else // bStartSquare + { + const basegfx::B2DPoint aStart(rEdge.getStartPoint() - (aTangentA * fHalfLineWidth)); + + if(bCutB) + { + aBezierPolygon.append(rEdge.getStartPoint() + aPerpendStartB); + } + + aBezierPolygon.append(aStart + aPerpendStartB); + aBezierPolygon.append(aStart + aPerpendStartA); + + if(bCutA) + { + aBezierPolygon.append(rEdge.getStartPoint() + aPerpendStartA); + } + } + } + else + { + // append original in-between point + aBezierPolygon.append(rEdge.getStartPoint()); + } + + // create upper edge. + { + if(bCutA) + { + // calculate cut point and add + aCutPoint = rEdge.getStartPoint() + (aPerpendStartA * fCutA); + aBezierPolygon.append(aCutPoint); + } + else + { + // create scaled bezier segment + const B2DPoint aStart(rEdge.getStartPoint() + aPerpendStartA); + const B2DPoint aEnd(rEdge.getEndPoint() + aPerpendEndA); + const B2DVector aEdge(aEnd - aStart); + const double fLength(aEdge.getLength()); + const double fScale(bIsEdgeLengthZero ? 1.0 : fLength / fEdgeLength); + const B2DVector fRelNext(rEdge.getControlPointA() - rEdge.getStartPoint()); + const B2DVector fRelPrev(rEdge.getControlPointB() - rEdge.getEndPoint()); + + aBezierPolygon.append(aStart); + aBezierPolygon.appendBezierSegment(aStart + (fRelNext * fScale), aEnd + (fRelPrev * fScale), aEnd); + } + } + + // create right edge + if(bEndRound || bEndSquare) + { + if(bEndRound) + { + basegfx::B2DPolygon aEndPolygon(utils::createHalfUnitCircle()); + + aEndPolygon.transform( + utils::createScaleShearXRotateTranslateB2DHomMatrix( + fHalfLineWidth, fHalfLineWidth, + 0.0, + atan2(aTangentB.getY(), aTangentB.getX()) - M_PI_2, + rEdge.getEndPoint().getX(), rEdge.getEndPoint().getY())); + aBezierPolygon.append(aEndPolygon); + } + else // bEndSquare + { + const basegfx::B2DPoint aEnd(rEdge.getEndPoint() + (aTangentB * fHalfLineWidth)); + + if(bCutA) + { + aBezierPolygon.append(rEdge.getEndPoint() + aPerpendEndA); + } + + aBezierPolygon.append(aEnd + aPerpendEndA); + aBezierPolygon.append(aEnd + aPerpendEndB); + + if(bCutB) + { + aBezierPolygon.append(rEdge.getEndPoint() + aPerpendEndB); + } + } + } + else + { + // append original in-between point + aBezierPolygon.append(rEdge.getEndPoint()); + } + + // create lower edge. + { + if(bCutB) + { + // calculate cut point and add + aCutPoint = rEdge.getEndPoint() + (aPerpendEndB * fCutB); + aBezierPolygon.append(aCutPoint); + } + else + { + // create scaled bezier segment + const B2DPoint aStart(rEdge.getEndPoint() + aPerpendEndB); + const B2DPoint aEnd(rEdge.getStartPoint() + aPerpendStartB); + const B2DVector aEdge(aEnd - aStart); + const double fLength(aEdge.getLength()); + const double fScale(bIsEdgeLengthZero ? 1.0 : fLength / fEdgeLength); + const B2DVector fRelNext(rEdge.getControlPointB() - rEdge.getEndPoint()); + const B2DVector fRelPrev(rEdge.getControlPointA() - rEdge.getStartPoint()); + + aBezierPolygon.append(aStart); + aBezierPolygon.appendBezierSegment(aStart + (fRelNext * fScale), aEnd + (fRelPrev * fScale), aEnd); + } + } + + // close + aBezierPolygon.setClosed(true); + + if(bStartRound || bEndRound) + { + // double points possible when round caps are used at start or end + aBezierPolygon.removeDoublePoints(); + } + + if(bCut && ((bStartRound || bStartSquare) && (bEndRound || bEndSquare))) + { + // When cut exists and both ends are extended with caps, a self-intersecting polygon + // is created; one cut point is known, but there is a 2nd one in the caps geometry. + // Solve by using tooling. + // Remark: This nearly never happens due to curve preparations to extreme points + // and maximum angle turning, but I constructed a test case and checked that it is + // working properly. + const B2DPolyPolygon aTemp(utils::solveCrossovers(aBezierPolygon)); + const sal_uInt32 nTempCount(aTemp.count()); + + if(nTempCount) + { + if(nTempCount > 1) + { + // as expected, multiple polygons (with same orientation). Remove + // the one which contains aCutPoint, or better take the one without + for (sal_uInt32 a(0); a < nTempCount; a++) + { + aBezierPolygon = aTemp.getB2DPolygon(a); + + const sal_uInt32 nCandCount(aBezierPolygon.count()); + + for(sal_uInt32 b(0); b < nCandCount; b++) + { + if(aCutPoint.equal(aBezierPolygon.getB2DPoint(b))) + { + aBezierPolygon.clear(); + break; + } + } + + if(aBezierPolygon.count()) + { + break; + } + } + + OSL_ENSURE(aBezierPolygon.count(), "Error in line geometry creation, could not solve self-intersection (!)"); + } + else + { + // none found, use result + aBezierPolygon = aTemp.getB2DPolygon(0); + } + } + else + { + OSL_ENSURE(false, "Error in line geometry creation, could not solve self-intersection (!)"); + } + } + + if(nullptr != pTriangles) + { + const basegfx::triangulator::B2DTriangleVector aResult( + basegfx::triangulator::triangulate( + aBezierPolygon)); + pTriangles->insert(pTriangles->end(), aResult.begin(), aResult.end()); + aBezierPolygon.clear(); + } + + // return + return aBezierPolygon; + } + else + { + // Get start and end point, create tangent and set to needed length + B2DVector aTangent(rEdge.getEndPoint() - rEdge.getStartPoint()); + aTangent.setLength(fHalfLineWidth); + + // prepare return value + B2DPolygon aEdgePolygon; + + // buffered angle + double fAngle(0.0); + bool bAngle(false); + + // buffered perpendicular + B2DVector aPerpend; + bool bPerpend(false); + + // create left vertical + if(bStartRound) + { + aEdgePolygon = utils::createHalfUnitCircle(); + fAngle = atan2(aTangent.getY(), aTangent.getX()); + bAngle = true; + aEdgePolygon.transform( + utils::createScaleShearXRotateTranslateB2DHomMatrix( + fHalfLineWidth, fHalfLineWidth, + 0.0, + fAngle + M_PI_2, + rEdge.getStartPoint().getX(), rEdge.getStartPoint().getY())); + } + else + { + aPerpend.setX(-aTangent.getY()); + aPerpend.setY(aTangent.getX()); + bPerpend = true; + + if(bStartSquare) + { + const basegfx::B2DPoint aStart(rEdge.getStartPoint() - aTangent); + + aEdgePolygon.append(aStart + aPerpend); + aEdgePolygon.append(aStart - aPerpend); + } + else + { + aEdgePolygon.append(rEdge.getStartPoint() + aPerpend); + aEdgePolygon.append(rEdge.getStartPoint()); // keep the in-between point for numerical reasons + aEdgePolygon.append(rEdge.getStartPoint() - aPerpend); + } + } + + // create right vertical + if(bEndRound) + { + basegfx::B2DPolygon aEndPolygon(utils::createHalfUnitCircle()); + + if(!bAngle) + { + fAngle = atan2(aTangent.getY(), aTangent.getX()); + } + + aEndPolygon.transform( + utils::createScaleShearXRotateTranslateB2DHomMatrix( + fHalfLineWidth, fHalfLineWidth, + 0.0, + fAngle - M_PI_2, + rEdge.getEndPoint().getX(), rEdge.getEndPoint().getY())); + aEdgePolygon.append(aEndPolygon); + } + else + { + if(!bPerpend) + { + aPerpend.setX(-aTangent.getY()); + aPerpend.setY(aTangent.getX()); + } + + if(bEndSquare) + { + const basegfx::B2DPoint aEnd(rEdge.getEndPoint() + aTangent); + + aEdgePolygon.append(aEnd - aPerpend); + aEdgePolygon.append(aEnd + aPerpend); + } + else + { + aEdgePolygon.append(rEdge.getEndPoint() - aPerpend); + aEdgePolygon.append(rEdge.getEndPoint()); // keep the in-between point for numerical reasons + aEdgePolygon.append(rEdge.getEndPoint() + aPerpend); + } + } + + // close and return + aEdgePolygon.setClosed(true); + + if(nullptr != pTriangles) + { + const basegfx::triangulator::B2DTriangleVector aResult( + basegfx::triangulator::triangulate( + aEdgePolygon)); + pTriangles->insert(pTriangles->end(), aResult.begin(), aResult.end()); + aEdgePolygon.clear(); + } + + return aEdgePolygon; + } + } + + B2DPolygon createAreaGeometryForJoin( + const B2DVector& rTangentPrev, + const B2DVector& rTangentEdge, + const B2DVector& rPerpendPrev, + const B2DVector& rPerpendEdge, + const B2DPoint& rPoint, + double fHalfLineWidth, + B2DLineJoin eJoin, + double fMiterMinimumAngle, + basegfx::triangulator::B2DTriangleVector* pTriangles) + { + SAL_WARN_IF(fHalfLineWidth <= 0.0,"basegfx","createAreaGeometryForJoin: LineWidth too small (!)"); + assert((eJoin != B2DLineJoin::NONE) && "createAreaGeometryForJoin: B2DLineJoin::NONE not allowed (!)"); + + // LineJoin from tangent rPerpendPrev to tangent rPerpendEdge in rPoint + B2DPolygon aEdgePolygon; + const B2DPoint aStartPoint(rPoint + rPerpendPrev); + const B2DPoint aEndPoint(rPoint + rPerpendEdge); + + // test if for Miter, the angle is too small and the fallback + // to bevel needs to be used + if(eJoin == B2DLineJoin::Miter) + { + const double fAngle(fabs(rPerpendPrev.angle(rPerpendEdge))); + + if((M_PI - fAngle) < fMiterMinimumAngle) + { + // fallback to bevel + eJoin = B2DLineJoin::Bevel; + } + } + + switch(eJoin) + { + case B2DLineJoin::Miter : + { + if(nullptr != pTriangles) + { + pTriangles->emplace_back( + aEndPoint, + rPoint, + aStartPoint); + } + else + { + aEdgePolygon.append(aEndPoint); + aEdgePolygon.append(rPoint); + aEdgePolygon.append(aStartPoint); + } + + // Look for the cut point between start point along rTangentPrev and + // end point along rTangentEdge. -rTangentEdge should be used, but since + // the cut value is used for interpolating along the first edge, the negation + // is not needed since the same fCut will be found on the first edge. + // If it exists, insert it to complete the mitered fill polygon. + double fCutPos(0.0); + utils::findCut(aStartPoint, rTangentPrev, aEndPoint, rTangentEdge, CutFlagValue::ALL, &fCutPos); + + if(fCutPos != 0.0) + { + const B2DPoint aCutPoint(aStartPoint + (rTangentPrev * fCutPos)); + + if(nullptr != pTriangles) + { + pTriangles->emplace_back( + aStartPoint, + aCutPoint, + aEndPoint); + } + else + { + aEdgePolygon.append(aCutPoint); + } + } + + break; + } + case B2DLineJoin::Round : + { + // use tooling to add needed EllipseSegment + double fAngleStart(atan2(rPerpendPrev.getY(), rPerpendPrev.getX())); + double fAngleEnd(atan2(rPerpendEdge.getY(), rPerpendEdge.getX())); + + // atan2 results are [-PI .. PI], consolidate to [0.0 .. 2PI] + if(fAngleStart < 0.0) + { + fAngleStart += 2 * M_PI; + } + + if(fAngleEnd < 0.0) + { + fAngleEnd += 2 * M_PI; + } + + const B2DPolygon aBow(utils::createPolygonFromEllipseSegment(rPoint, fHalfLineWidth, fHalfLineWidth, fAngleStart, fAngleEnd)); + + if(aBow.count() > 1) + { + if(nullptr != pTriangles) + { + for(sal_uInt32 a(0); a < aBow.count() - 1; a++) + { + pTriangles->emplace_back( + 0 == a ? aStartPoint : aBow.getB2DPoint(a), + rPoint, + aBow.count() - 1 == a + 1 ? aEndPoint : aBow.getB2DPoint(a + 1)); + } + } + else + { + // #i101491# + // use the original start/end positions; the ones from bow creation may be numerically + // different due to their different creation. To guarantee good merging quality with edges + // and edge roundings (and to reduce point count) + aEdgePolygon = aBow; + aEdgePolygon.setB2DPoint(0, aStartPoint); + aEdgePolygon.setB2DPoint(aEdgePolygon.count() - 1, aEndPoint); + aEdgePolygon.append(rPoint); + } + + break; + } + else + { + [[fallthrough]]; // wanted fall-through to default + } + } + default: // B2DLineJoin::Bevel + { + if(nullptr != pTriangles) + { + pTriangles->emplace_back( + aEndPoint, + rPoint, + aStartPoint); + } + else + { + aEdgePolygon.append(aEndPoint); + aEdgePolygon.append(rPoint); + aEdgePolygon.append(aStartPoint); + } + + break; + } + } + + // create last polygon part for edge + aEdgePolygon.setClosed(true); + + return aEdgePolygon; + } + } // end of anonymous namespace + + namespace utils + { + B2DPolyPolygon createAreaGeometry( + const B2DPolygon& rCandidate, + double fHalfLineWidth, + B2DLineJoin eJoin, + css::drawing::LineCap eCap, + double fMaxAllowedAngle, + double fMaxPartOfEdge, + double fMiterMinimumAngle, + basegfx::triangulator::B2DTriangleVector* pTriangles) + { + if(fMaxAllowedAngle > M_PI_2) + { + fMaxAllowedAngle = M_PI_2; + } + else if(fMaxAllowedAngle < 0.01 * M_PI_2) + { + fMaxAllowedAngle = 0.01 * M_PI_2; + } + + if(fMaxPartOfEdge > 1.0) + { + fMaxPartOfEdge = 1.0; + } + else if(fMaxPartOfEdge < 0.01) + { + fMaxPartOfEdge = 0.01; + } + + if(fMiterMinimumAngle > M_PI) + { + fMiterMinimumAngle = M_PI; + } + else if(fMiterMinimumAngle < 0.01 * M_PI) + { + fMiterMinimumAngle = 0.01 * M_PI; + } + + B2DPolygon aCandidate(rCandidate); + const double fMaxCos(cos(fMaxAllowedAngle)); + + aCandidate.removeDoublePoints(); + aCandidate = subdivideToSimple(aCandidate, fMaxCos * fMaxCos, fMaxPartOfEdge * fMaxPartOfEdge); + + const sal_uInt32 nPointCount(aCandidate.count()); + + if(nPointCount) + { + B2DPolyPolygon aRetval; + const bool bIsClosed(aCandidate.isClosed()); + const sal_uInt32 nEdgeCount(bIsClosed ? nPointCount : nPointCount - 1); + const bool bLineCap(!bIsClosed && eCap != css::drawing::LineCap_BUTT); + + if(nEdgeCount) + { + B2DCubicBezier aEdge; + B2DCubicBezier aPrev; + + const bool bEventuallyCreateLineJoin(eJoin != B2DLineJoin::NONE); + // prepare edge + aEdge.setStartPoint(aCandidate.getB2DPoint(0)); + + if(bIsClosed && bEventuallyCreateLineJoin) + { + // prepare previous edge + const sal_uInt32 nPrevIndex(nPointCount - 1); + aPrev.setStartPoint(aCandidate.getB2DPoint(nPrevIndex)); + aPrev.setControlPointA(aCandidate.getNextControlPoint(nPrevIndex)); + aPrev.setControlPointB(aCandidate.getPrevControlPoint(0)); + aPrev.setEndPoint(aEdge.getStartPoint()); + } + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + // fill current Edge + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aEdge.setControlPointA(aCandidate.getNextControlPoint(a)); + aEdge.setControlPointB(aCandidate.getPrevControlPoint(nNextIndex)); + aEdge.setEndPoint(aCandidate.getB2DPoint(nNextIndex)); + + // check and create linejoin + if(bEventuallyCreateLineJoin && (bIsClosed || a != 0)) + { + B2DVector aTangentPrev(aPrev.getTangent(1.0)); aTangentPrev.normalize(); + B2DVector aTangentEdge(aEdge.getTangent(0.0)); aTangentEdge.normalize(); + B2VectorOrientation aOrientation(getOrientation(aTangentPrev, aTangentEdge)); + + if(aOrientation == B2VectorOrientation::Neutral) + { + // they are parallel or empty; if they are both not zero and point + // in opposite direction, a half-circle is needed + if(!aTangentPrev.equalZero() && !aTangentEdge.equalZero()) + { + const double fAngle(fabs(aTangentPrev.angle(aTangentEdge))); + + if(fTools::equal(fAngle, M_PI)) + { + // for half-circle production, fallback to positive + // orientation + aOrientation = B2VectorOrientation::Positive; + } + } + } + + if(aOrientation == B2VectorOrientation::Positive) + { + const B2DVector aPerpendPrev(getPerpendicular(aTangentPrev) * -fHalfLineWidth); + const B2DVector aPerpendEdge(getPerpendicular(aTangentEdge) * -fHalfLineWidth); + + aRetval.append( + createAreaGeometryForJoin( + aTangentPrev, + aTangentEdge, + aPerpendPrev, + aPerpendEdge, + aEdge.getStartPoint(), + fHalfLineWidth, + eJoin, + fMiterMinimumAngle, + pTriangles)); + } + else if(aOrientation == B2VectorOrientation::Negative) + { + const B2DVector aPerpendPrev(getPerpendicular(aTangentPrev) * fHalfLineWidth); + const B2DVector aPerpendEdge(getPerpendicular(aTangentEdge) * fHalfLineWidth); + + aRetval.append( + createAreaGeometryForJoin( + aTangentEdge, + aTangentPrev, + aPerpendEdge, + aPerpendPrev, + aEdge.getStartPoint(), + fHalfLineWidth, + eJoin, + fMiterMinimumAngle, + pTriangles)); + } + } + + // create geometry for edge + const bool bLast(a + 1 == nEdgeCount); + + if(bLineCap) + { + const bool bFirst(!a); + + aRetval.append( + createAreaGeometryForEdge( + aEdge, + fHalfLineWidth, + bFirst && eCap == css::drawing::LineCap_ROUND, + bLast && eCap == css::drawing::LineCap_ROUND, + bFirst && eCap == css::drawing::LineCap_SQUARE, + bLast && eCap == css::drawing::LineCap_SQUARE, + pTriangles)); + } + else + { + aRetval.append( + createAreaGeometryForEdge( + aEdge, + fHalfLineWidth, + false, + false, + false, + false, + pTriangles)); + } + + // prepare next step + if(!bLast) + { + if(bEventuallyCreateLineJoin) + { + aPrev = aEdge; + } + + aEdge.setStartPoint(aEdge.getEndPoint()); + } + } + } + else + { + // point count, but no edge count -> single point + const basegfx::B2DPolygon aCircle( + createPolygonFromCircle( + aCandidate.getB2DPoint(0), + fHalfLineWidth)); + + if(nullptr != pTriangles) + { + const basegfx::triangulator::B2DTriangleVector aResult( + basegfx::triangulator::triangulate( + aCircle)); + pTriangles->insert(pTriangles->end(), aResult.begin(), aResult.end()); + } + else + { + aRetval.append(aCircle); + } + } + + return aRetval; + } + else + { + return B2DPolyPolygon(rCandidate); + } + } + } // end of namespace utils +} // end of namespace basegfx + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dpolygon.cxx b/basegfx/source/polygon/b2dpolygon.cxx new file mode 100644 index 000000000..8a4136666 --- /dev/null +++ b/basegfx/source/polygon/b2dpolygon.cxx @@ -0,0 +1,1498 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <osl/diagnose.h> +#include <basegfx/polygon/b2dpolygon.hxx> +#include <basegfx/point/b2dpoint.hxx> +#include <basegfx/vector/b2dvector.hxx> +#include <basegfx/matrix/b2dhommatrix.hxx> +#include <basegfx/curve/b2dcubicbezier.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/utils/systemdependentdata.hxx> +#include <memory> +#include <vector> + +namespace +{ + +class CoordinateDataArray2D +{ +private: + std::vector<basegfx::B2DPoint> maVector; + +public: + explicit CoordinateDataArray2D(sal_uInt32 nCount) + : maVector(nCount) + { + } + + CoordinateDataArray2D(const CoordinateDataArray2D& rOriginal, sal_uInt32 nIndex, sal_uInt32 nCount) + : maVector(rOriginal.maVector.begin() + nIndex, rOriginal.maVector.begin() + (nIndex + nCount)) + { + } + + sal_uInt32 count() const + { + return maVector.size(); + } + + bool operator==(const CoordinateDataArray2D& rCandidate) const + { + return (maVector == rCandidate.maVector); + } + + const basegfx::B2DPoint& getCoordinate(sal_uInt32 nIndex) const + { + return maVector[nIndex]; + } + + void setCoordinate(sal_uInt32 nIndex, const basegfx::B2DPoint& rValue) + { + maVector[nIndex] = rValue; + } + + void reserve(sal_uInt32 nCount) + { + maVector.reserve(nCount); + } + + void append(const basegfx::B2DPoint& rValue) + { + maVector.push_back(rValue); + } + + void insert(sal_uInt32 nIndex, const basegfx::B2DPoint& rValue, sal_uInt32 nCount) + { + if(nCount) + { + // add nCount copies of rValue + auto aIndex = maVector.begin(); + aIndex += nIndex; + maVector.insert(aIndex, nCount, rValue); + } + } + + void insert(sal_uInt32 nIndex, const CoordinateDataArray2D& rSource) + { + const sal_uInt32 nCount(rSource.maVector.size()); + + if(nCount) + { + // insert data + auto aIndex = maVector.begin(); + aIndex += nIndex; + auto aStart = rSource.maVector.cbegin(); + auto aEnd = rSource.maVector.cend(); + maVector.insert(aIndex, aStart, aEnd); + } + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(nCount) + { + // remove point data + auto aStart = maVector.begin(); + aStart += nIndex; + const auto aEnd = aStart + nCount; + maVector.erase(aStart, aEnd); + } + } + + void flip(bool bIsClosed) + { + if(maVector.size() <= 1) + return; + + // to keep the same point at index 0, just flip all points except the + // first one when closed + const sal_uInt32 nHalfSize(bIsClosed ? (maVector.size() - 1) >> 1 : maVector.size() >> 1); + auto aStart = bIsClosed ? maVector.begin() + 1 : maVector.begin(); + auto aEnd = maVector.end() - 1; + + for(sal_uInt32 a(0); a < nHalfSize; a++) + { + std::swap(*aStart, *aEnd); + ++aStart; + --aEnd; + } + } + + void removeDoublePointsAtBeginEnd() + { + // remove from end as long as there are at least two points + // and begin/end are equal + while((maVector.size() > 1) && (maVector[0] == maVector[maVector.size() - 1])) + { + maVector.pop_back(); + } + } + + void removeDoublePointsWholeTrack() + { + sal_uInt32 nIndex(0); + + // test as long as there are at least two points and as long as the index + // is smaller or equal second last point + while((maVector.size() > 1) && (nIndex <= maVector.size() - 2)) + { + if(maVector[nIndex] == maVector[nIndex + 1]) + { + // if next is same as index, delete next + maVector.erase(maVector.begin() + (nIndex + 1)); + } + else + { + // if different, step forward + nIndex++; + } + } + } + + void transform(const basegfx::B2DHomMatrix& rMatrix) + { + for (auto& point : maVector) + { + point *= rMatrix; + } + } +}; + +class ControlVectorPair2D +{ + basegfx::B2DVector maPrevVector; + basegfx::B2DVector maNextVector; + +public: + explicit ControlVectorPair2D() {} + + const basegfx::B2DVector& getPrevVector() const + { + return maPrevVector; + } + + void setPrevVector(const basegfx::B2DVector& rValue) + { + if(rValue != maPrevVector) + maPrevVector = rValue; + } + + const basegfx::B2DVector& getNextVector() const + { + return maNextVector; + } + + void setNextVector(const basegfx::B2DVector& rValue) + { + if(rValue != maNextVector) + maNextVector = rValue; + } + + bool operator==(const ControlVectorPair2D& rData) const + { + return (maPrevVector == rData.getPrevVector() && maNextVector == rData.getNextVector()); + } + + void flip() + { + std::swap(maPrevVector, maNextVector); + } +}; + +class ControlVectorArray2D +{ + typedef std::vector< ControlVectorPair2D > ControlVectorPair2DVector; + + ControlVectorPair2DVector maVector; + sal_uInt32 mnUsedVectors; + +public: + explicit ControlVectorArray2D(sal_uInt32 nCount) + : maVector(nCount), + mnUsedVectors(0) + {} + + ControlVectorArray2D(const ControlVectorArray2D& rOriginal, sal_uInt32 nIndex, sal_uInt32 nCount) + : mnUsedVectors(0) + { + ControlVectorPair2DVector::const_iterator aStart(rOriginal.maVector.begin()); + aStart += nIndex; + ControlVectorPair2DVector::const_iterator aEnd(aStart); + aEnd += nCount; + maVector.reserve(nCount); + + for(; aStart != aEnd; ++aStart) + { + if(!aStart->getPrevVector().equalZero()) + mnUsedVectors++; + + if(!aStart->getNextVector().equalZero()) + mnUsedVectors++; + + maVector.push_back(*aStart); + } + } + + bool operator==(const ControlVectorArray2D& rCandidate) const + { + return (maVector == rCandidate.maVector); + } + + bool isUsed() const + { + return (mnUsedVectors != 0); + } + + const basegfx::B2DVector& getPrevVector(sal_uInt32 nIndex) const + { + return maVector[nIndex].getPrevVector(); + } + + void setPrevVector(sal_uInt32 nIndex, const basegfx::B2DVector& rValue) + { + bool bWasUsed(mnUsedVectors && !maVector[nIndex].getPrevVector().equalZero()); + bool bIsUsed(!rValue.equalZero()); + + if(bWasUsed) + { + if(bIsUsed) + { + maVector[nIndex].setPrevVector(rValue); + } + else + { + maVector[nIndex].setPrevVector(basegfx::B2DVector::getEmptyVector()); + mnUsedVectors--; + } + } + else + { + if(bIsUsed) + { + maVector[nIndex].setPrevVector(rValue); + mnUsedVectors++; + } + } + } + + const basegfx::B2DVector& getNextVector(sal_uInt32 nIndex) const + { + return maVector[nIndex].getNextVector(); + } + + void setNextVector(sal_uInt32 nIndex, const basegfx::B2DVector& rValue) + { + bool bWasUsed(mnUsedVectors && !maVector[nIndex].getNextVector().equalZero()); + bool bIsUsed(!rValue.equalZero()); + + if(bWasUsed) + { + if(bIsUsed) + { + maVector[nIndex].setNextVector(rValue); + } + else + { + maVector[nIndex].setNextVector(basegfx::B2DVector::getEmptyVector()); + mnUsedVectors--; + } + } + else + { + if(bIsUsed) + { + maVector[nIndex].setNextVector(rValue); + mnUsedVectors++; + } + } + } + + void append(const ControlVectorPair2D& rValue) + { + maVector.push_back(rValue); + + if(!rValue.getPrevVector().equalZero()) + mnUsedVectors += 1; + + if(!rValue.getNextVector().equalZero()) + mnUsedVectors += 1; + } + + void insert(sal_uInt32 nIndex, const ControlVectorPair2D& rValue, sal_uInt32 nCount) + { + if(!nCount) + return; + + // add nCount copies of rValue + ControlVectorPair2DVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + maVector.insert(aIndex, nCount, rValue); + + if(!rValue.getPrevVector().equalZero()) + mnUsedVectors += nCount; + + if(!rValue.getNextVector().equalZero()) + mnUsedVectors += nCount; + } + + void insert(sal_uInt32 nIndex, const ControlVectorArray2D& rSource) + { + const sal_uInt32 nCount(rSource.maVector.size()); + + if(!nCount) + return; + + // insert data + ControlVectorPair2DVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + ControlVectorPair2DVector::const_iterator aStart(rSource.maVector.begin()); + ControlVectorPair2DVector::const_iterator aEnd(rSource.maVector.end()); + maVector.insert(aIndex, aStart, aEnd); + + for(; aStart != aEnd; ++aStart) + { + if(!aStart->getPrevVector().equalZero()) + mnUsedVectors++; + + if(!aStart->getNextVector().equalZero()) + mnUsedVectors++; + } + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(!nCount) + return; + + const ControlVectorPair2DVector::iterator aDeleteStart(maVector.begin() + nIndex); + const ControlVectorPair2DVector::iterator aDeleteEnd(aDeleteStart + nCount); + ControlVectorPair2DVector::const_iterator aStart(aDeleteStart); + + for(; mnUsedVectors && aStart != aDeleteEnd; ++aStart) + { + if(!aStart->getPrevVector().equalZero()) + mnUsedVectors--; + + if(mnUsedVectors && !aStart->getNextVector().equalZero()) + mnUsedVectors--; + } + + // remove point data + maVector.erase(aDeleteStart, aDeleteEnd); + } + + void flip(bool bIsClosed) + { + if(maVector.size() <= 1) + return; + + // to keep the same point at index 0, just flip all points except the + // first one when closed + const sal_uInt32 nHalfSize(bIsClosed ? (maVector.size() - 1) >> 1 : maVector.size() >> 1); + ControlVectorPair2DVector::iterator aStart(bIsClosed ? maVector.begin() + 1 : maVector.begin()); + ControlVectorPair2DVector::iterator aEnd(maVector.end() - 1); + + for(sal_uInt32 a(0); a < nHalfSize; a++) + { + // swap Prev and Next + aStart->flip(); + aEnd->flip(); + + // swap entries + std::swap(*aStart, *aEnd); + + ++aStart; + --aEnd; + } + + if(aStart == aEnd) + { + // swap Prev and Next at middle element (if exists) + aStart->flip(); + } + + if(bIsClosed) + { + // swap Prev and Next at start element + maVector.begin()->flip(); + } + } +}; + +class ImplBufferedData : public basegfx::SystemDependentDataHolder +{ +private: + // Possibility to hold the last subdivision + std::optional< basegfx::B2DPolygon > mpDefaultSubdivision; + + // Possibility to hold the last B2DRange calculation + mutable std::optional< basegfx::B2DRange > moB2DRange; + +public: + ImplBufferedData() + { + } + + const basegfx::B2DPolygon& getDefaultAdaptiveSubdivision(const basegfx::B2DPolygon& rSource) const + { + if(!mpDefaultSubdivision) + { + const_cast< ImplBufferedData* >(this)->mpDefaultSubdivision = basegfx::utils::adaptiveSubdivideByAngle(rSource); + } + + return *mpDefaultSubdivision; + } + + const basegfx::B2DRange& getB2DRange(const basegfx::B2DPolygon& rSource) const + { + if(!moB2DRange) + { + basegfx::B2DRange aNewRange; + const sal_uInt32 nPointCount(rSource.count()); + + if(nPointCount) + { + for(sal_uInt32 a(0); a < nPointCount; a++) + { + aNewRange.expand(rSource.getB2DPoint(a)); + } + + if(rSource.areControlPointsUsed()) + { + const sal_uInt32 nEdgeCount(rSource.isClosed() ? nPointCount : nPointCount - 1); + + if(nEdgeCount) + { + basegfx::B2DCubicBezier aEdge; + aEdge.setStartPoint(rSource.getB2DPoint(0)); + + for(sal_uInt32 b(0); b < nEdgeCount; b++) + { + const sal_uInt32 nNextIndex((b + 1) % nPointCount); + aEdge.setControlPointA(rSource.getNextControlPoint(b)); + aEdge.setControlPointB(rSource.getPrevControlPoint(nNextIndex)); + aEdge.setEndPoint(rSource.getB2DPoint(nNextIndex)); + + if(aEdge.isBezier()) + { + const basegfx::B2DRange aBezierRangeWithControlPoints(aEdge.getRange()); + + if(!aNewRange.isInside(aBezierRangeWithControlPoints)) + { + // the range with control points of the current edge is not completely + // inside the current range without control points. Expand current range by + // subdividing the bezier segment. + // Ideal here is a subdivision at the extreme values, so use + // getAllExtremumPositions to get all extremas in one run + std::vector< double > aExtremas; + + aExtremas.reserve(4); + aEdge.getAllExtremumPositions(aExtremas); + + const sal_uInt32 nExtremaCount(aExtremas.size()); + + for(sal_uInt32 c(0); c < nExtremaCount; c++) + { + aNewRange.expand(aEdge.interpolatePoint(aExtremas[c])); + } + } + } + + // prepare next edge + aEdge.setStartPoint(aEdge.getEndPoint()); + } + } + } + } + + moB2DRange = aNewRange; + } + + return *moB2DRange; + } +}; + +} + +class ImplB2DPolygon +{ +private: + // The point vector. This vector exists always and defines the + // count of members. + CoordinateDataArray2D maPoints; + + // The control point vectors. This vectors are created on demand + // and may be zero. + std::optional< ControlVectorArray2D > moControlVector; + + // buffered data for e.g. default subdivision and range + std::unique_ptr< ImplBufferedData > mpBufferedData; + + // flag which decides if this polygon is opened or closed + bool mbIsClosed; + +public: + const basegfx::B2DPolygon& getDefaultAdaptiveSubdivision(const basegfx::B2DPolygon& rSource) const + { + if(!moControlVector || !moControlVector->isUsed()) + { + return rSource; + } + + if(!mpBufferedData) + { + const_cast< ImplB2DPolygon* >(this)->mpBufferedData.reset(new ImplBufferedData); + } + + return mpBufferedData->getDefaultAdaptiveSubdivision(rSource); + } + + const basegfx::B2DRange& getB2DRange(const basegfx::B2DPolygon& rSource) const + { + if(!mpBufferedData) + { + const_cast< ImplB2DPolygon* >(this)->mpBufferedData.reset(new ImplBufferedData); + } + + return mpBufferedData->getB2DRange(rSource); + } + + ImplB2DPolygon() + : maPoints(0), + mbIsClosed(false) + {} + + ImplB2DPolygon(const ImplB2DPolygon& rToBeCopied) + : maPoints(rToBeCopied.maPoints), + mbIsClosed(rToBeCopied.mbIsClosed) + { + // complete initialization using copy + if(rToBeCopied.moControlVector && rToBeCopied.moControlVector->isUsed()) + { + moControlVector.emplace( *rToBeCopied.moControlVector ); + } + } + + ImplB2DPolygon(const ImplB2DPolygon& rToBeCopied, sal_uInt32 nIndex, sal_uInt32 nCount) + : maPoints(rToBeCopied.maPoints, nIndex, nCount), + mbIsClosed(rToBeCopied.mbIsClosed) + { + // complete initialization using partly copy + if(rToBeCopied.moControlVector && rToBeCopied.moControlVector->isUsed()) + { + moControlVector.emplace( *rToBeCopied.moControlVector, nIndex, nCount ); + + if(!moControlVector->isUsed()) + moControlVector.reset(); + } + } + + ImplB2DPolygon& operator=(const ImplB2DPolygon& rOther) + { + if (this != &rOther) + { + moControlVector.reset(); + mpBufferedData.reset(); + maPoints = rOther.maPoints; + mbIsClosed = rOther.mbIsClosed; + if (rOther.moControlVector && rOther.moControlVector->isUsed()) + { + moControlVector.emplace( *rOther.moControlVector ); + + if(!moControlVector->isUsed()) + moControlVector.reset(); + } + } + return *this; + } + + sal_uInt32 count() const + { + return maPoints.count(); + } + + bool isClosed() const + { + return mbIsClosed; + } + + void setClosed(bool bNew) + { + if(bNew != mbIsClosed) + { + mpBufferedData.reset(); + mbIsClosed = bNew; + } + } + + bool operator==(const ImplB2DPolygon& rCandidate) const + { + if(mbIsClosed != rCandidate.mbIsClosed) + return false; + if(!(maPoints == rCandidate.maPoints)) + return false; + bool bControlVectorsAreEqual(true); + + if(moControlVector) + { + if(rCandidate.moControlVector) + { + bControlVectorsAreEqual = ((*moControlVector) == (*rCandidate.moControlVector)); + } + else + { + // candidate has no control vector, so it's assumed all unused. + bControlVectorsAreEqual = !moControlVector->isUsed(); + } + } + else + { + if(rCandidate.moControlVector) + { + // we have no control vector, so it's assumed all unused. + bControlVectorsAreEqual = !rCandidate.moControlVector->isUsed(); + } + } + + return bControlVectorsAreEqual; + } + + const basegfx::B2DPoint& getPoint(sal_uInt32 nIndex) const + { + return maPoints.getCoordinate(nIndex); + } + + void setPoint(sal_uInt32 nIndex, const basegfx::B2DPoint& rValue) + { + mpBufferedData.reset(); + maPoints.setCoordinate(nIndex, rValue); + } + + void reserve(sal_uInt32 nCount) + { + maPoints.reserve(nCount); + } + + void append(const basegfx::B2DPoint& rPoint) + { + mpBufferedData.reset(); // TODO: is this needed? + const auto aCoordinate = rPoint; + maPoints.append(aCoordinate); + + if(moControlVector) + { + const ControlVectorPair2D aVectorPair; + moControlVector->append(aVectorPair); + } + } + + void insert(sal_uInt32 nIndex, const basegfx::B2DPoint& rPoint, sal_uInt32 nCount) + { + if(nCount) + { + mpBufferedData.reset(); + auto aCoordinate = rPoint; + maPoints.insert(nIndex, aCoordinate, nCount); + + if(moControlVector) + { + ControlVectorPair2D aVectorPair; + moControlVector->insert(nIndex, aVectorPair, nCount); + } + } + } + + const basegfx::B2DVector& getPrevControlVector(sal_uInt32 nIndex) const + { + if(moControlVector) + { + return moControlVector->getPrevVector(nIndex); + } + else + { + return basegfx::B2DVector::getEmptyVector(); + } + } + + void setPrevControlVector(sal_uInt32 nIndex, const basegfx::B2DVector& rValue) + { + if(!moControlVector) + { + if(!rValue.equalZero()) + { + mpBufferedData.reset(); + moControlVector.emplace(maPoints.count()); + moControlVector->setPrevVector(nIndex, rValue); + } + } + else + { + mpBufferedData.reset(); + moControlVector->setPrevVector(nIndex, rValue); + + if(!moControlVector->isUsed()) + moControlVector.reset(); + } + } + + const basegfx::B2DVector& getNextControlVector(sal_uInt32 nIndex) const + { + if(moControlVector) + { + return moControlVector->getNextVector(nIndex); + } + else + { + return basegfx::B2DVector::getEmptyVector(); + } + } + + void setNextControlVector(sal_uInt32 nIndex, const basegfx::B2DVector& rValue) + { + if(!moControlVector) + { + if(!rValue.equalZero()) + { + mpBufferedData.reset(); + moControlVector.emplace(maPoints.count()); + moControlVector->setNextVector(nIndex, rValue); + } + } + else + { + mpBufferedData.reset(); + moControlVector->setNextVector(nIndex, rValue); + + if(!moControlVector->isUsed()) + moControlVector.reset(); + } + } + + bool areControlPointsUsed() const + { + return (moControlVector && moControlVector->isUsed()); + } + + void resetControlVectors() + { + mpBufferedData.reset(); + moControlVector.reset(); + } + + void setControlVectors(sal_uInt32 nIndex, const basegfx::B2DVector& rPrev, const basegfx::B2DVector& rNext) + { + setPrevControlVector(nIndex, rPrev); + setNextControlVector(nIndex, rNext); + } + + void appendBezierSegment(const basegfx::B2DVector& rNext, const basegfx::B2DVector& rPrev, const basegfx::B2DPoint& rPoint) + { + mpBufferedData.reset(); + const sal_uInt32 nCount(maPoints.count()); + + if(nCount) + { + setNextControlVector(nCount - 1, rNext); + } + + insert(nCount, rPoint, 1); + setPrevControlVector(nCount, rPrev); + } + + void insert(sal_uInt32 nIndex, const ImplB2DPolygon& rSource) + { + const sal_uInt32 nCount(rSource.maPoints.count()); + + if(!nCount) + return; + + mpBufferedData.reset(); + + if(rSource.moControlVector && rSource.moControlVector->isUsed() && !moControlVector) + { + moControlVector.emplace(maPoints.count()); + } + + maPoints.insert(nIndex, rSource.maPoints); + + if(rSource.moControlVector) + { + moControlVector->insert(nIndex, *rSource.moControlVector); + + if(!moControlVector->isUsed()) + moControlVector.reset(); + } + else if(moControlVector) + { + ControlVectorPair2D aVectorPair; + moControlVector->insert(nIndex, aVectorPair, nCount); + } + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(!nCount) + return; + + mpBufferedData.reset(); + maPoints.remove(nIndex, nCount); + + if(moControlVector) + { + moControlVector->remove(nIndex, nCount); + + if(!moControlVector->isUsed()) + moControlVector.reset(); + } + } + + void flip() + { + if(maPoints.count() <= 1) + return; + + mpBufferedData.reset(); + + // flip points + maPoints.flip(mbIsClosed); + + if(moControlVector) + { + // flip control vector + moControlVector->flip(mbIsClosed); + } + } + + bool hasDoublePoints() const + { + if(mbIsClosed) + { + // check for same start and end point + const sal_uInt32 nIndex(maPoints.count() - 1); + + if(maPoints.getCoordinate(0) == maPoints.getCoordinate(nIndex)) + { + if(moControlVector) + { + if(moControlVector->getNextVector(nIndex).equalZero() && moControlVector->getPrevVector(0).equalZero()) + { + return true; + } + } + else + { + return true; + } + } + } + + // test for range + for(sal_uInt32 a(0); a < maPoints.count() - 1; a++) + { + if(maPoints.getCoordinate(a) == maPoints.getCoordinate(a + 1)) + { + if(moControlVector) + { + if(moControlVector->getNextVector(a).equalZero() && moControlVector->getPrevVector(a + 1).equalZero()) + { + return true; + } + } + else + { + return true; + } + } + } + + return false; + } + + void removeDoublePointsAtBeginEnd() + { + // Only remove DoublePoints at Begin and End when poly is closed + if(!mbIsClosed) + return; + + mpBufferedData.reset(); + + if(moControlVector) + { + bool bRemove; + + do + { + bRemove = false; + + if(maPoints.count() > 1) + { + const sal_uInt32 nIndex(maPoints.count() - 1); + + if(maPoints.getCoordinate(0) == maPoints.getCoordinate(nIndex)) + { + if(moControlVector) + { + if(moControlVector->getNextVector(nIndex).equalZero() && moControlVector->getPrevVector(0).equalZero()) + { + bRemove = true; + } + } + else + { + bRemove = true; + } + } + } + + if(bRemove) + { + const sal_uInt32 nIndex(maPoints.count() - 1); + + if(moControlVector && !moControlVector->getPrevVector(nIndex).equalZero()) + { + moControlVector->setPrevVector(0, moControlVector->getPrevVector(nIndex)); + } + + remove(nIndex, 1); + } + } + while(bRemove); + } + else + { + maPoints.removeDoublePointsAtBeginEnd(); + } + } + + void removeDoublePointsWholeTrack() + { + mpBufferedData.reset(); + + if(moControlVector) + { + sal_uInt32 nIndex(0); + + // test as long as there are at least two points and as long as the index + // is smaller or equal second last point + while((maPoints.count() > 1) && (nIndex <= maPoints.count() - 2)) + { + bool bRemove(maPoints.getCoordinate(nIndex) == maPoints.getCoordinate(nIndex + 1)); + + if(bRemove && moControlVector) + { + if(!moControlVector->getNextVector(nIndex).equalZero() || !moControlVector->getPrevVector(nIndex + 1).equalZero()) + { + bRemove = false; + } + } + + if(bRemove) + { + if(moControlVector && !moControlVector->getPrevVector(nIndex).equalZero()) + { + moControlVector->setPrevVector(nIndex + 1, moControlVector->getPrevVector(nIndex)); + } + + // if next is same as index and the control vectors are unused, delete index + remove(nIndex, 1); + } + else + { + // if different, step forward + nIndex++; + } + } + } + else + { + maPoints.removeDoublePointsWholeTrack(); + } + } + + void transform(const basegfx::B2DHomMatrix& rMatrix) + { + mpBufferedData.reset(); + + if(moControlVector) + { + for(sal_uInt32 a(0); a < maPoints.count(); a++) + { + basegfx::B2DPoint aCandidate = maPoints.getCoordinate(a); + + if(moControlVector->isUsed()) + { + const basegfx::B2DVector& rPrevVector(moControlVector->getPrevVector(a)); + const basegfx::B2DVector& rNextVector(moControlVector->getNextVector(a)); + + if(!rPrevVector.equalZero()) + { + basegfx::B2DVector aPrevVector(rMatrix * rPrevVector); + moControlVector->setPrevVector(a, aPrevVector); + } + + if(!rNextVector.equalZero()) + { + basegfx::B2DVector aNextVector(rMatrix * rNextVector); + moControlVector->setNextVector(a, aNextVector); + } + } + + aCandidate *= rMatrix; + maPoints.setCoordinate(a, aCandidate); + } + + if(!moControlVector->isUsed()) + moControlVector.reset(); + } + else + { + maPoints.transform(rMatrix); + } + } + + void addOrReplaceSystemDependentData(basegfx::SystemDependentData_SharedPtr& rData) + { + if(!mpBufferedData) + { + mpBufferedData.reset(new ImplBufferedData); + } + + mpBufferedData->addOrReplaceSystemDependentData(rData); + } + + basegfx::SystemDependentData_SharedPtr getSystemDependentData(size_t hash_code) const + { + if(mpBufferedData) + { + return mpBufferedData->getSystemDependentData(hash_code); + } + + return basegfx::SystemDependentData_SharedPtr(); + } +}; + +namespace basegfx +{ + B2DPolygon::B2DPolygon() = default; + + B2DPolygon::B2DPolygon(std::initializer_list<basegfx::B2DPoint> aPoints) + { + for (const basegfx::B2DPoint& rPoint : aPoints) + { + append(rPoint); + } + } + + B2DPolygon::B2DPolygon(const B2DPolygon&) = default; + + B2DPolygon::B2DPolygon(B2DPolygon&&) = default; + + B2DPolygon::B2DPolygon(const B2DPolygon& rPolygon, sal_uInt32 nIndex, sal_uInt32 nCount) + : mpPolygon(ImplB2DPolygon(*rPolygon.mpPolygon, nIndex, nCount)) + { + // TODO(P2): one extra temporary here (cow_wrapper copies + // given ImplB2DPolygon into its internal impl_t wrapper type) + OSL_ENSURE(nIndex + nCount <= rPolygon.mpPolygon->count(), "B2DPolygon constructor outside range (!)"); + } + + B2DPolygon::~B2DPolygon() = default; + + B2DPolygon& B2DPolygon::operator=(const B2DPolygon&) = default; + + B2DPolygon& B2DPolygon::operator=(B2DPolygon&&) = default; + + void B2DPolygon::makeUnique() + { + mpPolygon.make_unique(); + } + + bool B2DPolygon::operator==(const B2DPolygon& rPolygon) const + { + if(mpPolygon.same_object(rPolygon.mpPolygon)) + return true; + + return ((*mpPolygon) == (*rPolygon.mpPolygon)); + } + + bool B2DPolygon::operator!=(const B2DPolygon& rPolygon) const + { + return !(*this == rPolygon); + } + + sal_uInt32 B2DPolygon::count() const + { + return mpPolygon->count(); + } + + B2DPoint const & B2DPolygon::getB2DPoint(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B2DPolygon access outside range (!)"); + + return mpPolygon->getPoint(nIndex); + } + + void B2DPolygon::setB2DPoint(sal_uInt32 nIndex, const B2DPoint& rValue) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B2DPolygon access outside range (!)"); + + if(std::as_const(mpPolygon)->getPoint(nIndex) != rValue) + { + mpPolygon->setPoint(nIndex, rValue); + } + } + + void B2DPolygon::reserve(sal_uInt32 nCount) + { + mpPolygon->reserve(nCount); + } + + void B2DPolygon::insert(sal_uInt32 nIndex, const B2DPoint& rPoint, sal_uInt32 nCount) + { + OSL_ENSURE(nIndex <= std::as_const(mpPolygon)->count(), "B2DPolygon Insert outside range (!)"); + + if(nCount) + { + mpPolygon->insert(nIndex, rPoint, nCount); + } + } + + void B2DPolygon::append(const B2DPoint& rPoint, sal_uInt32 nCount) + { + if(nCount) + { + mpPolygon->insert(std::as_const(mpPolygon)->count(), rPoint, nCount); + } + } + + void B2DPolygon::append(const B2DPoint& rPoint) + { + mpPolygon->append(rPoint); + } + + B2DPoint B2DPolygon::getPrevControlPoint(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B2DPolygon access outside range (!)"); + + if(mpPolygon->areControlPointsUsed()) + { + return mpPolygon->getPoint(nIndex) + mpPolygon->getPrevControlVector(nIndex); + } + else + { + return mpPolygon->getPoint(nIndex); + } + } + + B2DPoint B2DPolygon::getNextControlPoint(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B2DPolygon access outside range (!)"); + + if(mpPolygon->areControlPointsUsed()) + { + return mpPolygon->getPoint(nIndex) + mpPolygon->getNextControlVector(nIndex); + } + else + { + return mpPolygon->getPoint(nIndex); + } + } + + void B2DPolygon::setPrevControlPoint(sal_uInt32 nIndex, const B2DPoint& rValue) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B2DPolygon access outside range (!)"); + const basegfx::B2DVector aNewVector(rValue - std::as_const(mpPolygon)->getPoint(nIndex)); + + if(std::as_const(mpPolygon)->getPrevControlVector(nIndex) != aNewVector) + { + mpPolygon->setPrevControlVector(nIndex, aNewVector); + } + } + + void B2DPolygon::setNextControlPoint(sal_uInt32 nIndex, const B2DPoint& rValue) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B2DPolygon access outside range (!)"); + const basegfx::B2DVector aNewVector(rValue - std::as_const(mpPolygon)->getPoint(nIndex)); + + if(std::as_const(mpPolygon)->getNextControlVector(nIndex) != aNewVector) + { + mpPolygon->setNextControlVector(nIndex, aNewVector); + } + } + + void B2DPolygon::setControlPoints(sal_uInt32 nIndex, const basegfx::B2DPoint& rPrev, const basegfx::B2DPoint& rNext) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B2DPolygon access outside range (!)"); + const B2DPoint aPoint(std::as_const(mpPolygon)->getPoint(nIndex)); + const basegfx::B2DVector aNewPrev(rPrev - aPoint); + const basegfx::B2DVector aNewNext(rNext - aPoint); + + if(std::as_const(mpPolygon)->getPrevControlVector(nIndex) != aNewPrev || std::as_const(mpPolygon)->getNextControlVector(nIndex) != aNewNext) + { + mpPolygon->setControlVectors(nIndex, aNewPrev, aNewNext); + } + } + + void B2DPolygon::resetPrevControlPoint(sal_uInt32 nIndex) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B2DPolygon access outside range (!)"); + + if(std::as_const(mpPolygon)->areControlPointsUsed() && !std::as_const(mpPolygon)->getPrevControlVector(nIndex).equalZero()) + { + mpPolygon->setPrevControlVector(nIndex, B2DVector::getEmptyVector()); + } + } + + void B2DPolygon::resetNextControlPoint(sal_uInt32 nIndex) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B2DPolygon access outside range (!)"); + + if(std::as_const(mpPolygon)->areControlPointsUsed() && !std::as_const(mpPolygon)->getNextControlVector(nIndex).equalZero()) + { + mpPolygon->setNextControlVector(nIndex, B2DVector::getEmptyVector()); + } + } + + void B2DPolygon::resetControlPoints() + { + if(std::as_const(mpPolygon)->areControlPointsUsed()) + { + mpPolygon->resetControlVectors(); + } + } + + void B2DPolygon::appendBezierSegment( + const B2DPoint& rNextControlPoint, + const B2DPoint& rPrevControlPoint, + const B2DPoint& rPoint) + { + const B2DVector aNewNextVector(std::as_const(mpPolygon)->count() ? B2DVector(rNextControlPoint - std::as_const(mpPolygon)->getPoint(std::as_const(mpPolygon)->count() - 1)) : B2DVector::getEmptyVector()); + const B2DVector aNewPrevVector(rPrevControlPoint - rPoint); + + if(aNewNextVector.equalZero() && aNewPrevVector.equalZero()) + { + mpPolygon->insert(std::as_const(mpPolygon)->count(), rPoint, 1); + } + else + { + mpPolygon->appendBezierSegment(aNewNextVector, aNewPrevVector, rPoint); + } + } + + void B2DPolygon::appendQuadraticBezierSegment(const B2DPoint& rControlPoint, const B2DPoint& rPoint) + { + if (std::as_const(mpPolygon)->count() == 0) + { + mpPolygon->append(rPoint); + const double nX((rControlPoint.getX() * 2.0 + rPoint.getX()) / 3.0); + const double nY((rControlPoint.getY() * 2.0 + rPoint.getY()) / 3.0); + setPrevControlPoint(0, B2DPoint(nX, nY)); + } + else + { + const B2DPoint aPreviousPoint(std::as_const(mpPolygon)->getPoint(std::as_const(mpPolygon)->count() - 1)); + + const double nX1((rControlPoint.getX() * 2.0 + aPreviousPoint.getX()) / 3.0); + const double nY1((rControlPoint.getY() * 2.0 + aPreviousPoint.getY()) / 3.0); + const double nX2((rControlPoint.getX() * 2.0 + rPoint.getX()) / 3.0); + const double nY2((rControlPoint.getY() * 2.0 + rPoint.getY()) / 3.0); + + appendBezierSegment(B2DPoint(nX1, nY1), B2DPoint(nX2, nY2), rPoint); + } + } + + bool B2DPolygon::areControlPointsUsed() const + { + return mpPolygon->areControlPointsUsed(); + } + + bool B2DPolygon::isPrevControlPointUsed(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B2DPolygon access outside range (!)"); + + return (mpPolygon->areControlPointsUsed() && !mpPolygon->getPrevControlVector(nIndex).equalZero()); + } + + bool B2DPolygon::isNextControlPointUsed(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B2DPolygon access outside range (!)"); + + return (mpPolygon->areControlPointsUsed() && !mpPolygon->getNextControlVector(nIndex).equalZero()); + } + + B2VectorContinuity B2DPolygon::getContinuityInPoint(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B2DPolygon access outside range (!)"); + + if(mpPolygon->areControlPointsUsed()) + { + const B2DVector& rPrev(mpPolygon->getPrevControlVector(nIndex)); + const B2DVector& rNext(mpPolygon->getNextControlVector(nIndex)); + + return getContinuity(rPrev, rNext); + } + else + { + return B2VectorContinuity::NONE; + } + } + + void B2DPolygon::getBezierSegment(sal_uInt32 nIndex, B2DCubicBezier& rTarget) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B2DPolygon access outside range (!)"); + const bool bNextIndexValidWithoutClose(nIndex + 1 < mpPolygon->count()); + + if(bNextIndexValidWithoutClose || mpPolygon->isClosed()) + { + const sal_uInt32 nNextIndex(bNextIndexValidWithoutClose ? nIndex + 1 : 0); + rTarget.setStartPoint(mpPolygon->getPoint(nIndex)); + rTarget.setEndPoint(mpPolygon->getPoint(nNextIndex)); + + if(mpPolygon->areControlPointsUsed()) + { + rTarget.setControlPointA(rTarget.getStartPoint() + mpPolygon->getNextControlVector(nIndex)); + rTarget.setControlPointB(rTarget.getEndPoint() + mpPolygon->getPrevControlVector(nNextIndex)); + } + else + { + // no bezier, reset control points at rTarget + rTarget.setControlPointA(rTarget.getStartPoint()); + rTarget.setControlPointB(rTarget.getEndPoint()); + } + } + else + { + // no valid edge at all, reset rTarget to current point + const B2DPoint aPoint(mpPolygon->getPoint(nIndex)); + rTarget.setStartPoint(aPoint); + rTarget.setEndPoint(aPoint); + rTarget.setControlPointA(aPoint); + rTarget.setControlPointB(aPoint); + } + } + + B2DPolygon const & B2DPolygon::getDefaultAdaptiveSubdivision() const + { + return mpPolygon->getDefaultAdaptiveSubdivision(*this); + } + + B2DRange const & B2DPolygon::getB2DRange() const + { + return mpPolygon->getB2DRange(*this); + } + + void B2DPolygon::append(const B2DPolygon& rPoly, sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(!rPoly.count()) + return; + + if(!nCount) + { + nCount = rPoly.count(); + } + + if(nIndex == 0 && nCount == rPoly.count()) + { + mpPolygon->insert(std::as_const(mpPolygon)->count(), *rPoly.mpPolygon); + } + else + { + OSL_ENSURE(nIndex + nCount <= rPoly.mpPolygon->count(), "B2DPolygon Append outside range (!)"); + ImplB2DPolygon aTempPoly(*rPoly.mpPolygon, nIndex, nCount); + mpPolygon->insert(std::as_const(mpPolygon)->count(), aTempPoly); + } + } + + void B2DPolygon::remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + OSL_ENSURE(nIndex + nCount <= std::as_const(mpPolygon)->count(), "B2DPolygon Remove outside range (!)"); + + if(nCount) + { + mpPolygon->remove(nIndex, nCount); + } + } + + void B2DPolygon::clear() + { + *mpPolygon = ImplB2DPolygon(); + } + + bool B2DPolygon::isClosed() const + { + return mpPolygon->isClosed(); + } + + void B2DPolygon::setClosed(bool bNew) + { + if(isClosed() != bNew) + { + mpPolygon->setClosed(bNew); + } + } + + void B2DPolygon::flip() + { + if(count() > 1) + { + mpPolygon->flip(); + } + } + + bool B2DPolygon::hasDoublePoints() const + { + return (mpPolygon->count() > 1 && mpPolygon->hasDoublePoints()); + } + + void B2DPolygon::removeDoublePoints() + { + if(hasDoublePoints()) + { + mpPolygon->removeDoublePointsAtBeginEnd(); + mpPolygon->removeDoublePointsWholeTrack(); + } + } + + void B2DPolygon::transform(const B2DHomMatrix& rMatrix) + { + if(std::as_const(mpPolygon)->count() && !rMatrix.isIdentity()) + { + mpPolygon->transform(rMatrix); + } + } + + void B2DPolygon::addOrReplaceSystemDependentDataInternal(SystemDependentData_SharedPtr& rData) const + { + // Need to get ImplB2DPolygon* from cow_wrapper *without* + // calling make_unique() here - we do not want to + // 'modify' the ImplB2DPolygon, but add buffered data that + // is valid for all referencing instances + const B2DPolygon* pMe(this); + const ImplB2DPolygon* pMyImpl(pMe->mpPolygon.get()); + + const_cast<ImplB2DPolygon*>(pMyImpl)->addOrReplaceSystemDependentData(rData); + } + + SystemDependentData_SharedPtr B2DPolygon::getSystemDependantDataInternal(size_t hash_code) const + { + return mpPolygon->getSystemDependentData(hash_code); + } + +} // end of namespace basegfx + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dpolygonclipper.cxx b/basegfx/source/polygon/b2dpolygonclipper.cxx new file mode 100644 index 000000000..69eba2c84 --- /dev/null +++ b/basegfx/source/polygon/b2dpolygonclipper.cxx @@ -0,0 +1,826 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/polygon/b2dpolygonclipper.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/numeric/ftools.hxx> +#include <basegfx/polygon/b2dpolypolygoncutter.hxx> +#include <basegfx/polygon/b2dpolygoncutandtouch.hxx> +#include <basegfx/polygon/b2dpolypolygontools.hxx> +#include <basegfx/curve/b2dcubicbezier.hxx> +#include <basegfx/utils/rectcliptools.hxx> +#include <sal/log.hxx> + +namespace basegfx::utils +{ + B2DPolyPolygon clipPolygonOnParallelAxis(const B2DPolygon& rCandidate, bool bParallelToXAxis, bool bAboveAxis, double fValueOnOtherAxis, bool bStroke) + { + B2DPolyPolygon aRetval; + + if(rCandidate.count()) + { + const B2DRange aCandidateRange(getRange(rCandidate)); + + if(bParallelToXAxis && fTools::moreOrEqual(aCandidateRange.getMinY(), fValueOnOtherAxis)) + { + // completely above and on the clip line. also true for curves. + if(bAboveAxis) + { + // add completely + aRetval.append(rCandidate); + } + } + else if(bParallelToXAxis && fTools::lessOrEqual(aCandidateRange.getMaxY(), fValueOnOtherAxis)) + { + // completely below and on the clip line. also true for curves. + if(!bAboveAxis) + { + // add completely + aRetval.append(rCandidate); + } + } + else if(!bParallelToXAxis && fTools::moreOrEqual(aCandidateRange.getMinX(), fValueOnOtherAxis)) + { + // completely right of and on the clip line. also true for curves. + if(bAboveAxis) + { + // add completely + aRetval.append(rCandidate); + } + } + else if(!bParallelToXAxis && fTools::lessOrEqual(aCandidateRange.getMaxX(), fValueOnOtherAxis)) + { + // completely left of and on the clip line. also true for curves. + if(!bAboveAxis) + { + // add completely + aRetval.append(rCandidate); + } + } + else + { + // add cuts with axis to polygon, including bezier segments + // Build edge to cut with. Make it a little big longer than needed for + // numerical stability. We want to cut against the edge seen as endless + // ray here, but addPointsAtCuts() will limit itself to the + // edge's range ]0.0 .. 1.0[. + const double fSmallExtension((aCandidateRange.getWidth() + aCandidateRange.getHeight()) * (0.5 * 0.1)); + const B2DPoint aStart( + bParallelToXAxis ? aCandidateRange.getMinX() - fSmallExtension : fValueOnOtherAxis, + bParallelToXAxis ? fValueOnOtherAxis : aCandidateRange.getMinY() - fSmallExtension); + const B2DPoint aEnd( + bParallelToXAxis ? aCandidateRange.getMaxX() + fSmallExtension : fValueOnOtherAxis, + bParallelToXAxis ? fValueOnOtherAxis : aCandidateRange.getMaxY() + fSmallExtension); + const B2DPolygon aCandidate(addPointsAtCuts(rCandidate, aStart, aEnd)); + const sal_uInt32 nPointCount(aCandidate.count()); + const sal_uInt32 nEdgeCount(aCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DCubicBezier aEdge; + B2DPolygon aRun; + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + aCandidate.getBezierSegment(a, aEdge); + const B2DPoint aTestPoint(aEdge.interpolatePoint(0.5)); + const bool bInside(bParallelToXAxis ? + fTools::moreOrEqual(aTestPoint.getY(), fValueOnOtherAxis) == bAboveAxis : + fTools::moreOrEqual(aTestPoint.getX(), fValueOnOtherAxis) == bAboveAxis); + + if(bInside) + { + if(!aRun.count() || !aRun.getB2DPoint(aRun.count() - 1).equal(aEdge.getStartPoint())) + { + aRun.append(aEdge.getStartPoint()); + } + + if(aEdge.isBezier()) + { + aRun.appendBezierSegment(aEdge.getControlPointA(), aEdge.getControlPointB(), aEdge.getEndPoint()); + } + else + { + aRun.append(aEdge.getEndPoint()); + } + } + else + { + if(bStroke && aRun.count()) + { + aRetval.append(aRun); + aRun.clear(); + } + } + } + + if(aRun.count()) + { + if(bStroke) + { + // try to merge this last and first polygon; they may have been + // the former polygon's start/end point + if(aRetval.count()) + { + const B2DPolygon aStartPolygon(aRetval.getB2DPolygon(0)); + + if(aStartPolygon.count() && aStartPolygon.getB2DPoint(0).equal(aRun.getB2DPoint(aRun.count() - 1))) + { + // append start polygon to aRun, remove from result set + aRun.append(aStartPolygon); aRun.removeDoublePoints(); + aRetval.remove(0); + } + } + + aRetval.append(aRun); + } + else + { + // set closed flag and correct last point (which is added double now). + closeWithGeometryChange(aRun); + aRetval.append(aRun); + } + } + } + } + + return aRetval; + } + + B2DPolyPolygon clipPolyPolygonOnParallelAxis(const B2DPolyPolygon& rCandidate, bool bParallelToXAxis, bool bAboveAxis, double fValueOnOtherAxis, bool bStroke) + { + const sal_uInt32 nPolygonCount(rCandidate.count()); + B2DPolyPolygon aRetval; + + for(sal_uInt32 a(0); a < nPolygonCount; a++) + { + const B2DPolyPolygon aClippedPolyPolygon(clipPolygonOnParallelAxis(rCandidate.getB2DPolygon(a), bParallelToXAxis, bAboveAxis, fValueOnOtherAxis, bStroke)); + + if(aClippedPolyPolygon.count()) + { + aRetval.append(aClippedPolyPolygon); + } + } + + return aRetval; + } + + B2DPolyPolygon clipPolygonOnRange(const B2DPolygon& rCandidate, const B2DRange& rRange, bool bInside, bool bStroke) + { + const sal_uInt32 nCount(rCandidate.count()); + B2DPolyPolygon aRetval; + + if(!nCount) + { + // source is empty + return aRetval; + } + + if(rRange.isEmpty()) + { + if(bInside) + { + // nothing is inside an empty range + return aRetval; + } + else + { + // everything is outside an empty range + return B2DPolyPolygon(rCandidate); + } + } + + const B2DRange aCandidateRange(getRange(rCandidate)); + + if(rRange.isInside(aCandidateRange)) + { + // candidate is completely inside given range + if(bInside) + { + // nothing to do + return B2DPolyPolygon(rCandidate); + } + else + { + // nothing is outside, then + return aRetval; + } + } + + if(!bInside) + { + // cutting off the outer parts of filled polygons at parallel + // lines to the axes is only possible for the inner part, not for + // the outer part which means cutting a hole into the original polygon. + // This is because the inner part is a logical AND-operation of + // the four implied half-planes, but the outer part is not. + // It is possible for strokes, but with creating unnecessary extra + // cuts, so using clipPolygonOnPolyPolygon is better there, too. + // This needs to be done with the topology knowledge and is unfortunately + // more expensive, too. + const B2DPolygon aClip(createPolygonFromRect(rRange)); + + return clipPolygonOnPolyPolygon(rCandidate, B2DPolyPolygon(aClip), bInside, bStroke); + } + + // clip against the four axes of the range + // against X-Axis, lower value + aRetval = clipPolygonOnParallelAxis(rCandidate, true, bInside, rRange.getMinY(), bStroke); + + if(aRetval.count()) + { + // against Y-Axis, lower value + if(aRetval.count() == 1) + { + aRetval = clipPolygonOnParallelAxis(aRetval.getB2DPolygon(0), false, bInside, rRange.getMinX(), bStroke); + } + else + { + aRetval = clipPolyPolygonOnParallelAxis(aRetval, false, bInside, rRange.getMinX(), bStroke); + } + + if(aRetval.count()) + { + // against X-Axis, higher value + if(aRetval.count() == 1) + { + aRetval = clipPolygonOnParallelAxis(aRetval.getB2DPolygon(0), true, false, rRange.getMaxY(), bStroke); + } + else + { + aRetval = clipPolyPolygonOnParallelAxis(aRetval, true, false, rRange.getMaxY(), bStroke); + } + + if(aRetval.count()) + { + // against Y-Axis, higher value + if(aRetval.count() == 1) + { + aRetval = clipPolygonOnParallelAxis(aRetval.getB2DPolygon(0), false, false, rRange.getMaxX(), bStroke); + } + else + { + aRetval = clipPolyPolygonOnParallelAxis(aRetval, false, false, rRange.getMaxX(), bStroke); + } + } + } + } + + return aRetval; + } + + B2DPolyPolygon clipPolyPolygonOnRange(const B2DPolyPolygon& rCandidate, const B2DRange& rRange, bool bInside, bool bStroke) + { + const sal_uInt32 nPolygonCount(rCandidate.count()); + B2DPolyPolygon aRetval; + + if(!nPolygonCount) + { + // source is empty + return aRetval; + } + + if(rRange.isEmpty()) + { + if(bInside) + { + // nothing is inside an empty range + return aRetval; + } + else + { + // everything is outside an empty range + return rCandidate; + } + } + + if(bInside) + { + for(sal_uInt32 a(0); a < nPolygonCount; a++) + { + const B2DPolyPolygon aClippedPolyPolygon(clipPolygonOnRange(rCandidate.getB2DPolygon(a), rRange, bInside, bStroke)); + + if(aClippedPolyPolygon.count()) + { + aRetval.append(aClippedPolyPolygon); + } + } + } + else + { + // for details, see comment in clipPolygonOnRange for the "cutting off + // the outer parts of filled polygons at parallel lines" explanations + const B2DPolygon aClip(createPolygonFromRect(rRange)); + + return clipPolyPolygonOnPolyPolygon(rCandidate, B2DPolyPolygon(aClip), bInside, bStroke); + } + + return aRetval; + } + + B2DPolyPolygon clipPolyPolygonOnPolyPolygon(const B2DPolyPolygon& rCandidate, const B2DPolyPolygon& rClip, + bool bInside, bool bStroke, size_t* pPointLimit) + { + B2DPolyPolygon aRetval; + + if(rCandidate.count() && rClip.count()) + { + // one or both are no rectangle - go the hard way and clip PolyPolygon + // against PolyPolygon... + if(bStroke) + { + // line clipping, create line snippets by first adding all cut points and + // then marching along the edges and detecting if they are inside or outside + // the clip polygon + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + // add cuts with clip to polygon, including bezier segments + const B2DPolygon aCandidate(addPointsAtCuts(rCandidate.getB2DPolygon(a), rClip)); + const sal_uInt32 nPointCount(aCandidate.count()); + const sal_uInt32 nEdgeCount(aCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DCubicBezier aEdge; + B2DPolygon aRun; + + for(sal_uInt32 b(0); b < nEdgeCount; b++) + { + aCandidate.getBezierSegment(b, aEdge); + const B2DPoint aTestPoint(aEdge.interpolatePoint(0.5)); + const bool bIsInside(utils::isInside(rClip, aTestPoint) == bInside); + + if(bIsInside) + { + if(!aRun.count()) + { + aRun.append(aEdge.getStartPoint()); + } + + if(aEdge.isBezier()) + { + aRun.appendBezierSegment(aEdge.getControlPointA(), aEdge.getControlPointB(), aEdge.getEndPoint()); + } + else + { + aRun.append(aEdge.getEndPoint()); + } + } + else + { + if(aRun.count()) + { + aRetval.append(aRun); + aRun.clear(); + } + } + } + + if(aRun.count()) + { + // try to merge this last and first polygon; they may have been + // the former polygon's start/end point + if(aRetval.count()) + { + const B2DPolygon aStartPolygon(aRetval.getB2DPolygon(0)); + + if(aStartPolygon.count() && aStartPolygon.getB2DPoint(0).equal(aRun.getB2DPoint(aRun.count() - 1))) + { + // append start polygon to aRun, remove from result set + aRun.append(aStartPolygon); aRun.removeDoublePoints(); + aRetval.remove(0); + } + } + + aRetval.append(aRun); + } + } + } + else + { + // check for simplification with ranges if !bStroke (handling as stroke is more simple), + // but also only when bInside, else the simplification may lead to recursive calls (see + // calls to clipPolyPolygonOnPolyPolygon in clipPolyPolygonOnRange and clipPolygonOnRange) + if (bInside && basegfx::utils::isRectangle(rClip)) + { + // #i125349# detect if both given PolyPolygons are indeed ranges + if (basegfx::utils::isRectangle(rCandidate)) + { + // both are rectangle + if(rCandidate.getB2DRange().equal(rClip.getB2DRange())) + { + // if both are equal -> no change + return rCandidate; + } + else + { + // not equal -> create new intersection from both ranges, + // but much cheaper based on the ranges + basegfx::B2DRange aIntersectionRange(rCandidate.getB2DRange()); + + aIntersectionRange.intersect(rClip.getB2DRange()); + + if(aIntersectionRange.isEmpty()) + { + // no common IntersectionRange -> the clip will be empty + return B2DPolyPolygon(); + } + else + { + // use common aIntersectionRange as result, convert + // to expected utils::PolyPolygon form + return basegfx::B2DPolyPolygon( + basegfx::utils::createPolygonFromRect(aIntersectionRange)); + } + } + } + else + { + // rClip is rectangle -> clip rCandidate on rRectangle, use the much + // cheaper and numerically more stable clipping against a range + return clipPolyPolygonOnRange(rCandidate, rClip.getB2DRange(), bInside, bStroke); + } + } + + // area clipping + + // First solve all polygon-self and polygon-polygon intersections. + // Also get rid of some not-needed polygons (neutral, no area -> when + // no intersections, these are tubes). + // Now it is possible to correct the orientations in the cut-free + // polygons to values corresponding to painting the utils::PolyPolygon with + // a XOR-WindingRule. + B2DPolyPolygon aMergePolyPolygonA = solveCrossovers(rClip); + aMergePolyPolygonA = stripNeutralPolygons(aMergePolyPolygonA); + aMergePolyPolygonA = correctOrientations(aMergePolyPolygonA); + + if(!bInside) + { + // if we want to get the outside of the clip polygon, make + // it a 'Hole' in topological sense + aMergePolyPolygonA.flip(); + } + + + // prepare 2nd source polygon in same way + B2DPolyPolygon aMergePolyPolygonB = solveCrossovers(rCandidate, pPointLimit); + + if (pPointLimit && !*pPointLimit) + { + SAL_WARN("basegfx", "clipPolyPolygonOnPolyPolygon hit point limit"); + return aRetval; + } + + aMergePolyPolygonB = stripNeutralPolygons(aMergePolyPolygonB); + aMergePolyPolygonB = correctOrientations(aMergePolyPolygonB); + + // to clip against each other, concatenate and solve all + // polygon-polygon crossovers. polygon-self do not need to + // be solved again, they were solved in the preparation. + aRetval.append(aMergePolyPolygonA); + aRetval.append(aMergePolyPolygonB); + aRetval = solveCrossovers(aRetval); + + // now remove neutral polygons (closed, but no area). In a last + // step throw away all polygons which have a depth of less than 1 + // which means there was no logical AND at their position. For the + // not-inside solution, the clip was flipped to define it as 'Hole', + // so the removal rule is different here; remove all with a depth + // of less than 0 (aka holes). + aRetval = stripNeutralPolygons(aRetval); + aRetval = stripDispensablePolygons(aRetval, bInside); + } + } + + return aRetval; + } + + B2DPolyPolygon clipPolygonOnPolyPolygon(const B2DPolygon& rCandidate, const B2DPolyPolygon& rClip, bool bInside, bool bStroke) + { + B2DPolyPolygon aRetval; + + if(rCandidate.count() && rClip.count()) + { + aRetval = clipPolyPolygonOnPolyPolygon(B2DPolyPolygon(rCandidate), rClip, bInside, bStroke); + } + + return aRetval; + } + + namespace { + + /* + * let a plane be defined as + * + * v.n+d=0 + * + * and a ray be defined as + * + * a+(b-a)*t=0 + * + * substitute and rearranging yields + * + * t = -(a.n+d)/(n.(b-a)) + * + * if the denominator is zero, the line is either + * contained in the plane or parallel to the plane. + * in either case, there is no intersection. + * if numerator and denominator are both zero, the + * ray is contained in the plane. + * + */ + struct scissor_plane { + double nx,ny; // plane normal + double d; // [-] minimum distance from origin + sal_uInt32 clipmask; // clipping mask, e.g. 1000 1000 + }; + + } + + /* + * + * polygon clipping rules (straight out of Foley and Van Dam) + * =========================================================== + * current |next |emit + * ____________________________________ + * inside |inside |next + * inside |outside |intersect with clip plane + * outside |outside |nothing + * outside |inside |intersect with clip plane followed by next + * + */ + static sal_uInt32 scissorLineSegment( ::basegfx::B2DPoint *in_vertex, // input buffer + sal_uInt32 in_count, // number of verts in input buffer + ::basegfx::B2DPoint *out_vertex, // output buffer + scissor_plane const *pPlane, // scissoring plane + const ::basegfx::B2DRectangle &rR ) // clipping rectangle + { + + sal_uInt32 out_count=0; + + // process all the verts + for(sal_uInt32 i=0; i<in_count; i++) { + + // vertices are relative to the coordinate + // system defined by the rectangle. + ::basegfx::B2DPoint *curr = &in_vertex[i]; + ::basegfx::B2DPoint *next = &in_vertex[(i+1)%in_count]; + + // perform clipping judgement & mask against current plane. + sal_uInt32 clip = pPlane->clipmask & ((getCohenSutherlandClipFlags(*curr,rR)<<4)|getCohenSutherlandClipFlags(*next,rR)); + + if(clip==0) { // both verts are inside + out_vertex[out_count++] = *next; + } + else if((clip&0x0f) && (clip&0xf0)) { // both verts are outside + } + else if((clip&0x0f) && (clip&0xf0)==0) { // curr is inside, next is outside + + // direction vector from 'current' to 'next', *not* normalized + // to bring 't' into the [0<=x<=1] interval. + ::basegfx::B2DPoint dir((*next)-(*curr)); + + double denominator = pPlane->nx*dir.getX() + + pPlane->ny*dir.getY(); + double numerator = pPlane->nx*curr->getX() + + pPlane->ny*curr->getY() + + pPlane->d; + double t = -numerator/denominator; + + // calculate the actual point of intersection + ::basegfx::B2DPoint intersection( curr->getX()+t*dir.getX(), + curr->getY()+t*dir.getY() ); + + out_vertex[out_count++] = intersection; + } + else if((clip&0x0f)==0 && (clip&0xf0)) { // curr is outside, next is inside + + // direction vector from 'current' to 'next', *not* normalized + // to bring 't' into the [0<=x<=1] interval. + ::basegfx::B2DPoint dir((*next)-(*curr)); + + double denominator = pPlane->nx*dir.getX() + + pPlane->ny*dir.getY(); + double numerator = pPlane->nx*curr->getX() + + pPlane->ny*curr->getY() + + pPlane->d; + double t = -numerator/denominator; + + // calculate the actual point of intersection + ::basegfx::B2DPoint intersection( curr->getX()+t*dir.getX(), + curr->getY()+t*dir.getY() ); + + out_vertex[out_count++] = intersection; + out_vertex[out_count++] = *next; + } + } + + return out_count; + } + + B2DPolygon clipTriangleListOnRange( const B2DPolygon& rCandidate, + const B2DRange& rRange ) + { + B2DPolygon aResult; + + if( !(rCandidate.count()%3) ) + { + const int scissor_plane_count = 4; + + scissor_plane sp[scissor_plane_count]; + + sp[0].nx = +1.0; + sp[0].ny = +0.0; + sp[0].d = -(rRange.getMinX()); + sp[0].clipmask = (RectClipFlags::LEFT << 4) | RectClipFlags::LEFT; // 0001 0001 + sp[1].nx = -1.0; + sp[1].ny = +0.0; + sp[1].d = +(rRange.getMaxX()); + sp[1].clipmask = (RectClipFlags::RIGHT << 4) | RectClipFlags::RIGHT; // 0010 0010 + sp[2].nx = +0.0; + sp[2].ny = +1.0; + sp[2].d = -(rRange.getMinY()); + sp[2].clipmask = (RectClipFlags::TOP << 4) | RectClipFlags::TOP; // 0100 0100 + sp[3].nx = +0.0; + sp[3].ny = -1.0; + sp[3].d = +(rRange.getMaxY()); + sp[3].clipmask = (RectClipFlags::BOTTOM << 4) | RectClipFlags::BOTTOM; // 1000 1000 + + // retrieve the number of vertices of the triangulated polygon + const sal_uInt32 nVertexCount = rCandidate.count(); + + if(nVertexCount) + { + // Upper bound for the maximal number of vertices when intersecting an + // axis-aligned rectangle with a triangle in E2 + + // The rectangle and the triangle are in general position, and have 4 and 3 + // vertices, respectively. + + // Lemma: Since the rectangle is a convex polygon ( see + // http://mathworld.wolfram.com/ConvexPolygon.html for a definition), and + // has no holes, it follows that any straight line will intersect the + // rectangle's border line at utmost two times (with the usual + // tie-breaking rule, if the intersection exactly hits an already existing + // rectangle vertex, that this intersection is only attributed to one of + // the adjoining edges). Thus, having a rectangle intersected with + // a half-plane (one side of a straight line denotes 'inside', the + // other 'outside') will at utmost add _one_ vertex to the resulting + // intersection polygon (adding two intersection vertices, and removing at + // least one rectangle vertex): + + // * + // +--+-----------------+ + // | * | + // |* | + // + | + // *| | + // * | | + // +--------------------+ + + // Proof: If the straight line intersects the rectangle two + // times, it does so for distinct edges, i.e. the intersection has + // minimally one of the rectangle's vertices on either side of the straight + // line (but maybe more). Thus, the intersection with a half-plane has + // minimally _one_ rectangle vertex removed from the resulting clip + // polygon, and therefore, a clip against a half-plane has the net effect + // of adding at utmost _one_ vertex to the resulting clip polygon. + + // Theorem: The intersection of a rectangle and a triangle results in a + // polygon with at utmost 7 vertices. + + // Proof: The inside of the triangle can be described as the consecutive + // intersection with three half-planes. Together with the lemma above, this + // results in at utmost 3 additional vertices added to the already existing 4 + // rectangle vertices. + + // This upper bound is attained with the following example configuration: + + // * + // *** + // ** * + // ** * + // ** * + // ** * + // ** * + // ** * + // ** * + // ** * + // ** * + // ----*2--------3 * + // | ** |* + // 1* 4 + // **| *| + // ** | * | + // **| * | + // 7* * | + // --*6-----5----- + // ** * + // ** + + // As we need to scissor all triangles against the + // output rectangle we employ an output buffer for the + // resulting vertices. the question is how large this + // buffer needs to be compared to the number of + // incoming vertices. this buffer needs to hold at + // most the number of original vertices times '7'. see + // figure above for an example. scissoring triangles + // with the cohen-sutherland line clipping algorithm + // as implemented here will result in a triangle fan + // which will be rendered as separate triangles to + // avoid pipeline stalls for each scissored + // triangle. creating separate triangles from a + // triangle fan produces (n-2)*3 vertices where n is + // the number of vertices of the original triangle + // fan. for the maximum number of 7 vertices of + // resulting triangle fans we therefore need 15 times + // the number of original vertices. + + //const size_t nBufferSize = sizeof(vertex)*(nVertexCount*16); + //vertex *pVertices = (vertex*)alloca(nBufferSize); + //sal_uInt32 nNumOutput = 0; + + // we need to clip this triangle against the output rectangle + // to ensure that the resulting texture coordinates are in + // the valid range from [0<=st<=1]. under normal circumstances + // we could use the BORDERCOLOR renderstate but some cards + // seem to ignore this feature. + ::basegfx::B2DPoint stack[3]; + unsigned int clipflag = 0; + + for(sal_uInt32 nIndex=0; nIndex<nVertexCount; ++nIndex) + { + // rotate stack + stack[0] = stack[1]; + stack[1] = stack[2]; + stack[2] = rCandidate.getB2DPoint(nIndex); + + // clipping judgement + clipflag |= unsigned(!(rRange.isInside(stack[2]))); + + if(nIndex > 1) + { + // consume vertices until a single separate triangle has been visited. + if(!((nIndex+1)%3)) + { + // if any of the last three vertices was outside + // we need to scissor against the destination rectangle + if(clipflag & 7) + { + ::basegfx::B2DPoint buf0[16]; + ::basegfx::B2DPoint buf1[16]; + + sal_uInt32 vertex_count = 3; + + // clip against all 4 planes passing the result of + // each plane as the input to the next using a double buffer + vertex_count = scissorLineSegment(stack,vertex_count,buf1,&sp[0],rRange); + vertex_count = scissorLineSegment(buf1,vertex_count,buf0,&sp[1],rRange); + vertex_count = scissorLineSegment(buf0,vertex_count,buf1,&sp[2],rRange); + vertex_count = scissorLineSegment(buf1,vertex_count,buf0,&sp[3],rRange); + + if(vertex_count >= 3) + { + // convert triangle fan back to triangle list. + ::basegfx::B2DPoint v0(buf0[0]); + ::basegfx::B2DPoint v1(buf0[1]); + for(sal_uInt32 i=2; i<vertex_count; ++i) + { + ::basegfx::B2DPoint v2(buf0[i]); + aResult.append(v0); + aResult.append(v1); + aResult.append(v2); + v1 = v2; + } + } + } + else + { + // the last triangle has not been altered, simply copy to result + for(const basegfx::B2DPoint & i : stack) + aResult.append(i); + } + } + } + + clipflag <<= 1; + } + } + } + + return aResult; + } + +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dpolygoncutandtouch.cxx b/basegfx/source/polygon/b2dpolygoncutandtouch.cxx new file mode 100644 index 000000000..d5ab5887d --- /dev/null +++ b/basegfx/source/polygon/b2dpolygoncutandtouch.cxx @@ -0,0 +1,1079 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/polygon/b2dpolygoncutandtouch.hxx> +#include <osl/diagnose.h> +#include <sal/log.hxx> +#include <basegfx/numeric/ftools.hxx> +#include <basegfx/point/b2dpoint.hxx> +#include <basegfx/vector/b2dvector.hxx> +#include <basegfx/range/b2drange.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/curve/b2dcubicbezier.hxx> + +#include <vector> +#include <algorithm> +#include <memory> + +#define SUBDIVIDE_FOR_CUT_TEST_COUNT (50) + +namespace basegfx +{ + namespace + { + + class temporaryPoint + { + B2DPoint maPoint; // the new point + sal_uInt32 mnIndex; // index after which to insert + double mfCut; // parametric cut description [0.0 .. 1.0] + + public: + temporaryPoint(const B2DPoint& rNewPoint, sal_uInt32 nIndex, double fCut) + : maPoint(rNewPoint), + mnIndex(nIndex), + mfCut(fCut) + { + } + + bool operator<(const temporaryPoint& rComp) const + { + if(mnIndex == rComp.mnIndex) + { + return (mfCut < rComp.mfCut); + } + + return (mnIndex < rComp.mnIndex); + } + + const B2DPoint& getPoint() const { return maPoint; } + sal_uInt32 getIndex() const { return mnIndex; } + double getCut() const { return mfCut; } + }; + + typedef std::vector< temporaryPoint > temporaryPointVector; + + class temporaryPolygonData + { + B2DPolygon maPolygon; + B2DRange maRange; + temporaryPointVector maPoints; + + public: + const B2DPolygon& getPolygon() const { return maPolygon; } + void setPolygon(const B2DPolygon& rNew) { maPolygon = rNew; maRange = utils::getRange(maPolygon); } + const B2DRange& getRange() const { return maRange; } + temporaryPointVector& getTemporaryPointVector() { return maPoints; } + }; + + B2DPolygon mergeTemporaryPointsAndPolygon(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints) + { + // #i76891# mergeTemporaryPointsAndPolygon redesigned to be able to correctly handle + // single edges with/without control points + // #i101491# added counter for non-changing element count + const sal_uInt32 nTempPointCount(rTempPoints.size()); + + if(nTempPointCount) + { + B2DPolygon aRetval; + const sal_uInt32 nCount(rCandidate.count()); + + if(nCount) + { + // sort temp points to assure increasing fCut values and increasing indices + std::sort(rTempPoints.begin(), rTempPoints.end()); + + // prepare loop + B2DCubicBezier aEdge; + sal_uInt32 nNewInd(0); + + // add start point + aRetval.append(rCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nCount; a++) + { + // get edge + rCandidate.getBezierSegment(a, aEdge); + + if(aEdge.isBezier()) + { + // control vectors involved for this edge + double fLeftStart(0.0); + + // now add all points targeted to be at this index + while (nNewInd < nTempPointCount && rTempPoints[nNewInd].getIndex() == a && fLeftStart < 1.0) + { + const temporaryPoint& rTempPoint = rTempPoints[nNewInd++]; + + // split curve segment. Splits need to come sorted and need to be < 1.0. Also, + // since original segment is consumed from left to right, the cut values need + // to be scaled to the remaining part + B2DCubicBezier aLeftPart; + const double fRelativeSplitPoint((rTempPoint.getCut() - fLeftStart) / (1.0 - fLeftStart)); + aEdge.split(fRelativeSplitPoint, &aLeftPart, &aEdge); + fLeftStart = rTempPoint.getCut(); + + // add left bow + aRetval.appendBezierSegment(aLeftPart.getControlPointA(), aLeftPart.getControlPointB(), rTempPoint.getPoint()); + } + + // add remaining bow + aRetval.appendBezierSegment(aEdge.getControlPointA(), aEdge.getControlPointB(), aEdge.getEndPoint()); + } + else + { + // add all points targeted to be at this index + while(nNewInd < nTempPointCount && rTempPoints[nNewInd].getIndex() == a) + { + const temporaryPoint& rTempPoint = rTempPoints[nNewInd++]; + const B2DPoint& aNewPoint(rTempPoint.getPoint()); + + // do not add points double + if(!aRetval.getB2DPoint(aRetval.count() - 1).equal(aNewPoint)) + { + aRetval.append(aNewPoint); + } + } + + // add edge end point + aRetval.append(aEdge.getEndPoint()); + } + } + } + + if(rCandidate.isClosed()) + { + // set closed flag and correct last point (which is added double now). + utils::closeWithGeometryChange(aRetval); + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + void adaptAndTransferCutsWithBezierSegment( + const temporaryPointVector& rPointVector, const B2DPolygon& rPolygon, + sal_uInt32 nInd, temporaryPointVector& rTempPoints) + { + // assuming that the subdivision to create rPolygon used equidistant pieces + // (as in adaptiveSubdivideByCount) it is now possible to calculate back the + // cut positions in the polygon to relative cut positions on the original bezier + // segment. + const sal_uInt32 nTempPointCount(rPointVector.size()); + const sal_uInt32 nEdgeCount(rPolygon.count() ? rPolygon.count() - 1 : 0); + + if(nTempPointCount && nEdgeCount) + { + for(sal_uInt32 a(0); a < nTempPointCount; a++) + { + const temporaryPoint& rTempPoint = rPointVector[a]; + const double fCutPosInPolygon(static_cast<double>(rTempPoint.getIndex()) + rTempPoint.getCut()); + const double fRelativeCutPos(fCutPosInPolygon / static_cast<double>(nEdgeCount)); + rTempPoints.emplace_back(rTempPoint.getPoint(), nInd, fRelativeCutPos); + } + } + } + + } // end of anonymous namespace +} // end of namespace basegfx + +namespace basegfx +{ + namespace + { + + // predefines for calls to this methods before method implementation + + void findCuts(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints, size_t* pPointLimit = nullptr); + void findTouches(const B2DPolygon& rEdgePolygon, const B2DPolygon& rPointPolygon, temporaryPointVector& rTempPoints); + void findCuts(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB); + + void findEdgeCutsTwoEdges( + const B2DPoint& rCurrA, const B2DPoint& rNextA, + const B2DPoint& rCurrB, const B2DPoint& rNextB, + sal_uInt32 nIndA, sal_uInt32 nIndB, + temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB) + { + // no null length edges + if(rCurrA.equal(rNextA) || rCurrB.equal(rNextB)) + return; + + // no common start/end points, this can be no cuts + if(rCurrB.equal(rCurrA) || rCurrB.equal(rNextA) || rNextB.equal(rCurrA) || rNextB.equal(rNextA)) + return; + + const B2DVector aVecA(rNextA - rCurrA); + const B2DVector aVecB(rNextB - rCurrB); + double fCut(aVecA.cross(aVecB)); + + if(fTools::equalZero(fCut)) + return; + + const double fZero(0.0); + const double fOne(1.0); + fCut = (aVecB.getY() * (rCurrB.getX() - rCurrA.getX()) + aVecB.getX() * (rCurrA.getY() - rCurrB.getY())) / fCut; + + if (!fTools::betweenOrEqualEither(fCut, fZero, fOne)) + return; + + // it's a candidate, but also need to test parameter value of cut on line 2 + double fCut2; + + // choose the more precise version + if(fabs(aVecB.getX()) > fabs(aVecB.getY())) + { + fCut2 = (rCurrA.getX() + (fCut * aVecA.getX()) - rCurrB.getX()) / aVecB.getX(); + } + else + { + fCut2 = (rCurrA.getY() + (fCut * aVecA.getY()) - rCurrB.getY()) / aVecB.getY(); + } + + if (fTools::betweenOrEqualEither(fCut2, fZero, fOne)) + { + // cut is in range, add point. Two edges can have only one cut, but + // add a cut point to each list. The lists may be the same for + // self intersections. + const B2DPoint aCutPoint(interpolate(rCurrA, rNextA, fCut)); + rTempPointsA.emplace_back(aCutPoint, nIndA, fCut); + rTempPointsB.emplace_back(aCutPoint, nIndB, fCut2); + } + } + + void findCutsAndTouchesAndCommonForBezier(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB) + { + // #i76891# + // This new method is necessary since in findEdgeCutsBezierAndEdge and in findEdgeCutsTwoBeziers + // it is not sufficient to use findCuts() recursively. This will indeed find the cuts between the + // segments of the two temporarily adaptive subdivided bezier segments, but not the touches or + // equal points of them. + // It would be possible to find the touches using findTouches(), but at last with common points + // the adding of cut points (temporary points) would fail. But for these temporarily adaptive + // subdivided bezier segments, common points may be not very likely, but the bug shows that it + // happens. + // Touch points are a little bit more likely than common points. All in all it is best to use + // a specialized method here which can profit from knowing that it is working on a special + // family of B2DPolygons: no curve segments included and not closed. + OSL_ENSURE(!rCandidateA.areControlPointsUsed() && !rCandidateB.areControlPointsUsed(), "findCutsAndTouchesAndCommonForBezier only works with subdivided polygons (!)"); + OSL_ENSURE(!rCandidateA.isClosed() && !rCandidateB.isClosed(), "findCutsAndTouchesAndCommonForBezier only works with opened polygons (!)"); + const sal_uInt32 nPointCountA(rCandidateA.count()); + const sal_uInt32 nPointCountB(rCandidateB.count()); + + if(nPointCountA <= 1 || nPointCountB <= 1) + return; + + const sal_uInt32 nEdgeCountA(nPointCountA - 1); + const sal_uInt32 nEdgeCountB(nPointCountB - 1); + B2DPoint aCurrA(rCandidateA.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nEdgeCountA; a++) + { + const B2DPoint aNextA(rCandidateA.getB2DPoint(a + 1)); + const B2DRange aRangeA(aCurrA, aNextA); + B2DPoint aCurrB(rCandidateB.getB2DPoint(0)); + + for(sal_uInt32 b(0); b < nEdgeCountB; b++) + { + const B2DPoint aNextB(rCandidateB.getB2DPoint(b + 1)); + const B2DRange aRangeB(aCurrB, aNextB); + + if(aRangeA.overlaps(aRangeB)) + { + // no null length edges + if(!(aCurrA.equal(aNextA) || aCurrB.equal(aNextB))) + { + const B2DVector aVecA(aNextA - aCurrA); + const B2DVector aVecB(aNextB - aCurrB); + double fCutA(aVecA.cross(aVecB)); + + if(!fTools::equalZero(fCutA)) + { + const double fZero(0.0); + const double fOne(1.0); + fCutA = (aVecB.getY() * (aCurrB.getX() - aCurrA.getX()) + aVecB.getX() * (aCurrA.getY() - aCurrB.getY())) / fCutA; + + // use range [0.0 .. 1.0[, thus in the loop, all direct aCurrA cuts will be registered + // as 0.0 cut. The 1.0 cut will be registered in the next loop step + if(fTools::moreOrEqual(fCutA, fZero) && fTools::less(fCutA, fOne)) + { + // it's a candidate, but also need to test parameter value of cut on line 2 + double fCutB; + + // choose the more precise version + if(fabs(aVecB.getX()) > fabs(aVecB.getY())) + { + fCutB = (aCurrA.getX() + (fCutA * aVecA.getX()) - aCurrB.getX()) / aVecB.getX(); + } + else + { + fCutB = (aCurrA.getY() + (fCutA * aVecA.getY()) - aCurrB.getY()) / aVecB.getY(); + } + + // use range [0.0 .. 1.0[, thus in the loop, all direct aCurrA cuts will be registered + // as 0.0 cut. The 1.0 cut will be registered in the next loop step + if(fTools::moreOrEqual(fCutB, fZero) && fTools::less(fCutB, fOne)) + { + // cut is in both ranges. Add points for A and B + // #i111715# use fTools::equal instead of fTools::equalZero for better accuracy + if(fTools::equal(fCutA, fZero)) + { + // ignore for start point in first edge; this is handled + // by outer methods and would just produce a double point + if(a) + { + rTempPointsA.emplace_back(aCurrA, a, 0.0); + } + } + else + { + const B2DPoint aCutPoint(interpolate(aCurrA, aNextA, fCutA)); + rTempPointsA.emplace_back(aCutPoint, a, fCutA); + } + + // #i111715# use fTools::equal instead of fTools::equalZero for better accuracy + if(fTools::equal(fCutB, fZero)) + { + // ignore for start point in first edge; this is handled + // by outer methods and would just produce a double point + if(b) + { + rTempPointsB.emplace_back(aCurrB, b, 0.0); + } + } + else + { + const B2DPoint aCutPoint(interpolate(aCurrB, aNextB, fCutB)); + rTempPointsB.emplace_back(aCutPoint, b, fCutB); + } + } + } + } + } + } + + // prepare next step + aCurrB = aNextB; + } + + // prepare next step + aCurrA = aNextA; + } + } + + void findEdgeCutsBezierAndEdge( + const B2DCubicBezier& rCubicA, + const B2DPoint& rCurrB, const B2DPoint& rNextB, + sal_uInt32 nIndA, sal_uInt32 nIndB, + temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB) + { + // find all cuts between given bezier segment and edge. Add an entry to the tempPoints + // for each common point with the cut value describing the relative position on given + // bezier segment and edge. + B2DPolygon aTempPolygonA; + B2DPolygon aTempPolygonEdge; + temporaryPointVector aTempPointVectorA; + temporaryPointVector aTempPointVectorEdge; + + // create subdivided polygons and find cuts between them + // Keep adaptiveSubdivideByCount due to needed quality + aTempPolygonA.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8); + aTempPolygonA.append(rCubicA.getStartPoint()); + rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT); + aTempPolygonEdge.append(rCurrB); + aTempPolygonEdge.append(rNextB); + + // #i76891# using findCuts recursively is not sufficient here + findCutsAndTouchesAndCommonForBezier(aTempPolygonA, aTempPolygonEdge, aTempPointVectorA, aTempPointVectorEdge); + + if(!aTempPointVectorA.empty()) + { + // adapt tempVector entries to segment + adaptAndTransferCutsWithBezierSegment(aTempPointVectorA, aTempPolygonA, nIndA, rTempPointsA); + } + + // append remapped tempVector entries for edge to tempPoints for edge + for(const temporaryPoint & rTempPoint : aTempPointVectorEdge) + { + rTempPointsB.emplace_back(rTempPoint.getPoint(), nIndB, rTempPoint.getCut()); + } + } + + void findEdgeCutsTwoBeziers( + const B2DCubicBezier& rCubicA, + const B2DCubicBezier& rCubicB, + sal_uInt32 nIndA, sal_uInt32 nIndB, + temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB) + { + // find all cuts between the two given bezier segments. Add an entry to the tempPoints + // for each common point with the cut value describing the relative position on given + // bezier segments. + B2DPolygon aTempPolygonA; + B2DPolygon aTempPolygonB; + temporaryPointVector aTempPointVectorA; + temporaryPointVector aTempPointVectorB; + + // create subdivided polygons and find cuts between them + // Keep adaptiveSubdivideByCount due to needed quality + aTempPolygonA.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8); + aTempPolygonA.append(rCubicA.getStartPoint()); + rCubicA.adaptiveSubdivideByCount(aTempPolygonA, SUBDIVIDE_FOR_CUT_TEST_COUNT); + aTempPolygonB.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8); + aTempPolygonB.append(rCubicB.getStartPoint()); + rCubicB.adaptiveSubdivideByCount(aTempPolygonB, SUBDIVIDE_FOR_CUT_TEST_COUNT); + + // #i76891# using findCuts recursively is not sufficient here + findCutsAndTouchesAndCommonForBezier(aTempPolygonA, aTempPolygonB, aTempPointVectorA, aTempPointVectorB); + + if(!aTempPointVectorA.empty()) + { + // adapt tempVector entries to segment + adaptAndTransferCutsWithBezierSegment(aTempPointVectorA, aTempPolygonA, nIndA, rTempPointsA); + } + + if(!aTempPointVectorB.empty()) + { + // adapt tempVector entries to segment + adaptAndTransferCutsWithBezierSegment(aTempPointVectorB, aTempPolygonB, nIndB, rTempPointsB); + } + } + + void findEdgeCutsOneBezier( + const B2DCubicBezier& rCubicA, + sal_uInt32 nInd, temporaryPointVector& rTempPoints) + { + // avoid expensive part of this method if possible + // TODO: use hasAnyExtremum() method instead when it becomes available + double fDummy; + const bool bHasAnyExtremum = rCubicA.getMinimumExtremumPosition( fDummy ); + if( !bHasAnyExtremum ) + return; + + // find all self-intersections on the given bezier segment. Add an entry to the tempPoints + // for each self intersection point with the cut value describing the relative position on given + // bezier segment. + B2DPolygon aTempPolygon; + temporaryPointVector aTempPointVector; + + // create subdivided polygon and find cuts on it + // Keep adaptiveSubdivideByCount due to needed quality + aTempPolygon.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8); + aTempPolygon.append(rCubicA.getStartPoint()); + rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT); + findCuts(aTempPolygon, aTempPointVector); + + if(!aTempPointVector.empty()) + { + // adapt tempVector entries to segment + adaptAndTransferCutsWithBezierSegment(aTempPointVector, aTempPolygon, nInd, rTempPoints); + } + } + + void findCuts(const B2DPolygon& rCandidate, temporaryPointVector& rTempPoints, size_t* pPointLimit) + { + // find out if there are edges with intersections (self-cuts). If yes, add + // entries to rTempPoints accordingly + const sal_uInt32 nPointCount(rCandidate.count()); + + if(!nPointCount) + return; + + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + + if(!nEdgeCount) + return; + + const bool bCurvesInvolved(rCandidate.areControlPointsUsed()); + + if(bCurvesInvolved) + { + B2DCubicBezier aCubicA; + B2DCubicBezier aCubicB; + + for(sal_uInt32 a(0); a < nEdgeCount - 1; a++) + { + rCandidate.getBezierSegment(a, aCubicA); + aCubicA.testAndSolveTrivialBezier(); + const bool bEdgeAIsCurve(aCubicA.isBezier()); + const B2DRange aRangeA(aCubicA.getRange()); + + if(bEdgeAIsCurve) + { + // curved segments may have self-intersections, do not forget those (!) + findEdgeCutsOneBezier(aCubicA, a, rTempPoints); + } + + for(sal_uInt32 b(a + 1); b < nEdgeCount; b++) + { + rCandidate.getBezierSegment(b, aCubicB); + aCubicB.testAndSolveTrivialBezier(); + const B2DRange aRangeB(aCubicB.getRange()); + + // only overlapping segments need to be tested + // consecutive segments touch of course + bool bOverlap = false; + if( b > a+1) + bOverlap = aRangeA.overlaps(aRangeB); + else + bOverlap = aRangeA.overlapsMore(aRangeB); + if( bOverlap) + { + const bool bEdgeBIsCurve(aCubicB.isBezier()); + if(bEdgeAIsCurve && bEdgeBIsCurve) + { + // test for bezier-bezier cuts + findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, rTempPoints, rTempPoints); + } + else if(bEdgeAIsCurve) + { + // test for bezier-edge cuts + findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, rTempPoints, rTempPoints); + } + else if(bEdgeBIsCurve) + { + // test for bezier-edge cuts + findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, rTempPoints, rTempPoints); + } + else + { + // test for simple edge-edge cuts + findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(), + a, b, rTempPoints, rTempPoints); + } + } + } + } + } + else + { + B2DPoint aCurrA(rCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nEdgeCount - 1; a++) + { + const B2DPoint aNextA(rCandidate.getB2DPoint(a + 1 == nPointCount ? 0 : a + 1)); + const B2DRange aRangeA(aCurrA, aNextA); + B2DPoint aCurrB(rCandidate.getB2DPoint(a + 1)); + + for(sal_uInt32 b(a + 1); b < nEdgeCount; b++) + { + const B2DPoint aNextB(rCandidate.getB2DPoint(b + 1 == nPointCount ? 0 : b + 1)); + const B2DRange aRangeB(aCurrB, aNextB); + + // consecutive segments touch of course + bool bOverlap = false; + if( b > a+1) + bOverlap = aRangeA.overlaps(aRangeB); + else + bOverlap = aRangeA.overlapsMore(aRangeB); + if( bOverlap) + { + findEdgeCutsTwoEdges(aCurrA, aNextA, aCurrB, aNextB, a, b, rTempPoints, rTempPoints); + } + + if (pPointLimit && rTempPoints.size() > *pPointLimit) + break; + + // prepare next step + aCurrB = aNextB; + } + + // prepare next step + aCurrA = aNextA; + } + } + + if (pPointLimit) + { + if (rTempPoints.size() > *pPointLimit) + *pPointLimit = 0; + else + *pPointLimit -= rTempPoints.size(); + } + } + + } // end of anonymous namespace +} // end of namespace basegfx + +namespace basegfx +{ + namespace + { + + void findTouchesOnEdge( + const B2DPoint& rCurr, const B2DPoint& rNext, const B2DPolygon& rPointPolygon, + sal_uInt32 nInd, temporaryPointVector& rTempPoints) + { + // find out if points from rPointPolygon are positioned on given edge. If Yes, add + // points there to represent touches (which may be enter or leave nodes later). + const sal_uInt32 nPointCount(rPointPolygon.count()); + + if(!nPointCount) + return; + + const B2DRange aRange(rCurr, rNext); + const B2DVector aEdgeVector(rNext - rCurr); + bool bTestUsingX(fabs(aEdgeVector.getX()) > fabs(aEdgeVector.getY())); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aTestPoint(rPointPolygon.getB2DPoint(a)); + + if(aRange.isInside(aTestPoint)) + { + if(!aTestPoint.equal(rCurr) && !aTestPoint.equal(rNext)) + { + const B2DVector aTestVector(aTestPoint - rCurr); + + if(areParallel(aEdgeVector, aTestVector)) + { + const double fCut(bTestUsingX + ? aTestVector.getX() / aEdgeVector.getX() + : aTestVector.getY() / aEdgeVector.getY()); + const double fZero(0.0); + const double fOne(1.0); + + if(fTools::more(fCut, fZero) && fTools::less(fCut, fOne)) + { + rTempPoints.emplace_back(aTestPoint, nInd, fCut); + } + } + } + } + } + } + + void findTouchesOnCurve( + const B2DCubicBezier& rCubicA, const B2DPolygon& rPointPolygon, + sal_uInt32 nInd, temporaryPointVector& rTempPoints) + { + // find all points from rPointPolygon which touch the given bezier segment. Add an entry + // for each touch to the given pointVector. The cut for that entry is the relative position on + // the given bezier segment. + B2DPolygon aTempPolygon; + temporaryPointVector aTempPointVector; + + // create subdivided polygon and find cuts on it + // Keep adaptiveSubdivideByCount due to needed quality + aTempPolygon.reserve(SUBDIVIDE_FOR_CUT_TEST_COUNT + 8); + aTempPolygon.append(rCubicA.getStartPoint()); + rCubicA.adaptiveSubdivideByCount(aTempPolygon, SUBDIVIDE_FOR_CUT_TEST_COUNT); + findTouches(aTempPolygon, rPointPolygon, aTempPointVector); + + if(!aTempPointVector.empty()) + { + // adapt tempVector entries to segment + adaptAndTransferCutsWithBezierSegment(aTempPointVector, aTempPolygon, nInd, rTempPoints); + } + } + + void findTouches(const B2DPolygon& rEdgePolygon, const B2DPolygon& rPointPolygon, temporaryPointVector& rTempPoints) + { + // find out if points from rPointPolygon touch edges from rEdgePolygon. If yes, + // add entries to rTempPoints + const sal_uInt32 nPointCount(rPointPolygon.count()); + const sal_uInt32 nEdgePointCount(rEdgePolygon.count()); + + if(!(nPointCount && nEdgePointCount)) + return; + + const sal_uInt32 nEdgeCount(rEdgePolygon.isClosed() ? nEdgePointCount : nEdgePointCount - 1); + B2DPoint aCurr(rEdgePolygon.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + const sal_uInt32 nNextIndex((a + 1) % nEdgePointCount); + const B2DPoint aNext(rEdgePolygon.getB2DPoint(nNextIndex)); + + if(!aCurr.equal(aNext)) + { + bool bHandleAsSimpleEdge(true); + + if(rEdgePolygon.areControlPointsUsed()) + { + const B2DPoint aNextControlPoint(rEdgePolygon.getNextControlPoint(a)); + const B2DPoint aPrevControlPoint(rEdgePolygon.getPrevControlPoint(nNextIndex)); + const bool bEdgeIsCurve(!aNextControlPoint.equal(aCurr) || !aPrevControlPoint.equal(aNext)); + + if(bEdgeIsCurve) + { + bHandleAsSimpleEdge = false; + const B2DCubicBezier aCubicA(aCurr, aNextControlPoint, aPrevControlPoint, aNext); + findTouchesOnCurve(aCubicA, rPointPolygon, a, rTempPoints); + } + } + + if(bHandleAsSimpleEdge) + { + findTouchesOnEdge(aCurr, aNext, rPointPolygon, a, rTempPoints); + } + } + + // next step + aCurr = aNext; + } + } + + } // end of anonymous namespace +} // end of namespace basegfx + +namespace basegfx +{ + namespace + { + + void findCuts(const B2DPolygon& rCandidateA, const B2DPolygon& rCandidateB, temporaryPointVector& rTempPointsA, temporaryPointVector& rTempPointsB) + { + // find out if edges from both polygons cut. If so, add entries to rTempPoints which + // should be added to the polygons accordingly + const sal_uInt32 nPointCountA(rCandidateA.count()); + const sal_uInt32 nPointCountB(rCandidateB.count()); + + if(!(nPointCountA && nPointCountB)) + return; + + const sal_uInt32 nEdgeCountA(rCandidateA.isClosed() ? nPointCountA : nPointCountA - 1); + const sal_uInt32 nEdgeCountB(rCandidateB.isClosed() ? nPointCountB : nPointCountB - 1); + + if(!(nEdgeCountA && nEdgeCountB)) + return; + + const bool bCurvesInvolved(rCandidateA.areControlPointsUsed() || rCandidateB.areControlPointsUsed()); + + if(bCurvesInvolved) + { + B2DCubicBezier aCubicA; + B2DCubicBezier aCubicB; + + for(sal_uInt32 a(0); a < nEdgeCountA; a++) + { + rCandidateA.getBezierSegment(a, aCubicA); + aCubicA.testAndSolveTrivialBezier(); + const bool bEdgeAIsCurve(aCubicA.isBezier()); + const B2DRange aRangeA(aCubicA.getRange()); + + for(sal_uInt32 b(0); b < nEdgeCountB; b++) + { + rCandidateB.getBezierSegment(b, aCubicB); + aCubicB.testAndSolveTrivialBezier(); + const B2DRange aRangeB(aCubicB.getRange()); + + // consecutive segments touch of course + bool bOverlap = false; + if( b > a+1) + bOverlap = aRangeA.overlaps(aRangeB); + else + bOverlap = aRangeA.overlapsMore(aRangeB); + if( bOverlap) + { + const bool bEdgeBIsCurve(aCubicB.isBezier()); + if(bEdgeAIsCurve && bEdgeBIsCurve) + { + // test for bezier-bezier cuts + findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, rTempPointsA, rTempPointsB); + } + else if(bEdgeAIsCurve) + { + // test for bezier-edge cuts + findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, rTempPointsA, rTempPointsB); + } + else if(bEdgeBIsCurve) + { + // test for bezier-edge cuts + findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, rTempPointsB, rTempPointsA); + } + else + { + // test for simple edge-edge cuts + findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(), + a, b, rTempPointsA, rTempPointsB); + } + } + } + } + } + else + { + B2DPoint aCurrA(rCandidateA.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nEdgeCountA; a++) + { + const B2DPoint aNextA(rCandidateA.getB2DPoint(a + 1 == nPointCountA ? 0 : a + 1)); + const B2DRange aRangeA(aCurrA, aNextA); + B2DPoint aCurrB(rCandidateB.getB2DPoint(0)); + + for(sal_uInt32 b(0); b < nEdgeCountB; b++) + { + const B2DPoint aNextB(rCandidateB.getB2DPoint(b + 1 == nPointCountB ? 0 : b + 1)); + const B2DRange aRangeB(aCurrB, aNextB); + + // consecutive segments touch of course + bool bOverlap = false; + if( b > a+1) + bOverlap = aRangeA.overlaps(aRangeB); + else + bOverlap = aRangeA.overlapsMore(aRangeB); + if( bOverlap) + { + // test for simple edge-edge cuts + findEdgeCutsTwoEdges(aCurrA, aNextA, aCurrB, aNextB, a, b, rTempPointsA, rTempPointsB); + } + + // prepare next step + aCurrB = aNextB; + } + + // prepare next step + aCurrA = aNextA; + } + } + } + + } // end of anonymous namespace +} // end of namespace basegfx + +namespace basegfx::utils +{ + + B2DPolygon addPointsAtCutsAndTouches(const B2DPolygon& rCandidate, size_t* pPointLimit) + { + if(rCandidate.count()) + { + temporaryPointVector aTempPoints; + + findTouches(rCandidate, rCandidate, aTempPoints); + findCuts(rCandidate, aTempPoints, pPointLimit); + if (pPointLimit && !*pPointLimit) + { + SAL_WARN("basegfx", "addPointsAtCutsAndTouches hit point limit"); + return rCandidate; + } + + return mergeTemporaryPointsAndPolygon(rCandidate, aTempPoints); + } + else + { + return rCandidate; + } + } + + B2DPolyPolygon addPointsAtCutsAndTouches(const B2DPolyPolygon& rCandidate, size_t* pPointLimit) + { + const sal_uInt32 nCount(rCandidate.count()); + + if(nCount) + { + B2DPolyPolygon aRetval; + + if(nCount == 1) + { + // remove self intersections + aRetval.append(addPointsAtCutsAndTouches(rCandidate.getB2DPolygon(0))); + } + else + { + // first solve self cuts and self touches for all contained single polygons + std::unique_ptr<temporaryPolygonData[]> pTempData(new temporaryPolygonData[nCount]); + sal_uInt32 a, b; + + for(a = 0; a < nCount; a++) + { + // use polygons with solved self intersections + pTempData[a].setPolygon(addPointsAtCutsAndTouches(rCandidate.getB2DPolygon(a), pPointLimit)); + } + + if (pPointLimit && !*pPointLimit) + { + SAL_WARN("basegfx", "addPointsAtCutsAndTouches hit point limit"); + return rCandidate; + } + + // now cuts and touches between the polygons + for(a = 0; a < nCount; a++) + { + for(b = 0; b < nCount; b++) + { + if(a != b) + { + // look for touches, compare each edge polygon to all other points + if(pTempData[a].getRange().overlaps(pTempData[b].getRange())) + { + findTouches(pTempData[a].getPolygon(), pTempData[b].getPolygon(), pTempData[a].getTemporaryPointVector()); + } + } + + if(a < b) + { + // look for cuts, compare each edge polygon to following ones + if(pTempData[a].getRange().overlaps(pTempData[b].getRange())) + { + findCuts(pTempData[a].getPolygon(), pTempData[b].getPolygon(), pTempData[a].getTemporaryPointVector(), pTempData[b].getTemporaryPointVector()); + } + } + } + } + + // consolidate the result + for(a = 0; a < nCount; a++) + { + aRetval.append(mergeTemporaryPointsAndPolygon(pTempData[a].getPolygon(), pTempData[a].getTemporaryPointVector())); + } + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + B2DPolygon addPointsAtCuts(const B2DPolygon& rCandidate, const B2DPoint& rStart, const B2DPoint& rEnd) + { + const sal_uInt32 nCount(rCandidate.count()); + + if(nCount && !rStart.equal(rEnd)) + { + const B2DRange aPolygonRange(rCandidate.getB2DRange()); + const B2DRange aEdgeRange(rStart, rEnd); + + if(aPolygonRange.overlaps(aEdgeRange)) + { + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nCount : nCount - 1); + temporaryPointVector aTempPoints; + temporaryPointVector aUnusedTempPoints; + B2DCubicBezier aCubic; + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + rCandidate.getBezierSegment(a, aCubic); + B2DRange aCubicRange(aCubic.getStartPoint(), aCubic.getEndPoint()); + + if(aCubic.isBezier()) + { + aCubicRange.expand(aCubic.getControlPointA()); + aCubicRange.expand(aCubic.getControlPointB()); + + if(aCubicRange.overlaps(aEdgeRange)) + { + findEdgeCutsBezierAndEdge(aCubic, rStart, rEnd, a, 0, aTempPoints, aUnusedTempPoints); + } + } + else + { + if(aCubicRange.overlaps(aEdgeRange)) + { + findEdgeCutsTwoEdges(aCubic.getStartPoint(), aCubic.getEndPoint(), rStart, rEnd, a, 0, aTempPoints, aUnusedTempPoints); + } + } + } + + return mergeTemporaryPointsAndPolygon(rCandidate, aTempPoints); + } + } + + return rCandidate; + } + + B2DPolygon addPointsAtCuts(const B2DPolygon& rCandidate, const B2DPolyPolygon& rPolyMask) + { + const sal_uInt32 nCountA(rCandidate.count()); + const sal_uInt32 nCountM(rPolyMask.count()); + + if(nCountA && nCountM) + { + const B2DRange aRangeA(rCandidate.getB2DRange()); + const B2DRange aRangeM(rPolyMask.getB2DRange()); + + if(aRangeA.overlaps(aRangeM)) + { + const sal_uInt32 nEdgeCountA(rCandidate.isClosed() ? nCountA : nCountA - 1); + temporaryPointVector aTempPointsA; + temporaryPointVector aUnusedTempPointsB; + + for(sal_uInt32 m(0); m < nCountM; m++) + { + const B2DPolygon& aMask(rPolyMask.getB2DPolygon(m)); + const sal_uInt32 nCountB(aMask.count()); + + if(nCountB) + { + B2DCubicBezier aCubicA; + B2DCubicBezier aCubicB; + + for(sal_uInt32 a(0); a < nEdgeCountA; a++) + { + rCandidate.getBezierSegment(a, aCubicA); + const bool bCubicAIsCurve(aCubicA.isBezier()); + B2DRange aCubicRangeA(aCubicA.getStartPoint(), aCubicA.getEndPoint()); + + if(bCubicAIsCurve) + { + aCubicRangeA.expand(aCubicA.getControlPointA()); + aCubicRangeA.expand(aCubicA.getControlPointB()); + } + + for(sal_uInt32 b(0); b < nCountB; b++) + { + aMask.getBezierSegment(b, aCubicB); + const bool bCubicBIsCurve(aCubicB.isBezier()); + B2DRange aCubicRangeB(aCubicB.getStartPoint(), aCubicB.getEndPoint()); + + if(bCubicBIsCurve) + { + aCubicRangeB.expand(aCubicB.getControlPointA()); + aCubicRangeB.expand(aCubicB.getControlPointB()); + } + + if(aCubicRangeA.overlaps(aCubicRangeB)) + { + if(bCubicAIsCurve && bCubicBIsCurve) + { + findEdgeCutsTwoBeziers(aCubicA, aCubicB, a, b, aTempPointsA, aUnusedTempPointsB); + } + else if(bCubicAIsCurve) + { + findEdgeCutsBezierAndEdge(aCubicA, aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, aTempPointsA, aUnusedTempPointsB); + } + else if(bCubicBIsCurve) + { + findEdgeCutsBezierAndEdge(aCubicB, aCubicA.getStartPoint(), aCubicA.getEndPoint(), b, a, aUnusedTempPointsB, aTempPointsA); + } + else + { + findEdgeCutsTwoEdges(aCubicA.getStartPoint(), aCubicA.getEndPoint(), aCubicB.getStartPoint(), aCubicB.getEndPoint(), a, b, aTempPointsA, aUnusedTempPointsB); + } + } + } + } + } + } + + return mergeTemporaryPointsAndPolygon(rCandidate, aTempPointsA); + } + } + + return rCandidate; + } + +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dpolygontools.cxx b/basegfx/source/polygon/b2dpolygontools.cxx new file mode 100644 index 000000000..c6eb3cf5b --- /dev/null +++ b/basegfx/source/polygon/b2dpolygontools.cxx @@ -0,0 +1,3578 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ +#include <numeric> +#include <algorithm> + +#include <basegfx/numeric/ftools.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <osl/diagnose.h> +#include <rtl/math.hxx> +#include <sal/log.hxx> +#include <basegfx/polygon/b2dpolygon.hxx> +#include <basegfx/polygon/b2dpolypolygon.hxx> +#include <basegfx/range/b2drange.hxx> +#include <basegfx/curve/b2dcubicbezier.hxx> +#include <basegfx/point/b3dpoint.hxx> +#include <basegfx/matrix/b3dhommatrix.hxx> +#include <basegfx/matrix/b2dhommatrix.hxx> +#include <basegfx/curve/b2dbeziertools.hxx> +#include <basegfx/matrix/b2dhommatrixtools.hxx> + +// #i37443# +#define ANGLE_BOUND_START_VALUE (2.25) +#define ANGLE_BOUND_MINIMUM_VALUE (0.1) +#define STEPSPERQUARTER (3) + +namespace basegfx::utils +{ + void openWithGeometryChange(B2DPolygon& rCandidate) + { + if(!rCandidate.isClosed()) + return; + + if(rCandidate.count()) + { + rCandidate.append(rCandidate.getB2DPoint(0)); + + if(rCandidate.areControlPointsUsed() && rCandidate.isPrevControlPointUsed(0)) + { + rCandidate.setPrevControlPoint(rCandidate.count() - 1, rCandidate.getPrevControlPoint(0)); + rCandidate.resetPrevControlPoint(0); + } + } + + rCandidate.setClosed(false); + } + + void closeWithGeometryChange(B2DPolygon& rCandidate) + { + if(rCandidate.isClosed()) + return; + + while(rCandidate.count() > 1 && rCandidate.getB2DPoint(0) == rCandidate.getB2DPoint(rCandidate.count() - 1)) + { + if(rCandidate.areControlPointsUsed() && rCandidate.isPrevControlPointUsed(rCandidate.count() - 1)) + { + rCandidate.setPrevControlPoint(0, rCandidate.getPrevControlPoint(rCandidate.count() - 1)); + } + + rCandidate.remove(rCandidate.count() - 1); + } + + rCandidate.setClosed(true); + } + + void checkClosed(B2DPolygon& rCandidate) + { + // #i80172# Removed unnecessary assertion + // OSL_ENSURE(!rCandidate.isClosed(), "checkClosed: already closed (!)"); + + if(rCandidate.count() > 1 && rCandidate.getB2DPoint(0) == rCandidate.getB2DPoint(rCandidate.count() - 1)) + { + closeWithGeometryChange(rCandidate); + } + } + + // Get successor and predecessor indices. Returning the same index means there + // is none. Same for successor. + sal_uInt32 getIndexOfPredecessor(sal_uInt32 nIndex, const B2DPolygon& rCandidate) + { + OSL_ENSURE(nIndex < rCandidate.count(), "getIndexOfPredecessor: Access to polygon out of range (!)"); + + if(nIndex) + { + return nIndex - 1; + } + else if(rCandidate.count()) + { + return rCandidate.count() - 1; + } + else + { + return nIndex; + } + } + + sal_uInt32 getIndexOfSuccessor(sal_uInt32 nIndex, const B2DPolygon& rCandidate) + { + OSL_ENSURE(nIndex < rCandidate.count(), "getIndexOfPredecessor: Access to polygon out of range (!)"); + + if(nIndex + 1 < rCandidate.count()) + { + return nIndex + 1; + } + else if(nIndex + 1 == rCandidate.count()) + { + return 0; + } + else + { + return nIndex; + } + } + + B2VectorOrientation getOrientation(const B2DPolygon& rCandidate) + { + B2VectorOrientation eRetval(B2VectorOrientation::Neutral); + + if(rCandidate.count() > 2 || rCandidate.areControlPointsUsed()) + { + const double fSignedArea(getSignedArea(rCandidate)); + + if(fTools::equalZero(fSignedArea)) + { + // B2VectorOrientation::Neutral, already set + } + if(fSignedArea > 0.0) + { + eRetval = B2VectorOrientation::Positive; + } + else if(fSignedArea < 0.0) + { + eRetval = B2VectorOrientation::Negative; + } + } + + return eRetval; + } + + B2VectorContinuity getContinuityInPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex) + { + return rCandidate.getContinuityInPoint(nIndex); + } + + B2DPolygon adaptiveSubdivideByDistance(const B2DPolygon& rCandidate, double fDistanceBound) + { + if(rCandidate.areControlPointsUsed()) + { + const sal_uInt32 nPointCount(rCandidate.count()); + B2DPolygon aRetval; + + if(nPointCount) + { + // prepare edge-oriented loop + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DCubicBezier aBezier; + aBezier.setStartPoint(rCandidate.getB2DPoint(0)); + + // perf: try to avoid too many reallocations by guessing the result's pointcount + aRetval.reserve(nPointCount*4); + + // add start point (always) + aRetval.append(aBezier.getStartPoint()); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + // get next and control points + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aBezier.setEndPoint(rCandidate.getB2DPoint(nNextIndex)); + aBezier.setControlPointA(rCandidate.getNextControlPoint(a)); + aBezier.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex)); + aBezier.testAndSolveTrivialBezier(); + + if(aBezier.isBezier()) + { + // add curved edge and generate DistanceBound + double fBound(0.0); + + if(fDistanceBound == 0.0) + { + // If not set, use B2DCubicBezier functionality to guess a rough value + const double fRoughLength((aBezier.getEdgeLength() + aBezier.getControlPolygonLength()) / 2.0); + + // take 1/100th of the rough curve length + fBound = fRoughLength * 0.01; + } + else + { + // use given bound value + fBound = fDistanceBound; + } + + // make sure bound value is not too small. The base units are 1/100th mm, thus + // just make sure it's not smaller then 1/100th of that + if(fBound < 0.01) + { + fBound = 0.01; + } + + // call adaptive subdivide which adds edges to aRetval accordingly + aBezier.adaptiveSubdivideByDistance(aRetval, fBound); + } + else + { + // add non-curved edge + aRetval.append(aBezier.getEndPoint()); + } + + // prepare next step + aBezier.setStartPoint(aBezier.getEndPoint()); + } + + if(rCandidate.isClosed()) + { + // set closed flag and correct last point (which is added double now). + closeWithGeometryChange(aRetval); + } + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + B2DPolygon adaptiveSubdivideByAngle(const B2DPolygon& rCandidate, double fAngleBound) + { + if(rCandidate.areControlPointsUsed()) + { + const sal_uInt32 nPointCount(rCandidate.count()); + B2DPolygon aRetval; + + if(nPointCount) + { + // prepare edge-oriented loop + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DCubicBezier aBezier; + aBezier.setStartPoint(rCandidate.getB2DPoint(0)); + + // perf: try to avoid too many reallocations by guessing the result's pointcount + aRetval.reserve(nPointCount*4); + + // add start point (always) + aRetval.append(aBezier.getStartPoint()); + + // #i37443# prepare convenient AngleBound if none was given + if(fAngleBound == 0.0) + { + fAngleBound = ANGLE_BOUND_START_VALUE; + } + else if(fTools::less(fAngleBound, ANGLE_BOUND_MINIMUM_VALUE)) + { + fAngleBound = 0.1; + } + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + // get next and control points + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aBezier.setEndPoint(rCandidate.getB2DPoint(nNextIndex)); + aBezier.setControlPointA(rCandidate.getNextControlPoint(a)); + aBezier.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex)); + aBezier.testAndSolveTrivialBezier(); + + if(aBezier.isBezier()) + { + // call adaptive subdivide + aBezier.adaptiveSubdivideByAngle(aRetval, fAngleBound); + } + else + { + // add non-curved edge + aRetval.append(aBezier.getEndPoint()); + } + + // prepare next step + aBezier.setStartPoint(aBezier.getEndPoint()); + } + + if(rCandidate.isClosed()) + { + // set closed flag and correct last point (which is added double now). + closeWithGeometryChange(aRetval); + } + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + bool isInside(const B2DPolygon& rCandidate, const B2DPoint& rPoint, bool bWithBorder) + { + const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate); + + if(bWithBorder && isPointOnPolygon(aCandidate, rPoint)) + { + return true; + } + else + { + bool bRetval(false); + const sal_uInt32 nPointCount(aCandidate.count()); + + if(nPointCount) + { + B2DPoint aCurrentPoint(aCandidate.getB2DPoint(nPointCount - 1)); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aPreviousPoint(aCurrentPoint); + aCurrentPoint = aCandidate.getB2DPoint(a); + + // cross-over in Y? tdf#130150 use full precision, no need for epsilon + const bool bCompYA(aPreviousPoint.getY() > rPoint.getY()); + const bool bCompYB(aCurrentPoint.getY() > rPoint.getY()); + + if(bCompYA != bCompYB) + { + // cross-over in X? tdf#130150 use full precision, no need for epsilon + const bool bCompXA(aPreviousPoint.getX() > rPoint.getX()); + const bool bCompXB(aCurrentPoint.getX() > rPoint.getX()); + + if(bCompXA == bCompXB) + { + if(bCompXA) + { + bRetval = !bRetval; + } + } + else + { + const double fCompare( + aCurrentPoint.getX() - (aCurrentPoint.getY() - rPoint.getY()) * + (aPreviousPoint.getX() - aCurrentPoint.getX()) / + (aPreviousPoint.getY() - aCurrentPoint.getY())); + + // tdf#130150 use full precision, no need for epsilon + if(fCompare > rPoint.getX()) + { + bRetval = !bRetval; + } + } + } + } + } + + return bRetval; + } + } + + bool isInside(const B2DPolygon& rCandidate, const B2DPolygon& rPolygon, bool bWithBorder) + { + const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate); + const B2DPolygon aPolygon(rPolygon.areControlPointsUsed() ? rPolygon.getDefaultAdaptiveSubdivision() : rPolygon); + const sal_uInt32 nPointCount(aPolygon.count()); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aTestPoint(aPolygon.getB2DPoint(a)); + + if(!isInside(aCandidate, aTestPoint, bWithBorder)) + { + return false; + } + } + + return true; + } + + B2DRange getRange(const B2DPolygon& rCandidate) + { + // changed to use internally buffered version at B2DPolygon + return rCandidate.getB2DRange(); + } + + double getSignedArea(const B2DPolygon& rCandidate) + { + const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate); + double fRetval(0.0); + const sal_uInt32 nPointCount(aCandidate.count()); + + if(nPointCount > 2) + { + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aPreviousPoint(aCandidate.getB2DPoint((!a) ? nPointCount - 1 : a - 1)); + const B2DPoint aCurrentPoint(aCandidate.getB2DPoint(a)); + + fRetval += aPreviousPoint.getX() * aCurrentPoint.getY(); + fRetval -= aPreviousPoint.getY() * aCurrentPoint.getX(); + } + + // correct to zero if small enough. Also test the quadratic + // of the result since the precision is near quadratic due to + // the algorithm + if(fTools::equalZero(fRetval) || fTools::equalZero(fRetval * fRetval)) + { + fRetval = 0.0; + } + } + + return fRetval; + } + + double getArea(const B2DPolygon& rCandidate) + { + double fRetval(0.0); + + if(rCandidate.count() > 2 || rCandidate.areControlPointsUsed()) + { + fRetval = getSignedArea(rCandidate); + const double fZero(0.0); + + if(fTools::less(fRetval, fZero)) + { + fRetval = -fRetval; + } + } + + return fRetval; + } + + double getEdgeLength(const B2DPolygon& rCandidate, sal_uInt32 nIndex) + { + const sal_uInt32 nPointCount(rCandidate.count()); + OSL_ENSURE(nIndex < nPointCount, "getEdgeLength: Access to polygon out of range (!)"); + double fRetval(0.0); + + if(nPointCount) + { + const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount); + + if(rCandidate.areControlPointsUsed()) + { + B2DCubicBezier aEdge; + + aEdge.setStartPoint(rCandidate.getB2DPoint(nIndex)); + aEdge.setControlPointA(rCandidate.getNextControlPoint(nIndex)); + aEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex)); + aEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex)); + + fRetval = aEdge.getLength(); + } + else + { + const B2DPoint aCurrent(rCandidate.getB2DPoint(nIndex)); + const B2DPoint aNext(rCandidate.getB2DPoint(nNextIndex)); + + fRetval = B2DVector(aNext - aCurrent).getLength(); + } + } + + return fRetval; + } + + double getLength(const B2DPolygon& rCandidate) + { + double fRetval(0.0); + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount) + { + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + + if(rCandidate.areControlPointsUsed()) + { + B2DCubicBezier aEdge; + aEdge.setStartPoint(rCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aEdge.setControlPointA(rCandidate.getNextControlPoint(a)); + aEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex)); + aEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex)); + + fRetval += aEdge.getLength(); + aEdge.setStartPoint(aEdge.getEndPoint()); + } + } + else + { + B2DPoint aCurrent(rCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + const B2DPoint aNext(rCandidate.getB2DPoint(nNextIndex)); + + fRetval += B2DVector(aNext - aCurrent).getLength(); + aCurrent = aNext; + } + } + } + + return fRetval; + } + + B2DPoint getPositionAbsolute(const B2DPolygon& rCandidate, double fDistance, double fLength) + { + B2DPoint aRetval; + const sal_uInt32 nPointCount(rCandidate.count()); + + if( nPointCount == 1 ) + { + // only one point (i.e. no edge) - simply take that point + aRetval = rCandidate.getB2DPoint(0); + } + else if(nPointCount > 1) + { + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + sal_uInt32 nIndex(0); + bool bIndexDone(false); + + // get length if not given + if(fTools::equalZero(fLength)) + { + fLength = getLength(rCandidate); + } + + if(fTools::less(fDistance, 0.0)) + { + // handle fDistance < 0.0 + if(rCandidate.isClosed()) + { + // if fDistance < 0.0 increment with multiple of fLength + sal_uInt32 nCount(sal_uInt32(-fDistance / fLength)); + fDistance += double(nCount + 1) * fLength; + } + else + { + // crop to polygon start + fDistance = 0.0; + bIndexDone = true; + } + } + else if(fTools::moreOrEqual(fDistance, fLength)) + { + // handle fDistance >= fLength + if(rCandidate.isClosed()) + { + // if fDistance >= fLength decrement with multiple of fLength + sal_uInt32 nCount(sal_uInt32(fDistance / fLength)); + fDistance -= static_cast<double>(nCount) * fLength; + } + else + { + // crop to polygon end + fDistance = 0.0; + nIndex = nEdgeCount; + bIndexDone = true; + } + } + + // look for correct index. fDistance is now [0.0 .. fLength[ + double fEdgeLength(getEdgeLength(rCandidate, nIndex)); + + while(!bIndexDone) + { + // edge found must be on the half-open range + // [0,fEdgeLength). + // Note that in theory, we cannot move beyond + // the last polygon point, since fDistance>=fLength + // is checked above. Unfortunately, with floating- + // point calculations, this case might happen. + // Handled by nIndex check below + if (nIndex+1 < nEdgeCount && fTools::moreOrEqual(fDistance, fEdgeLength)) + { + // go to next edge + fDistance -= fEdgeLength; + fEdgeLength = getEdgeLength(rCandidate, ++nIndex); + } + else + { + // it's on this edge, stop + bIndexDone = true; + } + } + + // get the point using nIndex + aRetval = rCandidate.getB2DPoint(nIndex); + + // if fDistance != 0.0, move that length on the edge. The edge + // length is in fEdgeLength. + if(!fTools::equalZero(fDistance)) + { + if(fTools::moreOrEqual(fDistance, fEdgeLength)) + { + // end point of chosen edge + const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount); + aRetval = rCandidate.getB2DPoint(nNextIndex); + } + else if(fTools::equalZero(fDistance)) + { + // start point of chosen edge + } + else + { + // inside edge + const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount); + const B2DPoint aNextPoint(rCandidate.getB2DPoint(nNextIndex)); + bool bDone(false); + + // add calculated average value to the return value + if(rCandidate.areControlPointsUsed()) + { + // get as bezier segment + const B2DCubicBezier aBezierSegment( + aRetval, rCandidate.getNextControlPoint(nIndex), + rCandidate.getPrevControlPoint(nNextIndex), aNextPoint); + + if(aBezierSegment.isBezier()) + { + // use B2DCubicBezierHelper to bridge the non-linear gap between + // length and bezier distances + const B2DCubicBezierHelper aBezierSegmentHelper(aBezierSegment); + const double fBezierDistance(aBezierSegmentHelper.distanceToRelative(fDistance)); + + aRetval = aBezierSegment.interpolatePoint(fBezierDistance); + bDone = true; + } + } + + if(!bDone) + { + const double fRelativeInEdge(fDistance / fEdgeLength); + aRetval = interpolate(aRetval, aNextPoint, fRelativeInEdge); + } + } + } + } + + return aRetval; + } + + B2DPoint getPositionRelative(const B2DPolygon& rCandidate, double fDistance, double fLength) + { + // get length if not given + if(fTools::equalZero(fLength)) + { + fLength = getLength(rCandidate); + } + + // multiply fDistance with real length to get absolute position and + // use getPositionAbsolute + return getPositionAbsolute(rCandidate, fDistance * fLength, fLength); + } + + B2DPolygon getSnippetAbsolute(const B2DPolygon& rCandidate, double fFrom, double fTo, double fLength) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount) + { + // get length if not given + if(fTools::equalZero(fLength)) + { + fLength = getLength(rCandidate); + } + + // test and correct fFrom + if(fTools::less(fFrom, 0.0)) + { + fFrom = 0.0; + } + + // test and correct fTo + if(fTools::more(fTo, fLength)) + { + fTo = fLength; + } + + // test and correct relationship of fFrom, fTo + if(fTools::more(fFrom, fTo)) + { + fFrom = fTo = (fFrom + fTo) / 2.0; + } + + if(fTools::equalZero(fFrom) && fTools::equal(fTo, fLength)) + { + // no change, result is the whole polygon + return rCandidate; + } + else + { + B2DPolygon aRetval; + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + double fPositionOfStart(0.0); + bool bStartDone(false); + bool bEndDone(false); + + for(sal_uInt32 a(0); !(bStartDone && bEndDone) && a < nEdgeCount; a++) + { + const double fEdgeLength(getEdgeLength(rCandidate, a)); + + if(!bStartDone) + { + if(fTools::equalZero(fFrom)) + { + aRetval.append(rCandidate.getB2DPoint(a)); + + if(rCandidate.areControlPointsUsed()) + { + aRetval.setNextControlPoint(aRetval.count() - 1, rCandidate.getNextControlPoint(a)); + } + + bStartDone = true; + } + else if(fTools::moreOrEqual(fFrom, fPositionOfStart) && fTools::less(fFrom, fPositionOfStart + fEdgeLength)) + { + // calculate and add start point + if(fTools::equalZero(fEdgeLength)) + { + aRetval.append(rCandidate.getB2DPoint(a)); + + if(rCandidate.areControlPointsUsed()) + { + aRetval.setNextControlPoint(aRetval.count() - 1, rCandidate.getNextControlPoint(a)); + } + } + else + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + const B2DPoint aStart(rCandidate.getB2DPoint(a)); + const B2DPoint aEnd(rCandidate.getB2DPoint(nNextIndex)); + bool bDone(false); + + if(rCandidate.areControlPointsUsed()) + { + const B2DCubicBezier aBezierSegment( + aStart, rCandidate.getNextControlPoint(a), + rCandidate.getPrevControlPoint(nNextIndex), aEnd); + + if(aBezierSegment.isBezier()) + { + // use B2DCubicBezierHelper to bridge the non-linear gap between + // length and bezier distances + const B2DCubicBezierHelper aBezierSegmentHelper(aBezierSegment); + const double fBezierDistance(aBezierSegmentHelper.distanceToRelative(fFrom - fPositionOfStart)); + B2DCubicBezier aRight; + + aBezierSegment.split(fBezierDistance, nullptr, &aRight); + aRetval.append(aRight.getStartPoint()); + aRetval.setNextControlPoint(aRetval.count() - 1, aRight.getControlPointA()); + bDone = true; + } + } + + if(!bDone) + { + const double fRelValue((fFrom - fPositionOfStart) / fEdgeLength); + aRetval.append(interpolate(aStart, aEnd, fRelValue)); + } + } + + bStartDone = true; + + // if same point, end is done, too. + if(rtl::math::approxEqual(fFrom, fTo)) + { + bEndDone = true; + } + } + } + + if(!bEndDone && fTools::moreOrEqual(fTo, fPositionOfStart) && fTools::less(fTo, fPositionOfStart + fEdgeLength)) + { + // calculate and add end point + if(fTools::equalZero(fEdgeLength)) + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aRetval.append(rCandidate.getB2DPoint(nNextIndex)); + + if(rCandidate.areControlPointsUsed()) + { + aRetval.setPrevControlPoint(aRetval.count() - 1, rCandidate.getPrevControlPoint(nNextIndex)); + } + } + else + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + const B2DPoint aStart(rCandidate.getB2DPoint(a)); + const B2DPoint aEnd(rCandidate.getB2DPoint(nNextIndex)); + bool bDone(false); + + if(rCandidate.areControlPointsUsed()) + { + const B2DCubicBezier aBezierSegment( + aStart, rCandidate.getNextControlPoint(a), + rCandidate.getPrevControlPoint(nNextIndex), aEnd); + + if(aBezierSegment.isBezier()) + { + // use B2DCubicBezierHelper to bridge the non-linear gap between + // length and bezier distances + const B2DCubicBezierHelper aBezierSegmentHelper(aBezierSegment); + const double fBezierDistance(aBezierSegmentHelper.distanceToRelative(fTo - fPositionOfStart)); + B2DCubicBezier aLeft; + + aBezierSegment.split(fBezierDistance, &aLeft, nullptr); + aRetval.append(aLeft.getEndPoint()); + aRetval.setPrevControlPoint(aRetval.count() - 1, aLeft.getControlPointB()); + bDone = true; + } + } + + if(!bDone) + { + const double fRelValue((fTo - fPositionOfStart) / fEdgeLength); + aRetval.append(interpolate(aStart, aEnd, fRelValue)); + } + } + + bEndDone = true; + } + + if(!bEndDone) + { + if(bStartDone) + { + // add segments end point + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aRetval.append(rCandidate.getB2DPoint(nNextIndex)); + + if(rCandidate.areControlPointsUsed()) + { + aRetval.setPrevControlPoint(aRetval.count() - 1, rCandidate.getPrevControlPoint(nNextIndex)); + aRetval.setNextControlPoint(aRetval.count() - 1, rCandidate.getNextControlPoint(nNextIndex)); + } + } + + // increment fPositionOfStart + fPositionOfStart += fEdgeLength; + } + } + return aRetval; + } + } + else + { + return rCandidate; + } + } + + CutFlagValue findCut( + const B2DPoint& rEdge1Start, const B2DVector& rEdge1Delta, + const B2DPoint& rEdge2Start, const B2DVector& rEdge2Delta, + CutFlagValue aCutFlags, + double* pCut1, double* pCut2) + { + CutFlagValue aRetval(CutFlagValue::NONE); + double fCut1(0.0); + double fCut2(0.0); + bool bFinished(!static_cast<bool>(aCutFlags & CutFlagValue::ALL)); + + // test for same points? + if(!bFinished + && (aCutFlags & (CutFlagValue::START1|CutFlagValue::END1)) + && (aCutFlags & (CutFlagValue::START2|CutFlagValue::END2))) + { + // same startpoint? + if((aCutFlags & (CutFlagValue::START1|CutFlagValue::START2)) == (CutFlagValue::START1|CutFlagValue::START2)) + { + if(rEdge1Start.equal(rEdge2Start)) + { + bFinished = true; + aRetval = (CutFlagValue::START1|CutFlagValue::START2); + } + } + + // same endpoint? + if(!bFinished && (aCutFlags & (CutFlagValue::END1|CutFlagValue::END2)) == (CutFlagValue::END1|CutFlagValue::END2)) + { + const B2DPoint aEnd1(rEdge1Start + rEdge1Delta); + const B2DPoint aEnd2(rEdge2Start + rEdge2Delta); + + if(aEnd1.equal(aEnd2)) + { + bFinished = true; + aRetval = (CutFlagValue::END1|CutFlagValue::END2); + fCut1 = fCut2 = 1.0; + } + } + + // startpoint1 == endpoint2? + if(!bFinished && (aCutFlags & (CutFlagValue::START1|CutFlagValue::END2)) == (CutFlagValue::START1|CutFlagValue::END2)) + { + const B2DPoint aEnd2(rEdge2Start + rEdge2Delta); + + if(rEdge1Start.equal(aEnd2)) + { + bFinished = true; + aRetval = (CutFlagValue::START1|CutFlagValue::END2); + fCut1 = 0.0; + fCut2 = 1.0; + } + } + + // startpoint2 == endpoint1? + if(!bFinished&& (aCutFlags & (CutFlagValue::START2|CutFlagValue::END1)) == (CutFlagValue::START2|CutFlagValue::END1)) + { + const B2DPoint aEnd1(rEdge1Start + rEdge1Delta); + + if(rEdge2Start.equal(aEnd1)) + { + bFinished = true; + aRetval = (CutFlagValue::START2|CutFlagValue::END1); + fCut1 = 1.0; + fCut2 = 0.0; + } + } + } + + if(!bFinished && (aCutFlags & CutFlagValue::LINE)) + { + if(aCutFlags & CutFlagValue::START1) + { + // start1 on line 2 ? + if(isPointOnEdge(rEdge1Start, rEdge2Start, rEdge2Delta, &fCut2)) + { + bFinished = true; + aRetval = (CutFlagValue::LINE|CutFlagValue::START1); + } + } + + if(!bFinished && (aCutFlags & CutFlagValue::START2)) + { + // start2 on line 1 ? + if(isPointOnEdge(rEdge2Start, rEdge1Start, rEdge1Delta, &fCut1)) + { + bFinished = true; + aRetval = (CutFlagValue::LINE|CutFlagValue::START2); + } + } + + if(!bFinished && (aCutFlags & CutFlagValue::END1)) + { + // end1 on line 2 ? + const B2DPoint aEnd1(rEdge1Start + rEdge1Delta); + + if(isPointOnEdge(aEnd1, rEdge2Start, rEdge2Delta, &fCut2)) + { + bFinished = true; + aRetval = (CutFlagValue::LINE|CutFlagValue::END1); + } + } + + if(!bFinished && (aCutFlags & CutFlagValue::END2)) + { + // end2 on line 1 ? + const B2DPoint aEnd2(rEdge2Start + rEdge2Delta); + + if(isPointOnEdge(aEnd2, rEdge1Start, rEdge1Delta, &fCut1)) + { + bFinished = true; + aRetval = (CutFlagValue::LINE|CutFlagValue::END2); + } + } + + if(!bFinished) + { + // cut in line1, line2 ? + fCut1 = (rEdge1Delta.getX() * rEdge2Delta.getY()) - (rEdge1Delta.getY() * rEdge2Delta.getX()); + + if(!fTools::equalZero(fCut1)) + { + fCut1 = (rEdge2Delta.getY() * (rEdge2Start.getX() - rEdge1Start.getX()) + + rEdge2Delta.getX() * (rEdge1Start.getY() - rEdge2Start.getY())) / fCut1; + + const double fZero(0.0); + const double fOne(1.0); + + // inside parameter range edge1 AND fCut2 is calculable + if(fTools::more(fCut1, fZero) && fTools::less(fCut1, fOne) + && (!fTools::equalZero(rEdge2Delta.getX()) || !fTools::equalZero(rEdge2Delta.getY()))) + { + // take the more precise calculation of the two possible + if(fabs(rEdge2Delta.getX()) > fabs(rEdge2Delta.getY())) + { + fCut2 = (rEdge1Start.getX() + fCut1 + * rEdge1Delta.getX() - rEdge2Start.getX()) / rEdge2Delta.getX(); + } + else + { + fCut2 = (rEdge1Start.getY() + fCut1 + * rEdge1Delta.getY() - rEdge2Start.getY()) / rEdge2Delta.getY(); + } + + // inside parameter range edge2, too + if(fTools::more(fCut2, fZero) && fTools::less(fCut2, fOne)) + { + aRetval = CutFlagValue::LINE; + } + } + } + } + } + + // copy values if wanted + if(pCut1) + { + *pCut1 = fCut1; + } + + if(pCut2) + { + *pCut2 = fCut2; + } + + return aRetval; + } + + bool isPointOnEdge( + const B2DPoint& rPoint, + const B2DPoint& rEdgeStart, + const B2DVector& rEdgeDelta, + double* pCut) + { + bool bDeltaXIsZero(fTools::equalZero(rEdgeDelta.getX())); + bool bDeltaYIsZero(fTools::equalZero(rEdgeDelta.getY())); + const double fZero(0.0); + const double fOne(1.0); + + if(bDeltaXIsZero && bDeltaYIsZero) + { + // no line, just a point + return false; + } + else if(bDeltaXIsZero) + { + // vertical line + if(fTools::equal(rPoint.getX(), rEdgeStart.getX())) + { + double fValue = (rPoint.getY() - rEdgeStart.getY()) / rEdgeDelta.getY(); + + if(fTools::more(fValue, fZero) && fTools::less(fValue, fOne)) + { + if(pCut) + { + *pCut = fValue; + } + + return true; + } + } + } + else if(bDeltaYIsZero) + { + // horizontal line + if(fTools::equal(rPoint.getY(), rEdgeStart.getY())) + { + double fValue = (rPoint.getX() - rEdgeStart.getX()) / rEdgeDelta.getX(); + + if(fTools::more(fValue, fZero) && fTools::less(fValue, fOne)) + { + if(pCut) + { + *pCut = fValue; + } + + return true; + } + } + } + else + { + // any angle line + double fTOne = (rPoint.getX() - rEdgeStart.getX()) / rEdgeDelta.getX(); + double fTTwo = (rPoint.getY() - rEdgeStart.getY()) / rEdgeDelta.getY(); + + if(fTools::equal(fTOne, fTTwo)) + { + // same parameter representation, point is on line. Take + // middle value for better results + double fValue = (fTOne + fTTwo) / 2.0; + + if(fTools::more(fValue, fZero) && fTools::less(fValue, fOne)) + { + // point is inside line bounds, too + if(pCut) + { + *pCut = fValue; + } + + return true; + } + } + } + + return false; + } + + void applyLineDashing( + const B2DPolygon& rCandidate, + const std::vector<double>& rDotDashArray, + B2DPolyPolygon* pLineTarget, + B2DPolyPolygon* pGapTarget, + double fDotDashLength) + { + // clear targets in any case + if(pLineTarget) + { + pLineTarget->clear(); + } + + if(pGapTarget) + { + pGapTarget->clear(); + } + + // provide callbacks as lambdas + auto aLineCallback( + nullptr == pLineTarget + ? std::function<void(const basegfx::B2DPolygon&)>() + : [&pLineTarget](const basegfx::B2DPolygon& rSnippet){ pLineTarget->append(rSnippet); }); + auto aGapCallback( + nullptr == pGapTarget + ? std::function<void(const basegfx::B2DPolygon&)>() + : [&pGapTarget](const basegfx::B2DPolygon& rSnippet){ pGapTarget->append(rSnippet); }); + + // call version that uses callbacks + applyLineDashing( + rCandidate, + rDotDashArray, + aLineCallback, + aGapCallback, + fDotDashLength); + } + + static void implHandleSnippet( + const B2DPolygon& rSnippet, + const std::function<void(const basegfx::B2DPolygon& rSnippet)>& rTargetCallback, + B2DPolygon& rFirst, + B2DPolygon& rLast) + { + if(rSnippet.isClosed()) + { + if(!rFirst.count()) + { + rFirst = rSnippet; + } + else + { + if(rLast.count()) + { + rTargetCallback(rLast); + } + + rLast = rSnippet; + } + } + else + { + rTargetCallback(rSnippet); + } + } + + static void implHandleFirstLast( + const std::function<void(const basegfx::B2DPolygon& rSnippet)>& rTargetCallback, + B2DPolygon& rFirst, + B2DPolygon& rLast) + { + if(rFirst.count() && rLast.count() + && rFirst.getB2DPoint(0).equal(rLast.getB2DPoint(rLast.count() - 1))) + { + // start of first and end of last are the same -> merge them + rLast.append(rFirst); + rLast.removeDoublePoints(); + rFirst.clear(); + } + + if(rLast.count()) + { + rTargetCallback(rLast); + } + + if(rFirst.count()) + { + rTargetCallback(rFirst); + } + } + + void applyLineDashing( + const B2DPolygon& rCandidate, + const std::vector<double>& rDotDashArray, + std::function<void(const basegfx::B2DPolygon& rSnippet)> aLineTargetCallback, + std::function<void(const basegfx::B2DPolygon& rSnippet)> aGapTargetCallback, + double fDotDashLength) + { + const sal_uInt32 nPointCount(rCandidate.count()); + const sal_uInt32 nDotDashCount(rDotDashArray.size()); + + if(fTools::lessOrEqual(fDotDashLength, 0.0)) + { + fDotDashLength = std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0); + } + + if(fTools::lessOrEqual(fDotDashLength, 0.0) || (!aLineTargetCallback && !aGapTargetCallback) || !nPointCount) + { + // parameters make no sense, just add source to targets + if(aLineTargetCallback) + { + aLineTargetCallback(rCandidate); + } + + if(aGapTargetCallback) + { + aGapTargetCallback(rCandidate); + } + + return; + } + + // precalculate maximal acceptable length of candidate polygon assuming + // we want to create a maximum of fNumberOfAllowedSnippets. For + // fNumberOfAllowedSnippets use ca. 65536, double due to line & gap. + static const double fNumberOfAllowedSnippets(65535.0 * 2.0); + const double fAllowedLength((fNumberOfAllowedSnippets * fDotDashLength) / double(rDotDashArray.size())); + const double fCandidateLength(basegfx::utils::getLength(rCandidate)); + std::vector<double> aDotDashArray(rDotDashArray); + + if(fCandidateLength > fAllowedLength) + { + // we would produce more than fNumberOfAllowedSnippets, so + // adapt aDotDashArray to exactly produce assumed number. Also + // assert this to let the caller know about it. + // If this asserts: Please think about checking your DotDashArray + // before calling this function or evtl. use the callback version + // to *not* produce that much of data. Even then, you may still + // think about producing too much runtime (!) + assert(true && "applyLineDashing: potentially too expensive to do the requested dismantle - please consider stretched LineDash pattern (!)"); + + // calculate correcting factor, apply to aDotDashArray and fDotDashLength + // to enlarge these as needed + const double fFactor(fCandidateLength / fAllowedLength); + std::for_each(aDotDashArray.begin(), aDotDashArray.end(), [&fFactor](double &f){ f *= fFactor; }); + fDotDashLength *= fFactor; + } + + // prepare current edge's start + B2DCubicBezier aCurrentEdge; + const bool bIsClosed(rCandidate.isClosed()); + const sal_uInt32 nEdgeCount(bIsClosed ? nPointCount : nPointCount - 1); + aCurrentEdge.setStartPoint(rCandidate.getB2DPoint(0)); + + // prepare DotDashArray iteration and the line/gap switching bool + sal_uInt32 nDotDashIndex(0); + bool bIsLine(true); + double fDotDashMovingLength(aDotDashArray[0]); + B2DPolygon aSnippet; + + // remember 1st and last snippets to try to merge after execution + // is complete and hand to callback + B2DPolygon aFirstLine, aLastLine; + B2DPolygon aFirstGap, aLastGap; + + // iterate over all edges + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + // update current edge (fill in C1, C2 and end point) + double fLastDotDashMovingLength(0.0); + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aCurrentEdge.setControlPointA(rCandidate.getNextControlPoint(a)); + aCurrentEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex)); + aCurrentEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex)); + + // check if we have a trivial bezier segment -> possible fallback to edge + aCurrentEdge.testAndSolveTrivialBezier(); + + if(aCurrentEdge.isBezier()) + { + // bezier segment + const B2DCubicBezierHelper aCubicBezierHelper(aCurrentEdge); + const double fEdgeLength(aCubicBezierHelper.getLength()); + + if(!fTools::equalZero(fEdgeLength)) + { + while(fTools::less(fDotDashMovingLength, fEdgeLength)) + { + // new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength] + const bool bHandleLine(bIsLine && aLineTargetCallback); + const bool bHandleGap(!bIsLine && aGapTargetCallback); + + if(bHandleLine || bHandleGap) + { + const double fBezierSplitStart(aCubicBezierHelper.distanceToRelative(fLastDotDashMovingLength)); + const double fBezierSplitEnd(aCubicBezierHelper.distanceToRelative(fDotDashMovingLength)); + B2DCubicBezier aBezierSnippet(aCurrentEdge.snippet(fBezierSplitStart, fBezierSplitEnd)); + + if(!aSnippet.count()) + { + aSnippet.append(aBezierSnippet.getStartPoint()); + } + + aSnippet.appendBezierSegment(aBezierSnippet.getControlPointA(), aBezierSnippet.getControlPointB(), aBezierSnippet.getEndPoint()); + + if(bHandleLine) + { + implHandleSnippet(aSnippet, aLineTargetCallback, aFirstLine, aLastLine); + } + + if(bHandleGap) + { + implHandleSnippet(aSnippet, aGapTargetCallback, aFirstGap, aLastGap); + } + + aSnippet.clear(); + } + + // prepare next DotDashArray step and flip line/gap flag + fLastDotDashMovingLength = fDotDashMovingLength; + fDotDashMovingLength += aDotDashArray[(++nDotDashIndex) % nDotDashCount]; + bIsLine = !bIsLine; + } + + // append closing snippet [fLastDotDashMovingLength, fEdgeLength] + const bool bHandleLine(bIsLine && aLineTargetCallback); + const bool bHandleGap(!bIsLine && aGapTargetCallback); + + if(bHandleLine || bHandleGap) + { + B2DCubicBezier aRight; + const double fBezierSplit(aCubicBezierHelper.distanceToRelative(fLastDotDashMovingLength)); + + aCurrentEdge.split(fBezierSplit, nullptr, &aRight); + + if(!aSnippet.count()) + { + aSnippet.append(aRight.getStartPoint()); + } + + aSnippet.appendBezierSegment(aRight.getControlPointA(), aRight.getControlPointB(), aRight.getEndPoint()); + } + + // prepare move to next edge + fDotDashMovingLength -= fEdgeLength; + } + } + else + { + // simple edge + const double fEdgeLength(aCurrentEdge.getEdgeLength()); + + if(!fTools::equalZero(fEdgeLength)) + { + while(fTools::less(fDotDashMovingLength, fEdgeLength)) + { + // new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength] + const bool bHandleLine(bIsLine && aLineTargetCallback); + const bool bHandleGap(!bIsLine && aGapTargetCallback); + + if(bHandleLine || bHandleGap) + { + if(!aSnippet.count()) + { + aSnippet.append(interpolate(aCurrentEdge.getStartPoint(), aCurrentEdge.getEndPoint(), fLastDotDashMovingLength / fEdgeLength)); + } + + aSnippet.append(interpolate(aCurrentEdge.getStartPoint(), aCurrentEdge.getEndPoint(), fDotDashMovingLength / fEdgeLength)); + + if(bHandleLine) + { + implHandleSnippet(aSnippet, aLineTargetCallback, aFirstLine, aLastLine); + } + + if(bHandleGap) + { + implHandleSnippet(aSnippet, aGapTargetCallback, aFirstGap, aLastGap); + } + + aSnippet.clear(); + } + + // prepare next DotDashArray step and flip line/gap flag + fLastDotDashMovingLength = fDotDashMovingLength; + fDotDashMovingLength += aDotDashArray[(++nDotDashIndex) % nDotDashCount]; + bIsLine = !bIsLine; + } + + // append snippet [fLastDotDashMovingLength, fEdgeLength] + const bool bHandleLine(bIsLine && aLineTargetCallback); + const bool bHandleGap(!bIsLine && aGapTargetCallback); + + if(bHandleLine || bHandleGap) + { + if(!aSnippet.count()) + { + aSnippet.append(interpolate(aCurrentEdge.getStartPoint(), aCurrentEdge.getEndPoint(), fLastDotDashMovingLength / fEdgeLength)); + } + + aSnippet.append(aCurrentEdge.getEndPoint()); + } + + // prepare move to next edge + fDotDashMovingLength -= fEdgeLength; + } + } + + // prepare next edge step (end point gets new start point) + aCurrentEdge.setStartPoint(aCurrentEdge.getEndPoint()); + } + + // append last intermediate results (if exists) + if(aSnippet.count()) + { + const bool bHandleLine(bIsLine && aLineTargetCallback); + const bool bHandleGap(!bIsLine && aGapTargetCallback); + + if(bHandleLine) + { + implHandleSnippet(aSnippet, aLineTargetCallback, aFirstLine, aLastLine); + } + + if(bHandleGap) + { + implHandleSnippet(aSnippet, aGapTargetCallback, aFirstGap, aLastGap); + } + } + + if(bIsClosed && aLineTargetCallback) + { + implHandleFirstLast(aLineTargetCallback, aFirstLine, aLastLine); + } + + if(bIsClosed && aGapTargetCallback) + { + implHandleFirstLast(aGapTargetCallback, aFirstGap, aLastGap); + } + } + + // test if point is inside epsilon-range around an edge defined + // by the two given points. Can be used for HitTesting. The epsilon-range + // is defined to be the rectangle centered to the given edge, using height + // 2 x fDistance, and the circle around both points with radius fDistance. + bool isInEpsilonRange(const B2DPoint& rEdgeStart, const B2DPoint& rEdgeEnd, const B2DPoint& rTestPosition, double fDistance) + { + // build edge vector + const B2DVector aEdge(rEdgeEnd - rEdgeStart); + bool bDoDistanceTestStart(false); + bool bDoDistanceTestEnd(false); + + if(aEdge.equalZero()) + { + // no edge, just a point. Do one of the distance tests. + bDoDistanceTestStart = true; + } + else + { + // edge has a length. Create perpendicular vector. + const B2DVector aPerpend(getPerpendicular(aEdge)); + double fCut( + (aPerpend.getY() * (rTestPosition.getX() - rEdgeStart.getX()) + + aPerpend.getX() * (rEdgeStart.getY() - rTestPosition.getY())) / + (aEdge.getX() * aEdge.getX() + aEdge.getY() * aEdge.getY())); + const double fZero(0.0); + const double fOne(1.0); + + if(fTools::less(fCut, fZero)) + { + // left of rEdgeStart + bDoDistanceTestStart = true; + } + else if(fTools::more(fCut, fOne)) + { + // right of rEdgeEnd + bDoDistanceTestEnd = true; + } + else + { + // inside line [0.0 .. 1.0] + const B2DPoint aCutPoint(interpolate(rEdgeStart, rEdgeEnd, fCut)); + const B2DVector aDelta(rTestPosition - aCutPoint); + const double fDistanceSquare(aDelta.scalar(aDelta)); + + return fDistanceSquare <= fDistance * fDistance; + } + } + + if(bDoDistanceTestStart) + { + const B2DVector aDelta(rTestPosition - rEdgeStart); + const double fDistanceSquare(aDelta.scalar(aDelta)); + + if(fDistanceSquare <= fDistance * fDistance) + { + return true; + } + } + else if(bDoDistanceTestEnd) + { + const B2DVector aDelta(rTestPosition - rEdgeEnd); + const double fDistanceSquare(aDelta.scalar(aDelta)); + + if(fDistanceSquare <= fDistance * fDistance) + { + return true; + } + } + + return false; + } + + // test if point is inside epsilon-range around the given Polygon. Can be used + // for HitTesting. The epsilon-range is defined to be the tube around the polygon + // with distance fDistance and rounded edges (start and end point). + bool isInEpsilonRange(const B2DPolygon& rCandidate, const B2DPoint& rTestPosition, double fDistance) + { + // force to non-bezier polygon + const B2DPolygon& aCandidate(rCandidate.getDefaultAdaptiveSubdivision()); + const sal_uInt32 nPointCount(aCandidate.count()); + + if(!nPointCount) + return false; + + const sal_uInt32 nEdgeCount(aCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DPoint aCurrent(aCandidate.getB2DPoint(0)); + + if(nEdgeCount) + { + // edges + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + const B2DPoint aNext(aCandidate.getB2DPoint(nNextIndex)); + + if(isInEpsilonRange(aCurrent, aNext, rTestPosition, fDistance)) + { + return true; + } + + // prepare next step + aCurrent = aNext; + } + } + else + { + // no edges, but points -> not closed. Check single point. Just + // use isInEpsilonRange with twice the same point, it handles those well + if(isInEpsilonRange(aCurrent, aCurrent, rTestPosition, fDistance)) + { + return true; + } + } + + return false; + } + + // Calculates distance of curve point to its control point for a Bézier curve, that + // approximates a unit circle arc. fAngle is the center angle of the circle arc. The + // constrain 0<=fAngle<=pi/2 must not be violated to give a useful accuracy. For details + // and alternatives read document "ApproxCircleInfo.odt", attachment of bug tdf#121425. + static double impDistanceBezierPointToControl(double fAngle) + { + SAL_WARN_IF(fAngle < 0 || fAngle > M_PI_2,"basegfx","angle not suitable for approximate circle"); + if (0 <= fAngle && fAngle <= M_PI_2) + { + return 4.0/3.0 * ( tan(fAngle/4.0)); + } + else + return 0; + } + + B2DPolygon createPolygonFromRect( const B2DRectangle& rRect, double fRadiusX, double fRadiusY ) + { + const double fZero(0.0); + const double fOne(1.0); + + fRadiusX = std::clamp(fRadiusX, 0.0, 1.0); + fRadiusY = std::clamp(fRadiusY, 0.0, 1.0); + + if(rtl::math::approxEqual(fZero, fRadiusX) || rtl::math::approxEqual(fZero, fRadiusY)) + { + // at least in one direction no radius, use rectangle. + // Do not use createPolygonFromRect() here since original + // creator (historical reasons) still creates a start point at the + // bottom center, so do the same here to get the same line patterns. + // Due to this the order of points is different, too. + const B2DPoint aBottomCenter(rRect.getCenter().getX(), rRect.getMaxY()); + B2DPolygon aPolygon { + aBottomCenter, + { rRect.getMinX(), rRect.getMaxY() }, + { rRect.getMinX(), rRect.getMinY() }, + { rRect.getMaxX(), rRect.getMinY() }, + { rRect.getMaxX(), rRect.getMaxY() } + }; + + // close + aPolygon.setClosed( true ); + + return aPolygon; + } + else if(rtl::math::approxEqual(fOne, fRadiusX) && rtl::math::approxEqual(fOne, fRadiusY)) + { + // in both directions full radius, use ellipse + const B2DPoint aCenter(rRect.getCenter()); + const double fRectRadiusX(rRect.getWidth() / 2.0); + const double fRectRadiusY(rRect.getHeight() / 2.0); + + return createPolygonFromEllipse( aCenter, fRectRadiusX, fRectRadiusY ); + } + else + { + B2DPolygon aRetval; + const double fBowX((rRect.getWidth() / 2.0) * fRadiusX); + const double fBowY((rRect.getHeight() / 2.0) * fRadiusY); + const double fKappa(impDistanceBezierPointToControl(M_PI_2)); + + // create start point at bottom center + if(!rtl::math::approxEqual(fOne, fRadiusX)) + { + const B2DPoint aBottomCenter(rRect.getCenter().getX(), rRect.getMaxY()); + aRetval.append(aBottomCenter); + } + + // create first bow + { + const B2DPoint aBottomRight(rRect.getMaxX(), rRect.getMaxY()); + const B2DPoint aStart(aBottomRight + B2DPoint(-fBowX, 0.0)); + const B2DPoint aStop(aBottomRight + B2DPoint(0.0, -fBowY)); + aRetval.append(aStart); + aRetval.appendBezierSegment(interpolate(aStart, aBottomRight, fKappa), interpolate(aStop, aBottomRight, fKappa), aStop); + } + + // create second bow + { + const B2DPoint aTopRight(rRect.getMaxX(), rRect.getMinY()); + const B2DPoint aStart(aTopRight + B2DPoint(0.0, fBowY)); + const B2DPoint aStop(aTopRight + B2DPoint(-fBowX, 0.0)); + aRetval.append(aStart); + aRetval.appendBezierSegment(interpolate(aStart, aTopRight, fKappa), interpolate(aStop, aTopRight, fKappa), aStop); + } + + // create third bow + { + const B2DPoint aTopLeft(rRect.getMinX(), rRect.getMinY()); + const B2DPoint aStart(aTopLeft + B2DPoint(fBowX, 0.0)); + const B2DPoint aStop(aTopLeft + B2DPoint(0.0, fBowY)); + aRetval.append(aStart); + aRetval.appendBezierSegment(interpolate(aStart, aTopLeft, fKappa), interpolate(aStop, aTopLeft, fKappa), aStop); + } + + // create forth bow + { + const B2DPoint aBottomLeft(rRect.getMinX(), rRect.getMaxY()); + const B2DPoint aStart(aBottomLeft + B2DPoint(0.0, -fBowY)); + const B2DPoint aStop(aBottomLeft + B2DPoint(fBowX, 0.0)); + aRetval.append(aStart); + aRetval.appendBezierSegment(interpolate(aStart, aBottomLeft, fKappa), interpolate(aStop, aBottomLeft, fKappa), aStop); + } + + // close + aRetval.setClosed( true ); + + // remove double created points if there are extreme radii involved + if(rtl::math::approxEqual(fOne, fRadiusX) || rtl::math::approxEqual(fOne, fRadiusY)) + { + aRetval.removeDoublePoints(); + } + + return aRetval; + } + } + + B2DPolygon createPolygonFromRect( const B2DRectangle& rRect ) + { + B2DPolygon aPolygon { + { rRect.getMinX(), rRect.getMinY() }, + { rRect.getMaxX(), rRect.getMinY() }, + { rRect.getMaxX(), rRect.getMaxY() }, + { rRect.getMinX(), rRect.getMaxY() } + }; + + // close + aPolygon.setClosed( true ); + + return aPolygon; + } + + B2DPolygon const & createUnitPolygon() + { + static auto const singleton = [] { + B2DPolygon aPolygon { + { 0.0, 0.0 }, + { 1.0, 0.0 }, + { 1.0, 1.0 }, + { 0.0, 1.0 } + }; + + // close + aPolygon.setClosed( true ); + + return aPolygon; + }(); + return singleton; + } + + B2DPolygon createPolygonFromCircle( const B2DPoint& rCenter, double fRadius ) + { + return createPolygonFromEllipse( rCenter, fRadius, fRadius ); + } + + static B2DPolygon impCreateUnitCircle(sal_uInt32 nStartQuadrant) + { + B2DPolygon aUnitCircle; + const double fSegmentKappa = impDistanceBezierPointToControl(M_PI_2 / STEPSPERQUARTER); + const B2DHomMatrix aRotateMatrix(createRotateB2DHomMatrix(M_PI_2 / STEPSPERQUARTER)); + + B2DPoint aPoint(1.0, 0.0); + B2DPoint aForward(1.0, fSegmentKappa); + B2DPoint aBackward(1.0, -fSegmentKappa); + + if(nStartQuadrant != 0) + { + const B2DHomMatrix aQuadrantMatrix(createRotateB2DHomMatrix(M_PI_2 * (nStartQuadrant % 4))); + aPoint *= aQuadrantMatrix; + aBackward *= aQuadrantMatrix; + aForward *= aQuadrantMatrix; + } + + aUnitCircle.append(aPoint); + + for(sal_uInt32 a(0); a < STEPSPERQUARTER * 4; a++) + { + aPoint *= aRotateMatrix; + aBackward *= aRotateMatrix; + aUnitCircle.appendBezierSegment(aForward, aBackward, aPoint); + aForward *= aRotateMatrix; + } + + aUnitCircle.setClosed(true); + aUnitCircle.removeDoublePoints(); + + return aUnitCircle; + } + + B2DPolygon const & createHalfUnitCircle() + { + static auto const singleton = [] { + B2DPolygon aUnitHalfCircle; + const double fSegmentKappa(impDistanceBezierPointToControl(M_PI_2 / STEPSPERQUARTER)); + const B2DHomMatrix aRotateMatrix(createRotateB2DHomMatrix(M_PI_2 / STEPSPERQUARTER)); + B2DPoint aPoint(1.0, 0.0); + B2DPoint aForward(1.0, fSegmentKappa); + B2DPoint aBackward(1.0, -fSegmentKappa); + + aUnitHalfCircle.append(aPoint); + + for(sal_uInt32 a(0); a < STEPSPERQUARTER * 2; a++) + { + aPoint *= aRotateMatrix; + aBackward *= aRotateMatrix; + aUnitHalfCircle.appendBezierSegment(aForward, aBackward, aPoint); + aForward *= aRotateMatrix; + } + return aUnitHalfCircle; + }(); + return singleton; + } + + B2DPolygon const & createPolygonFromUnitCircle(sal_uInt32 nStartQuadrant) + { + switch(nStartQuadrant % 4) + { + case 1 : + { + static auto const singleton = impCreateUnitCircle(1); + return singleton; + } + + case 2 : + { + static auto const singleton = impCreateUnitCircle(2); + return singleton; + } + + case 3 : + { + static auto const singleton = impCreateUnitCircle(3); + return singleton; + } + + default : // case 0 : + { + static auto const singleton = impCreateUnitCircle(0); + return singleton; + } + } + } + + B2DPolygon createPolygonFromEllipse( const B2DPoint& rCenter, double fRadiusX, double fRadiusY, sal_uInt32 nStartQuadrant) + { + B2DPolygon aRetval(createPolygonFromUnitCircle(nStartQuadrant)); + const B2DHomMatrix aMatrix(createScaleTranslateB2DHomMatrix(fRadiusX, fRadiusY, rCenter.getX(), rCenter.getY())); + + aRetval.transform(aMatrix); + + return aRetval; + } + + B2DPolygon createPolygonFromUnitEllipseSegment( double fStart, double fEnd ) + { + B2DPolygon aRetval; + + // truncate fStart, fEnd to a range of [0.0 .. 2PI[ where 2PI + // falls back to 0.0 to ensure a unique definition + if(fTools::less(fStart, 0.0)) + { + fStart = 0.0; + } + + if(fTools::moreOrEqual(fStart, 2 * M_PI)) + { + fStart = 0.0; + } + + if(fTools::less(fEnd, 0.0)) + { + fEnd = 0.0; + } + + if(fTools::moreOrEqual(fEnd, 2 * M_PI)) + { + fEnd = 0.0; + } + + if(fTools::equal(fStart, fEnd)) + { + // same start and end angle, add single point + aRetval.append(B2DPoint(cos(fStart), sin(fStart))); + } + else + { + const sal_uInt32 nSegments(STEPSPERQUARTER * 4); + const double fAnglePerSegment(M_PI_2 / STEPSPERQUARTER); + const sal_uInt32 nStartSegment(sal_uInt32(fStart / fAnglePerSegment) % nSegments); + const sal_uInt32 nEndSegment(sal_uInt32(fEnd / fAnglePerSegment) % nSegments); + const double fSegmentKappa(impDistanceBezierPointToControl(fAnglePerSegment)); + + B2DPoint aSegStart(cos(fStart), sin(fStart)); + aRetval.append(aSegStart); + + if(nStartSegment == nEndSegment && fTools::more(fEnd, fStart)) + { + // start and end in one sector and in the right order, create in one segment + const B2DPoint aSegEnd(cos(fEnd), sin(fEnd)); + const double fFactor(impDistanceBezierPointToControl(fEnd - fStart)); + + aRetval.appendBezierSegment( + aSegStart + (B2DPoint(-aSegStart.getY(), aSegStart.getX()) * fFactor), + aSegEnd - (B2DPoint(-aSegEnd.getY(), aSegEnd.getX()) * fFactor), + aSegEnd); + } + else + { + double fSegEndRad((nStartSegment + 1) * fAnglePerSegment); + double fFactor(impDistanceBezierPointToControl(fSegEndRad - fStart)); + B2DPoint aSegEnd(cos(fSegEndRad), sin(fSegEndRad)); + + aRetval.appendBezierSegment( + aSegStart + (B2DPoint(-aSegStart.getY(), aSegStart.getX()) * fFactor), + aSegEnd - (B2DPoint(-aSegEnd.getY(), aSegEnd.getX()) * fFactor), + aSegEnd); + + sal_uInt32 nSegment((nStartSegment + 1) % nSegments); + aSegStart = aSegEnd; + + while(nSegment != nEndSegment) + { + // No end in this sector, add full sector. + fSegEndRad = (nSegment + 1) * fAnglePerSegment; + aSegEnd = B2DPoint(cos(fSegEndRad), sin(fSegEndRad)); + + aRetval.appendBezierSegment( + aSegStart + (B2DPoint(-aSegStart.getY(), aSegStart.getX()) * fSegmentKappa), + aSegEnd - (B2DPoint(-aSegEnd.getY(), aSegEnd.getX()) * fSegmentKappa), + aSegEnd); + + nSegment = (nSegment + 1) % nSegments; + aSegStart = aSegEnd; + } + + // End in this sector + const double fSegStartRad(nSegment * fAnglePerSegment); + fFactor= impDistanceBezierPointToControl(fEnd - fSegStartRad); + aSegEnd = B2DPoint(cos(fEnd), sin(fEnd)); + + aRetval.appendBezierSegment( + aSegStart + (B2DPoint(-aSegStart.getY(), aSegStart.getX()) * fFactor), + aSegEnd - (B2DPoint(-aSegEnd.getY(), aSegEnd.getX()) * fFactor), + aSegEnd); + } + } + + // remove double points between segments created by segmented creation + aRetval.removeDoublePoints(); + + return aRetval; + } + + B2DPolygon createPolygonFromEllipseSegment( const B2DPoint& rCenter, double fRadiusX, double fRadiusY, double fStart, double fEnd ) + { + B2DPolygon aRetval(createPolygonFromUnitEllipseSegment(fStart, fEnd)); + const B2DHomMatrix aMatrix(createScaleTranslateB2DHomMatrix(fRadiusX, fRadiusY, rCenter.getX(), rCenter.getY())); + + aRetval.transform(aMatrix); + + return aRetval; + } + + bool hasNeutralPoints(const B2DPolygon& rCandidate) + { + OSL_ENSURE(!rCandidate.areControlPointsUsed(), "hasNeutralPoints: ATM works not for curves (!)"); + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount <= 2) + return false; + + B2DPoint aPrevPoint(rCandidate.getB2DPoint(nPointCount - 1)); + B2DPoint aCurrPoint(rCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aNextPoint(rCandidate.getB2DPoint((a + 1) % nPointCount)); + const B2DVector aPrevVec(aPrevPoint - aCurrPoint); + const B2DVector aNextVec(aNextPoint - aCurrPoint); + const B2VectorOrientation aOrientation(getOrientation(aNextVec, aPrevVec)); + + if(aOrientation == B2VectorOrientation::Neutral) + { + // current has neutral orientation + return true; + } + else + { + // prepare next + aPrevPoint = aCurrPoint; + aCurrPoint = aNextPoint; + } + } + + return false; + } + + B2DPolygon removeNeutralPoints(const B2DPolygon& rCandidate) + { + if(hasNeutralPoints(rCandidate)) + { + const sal_uInt32 nPointCount(rCandidate.count()); + B2DPolygon aRetval; + B2DPoint aPrevPoint(rCandidate.getB2DPoint(nPointCount - 1)); + B2DPoint aCurrPoint(rCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aNextPoint(rCandidate.getB2DPoint((a + 1) % nPointCount)); + const B2DVector aPrevVec(aPrevPoint - aCurrPoint); + const B2DVector aNextVec(aNextPoint - aCurrPoint); + const B2VectorOrientation aOrientation(getOrientation(aNextVec, aPrevVec)); + + if(aOrientation == B2VectorOrientation::Neutral) + { + // current has neutral orientation, leave it out and prepare next + aCurrPoint = aNextPoint; + } + else + { + // add current point + aRetval.append(aCurrPoint); + + // prepare next + aPrevPoint = aCurrPoint; + aCurrPoint = aNextPoint; + } + } + + while(aRetval.count() && getOrientationForIndex(aRetval, 0) == B2VectorOrientation::Neutral) + { + aRetval.remove(0); + } + + // copy closed state + aRetval.setClosed(rCandidate.isClosed()); + + return aRetval; + } + else + { + return rCandidate; + } + } + + bool isConvex(const B2DPolygon& rCandidate) + { + OSL_ENSURE(!rCandidate.areControlPointsUsed(), "isConvex: ATM works not for curves (!)"); + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount <= 2) + return true; + + const B2DPoint aPrevPoint(rCandidate.getB2DPoint(nPointCount - 1)); + B2DPoint aCurrPoint(rCandidate.getB2DPoint(0)); + B2DVector aCurrVec(aPrevPoint - aCurrPoint); + B2VectorOrientation aOrientation(B2VectorOrientation::Neutral); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aNextPoint(rCandidate.getB2DPoint((a + 1) % nPointCount)); + const B2DVector aNextVec(aNextPoint - aCurrPoint); + const B2VectorOrientation aCurrentOrientation(getOrientation(aNextVec, aCurrVec)); + + if(aOrientation == B2VectorOrientation::Neutral) + { + // set start value, maybe neutral again + aOrientation = aCurrentOrientation; + } + else + { + if(aCurrentOrientation != B2VectorOrientation::Neutral && aCurrentOrientation != aOrientation) + { + // different orientations found, that's it + return false; + } + } + + // prepare next + aCurrPoint = aNextPoint; + aCurrVec = -aNextVec; + } + + return true; + } + + B2VectorOrientation getOrientationForIndex(const B2DPolygon& rCandidate, sal_uInt32 nIndex) + { + OSL_ENSURE(nIndex < rCandidate.count(), "getOrientationForIndex: index out of range (!)"); + const B2DPoint aPrev(rCandidate.getB2DPoint(getIndexOfPredecessor(nIndex, rCandidate))); + const B2DPoint aCurr(rCandidate.getB2DPoint(nIndex)); + const B2DPoint aNext(rCandidate.getB2DPoint(getIndexOfSuccessor(nIndex, rCandidate))); + const B2DVector aBack(aPrev - aCurr); + const B2DVector aForw(aNext - aCurr); + + return getOrientation(aForw, aBack); + } + + bool isPointOnLine(const B2DPoint& rStart, const B2DPoint& rEnd, const B2DPoint& rCandidate, bool bWithPoints) + { + if(rCandidate.equal(rStart) || rCandidate.equal(rEnd)) + { + // candidate is in epsilon around start or end -> inside + return bWithPoints; + } + else if(rStart.equal(rEnd)) + { + // start and end are equal, but candidate is outside their epsilon -> outside + return false; + } + else + { + const B2DVector aEdgeVector(rEnd - rStart); + const B2DVector aTestVector(rCandidate - rStart); + + if(areParallel(aEdgeVector, aTestVector)) + { + const double fZero(0.0); + const double fOne(1.0); + const double fParamTestOnCurr(fabs(aEdgeVector.getX()) > fabs(aEdgeVector.getY()) + ? aTestVector.getX() / aEdgeVector.getX() + : aTestVector.getY() / aEdgeVector.getY()); + + if(fTools::more(fParamTestOnCurr, fZero) && fTools::less(fParamTestOnCurr, fOne)) + { + return true; + } + } + + return false; + } + } + + bool isPointOnPolygon(const B2DPolygon& rCandidate, const B2DPoint& rPoint, bool bWithPoints) + { + const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate); + const sal_uInt32 nPointCount(aCandidate.count()); + + if(nPointCount > 1) + { + const sal_uInt32 nLoopCount(aCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DPoint aCurrentPoint(aCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nLoopCount; a++) + { + const B2DPoint aNextPoint(aCandidate.getB2DPoint((a + 1) % nPointCount)); + + if(isPointOnLine(aCurrentPoint, aNextPoint, rPoint, bWithPoints)) + { + return true; + } + + aCurrentPoint = aNextPoint; + } + } + else if(nPointCount && bWithPoints) + { + return rPoint.equal(aCandidate.getB2DPoint(0)); + } + + return false; + } + + bool isPointInTriangle(const B2DPoint& rA, const B2DPoint& rB, const B2DPoint& rC, const B2DPoint& rCandidate, bool bWithBorder) + { + if(arePointsOnSameSideOfLine(rA, rB, rC, rCandidate, bWithBorder)) + { + if(arePointsOnSameSideOfLine(rB, rC, rA, rCandidate, bWithBorder)) + { + if(arePointsOnSameSideOfLine(rC, rA, rB, rCandidate, bWithBorder)) + { + return true; + } + } + } + + return false; + } + + bool arePointsOnSameSideOfLine(const B2DPoint& rStart, const B2DPoint& rEnd, const B2DPoint& rCandidateA, const B2DPoint& rCandidateB, bool bWithLine) + { + const B2DVector aLineVector(rEnd - rStart); + const B2DVector aVectorToA(rEnd - rCandidateA); + const double fCrossA(aLineVector.cross(aVectorToA)); + + // tdf#88352 increase numerical correctness and use rtl::math::approxEqual + // instead of fTools::equalZero which compares with a fixed small value + if(fCrossA == 0.0) + { + // one point on the line + return bWithLine; + } + + const B2DVector aVectorToB(rEnd - rCandidateB); + const double fCrossB(aLineVector.cross(aVectorToB)); + + // increase numerical correctness + if(fCrossB == 0.0) + { + // one point on the line + return bWithLine; + } + + // return true if they both have the same sign + return ((fCrossA > 0.0) == (fCrossB > 0.0)); + } + + void addTriangleFan( + const B2DPolygon& rCandidate, + triangulator::B2DTriangleVector& rTarget) + { + const sal_uInt32 nCount(rCandidate.count()); + + if(nCount <= 2) + return; + + const B2DPoint aStart(rCandidate.getB2DPoint(0)); + B2DPoint aLast(rCandidate.getB2DPoint(1)); + + for(sal_uInt32 a(2); a < nCount; a++) + { + const B2DPoint aCurrent(rCandidate.getB2DPoint(a)); + rTarget.emplace_back( + aStart, + aLast, + aCurrent); + + // prepare next + aLast = aCurrent; + } + } + + namespace + { + /// return 0 for input of 0, -1 for negative and 1 for positive input + int lcl_sgn( const double n ) + { + return n == 0.0 ? 0 : 1 - 2*int(std::signbit(n)); + } + } + + bool isRectangle( const B2DPolygon& rPoly ) + { + // polygon must be closed to resemble a rect, and contain + // at least four points. + if( !rPoly.isClosed() || + rPoly.count() < 4 || + rPoly.areControlPointsUsed() ) + { + return false; + } + + // number of 90 degree turns the polygon has taken + int nNumTurns(0); + + int nVerticalEdgeType=0; + int nHorizontalEdgeType=0; + bool bNullVertex(true); + bool bCWPolygon(false); // when true, polygon is CW + // oriented, when false, CCW + bool bOrientationSet(false); // when false, polygon + // orientation has not yet + // been determined. + + // scan all _edges_ (which involves coming back to point 0 + // for the last edge - thus the modulo operation below) + const sal_Int32 nCount( rPoly.count() ); + for( sal_Int32 i=0; i<nCount; ++i ) + { + const B2DPoint& rPoint0( rPoly.getB2DPoint(i % nCount) ); + const B2DPoint& rPoint1( rPoly.getB2DPoint((i+1) % nCount) ); + + // is 0 for zero direction vector, 1 for south edge and -1 + // for north edge (standard screen coordinate system) + int nCurrVerticalEdgeType( lcl_sgn( rPoint1.getY() - rPoint0.getY() ) ); + + // is 0 for zero direction vector, 1 for east edge and -1 + // for west edge (standard screen coordinate system) + int nCurrHorizontalEdgeType( lcl_sgn(rPoint1.getX() - rPoint0.getX()) ); + + if( nCurrVerticalEdgeType && nCurrHorizontalEdgeType ) + return false; // oblique edge - for sure no rect + + const bool bCurrNullVertex( !nCurrVerticalEdgeType && !nCurrHorizontalEdgeType ); + + // current vertex is equal to previous - just skip, + // until we have a real edge + if( bCurrNullVertex ) + continue; + + // if previous edge has two identical points, because + // no previous edge direction was available, simply + // take this first non-null edge as the start + // direction. That's what will happen here, if + // bNullVertex is false + if( !bNullVertex ) + { + // 2D cross product - is 1 for CW and -1 for CCW turns + const int nCrossProduct( nHorizontalEdgeType*nCurrVerticalEdgeType - + nVerticalEdgeType*nCurrHorizontalEdgeType ); + + if( !nCrossProduct ) + continue; // no change in orientation - + // collinear edges - just go on + + // if polygon orientation is not set, we'll + // determine it now + if( !bOrientationSet ) + { + bCWPolygon = nCrossProduct == 1; + bOrientationSet = true; + } + else + { + // if current turn orientation is not equal + // initial orientation, this is not a + // rectangle (as rectangles have consistent + // orientation). + if( (nCrossProduct == 1) != bCWPolygon ) + return false; + } + + ++nNumTurns; + + // More than four 90 degree turns are an + // indication that this must not be a rectangle. + if( nNumTurns > 4 ) + return false; + } + + // store current state for the next turn + nVerticalEdgeType = nCurrVerticalEdgeType; + nHorizontalEdgeType = nCurrHorizontalEdgeType; + bNullVertex = false; // won't reach this line, + // if bCurrNullVertex is + // true - see above + } + + return true; + } + + B3DPolygon createB3DPolygonFromB2DPolygon(const B2DPolygon& rCandidate, double fZCoordinate) + { + if(rCandidate.areControlPointsUsed()) + { + // call myself recursively with subdivided input + const B2DPolygon aCandidate(adaptiveSubdivideByAngle(rCandidate)); + return createB3DPolygonFromB2DPolygon(aCandidate, fZCoordinate); + } + else + { + B3DPolygon aRetval; + + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + B2DPoint aPoint(rCandidate.getB2DPoint(a)); + aRetval.append(B3DPoint(aPoint.getX(), aPoint.getY(), fZCoordinate)); + } + + // copy closed state + aRetval.setClosed(rCandidate.isClosed()); + + return aRetval; + } + } + + B2DPolygon createB2DPolygonFromB3DPolygon(const B3DPolygon& rCandidate, const B3DHomMatrix& rMat) + { + B2DPolygon aRetval; + const sal_uInt32 nCount(rCandidate.count()); + const bool bIsIdentity(rMat.isIdentity()); + + for(sal_uInt32 a(0); a < nCount; a++) + { + B3DPoint aCandidate(rCandidate.getB3DPoint(a)); + + if(!bIsIdentity) + { + aCandidate *= rMat; + } + + aRetval.append(B2DPoint(aCandidate.getX(), aCandidate.getY())); + } + + // copy closed state + aRetval.setClosed(rCandidate.isClosed()); + + return aRetval; + } + + double getSmallestDistancePointToEdge(const B2DPoint& rPointA, const B2DPoint& rPointB, const B2DPoint& rTestPoint, double& rCut) + { + if(rPointA.equal(rPointB)) + { + rCut = 0.0; + const B2DVector aVector(rTestPoint - rPointA); + return aVector.getLength(); + } + else + { + // get the relative cut value on line vector (Vector1) for cut with perpendicular through TestPoint + const B2DVector aVector1(rPointB - rPointA); + const B2DVector aVector2(rTestPoint - rPointA); + const double fDividend((aVector2.getX() * aVector1.getX()) + (aVector2.getY() * aVector1.getY())); + const double fDivisor((aVector1.getX() * aVector1.getX()) + (aVector1.getY() * aVector1.getY())); + const double fCut(fDividend / fDivisor); + + if(fCut < 0.0) + { + // not in line range, get distance to PointA + rCut = 0.0; + return aVector2.getLength(); + } + else if(fCut > 1.0) + { + // not in line range, get distance to PointB + rCut = 1.0; + const B2DVector aVector(rTestPoint - rPointB); + return aVector.getLength(); + } + else + { + // in line range + const B2DPoint aCutPoint(rPointA + fCut * aVector1); + const B2DVector aVector(rTestPoint - aCutPoint); + rCut = fCut; + return aVector.getLength(); + } + } + } + + double getSmallestDistancePointToPolygon(const B2DPolygon& rCandidate, const B2DPoint& rTestPoint, sal_uInt32& rEdgeIndex, double& rCut) + { + double fRetval(DBL_MAX); + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount > 1) + { + const double fZero(0.0); + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DCubicBezier aBezier; + aBezier.setStartPoint(rCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aBezier.setEndPoint(rCandidate.getB2DPoint(nNextIndex)); + double fEdgeDist; + double fNewCut(0.0); + bool bEdgeIsCurve(false); + + if(rCandidate.areControlPointsUsed()) + { + aBezier.setControlPointA(rCandidate.getNextControlPoint(a)); + aBezier.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex)); + aBezier.testAndSolveTrivialBezier(); + bEdgeIsCurve = aBezier.isBezier(); + } + + if(bEdgeIsCurve) + { + fEdgeDist = aBezier.getSmallestDistancePointToBezierSegment(rTestPoint, fNewCut); + } + else + { + fEdgeDist = getSmallestDistancePointToEdge(aBezier.getStartPoint(), aBezier.getEndPoint(), rTestPoint, fNewCut); + } + + if(fRetval == DBL_MAX || fEdgeDist < fRetval) + { + fRetval = fEdgeDist; + rEdgeIndex = a; + rCut = fNewCut; + + if(fTools::equal(fRetval, fZero)) + { + // already found zero distance, cannot get better. Ensure numerical zero value and end loop. + fRetval = 0.0; + break; + } + } + + // prepare next step + aBezier.setStartPoint(aBezier.getEndPoint()); + } + + if(rtl::math::approxEqual(1.0, rCut)) + { + // correct rEdgeIndex when not last point + if(rCandidate.isClosed()) + { + rEdgeIndex = getIndexOfSuccessor(rEdgeIndex, rCandidate); + rCut = 0.0; + } + else + { + if(rEdgeIndex != nEdgeCount - 1) + { + rEdgeIndex++; + rCut = 0.0; + } + } + } + } + + return fRetval; + } + + B2DPoint distort(const B2DPoint& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight) + { + if(fTools::equalZero(rOriginal.getWidth()) || fTools::equalZero(rOriginal.getHeight())) + { + return rCandidate; + } + else + { + const double fRelativeX((rCandidate.getX() - rOriginal.getMinX()) / rOriginal.getWidth()); + const double fRelativeY((rCandidate.getY() - rOriginal.getMinY()) / rOriginal.getHeight()); + const double fOneMinusRelativeX(1.0 - fRelativeX); + const double fOneMinusRelativeY(1.0 - fRelativeY); + const double fNewX(fOneMinusRelativeY * (fOneMinusRelativeX * rTopLeft.getX() + fRelativeX * rTopRight.getX()) + + fRelativeY * (fOneMinusRelativeX * rBottomLeft.getX() + fRelativeX * rBottomRight.getX())); + const double fNewY(fOneMinusRelativeX * (fOneMinusRelativeY * rTopLeft.getY() + fRelativeY * rBottomLeft.getY()) + + fRelativeX * (fOneMinusRelativeY * rTopRight.getY() + fRelativeY * rBottomRight.getY())); + + return B2DPoint(fNewX, fNewY); + } + } + + B2DPolygon distort(const B2DPolygon& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount && rOriginal.getWidth() != 0.0 && rOriginal.getHeight() != 0.0) + { + B2DPolygon aRetval; + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + aRetval.append(distort(rCandidate.getB2DPoint(a), rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight)); + + if(rCandidate.areControlPointsUsed()) + { + if(!rCandidate.getPrevControlPoint(a).equalZero()) + { + aRetval.setPrevControlPoint(a, distort(rCandidate.getPrevControlPoint(a), rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight)); + } + + if(!rCandidate.getNextControlPoint(a).equalZero()) + { + aRetval.setNextControlPoint(a, distort(rCandidate.getNextControlPoint(a), rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight)); + } + } + } + + aRetval.setClosed(rCandidate.isClosed()); + return aRetval; + } + else + { + return rCandidate; + } + } + + B2DPolygon expandToCurve(const B2DPolygon& rCandidate) + { + B2DPolygon aRetval(rCandidate); + + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + expandToCurveInPoint(aRetval, a); + } + + return aRetval; + } + + bool expandToCurveInPoint(B2DPolygon& rCandidate, sal_uInt32 nIndex) + { + OSL_ENSURE(nIndex < rCandidate.count(), "expandToCurveInPoint: Access to polygon out of range (!)"); + bool bRetval(false); + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount) + { + // predecessor + if(!rCandidate.isPrevControlPointUsed(nIndex)) + { + if(!rCandidate.isClosed() && nIndex == 0) + { + // do not create previous vector for start point of open polygon + } + else + { + const sal_uInt32 nPrevIndex((nIndex + (nPointCount - 1)) % nPointCount); + rCandidate.setPrevControlPoint(nIndex, interpolate(rCandidate.getB2DPoint(nIndex), rCandidate.getB2DPoint(nPrevIndex), 1.0 / 3.0)); + bRetval = true; + } + } + + // successor + if(!rCandidate.isNextControlPointUsed(nIndex)) + { + if(!rCandidate.isClosed() && nIndex + 1 == nPointCount) + { + // do not create next vector for end point of open polygon + } + else + { + const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount); + rCandidate.setNextControlPoint(nIndex, interpolate(rCandidate.getB2DPoint(nIndex), rCandidate.getB2DPoint(nNextIndex), 1.0 / 3.0)); + bRetval = true; + } + } + } + + return bRetval; + } + + bool setContinuityInPoint(B2DPolygon& rCandidate, sal_uInt32 nIndex, B2VectorContinuity eContinuity) + { + OSL_ENSURE(nIndex < rCandidate.count(), "setContinuityInPoint: Access to polygon out of range (!)"); + bool bRetval(false); + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount) + { + const B2DPoint aCurrentPoint(rCandidate.getB2DPoint(nIndex)); + + switch(eContinuity) + { + case B2VectorContinuity::NONE : + { + if(rCandidate.isPrevControlPointUsed(nIndex)) + { + if(!rCandidate.isClosed() && nIndex == 0) + { + // remove existing previous vector for start point of open polygon + rCandidate.resetPrevControlPoint(nIndex); + } + else + { + const sal_uInt32 nPrevIndex((nIndex + (nPointCount - 1)) % nPointCount); + rCandidate.setPrevControlPoint(nIndex, interpolate(aCurrentPoint, rCandidate.getB2DPoint(nPrevIndex), 1.0 / 3.0)); + } + + bRetval = true; + } + + if(rCandidate.isNextControlPointUsed(nIndex)) + { + if(!rCandidate.isClosed() && nIndex == nPointCount + 1) + { + // remove next vector for end point of open polygon + rCandidate.resetNextControlPoint(nIndex); + } + else + { + const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount); + rCandidate.setNextControlPoint(nIndex, interpolate(aCurrentPoint, rCandidate.getB2DPoint(nNextIndex), 1.0 / 3.0)); + } + + bRetval = true; + } + + break; + } + case B2VectorContinuity::C1 : + { + if(rCandidate.isPrevControlPointUsed(nIndex) && rCandidate.isNextControlPointUsed(nIndex)) + { + // lengths both exist since both are used + B2DVector aVectorPrev(rCandidate.getPrevControlPoint(nIndex) - aCurrentPoint); + B2DVector aVectorNext(rCandidate.getNextControlPoint(nIndex) - aCurrentPoint); + const double fLenPrev(aVectorPrev.getLength()); + const double fLenNext(aVectorNext.getLength()); + aVectorPrev.normalize(); + aVectorNext.normalize(); + const B2VectorOrientation aOrientation(getOrientation(aVectorPrev, aVectorNext)); + + if(aOrientation == B2VectorOrientation::Neutral && aVectorPrev.scalar(aVectorNext) < 0.0) + { + // parallel and opposite direction; check length + if(fTools::equal(fLenPrev, fLenNext)) + { + // this would be even C2, but we want C1. Use the lengths of the corresponding edges. + const sal_uInt32 nPrevIndex((nIndex + (nPointCount - 1)) % nPointCount); + const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount); + const double fLenPrevEdge(B2DVector(rCandidate.getB2DPoint(nPrevIndex) - aCurrentPoint).getLength() * (1.0 / 3.0)); + const double fLenNextEdge(B2DVector(rCandidate.getB2DPoint(nNextIndex) - aCurrentPoint).getLength() * (1.0 / 3.0)); + + rCandidate.setControlPoints(nIndex, + aCurrentPoint + (aVectorPrev * fLenPrevEdge), + aCurrentPoint + (aVectorNext * fLenNextEdge)); + bRetval = true; + } + } + else + { + // not parallel or same direction, set vectors and length + const B2DVector aNormalizedPerpendicular(getNormalizedPerpendicular(aVectorPrev + aVectorNext)); + + if(aOrientation == B2VectorOrientation::Positive) + { + rCandidate.setControlPoints(nIndex, + aCurrentPoint - (aNormalizedPerpendicular * fLenPrev), + aCurrentPoint + (aNormalizedPerpendicular * fLenNext)); + } + else + { + rCandidate.setControlPoints(nIndex, + aCurrentPoint + (aNormalizedPerpendicular * fLenPrev), + aCurrentPoint - (aNormalizedPerpendicular * fLenNext)); + } + + bRetval = true; + } + } + break; + } + case B2VectorContinuity::C2 : + { + if(rCandidate.isPrevControlPointUsed(nIndex) && rCandidate.isNextControlPointUsed(nIndex)) + { + // lengths both exist since both are used + B2DVector aVectorPrev(rCandidate.getPrevControlPoint(nIndex) - aCurrentPoint); + B2DVector aVectorNext(rCandidate.getNextControlPoint(nIndex) - aCurrentPoint); + const double fCommonLength((aVectorPrev.getLength() + aVectorNext.getLength()) / 2.0); + aVectorPrev.normalize(); + aVectorNext.normalize(); + const B2VectorOrientation aOrientation(getOrientation(aVectorPrev, aVectorNext)); + + if(aOrientation == B2VectorOrientation::Neutral && aVectorPrev.scalar(aVectorNext) < 0.0) + { + // parallel and opposite direction; set length. Use one direction for better numerical correctness + const B2DVector aScaledDirection(aVectorPrev * fCommonLength); + + rCandidate.setControlPoints(nIndex, + aCurrentPoint + aScaledDirection, + aCurrentPoint - aScaledDirection); + } + else + { + // not parallel or same direction, set vectors and length + const B2DVector aNormalizedPerpendicular(getNormalizedPerpendicular(aVectorPrev + aVectorNext)); + const B2DVector aPerpendicular(aNormalizedPerpendicular * fCommonLength); + + if(aOrientation == B2VectorOrientation::Positive) + { + rCandidate.setControlPoints(nIndex, + aCurrentPoint - aPerpendicular, + aCurrentPoint + aPerpendicular); + } + else + { + rCandidate.setControlPoints(nIndex, + aCurrentPoint + aPerpendicular, + aCurrentPoint - aPerpendicular); + } + } + + bRetval = true; + } + break; + } + } + } + + return bRetval; + } + + B2DPolygon growInNormalDirection(const B2DPolygon& rCandidate, double fValue) + { + if(fValue != 0.0) + { + if(rCandidate.areControlPointsUsed()) + { + // call myself recursively with subdivided input + const B2DPolygon aCandidate(adaptiveSubdivideByAngle(rCandidate)); + return growInNormalDirection(aCandidate, fValue); + } + else + { + B2DPolygon aRetval; + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount) + { + B2DPoint aPrev(rCandidate.getB2DPoint(nPointCount - 1)); + B2DPoint aCurrent(rCandidate.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aNext(rCandidate.getB2DPoint(a + 1 == nPointCount ? 0 : a + 1)); + const B2DVector aBack(aPrev - aCurrent); + const B2DVector aForw(aNext - aCurrent); + const B2DVector aPerpBack(getNormalizedPerpendicular(aBack)); + const B2DVector aPerpForw(getNormalizedPerpendicular(aForw)); + B2DVector aDirection(aPerpBack - aPerpForw); + aDirection.normalize(); + aDirection *= fValue; + aRetval.append(aCurrent + aDirection); + + // prepare next step + aPrev = aCurrent; + aCurrent = aNext; + } + } + + // copy closed state + aRetval.setClosed(rCandidate.isClosed()); + + return aRetval; + } + } + else + { + return rCandidate; + } + } + + B2DPolygon reSegmentPolygon(const B2DPolygon& rCandidate, sal_uInt32 nSegments) + { + B2DPolygon aRetval; + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount && nSegments) + { + // get current segment count + const sal_uInt32 nSegmentCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + + if(nSegmentCount == nSegments) + { + aRetval = rCandidate; + } + else + { + const double fLength(getLength(rCandidate)); + const sal_uInt32 nLoopCount(rCandidate.isClosed() ? nSegments : nSegments + 1); + + for(sal_uInt32 a(0); a < nLoopCount; a++) + { + const double fRelativePos(static_cast<double>(a) / static_cast<double>(nSegments)); // 0.0 .. 1.0 + const B2DPoint aNewPoint(getPositionRelative(rCandidate, fRelativePos, fLength)); + aRetval.append(aNewPoint); + } + + // copy closed flag + aRetval.setClosed(rCandidate.isClosed()); + } + } + + return aRetval; + } + + B2DPolygon interpolate(const B2DPolygon& rOld1, const B2DPolygon& rOld2, double t) + { + OSL_ENSURE(rOld1.count() == rOld2.count(), "B2DPolygon interpolate: Different geometry (!)"); + + if(fTools::lessOrEqual(t, 0.0) || rOld1 == rOld2) + { + return rOld1; + } + else if(fTools::moreOrEqual(t, 1.0)) + { + return rOld2; + } + else + { + B2DPolygon aRetval; + const bool bInterpolateVectors(rOld1.areControlPointsUsed() || rOld2.areControlPointsUsed()); + aRetval.setClosed(rOld1.isClosed() && rOld2.isClosed()); + + for(sal_uInt32 a(0); a < rOld1.count(); a++) + { + aRetval.append(interpolate(rOld1.getB2DPoint(a), rOld2.getB2DPoint(a), t)); + + if(bInterpolateVectors) + { + aRetval.setPrevControlPoint(a, interpolate(rOld1.getPrevControlPoint(a), rOld2.getPrevControlPoint(a), t)); + aRetval.setNextControlPoint(a, interpolate(rOld1.getNextControlPoint(a), rOld2.getNextControlPoint(a), t)); + } + } + + return aRetval; + } + } + + // #i76891# + B2DPolygon simplifyCurveSegments(const B2DPolygon& rCandidate) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount && rCandidate.areControlPointsUsed()) + { + // prepare loop + const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DPolygon aRetval; + B2DCubicBezier aBezier; + aBezier.setStartPoint(rCandidate.getB2DPoint(0)); + + // try to avoid costly reallocations + aRetval.reserve( nEdgeCount+1); + + // add start point + aRetval.append(aBezier.getStartPoint()); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + // get values for edge + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aBezier.setEndPoint(rCandidate.getB2DPoint(nNextIndex)); + aBezier.setControlPointA(rCandidate.getNextControlPoint(a)); + aBezier.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex)); + aBezier.testAndSolveTrivialBezier(); + + // still bezier? + if(aBezier.isBezier()) + { + // add edge with control vectors + aRetval.appendBezierSegment(aBezier.getControlPointA(), aBezier.getControlPointB(), aBezier.getEndPoint()); + } + else + { + // add edge + aRetval.append(aBezier.getEndPoint()); + } + + // next point + aBezier.setStartPoint(aBezier.getEndPoint()); + } + + if(rCandidate.isClosed()) + { + // set closed flag, rescue control point and correct last double point + closeWithGeometryChange(aRetval); + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + // makes the given indexed point the new polygon start point. To do that, the points in the + // polygon will be rotated. This is only valid for closed polygons, for non-closed ones + // an assertion will be triggered + B2DPolygon makeStartPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndexOfNewStatPoint) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount > 2 && nIndexOfNewStatPoint != 0 && nIndexOfNewStatPoint < nPointCount) + { + OSL_ENSURE(rCandidate.isClosed(), "makeStartPoint: only valid for closed polygons (!)"); + B2DPolygon aRetval; + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const sal_uInt32 nSourceIndex((a + nIndexOfNewStatPoint) % nPointCount); + aRetval.append(rCandidate.getB2DPoint(nSourceIndex)); + + if(rCandidate.areControlPointsUsed()) + { + aRetval.setPrevControlPoint(a, rCandidate.getPrevControlPoint(nSourceIndex)); + aRetval.setNextControlPoint(a, rCandidate.getNextControlPoint(nSourceIndex)); + } + } + + return aRetval; + } + + return rCandidate; + } + + B2DPolygon createEdgesOfGivenLength(const B2DPolygon& rCandidate, double fLength, double fStart, double fEnd) + { + B2DPolygon aRetval; + + if(fLength < 0.0) + { + fLength = 0.0; + } + + if(!fTools::equalZero(fLength)) + { + if(fStart < 0.0) + { + fStart = 0.0; + } + + if(fEnd < 0.0) + { + fEnd = 0.0; + } + + if(fEnd < fStart) + { + fEnd = fStart; + } + + // iterate and consume pieces with fLength. First subdivide to reduce input to line segments + const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate); + const sal_uInt32 nPointCount(aCandidate.count()); + + if(nPointCount > 1) + { + const bool bEndActive(!fTools::equalZero(fEnd)); + const sal_uInt32 nEdgeCount(aCandidate.isClosed() ? nPointCount : nPointCount - 1); + B2DPoint aCurrent(aCandidate.getB2DPoint(0)); + double fPositionInEdge(fStart); + double fAbsolutePosition(fStart); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + const B2DPoint aNext(aCandidate.getB2DPoint(nNextIndex)); + const B2DVector aEdge(aNext - aCurrent); + double fEdgeLength(aEdge.getLength()); + + if(!fTools::equalZero(fEdgeLength)) + { + while(fTools::less(fPositionInEdge, fEdgeLength)) + { + // move position on edge forward as long as on edge + const double fScalar(fPositionInEdge / fEdgeLength); + aRetval.append(aCurrent + (aEdge * fScalar)); + fPositionInEdge += fLength; + + if(bEndActive) + { + fAbsolutePosition += fLength; + + if(fTools::more(fAbsolutePosition, fEnd)) + { + break; + } + } + } + + // subtract length of current edge + fPositionInEdge -= fEdgeLength; + } + + if(bEndActive && fTools::more(fAbsolutePosition, fEnd)) + { + break; + } + + // prepare next step + aCurrent = aNext; + } + + // keep closed state + aRetval.setClosed(aCandidate.isClosed()); + } + else + { + // source polygon has only one point, return unchanged + aRetval = aCandidate; + } + } + + return aRetval; + } + + B2DPolygon createWaveline(const B2DPolygon& rCandidate, double fWaveWidth, double fWaveHeight) + { + B2DPolygon aRetval; + + if(fWaveWidth < 0.0) + { + fWaveWidth = 0.0; + } + + if(fWaveHeight < 0.0) + { + fWaveHeight = 0.0; + } + + const bool bHasWidth(!fTools::equalZero(fWaveWidth)); + + if(bHasWidth) + { + const bool bHasHeight(!fTools::equalZero(fWaveHeight)); + if(bHasHeight) + { + // width and height, create waveline. First subdivide to reduce input to line segments + // of WaveWidth. Last segment may be missing. If this turns out to be a problem, it + // may be added here again using the original last point from rCandidate. It may + // also be the case that rCandidate was closed. To simplify things it is handled here + // as if it was opened. + // Result from createEdgesOfGivenLength contains no curved segments, handle as straight + // edges. + const B2DPolygon aEqualLenghEdges(createEdgesOfGivenLength(rCandidate, fWaveWidth)); + const sal_uInt32 nPointCount(aEqualLenghEdges.count()); + + if(nPointCount > 1) + { + // iterate over straight edges, add start point + B2DPoint aCurrent(aEqualLenghEdges.getB2DPoint(0)); + aRetval.append(aCurrent); + + for(sal_uInt32 a(0); a < nPointCount - 1; a++) + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + const B2DPoint aNext(aEqualLenghEdges.getB2DPoint(nNextIndex)); + const B2DVector aEdge(aNext - aCurrent); + const B2DVector aPerpendicular(getNormalizedPerpendicular(aEdge)); + const B2DVector aControlOffset((aEdge * 0.467308) - (aPerpendicular * fWaveHeight)); + + // add curve segment + aRetval.appendBezierSegment( + aCurrent + aControlOffset, + aNext - aControlOffset, + aNext); + + // prepare next step + aCurrent = aNext; + } + } + } + else + { + // width but no height -> return original polygon + aRetval = rCandidate; + } + } + else + { + // no width -> no waveline, stay empty and return + } + + return aRetval; + } + + // snap points of horizontal or vertical edges to discrete values + B2DPolygon snapPointsOfHorizontalOrVerticalEdges(const B2DPolygon& rCandidate) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount > 1) + { + // Start by copying the source polygon to get a writeable copy. The closed state is + // copied by aRetval's initialisation, too, so no need to copy it in this method + B2DPolygon aRetval(rCandidate); + + // prepare geometry data. Get rounded from original + B2ITuple aPrevTuple(basegfx::fround(rCandidate.getB2DPoint(nPointCount - 1))); + B2DPoint aCurrPoint(rCandidate.getB2DPoint(0)); + B2ITuple aCurrTuple(basegfx::fround(aCurrPoint)); + + // loop over all points. This will also snap the implicit closing edge + // even when not closed, but that's no problem here + for(sal_uInt32 a(0); a < nPointCount; a++) + { + // get next point. Get rounded from original + const bool bLastRun(a + 1 == nPointCount); + const sal_uInt32 nNextIndex(bLastRun ? 0 : a + 1); + const B2DPoint aNextPoint(rCandidate.getB2DPoint(nNextIndex)); + const B2ITuple aNextTuple(basegfx::fround(aNextPoint)); + + // get the states + const bool bPrevVertical(aPrevTuple.getX() == aCurrTuple.getX()); + const bool bNextVertical(aNextTuple.getX() == aCurrTuple.getX()); + const bool bPrevHorizontal(aPrevTuple.getY() == aCurrTuple.getY()); + const bool bNextHorizontal(aNextTuple.getY() == aCurrTuple.getY()); + const bool bSnapX(bPrevVertical || bNextVertical); + const bool bSnapY(bPrevHorizontal || bNextHorizontal); + + if(bSnapX || bSnapY) + { + const B2DPoint aSnappedPoint( + bSnapX ? aCurrTuple.getX() : aCurrPoint.getX(), + bSnapY ? aCurrTuple.getY() : aCurrPoint.getY()); + + aRetval.setB2DPoint(a, aSnappedPoint); + } + + // prepare next point + if(!bLastRun) + { + aPrevTuple = aCurrTuple; + aCurrPoint = aNextPoint; + aCurrTuple = aNextTuple; + } + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + B2DVector getTangentEnteringPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex) + { + B2DVector aRetval(0.0, 0.0); + const sal_uInt32 nCount(rCandidate.count()); + + if(nIndex >= nCount) + { + // out of range + return aRetval; + } + + // start immediately at prev point compared to nIndex + const bool bClosed(rCandidate.isClosed()); + sal_uInt32 nPrev(bClosed ? (nIndex + nCount - 1) % nCount : nIndex ? nIndex - 1 : nIndex); + + if(nPrev == nIndex) + { + // no previous, done + return aRetval; + } + + B2DCubicBezier aSegment; + + // go backward in the polygon; if closed, maximal back to start index (nIndex); if not closed, + // until zero. Use nIndex as stop criteria + while(nPrev != nIndex) + { + // get BezierSegment and tangent at the *end* of segment + rCandidate.getBezierSegment(nPrev, aSegment); + aRetval = aSegment.getTangent(1.0); + + if(!aRetval.equalZero()) + { + // if we have a tangent, return it + return aRetval; + } + + // prepare index before checked one + nPrev = bClosed ? (nPrev + nCount - 1) % nCount : nPrev ? nPrev - 1 : nIndex; + } + + return aRetval; + } + + B2DVector getTangentLeavingPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex) + { + B2DVector aRetval(0.0, 0.0); + const sal_uInt32 nCount(rCandidate.count()); + + if(nIndex >= nCount) + { + // out of range + return aRetval; + } + + // start at nIndex + const bool bClosed(rCandidate.isClosed()); + sal_uInt32 nCurrent(nIndex); + B2DCubicBezier aSegment; + + // go forward; if closed, do this until once around and back at start index (nIndex); if not + // closed, until last point (nCount - 1). Use nIndex as stop criteria + do + { + // get BezierSegment and tangent at the *beginning* of segment + rCandidate.getBezierSegment(nCurrent, aSegment); + aRetval = aSegment.getTangent(0.0); + + if(!aRetval.equalZero()) + { + // if we have a tangent, return it + return aRetval; + } + + // prepare next index + nCurrent = bClosed ? (nCurrent + 1) % nCount : nCurrent + 1 < nCount ? nCurrent + 1 : nIndex; + } + while(nCurrent != nIndex); + + return aRetval; + } + + // converters for css::drawing::PointSequence + + B2DPolygon UnoPointSequenceToB2DPolygon( + const css::drawing::PointSequence& rPointSequenceSource) + { + B2DPolygon aRetval; + const sal_uInt32 nLength(rPointSequenceSource.getLength()); + + if(nLength) + { + aRetval.reserve(nLength); + const css::awt::Point* pArray = rPointSequenceSource.getConstArray(); + const css::awt::Point* pArrayEnd = pArray + rPointSequenceSource.getLength(); + + for(;pArray != pArrayEnd; pArray++) + { + aRetval.append(B2DPoint(pArray->X, pArray->Y)); + } + + // check for closed state flag + utils::checkClosed(aRetval); + } + + return aRetval; + } + + void B2DPolygonToUnoPointSequence( + const B2DPolygon& rPolygon, + css::drawing::PointSequence& rPointSequenceRetval) + { + B2DPolygon aPolygon(rPolygon); + + if(aPolygon.areControlPointsUsed()) + { + OSL_ENSURE(false, "B2DPolygonToUnoPointSequence: Source contains bezier segments, wrong UNO API data type may be used (!)"); + aPolygon = aPolygon.getDefaultAdaptiveSubdivision(); + } + + const sal_uInt32 nPointCount(aPolygon.count()); + + if(nPointCount) + { + // Take closed state into account, the API polygon still uses the old closed definition + // with last/first point are identical (cannot hold information about open polygons with identical + // first and last point, though) + const bool bIsClosed(aPolygon.isClosed()); + + rPointSequenceRetval.realloc(bIsClosed ? nPointCount + 1 : nPointCount); + css::awt::Point* pSequence = rPointSequenceRetval.getArray(); + + for(sal_uInt32 b(0); b < nPointCount; b++) + { + const B2DPoint aPoint(aPolygon.getB2DPoint(b)); + const css::awt::Point aAPIPoint(fround(aPoint.getX()), fround(aPoint.getY())); + + *pSequence = aAPIPoint; + pSequence++; + } + + // copy first point if closed + if(bIsClosed) + { + *pSequence = *rPointSequenceRetval.getConstArray(); + } + } + else + { + rPointSequenceRetval.realloc(0); + } + } + + // converters for css::drawing::PointSequence and + // css::drawing::FlagSequence to B2DPolygon (curved polygons) + + B2DPolygon UnoPolygonBezierCoordsToB2DPolygon( + const css::drawing::PointSequence& rPointSequenceSource, + const css::drawing::FlagSequence& rFlagSequenceSource) + { + const sal_uInt32 nCount(static_cast<sal_uInt32>(rPointSequenceSource.getLength())); + OSL_ENSURE(nCount == static_cast<sal_uInt32>(rFlagSequenceSource.getLength()), + "UnoPolygonBezierCoordsToB2DPolygon: Unequal count of Points and Flags (!)"); + + // prepare new polygon + B2DPolygon aRetval; + + if(0 != nCount) + { + const css::awt::Point* pPointSequence = rPointSequenceSource.getConstArray(); + const css::drawing::PolygonFlags* pFlagSequence = rFlagSequenceSource.getConstArray(); + + // get first point and flag + B2DPoint aNewCoordinatePair(pPointSequence->X, pPointSequence->Y); pPointSequence++; + css::drawing::PolygonFlags ePolygonFlag(*pFlagSequence); pFlagSequence++; + B2DPoint aControlA; + B2DPoint aControlB; + + // first point is not allowed to be a control point + OSL_ENSURE(ePolygonFlag != css::drawing::PolygonFlags_CONTROL, + "UnoPolygonBezierCoordsToB2DPolygon: Start point is a control point, illegal input polygon (!)"); + + // add first point as start point + aRetval.append(aNewCoordinatePair); + + for(sal_uInt32 b(1); b < nCount;) + { + // prepare loop + bool bControlA(false); + bool bControlB(false); + + // get next point and flag + aNewCoordinatePair = B2DPoint(pPointSequence->X, pPointSequence->Y); + ePolygonFlag = *pFlagSequence; + pPointSequence++; pFlagSequence++; b++; + + if(b < nCount && ePolygonFlag == css::drawing::PolygonFlags_CONTROL) + { + aControlA = aNewCoordinatePair; + bControlA = true; + + // get next point and flag + aNewCoordinatePair = B2DPoint(pPointSequence->X, pPointSequence->Y); + ePolygonFlag = *pFlagSequence; + pPointSequence++; pFlagSequence++; b++; + } + + if(b < nCount && ePolygonFlag == css::drawing::PolygonFlags_CONTROL) + { + aControlB = aNewCoordinatePair; + bControlB = true; + + // get next point and flag + aNewCoordinatePair = B2DPoint(pPointSequence->X, pPointSequence->Y); + ePolygonFlag = *pFlagSequence; + pPointSequence++; pFlagSequence++; b++; + } + + // two or no control points are consumed, another one would be an error. + // It's also an error if only one control point was read + SAL_WARN_IF(ePolygonFlag == css::drawing::PolygonFlags_CONTROL || bControlA != bControlB, + "basegfx", "UnoPolygonBezierCoordsToB2DPolygon: Illegal source polygon (!)"); + + // the previous writes used the B2DPolyPolygon -> utils::PolyPolygon converter + // which did not create minimal PolyPolygons, but created all control points + // as null vectors (identical points). Because of the former P(CA)(CB)-norm of + // B2DPolygon and it's unused sign of being the zero-vector and CA and CB being + // relative to P, an empty edge was exported as P == CA == CB. Luckily, the new + // export format can be read without errors by the old OOo-versions, so we need only + // to correct here at read and do not need to export a wrong but compatible version + // for the future. + if(bControlA + && aControlA.equal(aControlB) + && aControlA.equal(aRetval.getB2DPoint(aRetval.count() - 1))) + { + bControlA = false; + } + + if(bControlA) + { + // add bezier edge + aRetval.appendBezierSegment(aControlA, aControlB, aNewCoordinatePair); + } + else + { + // add edge + aRetval.append(aNewCoordinatePair); + } + } + + // #i72807# API import uses old line start/end-equal definition for closed, + // so we need to correct this to closed state here + checkClosed(aRetval); + } + + return aRetval; + } + + void B2DPolygonToUnoPolygonBezierCoords( + const B2DPolygon& rPolygon, + css::drawing::PointSequence& rPointSequenceRetval, + css::drawing::FlagSequence& rFlagSequenceRetval) + { + const sal_uInt32 nPointCount(rPolygon.count()); + + if(nPointCount) + { + const bool bCurve(rPolygon.areControlPointsUsed()); + const bool bClosed(rPolygon.isClosed()); + + if(bCurve) + { + // calculate target point count + const sal_uInt32 nLoopCount(bClosed ? nPointCount : nPointCount - 1); + + if(nLoopCount) + { + // prepare target data. The real needed number of target points (and flags) + // could only be calculated by using two loops, so use dynamic memory + std::vector< css::awt::Point > aCollectPoints; + std::vector< css::drawing::PolygonFlags > aCollectFlags; + + // reserve maximum creatable points + const sal_uInt32 nMaxTargetCount((nLoopCount * 3) + 1); + aCollectPoints.reserve(nMaxTargetCount); + aCollectFlags.reserve(nMaxTargetCount); + + // prepare current bezier segment by setting start point + B2DCubicBezier aBezierSegment; + aBezierSegment.setStartPoint(rPolygon.getB2DPoint(0)); + + for(sal_uInt32 a(0); a < nLoopCount; a++) + { + // add current point (always) and remember StartPointIndex for evtl. later corrections + const sal_uInt32 nStartPointIndex(aCollectPoints.size()); + aCollectPoints.emplace_back( + fround(aBezierSegment.getStartPoint().getX()), + fround(aBezierSegment.getStartPoint().getY())); + aCollectFlags.push_back(css::drawing::PolygonFlags_NORMAL); + + // prepare next segment + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + aBezierSegment.setEndPoint(rPolygon.getB2DPoint(nNextIndex)); + aBezierSegment.setControlPointA(rPolygon.getNextControlPoint(a)); + aBezierSegment.setControlPointB(rPolygon.getPrevControlPoint(nNextIndex)); + + if(aBezierSegment.isBezier()) + { + // if bezier is used, add always two control points due to the old schema + aCollectPoints.emplace_back( + fround(aBezierSegment.getControlPointA().getX()), + fround(aBezierSegment.getControlPointA().getY())); + aCollectFlags.push_back(css::drawing::PolygonFlags_CONTROL); + + aCollectPoints.emplace_back( + fround(aBezierSegment.getControlPointB().getX()), + fround(aBezierSegment.getControlPointB().getY())); + aCollectFlags.push_back(css::drawing::PolygonFlags_CONTROL); + } + + // test continuity with previous control point to set flag value + if(aBezierSegment.getControlPointA() != aBezierSegment.getStartPoint() && (bClosed || a)) + { + const B2VectorContinuity eCont(rPolygon.getContinuityInPoint(a)); + + if(eCont == B2VectorContinuity::C1) + { + aCollectFlags[nStartPointIndex] = css::drawing::PolygonFlags_SMOOTH; + } + else if(eCont == B2VectorContinuity::C2) + { + aCollectFlags[nStartPointIndex] = css::drawing::PolygonFlags_SYMMETRIC; + } + } + + // prepare next loop + aBezierSegment.setStartPoint(aBezierSegment.getEndPoint()); + } + + if(bClosed) + { + // add first point again as closing point due to old definition + aCollectPoints.push_back(aCollectPoints[0]); + aCollectFlags.push_back(css::drawing::PolygonFlags_NORMAL); + } + else + { + // add last point as closing point + const B2DPoint aClosingPoint(rPolygon.getB2DPoint(nPointCount - 1)); + aCollectPoints.emplace_back( + fround(aClosingPoint.getX()), + fround(aClosingPoint.getY())); + aCollectFlags.push_back(css::drawing::PolygonFlags_NORMAL); + } + + // copy collected data to target arrays + const sal_uInt32 nTargetCount(aCollectPoints.size()); + OSL_ENSURE(nTargetCount == aCollectFlags.size(), "Unequal Point and Flag count (!)"); + + rPointSequenceRetval.realloc(static_cast<sal_Int32>(nTargetCount)); + rFlagSequenceRetval.realloc(static_cast<sal_Int32>(nTargetCount)); + css::awt::Point* pPointSequence = rPointSequenceRetval.getArray(); + css::drawing::PolygonFlags* pFlagSequence = rFlagSequenceRetval.getArray(); + + for(sal_uInt32 a(0); a < nTargetCount; a++) + { + *pPointSequence = aCollectPoints[a]; + *pFlagSequence = aCollectFlags[a]; + pPointSequence++; + pFlagSequence++; + } + } + } + else + { + // straightforward point list creation + const sal_uInt32 nTargetCount(nPointCount + (bClosed ? 1 : 0)); + + rPointSequenceRetval.realloc(static_cast<sal_Int32>(nTargetCount)); + rFlagSequenceRetval.realloc(static_cast<sal_Int32>(nTargetCount)); + + css::awt::Point* pPointSequence = rPointSequenceRetval.getArray(); + css::drawing::PolygonFlags* pFlagSequence = rFlagSequenceRetval.getArray(); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B2DPoint aB2DPoint(rPolygon.getB2DPoint(a)); + const css::awt::Point aAPIPoint( + fround(aB2DPoint.getX()), + fround(aB2DPoint.getY())); + + *pPointSequence = aAPIPoint; + *pFlagSequence = css::drawing::PolygonFlags_NORMAL; + pPointSequence++; + pFlagSequence++; + } + + if(bClosed) + { + // add first point as closing point + *pPointSequence = *rPointSequenceRetval.getConstArray(); + *pFlagSequence = css::drawing::PolygonFlags_NORMAL; + } + } + } + else + { + rPointSequenceRetval.realloc(0); + rFlagSequenceRetval.realloc(0); + } + } + +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dpolygontriangulator.cxx b/basegfx/source/polygon/b2dpolygontriangulator.cxx new file mode 100644 index 000000000..5fbd3960e --- /dev/null +++ b/basegfx/source/polygon/b2dpolygontriangulator.cxx @@ -0,0 +1,435 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/polygon/b2dpolygontriangulator.hxx> +#include <basegfx/point/b2dpoint.hxx> +#include <basegfx/polygon/b2dpolygon.hxx> +#include <basegfx/polygon/b2dpolypolygon.hxx> +#include <basegfx/vector/b2dvector.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/polygon/b2dpolypolygontools.hxx> +#include <basegfx/range/b2drange.hxx> +#include <basegfx/numeric/ftools.hxx> + +#include <algorithm> + +namespace basegfx +{ + namespace + { + class EdgeEntry + { + EdgeEntry* mpNext; + B2DPoint maStart; + B2DPoint maEnd; + double mfAtan2; + + public: + EdgeEntry(const B2DPoint& rStart, const B2DPoint& rEnd) + : mpNext(nullptr), + maStart(rStart), + maEnd(rEnd), + mfAtan2(0.0) + { + // make sure edge goes down. If horizontal, let it go to the right (left-handed). + bool bSwap(false); + + if(::basegfx::fTools::equal(maStart.getY(), maEnd.getY())) + { + if(maStart.getX() > maEnd.getX()) + { + bSwap = true; + } + } + else if(maStart.getY() > maEnd.getY()) + { + bSwap = true; + } + + if(bSwap) + { + maStart = rEnd; + maEnd = rStart; + } + + mfAtan2 = atan2(maEnd.getY() - maStart.getY(), maEnd.getX() - maStart.getX()); + } + + bool operator<(const EdgeEntry& rComp) const + { + if(::basegfx::fTools::equal(maStart.getY(), rComp.maStart.getY())) + { + if(::basegfx::fTools::equal(maStart.getX(), rComp.maStart.getX())) + { + // same in x and y -> same start point. Sort emitting vectors from left to right. + return (mfAtan2 > rComp.mfAtan2); + } + + return (maStart.getX() < rComp.maStart.getX()); + } + + return (maStart.getY() < rComp.maStart.getY()); + } + + bool operator==(const EdgeEntry& rComp) const + { + return (maStart.equal(rComp.maStart) && maEnd.equal(rComp.maEnd)); + } + + bool operator!=(const EdgeEntry& rComp) const + { + return !(*this == rComp); + } + + const B2DPoint& getStart() const { return maStart; } + const B2DPoint& getEnd() const { return maEnd; } + + EdgeEntry* getNext() const { return mpNext; } + void setNext(EdgeEntry* pNext) { mpNext = pNext; } + }; + + typedef std::vector< EdgeEntry > EdgeEntries; + + class Triangulator + { + EdgeEntry* mpList; + EdgeEntries maStartEntries; + std::vector< std::unique_ptr<EdgeEntry> > maNewEdgeEntries; + triangulator::B2DTriangleVector maResult; + + void handleClosingEdge(const B2DPoint& rStart, const B2DPoint& rEnd); + bool CheckPointInTriangle(EdgeEntry* pEdgeA, EdgeEntry const * pEdgeB, const B2DPoint& rTestPoint); + void createTriangle(const B2DPoint& rA, const B2DPoint& rB, const B2DPoint& rC); + + public: + explicit Triangulator(const B2DPolyPolygon& rCandidate); + + const triangulator::B2DTriangleVector& getResult() const { return maResult; } + }; + + void Triangulator::handleClosingEdge(const B2DPoint& rStart, const B2DPoint& rEnd) + { + // create an entry, else the comparison might use the wrong edges + EdgeEntry aNew(rStart, rEnd); + EdgeEntry* pCurr = mpList; + EdgeEntry* pPrev = nullptr; + + while(pCurr + && pCurr->getStart().getY() <= aNew.getStart().getY() + && *pCurr != aNew) + { + pPrev = pCurr; + pCurr = pCurr->getNext(); + } + + if(pCurr && *pCurr == aNew) + { + // found closing edge, remove + if(pPrev) + { + pPrev->setNext(pCurr->getNext()); + } + else + { + mpList = pCurr->getNext(); + } + } + else + { + // insert closing edge + EdgeEntry* pNew = new EdgeEntry(aNew); + maNewEdgeEntries.emplace_back(pNew); + pCurr = mpList; + pPrev = nullptr; + + while(pCurr && *pCurr < *pNew) + { + pPrev = pCurr; + pCurr = pCurr->getNext(); + } + + if(pPrev) + { + pNew->setNext(pPrev->getNext()); + pPrev->setNext(pNew); + } + else + { + pNew->setNext(mpList); + mpList = pNew; + } + } + } + + bool Triangulator::CheckPointInTriangle(EdgeEntry* pEdgeA, EdgeEntry const * pEdgeB, const B2DPoint& rTestPoint) + { + // inside triangle or on edge? + if(!utils::isPointInTriangle(pEdgeA->getStart(), pEdgeA->getEnd(), pEdgeB->getEnd(), rTestPoint, true)) + return true; + + // but not on point + if(!rTestPoint.equal(pEdgeA->getEnd()) && !rTestPoint.equal(pEdgeB->getEnd())) + { + // found point in triangle -> split triangle inserting two edges + EdgeEntry* pStart = new EdgeEntry(pEdgeA->getStart(), rTestPoint); + EdgeEntry* pEnd = new EdgeEntry(*pStart); + maNewEdgeEntries.emplace_back(pStart); + maNewEdgeEntries.emplace_back(pEnd); + + pStart->setNext(pEnd); + pEnd->setNext(pEdgeA->getNext()); + pEdgeA->setNext(pStart); + + return false; + } + + return true; + } + + void Triangulator::createTriangle(const B2DPoint& rA, const B2DPoint& rB, const B2DPoint& rC) + { + maResult.emplace_back( + rA, + rB, + rC); + } + + // consume as long as there are edges + Triangulator::Triangulator(const B2DPolyPolygon& rCandidate) + : mpList(nullptr) + { + // add all available edges to the single linked local list which will be sorted + // by Y,X,atan2 when adding nodes + if(rCandidate.count()) + { + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + const B2DPolygon& aPolygonCandidate(rCandidate.getB2DPolygon(a)); + const sal_uInt32 nCount(aPolygonCandidate.count()); + + if(nCount > 2) + { + B2DPoint aPrevPnt(aPolygonCandidate.getB2DPoint(nCount - 1)); + + for(sal_uInt32 b(0); b < nCount; b++) + { + B2DPoint aNextPnt(aPolygonCandidate.getB2DPoint(b)); + + if( !aPrevPnt.equal(aNextPnt) ) + { + maStartEntries.emplace_back(aPrevPnt, aNextPnt); + } + + aPrevPnt = aNextPnt; + } + } + } + + if(!maStartEntries.empty()) + { + // sort initial list + std::sort(maStartEntries.begin(), maStartEntries.end()); + + // insert to own simply linked list + EdgeEntries::iterator aPos(maStartEntries.begin()); + mpList = &(*aPos++); + EdgeEntry* pLast = mpList; + + while(aPos != maStartEntries.end()) + { + EdgeEntry* pEntry = &(*aPos++); + pLast->setNext(pEntry); + pLast = pEntry; + } + } + } + + while(mpList) + { + if(mpList->getNext() && mpList->getNext()->getStart().equal(mpList->getStart())) + { + // next candidate. There are two edges and start point is equal. + // Length is not zero. + EdgeEntry* pEdgeA = mpList; + EdgeEntry* pEdgeB = pEdgeA->getNext(); + + if( pEdgeA->getEnd().equal(pEdgeB->getEnd()) ) + { + // start and end equal -> neutral triangle, delete both + mpList = pEdgeB->getNext(); + } + else + { + const B2DVector aLeft(pEdgeA->getEnd() - pEdgeA->getStart()); + const B2DVector aRight(pEdgeB->getEnd() - pEdgeA->getStart()); + + if(getOrientation(aLeft, aRight) == B2VectorOrientation::Neutral) + { + // edges are parallel and have different length -> neutral triangle, + // delete both edges and handle closing edge + mpList = pEdgeB->getNext(); + handleClosingEdge(pEdgeA->getEnd(), pEdgeB->getEnd()); + } + else + { + // not parallel, look for points inside + B2DRange aRange(pEdgeA->getStart(), pEdgeA->getEnd()); + aRange.expand(pEdgeB->getEnd()); + EdgeEntry* pTestEdge = pEdgeB->getNext(); + bool bNoPointInTriangle(true); + + // look for start point in triangle + while(bNoPointInTriangle && pTestEdge) + { + if(aRange.getMaxY() < pTestEdge->getStart().getY()) + { + // edge is below test range and edges are sorted -> stop looking + break; + } + else + { + // do not look for edges with same start point, they are sorted and cannot end inside. + if(!pTestEdge->getStart().equal(pEdgeA->getStart())) + { + if(aRange.isInside(pTestEdge->getStart())) + { + bNoPointInTriangle = CheckPointInTriangle(pEdgeA, pEdgeB, pTestEdge->getStart()); + } + } + } + + // next candidate + pTestEdge = pTestEdge->getNext(); + } + + if(bNoPointInTriangle) + { + // look for end point in triangle + pTestEdge = pEdgeB->getNext(); + + while(bNoPointInTriangle && pTestEdge) + { + if(aRange.getMaxY() < pTestEdge->getStart().getY()) + { + // edge is below test range and edges are sorted -> stop looking + break; + } + else + { + // do not look for edges with same end point, they are sorted and cannot end inside. + if(!pTestEdge->getEnd().equal(pEdgeA->getStart())) + { + if(aRange.isInside(pTestEdge->getEnd())) + { + bNoPointInTriangle = CheckPointInTriangle(pEdgeA, pEdgeB, pTestEdge->getEnd()); + } + } + } + + // next candidate + pTestEdge = pTestEdge->getNext(); + } + } + + if(bNoPointInTriangle) + { + // create triangle, remove edges, handle closing edge + mpList = pEdgeB->getNext(); + createTriangle(pEdgeA->getStart(), pEdgeB->getEnd(), pEdgeA->getEnd()); + handleClosingEdge(pEdgeA->getEnd(), pEdgeB->getEnd()); + } + } + } + } + else + { + // only one entry at start point, delete it + mpList = mpList->getNext(); + } + } + } + + } // end of anonymous namespace +} // end of namespace basegfx + +namespace basegfx::triangulator +{ + B2DTriangleVector triangulate(const B2DPolygon& rCandidate) + { + B2DTriangleVector aRetval; + + // subdivide locally (triangulate does not work with beziers), remove double and neutral points + B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? utils::adaptiveSubdivideByAngle(rCandidate) : rCandidate); + aCandidate.removeDoublePoints(); + aCandidate = utils::removeNeutralPoints(aCandidate); + + if(aCandidate.count() == 2) + { + // candidate IS a triangle, just append + aRetval.emplace_back( + aCandidate.getB2DPoint(0), + aCandidate.getB2DPoint(1), + aCandidate.getB2DPoint(2)); + } + else if(aCandidate.count() > 2) + { + if(utils::isConvex(aCandidate)) + { + // polygon is convex, just use a triangle fan + utils::addTriangleFan(aCandidate, aRetval); + } + else + { + // polygon is concave. + const B2DPolyPolygon aCandPolyPoly(aCandidate); + Triangulator aTriangulator(aCandPolyPoly); + + aRetval = aTriangulator.getResult(); + } + } + + return aRetval; + } + + B2DTriangleVector triangulate(const B2DPolyPolygon& rCandidate) + { + B2DTriangleVector aRetval; + + // subdivide locally (triangulate does not work with beziers) + B2DPolyPolygon aCandidate(rCandidate.areControlPointsUsed() ? utils::adaptiveSubdivideByAngle(rCandidate) : rCandidate); + + if(aCandidate.count() == 1) + { + // single polygon -> single polygon triangulation + const B2DPolygon& aSinglePolygon(aCandidate.getB2DPolygon(0)); + + aRetval = triangulate(aSinglePolygon); + } + else + { + Triangulator aTriangulator(aCandidate); + + aRetval = aTriangulator.getResult(); + } + + return aRetval; + } +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dpolypolygon.cxx b/basegfx/source/polygon/b2dpolypolygon.cxx new file mode 100644 index 000000000..4a81a82c4 --- /dev/null +++ b/basegfx/source/polygon/b2dpolypolygon.cxx @@ -0,0 +1,441 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <sal/config.h> + +#include <utility> + +#include <basegfx/polygon/b2dpolypolygon.hxx> +#include <osl/diagnose.h> +#include <basegfx/polygon/b2dpolygon.hxx> +#include <basegfx/matrix/b2dhommatrix.hxx> +#include <basegfx/utils/systemdependentdata.hxx> + +namespace basegfx +{ + +class ImplB2DPolyPolygon +{ + basegfx::B2DPolygonVector maPolygons; + std::unique_ptr< basegfx::SystemDependentDataHolder > mpSystemDependentDataHolder; + +public: + ImplB2DPolyPolygon() + { + } + + explicit ImplB2DPolyPolygon(const ImplB2DPolyPolygon& rSource) + : maPolygons(rSource.maPolygons) + { + } + + explicit ImplB2DPolyPolygon(const basegfx::B2DPolygon& rToBeCopied) + : maPolygons(1,rToBeCopied) + { + } + + ImplB2DPolyPolygon& operator=(const ImplB2DPolyPolygon& rSource) + { + if (this != &rSource) + { + maPolygons = rSource.maPolygons; + mpSystemDependentDataHolder.reset(); + } + + return *this; + } + + void addOrReplaceSystemDependentData(basegfx::SystemDependentData_SharedPtr& rData) + { + if(!mpSystemDependentDataHolder) + { + mpSystemDependentDataHolder.reset(new basegfx::SystemDependentDataHolder()); + } + + mpSystemDependentDataHolder->addOrReplaceSystemDependentData(rData); + } + + basegfx::SystemDependentData_SharedPtr getSystemDependentData(size_t hash_code) const + { + if(!mpSystemDependentDataHolder) + { + return basegfx::SystemDependentData_SharedPtr(); + } + + return mpSystemDependentDataHolder->getSystemDependentData(hash_code); + } + + bool operator==(const ImplB2DPolyPolygon& rPolygonList) const + { + return maPolygons == rPolygonList.maPolygons; + } + + const basegfx::B2DPolygon& getB2DPolygon(sal_uInt32 nIndex) const + { + return maPolygons[nIndex]; + } + + void setB2DPolygon(sal_uInt32 nIndex, const basegfx::B2DPolygon& rPolygon) + { + maPolygons[nIndex] = rPolygon; + } + + void insert(sal_uInt32 nIndex, const basegfx::B2DPolygon& rPolygon, sal_uInt32 nCount) + { + if(nCount) + { + // add nCount copies of rPolygon + basegfx::B2DPolygonVector::iterator aIndex(maPolygons.begin()); + if( nIndex ) + aIndex += nIndex; + maPolygons.insert(aIndex, nCount, rPolygon); + } + } + + void insert(sal_uInt32 nIndex, const basegfx::B2DPolyPolygon& rPolyPolygon) + { + // add nCount polygons from rPolyPolygon + basegfx::B2DPolygonVector::iterator aIndex(maPolygons.begin()); + if( nIndex ) + aIndex += nIndex; + maPolygons.insert(aIndex, rPolyPolygon.begin(), rPolyPolygon.end()); + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(nCount) + { + // remove polygon data + basegfx::B2DPolygonVector::iterator aStart(maPolygons.begin()); + aStart += nIndex; + const basegfx::B2DPolygonVector::iterator aEnd(aStart + nCount); + + maPolygons.erase(aStart, aEnd); + } + } + + sal_uInt32 count() const + { + return maPolygons.size(); + } + + void setClosed(bool bNew) + { + for(basegfx::B2DPolygon & rPolygon : maPolygons) + { + rPolygon.setClosed(bNew); + } + } + + void flip() + { + for (auto& aPolygon : maPolygons) + aPolygon.flip(); + } + + void removeDoublePoints() + { + for (auto& aPolygon : maPolygons) + aPolygon.removeDoublePoints(); + } + + void transform(const basegfx::B2DHomMatrix& rMatrix) + { + for (auto& aPolygon : maPolygons) + aPolygon.transform(rMatrix); + } + + void makeUnique() + { + for (auto& aPolygon : maPolygons) + aPolygon.makeUnique(); + } + + const basegfx::B2DPolygon* begin() const + { + if (maPolygons.empty()) + return nullptr; + else + return maPolygons.data(); + } + + const basegfx::B2DPolygon* end() const + { + if (maPolygons.empty()) + return nullptr; + else + return maPolygons.data() + maPolygons.size(); + } + + basegfx::B2DPolygon* begin() + { + if (maPolygons.empty()) + return nullptr; + else + return maPolygons.data(); + } + + basegfx::B2DPolygon* end() + { + if (maPolygons.empty()) + return nullptr; + else + return maPolygons.data() + maPolygons.size(); + } +}; + + static o3tl::cow_wrapper<ImplB2DPolyPolygon> DEFAULT; + + B2DPolyPolygon::B2DPolyPolygon() : + mpPolyPolygon(DEFAULT) {} + + B2DPolyPolygon::B2DPolyPolygon(const B2DPolyPolygon&) = default; + + B2DPolyPolygon::B2DPolyPolygon(B2DPolyPolygon&&) = default; + + B2DPolyPolygon::B2DPolyPolygon(const B2DPolygon& rPolygon) : + mpPolyPolygon( ImplB2DPolyPolygon(rPolygon) ) + { + } + + B2DPolyPolygon::~B2DPolyPolygon() = default; + + B2DPolyPolygon& B2DPolyPolygon::operator=(const B2DPolyPolygon&) = default; + + B2DPolyPolygon& B2DPolyPolygon::operator=(B2DPolyPolygon&&) = default; + + void B2DPolyPolygon::makeUnique() + { + mpPolyPolygon.make_unique(); + mpPolyPolygon->makeUnique(); + } + + bool B2DPolyPolygon::operator==(const B2DPolyPolygon& rPolyPolygon) const + { + if(mpPolyPolygon.same_object(rPolyPolygon.mpPolyPolygon)) + return true; + + return ((*mpPolyPolygon) == (*rPolyPolygon.mpPolyPolygon)); + } + + bool B2DPolyPolygon::operator!=(const B2DPolyPolygon& rPolyPolygon) const + { + return !((*this) == rPolyPolygon); + } + + sal_uInt32 B2DPolyPolygon::count() const + { + return mpPolyPolygon->count(); + } + + B2DPolygon const & B2DPolyPolygon::getB2DPolygon(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolyPolygon->count(), "B2DPolyPolygon access outside range (!)"); + + return mpPolyPolygon->getB2DPolygon(nIndex); + } + + void B2DPolyPolygon::setB2DPolygon(sal_uInt32 nIndex, const B2DPolygon& rPolygon) + { + OSL_ENSURE(nIndex < std::as_const(mpPolyPolygon)->count(), "B2DPolyPolygon access outside range (!)"); + + if(getB2DPolygon(nIndex) != rPolygon) + mpPolyPolygon->setB2DPolygon(nIndex, rPolygon); + } + + bool B2DPolyPolygon::areControlPointsUsed() const + { + for(sal_uInt32 a(0); a < mpPolyPolygon->count(); a++) + { + const B2DPolygon& rPolygon = mpPolyPolygon->getB2DPolygon(a); + + if(rPolygon.areControlPointsUsed()) + { + return true; + } + } + + return false; + } + + void B2DPolyPolygon::insert(sal_uInt32 nIndex, const B2DPolygon& rPolygon, sal_uInt32 nCount) + { + OSL_ENSURE(nIndex <= std::as_const(mpPolyPolygon)->count(), "B2DPolyPolygon Insert outside range (!)"); + + if(nCount) + mpPolyPolygon->insert(nIndex, rPolygon, nCount); + } + + void B2DPolyPolygon::append(const B2DPolygon& rPolygon, sal_uInt32 nCount) + { + if(nCount) + mpPolyPolygon->insert(std::as_const(mpPolyPolygon)->count(), rPolygon, nCount); + } + + B2DPolyPolygon B2DPolyPolygon::getDefaultAdaptiveSubdivision() const + { + B2DPolyPolygon aRetval; + + for(sal_uInt32 a(0); a < mpPolyPolygon->count(); a++) + { + aRetval.append(mpPolyPolygon->getB2DPolygon(a).getDefaultAdaptiveSubdivision()); + } + + return aRetval; + } + + B2DRange B2DPolyPolygon::getB2DRange() const + { + B2DRange aRetval; + + for(sal_uInt32 a(0); a < mpPolyPolygon->count(); a++) + { + aRetval.expand(mpPolyPolygon->getB2DPolygon(a).getB2DRange()); + } + + return aRetval; + } + + void B2DPolyPolygon::insert(sal_uInt32 nIndex, const B2DPolyPolygon& rPolyPolygon) + { + OSL_ENSURE(nIndex <= std::as_const(mpPolyPolygon)->count(), "B2DPolyPolygon Insert outside range (!)"); + + if(rPolyPolygon.count()) + mpPolyPolygon->insert(nIndex, rPolyPolygon); + } + + void B2DPolyPolygon::append(const B2DPolyPolygon& rPolyPolygon) + { + if(rPolyPolygon.count()) + mpPolyPolygon->insert(std::as_const(mpPolyPolygon)->count(), rPolyPolygon); + } + + void B2DPolyPolygon::remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + OSL_ENSURE(nIndex + nCount <= std::as_const(mpPolyPolygon)->count(), "B2DPolyPolygon Remove outside range (!)"); + + if(nCount) + mpPolyPolygon->remove(nIndex, nCount); + } + + void B2DPolyPolygon::clear() + { + *mpPolyPolygon = ImplB2DPolyPolygon(); + } + + bool B2DPolyPolygon::isClosed() const + { + bool bRetval(true); + + // PolyPOlygon is closed when all contained Polygons are closed or + // no Polygon exists. + for(sal_uInt32 a(0); bRetval && a < mpPolyPolygon->count(); a++) + { + if(!mpPolyPolygon->getB2DPolygon(a).isClosed()) + { + bRetval = false; + } + } + + return bRetval; + } + + void B2DPolyPolygon::setClosed(bool bNew) + { + if(bNew != isClosed()) + mpPolyPolygon->setClosed(bNew); + } + + void B2DPolyPolygon::flip() + { + if(std::as_const(mpPolyPolygon)->count()) + { + mpPolyPolygon->flip(); + } + } + + bool B2DPolyPolygon::hasDoublePoints() const + { + bool bRetval(false); + + for(sal_uInt32 a(0); !bRetval && a < mpPolyPolygon->count(); a++) + { + if(mpPolyPolygon->getB2DPolygon(a).hasDoublePoints()) + { + bRetval = true; + } + } + + return bRetval; + } + + void B2DPolyPolygon::removeDoublePoints() + { + if(hasDoublePoints()) + mpPolyPolygon->removeDoublePoints(); + } + + void B2DPolyPolygon::transform(const B2DHomMatrix& rMatrix) + { + if(std::as_const(mpPolyPolygon)->count() && !rMatrix.isIdentity()) + { + mpPolyPolygon->transform(rMatrix); + } + } + + const B2DPolygon* B2DPolyPolygon::begin() const + { + return mpPolyPolygon->begin(); + } + + const B2DPolygon* B2DPolyPolygon::end() const + { + return mpPolyPolygon->end(); + } + + B2DPolygon* B2DPolyPolygon::begin() + { + return mpPolyPolygon->begin(); + } + + B2DPolygon* B2DPolyPolygon::end() + { + return mpPolyPolygon->end(); + } + + void B2DPolyPolygon::addOrReplaceSystemDependentDataInternal(SystemDependentData_SharedPtr& rData) const + { + // Need to get ImplB2DPolyPolygon* from cow_wrapper *without* + // calling make_unique() here - we do not want to + // 'modify' the ImplB2DPolyPolygon, but add buffered data that + // is valid for all referencing instances + const B2DPolyPolygon* pMe(this); + const ImplB2DPolyPolygon* pMyImpl(pMe->mpPolyPolygon.get()); + + const_cast<ImplB2DPolyPolygon*>(pMyImpl)->addOrReplaceSystemDependentData(rData); + } + + SystemDependentData_SharedPtr B2DPolyPolygon::getSystemDependantDataInternal(size_t hash_code) const + { + return mpPolyPolygon->getSystemDependentData(hash_code); + } + +} // end of namespace basegfx + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dpolypolygoncutter.cxx b/basegfx/source/polygon/b2dpolypolygoncutter.cxx new file mode 100644 index 000000000..b548939f3 --- /dev/null +++ b/basegfx/source/polygon/b2dpolypolygoncutter.cxx @@ -0,0 +1,1149 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/numeric/ftools.hxx> +#include <basegfx/polygon/b2dpolypolygoncutter.hxx> +#include <basegfx/point/b2dpoint.hxx> +#include <basegfx/vector/b2dvector.hxx> +#include <basegfx/polygon/b2dpolygon.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/polygon/b2dpolygoncutandtouch.hxx> +#include <basegfx/range/b2drange.hxx> +#include <basegfx/polygon/b2dpolypolygontools.hxx> +#include <basegfx/curve/b2dcubicbezier.hxx> +#include <sal/log.hxx> +#include <utility> +#include <vector> +#include <algorithm> + +namespace basegfx +{ + namespace + { + + struct StripHelper + { + B2DRange maRange; + sal_Int32 mnDepth; + B2VectorOrientation meOrinetation; + }; + + struct PN + { + public: + B2DPoint maPoint; + sal_uInt32 mnI; + sal_uInt32 mnIP; + sal_uInt32 mnIN; + }; + + struct VN + { + public: + B2DVector maPrev; + B2DVector maNext; + + // to have the correct curve segments in the crossover checks, + // it is necessary to keep the original next vectors, too. Else, + // it may happen to use an already switched next vector which + // would interpolate the wrong comparison point + B2DVector maOriginalNext; + }; + + struct SN + { + public: + PN* mpPN; + + bool operator<(const SN& rComp) const + { + if(fTools::equal(mpPN->maPoint.getX(), rComp.mpPN->maPoint.getX())) + { + if(fTools::equal(mpPN->maPoint.getY(), rComp.mpPN->maPoint.getY())) + { + return (mpPN->mnI < rComp.mpPN->mnI); + } + else + { + return fTools::less(mpPN->maPoint.getY(), rComp.mpPN->maPoint.getY()); + } + } + else + { + return fTools::less(mpPN->maPoint.getX(), rComp.mpPN->maPoint.getX()); + } + } + }; + + typedef std::vector< PN > PNV; + typedef std::vector< VN > VNV; + typedef std::vector< SN > SNV; + typedef std::pair< basegfx::B2DPoint /*orig*/, basegfx::B2DPoint /*repl*/ > CorrectionPair; + + class solver + { + private: + const B2DPolyPolygon maOriginal; + PNV maPNV; + VNV maVNV; + SNV maSNV; + std::vector< CorrectionPair > + maCorrectionTable; + + bool mbIsCurve : 1; + bool mbChanged : 1; + + void impAddPolygon(const sal_uInt32 aPos, const B2DPolygon& rGeometry) + { + const sal_uInt32 nCount(rGeometry.count()); + PN aNewPN; + VN aNewVN; + SN aNewSN; + + for(sal_uInt32 a(0); a < nCount; a++) + { + const B2DPoint aPoint(rGeometry.getB2DPoint(a)); + aNewPN.maPoint = aPoint; + aNewPN.mnI = aPos + a; + aNewPN.mnIP = aPos + ((a != 0) ? a - 1 : nCount - 1); + aNewPN.mnIN = aPos + ((a + 1 == nCount) ? 0 : a + 1); + maPNV.push_back(aNewPN); + + if(mbIsCurve) + { + aNewVN.maPrev = rGeometry.getPrevControlPoint(a) - aPoint; + aNewVN.maNext = rGeometry.getNextControlPoint(a) - aPoint; + aNewVN.maOriginalNext = aNewVN.maNext; + maVNV.push_back(aNewVN); + } + + aNewSN.mpPN = &maPNV[maPNV.size() - 1]; + maSNV.push_back(aNewSN); + } + } + + static bool impLeftOfEdges(const B2DVector& rVecA, const B2DVector& rVecB, const B2DVector& rTest) + { + // tests if rTest is left of both directed line segments along the line -rVecA, rVecB. Test is + // with border. + if(rVecA.cross(rVecB) > 0.0) + { + // b is left turn seen from a, test if Test is left of both and so inside (left is seen as inside) + const bool bBoolA(fTools::moreOrEqual(rVecA.cross(rTest), 0.0)); + const bool bBoolB(fTools::lessOrEqual(rVecB.cross(rTest), 0.0)); + + return (bBoolA && bBoolB); + } + else + { + // b is right turn seen from a, test if Test is right of both and so outside (left is seen as inside) + const bool bBoolA(fTools::lessOrEqual(rVecA.cross(rTest), 0.0)); + const bool bBoolB(fTools::moreOrEqual(rVecB.cross(rTest), 0.0)); + + return (!(bBoolA && bBoolB)); + } + } + + void impSwitchNext(PN& rPNa, PN& rPNb) + { + std::swap(rPNa.mnIN, rPNb.mnIN); + + if(mbIsCurve) + { + VN& rVNa = maVNV[rPNa.mnI]; + VN& rVNb = maVNV[rPNb.mnI]; + + std::swap(rVNa.maNext, rVNb.maNext); + } + + if(!mbChanged) + { + mbChanged = true; + } + } + + B2DCubicBezier createSegment(const PN& rPN, bool bPrev) const + { + const B2DPoint& rStart(rPN.maPoint); + const B2DPoint& rEnd(maPNV[bPrev ? rPN.mnIP : rPN.mnIN].maPoint); + const B2DVector& rCPA(bPrev ? maVNV[rPN.mnI].maPrev : maVNV[rPN.mnI].maNext); + // Use maOriginalNext, not maNext to create the original (yet unchanged) + // curve segment. Otherwise, this segment would NOT ne correct. + const B2DVector& rCPB(bPrev ? maVNV[maPNV[rPN.mnIP].mnI].maOriginalNext : maVNV[maPNV[rPN.mnIN].mnI].maPrev); + + return B2DCubicBezier(rStart, rStart + rCPA, rEnd + rCPB, rEnd); + } + + void impHandleCommon(PN& rPNa, PN& rPNb) + { + if(mbIsCurve) + { + const B2DCubicBezier aNextA(createSegment(rPNa, false)); + const B2DCubicBezier aPrevA(createSegment(rPNa, true)); + + if(aNextA.equal(aPrevA)) + { + // deadend on A (identical edge) + return; + } + + const B2DCubicBezier aNextB(createSegment(rPNb, false)); + const B2DCubicBezier aPrevB(createSegment(rPNb, true)); + + if(aNextB.equal(aPrevB)) + { + // deadend on B (identical edge) + return; + } + + if(aPrevA.equal(aPrevB)) + { + // common edge in same direction + return; + } + else if(aPrevA.equal(aNextB)) + { + // common edge in opposite direction + if(aNextA.equal(aPrevB)) + { + // common edge in opposite direction continues + return; + } + else + { + // common edge in opposite direction leave + impSwitchNext(rPNa, rPNb); + } + } + else if(aNextA.equal(aNextB)) + { + // common edge in same direction enter + // search leave edge + PN* pPNa2 = &maPNV[rPNa.mnIN]; + PN* pPNb2 = &maPNV[rPNb.mnIN]; + bool bOnEdge(true); + + do + { + const B2DCubicBezier aNextA2(createSegment(*pPNa2, false)); + const B2DCubicBezier aNextB2(createSegment(*pPNb2, false)); + + if(aNextA2.equal(aNextB2)) + { + pPNa2 = &maPNV[pPNa2->mnIN]; + pPNb2 = &maPNV[pPNb2->mnIN]; + } + else + { + bOnEdge = false; + } + } + while(bOnEdge && pPNa2 != &rPNa && pPNb2 != &rPNb); + + if(bOnEdge) + { + // loop over two identical polygon paths + return; + } + else + { + // enter at rPNa, rPNb; leave at pPNa2, pPNb2. No common edges + // at enter/leave. Check for crossover. + const B2DVector aPrevCA(aPrevA.interpolatePoint(0.5) - aPrevA.getStartPoint()); + const B2DVector aNextCA(aNextA.interpolatePoint(0.5) - aNextA.getStartPoint()); + const B2DVector aPrevCB(aPrevB.interpolatePoint(0.5) - aPrevB.getStartPoint()); + const bool bEnter(impLeftOfEdges(aPrevCA, aNextCA, aPrevCB)); + + const B2DCubicBezier aNextA2(createSegment(*pPNa2, false)); + const B2DCubicBezier aPrevA2(createSegment(*pPNa2, true)); + const B2DCubicBezier aNextB2(createSegment(*pPNb2, false)); + const B2DVector aPrevCA2(aPrevA2.interpolatePoint(0.5) - aPrevA2.getStartPoint()); + const B2DVector aNextCA2(aNextA2.interpolatePoint(0.5) - aNextA2.getStartPoint()); + const B2DVector aNextCB2(aNextB2.interpolatePoint(0.5) - aNextB2.getStartPoint()); + const bool bLeave(impLeftOfEdges(aPrevCA2, aNextCA2, aNextCB2)); + + if(bEnter != bLeave) + { + // crossover + impSwitchNext(rPNa, rPNb); + } + } + } + else if(aNextA.equal(aPrevB)) + { + // common edge in opposite direction enter + impSwitchNext(rPNa, rPNb); + } + else + { + // no common edges, check for crossover + const B2DVector aPrevCA(aPrevA.interpolatePoint(0.5) - aPrevA.getStartPoint()); + const B2DVector aNextCA(aNextA.interpolatePoint(0.5) - aNextA.getStartPoint()); + const B2DVector aPrevCB(aPrevB.interpolatePoint(0.5) - aPrevB.getStartPoint()); + const B2DVector aNextCB(aNextB.interpolatePoint(0.5) - aNextB.getStartPoint()); + + const bool bEnter(impLeftOfEdges(aPrevCA, aNextCA, aPrevCB)); + const bool bLeave(impLeftOfEdges(aPrevCA, aNextCA, aNextCB)); + + if(bEnter != bLeave) + { + // crossover + impSwitchNext(rPNa, rPNb); + } + } + } + else + { + const B2DPoint& rNextA(maPNV[rPNa.mnIN].maPoint); + const B2DPoint& rPrevA(maPNV[rPNa.mnIP].maPoint); + + if(rNextA.equal(rPrevA)) + { + // deadend on A + return; + } + + const B2DPoint& rNextB(maPNV[rPNb.mnIN].maPoint); + const B2DPoint& rPrevB(maPNV[rPNb.mnIP].maPoint); + + if(rNextB.equal(rPrevB)) + { + // deadend on B + return; + } + + if(rPrevA.equal(rPrevB)) + { + // common edge in same direction + return; + } + else if(rPrevA.equal(rNextB)) + { + // common edge in opposite direction + if(rNextA.equal(rPrevB)) + { + // common edge in opposite direction continues + return; + } + else + { + // common edge in opposite direction leave + impSwitchNext(rPNa, rPNb); + } + } + else if(rNextA.equal(rNextB)) + { + // common edge in same direction enter + // search leave edge + PN* pPNa2 = &maPNV[rPNa.mnIN]; + PN* pPNb2 = &maPNV[rPNb.mnIN]; + bool bOnEdge(true); + + do + { + const B2DPoint& rNextA2(maPNV[pPNa2->mnIN].maPoint); + const B2DPoint& rNextB2(maPNV[pPNb2->mnIN].maPoint); + + if(rNextA2.equal(rNextB2)) + { + pPNa2 = &maPNV[pPNa2->mnIN]; + pPNb2 = &maPNV[pPNb2->mnIN]; + } + else + { + bOnEdge = false; + } + } + while(bOnEdge && pPNa2 != &rPNa && pPNb2 != &rPNb); + + if(bOnEdge) + { + // loop over two identical polygon paths + return; + } + else + { + // enter at rPNa, rPNb; leave at pPNa2, pPNb2. No common edges + // at enter/leave. Check for crossover. + const B2DPoint& aPointE(rPNa.maPoint); + const B2DVector aPrevAE(rPrevA - aPointE); + const B2DVector aNextAE(rNextA - aPointE); + const B2DVector aPrevBE(rPrevB - aPointE); + + const B2DPoint& aPointL(pPNa2->maPoint); + const B2DVector aPrevAL(maPNV[pPNa2->mnIP].maPoint - aPointL); + const B2DVector aNextAL(maPNV[pPNa2->mnIN].maPoint - aPointL); + const B2DVector aNextBL(maPNV[pPNb2->mnIN].maPoint - aPointL); + + const bool bEnter(impLeftOfEdges(aPrevAE, aNextAE, aPrevBE)); + const bool bLeave(impLeftOfEdges(aPrevAL, aNextAL, aNextBL)); + + if(bEnter != bLeave) + { + // crossover; switch start or end + impSwitchNext(rPNa, rPNb); + } + } + } + else if(rNextA.equal(rPrevB)) + { + // common edge in opposite direction enter + impSwitchNext(rPNa, rPNb); + } + else + { + // no common edges, check for crossover + const B2DPoint& aPoint(rPNa.maPoint); + const B2DVector aPrevA(rPrevA - aPoint); + const B2DVector aNextA(rNextA - aPoint); + const B2DVector aPrevB(rPrevB - aPoint); + const B2DVector aNextB(rNextB - aPoint); + + const bool bEnter(impLeftOfEdges(aPrevA, aNextA, aPrevB)); + const bool bLeave(impLeftOfEdges(aPrevA, aNextA, aNextB)); + + if(bEnter != bLeave) + { + // crossover + impSwitchNext(rPNa, rPNb); + } + } + } + } + + void impSolve() + { + // sort by point to identify common nodes easier + std::sort(maSNV.begin(), maSNV.end()); + + // handle common nodes + const sal_uInt32 nNodeCount(maSNV.size()); + sal_uInt32 a(0); + + // snap unsharp-equal points + if(nNodeCount) + { + basegfx::B2DPoint* pLast(&maSNV[0].mpPN->maPoint); + + for(a = 1; a < nNodeCount; a++) + { + basegfx::B2DPoint* pCurrent(&maSNV[a].mpPN->maPoint); + + if(pLast->equal(*pCurrent) && (pLast->getX() != pCurrent->getX() || pLast->getY() != pCurrent->getY())) + { + const basegfx::B2DPoint aMiddle((*pLast + *pCurrent) * 0.5); + + if(pLast->getX() != aMiddle.getX() || pLast->getY() != aMiddle.getY()) + { + maCorrectionTable.emplace_back(*pLast, aMiddle); + *pLast = aMiddle; + } + + if(pCurrent->getX() != aMiddle.getX() || pCurrent->getY() != aMiddle.getY()) + { + maCorrectionTable.emplace_back(*pCurrent, aMiddle); + *pCurrent = aMiddle; + } + } + + pLast = pCurrent; + } + } + + for(a = 0; a < nNodeCount - 1; a++) + { + // test a before using it, not after. Also use nPointCount instead of aSortNodes.size() + PN& rPNb = *(maSNV[a].mpPN); + + for(sal_uInt32 b(a + 1); b < nNodeCount && rPNb.maPoint.equal(maSNV[b].mpPN->maPoint); b++) + { + impHandleCommon(rPNb, *maSNV[b].mpPN); + } + } + } + + public: + explicit solver(const B2DPolygon& rOriginal) + : maOriginal(B2DPolyPolygon(rOriginal)), + mbIsCurve(false), + mbChanged(false) + { + const sal_uInt32 nOriginalCount(rOriginal.count()); + + if(!nOriginalCount) + return; + + B2DPolygon aGeometry(utils::addPointsAtCutsAndTouches(rOriginal)); + aGeometry.removeDoublePoints(); + aGeometry = utils::simplifyCurveSegments(aGeometry); + mbIsCurve = aGeometry.areControlPointsUsed(); + + const sal_uInt32 nPointCount(aGeometry.count()); + + // If it's not a bezier polygon, at least four points are needed to create + // a self-intersection. If it's a bezier polygon, the minimum point number + // is two, since with a single point You get a curve, but no self-intersection + if(!(nPointCount > 3 || (nPointCount > 1 && mbIsCurve))) + return; + + // reserve space in point, control and sort vector. + maSNV.reserve(nPointCount); + maPNV.reserve(nPointCount); + maVNV.reserve(mbIsCurve ? nPointCount : 0); + + // fill data + impAddPolygon(0, aGeometry); + + // solve common nodes + impSolve(); + } + + explicit solver(B2DPolyPolygon aOriginal, size_t* pPointLimit = nullptr) + : maOriginal(std::move(aOriginal)), + mbIsCurve(false), + mbChanged(false) + { + sal_uInt32 nOriginalCount(maOriginal.count()); + + if(!nOriginalCount) + return; + + B2DPolyPolygon aGeometry(utils::addPointsAtCutsAndTouches(maOriginal, pPointLimit)); + aGeometry.removeDoublePoints(); + aGeometry = utils::simplifyCurveSegments(aGeometry); + mbIsCurve = aGeometry.areControlPointsUsed(); + nOriginalCount = aGeometry.count(); + + if(!nOriginalCount) + return; + + sal_uInt32 nPointCount(0); + sal_uInt32 a(0); + + // count points + for(a = 0; a < nOriginalCount; a++) + { + const B2DPolygon& aCandidate(aGeometry.getB2DPolygon(a)); + const sal_uInt32 nCandCount(aCandidate.count()); + + // If it's not a bezier curve, at least three points would be needed to have a + // topological relevant (not empty) polygon. Since it's not known here if trivial + // edges (dead ends) will be kept or sorted out, add non-bezier polygons with + // more than one point. + // For bezier curves, the minimum for defining an area is also one. + if(nCandCount) + { + nPointCount += nCandCount; + } + } + + if(!nPointCount) + return; + + // reserve space in point, control and sort vector. + maSNV.reserve(nPointCount); + maPNV.reserve(nPointCount); + maVNV.reserve(mbIsCurve ? nPointCount : 0); + + // fill data + sal_uInt32 nInsertIndex(0); + + for(a = 0; a < nOriginalCount; a++) + { + const B2DPolygon& aCandidate(aGeometry.getB2DPolygon(a)); + const sal_uInt32 nCandCount(aCandidate.count()); + + // use same condition as above, the data vector is + // pre-allocated + if(nCandCount) + { + impAddPolygon(nInsertIndex, aCandidate); + nInsertIndex += nCandCount; + } + } + + // solve common nodes + impSolve(); + } + + B2DPolyPolygon getB2DPolyPolygon() + { + if(mbChanged) + { + B2DPolyPolygon aRetval; + const sal_uInt32 nCount(maPNV.size()); + sal_uInt32 nCountdown(nCount); + + for(sal_uInt32 a(0); nCountdown && a < nCount; a++) + { + PN& rPN = maPNV[a]; + + if(rPN.mnI != SAL_MAX_UINT32) + { + // unused node, start new part polygon + B2DPolygon aNewPart; + PN* pPNCurr = &rPN; + + do + { + const B2DPoint& rPoint = pPNCurr->maPoint; + aNewPart.append(rPoint); + + if(mbIsCurve) + { + const VN& rVNCurr = maVNV[pPNCurr->mnI]; + + if(!rVNCurr.maPrev.equalZero()) + { + aNewPart.setPrevControlPoint(aNewPart.count() - 1, rPoint + rVNCurr.maPrev); + } + + if(!rVNCurr.maNext.equalZero()) + { + aNewPart.setNextControlPoint(aNewPart.count() - 1, rPoint + rVNCurr.maNext); + } + } + + pPNCurr->mnI = SAL_MAX_UINT32; + nCountdown--; + pPNCurr = &(maPNV[pPNCurr->mnIN]); + } + while(pPNCurr != &rPN && pPNCurr->mnI != SAL_MAX_UINT32); + + // close and add + aNewPart.setClosed(true); + aRetval.append(aNewPart); + } + } + + return aRetval; + } + else + { + const sal_uInt32 nCorrectionSize(maCorrectionTable.size()); + + // no change, return original + if(!nCorrectionSize) + { + return maOriginal; + } + + // apply coordinate corrections to ensure inside/outside correctness after solving + const sal_uInt32 nPolygonCount(maOriginal.count()); + basegfx::B2DPolyPolygon aRetval(maOriginal); + + for(sal_uInt32 a(0); a < nPolygonCount; a++) + { + basegfx::B2DPolygon aTemp(aRetval.getB2DPolygon(a)); + const sal_uInt32 nPointCount(aTemp.count()); + bool bChanged(false); + + for(sal_uInt32 b(0); b < nPointCount; b++) + { + const basegfx::B2DPoint aCandidate(aTemp.getB2DPoint(b)); + + for(sal_uInt32 c(0); c < nCorrectionSize; c++) + { + if(maCorrectionTable[c].first.getX() == aCandidate.getX() && maCorrectionTable[c].first.getY() == aCandidate.getY()) + { + aTemp.setB2DPoint(b, maCorrectionTable[c].second); + bChanged = true; + } + } + } + + if(bChanged) + { + aRetval.setB2DPolygon(a, aTemp); + } + } + + return aRetval; + } + } + }; + + } // end of anonymous namespace +} // end of namespace basegfx + +namespace basegfx::utils +{ + + B2DPolyPolygon solveCrossovers(const B2DPolyPolygon& rCandidate, size_t* pPointLimit) + { + if(rCandidate.count() > 0) + { + solver aSolver(rCandidate, pPointLimit); + return aSolver.getB2DPolyPolygon(); + } + else + { + return rCandidate; + } + } + + B2DPolyPolygon solveCrossovers(const B2DPolygon& rCandidate) + { + solver aSolver(rCandidate); + return aSolver.getB2DPolyPolygon(); + } + + B2DPolyPolygon stripNeutralPolygons(const B2DPolyPolygon& rCandidate) + { + B2DPolyPolygon aRetval; + + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a)); + + if(utils::getOrientation(aCandidate) != B2VectorOrientation::Neutral) + { + aRetval.append(aCandidate); + } + } + + return aRetval; + } + + B2DPolyPolygon createNonzeroConform(const B2DPolyPolygon& rCandidate) + { + if (rCandidate.count() > 1000) + { + SAL_WARN("basegfx", "this poly is too large, " << rCandidate.count() << " elements, to be able to process timeously, falling back to ignoring the winding rule, which is likely to cause rendering artifacts"); + return rCandidate; + } + + B2DPolyPolygon aCandidate; + + // remove all self-intersections and intersections + if(rCandidate.count() == 1) + { + aCandidate = basegfx::utils::solveCrossovers(rCandidate.getB2DPolygon(0)); + } + else + { + aCandidate = basegfx::utils::solveCrossovers(rCandidate); + } + + // cleanup evtl. neutral polygons + aCandidate = basegfx::utils::stripNeutralPolygons(aCandidate); + + // remove all polygons which have the same orientation as the polygon they are directly contained in + const sal_uInt32 nCount(aCandidate.count()); + + if(nCount > 1) + { + sal_uInt32 a, b; + std::vector< StripHelper > aHelpers; + aHelpers.resize(nCount); + + for(a = 0; a < nCount; a++) + { + const B2DPolygon& aCand(aCandidate.getB2DPolygon(a)); + StripHelper* pNewHelper = &(aHelpers[a]); + pNewHelper->maRange = utils::getRange(aCand); + pNewHelper->meOrinetation = utils::getOrientation(aCand); + + // initialize with own orientation + pNewHelper->mnDepth = (pNewHelper->meOrinetation == B2VectorOrientation::Negative ? -1 : 1); + } + + for(a = 0; a < nCount - 1; a++) + { + const B2DPolygon& aCandA(aCandidate.getB2DPolygon(a)); + StripHelper& rHelperA = aHelpers[a]; + + for(b = a + 1; b < nCount; b++) + { + const B2DPolygon& aCandB(aCandidate.getB2DPolygon(b)); + StripHelper& rHelperB = aHelpers[b]; + const bool bAInB(rHelperB.maRange.isInside(rHelperA.maRange) && utils::isInside(aCandB, aCandA, true)); + + if(bAInB) + { + // A is inside B, add orientation of B to A + rHelperA.mnDepth += (rHelperB.meOrinetation == B2VectorOrientation::Negative ? -1 : 1); + } + + const bool bBInA(rHelperA.maRange.isInside(rHelperB.maRange) && utils::isInside(aCandA, aCandB, true)); + + if(bBInA) + { + // B is inside A, add orientation of A to B + rHelperB.mnDepth += (rHelperA.meOrinetation == B2VectorOrientation::Negative ? -1 : 1); + } + } + } + + const B2DPolyPolygon aSource(aCandidate); + aCandidate.clear(); + + for(a = 0; a < nCount; a++) + { + const StripHelper& rHelper = aHelpers[a]; + // for contained unequal oriented polygons sum will be 0 + // for contained equal it will be >=2 or <=-2 + // for free polygons (not contained) it will be 1 or -1 + // -> accept all which are >=-1 && <= 1 + bool bAcceptEntry(rHelper.mnDepth >= -1 && rHelper.mnDepth <= 1); + + if(bAcceptEntry) + { + aCandidate.append(aSource.getB2DPolygon(a)); + } + } + } + + return aCandidate; + } + + B2DPolyPolygon stripDispensablePolygons(const B2DPolyPolygon& rCandidate, bool bKeepAboveZero) + { + const sal_uInt32 nCount(rCandidate.count()); + B2DPolyPolygon aRetval; + + if(nCount) + { + if(nCount == 1) + { + if(!bKeepAboveZero && utils::getOrientation(rCandidate.getB2DPolygon(0)) == B2VectorOrientation::Positive) + { + aRetval = rCandidate; + } + } + else + { + sal_uInt32 a, b; + std::vector< StripHelper > aHelpers; + aHelpers.resize(nCount); + + for(a = 0; a < nCount; a++) + { + const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a)); + StripHelper* pNewHelper = &(aHelpers[a]); + pNewHelper->maRange = utils::getRange(aCandidate); + pNewHelper->meOrinetation = utils::getOrientation(aCandidate); + pNewHelper->mnDepth = (pNewHelper->meOrinetation == B2VectorOrientation::Negative ? -1 : 0); + } + + for(a = 0; a < nCount - 1; a++) + { + const B2DPolygon& aCandA(rCandidate.getB2DPolygon(a)); + StripHelper& rHelperA = aHelpers[a]; + + for(b = a + 1; b < nCount; b++) + { + const B2DPolygon& aCandB(rCandidate.getB2DPolygon(b)); + StripHelper& rHelperB = aHelpers[b]; + const bool bAInB(rHelperB.maRange.isInside(rHelperA.maRange) && utils::isInside(aCandB, aCandA, true)); + const bool bBInA(rHelperA.maRange.isInside(rHelperB.maRange) && utils::isInside(aCandA, aCandB, true)); + + if(bAInB && bBInA) + { + // congruent + if(rHelperA.meOrinetation == rHelperB.meOrinetation) + { + // two polys or two holes. Lower one of them to get one of them out of the way. + // Since each will be contained in the other one, both will be increased, too. + // So, for lowering, increase only one of them + rHelperA.mnDepth++; + } + else + { + // poly and hole. They neutralize, so get rid of both. Move securely below zero. + rHelperA.mnDepth = - static_cast<sal_Int32>(nCount); + rHelperB.mnDepth = - static_cast<sal_Int32>(nCount); + } + } + else + { + if(bAInB) + { + if(rHelperB.meOrinetation == B2VectorOrientation::Negative) + { + rHelperA.mnDepth--; + } + else + { + rHelperA.mnDepth++; + } + } + else if(bBInA) + { + if(rHelperA.meOrinetation == B2VectorOrientation::Negative) + { + rHelperB.mnDepth--; + } + else + { + rHelperB.mnDepth++; + } + } + } + } + } + + for(a = 0; a < nCount; a++) + { + const StripHelper& rHelper = aHelpers[a]; + bool bAcceptEntry(bKeepAboveZero ? 1 <= rHelper.mnDepth : rHelper.mnDepth == 0); + + if(bAcceptEntry) + { + aRetval.append(rCandidate.getB2DPolygon(a)); + } + } + } + } + + return aRetval; + } + + B2DPolyPolygon prepareForPolygonOperation(const B2DPolygon& rCandidate) + { + solver aSolver(rCandidate); + B2DPolyPolygon aRetval(stripNeutralPolygons(aSolver.getB2DPolyPolygon())); + + return correctOrientations(aRetval); + } + + B2DPolyPolygon prepareForPolygonOperation(const B2DPolyPolygon& rCandidate) + { + solver aSolver(rCandidate); + B2DPolyPolygon aRetval(stripNeutralPolygons(aSolver.getB2DPolyPolygon())); + + return correctOrientations(aRetval); + } + + B2DPolyPolygon solvePolygonOperationOr(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB) + { + if(!rCandidateA.count()) + { + return rCandidateB; + } + else if(!rCandidateB.count()) + { + return rCandidateA; + } + else + { + // concatenate polygons, solve crossovers and throw away all sub-polygons + // which have a depth other than 0. + B2DPolyPolygon aRetval(rCandidateA); + + aRetval.append(rCandidateB); + aRetval = solveCrossovers(aRetval); + aRetval = stripNeutralPolygons(aRetval); + + return stripDispensablePolygons(aRetval); + } + } + + B2DPolyPolygon solvePolygonOperationXor(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB) + { + if(!rCandidateA.count()) + { + return rCandidateB; + } + else if(!rCandidateB.count()) + { + return rCandidateA; + } + else + { + // XOR is pretty simple: By definition it is the simple concatenation of + // the single polygons since we imply XOR fill rule. Make it intersection-free + // and correct orientations + B2DPolyPolygon aRetval(rCandidateA); + + aRetval.append(rCandidateB); + aRetval = solveCrossovers(aRetval); + aRetval = stripNeutralPolygons(aRetval); + + return correctOrientations(aRetval); + } + } + + B2DPolyPolygon solvePolygonOperationAnd(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB) + { + if(!rCandidateA.count()) + { + return B2DPolyPolygon(); + } + else if(!rCandidateB.count()) + { + return B2DPolyPolygon(); + } + else + { + // tdf#130150 shortcut & precision: If both are simple ranges, + // solve based on ranges + if(basegfx::utils::isRectangle(rCandidateA) && basegfx::utils::isRectangle(rCandidateB)) + { + // *if* both are ranges, AND always can be solved + const basegfx::B2DRange aRangeA(rCandidateA.getB2DRange()); + const basegfx::B2DRange aRangeB(rCandidateB.getB2DRange()); + + if(aRangeA.isInside(aRangeB)) + { + // 2nd completely inside 1st -> 2nd is result of AND + return rCandidateB; + } + + if(aRangeB.isInside(aRangeA)) + { + // 2nd completely inside 1st -> 2nd is result of AND + return rCandidateA; + } + + // solve by intersection + basegfx::B2DRange aIntersect(aRangeA); + aIntersect.intersect(aRangeB); + + if(aIntersect.isEmpty()) + { + // no overlap -> empty polygon as result of AND + return B2DPolyPolygon(); + } + + // create polygon result + return B2DPolyPolygon( + basegfx::utils::createPolygonFromRect( + aIntersect)); + } + + // concatenate polygons, solve crossovers and throw away all sub-polygons + // with a depth of < 1. This means to keep all polygons where at least two + // polygons do overlap. + B2DPolyPolygon aRetval(rCandidateA); + + aRetval.append(rCandidateB); + aRetval = solveCrossovers(aRetval); + aRetval = stripNeutralPolygons(aRetval); + + return stripDispensablePolygons(aRetval, true); + } + } + + B2DPolyPolygon solvePolygonOperationDiff(const B2DPolyPolygon& rCandidateA, const B2DPolyPolygon& rCandidateB) + { + if(!rCandidateA.count()) + { + return B2DPolyPolygon(); + } + else if(!rCandidateB.count()) + { + return rCandidateA; + } + else + { + // Make B topologically to holes and append to A + B2DPolyPolygon aRetval(rCandidateB); + + aRetval.flip(); + aRetval.append(rCandidateA); + + // solve crossovers and throw away all sub-polygons which have a + // depth other than 0. + aRetval = basegfx::utils::solveCrossovers(aRetval); + aRetval = basegfx::utils::stripNeutralPolygons(aRetval); + + return basegfx::utils::stripDispensablePolygons(aRetval); + } + } + + B2DPolyPolygon mergeToSinglePolyPolygon(const B2DPolyPolygonVector& rInput) + { + if(rInput.empty()) + return B2DPolyPolygon(); + + // first step: prepareForPolygonOperation and simple merge of non-overlapping + // PolyPolygons for speedup; this is possible for the wanted OR-operation + B2DPolyPolygonVector aResult; + aResult.reserve(rInput.size()); + + for(const basegfx::B2DPolyPolygon & a : rInput) + { + const basegfx::B2DPolyPolygon aCandidate(prepareForPolygonOperation(a)); + + if(!aResult.empty()) + { + const B2DRange aCandidateRange(aCandidate.getB2DRange()); + bool bCouldMergeSimple(false); + + for(auto & b: aResult) + { + basegfx::B2DPolyPolygon aTarget(b); + const B2DRange aTargetRange(aTarget.getB2DRange()); + + if(!aCandidateRange.overlaps(aTargetRange)) + { + aTarget.append(aCandidate); + b = aTarget; + bCouldMergeSimple = true; + break; + } + } + + if(!bCouldMergeSimple) + { + aResult.push_back(aCandidate); + } + } + else + { + aResult.push_back(aCandidate); + } + } + + // second step: melt pairwise to a single PolyPolygon + while(aResult.size() > 1) + { + B2DPolyPolygonVector aResult2; + aResult2.reserve((aResult.size() / 2) + 1); + + for(size_t a(0); a < aResult.size(); a += 2) + { + if(a + 1 < aResult.size()) + { + // a pair for processing + aResult2.push_back(solvePolygonOperationOr(aResult[a], aResult[a + 1])); + } + else + { + // last single PolyPolygon; copy to target to not lose it + aResult2.push_back(aResult[a]); + } + } + + aResult = aResult2; + } + + // third step: get result + if(aResult.size() == 1) + { + return aResult[0]; + } + + return B2DPolyPolygon(); + } + +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dpolypolygontools.cxx b/basegfx/source/polygon/b2dpolypolygontools.cxx new file mode 100644 index 000000000..b49de907d --- /dev/null +++ b/basegfx/source/polygon/b2dpolypolygontools.cxx @@ -0,0 +1,656 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/polygon/b2dpolypolygontools.hxx> +#include <osl/diagnose.h> +#include <com/sun/star/drawing/PolyPolygonBezierCoords.hpp> +#include <basegfx/polygon/b2dpolypolygon.hxx> +#include <basegfx/polygon/b2dpolygon.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/numeric/ftools.hxx> +#include <rtl/math.hxx> + +#include <algorithm> +#include <numeric> + +namespace basegfx::utils +{ + B2DPolyPolygon correctOrientations(const B2DPolyPolygon& rCandidate) + { + B2DPolyPolygon aRetval(rCandidate); + const sal_uInt32 nCount(aRetval.count()); + + for(sal_uInt32 a(0); a < nCount; a++) + { + const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a)); + const B2VectorOrientation aOrientation(utils::getOrientation(aCandidate)); + sal_uInt32 nDepth(0); + + for(sal_uInt32 b(0); b < nCount; b++) + { + if(b != a) + { + const B2DPolygon& aCompare(rCandidate.getB2DPolygon(b)); + + if(utils::isInside(aCompare, aCandidate, true)) + { + nDepth++; + } + } + } + + const bool bShallBeHole((nDepth & 0x00000001) == 1); + const bool bIsHole(aOrientation == B2VectorOrientation::Negative); + + if(bShallBeHole != bIsHole && aOrientation != B2VectorOrientation::Neutral) + { + B2DPolygon aFlipped(aCandidate); + aFlipped.flip(); + aRetval.setB2DPolygon(a, aFlipped); + } + } + + return aRetval; + } + + B2DPolyPolygon correctOutmostPolygon(const B2DPolyPolygon& rCandidate) + { + const sal_uInt32 nCount(rCandidate.count()); + + if(nCount > 1) + { + for(sal_uInt32 a(0); a < nCount; a++) + { + const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a)); + sal_uInt32 nDepth(0); + + for(sal_uInt32 b(0); b < nCount; b++) + { + if(b != a) + { + const B2DPolygon& aCompare(rCandidate.getB2DPolygon(b)); + + if(utils::isInside(aCompare, aCandidate, true)) + { + nDepth++; + } + } + } + + if(!nDepth) + { + B2DPolyPolygon aRetval(rCandidate); + + if(a != 0) + { + // exchange polygon a and polygon 0 + aRetval.setB2DPolygon(0, aCandidate); + aRetval.setB2DPolygon(a, rCandidate.getB2DPolygon(0)); + } + + // exit + return aRetval; + } + } + } + + return rCandidate; + } + + B2DPolyPolygon adaptiveSubdivideByDistance(const B2DPolyPolygon& rCandidate, double fDistanceBound) + { + if(rCandidate.areControlPointsUsed()) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + if(rPolygon.areControlPointsUsed()) + { + aRetval.append(utils::adaptiveSubdivideByDistance(rPolygon, fDistanceBound)); + } + else + { + aRetval.append(rPolygon); + } + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + B2DPolyPolygon adaptiveSubdivideByAngle(const B2DPolyPolygon& rCandidate, double fAngleBound) + { + if(rCandidate.areControlPointsUsed()) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + if(rPolygon.areControlPointsUsed()) + { + aRetval.append(utils::adaptiveSubdivideByAngle(rPolygon, fAngleBound)); + } + else + { + aRetval.append(rPolygon); + } + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + bool isInside(const B2DPolyPolygon& rCandidate, const B2DPoint& rPoint, bool bWithBorder) + { + if(rCandidate.count() == 1) + { + return isInside(rCandidate.getB2DPolygon(0), rPoint, bWithBorder); + } + else + { + sal_Int32 nInsideCount = std::count_if(rCandidate.begin(), rCandidate.end(), [rPoint, bWithBorder](B2DPolygon polygon){ return isInside(polygon, rPoint, bWithBorder); }); + + return (nInsideCount % 2); + } + } + + B2DRange getRange(const B2DPolyPolygon& rCandidate) + { + B2DRange aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.expand(utils::getRange(rPolygon)); + } + + return aRetval; + } + + double getSignedArea(const B2DPolyPolygon& rCandidate) + { + double fRetval(0.0); + + for(auto const& rPolygon : rCandidate) + { + fRetval += utils::getSignedArea(rPolygon); + } + + return fRetval; + } + + double getArea(const B2DPolyPolygon& rCandidate) + { + return fabs(getSignedArea(rCandidate)); + } + + void applyLineDashing(const B2DPolyPolygon& rCandidate, const std::vector<double>& rDotDashArray, B2DPolyPolygon* pLineTarget, double fFullDashDotLen) + { + if(fFullDashDotLen == 0.0 && !rDotDashArray.empty()) + { + // calculate fFullDashDotLen from rDotDashArray + fFullDashDotLen = std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0); + } + + if(!(rCandidate.count() && fFullDashDotLen > 0.0)) + return; + + B2DPolyPolygon aLineTarget; + + for(auto const& rPolygon : rCandidate) + { + applyLineDashing( + rPolygon, + rDotDashArray, + pLineTarget ? &aLineTarget : nullptr, + nullptr, + fFullDashDotLen); + + if(pLineTarget) + { + pLineTarget->append(aLineTarget); + } + } + } + + bool isInEpsilonRange(const B2DPolyPolygon& rCandidate, const B2DPoint& rTestPosition, double fDistance) + { + for(auto const& rPolygon : rCandidate) + { + if(isInEpsilonRange(rPolygon, rTestPosition, fDistance)) + { + return true; + } + } + + return false; + } + + B3DPolyPolygon createB3DPolyPolygonFromB2DPolyPolygon(const B2DPolyPolygon& rCandidate, double fZCoordinate) + { + B3DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.append(createB3DPolygonFromB2DPolygon(rPolygon, fZCoordinate)); + } + + return aRetval; + } + + B2DPolyPolygon createB2DPolyPolygonFromB3DPolyPolygon(const B3DPolyPolygon& rCandidate, const B3DHomMatrix& rMat) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.append(createB2DPolygonFromB3DPolygon(rPolygon, rMat)); + } + + return aRetval; + } + + double getSmallestDistancePointToPolyPolygon(const B2DPolyPolygon& rCandidate, const B2DPoint& rTestPoint, sal_uInt32& rPolygonIndex, sal_uInt32& rEdgeIndex, double& rCut) + { + double fRetval(DBL_MAX); + const double fZero(0.0); + const sal_uInt32 nPolygonCount(rCandidate.count()); + + for(sal_uInt32 a(0); a < nPolygonCount; a++) + { + const B2DPolygon& aCandidate(rCandidate.getB2DPolygon(a)); + sal_uInt32 nNewEdgeIndex; + double fNewCut(0.0); + const double fNewDistance(getSmallestDistancePointToPolygon(aCandidate, rTestPoint, nNewEdgeIndex, fNewCut)); + + if(fRetval == DBL_MAX || fNewDistance < fRetval) + { + fRetval = fNewDistance; + rPolygonIndex = a; + rEdgeIndex = nNewEdgeIndex; + rCut = fNewCut; + + if(fTools::equal(fRetval, fZero)) + { + // already found zero distance, cannot get better. Ensure numerical zero value and end loop. + fRetval = 0.0; + break; + } + } + } + + return fRetval; + } + + B2DPolyPolygon distort(const B2DPolyPolygon& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.append(distort(rPolygon, rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight)); + } + + return aRetval; + } + + B2DPolyPolygon expandToCurve(const B2DPolyPolygon& rCandidate) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.append(expandToCurve(rPolygon)); + } + + return aRetval; + } + + B2DPolyPolygon growInNormalDirection(const B2DPolyPolygon& rCandidate, double fValue) + { + if(fValue != 0.0) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.append(growInNormalDirection(rPolygon, fValue)); + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + B2DPolyPolygon reSegmentPolyPolygon(const B2DPolyPolygon& rCandidate, sal_uInt32 nSegments) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.append(reSegmentPolygon(rPolygon, nSegments)); + } + + return aRetval; + } + + B2DPolyPolygon interpolate(const B2DPolyPolygon& rOld1, const B2DPolyPolygon& rOld2, double t) + { + OSL_ENSURE(rOld1.count() == rOld2.count(), "B2DPolyPolygon interpolate: Different geometry (!)"); + B2DPolyPolygon aRetval; + + for(sal_uInt32 a(0); a < rOld1.count(); a++) + { + aRetval.append(interpolate(rOld1.getB2DPolygon(a), rOld2.getB2DPolygon(a), t)); + } + + return aRetval; + } + + bool isRectangle( const B2DPolyPolygon& rPoly ) + { + // exclude some cheap cases first + if( rPoly.count() != 1 ) + return false; + + return isRectangle( rPoly.getB2DPolygon(0) ); + } + + // #i76891# + B2DPolyPolygon simplifyCurveSegments(const B2DPolyPolygon& rCandidate) + { + if(rCandidate.areControlPointsUsed()) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.append(simplifyCurveSegments(rPolygon)); + } + + return aRetval; + } + else + { + return rCandidate; + } + } + + B2DPolyPolygon snapPointsOfHorizontalOrVerticalEdges(const B2DPolyPolygon& rCandidate) + { + B2DPolyPolygon aRetval; + + for(auto const& rPolygon : rCandidate) + { + aRetval.append(snapPointsOfHorizontalOrVerticalEdges(rPolygon)); + } + + return aRetval; + } + + B2DPolyPolygon createSevenSegmentPolyPolygon(char nNumber, bool bLitSegments) + { + // config here + // { + const double fTotalSize=1.0; + const double fPosMiddleSegment=0.6; + const double fSegmentEndChopHoriz=0.08; + const double fSegmentEndChopVert =0.04; + // } + // config here + + const double fLeft=0.0; + const double fRight=fTotalSize; + const double fTop=0.0; + const double fMiddle=fPosMiddleSegment; + const double fBottom=fTotalSize; + + // from 0 to 5: pair of segment corner coordinates + + // segment corner indices are these: + + // 0 - 1 + // | | + // 2 - 3 + // | | + // 4 - 5 + + static const double corners[] = + { + fLeft, fTop, + fRight, fTop, + fLeft, fMiddle, + fRight, fMiddle, + fLeft, fBottom, + fRight, fBottom + }; + + // from 0 to 9: which segments are 'lit' for this number? + + // array denotes graph edges to traverse, with -1 means + // stop (the vertices are the corner indices from above): + // 0 + // - + // 1 | | 2 + // - 3 + // 4 | | 5 + // - + // 6 + + static const int numbers[] = + { + 1, 1, 1, 0, 1, 1, 1, // 0 + 0, 0, 1, 0, 0, 1, 0, // 1 + 1, 0, 1, 1, 1, 0, 1, // 2 + 1, 0, 1, 1, 0, 1, 1, // 3 + 0, 1, 1, 1, 0, 1, 0, // 4 + 1, 1, 0, 1, 0, 1, 1, // 5 + 1, 1, 0, 1, 1, 1, 1, // 6 + 1, 0, 1, 0, 0, 1, 0, // 1 + 1, 1, 1, 1, 1, 1, 1, // 8 + 1, 1, 1, 1, 0, 1, 1, // 9 + 0, 0, 0, 1, 0, 0, 0, // '-' + 1, 1, 0, 1, 1, 0, 1, // 'E' + }; + + // maps segment index to two corner ids: + static const int index2corner[] = + { + 0, 2, // 0 + 0, 4, // 1 + 2, 6, // 2 + 4, 6, // 3 + 4, 8, // 4 + 6, 10, // 5 + 8, 10, // 6 + }; + + B2DPolyPolygon aRes; + if( nNumber == '-' ) + { + nNumber = 10; + } + else if( nNumber == 'E' ) + { + nNumber = 11; + } + else if( nNumber == '.' ) + { + if( bLitSegments ) + aRes.append(createPolygonFromCircle(B2DPoint(fTotalSize/2, fTotalSize), + fSegmentEndChopHoriz)); + return aRes; + } + else + { + nNumber=std::clamp<sal_uInt32>(nNumber,'0','9') - '0'; + } + + B2DPolygon aCurrSegment; + const size_t sliceSize=std::size(numbers)/12; + const int* pCurrSegment=numbers + nNumber*sliceSize; + for( size_t i=0; i<sliceSize; i++, pCurrSegment++) + { + if( !(*pCurrSegment ^ int(bLitSegments)) ) + { + const size_t j=2*i; + aCurrSegment.clear(); + B2DPoint start(corners[index2corner[j]], + corners[index2corner[j]+1] ); + B2DPoint end (corners[index2corner[j+1]], + corners[index2corner[j+1]+1]); + + if( rtl::math::approxEqual(start.getX(), end.getX()) ) + { + start.setY(start.getY()+fSegmentEndChopVert); + end.setY(end.getY()-fSegmentEndChopVert); + } + else + { + start.setX(start.getX()+fSegmentEndChopHoriz); + end.setX(end.getX()-fSegmentEndChopHoriz); + } + + aCurrSegment.append(start); + aCurrSegment.append(end); + } + aRes.append(aCurrSegment); + } + + return aRes; + } + + // converters for css::drawing::PointSequence + + B2DPolyPolygon UnoPointSequenceSequenceToB2DPolyPolygon( + const css::drawing::PointSequenceSequence& rPointSequenceSequenceSource) + { + B2DPolyPolygon aRetval; + const css::drawing::PointSequence* pPointSequence = rPointSequenceSequenceSource.getConstArray(); + const css::drawing::PointSequence* pPointSeqEnd = pPointSequence + rPointSequenceSequenceSource.getLength(); + + for(;pPointSequence != pPointSeqEnd; pPointSequence++) + { + const B2DPolygon aNewPolygon = UnoPointSequenceToB2DPolygon(*pPointSequence); + aRetval.append(aNewPolygon); + } + + return aRetval; + } + + void B2DPolyPolygonToUnoPointSequenceSequence( + const B2DPolyPolygon& rPolyPolygon, + css::drawing::PointSequenceSequence& rPointSequenceSequenceRetval) + { + const sal_uInt32 nCount(rPolyPolygon.count()); + + if(nCount) + { + rPointSequenceSequenceRetval.realloc(nCount); + css::drawing::PointSequence* pPointSequence = rPointSequenceSequenceRetval.getArray(); + + for(auto const& rPolygon : rPolyPolygon) + { + B2DPolygonToUnoPointSequence(rPolygon, *pPointSequence); + pPointSequence++; + } + } + else + { + rPointSequenceSequenceRetval.realloc(0); + } + } + + // converters for css::drawing::PolyPolygonBezierCoords (curved polygons) + + B2DPolyPolygon UnoPolyPolygonBezierCoordsToB2DPolyPolygon( + const css::drawing::PolyPolygonBezierCoords& rPolyPolygonBezierCoordsSource) + { + B2DPolyPolygon aRetval; + const sal_uInt32 nSequenceCount(static_cast<sal_uInt32>(rPolyPolygonBezierCoordsSource.Coordinates.getLength())); + + if(nSequenceCount) + { + OSL_ENSURE(nSequenceCount == static_cast<sal_uInt32>(rPolyPolygonBezierCoordsSource.Flags.getLength()), + "UnoPolyPolygonBezierCoordsToB2DPolyPolygon: unequal number of Points and Flags (!)"); + const css::drawing::PointSequence* pPointSequence = rPolyPolygonBezierCoordsSource.Coordinates.getConstArray(); + const css::drawing::FlagSequence* pFlagSequence = rPolyPolygonBezierCoordsSource.Flags.getConstArray(); + + for(sal_uInt32 a(0); a < nSequenceCount; a++) + { + const B2DPolygon aNewPolygon(UnoPolygonBezierCoordsToB2DPolygon( + *pPointSequence, + *pFlagSequence)); + + pPointSequence++; + pFlagSequence++; + aRetval.append(aNewPolygon); + } + } + + return aRetval; + } + + void B2DPolyPolygonToUnoPolyPolygonBezierCoords( + const B2DPolyPolygon& rPolyPolygon, + css::drawing::PolyPolygonBezierCoords& rPolyPolygonBezierCoordsRetval) + { + const sal_uInt32 nCount(rPolyPolygon.count()); + + if(nCount) + { + // prepare return value memory + rPolyPolygonBezierCoordsRetval.Coordinates.realloc(static_cast<sal_Int32>(nCount)); + rPolyPolygonBezierCoordsRetval.Flags.realloc(static_cast<sal_Int32>(nCount)); + + // get pointers to arrays + css::drawing::PointSequence* pPointSequence = rPolyPolygonBezierCoordsRetval.Coordinates.getArray(); + css::drawing::FlagSequence* pFlagSequence = rPolyPolygonBezierCoordsRetval.Flags.getArray(); + + for(auto const& rSource : rPolyPolygon) + { + B2DPolygonToUnoPolygonBezierCoords( + rSource, + *pPointSequence, + *pFlagSequence); + pPointSequence++; + pFlagSequence++; + } + } + else + { + rPolyPolygonBezierCoordsRetval.Coordinates.realloc(0); + rPolyPolygonBezierCoordsRetval.Flags.realloc(0); + } + } + +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dsvgpolypolygon.cxx b/basegfx/source/polygon/b2dsvgpolypolygon.cxx new file mode 100644 index 000000000..aa0fedb2d --- /dev/null +++ b/basegfx/source/polygon/b2dsvgpolypolygon.cxx @@ -0,0 +1,931 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/polygon/b2dpolypolygontools.hxx> +#include <basegfx/polygon/b2dpolypolygon.hxx> +#include <basegfx/matrix/b2dhommatrix.hxx> +#include <basegfx/matrix/b2dhommatrixtools.hxx> + +#include <rtl/ustring.hxx> +#include <sal/log.hxx> +#include <rtl/math.hxx> +#include <rtl/character.hxx> +#include <stringconversiontools.hxx> + +namespace +{ + +void putCommandChar(OUStringBuffer& rBuffer,sal_Unicode& rLastSVGCommand, sal_Unicode aChar, bool bToLower,bool bVerbose) +{ + const sal_Unicode aCommand = bToLower ? rtl::toAsciiLowerCase(aChar) : aChar; + + if (bVerbose && rBuffer.getLength()) + rBuffer.append(' '); + + if (bVerbose || rLastSVGCommand != aCommand) + { + rBuffer.append(aCommand); + rLastSVGCommand = aCommand; + } +} + +void putNumberChar(OUStringBuffer& rStr,double fValue, double fOldValue, bool bUseRelativeCoordinates,bool bVerbose) +{ + if (bUseRelativeCoordinates) + fValue -= fOldValue; + + const sal_Int32 aLen(rStr.getLength()); + if (bVerbose || (aLen && basegfx::internal::isOnNumberChar(rStr[aLen - 1], false) && fValue >= 0.0)) + rStr.append(' '); + + rStr.append(fValue); +} + +} + +namespace basegfx::utils +{ + bool PointIndex::operator<(const PointIndex& rComp) const + { + if(rComp.getPolygonIndex() == getPolygonIndex()) + { + return rComp.getPointIndex() < getPointIndex(); + } + + return rComp.getPolygonIndex() < getPolygonIndex(); + } + + bool importFromSvgD( + B2DPolyPolygon& o_rPolyPolygon, + std::u16string_view rSvgDStatement, + bool bHandleRelativeNextPointCompatible, + PointIndexSet* pHelpPointIndexSet) + { + o_rPolyPolygon.clear(); + const sal_Int32 nLen(rSvgDStatement.size()); + sal_Int32 nPos(0); + double nLastX( 0.0 ); + double nLastY( 0.0 ); + B2DPolygon aCurrPoly; + + // skip initial whitespace + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen) + { + bool bRelative(false); + const sal_Unicode aCurrChar(rSvgDStatement[nPos]); + + if(o_rPolyPolygon.count() && !aCurrPoly.count() && aCurrChar != 'm' && aCurrChar != 'M') + { + // we have a new sub-polygon starting, but without a 'moveto' command. + // this requires to add the current point as start point to the polygon + // (see SVG1.1 8.3.3 The "closepath" command) + aCurrPoly.append(B2DPoint(nLastX, nLastY)); + } + + switch(aCurrChar) + { + case 'z' : + case 'Z' : + { + // consume CurrChar and whitespace + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + // create closed polygon and reset import values + if(aCurrPoly.count()) + { + if(!bHandleRelativeNextPointCompatible) + { + // SVG defines that "the next subpath starts at the + // same initial point as the current subpath", so set the + // current point if we do not need to be compatible + nLastX = aCurrPoly.getB2DPoint(0).getX(); + nLastY = aCurrPoly.getB2DPoint(0).getY(); + } + + aCurrPoly.setClosed(true); + o_rPolyPolygon.append(aCurrPoly); + aCurrPoly.clear(); + } + + break; + } + + case 'm' : + case 'M' : + { + // create non-closed polygon and reset import values + if(aCurrPoly.count()) + { + o_rPolyPolygon.append(aCurrPoly); + aCurrPoly.clear(); + } + [[fallthrough]]; // to add coordinate data as 1st point of new polygon + } + case 'l' : + case 'L' : + { + if(aCurrChar == 'm' || aCurrChar == 'l') + { + bRelative = true; + } + + // consume CurrChar and whitespace + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos)) + { + double nX, nY; + + if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false; + + if(bRelative) + { + nX += nLastX; + nY += nLastY; + } + + // set last position + nLastX = nX; + nLastY = nY; + + // add point + aCurrPoly.append(B2DPoint(nX, nY)); + } + break; + } + + case 'h' : + { + bRelative = true; + [[fallthrough]]; + } + case 'H' : + { + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos)) + { + double nX, nY(nLastY); + + if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false; + + if(bRelative) + { + nX += nLastX; + } + + // set last position + nLastX = nX; + + // add point + aCurrPoly.append(B2DPoint(nX, nY)); + } + break; + } + + case 'v' : + { + bRelative = true; + [[fallthrough]]; + } + case 'V' : + { + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos)) + { + double nX(nLastX), nY; + + if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false; + + if(bRelative) + { + nY += nLastY; + } + + // set last position + nLastY = nY; + + // add point + aCurrPoly.append(B2DPoint(nX, nY)); + } + break; + } + + case 's' : + { + bRelative = true; + [[fallthrough]]; + } + case 'S' : + { + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos)) + { + double nX, nY; + double nX2, nY2; + + if(!basegfx::internal::importDoubleAndSpaces(nX2, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY2, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false; + + if(bRelative) + { + nX2 += nLastX; + nY2 += nLastY; + nX += nLastX; + nY += nLastY; + } + + // ensure existence of start point + if(!aCurrPoly.count()) + { + aCurrPoly.append(B2DPoint(nLastX, nLastY)); + } + + // get first control point. It's the reflection of the PrevControlPoint + // of the last point. If not existent, use current point (see SVG) + B2DPoint aPrevControl(B2DPoint(nLastX, nLastY)); + const sal_uInt32 nIndex(aCurrPoly.count() - 1); + + if(aCurrPoly.areControlPointsUsed() && aCurrPoly.isPrevControlPointUsed(nIndex)) + { + const B2DPoint aPrevPoint(aCurrPoly.getB2DPoint(nIndex)); + const B2DPoint aPrevControlPoint(aCurrPoly.getPrevControlPoint(nIndex)); + + // use mirrored previous control point + aPrevControl.setX((2.0 * aPrevPoint.getX()) - aPrevControlPoint.getX()); + aPrevControl.setY((2.0 * aPrevPoint.getY()) - aPrevControlPoint.getY()); + } + + // append curved edge + aCurrPoly.appendBezierSegment(aPrevControl, B2DPoint(nX2, nY2), B2DPoint(nX, nY)); + + // set last position + nLastX = nX; + nLastY = nY; + } + break; + } + + case 'c' : + { + bRelative = true; + [[fallthrough]]; + } + case 'C' : + { + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos)) + { + double nX, nY; + double nX1, nY1; + double nX2, nY2; + + if(!basegfx::internal::importDoubleAndSpaces(nX1, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY1, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nX2, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY2, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false; + + if(bRelative) + { + nX1 += nLastX; + nY1 += nLastY; + nX2 += nLastX; + nY2 += nLastY; + nX += nLastX; + nY += nLastY; + } + + // ensure existence of start point + if(!aCurrPoly.count()) + { + aCurrPoly.append(B2DPoint(nLastX, nLastY)); + } + + // append curved edge + aCurrPoly.appendBezierSegment(B2DPoint(nX1, nY1), B2DPoint(nX2, nY2), B2DPoint(nX, nY)); + + // set last position + nLastX = nX; + nLastY = nY; + } + break; + } + + // #100617# quadratic beziers are imported as cubic ones + case 'q' : + { + bRelative = true; + [[fallthrough]]; + } + case 'Q' : + { + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos)) + { + double nX, nY; + double nX1, nY1; + + if(!basegfx::internal::importDoubleAndSpaces(nX1, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY1, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false; + + if(bRelative) + { + nX1 += nLastX; + nY1 += nLastY; + nX += nLastX; + nY += nLastY; + } + + // ensure existence of start point + if(!aCurrPoly.count()) + { + aCurrPoly.append(B2DPoint(nLastX, nLastY)); + } + + // append curved edge + aCurrPoly.appendQuadraticBezierSegment(B2DPoint(nX1, nY1), B2DPoint(nX, nY)); + + // set last position + nLastX = nX; + nLastY = nY; + } + break; + } + + // #100617# relative quadratic beziers are imported as cubic + case 't' : + { + bRelative = true; + [[fallthrough]]; + } + case 'T' : + { + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos)) + { + double nX, nY; + + if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false; + + if(bRelative) + { + nX += nLastX; + nY += nLastY; + } + + // ensure existence of start point + if(!aCurrPoly.count()) + { + aCurrPoly.append(B2DPoint(nLastX, nLastY)); + } + + // get first control point. It's the reflection of the PrevControlPoint + // of the last point. If not existent, use current point (see SVG) + B2DPoint aPrevControl(B2DPoint(nLastX, nLastY)); + const sal_uInt32 nIndex(aCurrPoly.count() - 1); + const B2DPoint aPrevPoint(aCurrPoly.getB2DPoint(nIndex)); + + if(aCurrPoly.areControlPointsUsed() && aCurrPoly.isPrevControlPointUsed(nIndex)) + { + const B2DPoint aPrevControlPoint(aCurrPoly.getPrevControlPoint(nIndex)); + + // use mirrored previous control point + aPrevControl.setX((2.0 * aPrevPoint.getX()) - aPrevControlPoint.getX()); + aPrevControl.setY((2.0 * aPrevPoint.getY()) - aPrevControlPoint.getY()); + } + + if(!aPrevControl.equal(aPrevPoint)) + { + // there is a prev control point, and we have the already mirrored one + // in aPrevControl. We also need the quadratic control point for this + // new quadratic segment to calculate the 2nd cubic control point + const B2DPoint aQuadControlPoint( + ((3.0 * aPrevControl.getX()) - aPrevPoint.getX()) / 2.0, + ((3.0 * aPrevControl.getY()) - aPrevPoint.getY()) / 2.0); + + // calculate the cubic bezier coefficients from the quadratic ones. + const double nX2Prime((aQuadControlPoint.getX() * 2.0 + nX) / 3.0); + const double nY2Prime((aQuadControlPoint.getY() * 2.0 + nY) / 3.0); + + // append curved edge, use mirrored cubic control point directly + aCurrPoly.appendBezierSegment(aPrevControl, B2DPoint(nX2Prime, nY2Prime), B2DPoint(nX, nY)); + } + else + { + // when no previous control, SVG says to use current point -> straight line. + // Just add end point + aCurrPoly.append(B2DPoint(nX, nY)); + } + + // set last position + nLastX = nX; + nLastY = nY; + } + break; + } + + case 'a' : + { + bRelative = true; + [[fallthrough]]; + } + case 'A' : + { + nPos++; + basegfx::internal::skipSpaces(nPos, rSvgDStatement, nLen); + + while(nPos < nLen && basegfx::internal::isOnNumberChar(rSvgDStatement, nPos)) + { + double nX, nY; + double fRX, fRY, fPhi; + sal_Int32 bLargeArcFlag, bSweepFlag; + + if(!basegfx::internal::importDoubleAndSpaces(fRX, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(fRY, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(fPhi, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importFlagAndSpaces(bLargeArcFlag, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importFlagAndSpaces(bSweepFlag, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgDStatement, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgDStatement, nLen)) return false; + + if(bRelative) + { + nX += nLastX; + nY += nLastY; + } + + if( rtl::math::approxEqual(nX, nLastX) && rtl::math::approxEqual(nY, nLastY) ) + continue; // start==end -> skip according to SVG spec + + if( fRX == 0.0 || fRY == 0.0 ) + { + // straight line segment according to SVG spec + aCurrPoly.append(B2DPoint(nX, nY)); + } + else + { + // normalize according to SVG spec + fRX=fabs(fRX); fRY=fabs(fRY); + + // from the SVG spec, appendix F.6.4 + + // |x1'| |cos phi sin phi| |(x1 - x2)/2| + // |y1'| = |-sin phi cos phi| |(y1 - y2)/2| + const B2DPoint p1(nLastX, nLastY); + const B2DPoint p2(nX, nY); + B2DHomMatrix aTransform(basegfx::utils::createRotateB2DHomMatrix( + -deg2rad(fPhi))); + + const B2DPoint p1_prime( aTransform * B2DPoint(((p1-p2)/2.0)) ); + + // ______________________________________ rx y1' + // |cx'| + / rx^2 ry^2 - rx^2 y1'^2 - ry^2 x1^2 ry + // |cy'| =-/ rx^2y1'^2 + ry^2 x1'^2 - ry x1' + // rx + // chose + if f_A != f_S + // chose - if f_A = f_S + B2DPoint aCenter_prime; + const double fRadicant( + (fRX*fRX*fRY*fRY - fRX*fRX*p1_prime.getY()*p1_prime.getY() - fRY*fRY*p1_prime.getX()*p1_prime.getX())/ + (fRX*fRX*p1_prime.getY()*p1_prime.getY() + fRY*fRY*p1_prime.getX()*p1_prime.getX())); + if( fRadicant < 0.0 ) + { + // no solution - according to SVG + // spec, scale up ellipse + // uniformly such that it passes + // through end points (denominator + // of radicant solved for fRY, + // with s=fRX/fRY) + const double fRatio(fRX/fRY); + const double fRadicant2( + p1_prime.getY()*p1_prime.getY() + + p1_prime.getX()*p1_prime.getX()/(fRatio*fRatio)); + if( fRadicant2 < 0.0 ) + { + // only trivial solution, one + // of the axes 0 -> straight + // line segment according to + // SVG spec + aCurrPoly.append(B2DPoint(nX, nY)); + continue; + } + + fRY=sqrt(fRadicant2); + fRX=fRatio*fRY; + + // keep center_prime forced to (0,0) + } + else + { + const double fFactor( + (bLargeArcFlag==bSweepFlag ? -1.0 : 1.0) * + sqrt(fRadicant)); + + // actually calculate center_prime + aCenter_prime = B2DPoint( + fFactor*fRX*p1_prime.getY()/fRY, + -fFactor*fRY*p1_prime.getX()/fRX); + } + + // + u - v + // angle(u,v) = arccos( ------------ ) (take the sign of (ux vy - uy vx)) + // - ||u|| ||v|| + + // 1 | (x1' - cx')/rx | + // theta1 = angle(( ), | | ) + // 0 | (y1' - cy')/ry | + const B2DPoint aRadii(fRX,fRY); + double fTheta1( + B2DVector(1.0,0.0).angle( + (p1_prime-aCenter_prime)/aRadii)); + + // |1| | (-x1' - cx')/rx | + // theta2 = angle( | | , | | ) + // |0| | (-y1' - cy')/ry | + double fTheta2( + B2DVector(1.0,0.0).angle( + (-p1_prime-aCenter_prime)/aRadii)); + + // map both angles to [0,2pi) + fTheta1 = fmod(2*M_PI+fTheta1,2*M_PI); + fTheta2 = fmod(2*M_PI+fTheta2,2*M_PI); + + // make sure the large arc is taken + // (since + // createPolygonFromEllipseSegment() + // normalizes to e.g. cw arc) + if( !bSweepFlag ) + std::swap(fTheta1,fTheta2); + + // finally, create bezier polygon from this + B2DPolygon aSegment( + utils::createPolygonFromUnitEllipseSegment( + fTheta1, fTheta2 )); + + // transform ellipse by rotation & move to final center + aTransform = basegfx::utils::createScaleB2DHomMatrix(fRX, fRY); + aTransform.translate(aCenter_prime.getX(), + aCenter_prime.getY()); + aTransform.rotate(deg2rad(fPhi)); + const B2DPoint aOffset((p1+p2)/2.0); + aTransform.translate(aOffset.getX(), + aOffset.getY()); + aSegment.transform(aTransform); + + // createPolygonFromEllipseSegment() + // always creates arcs that are + // positively oriented - flip polygon + // if we swapped angles above + if( !bSweepFlag ) + aSegment.flip(); + + // remember PointIndex of evtl. added pure helper points + sal_uInt32 nPointIndex(aCurrPoly.count() + 1); + aCurrPoly.append(aSegment); + + // if asked for, mark pure helper points by adding them to the index list of + // helper points + if(pHelpPointIndexSet && aCurrPoly.count() > 1) + { + const sal_uInt32 nPolyIndex(o_rPolyPolygon.count()); + + for(;nPointIndex + 1 < aCurrPoly.count(); nPointIndex++) + { + pHelpPointIndexSet->insert(PointIndex(nPolyIndex, nPointIndex)); + } + } + } + + // set last position + nLastX = nX; + nLastY = nY; + } + break; + } + + default: + { + SAL_WARN("basegfx", "importFromSvgD(): skipping tags in svg:d element (unknown: \"" + << OUString(aCurrChar) + << "\")!"); + ++nPos; + break; + } + } + } + + // if there is polygon data, create non-closed polygon + if(aCurrPoly.count()) + { + o_rPolyPolygon.append(aCurrPoly); + } + + return true; + } + + bool importFromSvgPoints( B2DPolygon& o_rPoly, + std::u16string_view rSvgPointsAttribute ) + { + o_rPoly.clear(); + const sal_Int32 nLen(rSvgPointsAttribute.size()); + sal_Int32 nPos(0); + double nX, nY; + + // skip initial whitespace + basegfx::internal::skipSpaces(nPos, rSvgPointsAttribute, nLen); + + while(nPos < nLen) + { + if(!basegfx::internal::importDoubleAndSpaces(nX, nPos, rSvgPointsAttribute, nLen)) return false; + if(!basegfx::internal::importDoubleAndSpaces(nY, nPos, rSvgPointsAttribute, nLen)) return false; + + // add point + o_rPoly.append(B2DPoint(nX, nY)); + + // skip to next number, or finish + basegfx::internal::skipSpaces(nPos, rSvgPointsAttribute, nLen); + } + + return true; + } + + OUString exportToSvgPoints( const B2DPolygon& rPoly ) + { + SAL_WARN_IF(rPoly.areControlPointsUsed(), "basegfx", "exportToSvgPoints: Only non-bezier polygons allowed (!)"); + const sal_uInt32 nPointCount(rPoly.count()); + OUStringBuffer aResult; + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const basegfx::B2DPoint aPoint(rPoly.getB2DPoint(a)); + + if(a) + { + aResult.append(' '); + } + + aResult.append(aPoint.getX()); + aResult.append(','); + aResult.append(aPoint.getY()); + } + + return aResult.makeStringAndClear(); + } + + OUString exportToSvgD( + const B2DPolyPolygon& rPolyPolygon, + bool bUseRelativeCoordinates, + bool bDetectQuadraticBeziers, + bool bHandleRelativeNextPointCompatible, + bool bOOXMLMotionPath) + { + const sal_uInt32 nCount(rPolyPolygon.count()); + sal_uInt32 nCombinedPointCount = 0; + for(sal_uInt32 i(0); i < nCount; i++) + { + const B2DPolygon& aPolygon(rPolyPolygon.getB2DPolygon(i)); + nCombinedPointCount += aPolygon.count(); + } + + OUStringBuffer aResult(std::max<int>(nCombinedPointCount * 32,512)); + B2DPoint aCurrentSVGPosition(0.0, 0.0); // SVG assumes (0,0) as the initial current point + + for(sal_uInt32 i(0); i < nCount; i++) + { + const B2DPolygon& aPolygon(rPolyPolygon.getB2DPolygon(i)); + const sal_uInt32 nPointCount(aPolygon.count()); + + if(nPointCount) + { + const bool bPolyUsesControlPoints(aPolygon.areControlPointsUsed()); + const sal_uInt32 nEdgeCount(aPolygon.isClosed() ? nPointCount : nPointCount - 1); + sal_Unicode aLastSVGCommand(' '); // last SVG command char + B2DPoint aLeft, aRight; // for quadratic bezier test + + // handle polygon start point + B2DPoint aEdgeStart(aPolygon.getB2DPoint(0)); + bool bUseRelativeCoordinatesForFirstPoint(bUseRelativeCoordinates); + + if(bHandleRelativeNextPointCompatible) + { + // To get around the error that the start point for the next polygon is the + // start point of the current one (and not the last as it was handled up to now) + // do force to write an absolute 'M' command as start for the next polygon + bUseRelativeCoordinatesForFirstPoint = false; + } + + // Write 'moveto' and the 1st coordinates, set aLastSVGCommand to 'lineto' + putCommandChar(aResult, aLastSVGCommand, 'M', bUseRelativeCoordinatesForFirstPoint, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeStart.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinatesForFirstPoint, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeStart.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinatesForFirstPoint, bOOXMLMotionPath); + aLastSVGCommand = bUseRelativeCoordinatesForFirstPoint ? 'l' : 'L'; + aCurrentSVGPosition = aEdgeStart; + + for(sal_uInt32 nIndex(0); nIndex < nEdgeCount; nIndex++) + { + // prepare access to next point + const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount); + const B2DPoint aEdgeEnd(aPolygon.getB2DPoint(nNextIndex)); + + // handle edge from (aEdgeStart, aEdgeEnd) using indices (nIndex, nNextIndex) + const bool bEdgeIsBezier(bPolyUsesControlPoints + && (aPolygon.isNextControlPointUsed(nIndex) || aPolygon.isPrevControlPointUsed(nNextIndex))); + + if(bEdgeIsBezier) + { + // handle bezier edge + const B2DPoint aControlEdgeStart(aPolygon.getNextControlPoint(nIndex)); + const B2DPoint aControlEdgeEnd(aPolygon.getPrevControlPoint(nNextIndex)); + bool bIsQuadraticBezier(false); + + // check continuity at current edge's start point. For SVG, do NOT use an + // existing continuity since no 'S' or 's' statement should be written. At + // import, that 'previous' control vector is not available. SVG documentation + // says for interpretation: + + // "(If there is no previous command or if the previous command was + // not a C, c, S or s, assume the first control point is coincident + // with the current point.)" + + // That's what is done from our import, so avoid exporting it as first statement + // is necessary. + const bool bSymmetricAtEdgeStart( + !bOOXMLMotionPath && nIndex != 0 + && aPolygon.getContinuityInPoint(nIndex) == B2VectorContinuity::C2); + + if(bDetectQuadraticBeziers) + { + // check for quadratic beziers - that's + // the case if both control points are in + // the same place when they are prolonged + // to the common quadratic control point + + // Left: P = (3P1 - P0) / 2 + // Right: P = (3P2 - P3) / 2 + aLeft = B2DPoint((3.0 * aControlEdgeStart - aEdgeStart) / 2.0); + aRight= B2DPoint((3.0 * aControlEdgeEnd - aEdgeEnd) / 2.0); + bIsQuadraticBezier = aLeft.equal(aRight); + } + + if(bIsQuadraticBezier) + { + // approximately equal, export as quadratic bezier + if(bSymmetricAtEdgeStart) + { + putCommandChar(aResult, aLastSVGCommand, 'T', bUseRelativeCoordinates, bOOXMLMotionPath); + + putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + aCurrentSVGPosition = aEdgeEnd; + } + else + { + putCommandChar(aResult, aLastSVGCommand, 'Q', bUseRelativeCoordinates, bOOXMLMotionPath); + + putNumberChar(aResult, aLeft.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aLeft.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + aCurrentSVGPosition = aEdgeEnd; + } + } + else + { + // export as cubic bezier + if(bSymmetricAtEdgeStart) + { + putCommandChar(aResult, aLastSVGCommand, 'S', bUseRelativeCoordinates, bOOXMLMotionPath); + + putNumberChar(aResult, aControlEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aControlEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + aCurrentSVGPosition = aEdgeEnd; + } + else + { + putCommandChar(aResult, aLastSVGCommand, 'C', bUseRelativeCoordinates, bOOXMLMotionPath); + + putNumberChar(aResult, aControlEdgeStart.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aControlEdgeStart.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aControlEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aControlEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + aCurrentSVGPosition = aEdgeEnd; + } + } + } + else + { + // straight edge + if(nNextIndex == 0) + { + // it's a closed polygon's last edge and it's not a bezier edge, so there is + // no need to write it + } + else + { + const bool bXEqual(rtl::math::approxEqual(aEdgeStart.getX(), aEdgeEnd.getX())); + const bool bYEqual(rtl::math::approxEqual(aEdgeStart.getY(), aEdgeEnd.getY())); + + if(bXEqual && bYEqual) + { + // point is a double point; do not export at all + } + else if(bXEqual && !bOOXMLMotionPath) + { + // export as vertical line + putCommandChar(aResult, aLastSVGCommand, 'V', bUseRelativeCoordinates, bOOXMLMotionPath); + + putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + aCurrentSVGPosition = aEdgeEnd; + } + else if(bYEqual && !bOOXMLMotionPath) + { + // export as horizontal line + putCommandChar(aResult, aLastSVGCommand, 'H', bUseRelativeCoordinates, bOOXMLMotionPath); + + putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + aCurrentSVGPosition = aEdgeEnd; + } + else + { + // export as line + putCommandChar(aResult, aLastSVGCommand, 'L', bUseRelativeCoordinates, bOOXMLMotionPath); + + putNumberChar(aResult, aEdgeEnd.getX(), aCurrentSVGPosition.getX(), bUseRelativeCoordinates, bOOXMLMotionPath); + putNumberChar(aResult, aEdgeEnd.getY(), aCurrentSVGPosition.getY(), bUseRelativeCoordinates, bOOXMLMotionPath); + aCurrentSVGPosition = aEdgeEnd; + } + } + } + + // prepare edge start for next loop step + aEdgeStart = aEdgeEnd; + } + + // close path if closed poly (Z and z are equivalent here, but looks nicer when case is matched) + if(aPolygon.isClosed()) + { + putCommandChar(aResult, aLastSVGCommand, 'Z', bUseRelativeCoordinates, bOOXMLMotionPath); + } + else if (bOOXMLMotionPath) + { + putCommandChar(aResult, aLastSVGCommand, 'E', bUseRelativeCoordinates, bOOXMLMotionPath); + } + + if(!bHandleRelativeNextPointCompatible) + { + // SVG defines that "the next subpath starts at the same initial point as the current subpath", + // so set aCurrentSVGPosition to the 1st point of the current, now ended and written path + aCurrentSVGPosition = aPolygon.getB2DPoint(0); + } + } + } + + return aResult.makeStringAndClear(); + } +} + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b2dtrapezoid.cxx b/basegfx/source/polygon/b2dtrapezoid.cxx new file mode 100644 index 000000000..b7991dbf5 --- /dev/null +++ b/basegfx/source/polygon/b2dtrapezoid.cxx @@ -0,0 +1,1160 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/polygon/b2dtrapezoid.hxx> +#include <basegfx/range/b1drange.hxx> +#include <basegfx/polygon/b2dpolygontools.hxx> +#include <basegfx/polygon/b2dpolypolygon.hxx> + +#include <osl/diagnose.h> + +#include <list> + +namespace basegfx::trapezoidhelper +{ + + // helper class to hold a simple edge. This is only used for horizontal edges + // currently, thus the YPositions will be equal. I did not create a special + // class for this since holding the pointers is more effective and also can be + // used as baseclass for the traversing edges + + namespace { + + class TrDeSimpleEdge + { + protected: + // pointers to start and end point + const B2DPoint* mpStart; + const B2DPoint* mpEnd; + + public: + // constructor + TrDeSimpleEdge( + const B2DPoint* pStart, + const B2DPoint* pEnd) + : mpStart(pStart), + mpEnd(pEnd) + { + } + + // data read access + const B2DPoint& getStart() const { return *mpStart; } + const B2DPoint& getEnd() const { return *mpEnd; } + }; + + } + + // define vector of simple edges + + typedef std::vector< TrDeSimpleEdge > TrDeSimpleEdges; + + // helper class for holding a traversing edge. It will always have some + // distance in YPos. The slope (in a numerically useful form, see comments) is + // hold and used in SortValue to allow sorting traversing edges by Y, X and slope + // (in that order) + + namespace { + + class TrDeEdgeEntry : public TrDeSimpleEdge + { + private: + // the slope in a numerical useful form for sorting + sal_uInt32 mnSortValue; + + public: + // convenience data read access + double getDeltaX() const { return mpEnd->getX() - mpStart->getX(); } + double getDeltaY() const { return mpEnd->getY() - mpStart->getY(); } + + // convenience data read access. SortValue is created on demand since + // it is not always used + sal_uInt32 getSortValue() const + { + if(mnSortValue != 0) + return mnSortValue; + + // get radiant; has to be in the range ]0.0 .. pi[, thus scale to full + // sal_uInt32 range for maximum precision + const double fRadiant(atan2(getDeltaY(), getDeltaX()) * (SAL_MAX_UINT32 / M_PI)); + + // convert to sal_uInt32 value + const_cast< TrDeEdgeEntry* >(this)->mnSortValue = sal_uInt32(fRadiant); + + return mnSortValue; + } + + // constructor. SortValue can be given when known, use zero otherwise + TrDeEdgeEntry( + const B2DPoint* pStart, + const B2DPoint* pEnd, + sal_uInt32 nSortValue) + : TrDeSimpleEdge(pStart, pEnd), + mnSortValue(nSortValue) + { + // force traversal of deltaY downward + if(mpEnd->getY() < mpStart->getY()) + { + std::swap(mpStart, mpEnd); + } + + // no horizontal edges allowed, all need to traverse vertically + OSL_ENSURE(mpEnd->getY() > mpStart->getY(), "Illegal TrDeEdgeEntry constructed (!)"); + } + + // data write access to StartPoint + void setStart( const B2DPoint* pNewStart) + { + OSL_ENSURE(pNewStart != nullptr, "No null pointer allowed here (!)"); + + if(mpStart != pNewStart) + { + mpStart = pNewStart; + + // no horizontal edges allowed, all need to traverse vertically + OSL_ENSURE(mpEnd->getY() > mpStart->getY(), "Illegal TrDeEdgeEntry constructed (!)"); + } + } + + // data write access to EndPoint + void setEnd( const B2DPoint* pNewEnd) + { + OSL_ENSURE(pNewEnd != nullptr, "No null pointer allowed here (!)"); + + if(mpEnd != pNewEnd) + { + mpEnd = pNewEnd; + + // no horizontal edges allowed, all need to traverse vertically + OSL_ENSURE(mpEnd->getY() > mpStart->getY(), "Illegal TrDeEdgeEntry constructed (!)"); + } + } + + // operator for sort support. Sort by Y, X and slope (in that order) + bool operator<(const TrDeEdgeEntry& rComp) const + { + if(fTools::equal(getStart().getY(), rComp.getStart().getY())) + { + if(fTools::equal(getStart().getX(), rComp.getStart().getX())) + { + // when start points are equal, use the direction the edge is pointing + // to. That value is created on demand and derived from atan2 in the + // range ]0.0 .. pi[ (without extremas, we always have a deltaY in this + // class) and scaled to sal_uInt32 range for best precision. 0 means no angle, + // while SAL_MAX_UINT32 means pi. Thus, the higher the value, the more left + // the edge traverses. + return (getSortValue() > rComp.getSortValue()); + } + else + { + return fTools::less(getStart().getX(), rComp.getStart().getX()); + } + } + else + { + return fTools::less(getStart().getY(), rComp.getStart().getY()); + } + } + + // method for cut support + B2DPoint getCutPointForGivenY(double fGivenY) const + { + // Calculate cut point locally (do not use interpolate) since it is numerically + // necessary to guarantee the new, equal Y-coordinate + const double fFactor((fGivenY - getStart().getY()) / getDeltaY()); + const double fDeltaXNew(fFactor * getDeltaX()); + + return B2DPoint(getStart().getX() + fDeltaXNew, fGivenY); + } + }; + + } + + // define double linked list of edges (for fast random insert) + + typedef std::list< TrDeEdgeEntry > TrDeEdgeEntries; + + + + // FIXME: templatize this and use it for TrDeEdgeEntries too ... + + namespace { + + /// Class to allow efficient allocation and release of B2DPoints + class PointBlockAllocator + { + static const size_t nBlockSize = 32; + size_t nCurPoint; + B2DPoint *mpPointBase; + /// Special case the first allocation to avoid it. + B2DPoint maFirstStackBlock[nBlockSize]; + std::vector< B2DPoint * > maBlocks; + public: + PointBlockAllocator() : + nCurPoint( nBlockSize ), + mpPointBase( maFirstStackBlock ) + { + } + + ~PointBlockAllocator() + { + while(!maBlocks.empty()) + { + delete [] maBlocks.back(); + maBlocks.pop_back(); + } + } + + B2DPoint *allocatePoint() + { + if(nCurPoint >= nBlockSize) + { + mpPointBase = new B2DPoint[nBlockSize]; + maBlocks.push_back(mpPointBase); + nCurPoint = 0; + } + return mpPointBase + nCurPoint++; + } + + B2DPoint *allocatePoint(const B2DTuple &rPoint) + { + B2DPoint *pPoint = allocatePoint(); + *pPoint = rPoint; + return pPoint; + } + + /// This is a very uncommon case but why not ... + void freeIfLast(B2DPoint const *pPoint) + { + // just re-use the last point if we can. + if ( nCurPoint > 0 && pPoint == mpPointBase + nCurPoint - 1 ) + nCurPoint--; + } + }; + + // helper class to handle the complete trapezoid subdivision of a PolyPolygon + class TrapezoidSubdivider + { + private: + // local data + TrDeEdgeEntries maTrDeEdgeEntries; + std::vector< B2DPoint > maPoints; + /// new points allocated for cuts + PointBlockAllocator maNewPoints; + + void addEdgeSorted( + TrDeEdgeEntries::iterator aCurrent, + const TrDeEdgeEntry& rNewEdge) + { + // Loop while new entry is bigger, use operator< + while(aCurrent != maTrDeEdgeEntries.end() && (*aCurrent) < rNewEdge) + { + ++aCurrent; + } + + // Insert before first which is smaller or equal or at end + maTrDeEdgeEntries.insert(aCurrent, rNewEdge); + } + + bool splitEdgeAtGivenPoint( + TrDeEdgeEntries::reference aEdge, + const B2DPoint& rCutPoint, + const TrDeEdgeEntries::iterator& aCurrent) + { + // do not create edges without deltaY: do not split when start is identical + if(aEdge.getStart().equal(rCutPoint)) + { + return false; + } + + // do not create edges without deltaY: do not split when end is identical + if(aEdge.getEnd().equal(rCutPoint)) + { + return false; + } + + const double fOldDeltaYStart(rCutPoint.getY() - aEdge.getStart().getY()); + + if(fTools::lessOrEqual(fOldDeltaYStart, 0.0)) + { + // do not split: the resulting edge would be horizontal + // correct it to new start point + aEdge.setStart(&rCutPoint); + return false; + } + + const double fNewDeltaYStart(aEdge.getEnd().getY() - rCutPoint.getY()); + + if(fTools::lessOrEqual(fNewDeltaYStart, 0.0)) + { + // do not split: the resulting edge would be horizontal + // correct it to new end point + aEdge.setEnd(&rCutPoint); + return false; + } + + // Create new entry + const TrDeEdgeEntry aNewEdge( + &rCutPoint, + &aEdge.getEnd(), + aEdge.getSortValue()); + + // Correct old entry + aEdge.setEnd(&rCutPoint); + + // Insert sorted (to avoid new sort) + addEdgeSorted(aCurrent, aNewEdge); + + return true; + } + + bool testAndCorrectEdgeIntersection( + TrDeEdgeEntries::reference aEdgeA, + TrDeEdgeEntries::reference aEdgeB, + const TrDeEdgeEntries::iterator& aCurrent) + { + // Exclude simple cases: same start or end point + if(aEdgeA.getStart().equal(aEdgeB.getStart())) + { + return false; + } + + if(aEdgeA.getStart().equal(aEdgeB.getEnd())) + { + return false; + } + + if(aEdgeA.getEnd().equal(aEdgeB.getStart())) + { + return false; + } + + if(aEdgeA.getEnd().equal(aEdgeB.getEnd())) + { + return false; + } + + // Exclude simple cases: one of the edges has no length anymore + if(aEdgeA.getStart().equal(aEdgeA.getEnd())) + { + return false; + } + + if(aEdgeB.getStart().equal(aEdgeB.getEnd())) + { + return false; + } + + // check if one point is on the other edge (a touch, not a cut) + const B2DVector aDeltaB(aEdgeB.getDeltaX(), aEdgeB.getDeltaY()); + + if(utils::isPointOnEdge(aEdgeA.getStart(), aEdgeB.getStart(), aDeltaB)) + { + return splitEdgeAtGivenPoint(aEdgeB, aEdgeA.getStart(), aCurrent); + } + + if(utils::isPointOnEdge(aEdgeA.getEnd(), aEdgeB.getStart(), aDeltaB)) + { + return splitEdgeAtGivenPoint(aEdgeB, aEdgeA.getEnd(), aCurrent); + } + + const B2DVector aDeltaA(aEdgeA.getDeltaX(), aEdgeA.getDeltaY()); + + if(utils::isPointOnEdge(aEdgeB.getStart(), aEdgeA.getStart(), aDeltaA)) + { + return splitEdgeAtGivenPoint(aEdgeA, aEdgeB.getStart(), aCurrent); + } + + if(utils::isPointOnEdge(aEdgeB.getEnd(), aEdgeA.getStart(), aDeltaA)) + { + return splitEdgeAtGivenPoint(aEdgeA, aEdgeB.getEnd(), aCurrent); + } + + // check for cut inside edges. Use both t-values to choose the more precise + // one later + double fCutA(0.0); + double fCutB(0.0); + + if(utils::findCut( + aEdgeA.getStart(), aDeltaA, + aEdgeB.getStart(), aDeltaB, + CutFlagValue::LINE, + &fCutA, + &fCutB) == CutFlagValue::NONE) + return false; + + // use a simple metric (length criteria) for choosing the numerically + // better cut + const double fSimpleLengthA(aDeltaA.getX() + aDeltaA.getY()); + const double fSimpleLengthB(aDeltaB.getX() + aDeltaB.getY()); + const bool bAIsLonger(fSimpleLengthA > fSimpleLengthB); + B2DPoint* pNewPoint = bAIsLonger + ? maNewPoints.allocatePoint(aEdgeA.getStart() + (fCutA * aDeltaA)) + : maNewPoints.allocatePoint(aEdgeB.getStart() + (fCutB * aDeltaB)); + + // try to split both edges + bool bRetval = splitEdgeAtGivenPoint(aEdgeA, *pNewPoint, aCurrent); + bRetval |= splitEdgeAtGivenPoint(aEdgeB, *pNewPoint, aCurrent); + + if(!bRetval) + maNewPoints.freeIfLast(pNewPoint); + + return bRetval; + } + + void solveHorizontalEdges(TrDeSimpleEdges& rTrDeSimpleEdges) + { + if(rTrDeSimpleEdges.empty() || maTrDeEdgeEntries.empty()) + return; + + // there were horizontal edges. These can be excluded, but + // cuts with other edges need to be solved and added before + // ignoring them + for(const TrDeSimpleEdge & rHorEdge : rTrDeSimpleEdges) + { + // get horizontal edge as candidate; prepare its range and fixed Y + const B1DRange aRange(rHorEdge.getStart().getX(), rHorEdge.getEnd().getX()); + const double fFixedY(rHorEdge.getStart().getY()); + + // loop over traversing edges + TrDeEdgeEntries::iterator aCurrent(maTrDeEdgeEntries.begin()); + + do + { + // get compare edge + TrDeEdgeEntries::reference aCompare(*aCurrent++); + + if(fTools::lessOrEqual(aCompare.getEnd().getY(), fFixedY)) + { + // edge ends above horizontal edge, continue + continue; + } + + if(fTools::moreOrEqual(aCompare.getStart().getY(), fFixedY)) + { + // edge starts below horizontal edge, continue + continue; + } + + // vertical overlap, get horizontal range + const B1DRange aCompareRange(aCompare.getStart().getX(), aCompare.getEnd().getX()); + + if(aRange.overlaps(aCompareRange)) + { + // possible cut, get cut point + const B2DPoint aSplit(aCompare.getCutPointForGivenY(fFixedY)); + + if(fTools::more(aSplit.getX(), aRange.getMinimum()) + && fTools::less(aSplit.getX(), aRange.getMaximum())) + { + // cut is in XRange of horizontal edge, potentially needed cut + B2DPoint* pNewPoint = maNewPoints.allocatePoint(aSplit); + + if(!splitEdgeAtGivenPoint(aCompare, *pNewPoint, aCurrent)) + { + maNewPoints.freeIfLast(pNewPoint); + } + } + } + } + while(aCurrent != maTrDeEdgeEntries.end() + && fTools::less(aCurrent->getStart().getY(), fFixedY)); + } + } + + public: + explicit TrapezoidSubdivider( + const B2DPolyPolygon& rSourcePolyPolygon) + { + B2DPolyPolygon aSource(rSourcePolyPolygon); + TrDeSimpleEdges aTrDeSimpleEdges; + sal_uInt32 nAllPointCount(0); + + // ensure there are no curves used + if(aSource.areControlPointsUsed()) + { + aSource = aSource.getDefaultAdaptiveSubdivision(); + } + + for(const auto& aPolygonCandidate : std::as_const(aSource)) + { + // 1st run: count points + const sal_uInt32 nCount(aPolygonCandidate.count()); + + if(nCount > 2) + { + nAllPointCount += nCount; + } + } + + if(nAllPointCount) + { + // reserve needed points. CAUTION: maPoints size is NOT to be changed anymore + // after 2nd loop since pointers to it are used in the edges + maPoints.reserve(nAllPointCount); + + for(const auto& aPolygonCandidate : std::as_const(aSource)) + { + // 2nd run: add points + const sal_uInt32 nCount(aPolygonCandidate.count()); + + if(nCount > 2) + { + for(sal_uInt32 b = 0; b < nCount; b++) + { + maPoints.push_back(aPolygonCandidate.getB2DPoint(b)); + } + } + } + + // Moved the edge construction to a 3rd run: doing it in the 2nd run is + // possible (and I used it), but requires a working vector::reserve() + // implementation, else the vector will be reallocated and the pointers + // in the edges may be wrong. Security first here. + sal_uInt32 nStartIndex(0); + + for(const auto& aPolygonCandidate : std::as_const(aSource)) + { + const sal_uInt32 nCount(aPolygonCandidate.count()); + + if(nCount > 2) + { + // get the last point of the current polygon + B2DPoint* pPrev(&maPoints[nCount + nStartIndex - 1]); + + for(sal_uInt32 b = 0; b < nCount; b++) + { + // get next point + B2DPoint* pCurr(&maPoints[nStartIndex++]); + + if(fTools::equal(pPrev->getY(), pCurr->getY())) + { + // horizontal edge, check for single point + if(!fTools::equal(pPrev->getX(), pCurr->getX())) + { + // X-order not needed, just add + aTrDeSimpleEdges.emplace_back(pPrev, pCurr); + + const double fMiddle((pPrev->getY() + pCurr->getY()) * 0.5); + pPrev->setY(fMiddle); + pCurr->setY(fMiddle); + } + } + else + { + // vertical edge. Positive Y-direction is guaranteed by the + // TrDeEdgeEntry constructor + maTrDeEdgeEntries.emplace_back(pPrev, pCurr, 0); + } + + // prepare next step + pPrev = pCurr; + } + } + } + } + + if(!maTrDeEdgeEntries.empty()) + { + // single and initial sort of traversing edges + maTrDeEdgeEntries.sort(); + + // solve horizontal edges if there are any detected + solveHorizontalEdges(aTrDeSimpleEdges); + } + } + + void Subdivide(B2DTrapezoidVector& ro_Result) + { + // This is the central subdivider. The strategy is to use the first two entries + // from the traversing edges as a potential trapezoid and do the needed corrections + // and adaptations on the way. + + // There always must be two edges with the same YStart value: When adding the polygons + // in the constructor, there is always a topmost point from which two edges start; when + // the topmost is an edge, there is a start and end of this edge from which two edges + // start. All cases have two edges with same StartY (QED). + + // Based on this these edges get corrected when: + // - one is longer than the other + // - they intersect + // - they intersect with other edges + // - another edge starts inside the thought trapezoid + + // All this cases again produce a valid state so that the first two edges have a common + // Ystart again. Some cases lead to a restart of the process, some allow consuming the + // edges and create the intended trapezoid. + + // Be careful when doing changes here: it is essential to keep all possible paths + // in valid states and to be numerically correct. This is especially needed e.g. + // by using fTools::equal(..) in the more robust small-value incarnation. + B1DRange aLeftRange; + B1DRange aRightRange; + + if(!maTrDeEdgeEntries.empty()) + { + // measuring shows that the relation between edges and created trapezoids is + // mostly in the 1:1 range, thus reserve as much trapezoids as edges exist. + ro_Result.reserve(ro_Result.size() + maTrDeEdgeEntries.size()); + } + + while(!maTrDeEdgeEntries.empty()) + { + // Prepare current operator and get first edge + TrDeEdgeEntries::iterator aCurrent(maTrDeEdgeEntries.begin()); + TrDeEdgeEntries::reference aLeft(*aCurrent++); + + if(aCurrent == maTrDeEdgeEntries.end()) + { + // Should not happen: No 2nd edge; consume the single edge + // to not have an endless loop and start next. During development + // I constantly had breakpoints here, so I am sure enough to add an + // assertion here + OSL_FAIL("Trapezoid decomposer in illegal state (!)"); + maTrDeEdgeEntries.pop_front(); + continue; + } + + // get second edge + TrDeEdgeEntries::reference aRight(*aCurrent++); + + if(!fTools::equal(aLeft.getStart().getY(), aRight.getStart().getY())) + { + // Should not happen: We have a 2nd edge, but YStart is on another + // line; consume the single edge to not have an endless loop and start + // next. During development I constantly had breakpoints here, so I am + // sure enough to add an assertion here + OSL_FAIL("Trapezoid decomposer in illegal state (!)"); + maTrDeEdgeEntries.pop_front(); + continue; + } + + // aLeft and aRight build a thought trapezoid now. They have a common + // start line (same Y for start points). Potentially, one of the edges + // is longer than the other. It is only needed to look at the shorter + // length which build the potential trapezoid. To do so, get the end points + // locally and adapt the evtl. longer one. Use only aLeftEnd and aRightEnd + // from here on, not the aLeft.getEnd() or aRight.getEnd() accesses. + B2DPoint aLeftEnd(aLeft.getEnd()); + B2DPoint aRightEnd(aRight.getEnd()); + + // check if end points are on the same line. If yes, no adaptation + // needs to be prepared. Also remember which one actually is longer. + const bool bEndOnSameLine(fTools::equal(aLeftEnd.getY(), aRightEnd.getY())); + bool bLeftIsLonger(false); + + if(!bEndOnSameLine) + { + // check which edge is longer and correct accordingly + bLeftIsLonger = fTools::more(aLeftEnd.getY(), aRightEnd.getY()); + + if(bLeftIsLonger) + { + aLeftEnd = aLeft.getCutPointForGivenY(aRightEnd.getY()); + } + else + { + aRightEnd = aRight.getCutPointForGivenY(aLeftEnd.getY()); + } + } + + // check for same start and end points + const bool bSameStartPoint(aLeft.getStart().equal(aRight.getStart())); + const bool bSameEndPoint(aLeftEnd.equal(aRightEnd)); + + // check the simple case that the edges form a 'blind' edge (deadend) + if(bSameStartPoint && bSameEndPoint) + { + // correct the longer edge if prepared + if(!bEndOnSameLine) + { + if(bLeftIsLonger) + { + B2DPoint* pNewPoint = maNewPoints.allocatePoint(aLeftEnd); + + if(!splitEdgeAtGivenPoint(aLeft, *pNewPoint, aCurrent)) + { + maNewPoints.freeIfLast(pNewPoint); + } + } + else + { + B2DPoint* pNewPoint = maNewPoints.allocatePoint(aRightEnd); + + if(!splitEdgeAtGivenPoint(aRight, *pNewPoint, aCurrent)) + { + maNewPoints.freeIfLast(pNewPoint); + } + } + } + + // consume both edges and start next run + maTrDeEdgeEntries.pop_front(); + maTrDeEdgeEntries.pop_front(); + + continue; + } + + // check if the edges self-intersect. This can only happen when + // start and end point are different + bool bRangesSet(false); + + if(!(bSameStartPoint || bSameEndPoint)) + { + // get XRanges of edges + aLeftRange = B1DRange(aLeft.getStart().getX(), aLeftEnd.getX()); + aRightRange = B1DRange(aRight.getStart().getX(), aRightEnd.getX()); + bRangesSet = true; + + // use fast range test first + if(aLeftRange.overlaps(aRightRange)) + { + // real cut test and correction. If correction was needed, + // start new run + if(testAndCorrectEdgeIntersection(aLeft, aRight, aCurrent)) + { + continue; + } + } + } + + // now we need to check if there are intersections with other edges + // or if other edges start inside the candidate trapezoid + if(aCurrent != maTrDeEdgeEntries.end() + && fTools::less(aCurrent->getStart().getY(), aLeftEnd.getY())) + { + // get XRanges of edges + if(!bRangesSet) + { + aLeftRange = B1DRange(aLeft.getStart().getX(), aLeftEnd.getX()); + aRightRange = B1DRange(aRight.getStart().getX(), aRightEnd.getX()); + } + + // build full XRange for fast check + B1DRange aAllRange(aLeftRange); + aAllRange.expand(aRightRange); + + // prepare loop iterator; aCurrent needs to stay unchanged for + // possibly sorted insertions of new EdgeNodes. Also prepare stop flag + TrDeEdgeEntries::iterator aLoop(aCurrent); + bool bDone(false); + + do + { + // get compare edge and its XRange + TrDeEdgeEntries::reference aCompare(*aLoop++); + + // avoid edges using the same start point as one of + // the edges. These can neither have their start point + // in the thought trapezoid nor cut with one of the edges + if(aCompare.getStart().equal(aRight.getStart())) + { + continue; + } + + // get compare XRange + const B1DRange aCompareRange(aCompare.getStart().getX(), aCompare.getEnd().getX()); + + // use fast range test first + if(aAllRange.overlaps(aCompareRange)) + { + // check for start point inside thought trapezoid + if(fTools::more(aCompare.getStart().getY(), aLeft.getStart().getY())) + { + // calculate the two possible split points at compare's Y + const B2DPoint aSplitLeft(aLeft.getCutPointForGivenY(aCompare.getStart().getY())); + const B2DPoint aSplitRight(aRight.getCutPointForGivenY(aCompare.getStart().getY())); + + // check for start point of aCompare being inside thought + // trapezoid + if(aCompare.getStart().getX() >= aSplitLeft.getX() && + aCompare.getStart().getX() <= aSplitRight.getX()) + { + // is inside, correct and restart loop + B2DPoint* pNewLeft = maNewPoints.allocatePoint(aSplitLeft); + + if(splitEdgeAtGivenPoint(aLeft, *pNewLeft, aCurrent)) + { + bDone = true; + } + else + { + maNewPoints.freeIfLast(pNewLeft); + } + + B2DPoint* pNewRight = maNewPoints.allocatePoint(aSplitRight); + + if(splitEdgeAtGivenPoint(aRight, *pNewRight, aCurrent)) + { + bDone = true; + } + else + { + maNewPoints.freeIfLast(pNewRight); + } + } + } + + if(!bDone && aLeftRange.overlaps(aCompareRange)) + { + // test for concrete cut of compare edge with left edge + bDone = testAndCorrectEdgeIntersection(aLeft, aCompare, aCurrent); + } + + if(!bDone && aRightRange.overlaps(aCompareRange)) + { + // test for concrete cut of compare edge with Right edge + bDone = testAndCorrectEdgeIntersection(aRight, aCompare, aCurrent); + } + } + } + while(!bDone + && aLoop != maTrDeEdgeEntries.end() + && fTools::less(aLoop->getStart().getY(), aLeftEnd.getY())); + + if(bDone) + { + // something needed to be changed; start next loop + continue; + } + } + + // when we get here, the intended trapezoid can be used. It needs to + // be corrected possibly (if prepared); but this is no reason not to + // use it in the same loop iteration + if(!bEndOnSameLine) + { + if(bLeftIsLonger) + { + B2DPoint* pNewPoint = maNewPoints.allocatePoint(aLeftEnd); + + if(!splitEdgeAtGivenPoint(aLeft, *pNewPoint, aCurrent)) + { + maNewPoints.freeIfLast(pNewPoint); + } + } + else + { + B2DPoint* pNewPoint = maNewPoints.allocatePoint(aRightEnd); + + if(!splitEdgeAtGivenPoint(aRight, *pNewPoint, aCurrent)) + { + maNewPoints.freeIfLast(pNewPoint); + } + } + } + + // the two edges start at the same Y, they use the same DeltaY, they + // do not cut themselves and not any other edge in range. Create a + // B2DTrapezoid and consume both edges + ro_Result.emplace_back( + aLeft.getStart().getX(), + aRight.getStart().getX(), + aLeft.getStart().getY(), + aLeftEnd.getX(), + aRightEnd.getX(), + aLeftEnd.getY()); + + maTrDeEdgeEntries.pop_front(); + maTrDeEdgeEntries.pop_front(); + } + } + }; + + } +} // end of namespace + +namespace basegfx +{ + B2DTrapezoid::B2DTrapezoid( + const double& rfTopXLeft, + const double& rfTopXRight, + const double& rfTopY, + const double& rfBottomXLeft, + const double& rfBottomXRight, + const double& rfBottomY) + : mfTopXLeft(rfTopXLeft), + mfTopXRight(rfTopXRight), + mfTopY(rfTopY), + mfBottomXLeft(rfBottomXLeft), + mfBottomXRight(rfBottomXRight), + mfBottomY(rfBottomY) + { + // guarantee mfTopXRight >= mfTopXLeft + if(mfTopXLeft > mfTopXRight) + { + std::swap(mfTopXLeft, mfTopXRight); + } + + // guarantee mfBottomXRight >= mfBottomXLeft + if(mfBottomXLeft > mfBottomXRight) + { + std::swap(mfBottomXLeft, mfBottomXRight); + } + + // guarantee mfBottomY >= mfTopY + if(mfTopY > mfBottomY) + { + std::swap(mfTopY, mfBottomY); + std::swap(mfTopXLeft, mfBottomXLeft); + std::swap(mfTopXRight, mfBottomXRight); + } + } + + B2DPolygon B2DTrapezoid::getB2DPolygon() const + { + B2DPolygon aRetval; + + aRetval.append(B2DPoint(getTopXLeft(), getTopY())); + aRetval.append(B2DPoint(getTopXRight(), getTopY())); + aRetval.append(B2DPoint(getBottomXRight(), getBottomY())); + aRetval.append(B2DPoint(getBottomXLeft(), getBottomY())); + aRetval.setClosed(true); + + return aRetval; + } +} // end of namespace basegfx + +namespace basegfx::utils +{ + // convert Source utils::PolyPolygon to trapezoids + void trapezoidSubdivide(B2DTrapezoidVector& ro_Result, const B2DPolyPolygon& rSourcePolyPolygon) + { + trapezoidhelper::TrapezoidSubdivider aTrapezoidSubdivider(rSourcePolyPolygon); + + aTrapezoidSubdivider.Subdivide(ro_Result); + } + + void createLineTrapezoidFromEdge( + B2DTrapezoidVector& ro_Result, + const B2DPoint& rPointA, + const B2DPoint& rPointB, + double fLineWidth) + { + if(fTools::lessOrEqual(fLineWidth, 0.0)) + { + // no line width + return; + } + + if(rPointA.equal(rPointB)) + { + // points are equal, no edge + return; + } + + const double fHalfLineWidth(0.5 * fLineWidth); + + if(fTools::equal(rPointA.getX(), rPointB.getX())) + { + // vertical line + const double fLeftX(rPointA.getX() - fHalfLineWidth); + const double fRightX(rPointA.getX() + fHalfLineWidth); + + ro_Result.emplace_back( + fLeftX, + fRightX, + std::min(rPointA.getY(), rPointB.getY()), + fLeftX, + fRightX, + std::max(rPointA.getY(), rPointB.getY())); + } + else if(fTools::equal(rPointA.getY(), rPointB.getY())) + { + // horizontal line + const double fLeftX(std::min(rPointA.getX(), rPointB.getX())); + const double fRightX(std::max(rPointA.getX(), rPointB.getX())); + + ro_Result.emplace_back( + fLeftX, + fRightX, + rPointA.getY() - fHalfLineWidth, + fLeftX, + fRightX, + rPointA.getY() + fHalfLineWidth); + } + else + { + // diagonal line + // create perpendicular vector + const B2DVector aDelta(rPointB - rPointA); + B2DVector aPerpendicular(-aDelta.getY(), aDelta.getX()); + aPerpendicular.setLength(fHalfLineWidth); + + // create StartLow, StartHigh, EndLow and EndHigh + const B2DPoint aStartLow(rPointA + aPerpendicular); + const B2DPoint aStartHigh(rPointA - aPerpendicular); + const B2DPoint aEndHigh(rPointB - aPerpendicular); + const B2DPoint aEndLow(rPointB + aPerpendicular); + + // create EdgeEntries + basegfx::trapezoidhelper::TrDeEdgeEntries aTrDeEdgeEntries; + + aTrDeEdgeEntries.emplace_back(&aStartLow, &aStartHigh, 0); + aTrDeEdgeEntries.emplace_back(&aStartHigh, &aEndHigh, 0); + aTrDeEdgeEntries.emplace_back(&aEndHigh, &aEndLow, 0); + aTrDeEdgeEntries.emplace_back(&aEndLow, &aStartLow, 0); + aTrDeEdgeEntries.sort(); + + // here we know we have exactly four edges, and they do not cut, touch or + // intersect. This makes processing much easier. Get the first two as start + // edges for the thought trapezoid + basegfx::trapezoidhelper::TrDeEdgeEntries::iterator aCurrent(aTrDeEdgeEntries.begin()); + basegfx::trapezoidhelper::TrDeEdgeEntries::reference aLeft(*aCurrent++); + basegfx::trapezoidhelper::TrDeEdgeEntries::reference aRight(*aCurrent++); + const bool bEndOnSameLine(fTools::equal(aLeft.getEnd().getY(), aRight.getEnd().getY())); + + if(bEndOnSameLine) + { + // create two triangle trapezoids + ro_Result.emplace_back( + aLeft.getStart().getX(), + aRight.getStart().getX(), + aLeft.getStart().getY(), + aLeft.getEnd().getX(), + aRight.getEnd().getX(), + aLeft.getEnd().getY()); + + basegfx::trapezoidhelper::TrDeEdgeEntries::reference aLeft2(*aCurrent++); + basegfx::trapezoidhelper::TrDeEdgeEntries::reference aRight2(*aCurrent++); + + ro_Result.emplace_back( + aLeft2.getStart().getX(), + aRight2.getStart().getX(), + aLeft2.getStart().getY(), + aLeft2.getEnd().getX(), + aRight2.getEnd().getX(), + aLeft2.getEnd().getY()); + } + else + { + // create three trapezoids. Check which edge is longer and + // correct accordingly + const bool bLeftIsLonger(fTools::more(aLeft.getEnd().getY(), aRight.getEnd().getY())); + + if(bLeftIsLonger) + { + basegfx::trapezoidhelper::TrDeEdgeEntries::reference aRight2(*aCurrent++); + basegfx::trapezoidhelper::TrDeEdgeEntries::reference aLeft2(*aCurrent++); + const B2DPoint aSplitLeft(aLeft.getCutPointForGivenY(aRight.getEnd().getY())); + const B2DPoint aSplitRight(aRight2.getCutPointForGivenY(aLeft.getEnd().getY())); + + ro_Result.emplace_back( + aLeft.getStart().getX(), + aRight.getStart().getX(), + aLeft.getStart().getY(), + aSplitLeft.getX(), + aRight.getEnd().getX(), + aRight.getEnd().getY()); + + ro_Result.emplace_back( + aSplitLeft.getX(), + aRight.getEnd().getX(), + aRight.getEnd().getY(), + aLeft2.getStart().getX(), + aSplitRight.getX(), + aLeft2.getStart().getY()); + + ro_Result.emplace_back( + aLeft2.getStart().getX(), + aSplitRight.getX(), + aLeft2.getStart().getY(), + aLeft2.getEnd().getX(), + aRight2.getEnd().getX(), + aLeft2.getEnd().getY()); + } + else + { + basegfx::trapezoidhelper::TrDeEdgeEntries::reference aLeft2(*aCurrent++); + basegfx::trapezoidhelper::TrDeEdgeEntries::reference aRight2(*aCurrent++); + const B2DPoint aSplitRight(aRight.getCutPointForGivenY(aLeft.getEnd().getY())); + const B2DPoint aSplitLeft(aLeft2.getCutPointForGivenY(aRight.getEnd().getY())); + + ro_Result.emplace_back( + aLeft.getStart().getX(), + aRight.getStart().getX(), + aLeft.getStart().getY(), + aLeft.getEnd().getX(), + aSplitRight.getX(), + aLeft.getEnd().getY()); + + ro_Result.emplace_back( + aLeft.getEnd().getX(), + aSplitRight.getX(), + aLeft.getEnd().getY(), + aSplitLeft.getX(), + aRight.getEnd().getX(), + aRight2.getStart().getY()); + + ro_Result.emplace_back( + aSplitLeft.getX(), + aRight.getEnd().getX(), + aRight2.getStart().getY(), + aLeft2.getEnd().getX(), + aRight2.getEnd().getX(), + aLeft2.getEnd().getY()); + } + } + } + } + + void createLineTrapezoidFromB2DPolygon( + B2DTrapezoidVector& ro_Result, + const B2DPolygon& rPolygon, + double fLineWidth) + { + if(fTools::lessOrEqual(fLineWidth, 0.0)) + { + return; + } + + // ensure there are no curves used + B2DPolygon aSource(rPolygon); + + if(aSource.areControlPointsUsed()) + { + const double fPrecisionFactor = 0.25; + aSource = adaptiveSubdivideByDistance( aSource, fLineWidth * fPrecisionFactor ); + } + + const sal_uInt32 nPointCount(aSource.count()); + + if(!nPointCount) + { + return; + } + + const sal_uInt32 nEdgeCount(aSource.isClosed() ? nPointCount : nPointCount - 1); + B2DPoint aCurrent(aSource.getB2DPoint(0)); + + ro_Result.reserve(ro_Result.size() + (3 * nEdgeCount)); + + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + const B2DPoint aNext(aSource.getB2DPoint(nNextIndex)); + + createLineTrapezoidFromEdge(ro_Result, aCurrent, aNext, fLineWidth); + aCurrent = aNext; + } + } + + +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b3dpolygon.cxx b/basegfx/source/polygon/b3dpolygon.cxx new file mode 100644 index 000000000..c1ee4b083 --- /dev/null +++ b/basegfx/source/polygon/b3dpolygon.cxx @@ -0,0 +1,1617 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <osl/diagnose.h> +#include <basegfx/polygon/b3dpolygon.hxx> +#include <basegfx/point/b3dpoint.hxx> +#include <basegfx/matrix/b3dhommatrix.hxx> +#include <basegfx/point/b2dpoint.hxx> +#include <basegfx/color/bcolor.hxx> +#include <basegfx/matrix/b2dhommatrix.hxx> +#include <cassert> +#include <memory> +#include <utility> +#include <vector> +#include <algorithm> + +namespace { + +class CoordinateData3D +{ + basegfx::B3DPoint maPoint; + +public: + CoordinateData3D() + { + } + + explicit CoordinateData3D(const basegfx::B3DPoint& rData) + : maPoint(rData) + { + } + + const basegfx::B3DPoint& getCoordinate() const + { + return maPoint; + } + + void setCoordinate(const basegfx::B3DPoint& rValue) + { + if(rValue != maPoint) + maPoint = rValue; + } + + bool operator==(const CoordinateData3D& rData) const + { + return (maPoint == rData.getCoordinate()); + } + + void transform(const basegfx::B3DHomMatrix& rMatrix) + { + maPoint *= rMatrix; + } +}; + +class CoordinateDataArray3D +{ + typedef std::vector< CoordinateData3D > CoordinateData3DVector; + + CoordinateData3DVector maVector; + +public: + explicit CoordinateDataArray3D(sal_uInt32 nCount) + : maVector(nCount) + { + } + + CoordinateDataArray3D(const CoordinateDataArray3D& rOriginal, sal_uInt32 nIndex, sal_uInt32 nCount) + : maVector(rOriginal.maVector.begin() + nIndex, rOriginal.maVector.begin() + (nIndex + nCount)) + { + } + + ::basegfx::B3DVector getNormal() const + { + ::basegfx::B3DVector aRetval; + const sal_uInt32 nPointCount(maVector.size()); + + if(nPointCount > 2) + { + sal_uInt32 nISmallest(0); + sal_uInt32 a(0); + const basegfx::B3DPoint* pSmallest(&maVector[0].getCoordinate()); + const basegfx::B3DPoint* pNext(nullptr); + const basegfx::B3DPoint* pPrev(nullptr); + + // To guarantee a correctly oriented point, choose an outmost one + // which then cannot be concave + for(a = 1; a < nPointCount; a++) + { + const basegfx::B3DPoint& rCandidate = maVector[a].getCoordinate(); + + if((rCandidate.getX() < pSmallest->getX()) + || (rCandidate.getX() == pSmallest->getX() && rCandidate.getY() < pSmallest->getY()) + || (rCandidate.getX() == pSmallest->getX() && rCandidate.getY() == pSmallest->getY() && rCandidate.getZ() < pSmallest->getZ())) + { + nISmallest = a; + pSmallest = &rCandidate; + } + } + + // look for a next point different from minimal one + for(a = (nISmallest + 1) % nPointCount; a != nISmallest; a = (a + 1) % nPointCount) + { + const basegfx::B3DPoint& rCandidate = maVector[a].getCoordinate(); + + if(!rCandidate.equal(*pSmallest)) + { + pNext = &rCandidate; + break; + } + } + + // look for a previous point different from minimal one + for(a = (nISmallest + nPointCount - 1) % nPointCount; a != nISmallest; a = (a + nPointCount - 1) % nPointCount) + { + const basegfx::B3DPoint& rCandidate = maVector[a].getCoordinate(); + + if(!rCandidate.equal(*pSmallest)) + { + pPrev = &rCandidate; + break; + } + } + + // we always have a minimal point. If we also have a different next and previous, + // we can calculate the normal + if(pNext && pPrev) + { + const basegfx::B3DVector aPrev(*pPrev - *pSmallest); + const basegfx::B3DVector aNext(*pNext - *pSmallest); + + aRetval = cross(aPrev, aNext); + aRetval.normalize(); + } + } + + return aRetval; + } + + sal_uInt32 count() const + { + return maVector.size(); + } + + bool operator==(const CoordinateDataArray3D& rCandidate) const + { + return (maVector == rCandidate.maVector); + } + + const basegfx::B3DPoint& getCoordinate(sal_uInt32 nIndex) const + { + return maVector[nIndex].getCoordinate(); + } + + void setCoordinate(sal_uInt32 nIndex, const basegfx::B3DPoint& rValue) + { + maVector[nIndex].setCoordinate(rValue); + } + + void insert(sal_uInt32 nIndex, const CoordinateData3D& rValue, sal_uInt32 nCount) + { + if(nCount) + { + // add nCount copies of rValue + CoordinateData3DVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + maVector.insert(aIndex, nCount, rValue); + } + } + + void insert(sal_uInt32 nIndex, const CoordinateDataArray3D& rSource) + { + const sal_uInt32 nCount(rSource.maVector.size()); + + if(nCount) + { + // insert data + CoordinateData3DVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + CoordinateData3DVector::const_iterator aStart(rSource.maVector.begin()); + CoordinateData3DVector::const_iterator aEnd(rSource.maVector.end()); + maVector.insert(aIndex, aStart, aEnd); + } + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(nCount) + { + // remove point data + CoordinateData3DVector::iterator aStart(maVector.begin()); + aStart += nIndex; + const CoordinateData3DVector::iterator aEnd(aStart + nCount); + maVector.erase(aStart, aEnd); + } + } + + void flip() + { + if(maVector.size() <= 1) + return; + + const sal_uInt32 nHalfSize(maVector.size() >> 1); + CoordinateData3DVector::iterator aStart(maVector.begin()); + CoordinateData3DVector::iterator aEnd(maVector.end() - 1); + + for(sal_uInt32 a(0); a < nHalfSize; a++) + { + std::swap(*aStart, *aEnd); + ++aStart; + --aEnd; + } + } + + void transform(const ::basegfx::B3DHomMatrix& rMatrix) + { + for (auto & elem : maVector) + { + elem.transform(rMatrix); + } + } +}; + +class BColorArray +{ + typedef std::vector< ::basegfx::BColor > BColorDataVector; + + BColorDataVector maVector; + sal_uInt32 mnUsedEntries; + +public: + explicit BColorArray(sal_uInt32 nCount) + : maVector(nCount), + mnUsedEntries(0) + { + } + + BColorArray(const BColorArray& rOriginal, sal_uInt32 nIndex, sal_uInt32 nCount) + : mnUsedEntries(0) + { + BColorDataVector::const_iterator aStart(rOriginal.maVector.begin()); + aStart += nIndex; + BColorDataVector::const_iterator aEnd(aStart); + assert(nCount <= rOriginal.maVector.size()); + aEnd += nCount; + maVector.reserve(nCount); + + for(; aStart != aEnd; ++aStart) + { + if(!aStart->equalZero()) + mnUsedEntries++; + + maVector.push_back(*aStart); + } + } + + bool operator==(const BColorArray& rCandidate) const + { + return (maVector == rCandidate.maVector); + } + + bool isUsed() const + { + return (mnUsedEntries != 0); + } + + const ::basegfx::BColor& getBColor(sal_uInt32 nIndex) const + { + return maVector[nIndex]; + } + + void setBColor(sal_uInt32 nIndex, const ::basegfx::BColor& rValue) + { + bool bWasUsed(mnUsedEntries && !maVector[nIndex].equalZero()); + bool bIsUsed(!rValue.equalZero()); + + if(bWasUsed) + { + if(bIsUsed) + { + maVector[nIndex] = rValue; + } + else + { + maVector[nIndex] = ::basegfx::BColor::getEmptyBColor(); + mnUsedEntries--; + } + } + else + { + if(bIsUsed) + { + maVector[nIndex] = rValue; + mnUsedEntries++; + } + } + } + + void insert(sal_uInt32 nIndex, const ::basegfx::BColor& rValue, sal_uInt32 nCount) + { + if(nCount) + { + // add nCount copies of rValue + BColorDataVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + maVector.insert(aIndex, nCount, rValue); + + if(!rValue.equalZero()) + mnUsedEntries += nCount; + } + } + + void insert(sal_uInt32 nIndex, const BColorArray& rSource) + { + const sal_uInt32 nCount(rSource.maVector.size()); + + if(nCount) + { + // insert data + BColorDataVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + BColorDataVector::const_iterator aStart(rSource.maVector.begin()); + BColorDataVector::const_iterator aEnd(rSource.maVector.end()); + maVector.insert(aIndex, aStart, aEnd); + + mnUsedEntries += std::count_if(aStart, aEnd, + [](BColorDataVector::const_reference rData) { return !rData.equalZero(); }); + } + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(nCount) + { + const BColorDataVector::iterator aDeleteStart(maVector.begin() + nIndex); + const BColorDataVector::iterator aDeleteEnd(aDeleteStart + nCount); + + auto nDeleteUsed = std::count_if(aDeleteStart, aDeleteEnd, + [](BColorDataVector::const_reference rData) { return !rData.equalZero(); }); + mnUsedEntries -= std::min(mnUsedEntries, static_cast<sal_uInt32>(nDeleteUsed)); + + // remove point data + maVector.erase(aDeleteStart, aDeleteEnd); + } + } + + void flip() + { + if(maVector.size() <= 1) + return; + + const sal_uInt32 nHalfSize(maVector.size() >> 1); + BColorDataVector::iterator aStart(maVector.begin()); + BColorDataVector::iterator aEnd(maVector.end() - 1); + + for(sal_uInt32 a(0); a < nHalfSize; a++) + { + std::swap(*aStart, *aEnd); + ++aStart; + --aEnd; + } + } +}; + +class NormalsArray3D +{ + typedef std::vector< ::basegfx::B3DVector > NormalsData3DVector; + + NormalsData3DVector maVector; + sal_uInt32 mnUsedEntries; + +public: + explicit NormalsArray3D(sal_uInt32 nCount) + : maVector(nCount), + mnUsedEntries(0) + { + } + + NormalsArray3D(const NormalsArray3D& rOriginal, sal_uInt32 nIndex, sal_uInt32 nCount) + : mnUsedEntries(0) + { + NormalsData3DVector::const_iterator aStart(rOriginal.maVector.begin()); + aStart += nIndex; + NormalsData3DVector::const_iterator aEnd(aStart); + aEnd += nCount; + maVector.reserve(nCount); + + for(; aStart != aEnd; ++aStart) + { + if(!aStart->equalZero()) + mnUsedEntries++; + + maVector.push_back(*aStart); + } + } + + bool operator==(const NormalsArray3D& rCandidate) const + { + return (maVector == rCandidate.maVector); + } + + bool isUsed() const + { + return (mnUsedEntries != 0); + } + + const ::basegfx::B3DVector& getNormal(sal_uInt32 nIndex) const + { + return maVector[nIndex]; + } + + void setNormal(sal_uInt32 nIndex, const ::basegfx::B3DVector& rValue) + { + bool bWasUsed(mnUsedEntries && !maVector[nIndex].equalZero()); + bool bIsUsed(!rValue.equalZero()); + + if(bWasUsed) + { + if(bIsUsed) + { + maVector[nIndex] = rValue; + } + else + { + maVector[nIndex] = ::basegfx::B3DVector::getEmptyVector(); + mnUsedEntries--; + } + } + else + { + if(bIsUsed) + { + maVector[nIndex] = rValue; + mnUsedEntries++; + } + } + } + + void insert(sal_uInt32 nIndex, const ::basegfx::B3DVector& rValue, sal_uInt32 nCount) + { + if(nCount) + { + // add nCount copies of rValue + NormalsData3DVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + maVector.insert(aIndex, nCount, rValue); + + if(!rValue.equalZero()) + mnUsedEntries += nCount; + } + } + + void insert(sal_uInt32 nIndex, const NormalsArray3D& rSource) + { + const sal_uInt32 nCount(rSource.maVector.size()); + + if(nCount) + { + // insert data + NormalsData3DVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + NormalsData3DVector::const_iterator aStart(rSource.maVector.begin()); + NormalsData3DVector::const_iterator aEnd(rSource.maVector.end()); + maVector.insert(aIndex, aStart, aEnd); + + mnUsedEntries += std::count_if(aStart, aEnd, + [](NormalsData3DVector::const_reference rData) { return !rData.equalZero(); }); + } + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(nCount) + { + const NormalsData3DVector::iterator aDeleteStart(maVector.begin() + nIndex); + const NormalsData3DVector::iterator aDeleteEnd(aDeleteStart + nCount); + + auto nDeleteUsed = std::count_if(aDeleteStart, aDeleteEnd, + [](NormalsData3DVector::const_reference rData) { return !rData.equalZero(); }); + mnUsedEntries -= std::min(mnUsedEntries, static_cast<sal_uInt32>(nDeleteUsed)); + + // remove point data + maVector.erase(aDeleteStart, aDeleteEnd); + } + } + + void flip() + { + if(maVector.size() <= 1) + return; + + const sal_uInt32 nHalfSize(maVector.size() >> 1); + NormalsData3DVector::iterator aStart(maVector.begin()); + NormalsData3DVector::iterator aEnd(maVector.end() - 1); + + for(sal_uInt32 a(0); a < nHalfSize; a++) + { + std::swap(*aStart, *aEnd); + ++aStart; + --aEnd; + } + } + + void transform(const basegfx::B3DHomMatrix& rMatrix) + { + for (auto & elem : maVector) + { + elem *= rMatrix; + } + } +}; + +class TextureCoordinate2D +{ + typedef std::vector< ::basegfx::B2DPoint > TextureData2DVector; + + TextureData2DVector maVector; + sal_uInt32 mnUsedEntries; + +public: + explicit TextureCoordinate2D(sal_uInt32 nCount) + : maVector(nCount), + mnUsedEntries(0) + { + } + + TextureCoordinate2D(const TextureCoordinate2D& rOriginal, sal_uInt32 nIndex, sal_uInt32 nCount) + : mnUsedEntries(0) + { + TextureData2DVector::const_iterator aStart(rOriginal.maVector.begin()); + aStart += nIndex; + TextureData2DVector::const_iterator aEnd(aStart); + aEnd += nCount; + maVector.reserve(nCount); + + for(; aStart != aEnd; ++aStart) + { + if(!aStart->equalZero()) + mnUsedEntries++; + + maVector.push_back(*aStart); + } + } + + bool operator==(const TextureCoordinate2D& rCandidate) const + { + return (maVector == rCandidate.maVector); + } + + bool isUsed() const + { + return (mnUsedEntries != 0); + } + + const ::basegfx::B2DPoint& getTextureCoordinate(sal_uInt32 nIndex) const + { + return maVector[nIndex]; + } + + void setTextureCoordinate(sal_uInt32 nIndex, const ::basegfx::B2DPoint& rValue) + { + bool bWasUsed(mnUsedEntries && !maVector[nIndex].equalZero()); + bool bIsUsed(!rValue.equalZero()); + + if(bWasUsed) + { + if(bIsUsed) + { + maVector[nIndex] = rValue; + } + else + { + maVector[nIndex] = ::basegfx::B2DPoint::getEmptyPoint(); + mnUsedEntries--; + } + } + else + { + if(bIsUsed) + { + maVector[nIndex] = rValue; + mnUsedEntries++; + } + } + } + + void insert(sal_uInt32 nIndex, const ::basegfx::B2DPoint& rValue, sal_uInt32 nCount) + { + if(nCount) + { + // add nCount copies of rValue + TextureData2DVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + maVector.insert(aIndex, nCount, rValue); + + if(!rValue.equalZero()) + mnUsedEntries += nCount; + } + } + + void insert(sal_uInt32 nIndex, const TextureCoordinate2D& rSource) + { + const sal_uInt32 nCount(rSource.maVector.size()); + + if(nCount) + { + // insert data + TextureData2DVector::iterator aIndex(maVector.begin()); + aIndex += nIndex; + TextureData2DVector::const_iterator aStart(rSource.maVector.begin()); + TextureData2DVector::const_iterator aEnd(rSource.maVector.end()); + maVector.insert(aIndex, aStart, aEnd); + + mnUsedEntries += std::count_if(aStart, aEnd, + [](TextureData2DVector::const_reference rData) { return !rData.equalZero(); }); + } + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(nCount) + { + const TextureData2DVector::iterator aDeleteStart(maVector.begin() + nIndex); + const TextureData2DVector::iterator aDeleteEnd(aDeleteStart + nCount); + + auto nDeleteUsed = std::count_if(aDeleteStart, aDeleteEnd, + [](TextureData2DVector::const_reference rData) { return !rData.equalZero(); }); + mnUsedEntries -= std::min(mnUsedEntries, static_cast<sal_uInt32>(nDeleteUsed)); + + // remove point data + maVector.erase(aDeleteStart, aDeleteEnd); + } + } + + void flip() + { + if(maVector.size() <= 1) + return; + + const sal_uInt32 nHalfSize(maVector.size() >> 1); + TextureData2DVector::iterator aStart(maVector.begin()); + TextureData2DVector::iterator aEnd(maVector.end() - 1); + + for(sal_uInt32 a(0); a < nHalfSize; a++) + { + std::swap(*aStart, *aEnd); + ++aStart; + --aEnd; + } + } + + void transform(const ::basegfx::B2DHomMatrix& rMatrix) + { + for (auto & elem : maVector) + { + elem *= rMatrix; + } + } +}; + +} + +class ImplB3DPolygon +{ + // The point vector. This vector exists always and defines the + // count of members. + CoordinateDataArray3D maPoints; + + // The BColor vector. This vectors are created on demand + // and may be zero. + std::unique_ptr<BColorArray> mpBColors; + + // The Normals vector. This vectors are created on demand + // and may be zero. + std::unique_ptr<NormalsArray3D> mpNormals; + + // The TextureCoordinates vector. This vectors are created on demand + // and may be zero. + std::unique_ptr<TextureCoordinate2D> mpTextureCoordinates; + + // The calculated plane normal. mbPlaneNormalValid says if it's valid. + ::basegfx::B3DVector maPlaneNormal; + + // flag which decides if this polygon is opened or closed + bool mbIsClosed : 1; + + // flag which says if maPlaneNormal is up-to-date + bool mbPlaneNormalValid : 1; + +protected: + void invalidatePlaneNormal() + { + if(mbPlaneNormalValid) + { + mbPlaneNormalValid = false; + } + } + +public: + // This constructor is only used from the static identity polygon, thus + // the RefCount is set to 1 to never 'delete' this static incarnation. + ImplB3DPolygon() + : maPoints(0), + maPlaneNormal(::basegfx::B3DVector::getEmptyVector()), + mbIsClosed(false), + mbPlaneNormalValid(true) + { + // complete initialization with defaults + } + + ImplB3DPolygon(const ImplB3DPolygon& rToBeCopied) + : maPoints(rToBeCopied.maPoints), + maPlaneNormal(rToBeCopied.maPlaneNormal), + mbIsClosed(rToBeCopied.mbIsClosed), + mbPlaneNormalValid(rToBeCopied.mbPlaneNormalValid) + { + // complete initialization using copy + if(rToBeCopied.mpBColors && rToBeCopied.mpBColors->isUsed()) + { + mpBColors.reset( new BColorArray(*rToBeCopied.mpBColors) ); + } + + if(rToBeCopied.mpNormals && rToBeCopied.mpNormals->isUsed()) + { + mpNormals.reset( new NormalsArray3D(*rToBeCopied.mpNormals) ); + } + + if(rToBeCopied.mpTextureCoordinates && rToBeCopied.mpTextureCoordinates->isUsed()) + { + mpTextureCoordinates.reset( new TextureCoordinate2D(*rToBeCopied.mpTextureCoordinates) ); + } + } + + ImplB3DPolygon(const ImplB3DPolygon& rToBeCopied, sal_uInt32 nIndex, sal_uInt32 nCount) + : maPoints(rToBeCopied.maPoints, nIndex, nCount), + maPlaneNormal(::basegfx::B3DVector::getEmptyVector()), + mbIsClosed(rToBeCopied.mbIsClosed), + mbPlaneNormalValid(false) + { + // complete initialization using partly copy + if(rToBeCopied.mpBColors && rToBeCopied.mpBColors->isUsed()) + { + mpBColors.reset( new BColorArray(*rToBeCopied.mpBColors, nIndex, nCount) ); + + if(!mpBColors->isUsed()) + { + mpBColors.reset(); + } + } + + if(rToBeCopied.mpNormals && rToBeCopied.mpNormals->isUsed()) + { + mpNormals.reset( new NormalsArray3D(*rToBeCopied.mpNormals, nIndex, nCount) ); + + if(!mpNormals->isUsed()) + { + mpNormals.reset(); + } + } + + if(rToBeCopied.mpTextureCoordinates && rToBeCopied.mpTextureCoordinates->isUsed()) + { + mpTextureCoordinates.reset( new TextureCoordinate2D(*rToBeCopied.mpTextureCoordinates, nIndex, nCount) ); + + if(!mpTextureCoordinates->isUsed()) + { + mpTextureCoordinates.reset(); + } + } + } + + sal_uInt32 count() const + { + return maPoints.count(); + } + + bool isClosed() const + { + return mbIsClosed; + } + + void setClosed(bool bNew) + { + if(bNew != mbIsClosed) + { + mbIsClosed = bNew; + } + } + + bool impBColorsAreEqual(const ImplB3DPolygon& rCandidate) const + { + bool bBColorsAreEqual(true); + + if(mpBColors) + { + if(rCandidate.mpBColors) + { + bBColorsAreEqual = (*mpBColors == *rCandidate.mpBColors); + } + else + { + // candidate has no BColors, so it's assumed all unused. + bBColorsAreEqual = !mpBColors->isUsed(); + } + } + else + { + if(rCandidate.mpBColors) + { + // we have no TextureCoordinates, so it's assumed all unused. + bBColorsAreEqual = !rCandidate.mpBColors->isUsed(); + } + } + + return bBColorsAreEqual; + } + + bool impNormalsAreEqual(const ImplB3DPolygon& rCandidate) const + { + bool bNormalsAreEqual(true); + + if(mpNormals) + { + if(rCandidate.mpNormals) + { + bNormalsAreEqual = (*mpNormals == *rCandidate.mpNormals); + } + else + { + // candidate has no normals, so it's assumed all unused. + bNormalsAreEqual = !mpNormals->isUsed(); + } + } + else + { + if(rCandidate.mpNormals) + { + // we have no normals, so it's assumed all unused. + bNormalsAreEqual = !rCandidate.mpNormals->isUsed(); + } + } + + return bNormalsAreEqual; + } + + bool impTextureCoordinatesAreEqual(const ImplB3DPolygon& rCandidate) const + { + bool bTextureCoordinatesAreEqual(true); + + if(mpTextureCoordinates) + { + if(rCandidate.mpTextureCoordinates) + { + bTextureCoordinatesAreEqual = (*mpTextureCoordinates == *rCandidate.mpTextureCoordinates); + } + else + { + // candidate has no TextureCoordinates, so it's assumed all unused. + bTextureCoordinatesAreEqual = !mpTextureCoordinates->isUsed(); + } + } + else + { + if(rCandidate.mpTextureCoordinates) + { + // we have no TextureCoordinates, so it's assumed all unused. + bTextureCoordinatesAreEqual = !rCandidate.mpTextureCoordinates->isUsed(); + } + } + + return bTextureCoordinatesAreEqual; + } + + bool operator==(const ImplB3DPolygon& rCandidate) const + { + if(mbIsClosed == rCandidate.mbIsClosed) + { + if(maPoints == rCandidate.maPoints) + { + if(impBColorsAreEqual(rCandidate)) + { + if(impNormalsAreEqual(rCandidate)) + { + if(impTextureCoordinatesAreEqual(rCandidate)) + { + return true; + } + } + } + } + } + + return false; + } + + const ::basegfx::B3DPoint& getPoint(sal_uInt32 nIndex) const + { + return maPoints.getCoordinate(nIndex); + } + + void setPoint(sal_uInt32 nIndex, const ::basegfx::B3DPoint& rValue) + { + maPoints.setCoordinate(nIndex, rValue); + invalidatePlaneNormal(); + } + + void insert(sal_uInt32 nIndex, const ::basegfx::B3DPoint& rPoint, sal_uInt32 nCount) + { + if(!nCount) + return; + + CoordinateData3D aCoordinate(rPoint); + maPoints.insert(nIndex, aCoordinate, nCount); + invalidatePlaneNormal(); + + if(mpBColors) + { + mpBColors->insert(nIndex, ::basegfx::BColor::getEmptyBColor(), nCount); + } + + if(mpNormals) + { + mpNormals->insert(nIndex, ::basegfx::B3DVector::getEmptyVector(), nCount); + } + + if(mpTextureCoordinates) + { + mpTextureCoordinates->insert(nIndex, ::basegfx::B2DPoint::getEmptyPoint(), nCount); + } + } + + const ::basegfx::BColor& getBColor(sal_uInt32 nIndex) const + { + if(mpBColors) + { + return mpBColors->getBColor(nIndex); + } + else + { + return ::basegfx::BColor::getEmptyBColor(); + } + } + + void setBColor(sal_uInt32 nIndex, const ::basegfx::BColor& rValue) + { + if(!mpBColors) + { + if(!rValue.equalZero()) + { + mpBColors.reset( new BColorArray(maPoints.count()) ); + mpBColors->setBColor(nIndex, rValue); + } + } + else + { + mpBColors->setBColor(nIndex, rValue); + + if(!mpBColors->isUsed()) + { + mpBColors.reset(); + } + } + } + + bool areBColorsUsed() const + { + return (mpBColors && mpBColors->isUsed()); + } + + void clearBColors() + { + mpBColors.reset(); + } + + const ::basegfx::B3DVector& getNormal() const + { + if(!mbPlaneNormalValid) + { + const_cast< ImplB3DPolygon* >(this)->maPlaneNormal = maPoints.getNormal(); + const_cast< ImplB3DPolygon* >(this)->mbPlaneNormalValid = true; + } + + return maPlaneNormal; + } + + const ::basegfx::B3DVector& getNormal(sal_uInt32 nIndex) const + { + if(mpNormals) + { + return mpNormals->getNormal(nIndex); + } + else + { + return ::basegfx::B3DVector::getEmptyVector(); + } + } + + void setNormal(sal_uInt32 nIndex, const ::basegfx::B3DVector& rValue) + { + if(!mpNormals) + { + if(!rValue.equalZero()) + { + mpNormals.reset( new NormalsArray3D(maPoints.count()) ); + mpNormals->setNormal(nIndex, rValue); + } + } + else + { + mpNormals->setNormal(nIndex, rValue); + + if(!mpNormals->isUsed()) + { + mpNormals.reset(); + } + } + } + + void transformNormals(const ::basegfx::B3DHomMatrix& rMatrix) + { + if(mpNormals) + { + mpNormals->transform(rMatrix); + } + } + + bool areNormalsUsed() const + { + return (mpNormals && mpNormals->isUsed()); + } + + void clearNormals() + { + mpNormals.reset(); + } + + const ::basegfx::B2DPoint& getTextureCoordinate(sal_uInt32 nIndex) const + { + if(mpTextureCoordinates) + { + return mpTextureCoordinates->getTextureCoordinate(nIndex); + } + else + { + return ::basegfx::B2DPoint::getEmptyPoint(); + } + } + + void setTextureCoordinate(sal_uInt32 nIndex, const ::basegfx::B2DPoint& rValue) + { + if(!mpTextureCoordinates) + { + if(!rValue.equalZero()) + { + mpTextureCoordinates.reset( new TextureCoordinate2D(maPoints.count()) ); + mpTextureCoordinates->setTextureCoordinate(nIndex, rValue); + } + } + else + { + mpTextureCoordinates->setTextureCoordinate(nIndex, rValue); + + if(!mpTextureCoordinates->isUsed()) + { + mpTextureCoordinates.reset(); + } + } + } + + bool areTextureCoordinatesUsed() const + { + return (mpTextureCoordinates && mpTextureCoordinates->isUsed()); + } + + void clearTextureCoordinates() + { + mpTextureCoordinates.reset(); + } + + void transformTextureCoordinates(const ::basegfx::B2DHomMatrix& rMatrix) + { + if(mpTextureCoordinates) + { + mpTextureCoordinates->transform(rMatrix); + } + } + + void insert(sal_uInt32 nIndex, const ImplB3DPolygon& rSource) + { + const sal_uInt32 nCount(rSource.maPoints.count()); + + if(!nCount) + return; + + maPoints.insert(nIndex, rSource.maPoints); + invalidatePlaneNormal(); + + if(rSource.mpBColors && rSource.mpBColors->isUsed()) + { + if(!mpBColors) + { + mpBColors.reset( new BColorArray(maPoints.count()) ); + } + + mpBColors->insert(nIndex, *rSource.mpBColors); + } + else + { + if(mpBColors) + { + mpBColors->insert(nIndex, ::basegfx::BColor::getEmptyBColor(), nCount); + } + } + + if(rSource.mpNormals && rSource.mpNormals->isUsed()) + { + if(!mpNormals) + { + mpNormals.reset( new NormalsArray3D(maPoints.count()) ); + } + + mpNormals->insert(nIndex, *rSource.mpNormals); + } + else + { + if(mpNormals) + { + mpNormals->insert(nIndex, ::basegfx::B3DVector::getEmptyVector(), nCount); + } + } + + if(rSource.mpTextureCoordinates && rSource.mpTextureCoordinates->isUsed()) + { + if(!mpTextureCoordinates) + { + mpTextureCoordinates.reset( new TextureCoordinate2D(maPoints.count()) ); + } + + mpTextureCoordinates->insert(nIndex, *rSource.mpTextureCoordinates); + } + else + { + if(mpTextureCoordinates) + { + mpTextureCoordinates->insert(nIndex, ::basegfx::B2DPoint::getEmptyPoint(), nCount); + } + } + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(!nCount) + return; + + maPoints.remove(nIndex, nCount); + invalidatePlaneNormal(); + + if(mpBColors) + { + mpBColors->remove(nIndex, nCount); + + if(!mpBColors->isUsed()) + { + mpBColors.reset(); + } + } + + if(mpNormals) + { + mpNormals->remove(nIndex, nCount); + + if(!mpNormals->isUsed()) + { + mpNormals.reset(); + } + } + + if(mpTextureCoordinates) + { + mpTextureCoordinates->remove(nIndex, nCount); + + if(!mpTextureCoordinates->isUsed()) + { + mpTextureCoordinates.reset(); + } + } + } + + void flip() + { + if(maPoints.count() <= 1) + return; + + maPoints.flip(); + + if(mbPlaneNormalValid) + { + // mirror plane normal + maPlaneNormal = -maPlaneNormal; + } + + if(mpBColors) + { + mpBColors->flip(); + } + + if(mpNormals) + { + mpNormals->flip(); + } + + if(mpTextureCoordinates) + { + mpTextureCoordinates->flip(); + } + } + + bool hasDoublePoints() const + { + if(mbIsClosed) + { + // check for same start and end point + const sal_uInt32 nIndex(maPoints.count() - 1); + + if(maPoints.getCoordinate(0) == maPoints.getCoordinate(nIndex)) + { + const bool bBColorEqual(!mpBColors || (mpBColors->getBColor(0) == mpBColors->getBColor(nIndex))); + + if(bBColorEqual) + { + const bool bNormalsEqual(!mpNormals || (mpNormals->getNormal(0) == mpNormals->getNormal(nIndex))); + + if(bNormalsEqual) + { + const bool bTextureCoordinatesEqual(!mpTextureCoordinates || (mpTextureCoordinates->getTextureCoordinate(0) == mpTextureCoordinates->getTextureCoordinate(nIndex))); + + if(bTextureCoordinatesEqual) + { + return true; + } + } + } + } + } + + // test for range + for(sal_uInt32 a(0); a < maPoints.count() - 1; a++) + { + if(maPoints.getCoordinate(a) == maPoints.getCoordinate(a + 1)) + { + const bool bBColorEqual(!mpBColors || (mpBColors->getBColor(a) == mpBColors->getBColor(a + 1))); + + if(bBColorEqual) + { + const bool bNormalsEqual(!mpNormals || (mpNormals->getNormal(a) == mpNormals->getNormal(a + 1))); + + if(bNormalsEqual) + { + const bool bTextureCoordinatesEqual(!mpTextureCoordinates || (mpTextureCoordinates->getTextureCoordinate(a) == mpTextureCoordinates->getTextureCoordinate(a + 1))); + + if(bTextureCoordinatesEqual) + { + return true; + } + } + } + } + } + + return false; + } + + void removeDoublePointsAtBeginEnd() + { + // Only remove DoublePoints at Begin and End when poly is closed + if(!mbIsClosed) + return; + + bool bRemove; + + do + { + bRemove = false; + + if(maPoints.count() > 1) + { + const sal_uInt32 nIndex(maPoints.count() - 1); + bRemove = (maPoints.getCoordinate(0) == maPoints.getCoordinate(nIndex)); + + if(bRemove && mpBColors && mpBColors->getBColor(0) != mpBColors->getBColor(nIndex)) + { + bRemove = false; + } + + if(bRemove && mpNormals && mpNormals->getNormal(0) != mpNormals->getNormal(nIndex)) + { + bRemove = false; + } + + if(bRemove && mpTextureCoordinates && mpTextureCoordinates->getTextureCoordinate(0) != mpTextureCoordinates->getTextureCoordinate(nIndex)) + { + bRemove = false; + } + } + + if(bRemove) + { + const sal_uInt32 nIndex(maPoints.count() - 1); + remove(nIndex, 1); + } + } while(bRemove); + } + + void removeDoublePointsWholeTrack() + { + sal_uInt32 nIndex(0); + + // test as long as there are at least two points and as long as the index + // is smaller or equal second last point + while((maPoints.count() > 1) && (nIndex <= maPoints.count() - 2)) + { + const sal_uInt32 nNextIndex(nIndex + 1); + bool bRemove(maPoints.getCoordinate(nIndex) == maPoints.getCoordinate(nNextIndex)); + + if(bRemove && mpBColors && mpBColors->getBColor(nIndex) != mpBColors->getBColor(nNextIndex)) + { + bRemove = false; + } + + if(bRemove && mpNormals && mpNormals->getNormal(nIndex) != mpNormals->getNormal(nNextIndex)) + { + bRemove = false; + } + + if(bRemove && mpTextureCoordinates && mpTextureCoordinates->getTextureCoordinate(nIndex) != mpTextureCoordinates->getTextureCoordinate(nNextIndex)) + { + bRemove = false; + } + + if(bRemove) + { + // if next is same as index and the control vectors are unused, delete index + remove(nIndex, 1); + } + else + { + // if different, step forward + nIndex++; + } + } + } + + void transform(const ::basegfx::B3DHomMatrix& rMatrix) + { + maPoints.transform(rMatrix); + + // Here, it seems to be possible to transform a valid plane normal and to avoid + // invalidation, but it's not true. If the transformation contains shears or e.g. + // perspective projection, the orthogonality to the transformed plane will not + // be preserved. It may be possible to test that at the matrix to not invalidate in + // all cases or to extract a matrix which does not 'shear' the vector which is + // a normal in this case. As long as this is not sure, i will just invalidate. + invalidatePlaneNormal(); + } +}; + +namespace basegfx +{ + namespace { + + B3DPolygon::ImplType const & getDefaultPolygon() { + static B3DPolygon::ImplType const singleton; + return singleton; + } + + } + + B3DPolygon::B3DPolygon() : + mpPolygon(getDefaultPolygon()) + { + } + + B3DPolygon::B3DPolygon(const B3DPolygon&) = default; + + B3DPolygon::B3DPolygon(B3DPolygon&&) = default; + + B3DPolygon::~B3DPolygon() = default; + + B3DPolygon& B3DPolygon::operator=(const B3DPolygon&) = default; + + B3DPolygon& B3DPolygon::operator=(B3DPolygon&&) = default; + + bool B3DPolygon::operator==(const B3DPolygon& rPolygon) const + { + if(mpPolygon.same_object(rPolygon.mpPolygon)) + return true; + + return (*mpPolygon == *rPolygon.mpPolygon); + } + + bool B3DPolygon::operator!=(const B3DPolygon& rPolygon) const + { + return !(*this == rPolygon); + } + + sal_uInt32 B3DPolygon::count() const + { + return mpPolygon->count(); + } + + basegfx::B3DPoint const & B3DPolygon::getB3DPoint(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B3DPolygon access outside range (!)"); + + return mpPolygon->getPoint(nIndex); + } + + void B3DPolygon::setB3DPoint(sal_uInt32 nIndex, const basegfx::B3DPoint& rValue) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B3DPolygon access outside range (!)"); + + if(getB3DPoint(nIndex) != rValue) + mpPolygon->setPoint(nIndex, rValue); + } + + BColor const & B3DPolygon::getBColor(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B3DPolygon access outside range (!)"); + + return mpPolygon->getBColor(nIndex); + } + + void B3DPolygon::setBColor(sal_uInt32 nIndex, const BColor& rValue) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B3DPolygon access outside range (!)"); + + if(std::as_const(mpPolygon)->getBColor(nIndex) != rValue) + mpPolygon->setBColor(nIndex, rValue); + } + + bool B3DPolygon::areBColorsUsed() const + { + return mpPolygon->areBColorsUsed(); + } + + void B3DPolygon::clearBColors() + { + if(std::as_const(mpPolygon)->areBColorsUsed()) + mpPolygon->clearBColors(); + } + + B3DVector const & B3DPolygon::getNormal() const + { + return mpPolygon->getNormal(); + } + + B3DVector const & B3DPolygon::getNormal(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B3DPolygon access outside range (!)"); + + return mpPolygon->getNormal(nIndex); + } + + void B3DPolygon::setNormal(sal_uInt32 nIndex, const B3DVector& rValue) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B3DPolygon access outside range (!)"); + + if(std::as_const(mpPolygon)->getNormal(nIndex) != rValue) + mpPolygon->setNormal(nIndex, rValue); + } + + void B3DPolygon::transformNormals(const B3DHomMatrix& rMatrix) + { + if(std::as_const(mpPolygon)->areNormalsUsed() && !rMatrix.isIdentity()) + mpPolygon->transformNormals(rMatrix); + } + + bool B3DPolygon::areNormalsUsed() const + { + return mpPolygon->areNormalsUsed(); + } + + void B3DPolygon::clearNormals() + { + if(std::as_const(mpPolygon)->areNormalsUsed()) + mpPolygon->clearNormals(); + } + + B2DPoint const & B3DPolygon::getTextureCoordinate(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolygon->count(), "B3DPolygon access outside range (!)"); + + return mpPolygon->getTextureCoordinate(nIndex); + } + + void B3DPolygon::setTextureCoordinate(sal_uInt32 nIndex, const B2DPoint& rValue) + { + OSL_ENSURE(nIndex < std::as_const(mpPolygon)->count(), "B3DPolygon access outside range (!)"); + + if(std::as_const(mpPolygon)->getTextureCoordinate(nIndex) != rValue) + mpPolygon->setTextureCoordinate(nIndex, rValue); + } + + void B3DPolygon::transformTextureCoordinates(const B2DHomMatrix& rMatrix) + { + if(std::as_const(mpPolygon)->areTextureCoordinatesUsed() && !rMatrix.isIdentity()) + mpPolygon->transformTextureCoordinates(rMatrix); + } + + bool B3DPolygon::areTextureCoordinatesUsed() const + { + return mpPolygon->areTextureCoordinatesUsed(); + } + + void B3DPolygon::clearTextureCoordinates() + { + if(std::as_const(mpPolygon)->areTextureCoordinatesUsed()) + mpPolygon->clearTextureCoordinates(); + } + + void B3DPolygon::append(const basegfx::B3DPoint& rPoint, sal_uInt32 nCount) + { + if(nCount) + mpPolygon->insert(std::as_const(mpPolygon)->count(), rPoint, nCount); + } + + void B3DPolygon::append(const B3DPolygon& rPoly, sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(!rPoly.count()) + return; + + if(!nCount) + { + nCount = rPoly.count(); + } + + if(nIndex == 0 && nCount == rPoly.count()) + { + mpPolygon->insert(std::as_const(mpPolygon)->count(), *rPoly.mpPolygon); + } + else + { + OSL_ENSURE(nIndex + nCount <= rPoly.mpPolygon->count(), "B3DPolygon Append outside range (!)"); + ImplB3DPolygon aTempPoly(*rPoly.mpPolygon, nIndex, nCount); + mpPolygon->insert(std::as_const(mpPolygon)->count(), aTempPoly); + } + } + + void B3DPolygon::remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + OSL_ENSURE(nIndex + nCount <= std::as_const(mpPolygon)->count(), "B3DPolygon Remove outside range (!)"); + + if(nCount) + mpPolygon->remove(nIndex, nCount); + } + + void B3DPolygon::clear() + { + mpPolygon = getDefaultPolygon(); + } + + bool B3DPolygon::isClosed() const + { + return mpPolygon->isClosed(); + } + + void B3DPolygon::setClosed(bool bNew) + { + if(isClosed() != bNew) + mpPolygon->setClosed(bNew); + } + + void B3DPolygon::flip() + { + if(count() > 1) + mpPolygon->flip(); + } + + bool B3DPolygon::hasDoublePoints() const + { + return (mpPolygon->count() > 1 && mpPolygon->hasDoublePoints()); + } + + void B3DPolygon::removeDoublePoints() + { + if(hasDoublePoints()) + { + mpPolygon->removeDoublePointsAtBeginEnd(); + mpPolygon->removeDoublePointsWholeTrack(); + } + } + + void B3DPolygon::transform(const basegfx::B3DHomMatrix& rMatrix) + { + if(std::as_const(mpPolygon)->count() && !rMatrix.isIdentity()) + { + mpPolygon->transform(rMatrix); + } + } +} // end of namespace basegfx + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b3dpolygontools.cxx b/basegfx/source/polygon/b3dpolygontools.cxx new file mode 100644 index 000000000..a1f65bef2 --- /dev/null +++ b/basegfx/source/polygon/b3dpolygontools.cxx @@ -0,0 +1,830 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <osl/diagnose.h> +#include <basegfx/polygon/b3dpolygontools.hxx> +#include <basegfx/polygon/b3dpolygon.hxx> +#include <basegfx/polygon/b3dpolypolygon.hxx> +#include <basegfx/numeric/ftools.hxx> +#include <basegfx/range/b3drange.hxx> +#include <basegfx/point/b2dpoint.hxx> +#include <basegfx/tuple/b3ituple.hxx> +#include <cassert> +#include <numeric> + +namespace basegfx::utils +{ + // B3DPolygon tools + void checkClosed(B3DPolygon& rCandidate) + { + while(rCandidate.count() > 1 + && rCandidate.getB3DPoint(0).equal(rCandidate.getB3DPoint(rCandidate.count() - 1))) + { + rCandidate.setClosed(true); + rCandidate.remove(rCandidate.count() - 1); + } + } + + sal_uInt32 getIndexOfSuccessor(sal_uInt32 nIndex, const B3DPolygon& rCandidate) + { + OSL_ENSURE(nIndex < rCandidate.count(), "getIndexOfPredecessor: Access to polygon out of range (!)"); + + if(nIndex + 1 < rCandidate.count()) + { + return nIndex + 1; + } + else + { + return 0; + } + } + + B3DRange getRange(const B3DPolygon& rCandidate) + { + B3DRange aRetval; + const sal_uInt32 nPointCount(rCandidate.count()); + + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B3DPoint aTestPoint(rCandidate.getB3DPoint(a)); + aRetval.expand(aTestPoint); + } + + return aRetval; + } + + double getLength(const B3DPolygon& rCandidate) + { + double fRetval(0.0); + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount > 1) + { + const sal_uInt32 nLoopCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + + for(sal_uInt32 a(0); a < nLoopCount; a++) + { + const sal_uInt32 nNextIndex(getIndexOfSuccessor(a, rCandidate)); + const B3DPoint aCurrentPoint(rCandidate.getB3DPoint(a)); + const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex)); + const B3DVector aVector(aNextPoint - aCurrentPoint); + fRetval += aVector.getLength(); + } + } + + return fRetval; + } + + void applyLineDashing( + const B3DPolygon& rCandidate, + const std::vector<double>& rDotDashArray, + B3DPolyPolygon* pLineTarget, + double fDotDashLength) + { + // clear targets in any case + if(pLineTarget) + { + pLineTarget->clear(); + } + + // provide callback as lambda + auto aLineCallback( + nullptr == pLineTarget + ? std::function<void(const basegfx::B3DPolygon&)>() + : [&pLineTarget](const basegfx::B3DPolygon& rSnippet){ pLineTarget->append(rSnippet); }); + + // call version that uses callbacks + applyLineDashing( + rCandidate, + rDotDashArray, + aLineCallback, + fDotDashLength); + } + + static void implHandleSnippet( + const B3DPolygon& rSnippet, + const std::function<void(const basegfx::B3DPolygon& rSnippet)>& rTargetCallback, + B3DPolygon& rFirst, + B3DPolygon& rLast) + { + if(rSnippet.isClosed()) + { + if(!rFirst.count()) + { + rFirst = rSnippet; + } + else + { + if(rLast.count()) + { + rTargetCallback(rLast); + } + + rLast = rSnippet; + } + } + else + { + rTargetCallback(rSnippet); + } + } + + static void implHandleFirstLast( + const std::function<void(const basegfx::B3DPolygon& rSnippet)>& rTargetCallback, + B3DPolygon& rFirst, + B3DPolygon& rLast) + { + if(rFirst.count() && rLast.count() + && rFirst.getB3DPoint(0).equal(rLast.getB3DPoint(rLast.count() - 1))) + { + // start of first and end of last are the same -> merge them + rLast.append(rFirst); + rLast.removeDoublePoints(); + rFirst.clear(); + } + + if(rLast.count()) + { + rTargetCallback(rLast); + } + + if(rFirst.count()) + { + rTargetCallback(rFirst); + } + } + + void applyLineDashing( + const B3DPolygon& rCandidate, + const std::vector<double>& rDotDashArray, + std::function<void(const basegfx::B3DPolygon& rSnippet)> aLineTargetCallback, + double fDotDashLength) + { + const sal_uInt32 nPointCount(rCandidate.count()); + const sal_uInt32 nDotDashCount(rDotDashArray.size()); + + if(fTools::lessOrEqual(fDotDashLength, 0.0)) + { + fDotDashLength = std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0); + } + + if(fTools::lessOrEqual(fDotDashLength, 0.0) || !aLineTargetCallback || !nPointCount) + { + // parameters make no sense, just add source to targets + if(aLineTargetCallback) + { + aLineTargetCallback(rCandidate); + } + + return; + } + + // precalculate maximal acceptable length of candidate polygon assuming + // we want to create a maximum of fNumberOfAllowedSnippets. In 3D + // use less for fNumberOfAllowedSnippets, ca. 6553.6, double due to line & gap. + // Less in 3D due to potentially blowing up to rounded line segments. + static const double fNumberOfAllowedSnippets(6553.5 * 2.0); + const double fAllowedLength((fNumberOfAllowedSnippets * fDotDashLength) / double(rDotDashArray.size())); + const double fCandidateLength(basegfx::utils::getLength(rCandidate)); + std::vector<double> aDotDashArray(rDotDashArray); + + if(fCandidateLength > fAllowedLength) + { + // we would produce more than fNumberOfAllowedSnippets, so + // adapt aDotDashArray to exactly produce assumed number. Also + // assert this to let the caller know about it. + // If this asserts: Please think about checking your DotDashArray + // before calling this function or evtl. use the callback version + // to *not* produce that much of data. Even then, you may still + // think about producing too much runtime (!) + assert(true && "applyLineDashing: potentially too expensive to do the requested dismantle - please consider stretched LineDash pattern (!)"); + + // calculate correcting factor, apply to aDotDashArray and fDotDashLength + // to enlarge these as needed + const double fFactor(fCandidateLength / fAllowedLength); + std::for_each(aDotDashArray.begin(), aDotDashArray.end(), [&fFactor](double &f){ f *= fFactor; }); + fDotDashLength *= fFactor; + } + + // prepare current edge's start + B3DPoint aCurrentPoint(rCandidate.getB3DPoint(0)); + const bool bIsClosed(rCandidate.isClosed()); + const sal_uInt32 nEdgeCount(bIsClosed ? nPointCount : nPointCount - 1); + + // prepare DotDashArray iteration and the line/gap switching bool + sal_uInt32 nDotDashIndex(0); + bool bIsLine(true); + double fDotDashMovingLength(aDotDashArray[0]); + B3DPolygon aSnippet; + + // remember 1st and last snippets to try to merge after execution + // is complete and hand to callback + B3DPolygon aFirstLine, aLastLine; + + // iterate over all edges + for(sal_uInt32 a(0); a < nEdgeCount; a++) + { + // update current edge + const sal_uInt32 nNextIndex((a + 1) % nPointCount); + const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex)); + const double fEdgeLength(B3DVector(aNextPoint - aCurrentPoint).getLength()); + + if(!fTools::equalZero(fEdgeLength)) + { + double fLastDotDashMovingLength(0.0); + while(fTools::less(fDotDashMovingLength, fEdgeLength)) + { + // new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength] + if(bIsLine) + { + if(!aSnippet.count()) + { + aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fLastDotDashMovingLength / fEdgeLength)); + } + + aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fDotDashMovingLength / fEdgeLength)); + + implHandleSnippet(aSnippet, aLineTargetCallback, aFirstLine, aLastLine); + + aSnippet.clear(); + } + + // prepare next DotDashArray step and flip line/gap flag + fLastDotDashMovingLength = fDotDashMovingLength; + fDotDashMovingLength += aDotDashArray[(++nDotDashIndex) % nDotDashCount]; + bIsLine = !bIsLine; + } + + // append snippet [fLastDotDashMovingLength, fEdgeLength] + if(bIsLine) + { + if(!aSnippet.count()) + { + aSnippet.append(interpolate(aCurrentPoint, aNextPoint, fLastDotDashMovingLength / fEdgeLength)); + } + + aSnippet.append(aNextPoint); + } + + // prepare move to next edge + fDotDashMovingLength -= fEdgeLength; + } + + // prepare next edge step (end point gets new start point) + aCurrentPoint = aNextPoint; + } + + // append last intermediate results (if exists) + if(aSnippet.count()) + { + if(bIsLine) + { + implHandleSnippet(aSnippet, aLineTargetCallback, aFirstLine, aLastLine); + } + } + + if(bIsClosed) + { + implHandleFirstLast(aLineTargetCallback, aFirstLine, aLastLine); + } + } + + B3DPolygon applyDefaultNormalsSphere( const B3DPolygon& rCandidate, const B3DPoint& rCenter) + { + B3DPolygon aRetval(rCandidate); + + for(sal_uInt32 a(0); a < aRetval.count(); a++) + { + B3DVector aVector(aRetval.getB3DPoint(a) - rCenter); + aVector.normalize(); + aRetval.setNormal(a, aVector); + } + + return aRetval; + } + + B3DPolygon invertNormals( const B3DPolygon& rCandidate) + { + B3DPolygon aRetval(rCandidate); + + if(aRetval.areNormalsUsed()) + { + for(sal_uInt32 a(0); a < aRetval.count(); a++) + { + aRetval.setNormal(a, -aRetval.getNormal(a)); + } + } + + return aRetval; + } + + B3DPolygon applyDefaultTextureCoordinatesParallel( const B3DPolygon& rCandidate, const B3DRange& rRange, bool bChangeX, bool bChangeY) + { + B3DPolygon aRetval(rCandidate); + + if(bChangeX || bChangeY) + { + // create projection of standard texture coordinates in (X, Y) onto + // the 3d coordinates straight + const double fWidth(rRange.getWidth()); + const double fHeight(rRange.getHeight()); + const bool bWidthSet(!fTools::equalZero(fWidth)); + const bool bHeightSet(!fTools::equalZero(fHeight)); + const double fOne(1.0); + + for(sal_uInt32 a(0); a < aRetval.count(); a++) + { + const B3DPoint aPoint(aRetval.getB3DPoint(a)); + B2DPoint aTextureCoordinate(aRetval.getTextureCoordinate(a)); + + if(bChangeX) + { + if(bWidthSet) + { + aTextureCoordinate.setX((aPoint.getX() - rRange.getMinX()) / fWidth); + } + else + { + aTextureCoordinate.setX(0.0); + } + } + + if(bChangeY) + { + if(bHeightSet) + { + aTextureCoordinate.setY(fOne - ((aPoint.getY() - rRange.getMinY()) / fHeight)); + } + else + { + aTextureCoordinate.setY(fOne); + } + } + + aRetval.setTextureCoordinate(a, aTextureCoordinate); + } + } + + return aRetval; + } + + B3DPolygon applyDefaultTextureCoordinatesSphere( const B3DPolygon& rCandidate, const B3DPoint& rCenter, bool bChangeX, bool bChangeY) + { + B3DPolygon aRetval(rCandidate); + + if(bChangeX || bChangeY) + { + // create texture coordinates using sphere projection to cartesian coordinates, + // use object's center as base + const double fOne(1.0); + const sal_uInt32 nPointCount(aRetval.count()); + bool bPolarPoints(false); + sal_uInt32 a; + + // create center cartesian coordinates to have a possibility to decide if on boundary + // transitions which value to choose + const B3DRange aPlaneRange(getRange(rCandidate)); + const B3DPoint aPlaneCenter(aPlaneRange.getCenter() - rCenter); + const double fXCenter(fOne - ((atan2(aPlaneCenter.getZ(), aPlaneCenter.getX()) + M_PI) / (2 * M_PI))); + + for(a = 0; a < nPointCount; a++) + { + const B3DVector aVector(aRetval.getB3DPoint(a) - rCenter); + const double fY(fOne - ((atan2(aVector.getY(), aVector.getXZLength()) + M_PI_2) / M_PI)); + B2DPoint aTexCoor(aRetval.getTextureCoordinate(a)); + + if(fTools::equalZero(fY)) + { + // point is a north polar point, no useful X-coordinate can be created. + if(bChangeY) + { + aTexCoor.setY(0.0); + + if(bChangeX) + { + bPolarPoints = true; + } + } + } + else if(fTools::equal(fY, fOne)) + { + // point is a south polar point, no useful X-coordinate can be created. Set + // Y-coordinate, though + if(bChangeY) + { + aTexCoor.setY(fOne); + + if(bChangeX) + { + bPolarPoints = true; + } + } + } + else + { + double fX(fOne - ((atan2(aVector.getZ(), aVector.getX()) + M_PI) / (2 * M_PI))); + + // correct cartesian point coordinate dependent from center value + if(fX > fXCenter + 0.5) + { + fX -= fOne; + } + else if(fX < fXCenter - 0.5) + { + fX += fOne; + } + + if(bChangeX) + { + aTexCoor.setX(fX); + } + + if(bChangeY) + { + aTexCoor.setY(fY); + } + } + + aRetval.setTextureCoordinate(a, aTexCoor); + } + + if(bPolarPoints) + { + // correct X-texture coordinates if polar points are contained. Those + // coordinates cannot be correct, so use prev or next X-coordinate + for(a = 0; a < nPointCount; a++) + { + B2DPoint aTexCoor(aRetval.getTextureCoordinate(a)); + + if(fTools::equalZero(aTexCoor.getY()) || fTools::equal(aTexCoor.getY(), fOne)) + { + // get prev, next TexCoor and test for pole + const B2DPoint aPrevTexCoor(aRetval.getTextureCoordinate(a ? a - 1 : nPointCount - 1)); + const B2DPoint aNextTexCoor(aRetval.getTextureCoordinate((a + 1) % nPointCount)); + const bool bPrevPole(fTools::equalZero(aPrevTexCoor.getY()) || fTools::equal(aPrevTexCoor.getY(), fOne)); + const bool bNextPole(fTools::equalZero(aNextTexCoor.getY()) || fTools::equal(aNextTexCoor.getY(), fOne)); + + if(!bPrevPole && !bNextPole) + { + // both no poles, mix them + aTexCoor.setX((aPrevTexCoor.getX() + aNextTexCoor.getX()) / 2.0); + } + else if(!bNextPole) + { + // copy next + aTexCoor.setX(aNextTexCoor.getX()); + } + else + { + // copy prev, even if it's a pole, hopefully it is already corrected + aTexCoor.setX(aPrevTexCoor.getX()); + } + + aRetval.setTextureCoordinate(a, aTexCoor); + } + } + } + } + + return aRetval; + } + + bool isInside(const B3DPolygon& rCandidate, const B3DPoint& rPoint, bool bWithBorder) + { + if(bWithBorder && isPointOnPolygon(rCandidate, rPoint)) + { + return true; + } + else + { + bool bRetval(false); + const B3DVector aPlaneNormal(rCandidate.getNormal()); + + if(!aPlaneNormal.equalZero()) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount) + { + B3DPoint aCurrentPoint(rCandidate.getB3DPoint(nPointCount - 1)); + const double fAbsX(fabs(aPlaneNormal.getX())); + const double fAbsY(fabs(aPlaneNormal.getY())); + const double fAbsZ(fabs(aPlaneNormal.getZ())); + + if(fAbsX > fAbsY && fAbsX > fAbsZ) + { + // normal points mostly in X-Direction, use YZ-Polygon projection for check + // x -> y, y -> z + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B3DPoint aPreviousPoint(aCurrentPoint); + aCurrentPoint = rCandidate.getB3DPoint(a); + + // cross-over in Z? + const bool bCompZA(fTools::more(aPreviousPoint.getZ(), rPoint.getZ())); + const bool bCompZB(fTools::more(aCurrentPoint.getZ(), rPoint.getZ())); + + if(bCompZA != bCompZB) + { + // cross-over in Y? + const bool bCompYA(fTools::more(aPreviousPoint.getY(), rPoint.getY())); + const bool bCompYB(fTools::more(aCurrentPoint.getY(), rPoint.getY())); + + if(bCompYA == bCompYB) + { + if(bCompYA) + { + bRetval = !bRetval; + } + } + else + { + const double fCompare( + aCurrentPoint.getY() - (aCurrentPoint.getZ() - rPoint.getZ()) * + (aPreviousPoint.getY() - aCurrentPoint.getY()) / + (aPreviousPoint.getZ() - aCurrentPoint.getZ())); + + if(fTools::more(fCompare, rPoint.getY())) + { + bRetval = !bRetval; + } + } + } + } + } + else if(fAbsY > fAbsX && fAbsY > fAbsZ) + { + // normal points mostly in Y-Direction, use XZ-Polygon projection for check + // x -> x, y -> z + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B3DPoint aPreviousPoint(aCurrentPoint); + aCurrentPoint = rCandidate.getB3DPoint(a); + + // cross-over in Z? + const bool bCompZA(fTools::more(aPreviousPoint.getZ(), rPoint.getZ())); + const bool bCompZB(fTools::more(aCurrentPoint.getZ(), rPoint.getZ())); + + if(bCompZA != bCompZB) + { + // cross-over in X? + const bool bCompXA(fTools::more(aPreviousPoint.getX(), rPoint.getX())); + const bool bCompXB(fTools::more(aCurrentPoint.getX(), rPoint.getX())); + + if(bCompXA == bCompXB) + { + if(bCompXA) + { + bRetval = !bRetval; + } + } + else + { + const double fCompare( + aCurrentPoint.getX() - (aCurrentPoint.getZ() - rPoint.getZ()) * + (aPreviousPoint.getX() - aCurrentPoint.getX()) / + (aPreviousPoint.getZ() - aCurrentPoint.getZ())); + + if(fTools::more(fCompare, rPoint.getX())) + { + bRetval = !bRetval; + } + } + } + } + } + else + { + // normal points mostly in Z-Direction, use XY-Polygon projection for check + // x -> x, y -> y + for(sal_uInt32 a(0); a < nPointCount; a++) + { + const B3DPoint aPreviousPoint(aCurrentPoint); + aCurrentPoint = rCandidate.getB3DPoint(a); + + // cross-over in Y? + const bool bCompYA(fTools::more(aPreviousPoint.getY(), rPoint.getY())); + const bool bCompYB(fTools::more(aCurrentPoint.getY(), rPoint.getY())); + + if(bCompYA != bCompYB) + { + // cross-over in X? + const bool bCompXA(fTools::more(aPreviousPoint.getX(), rPoint.getX())); + const bool bCompXB(fTools::more(aCurrentPoint.getX(), rPoint.getX())); + + if(bCompXA == bCompXB) + { + if(bCompXA) + { + bRetval = !bRetval; + } + } + else + { + const double fCompare( + aCurrentPoint.getX() - (aCurrentPoint.getY() - rPoint.getY()) * + (aPreviousPoint.getX() - aCurrentPoint.getX()) / + (aPreviousPoint.getY() - aCurrentPoint.getY())); + + if(fTools::more(fCompare, rPoint.getX())) + { + bRetval = !bRetval; + } + } + } + } + } + } + } + + return bRetval; + } + } + + bool isPointOnLine(const B3DPoint& rStart, const B3DPoint& rEnd, const B3DPoint& rCandidate, bool bWithPoints) + { + if(rCandidate.equal(rStart) || rCandidate.equal(rEnd)) + { + // candidate is in epsilon around start or end -> inside + return bWithPoints; + } + else if(rStart.equal(rEnd)) + { + // start and end are equal, but candidate is outside their epsilon -> outside + return false; + } + else + { + const B3DVector aEdgeVector(rEnd - rStart); + const B3DVector aTestVector(rCandidate - rStart); + + if(areParallel(aEdgeVector, aTestVector)) + { + double fParamTestOnCurr(0.0); + + if(aEdgeVector.getX() > aEdgeVector.getY()) + { + if(aEdgeVector.getX() > aEdgeVector.getZ()) + { + // X is biggest + fParamTestOnCurr = aTestVector.getX() / aEdgeVector.getX(); + } + else + { + // Z is biggest + fParamTestOnCurr = aTestVector.getZ() / aEdgeVector.getZ(); + } + } + else + { + if(aEdgeVector.getY() > aEdgeVector.getZ()) + { + // Y is biggest + fParamTestOnCurr = aTestVector.getY() / aEdgeVector.getY(); + } + else + { + // Z is biggest + fParamTestOnCurr = aTestVector.getZ() / aEdgeVector.getZ(); + } + } + + if(fTools::more(fParamTestOnCurr, 0.0) && fTools::less(fParamTestOnCurr, 1.0)) + { + return true; + } + } + + return false; + } + } + + bool isPointOnPolygon(const B3DPolygon& rCandidate, const B3DPoint& rPoint) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount > 1) + { + const sal_uInt32 nLoopCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1); + B3DPoint aCurrentPoint(rCandidate.getB3DPoint(0)); + + for(sal_uInt32 a(0); a < nLoopCount; a++) + { + const B3DPoint aNextPoint(rCandidate.getB3DPoint((a + 1) % nPointCount)); + + if(isPointOnLine(aCurrentPoint, aNextPoint, rPoint, true/*bWithPoints*/)) + { + return true; + } + + aCurrentPoint = aNextPoint; + } + } + else if(nPointCount) + { + return rPoint.equal(rCandidate.getB3DPoint(0)); + } + + return false; + } + + bool getCutBetweenLineAndPlane(const B3DVector& rPlaneNormal, const B3DPoint& rPlanePoint, const B3DPoint& rEdgeStart, const B3DPoint& rEdgeEnd, double& fCut) + { + if(!rPlaneNormal.equalZero() && !rEdgeStart.equal(rEdgeEnd)) + { + const B3DVector aTestEdge(rEdgeEnd - rEdgeStart); + const double fScalarEdge(rPlaneNormal.scalar(aTestEdge)); + + if(!fTools::equalZero(fScalarEdge)) + { + const B3DVector aCompareEdge(rPlanePoint - rEdgeStart); + const double fScalarCompare(rPlaneNormal.scalar(aCompareEdge)); + + fCut = fScalarCompare / fScalarEdge; + return true; + } + } + + return false; + } + + // snap points of horizontal or vertical edges to discrete values + B3DPolygon snapPointsOfHorizontalOrVerticalEdges(const B3DPolygon& rCandidate) + { + const sal_uInt32 nPointCount(rCandidate.count()); + + if(nPointCount > 1) + { + // Start by copying the source polygon to get a writeable copy. The closed state is + // copied by aRetval's initialisation, too, so no need to copy it in this method + B3DPolygon aRetval(rCandidate); + + // prepare geometry data. Get rounded from original + B3ITuple aPrevTuple(basegfx::fround(rCandidate.getB3DPoint(nPointCount - 1))); + B3DPoint aCurrPoint(rCandidate.getB3DPoint(0)); + B3ITuple aCurrTuple(basegfx::fround(aCurrPoint)); + + // loop over all points. This will also snap the implicit closing edge + // even when not closed, but that's no problem here + for(sal_uInt32 a(0); a < nPointCount; a++) + { + // get next point. Get rounded from original + const bool bLastRun(a + 1 == nPointCount); + const sal_uInt32 nNextIndex(bLastRun ? 0 : a + 1); + const B3DPoint aNextPoint(rCandidate.getB3DPoint(nNextIndex)); + const B3ITuple aNextTuple(basegfx::fround(aNextPoint)); + + // get the states + const bool bPrevVertical(aPrevTuple.getX() == aCurrTuple.getX()); + const bool bNextVertical(aNextTuple.getX() == aCurrTuple.getX()); + const bool bPrevHorizontal(aPrevTuple.getY() == aCurrTuple.getY()); + const bool bNextHorizontal(aNextTuple.getY() == aCurrTuple.getY()); + const bool bSnapX(bPrevVertical || bNextVertical); + const bool bSnapY(bPrevHorizontal || bNextHorizontal); + + if(bSnapX || bSnapY) + { + const B3DPoint aSnappedPoint( + bSnapX ? aCurrTuple.getX() : aCurrPoint.getX(), + bSnapY ? aCurrTuple.getY() : aCurrPoint.getY(), + aCurrPoint.getZ()); + + aRetval.setB3DPoint(a, aSnappedPoint); + } + + // prepare next point + if(!bLastRun) + { + aPrevTuple = aCurrTuple; + aCurrPoint = aNextPoint; + aCurrTuple = aNextTuple; + } + } + + return aRetval; + } + else + { + return rCandidate; + } + } + +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b3dpolypolygon.cxx b/basegfx/source/polygon/b3dpolypolygon.cxx new file mode 100644 index 000000000..017906eef --- /dev/null +++ b/basegfx/source/polygon/b3dpolypolygon.cxx @@ -0,0 +1,400 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <osl/diagnose.h> +#include <basegfx/polygon/b3dpolypolygon.hxx> +#include <basegfx/polygon/b3dpolygon.hxx> +#include <basegfx/matrix/b2dhommatrix.hxx> +#include <basegfx/matrix/b3dhommatrix.hxx> +#include <utility> +#include <vector> + +class ImplB3DPolyPolygon +{ + typedef std::vector< ::basegfx::B3DPolygon > PolygonVector; + + PolygonVector maPolygons; + +public: + ImplB3DPolyPolygon() + { + } + + explicit ImplB3DPolyPolygon(const ::basegfx::B3DPolygon& rToBeCopied) : + maPolygons(1,rToBeCopied) + { + } + + bool operator==(const ImplB3DPolyPolygon& rPolygonList) const + { + // same polygon count? + if(maPolygons.size() != rPolygonList.maPolygons.size()) + return false; + + // compare polygon content + if(maPolygons != rPolygonList.maPolygons) + return false; + + return true; + } + + const ::basegfx::B3DPolygon& getB3DPolygon(sal_uInt32 nIndex) const + { + return maPolygons[nIndex]; + } + + void setB3DPolygon(sal_uInt32 nIndex, const ::basegfx::B3DPolygon& rPolygon) + { + maPolygons[nIndex] = rPolygon; + } + + void insert(sal_uInt32 nIndex, const ::basegfx::B3DPolygon& rPolygon, sal_uInt32 nCount) + { + if(nCount) + { + // add nCount copies of rPolygon + PolygonVector::iterator aIndex(maPolygons.begin()); + if( nIndex ) + aIndex += nIndex; + maPolygons.insert(aIndex, nCount, rPolygon); + } + } + + void insert(sal_uInt32 nIndex, const ::basegfx::B3DPolyPolygon& rPolyPolygon) + { + // add all polygons from rPolyPolygon + PolygonVector::iterator aIndex(maPolygons.begin()); + if( nIndex ) + aIndex += nIndex; + maPolygons.insert(aIndex, rPolyPolygon.begin(), rPolyPolygon.end()); + } + + void remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + if(nCount) + { + // remove polygon data + PolygonVector::iterator aStart(maPolygons.begin()); + aStart += nIndex; + const PolygonVector::iterator aEnd(aStart + nCount); + + maPolygons.erase(aStart, aEnd); + } + } + + sal_uInt32 count() const + { + return maPolygons.size(); + } + + void flip() + { + for (auto& aPolygon : maPolygons) + aPolygon.flip(); + } + + void removeDoublePoints() + { + for (auto& aPolygon : maPolygons) + aPolygon.removeDoublePoints(); + } + + void transform(const ::basegfx::B3DHomMatrix& rMatrix) + { + for (auto& aPolygon : maPolygons) + aPolygon.transform(rMatrix); + } + + void clearBColors() + { + for (auto& aPolygon : maPolygons) + aPolygon.clearBColors(); + } + + void transformNormals(const ::basegfx::B3DHomMatrix& rMatrix) + { + for (auto& aPolygon : maPolygons) + aPolygon.transformNormals(rMatrix); + } + + void clearNormals() + { + for (auto& aPolygon : maPolygons) + aPolygon.clearNormals(); + } + + void transformTextureCoordinates(const ::basegfx::B2DHomMatrix& rMatrix) + { + for (auto& aPolygon : maPolygons) + aPolygon.transformTextureCoordinates(rMatrix); + } + + void clearTextureCoordinates() + { + for (auto& aPolygon : maPolygons) + aPolygon.clearTextureCoordinates(); + } + + const basegfx::B3DPolygon* begin() const + { + if (maPolygons.empty()) + return nullptr; + else + return maPolygons.data(); + } + + const basegfx::B3DPolygon* end() const + { + if (maPolygons.empty()) + return nullptr; + else + return maPolygons.data() + maPolygons.size(); + } + + basegfx::B3DPolygon* begin() + { + if (maPolygons.empty()) + return nullptr; + else + return maPolygons.data(); + } + + basegfx::B3DPolygon* end() + { + if (maPolygons.empty()) + return nullptr; + else + return maPolygons.data() + maPolygons.size(); + } +}; + +namespace basegfx +{ + namespace { + + B3DPolyPolygon::ImplType const & getDefaultPolyPolygon() { + static B3DPolyPolygon::ImplType const singleton; + return singleton; + } + + } + + B3DPolyPolygon::B3DPolyPolygon() : + mpPolyPolygon(getDefaultPolyPolygon()) + { + } + + B3DPolyPolygon::B3DPolyPolygon(const B3DPolyPolygon&) = default; + + B3DPolyPolygon::B3DPolyPolygon(B3DPolyPolygon&&) = default; + + B3DPolyPolygon::B3DPolyPolygon(const B3DPolygon& rPolygon) : + mpPolyPolygon( ImplB3DPolyPolygon(rPolygon) ) + { + } + + B3DPolyPolygon::~B3DPolyPolygon() = default; + + B3DPolyPolygon& B3DPolyPolygon::operator=(const B3DPolyPolygon&) = default; + + B3DPolyPolygon& B3DPolyPolygon::operator=(B3DPolyPolygon&&) = default; + + bool B3DPolyPolygon::operator==(const B3DPolyPolygon& rPolyPolygon) const + { + if(mpPolyPolygon.same_object(rPolyPolygon.mpPolyPolygon)) + return true; + + return ((*mpPolyPolygon) == (*rPolyPolygon.mpPolyPolygon)); + } + + bool B3DPolyPolygon::operator!=(const B3DPolyPolygon& rPolyPolygon) const + { + return !(*this == rPolyPolygon); + } + + sal_uInt32 B3DPolyPolygon::count() const + { + return mpPolyPolygon->count(); + } + + B3DPolygon const & B3DPolyPolygon::getB3DPolygon(sal_uInt32 nIndex) const + { + OSL_ENSURE(nIndex < mpPolyPolygon->count(), "B3DPolyPolygon access outside range (!)"); + + return mpPolyPolygon->getB3DPolygon(nIndex); + } + + void B3DPolyPolygon::setB3DPolygon(sal_uInt32 nIndex, const B3DPolygon& rPolygon) + { + OSL_ENSURE(nIndex < std::as_const(mpPolyPolygon)->count(), "B3DPolyPolygon access outside range (!)"); + + if(getB3DPolygon(nIndex) != rPolygon) + mpPolyPolygon->setB3DPolygon(nIndex, rPolygon); + } + + bool B3DPolyPolygon::areBColorsUsed() const + { + for(sal_uInt32 a(0); a < mpPolyPolygon->count(); a++) + { + if(mpPolyPolygon->getB3DPolygon(a).areBColorsUsed()) + { + return true; + } + } + + return false; + } + + void B3DPolyPolygon::clearBColors() + { + if(areBColorsUsed()) + mpPolyPolygon->clearBColors(); + } + + void B3DPolyPolygon::transformNormals(const B3DHomMatrix& rMatrix) + { + if(!rMatrix.isIdentity()) + mpPolyPolygon->transformNormals(rMatrix); + } + + bool B3DPolyPolygon::areNormalsUsed() const + { + for(sal_uInt32 a(0); a < mpPolyPolygon->count(); a++) + { + if(mpPolyPolygon->getB3DPolygon(a).areNormalsUsed()) + { + return true; + } + } + + return false; + } + + void B3DPolyPolygon::clearNormals() + { + if(areNormalsUsed()) + mpPolyPolygon->clearNormals(); + } + + void B3DPolyPolygon::transformTextureCoordinates(const B2DHomMatrix& rMatrix) + { + if(!rMatrix.isIdentity()) + mpPolyPolygon->transformTextureCoordinates(rMatrix); + } + + bool B3DPolyPolygon::areTextureCoordinatesUsed() const + { + for(sal_uInt32 a(0); a < mpPolyPolygon->count(); a++) + { + if(mpPolyPolygon->getB3DPolygon(a).areTextureCoordinatesUsed()) + { + return true; + } + } + + return false; + } + + void B3DPolyPolygon::clearTextureCoordinates() + { + if(areTextureCoordinatesUsed()) + mpPolyPolygon->clearTextureCoordinates(); + } + + void B3DPolyPolygon::append(const B3DPolygon& rPolygon, sal_uInt32 nCount) + { + if(nCount) + mpPolyPolygon->insert(std::as_const(mpPolyPolygon)->count(), rPolygon, nCount); + } + + void B3DPolyPolygon::append(const B3DPolyPolygon& rPolyPolygon) + { + if(rPolyPolygon.count()) + mpPolyPolygon->insert(std::as_const(mpPolyPolygon)->count(), rPolyPolygon); + } + + void B3DPolyPolygon::remove(sal_uInt32 nIndex, sal_uInt32 nCount) + { + OSL_ENSURE(nIndex + nCount <= std::as_const(mpPolyPolygon)->count(), "B3DPolyPolygon Remove outside range (!)"); + + if(nCount) + mpPolyPolygon->remove(nIndex, nCount); + } + + void B3DPolyPolygon::clear() + { + mpPolyPolygon = getDefaultPolyPolygon(); + } + + void B3DPolyPolygon::flip() + { + mpPolyPolygon->flip(); + } + + bool B3DPolyPolygon::hasDoublePoints() const + { + bool bRetval(false); + + for(sal_uInt32 a(0); !bRetval && a < mpPolyPolygon->count(); a++) + { + if(mpPolyPolygon->getB3DPolygon(a).hasDoublePoints()) + { + bRetval = true; + } + } + + return bRetval; + } + + void B3DPolyPolygon::removeDoublePoints() + { + if(hasDoublePoints()) + mpPolyPolygon->removeDoublePoints(); + } + + void B3DPolyPolygon::transform(const B3DHomMatrix& rMatrix) + { + if(std::as_const(mpPolyPolygon)->count() && !rMatrix.isIdentity()) + { + mpPolyPolygon->transform(rMatrix); + } + } + + const B3DPolygon* B3DPolyPolygon::begin() const + { + return mpPolyPolygon->begin(); + } + + const B3DPolygon* B3DPolyPolygon::end() const + { + return mpPolyPolygon->end(); + } + + B3DPolygon* B3DPolyPolygon::begin() + { + return mpPolyPolygon->begin(); + } + + B3DPolygon* B3DPolyPolygon::end() + { + return mpPolyPolygon->end(); + } +} // end of namespace basegfx + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ diff --git a/basegfx/source/polygon/b3dpolypolygontools.cxx b/basegfx/source/polygon/b3dpolypolygontools.cxx new file mode 100644 index 000000000..62ddd3ae7 --- /dev/null +++ b/basegfx/source/polygon/b3dpolypolygontools.cxx @@ -0,0 +1,588 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/polygon/b3dpolypolygontools.hxx> +#include <basegfx/range/b3drange.hxx> +#include <basegfx/polygon/b3dpolypolygon.hxx> +#include <basegfx/polygon/b3dpolygon.hxx> +#include <basegfx/polygon/b3dpolygontools.hxx> +#include <basegfx/matrix/b3dhommatrix.hxx> +#include <basegfx/numeric/ftools.hxx> +#include <com/sun/star/drawing/DoubleSequence.hpp> +#include <com/sun/star/drawing/PolyPolygonShape3D.hpp> + +// predefines +#define nMinSegments sal_uInt32(1) +#define nMaxSegments sal_uInt32(512) + +namespace basegfx::utils +{ + // B3DPolyPolygon tools + B3DRange getRange(const B3DPolyPolygon& rCandidate) + { + B3DRange aRetval; + const sal_uInt32 nPolygonCount(rCandidate.count()); + + for(sal_uInt32 a(0); a < nPolygonCount; a++) + { + const B3DPolygon& aCandidate = rCandidate.getB3DPolygon(a); + aRetval.expand(getRange(aCandidate)); + } + + return aRetval; + } + + B3DPolyPolygon const & createUnitCubePolyPolygon() + { + static auto const singleton = [] { + B3DPolyPolygon aRetval; + B3DPolygon aTemp; + aTemp.append(B3DPoint(0.0, 0.0, 1.0)); + aTemp.append(B3DPoint(0.0, 1.0, 1.0)); + aTemp.append(B3DPoint(1.0, 1.0, 1.0)); + aTemp.append(B3DPoint(1.0, 0.0, 1.0)); + aTemp.setClosed(true); + aRetval.append(aTemp); + + aTemp.clear(); + aTemp.append(B3DPoint(0.0, 0.0, 0.0)); + aTemp.append(B3DPoint(0.0, 1.0, 0.0)); + aTemp.append(B3DPoint(1.0, 1.0, 0.0)); + aTemp.append(B3DPoint(1.0, 0.0, 0.0)); + aTemp.setClosed(true); + aRetval.append(aTemp); + + aTemp.clear(); + aTemp.append(B3DPoint(0.0, 0.0, 0.0)); + aTemp.append(B3DPoint(0.0, 0.0, 1.0)); + aRetval.append(aTemp); + + aTemp.clear(); + aTemp.append(B3DPoint(0.0, 1.0, 0.0)); + aTemp.append(B3DPoint(0.0, 1.0, 1.0)); + aRetval.append(aTemp); + + aTemp.clear(); + aTemp.append(B3DPoint(1.0, 1.0, 0.0)); + aTemp.append(B3DPoint(1.0, 1.0, 1.0)); + aRetval.append(aTemp); + + aTemp.clear(); + aTemp.append(B3DPoint(1.0, 0.0, 0.0)); + aTemp.append(B3DPoint(1.0, 0.0, 1.0)); + aRetval.append(aTemp); + return aRetval; + }(); + return singleton; + } + + B3DPolyPolygon const & createUnitCubeFillPolyPolygon() + { + static auto const singleton = [] { + B3DPolyPolygon aRetval; + B3DPolygon aTemp; + + // all points + const B3DPoint A(0.0, 0.0, 0.0); + const B3DPoint B(0.0, 1.0, 0.0); + const B3DPoint C(1.0, 1.0, 0.0); + const B3DPoint D(1.0, 0.0, 0.0); + const B3DPoint E(0.0, 0.0, 1.0); + const B3DPoint F(0.0, 1.0, 1.0); + const B3DPoint G(1.0, 1.0, 1.0); + const B3DPoint H(1.0, 0.0, 1.0); + + // create bottom + aTemp.append(D); + aTemp.append(A); + aTemp.append(E); + aTemp.append(H); + aTemp.setClosed(true); + aRetval.append(aTemp); + + // create front + aTemp.clear(); + aTemp.append(B); + aTemp.append(A); + aTemp.append(D); + aTemp.append(C); + aTemp.setClosed(true); + aRetval.append(aTemp); + + // create left + aTemp.clear(); + aTemp.append(E); + aTemp.append(A); + aTemp.append(B); + aTemp.append(F); + aTemp.setClosed(true); + aRetval.append(aTemp); + + // create top + aTemp.clear(); + aTemp.append(C); + aTemp.append(G); + aTemp.append(F); + aTemp.append(B); + aTemp.setClosed(true); + aRetval.append(aTemp); + + // create right + aTemp.clear(); + aTemp.append(H); + aTemp.append(G); + aTemp.append(C); + aTemp.append(D); + aTemp.setClosed(true); + aRetval.append(aTemp); + + // create back + aTemp.clear(); + aTemp.append(F); + aTemp.append(G); + aTemp.append(H); + aTemp.append(E); + aTemp.setClosed(true); + aRetval.append(aTemp); + return aRetval; + }(); + return singleton; + } + + B3DPolyPolygon createCubePolyPolygonFromB3DRange( const B3DRange& rRange) + { + B3DPolyPolygon aRetval; + + if(!rRange.isEmpty()) + { + aRetval = createUnitCubePolyPolygon(); + B3DHomMatrix aTrans; + aTrans.scale(rRange.getWidth(), rRange.getHeight(), rRange.getDepth()); + aTrans.translate(rRange.getMinX(), rRange.getMinY(), rRange.getMinZ()); + aRetval.transform(aTrans); + aRetval.removeDoublePoints(); + } + + return aRetval; + } + + B3DPolyPolygon createCubeFillPolyPolygonFromB3DRange( const B3DRange& rRange) + { + B3DPolyPolygon aRetval; + + if(!rRange.isEmpty()) + { + aRetval = createUnitCubeFillPolyPolygon(); + B3DHomMatrix aTrans; + aTrans.scale(rRange.getWidth(), rRange.getHeight(), rRange.getDepth()); + aTrans.translate(rRange.getMinX(), rRange.getMinY(), rRange.getMinZ()); + aRetval.transform(aTrans); + aRetval.removeDoublePoints(); + } + + return aRetval; + } + + // helper for getting the 3D Point from given cartesian coordinates. fHor is defined from + // [M_PI_2 .. -M_PI_2], fVer from [0.0 .. 2PI] + static B3DPoint getPointFromCartesian(double fHor, double fVer) + { + const double fCosVer(cos(fVer)); + return B3DPoint(fCosVer * cos(fHor), sin(fVer), fCosVer * -sin(fHor)); + } + + B3DPolyPolygon createUnitSpherePolyPolygon( + sal_uInt32 nHorSeg, sal_uInt32 nVerSeg, + double fVerStart, double fVerStop, + double fHorStart, double fHorStop) + { + B3DPolyPolygon aRetval; + sal_uInt32 a, b; + + if(!nHorSeg) + { + nHorSeg = fround(fabs(fHorStop - fHorStart) / (M_PI / 12.0)); + } + + // min/max limitations + nHorSeg = std::clamp(nHorSeg, nMinSegments, nMaxSegments); + + if(!nVerSeg) + { + nVerSeg = fround(fabs(fVerStop - fVerStart) / (M_PI / 12.0)); + } + + // min/max limitations + nVerSeg = std::clamp(nVerSeg, nMinSegments, nMaxSegments); + + // create constants + const double fVerDiffPerStep((fVerStop - fVerStart) / static_cast<double>(nVerSeg)); + const double fHorDiffPerStep((fHorStop - fHorStart) / static_cast<double>(nHorSeg)); + bool bHorClosed(fTools::equal(fHorStop - fHorStart, 2 * M_PI)); + bool bVerFromTop(fTools::equal(fVerStart, M_PI_2)); + bool bVerToBottom(fTools::equal(fVerStop, -M_PI_2)); + + // create horizontal rings + const sal_uInt32 nLoopVerInit(bVerFromTop ? 1 : 0); + const sal_uInt32 nLoopVerLimit(bVerToBottom ? nVerSeg : nVerSeg + 1); + const sal_uInt32 nLoopHorLimit(bHorClosed ? nHorSeg : nHorSeg + 1); + + for(a = nLoopVerInit; a < nLoopVerLimit; a++) + { + const double fVer(fVerStart + (static_cast<double>(a) * fVerDiffPerStep)); + B3DPolygon aNew; + + for(b = 0; b < nLoopHorLimit; b++) + { + const double fHor(fHorStart + (static_cast<double>(b) * fHorDiffPerStep)); + aNew.append(getPointFromCartesian(fHor, fVer)); + } + + aNew.setClosed(bHorClosed); + aRetval.append(aNew); + } + + // create vertical half-rings + for(a = 0; a < nLoopHorLimit; a++) + { + const double fHor(fHorStart + (static_cast<double>(a) * fHorDiffPerStep)); + B3DPolygon aNew; + + if(bVerFromTop) + { + aNew.append(B3DPoint(0.0, 1.0, 0.0)); + } + + for(b = nLoopVerInit; b < nLoopVerLimit; b++) + { + const double fVer(fVerStart + (static_cast<double>(b) * fVerDiffPerStep)); + aNew.append(getPointFromCartesian(fHor, fVer)); + } + + if(bVerToBottom) + { + aNew.append(B3DPoint(0.0, -1.0, 0.0)); + } + + aRetval.append(aNew); + } + + return aRetval; + } + + B3DPolyPolygon createSpherePolyPolygonFromB3DRange( const B3DRange& rRange, + sal_uInt32 nHorSeg, sal_uInt32 nVerSeg, + double fVerStart, double fVerStop, + double fHorStart, double fHorStop) + { + B3DPolyPolygon aRetval(createUnitSpherePolyPolygon(nHorSeg, nVerSeg, fVerStart, fVerStop, fHorStart, fHorStop)); + + if(aRetval.count()) + { + // move and scale whole construct which is now in [-1.0 .. 1.0] in all directions + B3DHomMatrix aTrans; + aTrans.translate(1.0, 1.0, 1.0); + aTrans.scale(rRange.getWidth() / 2.0, rRange.getHeight() / 2.0, rRange.getDepth() / 2.0); + aTrans.translate(rRange.getMinX(), rRange.getMinY(), rRange.getMinZ()); + aRetval.transform(aTrans); + } + + return aRetval; + } + + B3DPolyPolygon createUnitSphereFillPolyPolygon( + sal_uInt32 nHorSeg, sal_uInt32 nVerSeg, + bool bNormals, + double fVerStart, double fVerStop, + double fHorStart, double fHorStop) + { + B3DPolyPolygon aRetval; + + if(!nHorSeg) + { + nHorSeg = fround(fabs(fHorStop - fHorStart) / (M_PI / 12.0)); + } + + // min/max limitations + nHorSeg = std::clamp(nHorSeg, nMinSegments, nMaxSegments); + + if(!nVerSeg) + { + nVerSeg = fround(fabs(fVerStop - fVerStart) / (M_PI / 12.0)); + } + + // min/max limitations + nVerSeg = std::clamp(nVerSeg, nMinSegments, nMaxSegments); + + // vertical loop + for(sal_uInt32 a(0); a < nVerSeg; a++) + { + const double fVer1(fVerStart + (((fVerStop - fVerStart) * a) / nVerSeg)); + const double fVer2(fVerStart + (((fVerStop - fVerStart) * (a + 1)) / nVerSeg)); + + // horizontal loop + for(sal_uInt32 b(0); b < nHorSeg; b++) + { + const double fHor1(fHorStart + (((fHorStop - fHorStart) * b) / nHorSeg)); + const double fHor2(fHorStart + (((fHorStop - fHorStart) * (b + 1)) / nHorSeg)); + B3DPolygon aNew; + + aNew.append(getPointFromCartesian(fHor1, fVer1)); + aNew.append(getPointFromCartesian(fHor2, fVer1)); + aNew.append(getPointFromCartesian(fHor2, fVer2)); + aNew.append(getPointFromCartesian(fHor1, fVer2)); + + if(bNormals) + { + for(sal_uInt32 c(0); c < aNew.count(); c++) + { + aNew.setNormal(c, ::basegfx::B3DVector(aNew.getB3DPoint(c))); + } + } + + aNew.setClosed(true); + aRetval.append(aNew); + } + } + + return aRetval; + } + + B3DPolyPolygon createSphereFillPolyPolygonFromB3DRange( const B3DRange& rRange, + sal_uInt32 nHorSeg, sal_uInt32 nVerSeg, + bool bNormals, + double fVerStart, double fVerStop, + double fHorStart, double fHorStop) + { + B3DPolyPolygon aRetval(createUnitSphereFillPolyPolygon(nHorSeg, nVerSeg, bNormals, fVerStart, fVerStop, fHorStart, fHorStop)); + + if(aRetval.count()) + { + // move and scale whole construct which is now in [-1.0 .. 1.0] in all directions + B3DHomMatrix aTrans; + aTrans.translate(1.0, 1.0, 1.0); + aTrans.scale(rRange.getWidth() / 2.0, rRange.getHeight() / 2.0, rRange.getDepth() / 2.0); + aTrans.translate(rRange.getMinX(), rRange.getMinY(), rRange.getMinZ()); + aRetval.transform(aTrans); + } + + return aRetval; + } + + B3DPolyPolygon applyDefaultNormalsSphere( const B3DPolyPolygon& rCandidate, const B3DPoint& rCenter) + { + B3DPolyPolygon aRetval; + + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + aRetval.append(applyDefaultNormalsSphere(rCandidate.getB3DPolygon(a), rCenter)); + } + + return aRetval; + } + + B3DPolyPolygon invertNormals( const B3DPolyPolygon& rCandidate) + { + B3DPolyPolygon aRetval; + + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + aRetval.append(invertNormals(rCandidate.getB3DPolygon(a))); + } + + return aRetval; + } + + B3DPolyPolygon applyDefaultTextureCoordinatesParallel( const B3DPolyPolygon& rCandidate, const B3DRange& rRange, bool bChangeX, bool bChangeY) + { + B3DPolyPolygon aRetval; + + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + aRetval.append(applyDefaultTextureCoordinatesParallel(rCandidate.getB3DPolygon(a), rRange, bChangeX, bChangeY)); + } + + return aRetval; + } + + B3DPolyPolygon applyDefaultTextureCoordinatesSphere( const B3DPolyPolygon& rCandidate, const B3DPoint& rCenter, bool bChangeX, bool bChangeY) + { + B3DPolyPolygon aRetval; + + for(sal_uInt32 a(0); a < rCandidate.count(); a++) + { + aRetval.append(applyDefaultTextureCoordinatesSphere(rCandidate.getB3DPolygon(a), rCenter, bChangeX, bChangeY)); + } + + return aRetval; + } + + bool isInside(const B3DPolyPolygon& rCandidate, const B3DPoint& rPoint) + { + const sal_uInt32 nPolygonCount(rCandidate.count()); + + if(nPolygonCount == 1) + { + return isInside(rCandidate.getB3DPolygon(0), rPoint, false/*bWithBorder*/); + } + else + { + sal_Int32 nInsideCount(0); + + for(sal_uInt32 a(0); a < nPolygonCount; a++) + { + const B3DPolygon& aPolygon(rCandidate.getB3DPolygon(a)); + const bool bInside(isInside(aPolygon, rPoint, false/*bWithBorder*/)); + + if(bInside) + { + nInsideCount++; + } + } + + return (nInsideCount % 2); + } + } + +/// converters for css::drawing::PolyPolygonShape3D + B3DPolyPolygon UnoPolyPolygonShape3DToB3DPolyPolygon( + const css::drawing::PolyPolygonShape3D& rPolyPolygonShape3DSource) + { + B3DPolyPolygon aRetval; + const sal_Int32 nOuterSequenceCount(rPolyPolygonShape3DSource.SequenceX.getLength()); + + if(nOuterSequenceCount) + { + assert(nOuterSequenceCount == rPolyPolygonShape3DSource.SequenceY.getLength() + && nOuterSequenceCount + == rPolyPolygonShape3DSource.SequenceZ.getLength()&& + "UnoPolyPolygonShape3DToB3DPolygon: Not all double sequences have the same " + "length (!)" ); + + const css::drawing::DoubleSequence* pInnerSequenceX = rPolyPolygonShape3DSource.SequenceX.getConstArray(); + const css::drawing::DoubleSequence* pInnerSequenceY = rPolyPolygonShape3DSource.SequenceY.getConstArray(); + const css::drawing::DoubleSequence* pInnerSequenceZ = rPolyPolygonShape3DSource.SequenceZ.getConstArray(); + + for(sal_Int32 a(0); a < nOuterSequenceCount; a++) + { + basegfx::B3DPolygon aNewPolygon; + const sal_Int32 nInnerSequenceCount(pInnerSequenceX->getLength()); + assert(nInnerSequenceCount == pInnerSequenceY->getLength() + && nInnerSequenceCount == pInnerSequenceZ->getLength() + && "UnoPolyPolygonShape3DToB3DPolygon: Not all double sequences have " + "the same length (!)"); + + const double* pArrayX = pInnerSequenceX->getConstArray(); + const double* pArrayY = pInnerSequenceY->getConstArray(); + const double* pArrayZ = pInnerSequenceZ->getConstArray(); + + for(sal_Int32 b(0); b < nInnerSequenceCount; b++) + { + aNewPolygon.append(basegfx::B3DPoint(*pArrayX++,*pArrayY++,*pArrayZ++)); + } + + pInnerSequenceX++; + pInnerSequenceY++; + pInnerSequenceZ++; + + // #i101520# correction is needed for imported polygons of old format, + // see callers + basegfx::utils::checkClosed(aNewPolygon); + + aRetval.append(aNewPolygon); + } + } + + return aRetval; + } + + void B3DPolyPolygonToUnoPolyPolygonShape3D( + const B3DPolyPolygon& rPolyPolygonSource, + css::drawing::PolyPolygonShape3D& rPolyPolygonShape3DRetval) + { + const sal_uInt32 nPolygonCount(rPolyPolygonSource.count()); + + if(nPolygonCount) + { + rPolyPolygonShape3DRetval.SequenceX.realloc(nPolygonCount); + rPolyPolygonShape3DRetval.SequenceY.realloc(nPolygonCount); + rPolyPolygonShape3DRetval.SequenceZ.realloc(nPolygonCount); + + css::drawing::DoubleSequence* pOuterSequenceX = rPolyPolygonShape3DRetval.SequenceX.getArray(); + css::drawing::DoubleSequence* pOuterSequenceY = rPolyPolygonShape3DRetval.SequenceY.getArray(); + css::drawing::DoubleSequence* pOuterSequenceZ = rPolyPolygonShape3DRetval.SequenceZ.getArray(); + + for(sal_uInt32 a(0); a < nPolygonCount; a++) + { + const basegfx::B3DPolygon& aPoly(rPolyPolygonSource.getB3DPolygon(a)); + const sal_uInt32 nPointCount(aPoly.count()); + + if(nPointCount) + { + const bool bIsClosed(aPoly.isClosed()); + const sal_uInt32 nTargetCount(bIsClosed ? nPointCount + 1 : nPointCount); + pOuterSequenceX->realloc(nTargetCount); + pOuterSequenceY->realloc(nTargetCount); + pOuterSequenceZ->realloc(nTargetCount); + + double* pInnerSequenceX = pOuterSequenceX->getArray(); + double* pInnerSequenceY = pOuterSequenceY->getArray(); + double* pInnerSequenceZ = pOuterSequenceZ->getArray(); + + for(sal_uInt32 b(0); b < nPointCount; b++) + { + const basegfx::B3DPoint aPoint(aPoly.getB3DPoint(b)); + + *pInnerSequenceX++ = aPoint.getX(); + *pInnerSequenceY++ = aPoint.getY(); + *pInnerSequenceZ++ = aPoint.getZ(); + } + + if(bIsClosed) + { + const basegfx::B3DPoint aPoint(aPoly.getB3DPoint(0)); + + *pInnerSequenceX++ = aPoint.getX(); + *pInnerSequenceY++ = aPoint.getY(); + *pInnerSequenceZ++ = aPoint.getZ(); + } + } + else + { + pOuterSequenceX->realloc(0); + pOuterSequenceY->realloc(0); + pOuterSequenceZ->realloc(0); + } + + pOuterSequenceX++; + pOuterSequenceY++; + pOuterSequenceZ++; + } + } + else + { + rPolyPolygonShape3DRetval.SequenceX.realloc(0); + rPolyPolygonShape3DRetval.SequenceY.realloc(0); + rPolyPolygonShape3DRetval.SequenceZ.realloc(0); + } + } + +} // end of namespace + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |