summaryrefslogtreecommitdiffstats
path: root/sc/source/core/tool/interpr8.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'sc/source/core/tool/interpr8.cxx')
-rw-r--r--sc/source/core/tool/interpr8.cxx2008
1 files changed, 2008 insertions, 0 deletions
diff --git a/sc/source/core/tool/interpr8.cxx b/sc/source/core/tool/interpr8.cxx
new file mode 100644
index 000000000..df75c92d4
--- /dev/null
+++ b/sc/source/core/tool/interpr8.cxx
@@ -0,0 +1,2008 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ */
+
+#include <interpre.hxx>
+#include <cellvalue.hxx>
+#include <scmatrix.hxx>
+#include <comphelper/random.hxx>
+#include <formula/token.hxx>
+#include <sal/log.hxx>
+#include <svl/numformat.hxx>
+
+#include <cmath>
+#include <memory>
+#include <vector>
+
+using namespace formula;
+
+namespace {
+
+struct DataPoint
+{
+ double X, Y;
+
+ DataPoint( double rX, double rY ) : X( rX ), Y( rY ) {};
+};
+
+}
+
+static bool lcl_SortByX( const DataPoint &lhs, const DataPoint &rhs ) { return lhs.X < rhs.X; }
+
+/*
+ * ScETSForecastCalculation
+ *
+ * Class is set up to be used with Calc's FORECAST.ETS
+ * functions and with chart extrapolations (not yet implemented).
+ *
+ * Triple Exponential Smoothing (Holt-Winters method)
+ *
+ * Forecasting of a linear change in data over time (y=a+b*x) with
+ * superimposed absolute or relative seasonal deviations, using additive
+ * respectively multiplicative Holt-Winters method.
+ *
+ * Initialisation and forecasting calculations are based on
+ * Engineering Statistics Handbook, 6.4.3.5 Triple Exponential Smoothing
+ * see "http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc435.htm"
+ * Further to the above is that initial calculation of Seasonal effect
+ * is corrected for trend.
+ *
+ * Prediction Interval calculations are based on
+ * Yar & Chatfield, Prediction Intervals for the Holt-Winters forecasting
+ * procedure, International Journal of Forecasting, 1990, Vol.6, pp127-137
+ * The calculation here is a simplified numerical approximation of the above,
+ * using random distributions.
+ *
+ * Double Exponential Smoothing (Holt-Winters method)
+ *
+ * Forecasting of a linear change in data over time (y=a+b*x), using
+ * the Holt-Winters method.
+ *
+ * Initialisation and forecasting calculations are based on
+ * Engineering Statistics Handbook, 6.4.3.3 Double Exponential Smoothing
+ * see "http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc433.htm"
+ *
+ * Prediction Interval calculations are based on
+ * Statistical Methods for Forecasting, Bovas & Ledolter, 2009, 3.8 Prediction
+ * Intervals for Future Values
+ *
+ */
+
+namespace {
+
+class ScETSForecastCalculation
+{
+private:
+ SvNumberFormatter* mpFormatter;
+ std::vector< DataPoint > maRange; // data (X, Y)
+ std::unique_ptr<double[]> mpBase; // calculated base value array
+ std::unique_ptr<double[]> mpTrend; // calculated trend factor array
+ std::unique_ptr<double[]> mpPerIdx; // calculated periodical deviation array, not used with eds
+ std::unique_ptr<double[]> mpForecast; // forecasted value array
+ SCSIZE mnSmplInPrd; // samples per period
+ double mfStepSize; // increment of X in maRange
+ double mfAlpha, mfBeta, mfGamma; // constants to minimize the RMSE in the ES-equations
+ SCSIZE mnCount; // No of data points
+ bool mbInitialised;
+ int mnMonthDay; // n-month X-interval, value is day of month
+ // accuracy indicators
+ double mfMAE; // mean absolute error
+ double mfMASE; // mean absolute scaled error
+ double mfMSE; // mean squared error (variation)
+ double mfRMSE; // root mean squared error (standard deviation)
+ double mfSMAPE; // symmetric mean absolute error
+ FormulaError mnErrorValue;
+ bool bAdditive; // true: additive method, false: multiplicative method
+ bool bEDS; // true: EDS, false: ETS
+
+ // constants used in determining best fit for alpha, beta, gamma
+ static constexpr double cfMinABCResolution = 0.001; // minimum change of alpha, beta, gamma
+ static const SCSIZE cnScenarios = 1000; // No. of scenarios to calculate for PI calculations
+
+ bool initData();
+ void prefillBaseData();
+ bool prefillTrendData();
+ bool prefillPerIdx();
+ void initCalc();
+ void refill();
+ SCSIZE CalcPeriodLen();
+ void CalcAlphaBetaGamma();
+ void CalcBetaGamma();
+ void CalcGamma();
+ void calcAccuracyIndicators();
+ void GetForecast( double fTarget, double& rForecast );
+ double RandDev();
+ double convertXtoMonths( double x );
+
+public:
+ ScETSForecastCalculation( SCSIZE nSize, SvNumberFormatter* pFormatter );
+
+ bool PreprocessDataRange( const ScMatrixRef& rMatX, const ScMatrixRef& rMatY, int nSmplInPrd,
+ bool bDataCompletion, int nAggregation, const ScMatrixRef& rTMat,
+ ScETSType eETSType );
+ FormulaError GetError() const { return mnErrorValue; };
+ void GetForecastRange( const ScMatrixRef& rTMat, const ScMatrixRef& rFcMat );
+ void GetStatisticValue( const ScMatrixRef& rTypeMat, const ScMatrixRef& rStatMat );
+ void GetSamplesInPeriod( double& rVal );
+ void GetEDSPredictionIntervals( const ScMatrixRef& rTMat, const ScMatrixRef& rPIMat, double fPILevel );
+ void GetETSPredictionIntervals( const ScMatrixRef& rTMat, const ScMatrixRef& rPIMat, double fPILevel );
+};
+
+}
+
+ScETSForecastCalculation::ScETSForecastCalculation( SCSIZE nSize, SvNumberFormatter* pFormatter )
+ : mpFormatter(pFormatter)
+ , mnSmplInPrd(0)
+ , mfStepSize(0.0)
+ , mfAlpha(0.0)
+ , mfBeta(0.0)
+ , mfGamma(0.0)
+ , mnCount(nSize)
+ , mbInitialised(false)
+ , mnMonthDay(0)
+ , mfMAE(0.0)
+ , mfMASE(0.0)
+ , mfMSE(0.0)
+ , mfRMSE(0.0)
+ , mfSMAPE(0.0)
+ , mnErrorValue(FormulaError::NONE)
+ , bAdditive(false)
+ , bEDS(false)
+{
+ maRange.reserve( mnCount );
+}
+
+bool ScETSForecastCalculation::PreprocessDataRange( const ScMatrixRef& rMatX, const ScMatrixRef& rMatY, int nSmplInPrd,
+ bool bDataCompletion, int nAggregation, const ScMatrixRef& rTMat,
+ ScETSType eETSType )
+{
+ bEDS = ( nSmplInPrd == 0 );
+ bAdditive = ( eETSType == etsAdd || eETSType == etsPIAdd || eETSType == etsStatAdd );
+
+ // maRange needs to be sorted by X
+ for ( SCSIZE i = 0; i < mnCount; i++ )
+ maRange.emplace_back( rMatX->GetDouble( i ), rMatY->GetDouble( i ) );
+ sort( maRange.begin(), maRange.end(), lcl_SortByX );
+
+ if ( rTMat )
+ {
+ if ( eETSType != etsPIAdd && eETSType != etsPIMult )
+ {
+ if ( rTMat->GetDouble( 0 ) < maRange[ 0 ].X )
+ {
+ // target cannot be less than start of X-range
+ mnErrorValue = FormulaError::IllegalFPOperation;
+ return false;
+ }
+ }
+ else
+ {
+ if ( rTMat->GetDouble( 0 ) < maRange[ mnCount - 1 ].X )
+ {
+ // target cannot be before end of X-range
+ mnErrorValue = FormulaError::IllegalFPOperation;
+ return false;
+ }
+ }
+ }
+
+ // Month intervals don't have exact stepsize, so first
+ // detect if month interval is used.
+ // Method: assume there is an month interval and verify.
+ // If month interval is used, replace maRange.X with month values
+ // for ease of calculations.
+ Date aNullDate = mpFormatter->GetNullDate();
+ Date aDate = aNullDate + static_cast< sal_Int32 >( maRange[ 0 ].X );
+ mnMonthDay = aDate.GetDay();
+ for ( SCSIZE i = 1; i < mnCount && mnMonthDay; i++ )
+ {
+ Date aDate1 = aNullDate + static_cast< sal_Int32 >( maRange[ i ].X );
+ if ( aDate != aDate1 )
+ {
+ if ( aDate1.GetDay() != mnMonthDay )
+ mnMonthDay = 0;
+ }
+ }
+
+ mfStepSize = ::std::numeric_limits<double>::max();
+ if ( mnMonthDay )
+ {
+ for ( SCSIZE i = 0; i < mnCount; i++ )
+ {
+ aDate = aNullDate + static_cast< sal_Int32 >( maRange[ i ].X );
+ maRange[ i ].X = aDate.GetYear() * 12 + aDate.GetMonth();
+ }
+ }
+ for ( SCSIZE i = 1; i < mnCount; i++ )
+ {
+ double fStep = maRange[ i ].X - maRange[ i - 1 ].X;
+ if ( fStep == 0.0 )
+ {
+ if ( nAggregation == 0 )
+ {
+ // identical X-values are not allowed
+ mnErrorValue = FormulaError::NoValue;
+ return false;
+ }
+ double fTmp = maRange[ i - 1 ].Y;
+ SCSIZE nCounter = 1;
+ switch ( nAggregation )
+ {
+ case 1 : // AVERAGE (default)
+ while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X )
+ {
+ maRange.erase( maRange.begin() + i );
+ --mnCount;
+ }
+ break;
+ case 7 : // SUM
+ while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X )
+ {
+ fTmp += maRange[ i ].Y;
+ maRange.erase( maRange.begin() + i );
+ --mnCount;
+ }
+ maRange[ i - 1 ].Y = fTmp;
+ break;
+
+ case 2 : // COUNT
+ case 3 : // COUNTA (same as COUNT as there are no non-numeric Y-values)
+ while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X )
+ {
+ nCounter++;
+ maRange.erase( maRange.begin() + i );
+ --mnCount;
+ }
+ maRange[ i - 1 ].Y = nCounter;
+ break;
+
+ case 4 : // MAX
+ while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X )
+ {
+ if ( maRange[ i ].Y > fTmp )
+ fTmp = maRange[ i ].Y;
+ maRange.erase( maRange.begin() + i );
+ --mnCount;
+ }
+ maRange[ i - 1 ].Y = fTmp;
+ break;
+
+ case 5 : // MEDIAN
+ {
+ std::vector< double > aTmp { maRange[ i - 1 ].Y };
+ while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X )
+ {
+ aTmp.push_back( maRange[ i ].Y );
+ nCounter++;
+ maRange.erase( maRange.begin() + i );
+ --mnCount;
+ }
+ sort( aTmp.begin(), aTmp.end() );
+
+ if ( nCounter % 2 )
+ maRange[ i - 1 ].Y = aTmp[ nCounter / 2 ];
+ else
+ maRange[ i - 1 ].Y = ( aTmp[ nCounter / 2 ] + aTmp[ nCounter / 2 - 1 ] ) / 2.0;
+ }
+ break;
+
+ case 6 : // MIN
+ while ( i < mnCount && maRange[ i ].X == maRange[ i - 1 ].X )
+ {
+ if ( maRange[ i ].Y < fTmp )
+ fTmp = maRange[ i ].Y;
+ maRange.erase( maRange.begin() + i );
+ --mnCount;
+ }
+ maRange[ i - 1 ].Y = fTmp;
+ break;
+ }
+ if ( i < mnCount - 1 )
+ fStep = maRange[ i ].X - maRange[ i - 1 ].X;
+ else
+ fStep = mfStepSize;
+ }
+ if ( fStep > 0 && fStep < mfStepSize )
+ mfStepSize = fStep;
+ }
+
+ // step must be constant (or gap multiple of step)
+ bool bHasGap = false;
+ for ( SCSIZE i = 1; i < mnCount && !bHasGap; i++ )
+ {
+ double fStep = maRange[ i ].X - maRange[ i - 1 ].X;
+
+ if ( fStep != mfStepSize )
+ {
+ if ( fmod( fStep, mfStepSize ) != 0.0 )
+ {
+ // step not constant nor multiple of mfStepSize in case of gaps
+ mnErrorValue = FormulaError::NoValue;
+ return false;
+ }
+ bHasGap = true;
+ }
+ }
+
+ // fill gaps with values depending on bDataCompletion
+ if ( bHasGap )
+ {
+ SCSIZE nMissingXCount = 0;
+ double fOriginalCount = static_cast< double >( mnCount );
+ if ( mnMonthDay )
+ aDate = aNullDate + static_cast< sal_Int32 >( maRange[ 0 ].X );
+ for ( SCSIZE i = 1; i < mnCount; i++ )
+ {
+ double fDist;
+ if ( mnMonthDay )
+ {
+ Date aDate1 = aNullDate + static_cast< sal_Int32 >( maRange[ i ].X );
+ fDist = 12 * ( aDate1.GetYear() - aDate.GetYear() ) +
+ ( aDate1.GetMonth() - aDate.GetMonth() );
+ aDate = aDate1;
+ }
+ else
+ fDist = maRange[ i ].X - maRange[ i - 1 ].X;
+ if ( fDist > mfStepSize )
+ {
+ // gap, insert missing data points
+ double fYGap = ( maRange[ i ].Y + maRange[ i - 1 ].Y ) / 2.0;
+ for ( KahanSum fXGap = maRange[ i - 1].X + mfStepSize; fXGap < maRange[ i ].X; fXGap += mfStepSize )
+ {
+ maRange.insert( maRange.begin() + i, DataPoint( fXGap.get(), ( bDataCompletion ? fYGap : 0.0 ) ) );
+ i++;
+ mnCount++;
+ nMissingXCount++;
+ if ( static_cast< double >( nMissingXCount ) / fOriginalCount > 0.3 )
+ {
+ // maximum of 30% missing points exceeded
+ mnErrorValue = FormulaError::NoValue;
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ if ( nSmplInPrd != 1 )
+ mnSmplInPrd = nSmplInPrd;
+ else
+ {
+ mnSmplInPrd = CalcPeriodLen();
+ if ( mnSmplInPrd == 1 )
+ bEDS = true; // period length 1 means no periodic data: EDS suffices
+ }
+
+ if ( !initData() )
+ return false; // note: mnErrorValue is set in called function(s)
+
+ return true;
+}
+
+bool ScETSForecastCalculation::initData( )
+{
+ // give various vectors size and initial value
+ mpBase.reset( new double[ mnCount ] );
+ mpTrend.reset( new double[ mnCount ] );
+ if ( !bEDS )
+ mpPerIdx.reset( new double[ mnCount ] );
+ mpForecast.reset( new double[ mnCount ] );
+ mpForecast[ 0 ] = maRange[ 0 ].Y;
+
+ if ( prefillTrendData() )
+ {
+ if ( prefillPerIdx() )
+ {
+ prefillBaseData();
+ return true;
+ }
+ }
+ return false;
+}
+
+bool ScETSForecastCalculation::prefillTrendData()
+{
+ if ( bEDS )
+ mpTrend[ 0 ] = ( maRange[ mnCount - 1 ].Y - maRange[ 0 ].Y ) / static_cast< double >( mnCount - 1 );
+ else
+ {
+ // we need at least 2 periods in the data range
+ if ( mnCount < 2 * mnSmplInPrd )
+ {
+ mnErrorValue = FormulaError::NoValue;
+ return false;
+ }
+
+ KahanSum fSum = 0.0;
+ for ( SCSIZE i = 0; i < mnSmplInPrd; i++ )
+ {
+ fSum += maRange[ i + mnSmplInPrd ].Y;
+ fSum -= maRange[ i ].Y;
+ }
+ double fTrend = fSum.get() / static_cast< double >( mnSmplInPrd * mnSmplInPrd );
+
+ mpTrend[ 0 ] = fTrend;
+ }
+
+ return true;
+}
+
+bool ScETSForecastCalculation::prefillPerIdx()
+{
+ if ( !bEDS )
+ {
+ // use as many complete periods as available
+ if ( mnSmplInPrd == 0 )
+ {
+ // should never happen; if mnSmplInPrd equals 0, bEDS is true
+ mnErrorValue = FormulaError::UnknownState;
+ return false;
+ }
+ SCSIZE nPeriods = mnCount / mnSmplInPrd;
+ std::vector< KahanSum > aPeriodAverage( nPeriods, 0.0 );
+ for ( SCSIZE i = 0; i < nPeriods ; i++ )
+ {
+ for ( SCSIZE j = 0; j < mnSmplInPrd; j++ )
+ aPeriodAverage[ i ] += maRange[ i * mnSmplInPrd + j ].Y;
+ aPeriodAverage[ i ] /= static_cast< double >( mnSmplInPrd );
+ if ( aPeriodAverage[ i ] == 0.0 )
+ {
+ SAL_WARN( "sc.core", "prefillPerIdx(), average of 0 will cause divide by zero error, quitting calculation" );
+ mnErrorValue = FormulaError::DivisionByZero;
+ return false;
+ }
+ }
+
+ for ( SCSIZE j = 0; j < mnSmplInPrd; j++ )
+ {
+ KahanSum fI = 0.0;
+ for ( SCSIZE i = 0; i < nPeriods ; i++ )
+ {
+ // adjust average value for position within period
+ if ( bAdditive )
+ fI += maRange[ i * mnSmplInPrd + j ].Y -
+ ( aPeriodAverage[ i ].get() + ( static_cast< double >( j ) - 0.5 * ( mnSmplInPrd - 1 ) ) *
+ mpTrend[ 0 ] );
+ else
+ fI += maRange[ i * mnSmplInPrd + j ].Y /
+ ( aPeriodAverage[ i ].get() + ( static_cast< double >( j ) - 0.5 * ( mnSmplInPrd - 1 ) ) *
+ mpTrend[ 0 ] );
+ }
+ mpPerIdx[ j ] = fI.get() / nPeriods;
+ }
+ if (mnSmplInPrd < mnCount)
+ mpPerIdx[mnSmplInPrd] = 0.0;
+ }
+ return true;
+}
+
+void ScETSForecastCalculation::prefillBaseData()
+{
+ if ( bEDS )
+ mpBase[ 0 ] = maRange[ 0 ].Y;
+ else
+ mpBase[ 0 ] = maRange[ 0 ].Y / mpPerIdx[ 0 ];
+}
+
+void ScETSForecastCalculation::initCalc()
+{
+ if ( !mbInitialised )
+ {
+ CalcAlphaBetaGamma();
+
+ mbInitialised = true;
+ calcAccuracyIndicators();
+ }
+}
+
+void ScETSForecastCalculation::calcAccuracyIndicators()
+{
+ KahanSum fSumAbsErr = 0.0;
+ KahanSum fSumDivisor = 0.0;
+ KahanSum fSumErrSq = 0.0;
+ KahanSum fSumAbsPercErr = 0.0;
+
+ for ( SCSIZE i = 1; i < mnCount; i++ )
+ {
+ double fError = mpForecast[ i ] - maRange[ i ].Y;
+ fSumAbsErr += fabs( fError );
+ fSumErrSq += fError * fError;
+ fSumAbsPercErr += fabs( fError ) / ( fabs( mpForecast[ i ] ) + fabs( maRange[ i ].Y ) );
+ }
+
+ for ( SCSIZE i = 2; i < mnCount; i++ )
+ fSumDivisor += fabs( maRange[ i ].Y - maRange[ i - 1 ].Y );
+
+ int nCalcCount = mnCount - 1;
+ mfMAE = fSumAbsErr.get() / nCalcCount;
+ mfMASE = fSumAbsErr.get() / ( nCalcCount * fSumDivisor.get() / ( nCalcCount - 1 ) );
+ mfMSE = fSumErrSq.get() / nCalcCount;
+ mfRMSE = sqrt( mfMSE );
+ mfSMAPE = fSumAbsPercErr.get() * 2.0 / nCalcCount;
+}
+
+/*
+ * CalcPeriodLen() calculates the most likely length of a period.
+ *
+ * Method used: for all possible values (between mnCount/2 and 2) compare for
+ * each (sample-previous sample) with next period and calculate mean error.
+ * Use as much samples as possible for each period length and the most recent samples
+ * Return the period length with the lowest mean error.
+ */
+SCSIZE ScETSForecastCalculation::CalcPeriodLen()
+{
+ SCSIZE nBestVal = mnCount;
+ double fBestME = ::std::numeric_limits<double>::max();
+
+ for ( SCSIZE nPeriodLen = mnCount / 2; nPeriodLen >= 1; nPeriodLen-- )
+ {
+ KahanSum fMeanError = 0.0;
+ SCSIZE nPeriods = mnCount / nPeriodLen;
+ SCSIZE nStart = mnCount - ( nPeriods * nPeriodLen ) + 1;
+ for ( SCSIZE i = nStart; i < ( mnCount - nPeriodLen ); i++ )
+ {
+ fMeanError += fabs( ( maRange[ i ].Y - maRange[ i - 1 ].Y ) -
+ ( maRange[ nPeriodLen + i ].Y - maRange[ nPeriodLen + i - 1 ].Y ) );
+ }
+ double fMeanErrorGet = fMeanError.get();
+ fMeanErrorGet /= static_cast< double >( ( nPeriods - 1 ) * nPeriodLen - 1 );
+
+ if ( fMeanErrorGet <= fBestME || fMeanErrorGet == 0.0 )
+ {
+ nBestVal = nPeriodLen;
+ fBestME = fMeanErrorGet;
+ }
+ }
+ return nBestVal;
+}
+
+void ScETSForecastCalculation::CalcAlphaBetaGamma()
+{
+ double f0 = 0.0;
+ mfAlpha = f0;
+ if ( bEDS )
+ {
+ mfBeta = 0.0; // beta is not used with EDS
+ CalcGamma();
+ }
+ else
+ CalcBetaGamma();
+ refill();
+ double fE0 = mfMSE;
+
+ double f2 = 1.0;
+ mfAlpha = f2;
+ if ( bEDS )
+ CalcGamma();
+ else
+ CalcBetaGamma();
+ refill();
+ double fE2 = mfMSE;
+
+ double f1 = 0.5;
+ mfAlpha = f1;
+ if ( bEDS )
+ CalcGamma();
+ else
+ CalcBetaGamma();
+ refill();
+
+ if ( fE0 == mfMSE && mfMSE == fE2 )
+ {
+ mfAlpha = 0;
+ if ( bEDS )
+ CalcGamma();
+ else
+ CalcBetaGamma();
+ refill();
+ return;
+ }
+ while ( ( f2 - f1 ) > cfMinABCResolution )
+ {
+ if ( fE2 > fE0 )
+ {
+ f2 = f1;
+ fE2 = mfMSE;
+ f1 = ( f0 + f1 ) / 2;
+ }
+ else
+ {
+ f0 = f1;
+ fE0 = mfMSE;
+ f1 = ( f1 + f2 ) / 2;
+ }
+ mfAlpha = f1;
+ if ( bEDS )
+ CalcGamma();
+ else
+ CalcBetaGamma();
+ refill();
+ }
+ if ( fE2 > fE0 )
+ {
+ if ( fE0 < mfMSE )
+ {
+ mfAlpha = f0;
+ if ( bEDS )
+ CalcGamma();
+ else
+ CalcBetaGamma();
+ refill();
+ }
+ }
+ else
+ {
+ if ( fE2 < mfMSE )
+ {
+ mfAlpha = f2;
+ if ( bEDS )
+ CalcGamma();
+ else
+ CalcBetaGamma();
+ refill();
+ }
+ }
+ calcAccuracyIndicators();
+}
+
+void ScETSForecastCalculation::CalcBetaGamma()
+{
+ double f0 = 0.0;
+ mfBeta = f0;
+ CalcGamma();
+ refill();
+ double fE0 = mfMSE;
+
+ double f2 = 1.0;
+ mfBeta = f2;
+ CalcGamma();
+ refill();
+ double fE2 = mfMSE;
+
+ double f1 = 0.5;
+ mfBeta = f1;
+ CalcGamma();
+ refill();
+
+ if ( fE0 == mfMSE && mfMSE == fE2 )
+ {
+ mfBeta = 0;
+ CalcGamma();
+ refill();
+ return;
+ }
+ while ( ( f2 - f1 ) > cfMinABCResolution )
+ {
+ if ( fE2 > fE0 )
+ {
+ f2 = f1;
+ fE2 = mfMSE;
+ f1 = ( f0 + f1 ) / 2;
+ }
+ else
+ {
+ f0 = f1;
+ fE0 = mfMSE;
+ f1 = ( f1 + f2 ) / 2;
+ }
+ mfBeta = f1;
+ CalcGamma();
+ refill();
+ }
+ if ( fE2 > fE0 )
+ {
+ if ( fE0 < mfMSE )
+ {
+ mfBeta = f0;
+ CalcGamma();
+ refill();
+ }
+ }
+ else
+ {
+ if ( fE2 < mfMSE )
+ {
+ mfBeta = f2;
+ CalcGamma();
+ refill();
+ }
+ }
+}
+
+void ScETSForecastCalculation::CalcGamma()
+{
+ double f0 = 0.0;
+ mfGamma = f0;
+ refill();
+ double fE0 = mfMSE;
+
+ double f2 = 1.0;
+ mfGamma = f2;
+ refill();
+ double fE2 = mfMSE;
+
+ double f1 = 0.5;
+ mfGamma = f1;
+ refill();
+
+ if ( fE0 == mfMSE && mfMSE == fE2 )
+ {
+ mfGamma = 0;
+ refill();
+ return;
+ }
+ while ( ( f2 - f1 ) > cfMinABCResolution )
+ {
+ if ( fE2 > fE0 )
+ {
+ f2 = f1;
+ fE2 = mfMSE;
+ f1 = ( f0 + f1 ) / 2;
+ }
+ else
+ {
+ f0 = f1;
+ fE0 = mfMSE;
+ f1 = ( f1 + f2 ) / 2;
+ }
+ mfGamma = f1;
+ refill();
+ }
+ if ( fE2 > fE0 )
+ {
+ if ( fE0 < mfMSE )
+ {
+ mfGamma = f0;
+ refill();
+ }
+ }
+ else
+ {
+ if ( fE2 < mfMSE )
+ {
+ mfGamma = f2;
+ refill();
+ }
+ }
+}
+
+void ScETSForecastCalculation::refill()
+{
+ // refill mpBase, mpTrend, mpPerIdx and mpForecast with values
+ // using the calculated mfAlpha, (mfBeta), mfGamma
+ // forecast 1 step ahead
+ for ( SCSIZE i = 1; i < mnCount; i++ )
+ {
+ if ( bEDS )
+ {
+ mpBase[ i ] = mfAlpha * maRange[ i ].Y +
+ ( 1 - mfAlpha ) * ( mpBase[ i - 1 ] + mpTrend[ i - 1 ] );
+ mpTrend[ i ] = mfGamma * ( mpBase[ i ] - mpBase[ i - 1 ] ) +
+ ( 1 - mfGamma ) * mpTrend[ i - 1 ];
+ mpForecast[ i ] = mpBase[ i - 1 ] + mpTrend[ i - 1 ];
+ }
+ else
+ {
+ SCSIZE nIdx;
+ if ( bAdditive )
+ {
+ nIdx = ( i > mnSmplInPrd ? i - mnSmplInPrd : i );
+ mpBase[ i ] = mfAlpha * ( maRange[ i ].Y - mpPerIdx[ nIdx ] ) +
+ ( 1 - mfAlpha ) * ( mpBase[ i - 1 ] + mpTrend[ i - 1 ] );
+ mpPerIdx[ i ] = mfBeta * ( maRange[ i ].Y - mpBase[ i ] ) +
+ ( 1 - mfBeta ) * mpPerIdx[ nIdx ];
+ }
+ else
+ {
+ nIdx = ( i >= mnSmplInPrd ? i - mnSmplInPrd : i );
+ mpBase[ i ] = mfAlpha * ( maRange[ i ].Y / mpPerIdx[ nIdx ] ) +
+ ( 1 - mfAlpha ) * ( mpBase[ i - 1 ] + mpTrend[ i - 1 ] );
+ mpPerIdx[ i ] = mfBeta * ( maRange[ i ].Y / mpBase[ i ] ) +
+ ( 1 - mfBeta ) * mpPerIdx[ nIdx ];
+ }
+ mpTrend[ i ] = mfGamma * ( mpBase[ i ] - mpBase[ i - 1 ] ) +
+ ( 1 - mfGamma ) * mpTrend[ i - 1 ];
+
+ if ( bAdditive )
+ mpForecast[ i ] = mpBase[ i - 1 ] + mpTrend[ i - 1 ] + mpPerIdx[ nIdx ];
+ else
+ mpForecast[ i ] = ( mpBase[ i - 1 ] + mpTrend[ i - 1 ] ) * mpPerIdx[ nIdx ];
+ }
+ }
+ calcAccuracyIndicators();
+}
+
+double ScETSForecastCalculation::convertXtoMonths( double x )
+{
+ Date aDate = mpFormatter->GetNullDate() + static_cast< sal_Int32 >( x );
+ int nYear = aDate.GetYear();
+ int nMonth = aDate.GetMonth();
+ double fMonthLength;
+ switch ( nMonth )
+ {
+ case 1 :
+ case 3 :
+ case 5 :
+ case 7 :
+ case 8 :
+ case 10 :
+ case 12 :
+ fMonthLength = 31.0;
+ break;
+ case 2 :
+ fMonthLength = ( aDate.IsLeapYear() ? 29.0 : 28.0 );
+ break;
+ default :
+ fMonthLength = 30.0;
+ }
+ return ( 12.0 * nYear + nMonth + ( aDate.GetDay() - mnMonthDay ) / fMonthLength );
+}
+
+void ScETSForecastCalculation::GetForecast( double fTarget, double& rForecast )
+{
+ initCalc();
+
+ if ( fTarget <= maRange[ mnCount - 1 ].X )
+ {
+ SCSIZE n = ( fTarget - maRange[ 0 ].X ) / mfStepSize;
+ double fInterpolate = fmod( fTarget - maRange[ 0 ].X, mfStepSize );
+ rForecast = maRange[ n ].Y;
+
+ if ( fInterpolate >= cfMinABCResolution )
+ {
+ double fInterpolateFactor = fInterpolate / mfStepSize;
+ double fFc_1 = mpForecast[ n + 1 ];
+ rForecast = rForecast + fInterpolateFactor * ( fFc_1 - rForecast );
+ }
+ }
+ else
+ {
+ SCSIZE n = ( fTarget - maRange[ mnCount - 1 ].X ) / mfStepSize;
+ double fInterpolate = fmod( fTarget - maRange[ mnCount - 1 ].X, mfStepSize );
+
+ if ( bEDS )
+ rForecast = mpBase[ mnCount - 1 ] + n * mpTrend[ mnCount - 1 ];
+ else if ( bAdditive )
+ rForecast = mpBase[ mnCount - 1 ] + n * mpTrend[ mnCount - 1 ] +
+ mpPerIdx[ mnCount - 1 - mnSmplInPrd + ( n % mnSmplInPrd ) ];
+ else
+ rForecast = ( mpBase[ mnCount - 1 ] + n * mpTrend[ mnCount - 1 ] ) *
+ mpPerIdx[ mnCount - 1 - mnSmplInPrd + ( n % mnSmplInPrd ) ];
+
+ if ( fInterpolate >= cfMinABCResolution )
+ {
+ double fInterpolateFactor = fInterpolate / mfStepSize;
+ double fFc_1;
+ if ( bEDS )
+ fFc_1 = mpBase[ mnCount - 1 ] + ( n + 1 ) * mpTrend[ mnCount - 1 ];
+ else if ( bAdditive )
+ fFc_1 = mpBase[ mnCount - 1 ] + ( n + 1 ) * mpTrend[ mnCount - 1 ] +
+ mpPerIdx[ mnCount - 1 - mnSmplInPrd + ( ( n + 1 ) % mnSmplInPrd ) ];
+ else
+ fFc_1 = ( mpBase[ mnCount - 1 ] + ( n + 1 ) * mpTrend[ mnCount - 1 ] ) *
+ mpPerIdx[ mnCount - 1 - mnSmplInPrd + ( ( n + 1 ) % mnSmplInPrd ) ];
+ rForecast = rForecast + fInterpolateFactor * ( fFc_1 - rForecast );
+ }
+ }
+}
+
+void ScETSForecastCalculation::GetForecastRange( const ScMatrixRef& rTMat, const ScMatrixRef& rFcMat )
+{
+ SCSIZE nC, nR;
+ rTMat->GetDimensions( nC, nR );
+
+ for ( SCSIZE i = 0; i < nR; i++ )
+ {
+ for ( SCSIZE j = 0; j < nC; j++ )
+ {
+ double fTarget;
+ if ( mnMonthDay )
+ fTarget = convertXtoMonths( rTMat->GetDouble( j, i ) );
+ else
+ fTarget = rTMat->GetDouble( j, i );
+ double fForecast;
+ GetForecast( fTarget, fForecast );
+ rFcMat->PutDouble( fForecast, j, i );
+ }
+ }
+}
+
+void ScETSForecastCalculation::GetStatisticValue( const ScMatrixRef& rTypeMat, const ScMatrixRef& rStatMat )
+{
+ initCalc();
+
+ SCSIZE nC, nR;
+ rTypeMat->GetDimensions( nC, nR );
+ for ( SCSIZE i = 0; i < nR; i++ )
+ {
+ for ( SCSIZE j = 0; j < nC; j++ )
+ {
+ switch ( static_cast< int >( rTypeMat->GetDouble( j, i ) ) )
+ {
+ case 1 : // alpha
+ rStatMat->PutDouble( mfAlpha, j, i );
+ break;
+ case 2 : // gamma
+ rStatMat->PutDouble( mfGamma, j, i );
+ break;
+ case 3 : // beta
+ rStatMat->PutDouble( mfBeta, j, i );
+ break;
+ case 4 : // MASE
+ rStatMat->PutDouble( mfMASE, j, i );
+ break;
+ case 5 : // SMAPE
+ rStatMat->PutDouble( mfSMAPE, j, i );
+ break;
+ case 6 : // MAE
+ rStatMat->PutDouble( mfMAE, j, i );
+ break;
+ case 7 : // RMSE
+ rStatMat->PutDouble( mfRMSE, j, i );
+ break;
+ case 8 : // step size
+ rStatMat->PutDouble( mfStepSize, j, i );
+ break;
+ case 9 : // samples in period
+ rStatMat->PutDouble( mnSmplInPrd, j, i );
+ break;
+ }
+ }
+ }
+}
+
+void ScETSForecastCalculation::GetSamplesInPeriod( double& rVal )
+{
+ rVal = mnSmplInPrd;
+}
+
+double ScETSForecastCalculation::RandDev()
+{
+ // return a random deviation given the standard deviation
+ return ( mfRMSE * ScInterpreter::gaussinv(
+ ::comphelper::rng::uniform_real_distribution( 0.5, 1.0 ) ) );
+}
+
+void ScETSForecastCalculation::GetETSPredictionIntervals( const ScMatrixRef& rTMat, const ScMatrixRef& rPIMat, double fPILevel )
+{
+ initCalc();
+
+ SCSIZE nC, nR;
+ rTMat->GetDimensions( nC, nR );
+
+ // find maximum target value and calculate size of scenario-arrays
+ double fMaxTarget = rTMat->GetDouble( 0, 0 );
+ for ( SCSIZE i = 0; i < nR; i++ )
+ {
+ for ( SCSIZE j = 0; j < nC; j++ )
+ {
+ if ( fMaxTarget < rTMat->GetDouble( j, i ) )
+ fMaxTarget = rTMat->GetDouble( j, i );
+ }
+ }
+ if ( mnMonthDay )
+ fMaxTarget = convertXtoMonths( fMaxTarget ) - maRange[ mnCount - 1 ].X;
+ else
+ fMaxTarget -= maRange[ mnCount - 1 ].X;
+ SCSIZE nSize = fMaxTarget / mfStepSize;
+ if ( fmod( fMaxTarget, mfStepSize ) != 0.0 )
+ nSize++;
+
+ if (nSize == 0)
+ {
+ mnErrorValue = FormulaError::IllegalArgument;
+ return;
+ }
+
+ std::unique_ptr< double[] > xScenRange( new double[nSize]);
+ std::unique_ptr< double[] > xScenBase( new double[nSize]);
+ std::unique_ptr< double[] > xScenTrend( new double[nSize]);
+ std::unique_ptr< double[] > xScenPerIdx( new double[nSize]);
+ std::vector< std::vector< double > > aPredictions( nSize, std::vector< double >( cnScenarios ) );
+
+ // fill scenarios
+ for ( SCSIZE k = 0; k < cnScenarios; k++ )
+ {
+ // fill array with forecasts, with RandDev() added to xScenRange
+ if ( bAdditive )
+ {
+ double nPIdx = !bEDS ? mpPerIdx[mnCount - mnSmplInPrd] : 0.0;
+ // calculation based on additive model
+ xScenRange[ 0 ] = mpBase[ mnCount - 1 ] + mpTrend[ mnCount - 1 ] +
+ nPIdx +
+ RandDev();
+ aPredictions[ 0 ][ k ] = xScenRange[ 0 ];
+ xScenBase[ 0 ] = mfAlpha * ( xScenRange[ 0 ] - nPIdx ) +
+ ( 1 - mfAlpha ) * ( mpBase[ mnCount - 1 ] + mpTrend[ mnCount - 1 ] );
+ xScenTrend[ 0 ] = mfGamma * ( xScenBase[ 0 ] - mpBase[ mnCount - 1 ] ) +
+ ( 1 - mfGamma ) * mpTrend[ mnCount - 1 ];
+ xScenPerIdx[ 0 ] = mfBeta * ( xScenRange[ 0 ] - xScenBase[ 0 ] ) +
+ ( 1 - mfBeta ) * nPIdx;
+ for ( SCSIZE i = 1; i < nSize; i++ )
+ {
+ double fPerIdx;
+ if ( i < mnSmplInPrd )
+ fPerIdx = mpPerIdx[ mnCount + i - mnSmplInPrd ];
+ else
+ fPerIdx = xScenPerIdx[ i - mnSmplInPrd ];
+ xScenRange[ i ] = xScenBase[ i - 1 ] + xScenTrend[ i - 1 ] + fPerIdx + RandDev();
+ aPredictions[ i ][ k ] = xScenRange[ i ];
+ xScenBase[ i ] = mfAlpha * ( xScenRange[ i ] - fPerIdx ) +
+ ( 1 - mfAlpha ) * ( xScenBase[ i - 1 ] + xScenTrend[ i - 1 ] );
+ xScenTrend[ i ] = mfGamma * ( xScenBase[ i ] - xScenBase[ i - 1 ] ) +
+ ( 1 - mfGamma ) * xScenTrend[ i - 1 ];
+ xScenPerIdx[ i ] = mfBeta * ( xScenRange[ i ] - xScenBase[ i ] ) +
+ ( 1 - mfBeta ) * fPerIdx;
+ }
+ }
+ else
+ {
+ // calculation based on multiplicative model
+ xScenRange[ 0 ] = ( mpBase[ mnCount - 1 ] + mpTrend[ mnCount - 1 ] ) *
+ mpPerIdx[ mnCount - mnSmplInPrd ] +
+ RandDev();
+ aPredictions[ 0 ][ k ] = xScenRange[ 0 ];
+ xScenBase[ 0 ] = mfAlpha * ( xScenRange[ 0 ] / mpPerIdx[ mnCount - mnSmplInPrd ] ) +
+ ( 1 - mfAlpha ) * ( mpBase[ mnCount - 1 ] + mpTrend[ mnCount - 1 ] );
+ xScenTrend[ 0 ] = mfGamma * ( xScenBase[ 0 ] - mpBase[ mnCount - 1 ] ) +
+ ( 1 - mfGamma ) * mpTrend[ mnCount - 1 ];
+ xScenPerIdx[ 0 ] = mfBeta * ( xScenRange[ 0 ] / xScenBase[ 0 ] ) +
+ ( 1 - mfBeta ) * mpPerIdx[ mnCount - mnSmplInPrd ];
+ for ( SCSIZE i = 1; i < nSize; i++ )
+ {
+ double fPerIdx;
+ if ( i < mnSmplInPrd )
+ fPerIdx = mpPerIdx[ mnCount + i - mnSmplInPrd ];
+ else
+ fPerIdx = xScenPerIdx[ i - mnSmplInPrd ];
+ xScenRange[ i ] = ( xScenBase[ i - 1 ] + xScenTrend[ i - 1 ] ) * fPerIdx + RandDev();
+ aPredictions[ i ][ k ] = xScenRange[ i ];
+ xScenBase[ i ] = mfAlpha * ( xScenRange[ i ] / fPerIdx ) +
+ ( 1 - mfAlpha ) * ( xScenBase[ i - 1 ] + xScenTrend[ i - 1 ] );
+ xScenTrend[ i ] = mfGamma * ( xScenBase[ i ] - xScenBase[ i - 1 ] ) +
+ ( 1 - mfGamma ) * xScenTrend[ i - 1 ];
+ xScenPerIdx[ i ] = mfBeta * ( xScenRange[ i ] / xScenBase[ i ] ) +
+ ( 1 - mfBeta ) * fPerIdx;
+ }
+ }
+ }
+
+ // create array of Percentile values;
+ std::unique_ptr< double[] > xPercentile( new double[nSize]);
+ for ( SCSIZE i = 0; i < nSize; i++ )
+ {
+ xPercentile[ i ] = ScInterpreter::GetPercentile( aPredictions[ i ], ( 1 + fPILevel ) / 2 ) -
+ ScInterpreter::GetPercentile( aPredictions[ i ], 0.5 );
+ }
+
+ for ( SCSIZE i = 0; i < nR; i++ )
+ {
+ for ( SCSIZE j = 0; j < nC; j++ )
+ {
+ double fTarget;
+ if ( mnMonthDay )
+ fTarget = convertXtoMonths( rTMat->GetDouble( j, i ) ) - maRange[ mnCount - 1 ].X;
+ else
+ fTarget = rTMat->GetDouble( j, i ) - maRange[ mnCount - 1 ].X;
+ SCSIZE nSteps = ( fTarget / mfStepSize ) - 1;
+ double fFactor = fmod( fTarget, mfStepSize );
+ double fPI = xPercentile[ nSteps ];
+ if ( fFactor != 0.0 )
+ {
+ // interpolate
+ double fPI1 = xPercentile[ nSteps + 1 ];
+ fPI = fPI + fFactor * ( fPI1 - fPI );
+ }
+ rPIMat->PutDouble( fPI, j, i );
+ }
+ }
+}
+
+
+void ScETSForecastCalculation::GetEDSPredictionIntervals( const ScMatrixRef& rTMat, const ScMatrixRef& rPIMat, double fPILevel )
+{
+ initCalc();
+
+ SCSIZE nC, nR;
+ rTMat->GetDimensions( nC, nR );
+
+ // find maximum target value and calculate size of coefficient- array c
+ double fMaxTarget = rTMat->GetDouble( 0, 0 );
+ for ( SCSIZE i = 0; i < nR; i++ )
+ {
+ for ( SCSIZE j = 0; j < nC; j++ )
+ {
+ if ( fMaxTarget < rTMat->GetDouble( j, i ) )
+ fMaxTarget = rTMat->GetDouble( j, i );
+ }
+ }
+ if ( mnMonthDay )
+ fMaxTarget = convertXtoMonths( fMaxTarget ) - maRange[ mnCount - 1 ].X;
+ else
+ fMaxTarget -= maRange[ mnCount - 1 ].X;
+ SCSIZE nSize = fMaxTarget / mfStepSize;
+ if ( fmod( fMaxTarget, mfStepSize ) != 0.0 )
+ nSize++;
+
+ if (nSize == 0)
+ {
+ mnErrorValue = FormulaError::IllegalArgument;
+ return;
+ }
+
+ double z = ScInterpreter::gaussinv( ( 1.0 + fPILevel ) / 2.0 );
+ double o = 1 - fPILevel;
+ std::vector< double > c( nSize );
+ for ( SCSIZE i = 0; i < nSize; i++ )
+ {
+ c[ i ] = sqrt( 1 + ( fPILevel / pow( 1 + o, 3.0 ) ) *
+ ( ( 1 + 4 * o + 5 * o * o ) +
+ 2 * static_cast< double >( i ) * fPILevel * ( 1 + 3 * o ) +
+ 2 * static_cast< double >( i * i ) * fPILevel * fPILevel ) );
+ }
+
+
+ for ( SCSIZE i = 0; i < nR; i++ )
+ {
+ for ( SCSIZE j = 0; j < nC; j++ )
+ {
+ double fTarget;
+ if ( mnMonthDay )
+ fTarget = convertXtoMonths( rTMat->GetDouble( j, i ) ) - maRange[ mnCount - 1 ].X;
+ else
+ fTarget = rTMat->GetDouble( j, i ) - maRange[ mnCount - 1 ].X;
+ SCSIZE nSteps = ( fTarget / mfStepSize ) - 1;
+ double fFactor = fmod( fTarget, mfStepSize );
+ double fPI = z * mfRMSE * c[ nSteps ] / c[ 0 ];
+ if ( fFactor != 0.0 )
+ {
+ // interpolate
+ double fPI1 = z * mfRMSE * c[ nSteps + 1 ] / c[ 0 ];
+ fPI = fPI + fFactor * ( fPI1 - fPI );
+ }
+ rPIMat->PutDouble( fPI, j, i );
+ }
+ }
+}
+
+
+void ScInterpreter::ScForecast_Ets( ScETSType eETSType )
+{
+ sal_uInt8 nParamCount = GetByte();
+ switch ( eETSType )
+ {
+ case etsAdd :
+ case etsMult :
+ case etsStatAdd :
+ case etsStatMult :
+ if ( !MustHaveParamCount( nParamCount, 3, 6 ) )
+ return;
+ break;
+ case etsPIAdd :
+ case etsPIMult :
+ if ( !MustHaveParamCount( nParamCount, 3, 7 ) )
+ {
+ return;
+ }
+ break;
+ case etsSeason :
+ if ( !MustHaveParamCount( nParamCount, 2, 4 ) )
+ return;
+ break;
+ }
+
+ int nAggregation;
+ if ( ( nParamCount == 6 && eETSType != etsPIAdd && eETSType != etsPIMult ) ||
+ ( nParamCount == 4 && eETSType == etsSeason ) ||
+ nParamCount == 7 )
+ nAggregation = static_cast< int >( GetDoubleWithDefault( 1.0 ) );
+ else
+ nAggregation = 1;
+ if ( nAggregation < 1 || nAggregation > 7 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ bool bDataCompletion;
+ if ( ( nParamCount >= 5 && eETSType != etsPIAdd && eETSType != etsPIMult ) ||
+ ( nParamCount >= 3 && eETSType == etsSeason ) ||
+ ( nParamCount >= 6 && ( eETSType == etsPIAdd || eETSType == etsPIMult ) ) )
+ {
+ int nTemp = static_cast< int >( GetDoubleWithDefault( 1.0 ) );
+ if ( nTemp == 0 || nTemp == 1 )
+ bDataCompletion = nTemp;
+ else
+ {
+ PushIllegalArgument();
+ return;
+ }
+ }
+ else
+ bDataCompletion = true;
+
+ int nSmplInPrd;
+ if ( ( ( nParamCount >= 4 && eETSType != etsPIAdd && eETSType != etsPIMult ) ||
+ ( nParamCount >= 5 && ( eETSType == etsPIAdd || eETSType == etsPIMult ) ) ) &&
+ eETSType != etsSeason )
+ {
+ double fVal = GetDoubleWithDefault( 1.0 );
+ if ( fmod( fVal, 1.0 ) != 0 || fVal < 0.0 )
+ {
+ PushError( FormulaError::IllegalFPOperation );
+ return;
+ }
+ nSmplInPrd = static_cast< int >( fVal );
+ }
+ else
+ nSmplInPrd = 1;
+
+ // required arguments
+ double fPILevel = 0.0;
+ if ( nParamCount < 3 && ( nParamCount != 2 || eETSType != etsSeason ) )
+ {
+ PushParameterExpected();
+ return;
+ }
+
+ if ( eETSType == etsPIAdd || eETSType == etsPIMult )
+ {
+ fPILevel = (nParamCount < 4 ? 0.95 : GetDoubleWithDefault( 0.95 ));
+ if ( fPILevel < 0 || fPILevel > 1 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ }
+
+ ScMatrixRef pTypeMat;
+ if ( eETSType == etsStatAdd || eETSType == etsStatMult )
+ {
+ pTypeMat = GetMatrix();
+ SCSIZE nC, nR;
+ pTypeMat->GetDimensions( nC, nR );
+ for ( SCSIZE i = 0; i < nR; i++ )
+ {
+ for ( SCSIZE j = 0; j < nC; j++ )
+ {
+ if ( static_cast< int >( pTypeMat->GetDouble( j, i ) ) < 1 ||
+ static_cast< int >( pTypeMat->GetDouble( j, i ) ) > 9 )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ }
+ }
+ }
+
+ ScMatrixRef pMatX = GetMatrix();
+ ScMatrixRef pMatY = GetMatrix();
+ if ( !pMatX || !pMatY )
+ {
+ PushIllegalParameter();
+ return;
+ }
+ SCSIZE nCX, nCY;
+ SCSIZE nRX, nRY;
+ pMatX->GetDimensions( nCX, nRX );
+ pMatY->GetDimensions( nCY, nRY );
+ if ( nRX != nRY || nCX != nCY ||
+ !pMatX->IsNumeric() || !pMatY->IsNumeric() )
+ {
+ PushIllegalArgument();
+ return;
+ }
+
+ ScMatrixRef pTMat;
+ if ( eETSType != etsStatAdd && eETSType != etsStatMult && eETSType != etsSeason )
+ {
+ pTMat = GetMatrix();
+ if ( !pTMat )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ }
+
+ ScETSForecastCalculation aETSCalc( pMatX->GetElementCount(), pFormatter );
+ if ( !aETSCalc.PreprocessDataRange( pMatX, pMatY, nSmplInPrd, bDataCompletion,
+ nAggregation,
+ ( eETSType != etsStatAdd && eETSType != etsStatMult ? pTMat : nullptr ),
+ eETSType ) )
+ {
+ PushError( aETSCalc.GetError() );
+ return;
+ }
+
+ switch ( eETSType )
+ {
+ case etsAdd :
+ case etsMult :
+ {
+ SCSIZE nC, nR;
+ pTMat->GetDimensions( nC, nR );
+ ScMatrixRef pFcMat = GetNewMat( nC, nR, /*bEmpty*/true );
+ aETSCalc.GetForecastRange( pTMat, pFcMat );
+ if (aETSCalc.GetError() != FormulaError::NONE)
+ PushError( aETSCalc.GetError()); // explicitly push error, PushMatrix() does not
+ else
+ PushMatrix( pFcMat );
+ }
+ break;
+ case etsPIAdd :
+ case etsPIMult :
+ {
+ SCSIZE nC, nR;
+ pTMat->GetDimensions( nC, nR );
+ ScMatrixRef pPIMat = GetNewMat( nC, nR, /*bEmpty*/true );
+ if ( nSmplInPrd == 0 )
+ {
+ aETSCalc.GetEDSPredictionIntervals( pTMat, pPIMat, fPILevel );
+ }
+ else
+ {
+ aETSCalc.GetETSPredictionIntervals( pTMat, pPIMat, fPILevel );
+ }
+ if (aETSCalc.GetError() != FormulaError::NONE)
+ PushError( aETSCalc.GetError()); // explicitly push error, PushMatrix() does not
+ else
+ PushMatrix( pPIMat );
+ }
+ break;
+ case etsStatAdd :
+ case etsStatMult :
+ {
+ SCSIZE nC, nR;
+ pTypeMat->GetDimensions( nC, nR );
+ ScMatrixRef pStatMat = GetNewMat( nC, nR, /*bEmpty*/true );
+ aETSCalc.GetStatisticValue( pTypeMat, pStatMat );
+ if (aETSCalc.GetError() != FormulaError::NONE)
+ PushError( aETSCalc.GetError()); // explicitly push error, PushMatrix() does not
+ else
+ PushMatrix( pStatMat );
+ }
+ break;
+ case etsSeason :
+ {
+ double rVal;
+ aETSCalc.GetSamplesInPeriod( rVal );
+ SetError( aETSCalc.GetError() );
+ PushDouble( rVal );
+ }
+ break;
+ }
+}
+
+void ScInterpreter::ScConcat_MS()
+{
+ OUStringBuffer aResBuf;
+ short nParamCount = GetByte();
+
+ //reverse order of parameter stack to simplify concatenation:
+ ReverseStack( nParamCount );
+
+ size_t nRefInList = 0;
+ while ( nParamCount-- > 0 && nGlobalError == FormulaError::NONE )
+ {
+ switch ( GetStackType() )
+ {
+ case svString:
+ case svDouble:
+ {
+ const OUString& rStr = GetString().getString();
+ if (CheckStringResultLen(aResBuf, rStr.getLength()))
+ aResBuf.append( rStr);
+ }
+ break;
+ case svSingleRef :
+ {
+ ScAddress aAdr;
+ PopSingleRef( aAdr );
+ if ( nGlobalError != FormulaError::NONE )
+ break;
+ ScRefCellValue aCell( mrDoc, aAdr );
+ if (!aCell.hasEmptyValue())
+ {
+ svl::SharedString aSS;
+ GetCellString( aSS, aCell);
+ const OUString& rStr = aSS.getString();
+ if (CheckStringResultLen(aResBuf, rStr.getLength()))
+ aResBuf.append( rStr);
+ }
+ }
+ break;
+ case svDoubleRef :
+ case svRefList :
+ {
+ ScRange aRange;
+ PopDoubleRef( aRange, nParamCount, nRefInList);
+ if ( nGlobalError != FormulaError::NONE )
+ break;
+ // we need to read row for row, so we can't use ScCellIter
+ SCCOL nCol1, nCol2;
+ SCROW nRow1, nRow2;
+ SCTAB nTab1, nTab2;
+ aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 );
+ if ( nTab1 != nTab2 )
+ {
+ SetError( FormulaError::IllegalParameter);
+ break;
+ }
+ PutInOrder( nRow1, nRow2 );
+ PutInOrder( nCol1, nCol2 );
+ ScAddress aAdr;
+ aAdr.SetTab( nTab1 );
+ for ( SCROW nRow = nRow1; nRow <= nRow2; nRow++ )
+ {
+ for ( SCCOL nCol = nCol1; nCol <= nCol2; nCol++ )
+ {
+ aAdr.SetRow( nRow );
+ aAdr.SetCol( nCol );
+ ScRefCellValue aCell( mrDoc, aAdr );
+ if (!aCell.hasEmptyValue() )
+ {
+ svl::SharedString aSS;
+ GetCellString( aSS, aCell);
+ const OUString& rStr = aSS.getString();
+ if (CheckStringResultLen(aResBuf, rStr.getLength()))
+ aResBuf.append( rStr);
+ }
+ }
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nC, nR;
+ pMat->GetDimensions(nC, nR);
+ if (nC == 0 || nR == 0)
+ SetError(FormulaError::IllegalArgument);
+ else
+ {
+ for (SCSIZE k = 0; k < nR; ++k)
+ {
+ for (SCSIZE j = 0; j < nC; ++j)
+ {
+ if ( pMat->IsStringOrEmpty( j, k ) )
+ {
+ const OUString& rStr = pMat->GetString( j, k ).getString();
+ if (CheckStringResultLen(aResBuf, rStr.getLength()))
+ aResBuf.append( rStr);
+ }
+ else
+ {
+ if ( pMat->IsValue( j, k ) )
+ {
+ const OUString& rStr = pMat->GetString( *pFormatter, j, k ).getString();
+ if (CheckStringResultLen(aResBuf, rStr.getLength()))
+ aResBuf.append( rStr);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ break;
+ default:
+ PopError();
+ SetError( FormulaError::IllegalArgument);
+ break;
+ }
+ }
+ PushString( aResBuf.makeStringAndClear() );
+}
+
+void ScInterpreter::ScTextJoin_MS()
+{
+ short nParamCount = GetByte();
+
+ if ( !MustHaveParamCountMin( nParamCount, 3 ) )
+ return;
+
+ //reverse order of parameter stack to simplify processing
+ ReverseStack( nParamCount );
+
+ // get aDelimiters and bSkipEmpty
+ std::vector< OUString > aDelimiters;
+ size_t nRefInList = 0;
+ switch ( GetStackType() )
+ {
+ case svString:
+ case svDouble:
+ aDelimiters.push_back( GetString().getString() );
+ break;
+ case svSingleRef :
+ {
+ ScAddress aAdr;
+ PopSingleRef( aAdr );
+ if ( nGlobalError != FormulaError::NONE )
+ break;
+ ScRefCellValue aCell( mrDoc, aAdr );
+ if (aCell.hasEmptyValue())
+ aDelimiters.emplace_back("");
+ else
+ {
+ svl::SharedString aSS;
+ GetCellString( aSS, aCell);
+ aDelimiters.push_back( aSS.getString());
+ }
+ }
+ break;
+ case svDoubleRef :
+ case svRefList :
+ {
+ ScRange aRange;
+ PopDoubleRef( aRange, nParamCount, nRefInList);
+ if ( nGlobalError != FormulaError::NONE )
+ break;
+ // we need to read row for row, so we can't use ScCellIterator
+ SCCOL nCol1, nCol2;
+ SCROW nRow1, nRow2;
+ SCTAB nTab1, nTab2;
+ aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 );
+ if ( nTab1 != nTab2 )
+ {
+ SetError( FormulaError::IllegalParameter);
+ break;
+ }
+ PutInOrder( nRow1, nRow2 );
+ PutInOrder( nCol1, nCol2 );
+ ScAddress aAdr;
+ aAdr.SetTab( nTab1 );
+ for ( SCROW nRow = nRow1; nRow <= nRow2; nRow++ )
+ {
+ for ( SCCOL nCol = nCol1; nCol <= nCol2; nCol++ )
+ {
+ aAdr.SetRow( nRow );
+ aAdr.SetCol( nCol );
+ ScRefCellValue aCell( mrDoc, aAdr );
+ if (aCell.hasEmptyValue())
+ aDelimiters.emplace_back("");
+ else
+ {
+ svl::SharedString aSS;
+ GetCellString( aSS, aCell);
+ aDelimiters.push_back( aSS.getString());
+ }
+ }
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nC, nR;
+ pMat->GetDimensions(nC, nR);
+ if (nC == 0 || nR == 0)
+ SetError(FormulaError::IllegalArgument);
+ else
+ {
+ for (SCSIZE k = 0; k < nR; ++k)
+ {
+ for (SCSIZE j = 0; j < nC; ++j)
+ {
+ if (pMat->IsEmpty( j, k ))
+ aDelimiters.emplace_back("");
+ else if (pMat->IsStringOrEmpty( j, k ))
+ aDelimiters.push_back( pMat->GetString( j, k ).getString() );
+ else if (pMat->IsValue( j, k ))
+ aDelimiters.push_back( pMat->GetString( *pFormatter, j, k ).getString() );
+ else
+ {
+ assert(!"should this really happen?");
+ aDelimiters.emplace_back("");
+ }
+ }
+ }
+ }
+ }
+ }
+ break;
+ default:
+ PopError();
+ SetError( FormulaError::IllegalArgument);
+ break;
+ }
+ if ( aDelimiters.empty() )
+ {
+ PushIllegalArgument();
+ return;
+ }
+ SCSIZE nSize = aDelimiters.size();
+ bool bSkipEmpty = static_cast< bool >( GetDouble() );
+ nParamCount -= 2;
+
+ OUStringBuffer aResBuf;
+ bool bFirst = true;
+ SCSIZE nIdx = 0;
+ nRefInList = 0;
+ // get the strings to be joined
+ while ( nParamCount-- > 0 && nGlobalError == FormulaError::NONE )
+ {
+ switch ( GetStackType() )
+ {
+ case svString:
+ case svDouble:
+ {
+ OUString aStr = GetString().getString();
+ if ( !aStr.isEmpty() || !bSkipEmpty )
+ {
+ if ( !bFirst )
+ {
+ aResBuf.append( aDelimiters[ nIdx ] );
+ if ( nSize > 1 )
+ {
+ if ( ++nIdx >= nSize )
+ nIdx = 0;
+ }
+ }
+ else
+ bFirst = false;
+ if (CheckStringResultLen(aResBuf, aStr.getLength()))
+ aResBuf.append( aStr );
+ }
+ }
+ break;
+ case svSingleRef :
+ {
+ ScAddress aAdr;
+ PopSingleRef( aAdr );
+ if ( nGlobalError != FormulaError::NONE )
+ break;
+ ScRefCellValue aCell( mrDoc, aAdr );
+ OUString aStr;
+ if (!aCell.hasEmptyValue())
+ {
+ svl::SharedString aSS;
+ GetCellString( aSS, aCell);
+ aStr = aSS.getString();
+ }
+ if ( !aStr.isEmpty() || !bSkipEmpty )
+ {
+ if ( !bFirst )
+ {
+ aResBuf.append( aDelimiters[ nIdx ] );
+ if ( nSize > 1 )
+ {
+ if ( ++nIdx >= nSize )
+ nIdx = 0;
+ }
+ }
+ else
+ bFirst = false;
+ if (CheckStringResultLen(aResBuf, aStr.getLength()))
+ aResBuf.append( aStr );
+ }
+ }
+ break;
+ case svDoubleRef :
+ case svRefList :
+ {
+ ScRange aRange;
+ PopDoubleRef( aRange, nParamCount, nRefInList);
+ if ( nGlobalError != FormulaError::NONE )
+ break;
+ // we need to read row for row, so we can't use ScCellIterator
+ SCCOL nCol1, nCol2;
+ SCROW nRow1, nRow2;
+ SCTAB nTab1, nTab2;
+ aRange.GetVars( nCol1, nRow1, nTab1, nCol2, nRow2, nTab2 );
+ if ( nTab1 != nTab2 )
+ {
+ SetError( FormulaError::IllegalParameter);
+ break;
+ }
+ PutInOrder( nRow1, nRow2 );
+ PutInOrder( nCol1, nCol2 );
+ ScAddress aAdr;
+ aAdr.SetTab( nTab1 );
+ OUString aStr;
+ for ( SCROW nRow = nRow1; nRow <= nRow2; nRow++ )
+ {
+ for ( SCCOL nCol = nCol1; nCol <= nCol2; nCol++ )
+ {
+ aAdr.SetRow( nRow );
+ aAdr.SetCol( nCol );
+ ScRefCellValue aCell( mrDoc, aAdr );
+ if (aCell.hasEmptyValue())
+ aStr.clear();
+ else
+ {
+ svl::SharedString aSS;
+ GetCellString( aSS, aCell);
+ aStr = aSS.getString();
+ }
+ if ( !aStr.isEmpty() || !bSkipEmpty )
+ {
+ if ( !bFirst )
+ {
+ aResBuf.append( aDelimiters[ nIdx ] );
+ if ( nSize > 1 )
+ {
+ if ( ++nIdx >= nSize )
+ nIdx = 0;
+ }
+ }
+ else
+ bFirst = false;
+ if (CheckStringResultLen(aResBuf, aStr.getLength()))
+ aResBuf.append( aStr );
+ }
+ }
+ }
+ }
+ break;
+ case svMatrix :
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ {
+ ScMatrixRef pMat = GetMatrix();
+ if (pMat)
+ {
+ SCSIZE nC, nR;
+ pMat->GetDimensions(nC, nR);
+ if (nC == 0 || nR == 0)
+ SetError(FormulaError::IllegalArgument);
+ else
+ {
+ OUString aStr;
+ for (SCSIZE k = 0; k < nR; ++k)
+ {
+ for (SCSIZE j = 0; j < nC; ++j)
+ {
+ if (pMat->IsEmpty( j, k ) )
+ aStr.clear();
+ else if (pMat->IsStringOrEmpty( j, k ))
+ aStr = pMat->GetString( j, k ).getString();
+ else if (pMat->IsValue( j, k ))
+ aStr = pMat->GetString( *pFormatter, j, k ).getString();
+ else
+ {
+ assert(!"should this really happen?");
+ aStr.clear();
+ }
+ if ( !aStr.isEmpty() || !bSkipEmpty )
+ {
+ if ( !bFirst )
+ {
+ aResBuf.append( aDelimiters[ nIdx ] );
+ if ( nSize > 1 )
+ {
+ if ( ++nIdx >= nSize )
+ nIdx = 0;
+ }
+ }
+ else
+ bFirst = false;
+ if (CheckStringResultLen(aResBuf, aStr.getLength()))
+ aResBuf.append( aStr );
+ }
+ }
+ }
+ }
+ }
+ }
+ break;
+ case svMissing :
+ {
+ if ( !bSkipEmpty )
+ {
+ if ( !bFirst )
+ {
+ aResBuf.append( aDelimiters[ nIdx ] );
+ if ( nSize > 1 )
+ {
+ if ( ++nIdx >= nSize )
+ nIdx = 0;
+ }
+ }
+ else
+ bFirst = false;
+ }
+ }
+ break;
+ default:
+ PopError();
+ SetError( FormulaError::IllegalArgument);
+ break;
+ }
+ }
+ PushString( aResBuf.makeStringAndClear() );
+}
+
+
+void ScInterpreter::ScIfs_MS()
+{
+ short nParamCount = GetByte();
+
+ ReverseStack( nParamCount );
+
+ nGlobalError = FormulaError::NONE; // propagate only for condition or active result path
+ bool bFinished = false;
+ while ( nParamCount > 0 && !bFinished && nGlobalError == FormulaError::NONE )
+ {
+ bool bVal = GetBool();
+ nParamCount--;
+ if ( bVal )
+ {
+ // TRUE
+ if ( nParamCount < 1 )
+ {
+ // no parameter given for THEN
+ PushParameterExpected();
+ return;
+ }
+ bFinished = true;
+ }
+ else
+ {
+ // FALSE
+ if ( nParamCount >= 3 )
+ {
+ // ELSEIF path
+ Pop();
+ nParamCount--;
+ }
+ else
+ {
+ // no parameter given for ELSE
+ PushNA();
+ return;
+ }
+ }
+ }
+
+ if ( nGlobalError != FormulaError::NONE || !bFinished )
+ {
+ if ( !bFinished )
+ PushNA(); // no true expression found
+ if ( nGlobalError != FormulaError::NONE )
+ PushNoValue(); // expression returned something other than true or false
+ return;
+ }
+
+ //push result :
+ FormulaConstTokenRef xToken( PopToken() );
+ if ( xToken )
+ {
+ // Remove unused arguments of IFS from the stack before pushing the result.
+ while ( nParamCount > 1 )
+ {
+ Pop();
+ nParamCount--;
+ }
+ PushTokenRef( xToken );
+ }
+ else
+ PushError( FormulaError::UnknownStackVariable );
+}
+
+
+void ScInterpreter::ScSwitch_MS()
+{
+ short nParamCount = GetByte();
+
+ if (!MustHaveParamCountMin( nParamCount, 3))
+ return;
+
+ ReverseStack( nParamCount );
+
+ nGlobalError = FormulaError::NONE; // propagate only for match or active result path
+ bool isValue = false;
+ double fRefVal = 0;
+ svl::SharedString aRefStr;
+ switch ( GetStackType() )
+ {
+ case svDouble:
+ isValue = true;
+ fRefVal = GetDouble();
+ break;
+ case svString:
+ isValue = false;
+ aRefStr = GetString();
+ break;
+ case svSingleRef :
+ case svDoubleRef :
+ {
+ ScAddress aAdr;
+ if (!PopDoubleRefOrSingleRef( aAdr ))
+ break;
+ ScRefCellValue aCell( mrDoc, aAdr );
+ isValue = !( aCell.hasString() || aCell.hasEmptyValue() || aCell.isEmpty() );
+ if ( isValue )
+ fRefVal = GetCellValue( aAdr, aCell);
+ else
+ GetCellString( aRefStr, aCell);
+ }
+ break;
+ case svExternalSingleRef:
+ case svExternalDoubleRef:
+ case svMatrix:
+ isValue = ScMatrix::IsValueType( GetDoubleOrStringFromMatrix( fRefVal, aRefStr ) );
+ break;
+ default :
+ PopError();
+ PushIllegalArgument();
+ return;
+ }
+ nParamCount--;
+ bool bFinished = false;
+ while ( nParamCount > 1 && !bFinished && nGlobalError == FormulaError::NONE )
+ {
+ double fVal = 0;
+ svl::SharedString aStr;
+ if ( isValue )
+ fVal = GetDouble();
+ else
+ aStr = GetString();
+ nParamCount--;
+ if ((nGlobalError != FormulaError::NONE && nParamCount < 2)
+ || (isValue && rtl::math::approxEqual( fRefVal, fVal))
+ || (!isValue && aRefStr.getDataIgnoreCase() == aStr.getDataIgnoreCase()))
+ {
+ // TRUE
+ bFinished = true;
+ }
+ else
+ {
+ // FALSE
+ if ( nParamCount >= 2 )
+ {
+ // ELSEIF path
+ Pop();
+ nParamCount--;
+ // if nParamCount equals 1: default value to be returned
+ bFinished = ( nParamCount == 1 );
+ }
+ else
+ {
+ // no parameter given for ELSE
+ PushNA();
+ return;
+ }
+ nGlobalError = FormulaError::NONE;
+ }
+ }
+
+ if ( nGlobalError != FormulaError::NONE || !bFinished )
+ {
+ if ( !bFinished )
+ PushNA(); // no true expression found
+ else
+ PushError( nGlobalError );
+ return;
+ }
+
+ // push result
+ FormulaConstTokenRef xToken( PopToken() );
+ if ( xToken )
+ {
+ // Remove unused arguments of SWITCH from the stack before pushing the result.
+ while ( nParamCount > 1 )
+ {
+ Pop();
+ nParamCount--;
+ }
+ PushTokenRef( xToken );
+ }
+ else
+ PushError( FormulaError::UnknownStackVariable );
+}
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */