diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/virt/kvm/api.rst | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/virt/kvm/api.rst')
-rw-r--r-- | Documentation/virt/kvm/api.rst | 8281 |
1 files changed, 8281 insertions, 0 deletions
diff --git a/Documentation/virt/kvm/api.rst b/Documentation/virt/kvm/api.rst new file mode 100644 index 000000000..1bc61bf80 --- /dev/null +++ b/Documentation/virt/kvm/api.rst @@ -0,0 +1,8281 @@ +.. SPDX-License-Identifier: GPL-2.0 + +=================================================================== +The Definitive KVM (Kernel-based Virtual Machine) API Documentation +=================================================================== + +1. General description +====================== + +The kvm API is a set of ioctls that are issued to control various aspects +of a virtual machine. The ioctls belong to the following classes: + + - System ioctls: These query and set global attributes which affect the + whole kvm subsystem. In addition a system ioctl is used to create + virtual machines. + + - VM ioctls: These query and set attributes that affect an entire virtual + machine, for example memory layout. In addition a VM ioctl is used to + create virtual cpus (vcpus) and devices. + + VM ioctls must be issued from the same process (address space) that was + used to create the VM. + + - vcpu ioctls: These query and set attributes that control the operation + of a single virtual cpu. + + vcpu ioctls should be issued from the same thread that was used to create + the vcpu, except for asynchronous vcpu ioctl that are marked as such in + the documentation. Otherwise, the first ioctl after switching threads + could see a performance impact. + + - device ioctls: These query and set attributes that control the operation + of a single device. + + device ioctls must be issued from the same process (address space) that + was used to create the VM. + +2. File descriptors +=================== + +The kvm API is centered around file descriptors. An initial +open("/dev/kvm") obtains a handle to the kvm subsystem; this handle +can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this +handle will create a VM file descriptor which can be used to issue VM +ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will +create a virtual cpu or device and return a file descriptor pointing to +the new resource. Finally, ioctls on a vcpu or device fd can be used +to control the vcpu or device. For vcpus, this includes the important +task of actually running guest code. + +In general file descriptors can be migrated among processes by means +of fork() and the SCM_RIGHTS facility of unix domain socket. These +kinds of tricks are explicitly not supported by kvm. While they will +not cause harm to the host, their actual behavior is not guaranteed by +the API. See "General description" for details on the ioctl usage +model that is supported by KVM. + +It is important to note that although VM ioctls may only be issued from +the process that created the VM, a VM's lifecycle is associated with its +file descriptor, not its creator (process). In other words, the VM and +its resources, *including the associated address space*, are not freed +until the last reference to the VM's file descriptor has been released. +For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will +not be freed until both the parent (original) process and its child have +put their references to the VM's file descriptor. + +Because a VM's resources are not freed until the last reference to its +file descriptor is released, creating additional references to a VM +via fork(), dup(), etc... without careful consideration is strongly +discouraged and may have unwanted side effects, e.g. memory allocated +by and on behalf of the VM's process may not be freed/unaccounted when +the VM is shut down. + + +3. Extensions +============= + +As of Linux 2.6.22, the KVM ABI has been stabilized: no backward +incompatible change are allowed. However, there is an extension +facility that allows backward-compatible extensions to the API to be +queried and used. + +The extension mechanism is not based on the Linux version number. +Instead, kvm defines extension identifiers and a facility to query +whether a particular extension identifier is available. If it is, a +set of ioctls is available for application use. + + +4. API description +================== + +This section describes ioctls that can be used to control kvm guests. +For each ioctl, the following information is provided along with a +description: + + Capability: + which KVM extension provides this ioctl. Can be 'basic', + which means that is will be provided by any kernel that supports + API version 12 (see section 4.1), a KVM_CAP_xyz constant, which + means availability needs to be checked with KVM_CHECK_EXTENSION + (see section 4.4), or 'none' which means that while not all kernels + support this ioctl, there's no capability bit to check its + availability: for kernels that don't support the ioctl, + the ioctl returns -ENOTTY. + + Architectures: + which instruction set architectures provide this ioctl. + x86 includes both i386 and x86_64. + + Type: + system, vm, or vcpu. + + Parameters: + what parameters are accepted by the ioctl. + + Returns: + the return value. General error numbers (EBADF, ENOMEM, EINVAL) + are not detailed, but errors with specific meanings are. + + +4.1 KVM_GET_API_VERSION +----------------------- + +:Capability: basic +:Architectures: all +:Type: system ioctl +:Parameters: none +:Returns: the constant KVM_API_VERSION (=12) + +This identifies the API version as the stable kvm API. It is not +expected that this number will change. However, Linux 2.6.20 and +2.6.21 report earlier versions; these are not documented and not +supported. Applications should refuse to run if KVM_GET_API_VERSION +returns a value other than 12. If this check passes, all ioctls +described as 'basic' will be available. + + +4.2 KVM_CREATE_VM +----------------- + +:Capability: basic +:Architectures: all +:Type: system ioctl +:Parameters: machine type identifier (KVM_VM_*) +:Returns: a VM fd that can be used to control the new virtual machine. + +The new VM has no virtual cpus and no memory. +You probably want to use 0 as machine type. + +In order to create user controlled virtual machines on S390, check +KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as +privileged user (CAP_SYS_ADMIN). + +On arm64, the physical address size for a VM (IPA Size limit) is limited +to 40bits by default. The limit can be configured if the host supports the +extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use +KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type +identifier, where IPA_Bits is the maximum width of any physical +address used by the VM. The IPA_Bits is encoded in bits[7-0] of the +machine type identifier. + +e.g, to configure a guest to use 48bit physical address size:: + + vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48)); + +The requested size (IPA_Bits) must be: + + == ========================================================= + 0 Implies default size, 40bits (for backward compatibility) + N Implies N bits, where N is a positive integer such that, + 32 <= N <= Host_IPA_Limit + == ========================================================= + +Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and +is dependent on the CPU capability and the kernel configuration. The limit can +be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION +ioctl() at run-time. + +Creation of the VM will fail if the requested IPA size (whether it is +implicit or explicit) is unsupported on the host. + +Please note that configuring the IPA size does not affect the capability +exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects +size of the address translated by the stage2 level (guest physical to +host physical address translations). + + +4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST +---------------------------------------------------------- + +:Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST +:Architectures: x86 +:Type: system ioctl +:Parameters: struct kvm_msr_list (in/out) +:Returns: 0 on success; -1 on error + +Errors: + + ====== ============================================================ + EFAULT the msr index list cannot be read from or written to + E2BIG the msr index list is too big to fit in the array specified by + the user. + ====== ============================================================ + +:: + + struct kvm_msr_list { + __u32 nmsrs; /* number of msrs in entries */ + __u32 indices[0]; + }; + +The user fills in the size of the indices array in nmsrs, and in return +kvm adjusts nmsrs to reflect the actual number of msrs and fills in the +indices array with their numbers. + +KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list +varies by kvm version and host processor, but does not change otherwise. + +Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are +not returned in the MSR list, as different vcpus can have a different number +of banks, as set via the KVM_X86_SETUP_MCE ioctl. + +KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed +to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities +and processor features that are exposed via MSRs (e.g., VMX capabilities). +This list also varies by kvm version and host processor, but does not change +otherwise. + + +4.4 KVM_CHECK_EXTENSION +----------------------- + +:Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl +:Architectures: all +:Type: system ioctl, vm ioctl +:Parameters: extension identifier (KVM_CAP_*) +:Returns: 0 if unsupported; 1 (or some other positive integer) if supported + +The API allows the application to query about extensions to the core +kvm API. Userspace passes an extension identifier (an integer) and +receives an integer that describes the extension availability. +Generally 0 means no and 1 means yes, but some extensions may report +additional information in the integer return value. + +Based on their initialization different VMs may have different capabilities. +It is thus encouraged to use the vm ioctl to query for capabilities (available +with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) + +4.5 KVM_GET_VCPU_MMAP_SIZE +-------------------------- + +:Capability: basic +:Architectures: all +:Type: system ioctl +:Parameters: none +:Returns: size of vcpu mmap area, in bytes + +The KVM_RUN ioctl (cf.) communicates with userspace via a shared +memory region. This ioctl returns the size of that region. See the +KVM_RUN documentation for details. + +Besides the size of the KVM_RUN communication region, other areas of +the VCPU file descriptor can be mmap-ed, including: + +- if KVM_CAP_COALESCED_MMIO is available, a page at + KVM_COALESCED_MMIO_PAGE_OFFSET * PAGE_SIZE; for historical reasons, + this page is included in the result of KVM_GET_VCPU_MMAP_SIZE. + KVM_CAP_COALESCED_MMIO is not documented yet. + +- if KVM_CAP_DIRTY_LOG_RING is available, a number of pages at + KVM_DIRTY_LOG_PAGE_OFFSET * PAGE_SIZE. For more information on + KVM_CAP_DIRTY_LOG_RING, see section 8.3. + + +4.6 KVM_SET_MEMORY_REGION +------------------------- + +:Capability: basic +:Architectures: all +:Type: vm ioctl +:Parameters: struct kvm_memory_region (in) +:Returns: 0 on success, -1 on error + +This ioctl is obsolete and has been removed. + + +4.7 KVM_CREATE_VCPU +------------------- + +:Capability: basic +:Architectures: all +:Type: vm ioctl +:Parameters: vcpu id (apic id on x86) +:Returns: vcpu fd on success, -1 on error + +This API adds a vcpu to a virtual machine. No more than max_vcpus may be added. +The vcpu id is an integer in the range [0, max_vcpu_id). + +The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of +the KVM_CHECK_EXTENSION ioctl() at run-time. +The maximum possible value for max_vcpus can be retrieved using the +KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. + +If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 +cpus max. +If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is +same as the value returned from KVM_CAP_NR_VCPUS. + +The maximum possible value for max_vcpu_id can be retrieved using the +KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time. + +If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id +is the same as the value returned from KVM_CAP_MAX_VCPUS. + +On powerpc using book3s_hv mode, the vcpus are mapped onto virtual +threads in one or more virtual CPU cores. (This is because the +hardware requires all the hardware threads in a CPU core to be in the +same partition.) The KVM_CAP_PPC_SMT capability indicates the number +of vcpus per virtual core (vcore). The vcore id is obtained by +dividing the vcpu id by the number of vcpus per vcore. The vcpus in a +given vcore will always be in the same physical core as each other +(though that might be a different physical core from time to time). +Userspace can control the threading (SMT) mode of the guest by its +allocation of vcpu ids. For example, if userspace wants +single-threaded guest vcpus, it should make all vcpu ids be a multiple +of the number of vcpus per vcore. + +For virtual cpus that have been created with S390 user controlled virtual +machines, the resulting vcpu fd can be memory mapped at page offset +KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual +cpu's hardware control block. + + +4.8 KVM_GET_DIRTY_LOG (vm ioctl) +-------------------------------- + +:Capability: basic +:Architectures: all +:Type: vm ioctl +:Parameters: struct kvm_dirty_log (in/out) +:Returns: 0 on success, -1 on error + +:: + + /* for KVM_GET_DIRTY_LOG */ + struct kvm_dirty_log { + __u32 slot; + __u32 padding; + union { + void __user *dirty_bitmap; /* one bit per page */ + __u64 padding; + }; + }; + +Given a memory slot, return a bitmap containing any pages dirtied +since the last call to this ioctl. Bit 0 is the first page in the +memory slot. Ensure the entire structure is cleared to avoid padding +issues. + +If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies +the address space for which you want to return the dirty bitmap. See +KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. + +The bits in the dirty bitmap are cleared before the ioctl returns, unless +KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information, +see the description of the capability. + +Note that the Xen shared info page, if configured, shall always be assumed +to be dirty. KVM will not explicitly mark it such. + +4.9 KVM_SET_MEMORY_ALIAS +------------------------ + +:Capability: basic +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_memory_alias (in) +:Returns: 0 (success), -1 (error) + +This ioctl is obsolete and has been removed. + + +4.10 KVM_RUN +------------ + +:Capability: basic +:Architectures: all +:Type: vcpu ioctl +:Parameters: none +:Returns: 0 on success, -1 on error + +Errors: + + ======= ============================================================== + EINTR an unmasked signal is pending + ENOEXEC the vcpu hasn't been initialized or the guest tried to execute + instructions from device memory (arm64) + ENOSYS data abort outside memslots with no syndrome info and + KVM_CAP_ARM_NISV_TO_USER not enabled (arm64) + EPERM SVE feature set but not finalized (arm64) + ======= ============================================================== + +This ioctl is used to run a guest virtual cpu. While there are no +explicit parameters, there is an implicit parameter block that can be +obtained by mmap()ing the vcpu fd at offset 0, with the size given by +KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct +kvm_run' (see below). + + +4.11 KVM_GET_REGS +----------------- + +:Capability: basic +:Architectures: all except arm64 +:Type: vcpu ioctl +:Parameters: struct kvm_regs (out) +:Returns: 0 on success, -1 on error + +Reads the general purpose registers from the vcpu. + +:: + + /* x86 */ + struct kvm_regs { + /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ + __u64 rax, rbx, rcx, rdx; + __u64 rsi, rdi, rsp, rbp; + __u64 r8, r9, r10, r11; + __u64 r12, r13, r14, r15; + __u64 rip, rflags; + }; + + /* mips */ + struct kvm_regs { + /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ + __u64 gpr[32]; + __u64 hi; + __u64 lo; + __u64 pc; + }; + + +4.12 KVM_SET_REGS +----------------- + +:Capability: basic +:Architectures: all except arm64 +:Type: vcpu ioctl +:Parameters: struct kvm_regs (in) +:Returns: 0 on success, -1 on error + +Writes the general purpose registers into the vcpu. + +See KVM_GET_REGS for the data structure. + + +4.13 KVM_GET_SREGS +------------------ + +:Capability: basic +:Architectures: x86, ppc +:Type: vcpu ioctl +:Parameters: struct kvm_sregs (out) +:Returns: 0 on success, -1 on error + +Reads special registers from the vcpu. + +:: + + /* x86 */ + struct kvm_sregs { + struct kvm_segment cs, ds, es, fs, gs, ss; + struct kvm_segment tr, ldt; + struct kvm_dtable gdt, idt; + __u64 cr0, cr2, cr3, cr4, cr8; + __u64 efer; + __u64 apic_base; + __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; + }; + + /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ + +interrupt_bitmap is a bitmap of pending external interrupts. At most +one bit may be set. This interrupt has been acknowledged by the APIC +but not yet injected into the cpu core. + + +4.14 KVM_SET_SREGS +------------------ + +:Capability: basic +:Architectures: x86, ppc +:Type: vcpu ioctl +:Parameters: struct kvm_sregs (in) +:Returns: 0 on success, -1 on error + +Writes special registers into the vcpu. See KVM_GET_SREGS for the +data structures. + + +4.15 KVM_TRANSLATE +------------------ + +:Capability: basic +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_translation (in/out) +:Returns: 0 on success, -1 on error + +Translates a virtual address according to the vcpu's current address +translation mode. + +:: + + struct kvm_translation { + /* in */ + __u64 linear_address; + + /* out */ + __u64 physical_address; + __u8 valid; + __u8 writeable; + __u8 usermode; + __u8 pad[5]; + }; + + +4.16 KVM_INTERRUPT +------------------ + +:Capability: basic +:Architectures: x86, ppc, mips, riscv +:Type: vcpu ioctl +:Parameters: struct kvm_interrupt (in) +:Returns: 0 on success, negative on failure. + +Queues a hardware interrupt vector to be injected. + +:: + + /* for KVM_INTERRUPT */ + struct kvm_interrupt { + /* in */ + __u32 irq; + }; + +X86: +^^^^ + +:Returns: + + ========= =================================== + 0 on success, + -EEXIST if an interrupt is already enqueued + -EINVAL the irq number is invalid + -ENXIO if the PIC is in the kernel + -EFAULT if the pointer is invalid + ========= =================================== + +Note 'irq' is an interrupt vector, not an interrupt pin or line. This +ioctl is useful if the in-kernel PIC is not used. + +PPC: +^^^^ + +Queues an external interrupt to be injected. This ioctl is overleaded +with 3 different irq values: + +a) KVM_INTERRUPT_SET + + This injects an edge type external interrupt into the guest once it's ready + to receive interrupts. When injected, the interrupt is done. + +b) KVM_INTERRUPT_UNSET + + This unsets any pending interrupt. + + Only available with KVM_CAP_PPC_UNSET_IRQ. + +c) KVM_INTERRUPT_SET_LEVEL + + This injects a level type external interrupt into the guest context. The + interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET + is triggered. + + Only available with KVM_CAP_PPC_IRQ_LEVEL. + +Note that any value for 'irq' other than the ones stated above is invalid +and incurs unexpected behavior. + +This is an asynchronous vcpu ioctl and can be invoked from any thread. + +MIPS: +^^^^^ + +Queues an external interrupt to be injected into the virtual CPU. A negative +interrupt number dequeues the interrupt. + +This is an asynchronous vcpu ioctl and can be invoked from any thread. + +RISC-V: +^^^^^^^ + +Queues an external interrupt to be injected into the virutal CPU. This ioctl +is overloaded with 2 different irq values: + +a) KVM_INTERRUPT_SET + + This sets external interrupt for a virtual CPU and it will receive + once it is ready. + +b) KVM_INTERRUPT_UNSET + + This clears pending external interrupt for a virtual CPU. + +This is an asynchronous vcpu ioctl and can be invoked from any thread. + + +4.17 KVM_DEBUG_GUEST +-------------------- + +:Capability: basic +:Architectures: none +:Type: vcpu ioctl +:Parameters: none) +:Returns: -1 on error + +Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. + + +4.18 KVM_GET_MSRS +----------------- + +:Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system) +:Architectures: x86 +:Type: system ioctl, vcpu ioctl +:Parameters: struct kvm_msrs (in/out) +:Returns: number of msrs successfully returned; + -1 on error + +When used as a system ioctl: +Reads the values of MSR-based features that are available for the VM. This +is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values. +The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST +in a system ioctl. + +When used as a vcpu ioctl: +Reads model-specific registers from the vcpu. Supported msr indices can +be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl. + +:: + + struct kvm_msrs { + __u32 nmsrs; /* number of msrs in entries */ + __u32 pad; + + struct kvm_msr_entry entries[0]; + }; + + struct kvm_msr_entry { + __u32 index; + __u32 reserved; + __u64 data; + }; + +Application code should set the 'nmsrs' member (which indicates the +size of the entries array) and the 'index' member of each array entry. +kvm will fill in the 'data' member. + + +4.19 KVM_SET_MSRS +----------------- + +:Capability: basic +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_msrs (in) +:Returns: number of msrs successfully set (see below), -1 on error + +Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the +data structures. + +Application code should set the 'nmsrs' member (which indicates the +size of the entries array), and the 'index' and 'data' members of each +array entry. + +It tries to set the MSRs in array entries[] one by one. If setting an MSR +fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated +by KVM, etc..., it stops processing the MSR list and returns the number of +MSRs that have been set successfully. + + +4.20 KVM_SET_CPUID +------------------ + +:Capability: basic +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_cpuid (in) +:Returns: 0 on success, -1 on error + +Defines the vcpu responses to the cpuid instruction. Applications +should use the KVM_SET_CPUID2 ioctl if available. + +Caveat emptor: + - If this IOCTL fails, KVM gives no guarantees that previous valid CPUID + configuration (if there is) is not corrupted. Userspace can get a copy + of the resulting CPUID configuration through KVM_GET_CPUID2 in case. + - Using KVM_SET_CPUID{,2} after KVM_RUN, i.e. changing the guest vCPU model + after running the guest, may cause guest instability. + - Using heterogeneous CPUID configurations, modulo APIC IDs, topology, etc... + may cause guest instability. + +:: + + struct kvm_cpuid_entry { + __u32 function; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding; + }; + + /* for KVM_SET_CPUID */ + struct kvm_cpuid { + __u32 nent; + __u32 padding; + struct kvm_cpuid_entry entries[0]; + }; + + +4.21 KVM_SET_SIGNAL_MASK +------------------------ + +:Capability: basic +:Architectures: all +:Type: vcpu ioctl +:Parameters: struct kvm_signal_mask (in) +:Returns: 0 on success, -1 on error + +Defines which signals are blocked during execution of KVM_RUN. This +signal mask temporarily overrides the threads signal mask. Any +unblocked signal received (except SIGKILL and SIGSTOP, which retain +their traditional behaviour) will cause KVM_RUN to return with -EINTR. + +Note the signal will only be delivered if not blocked by the original +signal mask. + +:: + + /* for KVM_SET_SIGNAL_MASK */ + struct kvm_signal_mask { + __u32 len; + __u8 sigset[0]; + }; + + +4.22 KVM_GET_FPU +---------------- + +:Capability: basic +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_fpu (out) +:Returns: 0 on success, -1 on error + +Reads the floating point state from the vcpu. + +:: + + /* for KVM_GET_FPU and KVM_SET_FPU */ + struct kvm_fpu { + __u8 fpr[8][16]; + __u16 fcw; + __u16 fsw; + __u8 ftwx; /* in fxsave format */ + __u8 pad1; + __u16 last_opcode; + __u64 last_ip; + __u64 last_dp; + __u8 xmm[16][16]; + __u32 mxcsr; + __u32 pad2; + }; + + +4.23 KVM_SET_FPU +---------------- + +:Capability: basic +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_fpu (in) +:Returns: 0 on success, -1 on error + +Writes the floating point state to the vcpu. + +:: + + /* for KVM_GET_FPU and KVM_SET_FPU */ + struct kvm_fpu { + __u8 fpr[8][16]; + __u16 fcw; + __u16 fsw; + __u8 ftwx; /* in fxsave format */ + __u8 pad1; + __u16 last_opcode; + __u64 last_ip; + __u64 last_dp; + __u8 xmm[16][16]; + __u32 mxcsr; + __u32 pad2; + }; + + +4.24 KVM_CREATE_IRQCHIP +----------------------- + +:Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390) +:Architectures: x86, arm64, s390 +:Type: vm ioctl +:Parameters: none +:Returns: 0 on success, -1 on error + +Creates an interrupt controller model in the kernel. +On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up +future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both +PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. +On arm64, a GICv2 is created. Any other GIC versions require the usage of +KVM_CREATE_DEVICE, which also supports creating a GICv2. Using +KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. +On s390, a dummy irq routing table is created. + +Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled +before KVM_CREATE_IRQCHIP can be used. + + +4.25 KVM_IRQ_LINE +----------------- + +:Capability: KVM_CAP_IRQCHIP +:Architectures: x86, arm64 +:Type: vm ioctl +:Parameters: struct kvm_irq_level +:Returns: 0 on success, -1 on error + +Sets the level of a GSI input to the interrupt controller model in the kernel. +On some architectures it is required that an interrupt controller model has +been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered +interrupts require the level to be set to 1 and then back to 0. + +On real hardware, interrupt pins can be active-low or active-high. This +does not matter for the level field of struct kvm_irq_level: 1 always +means active (asserted), 0 means inactive (deasserted). + +x86 allows the operating system to program the interrupt polarity +(active-low/active-high) for level-triggered interrupts, and KVM used +to consider the polarity. However, due to bitrot in the handling of +active-low interrupts, the above convention is now valid on x86 too. +This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace +should not present interrupts to the guest as active-low unless this +capability is present (or unless it is not using the in-kernel irqchip, +of course). + + +arm64 can signal an interrupt either at the CPU level, or at the +in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to +use PPIs designated for specific cpus. The irq field is interpreted +like this:: + + bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 | + field: | vcpu2_index | irq_type | vcpu_index | irq_id | + +The irq_type field has the following values: + +- irq_type[0]: + out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ +- irq_type[1]: + in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) + (the vcpu_index field is ignored) +- irq_type[2]: + in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) + +(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) + +In both cases, level is used to assert/deassert the line. + +When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is +identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index +must be zero. + +Note that on arm64, the KVM_CAP_IRQCHIP capability only conditions +injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always +be used for a userspace interrupt controller. + +:: + + struct kvm_irq_level { + union { + __u32 irq; /* GSI */ + __s32 status; /* not used for KVM_IRQ_LEVEL */ + }; + __u32 level; /* 0 or 1 */ + }; + + +4.26 KVM_GET_IRQCHIP +-------------------- + +:Capability: KVM_CAP_IRQCHIP +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_irqchip (in/out) +:Returns: 0 on success, -1 on error + +Reads the state of a kernel interrupt controller created with +KVM_CREATE_IRQCHIP into a buffer provided by the caller. + +:: + + struct kvm_irqchip { + __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ + __u32 pad; + union { + char dummy[512]; /* reserving space */ + struct kvm_pic_state pic; + struct kvm_ioapic_state ioapic; + } chip; + }; + + +4.27 KVM_SET_IRQCHIP +-------------------- + +:Capability: KVM_CAP_IRQCHIP +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_irqchip (in) +:Returns: 0 on success, -1 on error + +Sets the state of a kernel interrupt controller created with +KVM_CREATE_IRQCHIP from a buffer provided by the caller. + +:: + + struct kvm_irqchip { + __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ + __u32 pad; + union { + char dummy[512]; /* reserving space */ + struct kvm_pic_state pic; + struct kvm_ioapic_state ioapic; + } chip; + }; + + +4.28 KVM_XEN_HVM_CONFIG +----------------------- + +:Capability: KVM_CAP_XEN_HVM +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_xen_hvm_config (in) +:Returns: 0 on success, -1 on error + +Sets the MSR that the Xen HVM guest uses to initialize its hypercall +page, and provides the starting address and size of the hypercall +blobs in userspace. When the guest writes the MSR, kvm copies one +page of a blob (32- or 64-bit, depending on the vcpu mode) to guest +memory. + +:: + + struct kvm_xen_hvm_config { + __u32 flags; + __u32 msr; + __u64 blob_addr_32; + __u64 blob_addr_64; + __u8 blob_size_32; + __u8 blob_size_64; + __u8 pad2[30]; + }; + +If certain flags are returned from the KVM_CAP_XEN_HVM check, they may +be set in the flags field of this ioctl: + +The KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL flag requests KVM to generate +the contents of the hypercall page automatically; hypercalls will be +intercepted and passed to userspace through KVM_EXIT_XEN. In this +ase, all of the blob size and address fields must be zero. + +The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indicates to KVM that userspace +will always use the KVM_XEN_HVM_EVTCHN_SEND ioctl to deliver event +channel interrupts rather than manipulating the guest's shared_info +structures directly. This, in turn, may allow KVM to enable features +such as intercepting the SCHEDOP_poll hypercall to accelerate PV +spinlock operation for the guest. Userspace may still use the ioctl +to deliver events if it was advertised, even if userspace does not +send this indication that it will always do so + +No other flags are currently valid in the struct kvm_xen_hvm_config. + +4.29 KVM_GET_CLOCK +------------------ + +:Capability: KVM_CAP_ADJUST_CLOCK +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_clock_data (out) +:Returns: 0 on success, -1 on error + +Gets the current timestamp of kvmclock as seen by the current guest. In +conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios +such as migration. + +When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the +set of bits that KVM can return in struct kvm_clock_data's flag member. + +The following flags are defined: + +KVM_CLOCK_TSC_STABLE + If set, the returned value is the exact kvmclock + value seen by all VCPUs at the instant when KVM_GET_CLOCK was called. + If clear, the returned value is simply CLOCK_MONOTONIC plus a constant + offset; the offset can be modified with KVM_SET_CLOCK. KVM will try + to make all VCPUs follow this clock, but the exact value read by each + VCPU could differ, because the host TSC is not stable. + +KVM_CLOCK_REALTIME + If set, the `realtime` field in the kvm_clock_data + structure is populated with the value of the host's real time + clocksource at the instant when KVM_GET_CLOCK was called. If clear, + the `realtime` field does not contain a value. + +KVM_CLOCK_HOST_TSC + If set, the `host_tsc` field in the kvm_clock_data + structure is populated with the value of the host's timestamp counter (TSC) + at the instant when KVM_GET_CLOCK was called. If clear, the `host_tsc` field + does not contain a value. + +:: + + struct kvm_clock_data { + __u64 clock; /* kvmclock current value */ + __u32 flags; + __u32 pad0; + __u64 realtime; + __u64 host_tsc; + __u32 pad[4]; + }; + + +4.30 KVM_SET_CLOCK +------------------ + +:Capability: KVM_CAP_ADJUST_CLOCK +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_clock_data (in) +:Returns: 0 on success, -1 on error + +Sets the current timestamp of kvmclock to the value specified in its parameter. +In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios +such as migration. + +The following flags can be passed: + +KVM_CLOCK_REALTIME + If set, KVM will compare the value of the `realtime` field + with the value of the host's real time clocksource at the instant when + KVM_SET_CLOCK was called. The difference in elapsed time is added to the final + kvmclock value that will be provided to guests. + +Other flags returned by ``KVM_GET_CLOCK`` are accepted but ignored. + +:: + + struct kvm_clock_data { + __u64 clock; /* kvmclock current value */ + __u32 flags; + __u32 pad0; + __u64 realtime; + __u64 host_tsc; + __u32 pad[4]; + }; + + +4.31 KVM_GET_VCPU_EVENTS +------------------------ + +:Capability: KVM_CAP_VCPU_EVENTS +:Extended by: KVM_CAP_INTR_SHADOW +:Architectures: x86, arm64 +:Type: vcpu ioctl +:Parameters: struct kvm_vcpu_event (out) +:Returns: 0 on success, -1 on error + +X86: +^^^^ + +Gets currently pending exceptions, interrupts, and NMIs as well as related +states of the vcpu. + +:: + + struct kvm_vcpu_events { + struct { + __u8 injected; + __u8 nr; + __u8 has_error_code; + __u8 pending; + __u32 error_code; + } exception; + struct { + __u8 injected; + __u8 nr; + __u8 soft; + __u8 shadow; + } interrupt; + struct { + __u8 injected; + __u8 pending; + __u8 masked; + __u8 pad; + } nmi; + __u32 sipi_vector; + __u32 flags; + struct { + __u8 smm; + __u8 pending; + __u8 smm_inside_nmi; + __u8 latched_init; + } smi; + __u8 reserved[27]; + __u8 exception_has_payload; + __u64 exception_payload; + }; + +The following bits are defined in the flags field: + +- KVM_VCPUEVENT_VALID_SHADOW may be set to signal that + interrupt.shadow contains a valid state. + +- KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a + valid state. + +- KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the + exception_has_payload, exception_payload, and exception.pending + fields contain a valid state. This bit will be set whenever + KVM_CAP_EXCEPTION_PAYLOAD is enabled. + +- KVM_VCPUEVENT_VALID_TRIPLE_FAULT may be set to signal that the + triple_fault_pending field contains a valid state. This bit will + be set whenever KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled. + +ARM64: +^^^^^^ + +If the guest accesses a device that is being emulated by the host kernel in +such a way that a real device would generate a physical SError, KVM may make +a virtual SError pending for that VCPU. This system error interrupt remains +pending until the guest takes the exception by unmasking PSTATE.A. + +Running the VCPU may cause it to take a pending SError, or make an access that +causes an SError to become pending. The event's description is only valid while +the VPCU is not running. + +This API provides a way to read and write the pending 'event' state that is not +visible to the guest. To save, restore or migrate a VCPU the struct representing +the state can be read then written using this GET/SET API, along with the other +guest-visible registers. It is not possible to 'cancel' an SError that has been +made pending. + +A device being emulated in user-space may also wish to generate an SError. To do +this the events structure can be populated by user-space. The current state +should be read first, to ensure no existing SError is pending. If an existing +SError is pending, the architecture's 'Multiple SError interrupts' rules should +be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and +Serviceability (RAS) Specification"). + +SError exceptions always have an ESR value. Some CPUs have the ability to +specify what the virtual SError's ESR value should be. These systems will +advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will +always have a non-zero value when read, and the agent making an SError pending +should specify the ISS field in the lower 24 bits of exception.serror_esr. If +the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events +with exception.has_esr as zero, KVM will choose an ESR. + +Specifying exception.has_esr on a system that does not support it will return +-EINVAL. Setting anything other than the lower 24bits of exception.serror_esr +will return -EINVAL. + +It is not possible to read back a pending external abort (injected via +KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered +directly to the virtual CPU). + +:: + + struct kvm_vcpu_events { + struct { + __u8 serror_pending; + __u8 serror_has_esr; + __u8 ext_dabt_pending; + /* Align it to 8 bytes */ + __u8 pad[5]; + __u64 serror_esr; + } exception; + __u32 reserved[12]; + }; + +4.32 KVM_SET_VCPU_EVENTS +------------------------ + +:Capability: KVM_CAP_VCPU_EVENTS +:Extended by: KVM_CAP_INTR_SHADOW +:Architectures: x86, arm64 +:Type: vcpu ioctl +:Parameters: struct kvm_vcpu_event (in) +:Returns: 0 on success, -1 on error + +X86: +^^^^ + +Set pending exceptions, interrupts, and NMIs as well as related states of the +vcpu. + +See KVM_GET_VCPU_EVENTS for the data structure. + +Fields that may be modified asynchronously by running VCPUs can be excluded +from the update. These fields are nmi.pending, sipi_vector, smi.smm, +smi.pending. Keep the corresponding bits in the flags field cleared to +suppress overwriting the current in-kernel state. The bits are: + +=============================== ================================== +KVM_VCPUEVENT_VALID_NMI_PENDING transfer nmi.pending to the kernel +KVM_VCPUEVENT_VALID_SIPI_VECTOR transfer sipi_vector +KVM_VCPUEVENT_VALID_SMM transfer the smi sub-struct. +=============================== ================================== + +If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in +the flags field to signal that interrupt.shadow contains a valid state and +shall be written into the VCPU. + +KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available. + +If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD +can be set in the flags field to signal that the +exception_has_payload, exception_payload, and exception.pending fields +contain a valid state and shall be written into the VCPU. + +If KVM_CAP_X86_TRIPLE_FAULT_EVENT is enabled, KVM_VCPUEVENT_VALID_TRIPLE_FAULT +can be set in flags field to signal that the triple_fault field contains +a valid state and shall be written into the VCPU. + +ARM64: +^^^^^^ + +User space may need to inject several types of events to the guest. + +Set the pending SError exception state for this VCPU. It is not possible to +'cancel' an Serror that has been made pending. + +If the guest performed an access to I/O memory which could not be handled by +userspace, for example because of missing instruction syndrome decode +information or because there is no device mapped at the accessed IPA, then +userspace can ask the kernel to inject an external abort using the address +from the exiting fault on the VCPU. It is a programming error to set +ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or +KVM_EXIT_ARM_NISV. This feature is only available if the system supports +KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in +how userspace reports accesses for the above cases to guests, across different +userspace implementations. Nevertheless, userspace can still emulate all Arm +exceptions by manipulating individual registers using the KVM_SET_ONE_REG API. + +See KVM_GET_VCPU_EVENTS for the data structure. + + +4.33 KVM_GET_DEBUGREGS +---------------------- + +:Capability: KVM_CAP_DEBUGREGS +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_debugregs (out) +:Returns: 0 on success, -1 on error + +Reads debug registers from the vcpu. + +:: + + struct kvm_debugregs { + __u64 db[4]; + __u64 dr6; + __u64 dr7; + __u64 flags; + __u64 reserved[9]; + }; + + +4.34 KVM_SET_DEBUGREGS +---------------------- + +:Capability: KVM_CAP_DEBUGREGS +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_debugregs (in) +:Returns: 0 on success, -1 on error + +Writes debug registers into the vcpu. + +See KVM_GET_DEBUGREGS for the data structure. The flags field is unused +yet and must be cleared on entry. + + +4.35 KVM_SET_USER_MEMORY_REGION +------------------------------- + +:Capability: KVM_CAP_USER_MEMORY +:Architectures: all +:Type: vm ioctl +:Parameters: struct kvm_userspace_memory_region (in) +:Returns: 0 on success, -1 on error + +:: + + struct kvm_userspace_memory_region { + __u32 slot; + __u32 flags; + __u64 guest_phys_addr; + __u64 memory_size; /* bytes */ + __u64 userspace_addr; /* start of the userspace allocated memory */ + }; + + /* for kvm_memory_region::flags */ + #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) + #define KVM_MEM_READONLY (1UL << 1) + +This ioctl allows the user to create, modify or delete a guest physical +memory slot. Bits 0-15 of "slot" specify the slot id and this value +should be less than the maximum number of user memory slots supported per +VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS. +Slots may not overlap in guest physical address space. + +If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" +specifies the address space which is being modified. They must be +less than the value that KVM_CHECK_EXTENSION returns for the +KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces +are unrelated; the restriction on overlapping slots only applies within +each address space. + +Deleting a slot is done by passing zero for memory_size. When changing +an existing slot, it may be moved in the guest physical memory space, +or its flags may be modified, but it may not be resized. + +Memory for the region is taken starting at the address denoted by the +field userspace_addr, which must point at user addressable memory for +the entire memory slot size. Any object may back this memory, including +anonymous memory, ordinary files, and hugetlbfs. + +On architectures that support a form of address tagging, userspace_addr must +be an untagged address. + +It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr +be identical. This allows large pages in the guest to be backed by large +pages in the host. + +The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and +KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of +writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to +use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, +to make a new slot read-only. In this case, writes to this memory will be +posted to userspace as KVM_EXIT_MMIO exits. + +When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of +the memory region are automatically reflected into the guest. For example, an +mmap() that affects the region will be made visible immediately. Another +example is madvise(MADV_DROP). + +It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl. +The KVM_SET_MEMORY_REGION does not allow fine grained control over memory +allocation and is deprecated. + + +4.36 KVM_SET_TSS_ADDR +--------------------- + +:Capability: KVM_CAP_SET_TSS_ADDR +:Architectures: x86 +:Type: vm ioctl +:Parameters: unsigned long tss_address (in) +:Returns: 0 on success, -1 on error + +This ioctl defines the physical address of a three-page region in the guest +physical address space. The region must be within the first 4GB of the +guest physical address space and must not conflict with any memory slot +or any mmio address. The guest may malfunction if it accesses this memory +region. + +This ioctl is required on Intel-based hosts. This is needed on Intel hardware +because of a quirk in the virtualization implementation (see the internals +documentation when it pops into existence). + + +4.37 KVM_ENABLE_CAP +------------------- + +:Capability: KVM_CAP_ENABLE_CAP +:Architectures: mips, ppc, s390, x86 +:Type: vcpu ioctl +:Parameters: struct kvm_enable_cap (in) +:Returns: 0 on success; -1 on error + +:Capability: KVM_CAP_ENABLE_CAP_VM +:Architectures: all +:Type: vm ioctl +:Parameters: struct kvm_enable_cap (in) +:Returns: 0 on success; -1 on error + +.. note:: + + Not all extensions are enabled by default. Using this ioctl the application + can enable an extension, making it available to the guest. + +On systems that do not support this ioctl, it always fails. On systems that +do support it, it only works for extensions that are supported for enablement. + +To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should +be used. + +:: + + struct kvm_enable_cap { + /* in */ + __u32 cap; + +The capability that is supposed to get enabled. + +:: + + __u32 flags; + +A bitfield indicating future enhancements. Has to be 0 for now. + +:: + + __u64 args[4]; + +Arguments for enabling a feature. If a feature needs initial values to +function properly, this is the place to put them. + +:: + + __u8 pad[64]; + }; + +The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl +for vm-wide capabilities. + +4.38 KVM_GET_MP_STATE +--------------------- + +:Capability: KVM_CAP_MP_STATE +:Architectures: x86, s390, arm64, riscv +:Type: vcpu ioctl +:Parameters: struct kvm_mp_state (out) +:Returns: 0 on success; -1 on error + +:: + + struct kvm_mp_state { + __u32 mp_state; + }; + +Returns the vcpu's current "multiprocessing state" (though also valid on +uniprocessor guests). + +Possible values are: + + ========================== =============================================== + KVM_MP_STATE_RUNNABLE the vcpu is currently running + [x86,arm64,riscv] + KVM_MP_STATE_UNINITIALIZED the vcpu is an application processor (AP) + which has not yet received an INIT signal [x86] + KVM_MP_STATE_INIT_RECEIVED the vcpu has received an INIT signal, and is + now ready for a SIPI [x86] + KVM_MP_STATE_HALTED the vcpu has executed a HLT instruction and + is waiting for an interrupt [x86] + KVM_MP_STATE_SIPI_RECEIVED the vcpu has just received a SIPI (vector + accessible via KVM_GET_VCPU_EVENTS) [x86] + KVM_MP_STATE_STOPPED the vcpu is stopped [s390,arm64,riscv] + KVM_MP_STATE_CHECK_STOP the vcpu is in a special error state [s390] + KVM_MP_STATE_OPERATING the vcpu is operating (running or halted) + [s390] + KVM_MP_STATE_LOAD the vcpu is in a special load/startup state + [s390] + KVM_MP_STATE_SUSPENDED the vcpu is in a suspend state and is waiting + for a wakeup event [arm64] + ========================== =============================================== + +On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an +in-kernel irqchip, the multiprocessing state must be maintained by userspace on +these architectures. + +For arm64: +^^^^^^^^^^ + +If a vCPU is in the KVM_MP_STATE_SUSPENDED state, KVM will emulate the +architectural execution of a WFI instruction. + +If a wakeup event is recognized, KVM will exit to userspace with a +KVM_SYSTEM_EVENT exit, where the event type is KVM_SYSTEM_EVENT_WAKEUP. If +userspace wants to honor the wakeup, it must set the vCPU's MP state to +KVM_MP_STATE_RUNNABLE. If it does not, KVM will continue to await a wakeup +event in subsequent calls to KVM_RUN. + +.. warning:: + + If userspace intends to keep the vCPU in a SUSPENDED state, it is + strongly recommended that userspace take action to suppress the + wakeup event (such as masking an interrupt). Otherwise, subsequent + calls to KVM_RUN will immediately exit with a KVM_SYSTEM_EVENT_WAKEUP + event and inadvertently waste CPU cycles. + + Additionally, if userspace takes action to suppress a wakeup event, + it is strongly recommended that it also restores the vCPU to its + original state when the vCPU is made RUNNABLE again. For example, + if userspace masked a pending interrupt to suppress the wakeup, + the interrupt should be unmasked before returning control to the + guest. + +For riscv: +^^^^^^^^^^ + +The only states that are valid are KVM_MP_STATE_STOPPED and +KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not. + +4.39 KVM_SET_MP_STATE +--------------------- + +:Capability: KVM_CAP_MP_STATE +:Architectures: x86, s390, arm64, riscv +:Type: vcpu ioctl +:Parameters: struct kvm_mp_state (in) +:Returns: 0 on success; -1 on error + +Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for +arguments. + +On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an +in-kernel irqchip, the multiprocessing state must be maintained by userspace on +these architectures. + +For arm64/riscv: +^^^^^^^^^^^^^^^^ + +The only states that are valid are KVM_MP_STATE_STOPPED and +KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not. + +4.40 KVM_SET_IDENTITY_MAP_ADDR +------------------------------ + +:Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR +:Architectures: x86 +:Type: vm ioctl +:Parameters: unsigned long identity (in) +:Returns: 0 on success, -1 on error + +This ioctl defines the physical address of a one-page region in the guest +physical address space. The region must be within the first 4GB of the +guest physical address space and must not conflict with any memory slot +or any mmio address. The guest may malfunction if it accesses this memory +region. + +Setting the address to 0 will result in resetting the address to its default +(0xfffbc000). + +This ioctl is required on Intel-based hosts. This is needed on Intel hardware +because of a quirk in the virtualization implementation (see the internals +documentation when it pops into existence). + +Fails if any VCPU has already been created. + +4.41 KVM_SET_BOOT_CPU_ID +------------------------ + +:Capability: KVM_CAP_SET_BOOT_CPU_ID +:Architectures: x86 +:Type: vm ioctl +:Parameters: unsigned long vcpu_id +:Returns: 0 on success, -1 on error + +Define which vcpu is the Bootstrap Processor (BSP). Values are the same +as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default +is vcpu 0. This ioctl has to be called before vcpu creation, +otherwise it will return EBUSY error. + + +4.42 KVM_GET_XSAVE +------------------ + +:Capability: KVM_CAP_XSAVE +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_xsave (out) +:Returns: 0 on success, -1 on error + + +:: + + struct kvm_xsave { + __u32 region[1024]; + __u32 extra[0]; + }; + +This ioctl would copy current vcpu's xsave struct to the userspace. + + +4.43 KVM_SET_XSAVE +------------------ + +:Capability: KVM_CAP_XSAVE and KVM_CAP_XSAVE2 +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_xsave (in) +:Returns: 0 on success, -1 on error + +:: + + + struct kvm_xsave { + __u32 region[1024]; + __u32 extra[0]; + }; + +This ioctl would copy userspace's xsave struct to the kernel. It copies +as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2), +when invoked on the vm file descriptor. The size value returned by +KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096. +Currently, it is only greater than 4096 if a dynamic feature has been +enabled with ``arch_prctl()``, but this may change in the future. + +The offsets of the state save areas in struct kvm_xsave follow the +contents of CPUID leaf 0xD on the host. + + +4.44 KVM_GET_XCRS +----------------- + +:Capability: KVM_CAP_XCRS +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_xcrs (out) +:Returns: 0 on success, -1 on error + +:: + + struct kvm_xcr { + __u32 xcr; + __u32 reserved; + __u64 value; + }; + + struct kvm_xcrs { + __u32 nr_xcrs; + __u32 flags; + struct kvm_xcr xcrs[KVM_MAX_XCRS]; + __u64 padding[16]; + }; + +This ioctl would copy current vcpu's xcrs to the userspace. + + +4.45 KVM_SET_XCRS +----------------- + +:Capability: KVM_CAP_XCRS +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_xcrs (in) +:Returns: 0 on success, -1 on error + +:: + + struct kvm_xcr { + __u32 xcr; + __u32 reserved; + __u64 value; + }; + + struct kvm_xcrs { + __u32 nr_xcrs; + __u32 flags; + struct kvm_xcr xcrs[KVM_MAX_XCRS]; + __u64 padding[16]; + }; + +This ioctl would set vcpu's xcr to the value userspace specified. + + +4.46 KVM_GET_SUPPORTED_CPUID +---------------------------- + +:Capability: KVM_CAP_EXT_CPUID +:Architectures: x86 +:Type: system ioctl +:Parameters: struct kvm_cpuid2 (in/out) +:Returns: 0 on success, -1 on error + +:: + + struct kvm_cpuid2 { + __u32 nent; + __u32 padding; + struct kvm_cpuid_entry2 entries[0]; + }; + + #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) + #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ + #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ + + struct kvm_cpuid_entry2 { + __u32 function; + __u32 index; + __u32 flags; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding[3]; + }; + +This ioctl returns x86 cpuid features which are supported by both the +hardware and kvm in its default configuration. Userspace can use the +information returned by this ioctl to construct cpuid information (for +KVM_SET_CPUID2) that is consistent with hardware, kernel, and +userspace capabilities, and with user requirements (for example, the +user may wish to constrain cpuid to emulate older hardware, or for +feature consistency across a cluster). + +Dynamically-enabled feature bits need to be requested with +``arch_prctl()`` before calling this ioctl. Feature bits that have not +been requested are excluded from the result. + +Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may +expose cpuid features (e.g. MONITOR) which are not supported by kvm in +its default configuration. If userspace enables such capabilities, it +is responsible for modifying the results of this ioctl appropriately. + +Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure +with the 'nent' field indicating the number of entries in the variable-size +array 'entries'. If the number of entries is too low to describe the cpu +capabilities, an error (E2BIG) is returned. If the number is too high, +the 'nent' field is adjusted and an error (ENOMEM) is returned. If the +number is just right, the 'nent' field is adjusted to the number of valid +entries in the 'entries' array, which is then filled. + +The entries returned are the host cpuid as returned by the cpuid instruction, +with unknown or unsupported features masked out. Some features (for example, +x2apic), may not be present in the host cpu, but are exposed by kvm if it can +emulate them efficiently. The fields in each entry are defined as follows: + + function: + the eax value used to obtain the entry + + index: + the ecx value used to obtain the entry (for entries that are + affected by ecx) + + flags: + an OR of zero or more of the following: + + KVM_CPUID_FLAG_SIGNIFCANT_INDEX: + if the index field is valid + + eax, ebx, ecx, edx: + the values returned by the cpuid instruction for + this function/index combination + +The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned +as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC +support. Instead it is reported via:: + + ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) + +if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the +feature in userspace, then you can enable the feature for KVM_SET_CPUID2. + + +4.47 KVM_PPC_GET_PVINFO +----------------------- + +:Capability: KVM_CAP_PPC_GET_PVINFO +:Architectures: ppc +:Type: vm ioctl +:Parameters: struct kvm_ppc_pvinfo (out) +:Returns: 0 on success, !0 on error + +:: + + struct kvm_ppc_pvinfo { + __u32 flags; + __u32 hcall[4]; + __u8 pad[108]; + }; + +This ioctl fetches PV specific information that need to be passed to the guest +using the device tree or other means from vm context. + +The hcall array defines 4 instructions that make up a hypercall. + +If any additional field gets added to this structure later on, a bit for that +additional piece of information will be set in the flags bitmap. + +The flags bitmap is defined as:: + + /* the host supports the ePAPR idle hcall + #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) + +4.52 KVM_SET_GSI_ROUTING +------------------------ + +:Capability: KVM_CAP_IRQ_ROUTING +:Architectures: x86 s390 arm64 +:Type: vm ioctl +:Parameters: struct kvm_irq_routing (in) +:Returns: 0 on success, -1 on error + +Sets the GSI routing table entries, overwriting any previously set entries. + +On arm64, GSI routing has the following limitation: + +- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD. + +:: + + struct kvm_irq_routing { + __u32 nr; + __u32 flags; + struct kvm_irq_routing_entry entries[0]; + }; + +No flags are specified so far, the corresponding field must be set to zero. + +:: + + struct kvm_irq_routing_entry { + __u32 gsi; + __u32 type; + __u32 flags; + __u32 pad; + union { + struct kvm_irq_routing_irqchip irqchip; + struct kvm_irq_routing_msi msi; + struct kvm_irq_routing_s390_adapter adapter; + struct kvm_irq_routing_hv_sint hv_sint; + struct kvm_irq_routing_xen_evtchn xen_evtchn; + __u32 pad[8]; + } u; + }; + + /* gsi routing entry types */ + #define KVM_IRQ_ROUTING_IRQCHIP 1 + #define KVM_IRQ_ROUTING_MSI 2 + #define KVM_IRQ_ROUTING_S390_ADAPTER 3 + #define KVM_IRQ_ROUTING_HV_SINT 4 + #define KVM_IRQ_ROUTING_XEN_EVTCHN 5 + +flags: + +- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry + type, specifies that the devid field contains a valid value. The per-VM + KVM_CAP_MSI_DEVID capability advertises the requirement to provide + the device ID. If this capability is not available, userspace should + never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. +- zero otherwise + +:: + + struct kvm_irq_routing_irqchip { + __u32 irqchip; + __u32 pin; + }; + + struct kvm_irq_routing_msi { + __u32 address_lo; + __u32 address_hi; + __u32 data; + union { + __u32 pad; + __u32 devid; + }; + }; + +If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier +for the device that wrote the MSI message. For PCI, this is usually a +BFD identifier in the lower 16 bits. + +On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS +feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, +address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of +address_hi must be zero. + +:: + + struct kvm_irq_routing_s390_adapter { + __u64 ind_addr; + __u64 summary_addr; + __u64 ind_offset; + __u32 summary_offset; + __u32 adapter_id; + }; + + struct kvm_irq_routing_hv_sint { + __u32 vcpu; + __u32 sint; + }; + + struct kvm_irq_routing_xen_evtchn { + __u32 port; + __u32 vcpu; + __u32 priority; + }; + + +When KVM_CAP_XEN_HVM includes the KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL bit +in its indication of supported features, routing to Xen event channels +is supported. Although the priority field is present, only the value +KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL is supported, which means delivery by +2 level event channels. FIFO event channel support may be added in +the future. + + +4.55 KVM_SET_TSC_KHZ +-------------------- + +:Capability: KVM_CAP_TSC_CONTROL / KVM_CAP_VM_TSC_CONTROL +:Architectures: x86 +:Type: vcpu ioctl / vm ioctl +:Parameters: virtual tsc_khz +:Returns: 0 on success, -1 on error + +Specifies the tsc frequency for the virtual machine. The unit of the +frequency is KHz. + +If the KVM_CAP_VM_TSC_CONTROL capability is advertised, this can also +be used as a vm ioctl to set the initial tsc frequency of subsequently +created vCPUs. + +4.56 KVM_GET_TSC_KHZ +-------------------- + +:Capability: KVM_CAP_GET_TSC_KHZ / KVM_CAP_VM_TSC_CONTROL +:Architectures: x86 +:Type: vcpu ioctl / vm ioctl +:Parameters: none +:Returns: virtual tsc-khz on success, negative value on error + +Returns the tsc frequency of the guest. The unit of the return value is +KHz. If the host has unstable tsc this ioctl returns -EIO instead as an +error. + + +4.57 KVM_GET_LAPIC +------------------ + +:Capability: KVM_CAP_IRQCHIP +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_lapic_state (out) +:Returns: 0 on success, -1 on error + +:: + + #define KVM_APIC_REG_SIZE 0x400 + struct kvm_lapic_state { + char regs[KVM_APIC_REG_SIZE]; + }; + +Reads the Local APIC registers and copies them into the input argument. The +data format and layout are the same as documented in the architecture manual. + +If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is +enabled, then the format of APIC_ID register depends on the APIC mode +(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in +the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID +which is stored in bits 31-24 of the APIC register, or equivalently in +byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then +be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR. + +If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state +always uses xAPIC format. + + +4.58 KVM_SET_LAPIC +------------------ + +:Capability: KVM_CAP_IRQCHIP +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_lapic_state (in) +:Returns: 0 on success, -1 on error + +:: + + #define KVM_APIC_REG_SIZE 0x400 + struct kvm_lapic_state { + char regs[KVM_APIC_REG_SIZE]; + }; + +Copies the input argument into the Local APIC registers. The data format +and layout are the same as documented in the architecture manual. + +The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's +regs field) depends on the state of the KVM_CAP_X2APIC_API capability. +See the note in KVM_GET_LAPIC. + + +4.59 KVM_IOEVENTFD +------------------ + +:Capability: KVM_CAP_IOEVENTFD +:Architectures: all +:Type: vm ioctl +:Parameters: struct kvm_ioeventfd (in) +:Returns: 0 on success, !0 on error + +This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address +within the guest. A guest write in the registered address will signal the +provided event instead of triggering an exit. + +:: + + struct kvm_ioeventfd { + __u64 datamatch; + __u64 addr; /* legal pio/mmio address */ + __u32 len; /* 0, 1, 2, 4, or 8 bytes */ + __s32 fd; + __u32 flags; + __u8 pad[36]; + }; + +For the special case of virtio-ccw devices on s390, the ioevent is matched +to a subchannel/virtqueue tuple instead. + +The following flags are defined:: + + #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) + #define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) + #define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) + #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ + (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) + +If datamatch flag is set, the event will be signaled only if the written value +to the registered address is equal to datamatch in struct kvm_ioeventfd. + +For virtio-ccw devices, addr contains the subchannel id and datamatch the +virtqueue index. + +With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and +the kernel will ignore the length of guest write and may get a faster vmexit. +The speedup may only apply to specific architectures, but the ioeventfd will +work anyway. + +4.60 KVM_DIRTY_TLB +------------------ + +:Capability: KVM_CAP_SW_TLB +:Architectures: ppc +:Type: vcpu ioctl +:Parameters: struct kvm_dirty_tlb (in) +:Returns: 0 on success, -1 on error + +:: + + struct kvm_dirty_tlb { + __u64 bitmap; + __u32 num_dirty; + }; + +This must be called whenever userspace has changed an entry in the shared +TLB, prior to calling KVM_RUN on the associated vcpu. + +The "bitmap" field is the userspace address of an array. This array +consists of a number of bits, equal to the total number of TLB entries as +determined by the last successful call to KVM_CONFIG_TLB, rounded up to the +nearest multiple of 64. + +Each bit corresponds to one TLB entry, ordered the same as in the shared TLB +array. + +The array is little-endian: the bit 0 is the least significant bit of the +first byte, bit 8 is the least significant bit of the second byte, etc. +This avoids any complications with differing word sizes. + +The "num_dirty" field is a performance hint for KVM to determine whether it +should skip processing the bitmap and just invalidate everything. It must +be set to the number of set bits in the bitmap. + + +4.62 KVM_CREATE_SPAPR_TCE +------------------------- + +:Capability: KVM_CAP_SPAPR_TCE +:Architectures: powerpc +:Type: vm ioctl +:Parameters: struct kvm_create_spapr_tce (in) +:Returns: file descriptor for manipulating the created TCE table + +This creates a virtual TCE (translation control entry) table, which +is an IOMMU for PAPR-style virtual I/O. It is used to translate +logical addresses used in virtual I/O into guest physical addresses, +and provides a scatter/gather capability for PAPR virtual I/O. + +:: + + /* for KVM_CAP_SPAPR_TCE */ + struct kvm_create_spapr_tce { + __u64 liobn; + __u32 window_size; + }; + +The liobn field gives the logical IO bus number for which to create a +TCE table. The window_size field specifies the size of the DMA window +which this TCE table will translate - the table will contain one 64 +bit TCE entry for every 4kiB of the DMA window. + +When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE +table has been created using this ioctl(), the kernel will handle it +in real mode, updating the TCE table. H_PUT_TCE calls for other +liobns will cause a vm exit and must be handled by userspace. + +The return value is a file descriptor which can be passed to mmap(2) +to map the created TCE table into userspace. This lets userspace read +the entries written by kernel-handled H_PUT_TCE calls, and also lets +userspace update the TCE table directly which is useful in some +circumstances. + + +4.63 KVM_ALLOCATE_RMA +--------------------- + +:Capability: KVM_CAP_PPC_RMA +:Architectures: powerpc +:Type: vm ioctl +:Parameters: struct kvm_allocate_rma (out) +:Returns: file descriptor for mapping the allocated RMA + +This allocates a Real Mode Area (RMA) from the pool allocated at boot +time by the kernel. An RMA is a physically-contiguous, aligned region +of memory used on older POWER processors to provide the memory which +will be accessed by real-mode (MMU off) accesses in a KVM guest. +POWER processors support a set of sizes for the RMA that usually +includes 64MB, 128MB, 256MB and some larger powers of two. + +:: + + /* for KVM_ALLOCATE_RMA */ + struct kvm_allocate_rma { + __u64 rma_size; + }; + +The return value is a file descriptor which can be passed to mmap(2) +to map the allocated RMA into userspace. The mapped area can then be +passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the +RMA for a virtual machine. The size of the RMA in bytes (which is +fixed at host kernel boot time) is returned in the rma_size field of +the argument structure. + +The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl +is supported; 2 if the processor requires all virtual machines to have +an RMA, or 1 if the processor can use an RMA but doesn't require it, +because it supports the Virtual RMA (VRMA) facility. + + +4.64 KVM_NMI +------------ + +:Capability: KVM_CAP_USER_NMI +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: none +:Returns: 0 on success, -1 on error + +Queues an NMI on the thread's vcpu. Note this is well defined only +when KVM_CREATE_IRQCHIP has not been called, since this is an interface +between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP +has been called, this interface is completely emulated within the kernel. + +To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the +following algorithm: + + - pause the vcpu + - read the local APIC's state (KVM_GET_LAPIC) + - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) + - if so, issue KVM_NMI + - resume the vcpu + +Some guests configure the LINT1 NMI input to cause a panic, aiding in +debugging. + + +4.65 KVM_S390_UCAS_MAP +---------------------- + +:Capability: KVM_CAP_S390_UCONTROL +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: struct kvm_s390_ucas_mapping (in) +:Returns: 0 in case of success + +The parameter is defined like this:: + + struct kvm_s390_ucas_mapping { + __u64 user_addr; + __u64 vcpu_addr; + __u64 length; + }; + +This ioctl maps the memory at "user_addr" with the length "length" to +the vcpu's address space starting at "vcpu_addr". All parameters need to +be aligned by 1 megabyte. + + +4.66 KVM_S390_UCAS_UNMAP +------------------------ + +:Capability: KVM_CAP_S390_UCONTROL +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: struct kvm_s390_ucas_mapping (in) +:Returns: 0 in case of success + +The parameter is defined like this:: + + struct kvm_s390_ucas_mapping { + __u64 user_addr; + __u64 vcpu_addr; + __u64 length; + }; + +This ioctl unmaps the memory in the vcpu's address space starting at +"vcpu_addr" with the length "length". The field "user_addr" is ignored. +All parameters need to be aligned by 1 megabyte. + + +4.67 KVM_S390_VCPU_FAULT +------------------------ + +:Capability: KVM_CAP_S390_UCONTROL +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: vcpu absolute address (in) +:Returns: 0 in case of success + +This call creates a page table entry on the virtual cpu's address space +(for user controlled virtual machines) or the virtual machine's address +space (for regular virtual machines). This only works for minor faults, +thus it's recommended to access subject memory page via the user page +table upfront. This is useful to handle validity intercepts for user +controlled virtual machines to fault in the virtual cpu's lowcore pages +prior to calling the KVM_RUN ioctl. + + +4.68 KVM_SET_ONE_REG +-------------------- + +:Capability: KVM_CAP_ONE_REG +:Architectures: all +:Type: vcpu ioctl +:Parameters: struct kvm_one_reg (in) +:Returns: 0 on success, negative value on failure + +Errors: + + ====== ============================================================ + ENOENT no such register + EINVAL invalid register ID, or no such register or used with VMs in + protected virtualization mode on s390 + EPERM (arm64) register access not allowed before vcpu finalization + ====== ============================================================ + +(These error codes are indicative only: do not rely on a specific error +code being returned in a specific situation.) + +:: + + struct kvm_one_reg { + __u64 id; + __u64 addr; + }; + +Using this ioctl, a single vcpu register can be set to a specific value +defined by user space with the passed in struct kvm_one_reg, where id +refers to the register identifier as described below and addr is a pointer +to a variable with the respective size. There can be architecture agnostic +and architecture specific registers. Each have their own range of operation +and their own constants and width. To keep track of the implemented +registers, find a list below: + + ======= =============================== ============ + Arch Register Width (bits) + ======= =============================== ============ + PPC KVM_REG_PPC_HIOR 64 + PPC KVM_REG_PPC_IAC1 64 + PPC KVM_REG_PPC_IAC2 64 + PPC KVM_REG_PPC_IAC3 64 + PPC KVM_REG_PPC_IAC4 64 + PPC KVM_REG_PPC_DAC1 64 + PPC KVM_REG_PPC_DAC2 64 + PPC KVM_REG_PPC_DABR 64 + PPC KVM_REG_PPC_DSCR 64 + PPC KVM_REG_PPC_PURR 64 + PPC KVM_REG_PPC_SPURR 64 + PPC KVM_REG_PPC_DAR 64 + PPC KVM_REG_PPC_DSISR 32 + PPC KVM_REG_PPC_AMR 64 + PPC KVM_REG_PPC_UAMOR 64 + PPC KVM_REG_PPC_MMCR0 64 + PPC KVM_REG_PPC_MMCR1 64 + PPC KVM_REG_PPC_MMCRA 64 + PPC KVM_REG_PPC_MMCR2 64 + PPC KVM_REG_PPC_MMCRS 64 + PPC KVM_REG_PPC_MMCR3 64 + PPC KVM_REG_PPC_SIAR 64 + PPC KVM_REG_PPC_SDAR 64 + PPC KVM_REG_PPC_SIER 64 + PPC KVM_REG_PPC_SIER2 64 + PPC KVM_REG_PPC_SIER3 64 + PPC KVM_REG_PPC_PMC1 32 + PPC KVM_REG_PPC_PMC2 32 + PPC KVM_REG_PPC_PMC3 32 + PPC KVM_REG_PPC_PMC4 32 + PPC KVM_REG_PPC_PMC5 32 + PPC KVM_REG_PPC_PMC6 32 + PPC KVM_REG_PPC_PMC7 32 + PPC KVM_REG_PPC_PMC8 32 + PPC KVM_REG_PPC_FPR0 64 + ... + PPC KVM_REG_PPC_FPR31 64 + PPC KVM_REG_PPC_VR0 128 + ... + PPC KVM_REG_PPC_VR31 128 + PPC KVM_REG_PPC_VSR0 128 + ... + PPC KVM_REG_PPC_VSR31 128 + PPC KVM_REG_PPC_FPSCR 64 + PPC KVM_REG_PPC_VSCR 32 + PPC KVM_REG_PPC_VPA_ADDR 64 + PPC KVM_REG_PPC_VPA_SLB 128 + PPC KVM_REG_PPC_VPA_DTL 128 + PPC KVM_REG_PPC_EPCR 32 + PPC KVM_REG_PPC_EPR 32 + PPC KVM_REG_PPC_TCR 32 + PPC KVM_REG_PPC_TSR 32 + PPC KVM_REG_PPC_OR_TSR 32 + PPC KVM_REG_PPC_CLEAR_TSR 32 + PPC KVM_REG_PPC_MAS0 32 + PPC KVM_REG_PPC_MAS1 32 + PPC KVM_REG_PPC_MAS2 64 + PPC KVM_REG_PPC_MAS7_3 64 + PPC KVM_REG_PPC_MAS4 32 + PPC KVM_REG_PPC_MAS6 32 + PPC KVM_REG_PPC_MMUCFG 32 + PPC KVM_REG_PPC_TLB0CFG 32 + PPC KVM_REG_PPC_TLB1CFG 32 + PPC KVM_REG_PPC_TLB2CFG 32 + PPC KVM_REG_PPC_TLB3CFG 32 + PPC KVM_REG_PPC_TLB0PS 32 + PPC KVM_REG_PPC_TLB1PS 32 + PPC KVM_REG_PPC_TLB2PS 32 + PPC KVM_REG_PPC_TLB3PS 32 + PPC KVM_REG_PPC_EPTCFG 32 + PPC KVM_REG_PPC_ICP_STATE 64 + PPC KVM_REG_PPC_VP_STATE 128 + PPC KVM_REG_PPC_TB_OFFSET 64 + PPC KVM_REG_PPC_SPMC1 32 + PPC KVM_REG_PPC_SPMC2 32 + PPC KVM_REG_PPC_IAMR 64 + PPC KVM_REG_PPC_TFHAR 64 + PPC KVM_REG_PPC_TFIAR 64 + PPC KVM_REG_PPC_TEXASR 64 + PPC KVM_REG_PPC_FSCR 64 + PPC KVM_REG_PPC_PSPB 32 + PPC KVM_REG_PPC_EBBHR 64 + PPC KVM_REG_PPC_EBBRR 64 + PPC KVM_REG_PPC_BESCR 64 + PPC KVM_REG_PPC_TAR 64 + PPC KVM_REG_PPC_DPDES 64 + PPC KVM_REG_PPC_DAWR 64 + PPC KVM_REG_PPC_DAWRX 64 + PPC KVM_REG_PPC_CIABR 64 + PPC KVM_REG_PPC_IC 64 + PPC KVM_REG_PPC_VTB 64 + PPC KVM_REG_PPC_CSIGR 64 + PPC KVM_REG_PPC_TACR 64 + PPC KVM_REG_PPC_TCSCR 64 + PPC KVM_REG_PPC_PID 64 + PPC KVM_REG_PPC_ACOP 64 + PPC KVM_REG_PPC_VRSAVE 32 + PPC KVM_REG_PPC_LPCR 32 + PPC KVM_REG_PPC_LPCR_64 64 + PPC KVM_REG_PPC_PPR 64 + PPC KVM_REG_PPC_ARCH_COMPAT 32 + PPC KVM_REG_PPC_DABRX 32 + PPC KVM_REG_PPC_WORT 64 + PPC KVM_REG_PPC_SPRG9 64 + PPC KVM_REG_PPC_DBSR 32 + PPC KVM_REG_PPC_TIDR 64 + PPC KVM_REG_PPC_PSSCR 64 + PPC KVM_REG_PPC_DEC_EXPIRY 64 + PPC KVM_REG_PPC_PTCR 64 + PPC KVM_REG_PPC_DAWR1 64 + PPC KVM_REG_PPC_DAWRX1 64 + PPC KVM_REG_PPC_TM_GPR0 64 + ... + PPC KVM_REG_PPC_TM_GPR31 64 + PPC KVM_REG_PPC_TM_VSR0 128 + ... + PPC KVM_REG_PPC_TM_VSR63 128 + PPC KVM_REG_PPC_TM_CR 64 + PPC KVM_REG_PPC_TM_LR 64 + PPC KVM_REG_PPC_TM_CTR 64 + PPC KVM_REG_PPC_TM_FPSCR 64 + PPC KVM_REG_PPC_TM_AMR 64 + PPC KVM_REG_PPC_TM_PPR 64 + PPC KVM_REG_PPC_TM_VRSAVE 64 + PPC KVM_REG_PPC_TM_VSCR 32 + PPC KVM_REG_PPC_TM_DSCR 64 + PPC KVM_REG_PPC_TM_TAR 64 + PPC KVM_REG_PPC_TM_XER 64 + + MIPS KVM_REG_MIPS_R0 64 + ... + MIPS KVM_REG_MIPS_R31 64 + MIPS KVM_REG_MIPS_HI 64 + MIPS KVM_REG_MIPS_LO 64 + MIPS KVM_REG_MIPS_PC 64 + MIPS KVM_REG_MIPS_CP0_INDEX 32 + MIPS KVM_REG_MIPS_CP0_ENTRYLO0 64 + MIPS KVM_REG_MIPS_CP0_ENTRYLO1 64 + MIPS KVM_REG_MIPS_CP0_CONTEXT 64 + MIPS KVM_REG_MIPS_CP0_CONTEXTCONFIG 32 + MIPS KVM_REG_MIPS_CP0_USERLOCAL 64 + MIPS KVM_REG_MIPS_CP0_XCONTEXTCONFIG 64 + MIPS KVM_REG_MIPS_CP0_PAGEMASK 32 + MIPS KVM_REG_MIPS_CP0_PAGEGRAIN 32 + MIPS KVM_REG_MIPS_CP0_SEGCTL0 64 + MIPS KVM_REG_MIPS_CP0_SEGCTL1 64 + MIPS KVM_REG_MIPS_CP0_SEGCTL2 64 + MIPS KVM_REG_MIPS_CP0_PWBASE 64 + MIPS KVM_REG_MIPS_CP0_PWFIELD 64 + MIPS KVM_REG_MIPS_CP0_PWSIZE 64 + MIPS KVM_REG_MIPS_CP0_WIRED 32 + MIPS KVM_REG_MIPS_CP0_PWCTL 32 + MIPS KVM_REG_MIPS_CP0_HWRENA 32 + MIPS KVM_REG_MIPS_CP0_BADVADDR 64 + MIPS KVM_REG_MIPS_CP0_BADINSTR 32 + MIPS KVM_REG_MIPS_CP0_BADINSTRP 32 + MIPS KVM_REG_MIPS_CP0_COUNT 32 + MIPS KVM_REG_MIPS_CP0_ENTRYHI 64 + MIPS KVM_REG_MIPS_CP0_COMPARE 32 + MIPS KVM_REG_MIPS_CP0_STATUS 32 + MIPS KVM_REG_MIPS_CP0_INTCTL 32 + MIPS KVM_REG_MIPS_CP0_CAUSE 32 + MIPS KVM_REG_MIPS_CP0_EPC 64 + MIPS KVM_REG_MIPS_CP0_PRID 32 + MIPS KVM_REG_MIPS_CP0_EBASE 64 + MIPS KVM_REG_MIPS_CP0_CONFIG 32 + MIPS KVM_REG_MIPS_CP0_CONFIG1 32 + MIPS KVM_REG_MIPS_CP0_CONFIG2 32 + MIPS KVM_REG_MIPS_CP0_CONFIG3 32 + MIPS KVM_REG_MIPS_CP0_CONFIG4 32 + MIPS KVM_REG_MIPS_CP0_CONFIG5 32 + MIPS KVM_REG_MIPS_CP0_CONFIG7 32 + MIPS KVM_REG_MIPS_CP0_XCONTEXT 64 + MIPS KVM_REG_MIPS_CP0_ERROREPC 64 + MIPS KVM_REG_MIPS_CP0_KSCRATCH1 64 + MIPS KVM_REG_MIPS_CP0_KSCRATCH2 64 + MIPS KVM_REG_MIPS_CP0_KSCRATCH3 64 + MIPS KVM_REG_MIPS_CP0_KSCRATCH4 64 + MIPS KVM_REG_MIPS_CP0_KSCRATCH5 64 + MIPS KVM_REG_MIPS_CP0_KSCRATCH6 64 + MIPS KVM_REG_MIPS_CP0_MAAR(0..63) 64 + MIPS KVM_REG_MIPS_COUNT_CTL 64 + MIPS KVM_REG_MIPS_COUNT_RESUME 64 + MIPS KVM_REG_MIPS_COUNT_HZ 64 + MIPS KVM_REG_MIPS_FPR_32(0..31) 32 + MIPS KVM_REG_MIPS_FPR_64(0..31) 64 + MIPS KVM_REG_MIPS_VEC_128(0..31) 128 + MIPS KVM_REG_MIPS_FCR_IR 32 + MIPS KVM_REG_MIPS_FCR_CSR 32 + MIPS KVM_REG_MIPS_MSA_IR 32 + MIPS KVM_REG_MIPS_MSA_CSR 32 + ======= =============================== ============ + +ARM registers are mapped using the lower 32 bits. The upper 16 of that +is the register group type, or coprocessor number: + +ARM core registers have the following id bit patterns:: + + 0x4020 0000 0010 <index into the kvm_regs struct:16> + +ARM 32-bit CP15 registers have the following id bit patterns:: + + 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> + +ARM 64-bit CP15 registers have the following id bit patterns:: + + 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> + +ARM CCSIDR registers are demultiplexed by CSSELR value:: + + 0x4020 0000 0011 00 <csselr:8> + +ARM 32-bit VFP control registers have the following id bit patterns:: + + 0x4020 0000 0012 1 <regno:12> + +ARM 64-bit FP registers have the following id bit patterns:: + + 0x4030 0000 0012 0 <regno:12> + +ARM firmware pseudo-registers have the following bit pattern:: + + 0x4030 0000 0014 <regno:16> + + +arm64 registers are mapped using the lower 32 bits. The upper 16 of +that is the register group type, or coprocessor number: + +arm64 core/FP-SIMD registers have the following id bit patterns. Note +that the size of the access is variable, as the kvm_regs structure +contains elements ranging from 32 to 128 bits. The index is a 32bit +value in the kvm_regs structure seen as a 32bit array:: + + 0x60x0 0000 0010 <index into the kvm_regs struct:16> + +Specifically: + +======================= ========= ===== ======================================= + Encoding Register Bits kvm_regs member +======================= ========= ===== ======================================= + 0x6030 0000 0010 0000 X0 64 regs.regs[0] + 0x6030 0000 0010 0002 X1 64 regs.regs[1] + ... + 0x6030 0000 0010 003c X30 64 regs.regs[30] + 0x6030 0000 0010 003e SP 64 regs.sp + 0x6030 0000 0010 0040 PC 64 regs.pc + 0x6030 0000 0010 0042 PSTATE 64 regs.pstate + 0x6030 0000 0010 0044 SP_EL1 64 sp_el1 + 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1 + 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC) + 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT] + 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND] + 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ] + 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ] + 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] [1]_ + 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] [1]_ + ... + 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] [1]_ + 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr + 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr +======================= ========= ===== ======================================= + +.. [1] These encodings are not accepted for SVE-enabled vcpus. See + KVM_ARM_VCPU_INIT. + + The equivalent register content can be accessed via bits [127:0] of + the corresponding SVE Zn registers instead for vcpus that have SVE + enabled (see below). + +arm64 CCSIDR registers are demultiplexed by CSSELR value:: + + 0x6020 0000 0011 00 <csselr:8> + +arm64 system registers have the following id bit patterns:: + + 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> + +.. warning:: + + Two system register IDs do not follow the specified pattern. These + are KVM_REG_ARM_TIMER_CVAL and KVM_REG_ARM_TIMER_CNT, which map to + system registers CNTV_CVAL_EL0 and CNTVCT_EL0 respectively. These + two had their values accidentally swapped, which means TIMER_CVAL is + derived from the register encoding for CNTVCT_EL0 and TIMER_CNT is + derived from the register encoding for CNTV_CVAL_EL0. As this is + API, it must remain this way. + +arm64 firmware pseudo-registers have the following bit pattern:: + + 0x6030 0000 0014 <regno:16> + +arm64 SVE registers have the following bit patterns:: + + 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice] + 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice] + 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice] + 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register + +Access to register IDs where 2048 * slice >= 128 * max_vq will fail with +ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit +quadwords: see [2]_ below. + +These registers are only accessible on vcpus for which SVE is enabled. +See KVM_ARM_VCPU_INIT for details. + +In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not +accessible until the vcpu's SVE configuration has been finalized +using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT +and KVM_ARM_VCPU_FINALIZE for more information about this procedure. + +KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector +lengths supported by the vcpu to be discovered and configured by +userspace. When transferred to or from user memory via KVM_GET_ONE_REG +or KVM_SET_ONE_REG, the value of this register is of type +__u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as +follows:: + + __u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS]; + + if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX && + ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >> + ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1)) + /* Vector length vq * 16 bytes supported */ + else + /* Vector length vq * 16 bytes not supported */ + +.. [2] The maximum value vq for which the above condition is true is + max_vq. This is the maximum vector length available to the guest on + this vcpu, and determines which register slices are visible through + this ioctl interface. + +(See Documentation/arm64/sve.rst for an explanation of the "vq" +nomenclature.) + +KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT. +KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that +the host supports. + +Userspace may subsequently modify it if desired until the vcpu's SVE +configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). + +Apart from simply removing all vector lengths from the host set that +exceed some value, support for arbitrarily chosen sets of vector lengths +is hardware-dependent and may not be available. Attempting to configure +an invalid set of vector lengths via KVM_SET_ONE_REG will fail with +EINVAL. + +After the vcpu's SVE configuration is finalized, further attempts to +write this register will fail with EPERM. + +arm64 bitmap feature firmware pseudo-registers have the following bit pattern:: + + 0x6030 0000 0016 <regno:16> + +The bitmap feature firmware registers exposes the hypercall services that +are available for userspace to configure. The set bits corresponds to the +services that are available for the guests to access. By default, KVM +sets all the supported bits during VM initialization. The userspace can +discover the available services via KVM_GET_ONE_REG, and write back the +bitmap corresponding to the features that it wishes guests to see via +KVM_SET_ONE_REG. + +Note: These registers are immutable once any of the vCPUs of the VM has +run at least once. A KVM_SET_ONE_REG in such a scenario will return +a -EBUSY to userspace. + +(See Documentation/virt/kvm/arm/hypercalls.rst for more details.) + + +MIPS registers are mapped using the lower 32 bits. The upper 16 of that is +the register group type: + +MIPS core registers (see above) have the following id bit patterns:: + + 0x7030 0000 0000 <reg:16> + +MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit +patterns depending on whether they're 32-bit or 64-bit registers:: + + 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit) + 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit) + +Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64 +versions of the EntryLo registers regardless of the word size of the host +hardware, host kernel, guest, and whether XPA is present in the guest, i.e. +with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and +the PFNX field starting at bit 30. + +MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit +patterns:: + + 0x7030 0000 0001 01 <reg:8> + +MIPS KVM control registers (see above) have the following id bit patterns:: + + 0x7030 0000 0002 <reg:16> + +MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following +id bit patterns depending on the size of the register being accessed. They are +always accessed according to the current guest FPU mode (Status.FR and +Config5.FRE), i.e. as the guest would see them, and they become unpredictable +if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector +registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they +overlap the FPU registers:: + + 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers) + 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers) + 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers) + +MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the +following id bit patterns:: + + 0x7020 0000 0003 01 <0:3> <reg:5> + +MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the +following id bit patterns:: + + 0x7020 0000 0003 02 <0:3> <reg:5> + +RISC-V registers are mapped using the lower 32 bits. The upper 8 bits of +that is the register group type. + +RISC-V config registers are meant for configuring a Guest VCPU and it has +the following id bit patterns:: + + 0x8020 0000 01 <index into the kvm_riscv_config struct:24> (32bit Host) + 0x8030 0000 01 <index into the kvm_riscv_config struct:24> (64bit Host) + +Following are the RISC-V config registers: + +======================= ========= ============================================= + Encoding Register Description +======================= ========= ============================================= + 0x80x0 0000 0100 0000 isa ISA feature bitmap of Guest VCPU +======================= ========= ============================================= + +The isa config register can be read anytime but can only be written before +a Guest VCPU runs. It will have ISA feature bits matching underlying host +set by default. + +RISC-V core registers represent the general excution state of a Guest VCPU +and it has the following id bit patterns:: + + 0x8020 0000 02 <index into the kvm_riscv_core struct:24> (32bit Host) + 0x8030 0000 02 <index into the kvm_riscv_core struct:24> (64bit Host) + +Following are the RISC-V core registers: + +======================= ========= ============================================= + Encoding Register Description +======================= ========= ============================================= + 0x80x0 0000 0200 0000 regs.pc Program counter + 0x80x0 0000 0200 0001 regs.ra Return address + 0x80x0 0000 0200 0002 regs.sp Stack pointer + 0x80x0 0000 0200 0003 regs.gp Global pointer + 0x80x0 0000 0200 0004 regs.tp Task pointer + 0x80x0 0000 0200 0005 regs.t0 Caller saved register 0 + 0x80x0 0000 0200 0006 regs.t1 Caller saved register 1 + 0x80x0 0000 0200 0007 regs.t2 Caller saved register 2 + 0x80x0 0000 0200 0008 regs.s0 Callee saved register 0 + 0x80x0 0000 0200 0009 regs.s1 Callee saved register 1 + 0x80x0 0000 0200 000a regs.a0 Function argument (or return value) 0 + 0x80x0 0000 0200 000b regs.a1 Function argument (or return value) 1 + 0x80x0 0000 0200 000c regs.a2 Function argument 2 + 0x80x0 0000 0200 000d regs.a3 Function argument 3 + 0x80x0 0000 0200 000e regs.a4 Function argument 4 + 0x80x0 0000 0200 000f regs.a5 Function argument 5 + 0x80x0 0000 0200 0010 regs.a6 Function argument 6 + 0x80x0 0000 0200 0011 regs.a7 Function argument 7 + 0x80x0 0000 0200 0012 regs.s2 Callee saved register 2 + 0x80x0 0000 0200 0013 regs.s3 Callee saved register 3 + 0x80x0 0000 0200 0014 regs.s4 Callee saved register 4 + 0x80x0 0000 0200 0015 regs.s5 Callee saved register 5 + 0x80x0 0000 0200 0016 regs.s6 Callee saved register 6 + 0x80x0 0000 0200 0017 regs.s7 Callee saved register 7 + 0x80x0 0000 0200 0018 regs.s8 Callee saved register 8 + 0x80x0 0000 0200 0019 regs.s9 Callee saved register 9 + 0x80x0 0000 0200 001a regs.s10 Callee saved register 10 + 0x80x0 0000 0200 001b regs.s11 Callee saved register 11 + 0x80x0 0000 0200 001c regs.t3 Caller saved register 3 + 0x80x0 0000 0200 001d regs.t4 Caller saved register 4 + 0x80x0 0000 0200 001e regs.t5 Caller saved register 5 + 0x80x0 0000 0200 001f regs.t6 Caller saved register 6 + 0x80x0 0000 0200 0020 mode Privilege mode (1 = S-mode or 0 = U-mode) +======================= ========= ============================================= + +RISC-V csr registers represent the supervisor mode control/status registers +of a Guest VCPU and it has the following id bit patterns:: + + 0x8020 0000 03 <index into the kvm_riscv_csr struct:24> (32bit Host) + 0x8030 0000 03 <index into the kvm_riscv_csr struct:24> (64bit Host) + +Following are the RISC-V csr registers: + +======================= ========= ============================================= + Encoding Register Description +======================= ========= ============================================= + 0x80x0 0000 0300 0000 sstatus Supervisor status + 0x80x0 0000 0300 0001 sie Supervisor interrupt enable + 0x80x0 0000 0300 0002 stvec Supervisor trap vector base + 0x80x0 0000 0300 0003 sscratch Supervisor scratch register + 0x80x0 0000 0300 0004 sepc Supervisor exception program counter + 0x80x0 0000 0300 0005 scause Supervisor trap cause + 0x80x0 0000 0300 0006 stval Supervisor bad address or instruction + 0x80x0 0000 0300 0007 sip Supervisor interrupt pending + 0x80x0 0000 0300 0008 satp Supervisor address translation and protection +======================= ========= ============================================= + +RISC-V timer registers represent the timer state of a Guest VCPU and it has +the following id bit patterns:: + + 0x8030 0000 04 <index into the kvm_riscv_timer struct:24> + +Following are the RISC-V timer registers: + +======================= ========= ============================================= + Encoding Register Description +======================= ========= ============================================= + 0x8030 0000 0400 0000 frequency Time base frequency (read-only) + 0x8030 0000 0400 0001 time Time value visible to Guest + 0x8030 0000 0400 0002 compare Time compare programmed by Guest + 0x8030 0000 0400 0003 state Time compare state (1 = ON or 0 = OFF) +======================= ========= ============================================= + +RISC-V F-extension registers represent the single precision floating point +state of a Guest VCPU and it has the following id bit patterns:: + + 0x8020 0000 05 <index into the __riscv_f_ext_state struct:24> + +Following are the RISC-V F-extension registers: + +======================= ========= ============================================= + Encoding Register Description +======================= ========= ============================================= + 0x8020 0000 0500 0000 f[0] Floating point register 0 + ... + 0x8020 0000 0500 001f f[31] Floating point register 31 + 0x8020 0000 0500 0020 fcsr Floating point control and status register +======================= ========= ============================================= + +RISC-V D-extension registers represent the double precision floating point +state of a Guest VCPU and it has the following id bit patterns:: + + 0x8020 0000 06 <index into the __riscv_d_ext_state struct:24> (fcsr) + 0x8030 0000 06 <index into the __riscv_d_ext_state struct:24> (non-fcsr) + +Following are the RISC-V D-extension registers: + +======================= ========= ============================================= + Encoding Register Description +======================= ========= ============================================= + 0x8030 0000 0600 0000 f[0] Floating point register 0 + ... + 0x8030 0000 0600 001f f[31] Floating point register 31 + 0x8020 0000 0600 0020 fcsr Floating point control and status register +======================= ========= ============================================= + + +4.69 KVM_GET_ONE_REG +-------------------- + +:Capability: KVM_CAP_ONE_REG +:Architectures: all +:Type: vcpu ioctl +:Parameters: struct kvm_one_reg (in and out) +:Returns: 0 on success, negative value on failure + +Errors include: + + ======== ============================================================ + ENOENT no such register + EINVAL invalid register ID, or no such register or used with VMs in + protected virtualization mode on s390 + EPERM (arm64) register access not allowed before vcpu finalization + ======== ============================================================ + +(These error codes are indicative only: do not rely on a specific error +code being returned in a specific situation.) + +This ioctl allows to receive the value of a single register implemented +in a vcpu. The register to read is indicated by the "id" field of the +kvm_one_reg struct passed in. On success, the register value can be found +at the memory location pointed to by "addr". + +The list of registers accessible using this interface is identical to the +list in 4.68. + + +4.70 KVM_KVMCLOCK_CTRL +---------------------- + +:Capability: KVM_CAP_KVMCLOCK_CTRL +:Architectures: Any that implement pvclocks (currently x86 only) +:Type: vcpu ioctl +:Parameters: None +:Returns: 0 on success, -1 on error + +This ioctl sets a flag accessible to the guest indicating that the specified +vCPU has been paused by the host userspace. + +The host will set a flag in the pvclock structure that is checked from the +soft lockup watchdog. The flag is part of the pvclock structure that is +shared between guest and host, specifically the second bit of the flags +field of the pvclock_vcpu_time_info structure. It will be set exclusively by +the host and read/cleared exclusively by the guest. The guest operation of +checking and clearing the flag must be an atomic operation so +load-link/store-conditional, or equivalent must be used. There are two cases +where the guest will clear the flag: when the soft lockup watchdog timer resets +itself or when a soft lockup is detected. This ioctl can be called any time +after pausing the vcpu, but before it is resumed. + + +4.71 KVM_SIGNAL_MSI +------------------- + +:Capability: KVM_CAP_SIGNAL_MSI +:Architectures: x86 arm64 +:Type: vm ioctl +:Parameters: struct kvm_msi (in) +:Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error + +Directly inject a MSI message. Only valid with in-kernel irqchip that handles +MSI messages. + +:: + + struct kvm_msi { + __u32 address_lo; + __u32 address_hi; + __u32 data; + __u32 flags; + __u32 devid; + __u8 pad[12]; + }; + +flags: + KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM + KVM_CAP_MSI_DEVID capability advertises the requirement to provide + the device ID. If this capability is not available, userspace + should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. + +If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier +for the device that wrote the MSI message. For PCI, this is usually a +BFD identifier in the lower 16 bits. + +On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS +feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, +address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of +address_hi must be zero. + + +4.71 KVM_CREATE_PIT2 +-------------------- + +:Capability: KVM_CAP_PIT2 +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_pit_config (in) +:Returns: 0 on success, -1 on error + +Creates an in-kernel device model for the i8254 PIT. This call is only valid +after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following +parameters have to be passed:: + + struct kvm_pit_config { + __u32 flags; + __u32 pad[15]; + }; + +Valid flags are:: + + #define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ + +PIT timer interrupts may use a per-VM kernel thread for injection. If it +exists, this thread will have a name of the following pattern:: + + kvm-pit/<owner-process-pid> + +When running a guest with elevated priorities, the scheduling parameters of +this thread may have to be adjusted accordingly. + +This IOCTL replaces the obsolete KVM_CREATE_PIT. + + +4.72 KVM_GET_PIT2 +----------------- + +:Capability: KVM_CAP_PIT_STATE2 +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_pit_state2 (out) +:Returns: 0 on success, -1 on error + +Retrieves the state of the in-kernel PIT model. Only valid after +KVM_CREATE_PIT2. The state is returned in the following structure:: + + struct kvm_pit_state2 { + struct kvm_pit_channel_state channels[3]; + __u32 flags; + __u32 reserved[9]; + }; + +Valid flags are:: + + /* disable PIT in HPET legacy mode */ + #define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 + /* speaker port data bit enabled */ + #define KVM_PIT_FLAGS_SPEAKER_DATA_ON 0x00000002 + +This IOCTL replaces the obsolete KVM_GET_PIT. + + +4.73 KVM_SET_PIT2 +----------------- + +:Capability: KVM_CAP_PIT_STATE2 +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_pit_state2 (in) +:Returns: 0 on success, -1 on error + +Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. +See KVM_GET_PIT2 for details on struct kvm_pit_state2. + +This IOCTL replaces the obsolete KVM_SET_PIT. + + +4.74 KVM_PPC_GET_SMMU_INFO +-------------------------- + +:Capability: KVM_CAP_PPC_GET_SMMU_INFO +:Architectures: powerpc +:Type: vm ioctl +:Parameters: None +:Returns: 0 on success, -1 on error + +This populates and returns a structure describing the features of +the "Server" class MMU emulation supported by KVM. +This can in turn be used by userspace to generate the appropriate +device-tree properties for the guest operating system. + +The structure contains some global information, followed by an +array of supported segment page sizes:: + + struct kvm_ppc_smmu_info { + __u64 flags; + __u32 slb_size; + __u32 pad; + struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; + }; + +The supported flags are: + + - KVM_PPC_PAGE_SIZES_REAL: + When that flag is set, guest page sizes must "fit" the backing + store page sizes. When not set, any page size in the list can + be used regardless of how they are backed by userspace. + + - KVM_PPC_1T_SEGMENTS + The emulated MMU supports 1T segments in addition to the + standard 256M ones. + + - KVM_PPC_NO_HASH + This flag indicates that HPT guests are not supported by KVM, + thus all guests must use radix MMU mode. + +The "slb_size" field indicates how many SLB entries are supported + +The "sps" array contains 8 entries indicating the supported base +page sizes for a segment in increasing order. Each entry is defined +as follow:: + + struct kvm_ppc_one_seg_page_size { + __u32 page_shift; /* Base page shift of segment (or 0) */ + __u32 slb_enc; /* SLB encoding for BookS */ + struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; + }; + +An entry with a "page_shift" of 0 is unused. Because the array is +organized in increasing order, a lookup can stop when encoutering +such an entry. + +The "slb_enc" field provides the encoding to use in the SLB for the +page size. The bits are in positions such as the value can directly +be OR'ed into the "vsid" argument of the slbmte instruction. + +The "enc" array is a list which for each of those segment base page +size provides the list of supported actual page sizes (which can be +only larger or equal to the base page size), along with the +corresponding encoding in the hash PTE. Similarly, the array is +8 entries sorted by increasing sizes and an entry with a "0" shift +is an empty entry and a terminator:: + + struct kvm_ppc_one_page_size { + __u32 page_shift; /* Page shift (or 0) */ + __u32 pte_enc; /* Encoding in the HPTE (>>12) */ + }; + +The "pte_enc" field provides a value that can OR'ed into the hash +PTE's RPN field (ie, it needs to be shifted left by 12 to OR it +into the hash PTE second double word). + +4.75 KVM_IRQFD +-------------- + +:Capability: KVM_CAP_IRQFD +:Architectures: x86 s390 arm64 +:Type: vm ioctl +:Parameters: struct kvm_irqfd (in) +:Returns: 0 on success, -1 on error + +Allows setting an eventfd to directly trigger a guest interrupt. +kvm_irqfd.fd specifies the file descriptor to use as the eventfd and +kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When +an event is triggered on the eventfd, an interrupt is injected into +the guest using the specified gsi pin. The irqfd is removed using +the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd +and kvm_irqfd.gsi. + +With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify +mechanism allowing emulation of level-triggered, irqfd-based +interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an +additional eventfd in the kvm_irqfd.resamplefd field. When operating +in resample mode, posting of an interrupt through kvm_irq.fd asserts +the specified gsi in the irqchip. When the irqchip is resampled, such +as from an EOI, the gsi is de-asserted and the user is notified via +kvm_irqfd.resamplefd. It is the user's responsibility to re-queue +the interrupt if the device making use of it still requires service. +Note that closing the resamplefd is not sufficient to disable the +irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment +and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. + +On arm64, gsi routing being supported, the following can happen: + +- in case no routing entry is associated to this gsi, injection fails +- in case the gsi is associated to an irqchip routing entry, + irqchip.pin + 32 corresponds to the injected SPI ID. +- in case the gsi is associated to an MSI routing entry, the MSI + message and device ID are translated into an LPI (support restricted + to GICv3 ITS in-kernel emulation). + +4.76 KVM_PPC_ALLOCATE_HTAB +-------------------------- + +:Capability: KVM_CAP_PPC_ALLOC_HTAB +:Architectures: powerpc +:Type: vm ioctl +:Parameters: Pointer to u32 containing hash table order (in/out) +:Returns: 0 on success, -1 on error + +This requests the host kernel to allocate an MMU hash table for a +guest using the PAPR paravirtualization interface. This only does +anything if the kernel is configured to use the Book 3S HV style of +virtualization. Otherwise the capability doesn't exist and the ioctl +returns an ENOTTY error. The rest of this description assumes Book 3S +HV. + +There must be no vcpus running when this ioctl is called; if there +are, it will do nothing and return an EBUSY error. + +The parameter is a pointer to a 32-bit unsigned integer variable +containing the order (log base 2) of the desired size of the hash +table, which must be between 18 and 46. On successful return from the +ioctl, the value will not be changed by the kernel. + +If no hash table has been allocated when any vcpu is asked to run +(with the KVM_RUN ioctl), the host kernel will allocate a +default-sized hash table (16 MB). + +If this ioctl is called when a hash table has already been allocated, +with a different order from the existing hash table, the existing hash +table will be freed and a new one allocated. If this is ioctl is +called when a hash table has already been allocated of the same order +as specified, the kernel will clear out the existing hash table (zero +all HPTEs). In either case, if the guest is using the virtualized +real-mode area (VRMA) facility, the kernel will re-create the VMRA +HPTEs on the next KVM_RUN of any vcpu. + +4.77 KVM_S390_INTERRUPT +----------------------- + +:Capability: basic +:Architectures: s390 +:Type: vm ioctl, vcpu ioctl +:Parameters: struct kvm_s390_interrupt (in) +:Returns: 0 on success, -1 on error + +Allows to inject an interrupt to the guest. Interrupts can be floating +(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. + +Interrupt parameters are passed via kvm_s390_interrupt:: + + struct kvm_s390_interrupt { + __u32 type; + __u32 parm; + __u64 parm64; + }; + +type can be one of the following: + +KVM_S390_SIGP_STOP (vcpu) + - sigp stop; optional flags in parm +KVM_S390_PROGRAM_INT (vcpu) + - program check; code in parm +KVM_S390_SIGP_SET_PREFIX (vcpu) + - sigp set prefix; prefix address in parm +KVM_S390_RESTART (vcpu) + - restart +KVM_S390_INT_CLOCK_COMP (vcpu) + - clock comparator interrupt +KVM_S390_INT_CPU_TIMER (vcpu) + - CPU timer interrupt +KVM_S390_INT_VIRTIO (vm) + - virtio external interrupt; external interrupt + parameters in parm and parm64 +KVM_S390_INT_SERVICE (vm) + - sclp external interrupt; sclp parameter in parm +KVM_S390_INT_EMERGENCY (vcpu) + - sigp emergency; source cpu in parm +KVM_S390_INT_EXTERNAL_CALL (vcpu) + - sigp external call; source cpu in parm +KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) + - compound value to indicate an + I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); + I/O interruption parameters in parm (subchannel) and parm64 (intparm, + interruption subclass) +KVM_S390_MCHK (vm, vcpu) + - machine check interrupt; cr 14 bits in parm, machine check interrupt + code in parm64 (note that machine checks needing further payload are not + supported by this ioctl) + +This is an asynchronous vcpu ioctl and can be invoked from any thread. + +4.78 KVM_PPC_GET_HTAB_FD +------------------------ + +:Capability: KVM_CAP_PPC_HTAB_FD +:Architectures: powerpc +:Type: vm ioctl +:Parameters: Pointer to struct kvm_get_htab_fd (in) +:Returns: file descriptor number (>= 0) on success, -1 on error + +This returns a file descriptor that can be used either to read out the +entries in the guest's hashed page table (HPT), or to write entries to +initialize the HPT. The returned fd can only be written to if the +KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and +can only be read if that bit is clear. The argument struct looks like +this:: + + /* For KVM_PPC_GET_HTAB_FD */ + struct kvm_get_htab_fd { + __u64 flags; + __u64 start_index; + __u64 reserved[2]; + }; + + /* Values for kvm_get_htab_fd.flags */ + #define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) + #define KVM_GET_HTAB_WRITE ((__u64)0x2) + +The 'start_index' field gives the index in the HPT of the entry at +which to start reading. It is ignored when writing. + +Reads on the fd will initially supply information about all +"interesting" HPT entries. Interesting entries are those with the +bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise +all entries. When the end of the HPT is reached, the read() will +return. If read() is called again on the fd, it will start again from +the beginning of the HPT, but will only return HPT entries that have +changed since they were last read. + +Data read or written is structured as a header (8 bytes) followed by a +series of valid HPT entries (16 bytes) each. The header indicates how +many valid HPT entries there are and how many invalid entries follow +the valid entries. The invalid entries are not represented explicitly +in the stream. The header format is:: + + struct kvm_get_htab_header { + __u32 index; + __u16 n_valid; + __u16 n_invalid; + }; + +Writes to the fd create HPT entries starting at the index given in the +header; first 'n_valid' valid entries with contents from the data +written, then 'n_invalid' invalid entries, invalidating any previously +valid entries found. + +4.79 KVM_CREATE_DEVICE +---------------------- + +:Capability: KVM_CAP_DEVICE_CTRL +:Type: vm ioctl +:Parameters: struct kvm_create_device (in/out) +:Returns: 0 on success, -1 on error + +Errors: + + ====== ======================================================= + ENODEV The device type is unknown or unsupported + EEXIST Device already created, and this type of device may not + be instantiated multiple times + ====== ======================================================= + + Other error conditions may be defined by individual device types or + have their standard meanings. + +Creates an emulated device in the kernel. The file descriptor returned +in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. + +If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the +device type is supported (not necessarily whether it can be created +in the current vm). + +Individual devices should not define flags. Attributes should be used +for specifying any behavior that is not implied by the device type +number. + +:: + + struct kvm_create_device { + __u32 type; /* in: KVM_DEV_TYPE_xxx */ + __u32 fd; /* out: device handle */ + __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ + }; + +4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR +-------------------------------------------- + +:Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, + KVM_CAP_VCPU_ATTRIBUTES for vcpu device + KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device (no set) +:Type: device ioctl, vm ioctl, vcpu ioctl +:Parameters: struct kvm_device_attr +:Returns: 0 on success, -1 on error + +Errors: + + ===== ============================================================= + ENXIO The group or attribute is unknown/unsupported for this device + or hardware support is missing. + EPERM The attribute cannot (currently) be accessed this way + (e.g. read-only attribute, or attribute that only makes + sense when the device is in a different state) + ===== ============================================================= + + Other error conditions may be defined by individual device types. + +Gets/sets a specified piece of device configuration and/or state. The +semantics are device-specific. See individual device documentation in +the "devices" directory. As with ONE_REG, the size of the data +transferred is defined by the particular attribute. + +:: + + struct kvm_device_attr { + __u32 flags; /* no flags currently defined */ + __u32 group; /* device-defined */ + __u64 attr; /* group-defined */ + __u64 addr; /* userspace address of attr data */ + }; + +4.81 KVM_HAS_DEVICE_ATTR +------------------------ + +:Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, + KVM_CAP_VCPU_ATTRIBUTES for vcpu device + KVM_CAP_SYS_ATTRIBUTES for system (/dev/kvm) device +:Type: device ioctl, vm ioctl, vcpu ioctl +:Parameters: struct kvm_device_attr +:Returns: 0 on success, -1 on error + +Errors: + + ===== ============================================================= + ENXIO The group or attribute is unknown/unsupported for this device + or hardware support is missing. + ===== ============================================================= + +Tests whether a device supports a particular attribute. A successful +return indicates the attribute is implemented. It does not necessarily +indicate that the attribute can be read or written in the device's +current state. "addr" is ignored. + +4.82 KVM_ARM_VCPU_INIT +---------------------- + +:Capability: basic +:Architectures: arm64 +:Type: vcpu ioctl +:Parameters: struct kvm_vcpu_init (in) +:Returns: 0 on success; -1 on error + +Errors: + + ====== ================================================================= + EINVAL the target is unknown, or the combination of features is invalid. + ENOENT a features bit specified is unknown. + ====== ================================================================= + +This tells KVM what type of CPU to present to the guest, and what +optional features it should have. This will cause a reset of the cpu +registers to their initial values. If this is not called, KVM_RUN will +return ENOEXEC for that vcpu. + +The initial values are defined as: + - Processor state: + * AArch64: EL1h, D, A, I and F bits set. All other bits + are cleared. + * AArch32: SVC, A, I and F bits set. All other bits are + cleared. + - General Purpose registers, including PC and SP: set to 0 + - FPSIMD/NEON registers: set to 0 + - SVE registers: set to 0 + - System registers: Reset to their architecturally defined + values as for a warm reset to EL1 (resp. SVC) + +Note that because some registers reflect machine topology, all vcpus +should be created before this ioctl is invoked. + +Userspace can call this function multiple times for a given vcpu, including +after the vcpu has been run. This will reset the vcpu to its initial +state. All calls to this function after the initial call must use the same +target and same set of feature flags, otherwise EINVAL will be returned. + +Possible features: + + - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. + Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on + and execute guest code when KVM_RUN is called. + - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. + Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). + - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision + backward compatible with v0.2) for the CPU. + Depends on KVM_CAP_ARM_PSCI_0_2. + - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. + Depends on KVM_CAP_ARM_PMU_V3. + + - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication + for arm64 only. + Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS. + If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are + both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and + KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be + requested. + + - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication + for arm64 only. + Depends on KVM_CAP_ARM_PTRAUTH_GENERIC. + If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are + both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and + KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be + requested. + + - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only). + Depends on KVM_CAP_ARM_SVE. + Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): + + * After KVM_ARM_VCPU_INIT: + + - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the + initial value of this pseudo-register indicates the best set of + vector lengths possible for a vcpu on this host. + + * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): + + - KVM_RUN and KVM_GET_REG_LIST are not available; + + - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access + the scalable archietctural SVE registers + KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or + KVM_REG_ARM64_SVE_FFR; + + - KVM_REG_ARM64_SVE_VLS may optionally be written using + KVM_SET_ONE_REG, to modify the set of vector lengths available + for the vcpu. + + * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE): + + - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can + no longer be written using KVM_SET_ONE_REG. + +4.83 KVM_ARM_PREFERRED_TARGET +----------------------------- + +:Capability: basic +:Architectures: arm64 +:Type: vm ioctl +:Parameters: struct kvm_vcpu_init (out) +:Returns: 0 on success; -1 on error + +Errors: + + ====== ========================================== + ENODEV no preferred target available for the host + ====== ========================================== + +This queries KVM for preferred CPU target type which can be emulated +by KVM on underlying host. + +The ioctl returns struct kvm_vcpu_init instance containing information +about preferred CPU target type and recommended features for it. The +kvm_vcpu_init->features bitmap returned will have feature bits set if +the preferred target recommends setting these features, but this is +not mandatory. + +The information returned by this ioctl can be used to prepare an instance +of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in +VCPU matching underlying host. + + +4.84 KVM_GET_REG_LIST +--------------------- + +:Capability: basic +:Architectures: arm64, mips +:Type: vcpu ioctl +:Parameters: struct kvm_reg_list (in/out) +:Returns: 0 on success; -1 on error + +Errors: + + ===== ============================================================== + E2BIG the reg index list is too big to fit in the array specified by + the user (the number required will be written into n). + ===== ============================================================== + +:: + + struct kvm_reg_list { + __u64 n; /* number of registers in reg[] */ + __u64 reg[0]; + }; + +This ioctl returns the guest registers that are supported for the +KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. + + +4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) +----------------------------------------- + +:Capability: KVM_CAP_ARM_SET_DEVICE_ADDR +:Architectures: arm64 +:Type: vm ioctl +:Parameters: struct kvm_arm_device_address (in) +:Returns: 0 on success, -1 on error + +Errors: + + ====== ============================================ + ENODEV The device id is unknown + ENXIO Device not supported on current system + EEXIST Address already set + E2BIG Address outside guest physical address space + EBUSY Address overlaps with other device range + ====== ============================================ + +:: + + struct kvm_arm_device_addr { + __u64 id; + __u64 addr; + }; + +Specify a device address in the guest's physical address space where guests +can access emulated or directly exposed devices, which the host kernel needs +to know about. The id field is an architecture specific identifier for a +specific device. + +arm64 divides the id field into two parts, a device id and an +address type id specific to the individual device:: + + bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | + field: | 0x00000000 | device id | addr type id | + +arm64 currently only require this when using the in-kernel GIC +support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 +as the device id. When setting the base address for the guest's +mapping of the VGIC virtual CPU and distributor interface, the ioctl +must be called after calling KVM_CREATE_IRQCHIP, but before calling +KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the +base addresses will return -EEXIST. + +Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API +should be used instead. + + +4.86 KVM_PPC_RTAS_DEFINE_TOKEN +------------------------------ + +:Capability: KVM_CAP_PPC_RTAS +:Architectures: ppc +:Type: vm ioctl +:Parameters: struct kvm_rtas_token_args +:Returns: 0 on success, -1 on error + +Defines a token value for a RTAS (Run Time Abstraction Services) +service in order to allow it to be handled in the kernel. The +argument struct gives the name of the service, which must be the name +of a service that has a kernel-side implementation. If the token +value is non-zero, it will be associated with that service, and +subsequent RTAS calls by the guest specifying that token will be +handled by the kernel. If the token value is 0, then any token +associated with the service will be forgotten, and subsequent RTAS +calls by the guest for that service will be passed to userspace to be +handled. + +4.87 KVM_SET_GUEST_DEBUG +------------------------ + +:Capability: KVM_CAP_SET_GUEST_DEBUG +:Architectures: x86, s390, ppc, arm64 +:Type: vcpu ioctl +:Parameters: struct kvm_guest_debug (in) +:Returns: 0 on success; -1 on error + +:: + + struct kvm_guest_debug { + __u32 control; + __u32 pad; + struct kvm_guest_debug_arch arch; + }; + +Set up the processor specific debug registers and configure vcpu for +handling guest debug events. There are two parts to the structure, the +first a control bitfield indicates the type of debug events to handle +when running. Common control bits are: + + - KVM_GUESTDBG_ENABLE: guest debugging is enabled + - KVM_GUESTDBG_SINGLESTEP: the next run should single-step + +The top 16 bits of the control field are architecture specific control +flags which can include the following: + + - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64] + - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390] + - KVM_GUESTDBG_USE_HW: using hardware debug events [arm64] + - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86] + - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86] + - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390] + - KVM_GUESTDBG_BLOCKIRQ: avoid injecting interrupts/NMI/SMI [x86] + +For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints +are enabled in memory so we need to ensure breakpoint exceptions are +correctly trapped and the KVM run loop exits at the breakpoint and not +running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP +we need to ensure the guest vCPUs architecture specific registers are +updated to the correct (supplied) values. + +The second part of the structure is architecture specific and +typically contains a set of debug registers. + +For arm64 the number of debug registers is implementation defined and +can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and +KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number +indicating the number of supported registers. + +For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether +the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported. + +Also when supported, KVM_CAP_SET_GUEST_DEBUG2 capability indicates the +supported KVM_GUESTDBG_* bits in the control field. + +When debug events exit the main run loop with the reason +KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run +structure containing architecture specific debug information. + +4.88 KVM_GET_EMULATED_CPUID +--------------------------- + +:Capability: KVM_CAP_EXT_EMUL_CPUID +:Architectures: x86 +:Type: system ioctl +:Parameters: struct kvm_cpuid2 (in/out) +:Returns: 0 on success, -1 on error + +:: + + struct kvm_cpuid2 { + __u32 nent; + __u32 flags; + struct kvm_cpuid_entry2 entries[0]; + }; + +The member 'flags' is used for passing flags from userspace. + +:: + + #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) + #define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) /* deprecated */ + #define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) /* deprecated */ + + struct kvm_cpuid_entry2 { + __u32 function; + __u32 index; + __u32 flags; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding[3]; + }; + +This ioctl returns x86 cpuid features which are emulated by +kvm.Userspace can use the information returned by this ioctl to query +which features are emulated by kvm instead of being present natively. + +Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2 +structure with the 'nent' field indicating the number of entries in +the variable-size array 'entries'. If the number of entries is too low +to describe the cpu capabilities, an error (E2BIG) is returned. If the +number is too high, the 'nent' field is adjusted and an error (ENOMEM) +is returned. If the number is just right, the 'nent' field is adjusted +to the number of valid entries in the 'entries' array, which is then +filled. + +The entries returned are the set CPUID bits of the respective features +which kvm emulates, as returned by the CPUID instruction, with unknown +or unsupported feature bits cleared. + +Features like x2apic, for example, may not be present in the host cpu +but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be +emulated efficiently and thus not included here. + +The fields in each entry are defined as follows: + + function: + the eax value used to obtain the entry + index: + the ecx value used to obtain the entry (for entries that are + affected by ecx) + flags: + an OR of zero or more of the following: + + KVM_CPUID_FLAG_SIGNIFCANT_INDEX: + if the index field is valid + + eax, ebx, ecx, edx: + + the values returned by the cpuid instruction for + this function/index combination + +4.89 KVM_S390_MEM_OP +-------------------- + +:Capability: KVM_CAP_S390_MEM_OP, KVM_CAP_S390_PROTECTED, KVM_CAP_S390_MEM_OP_EXTENSION +:Architectures: s390 +:Type: vm ioctl, vcpu ioctl +:Parameters: struct kvm_s390_mem_op (in) +:Returns: = 0 on success, + < 0 on generic error (e.g. -EFAULT or -ENOMEM), + > 0 if an exception occurred while walking the page tables + +Read or write data from/to the VM's memory. +The KVM_CAP_S390_MEM_OP_EXTENSION capability specifies what functionality is +supported. + +Parameters are specified via the following structure:: + + struct kvm_s390_mem_op { + __u64 gaddr; /* the guest address */ + __u64 flags; /* flags */ + __u32 size; /* amount of bytes */ + __u32 op; /* type of operation */ + __u64 buf; /* buffer in userspace */ + union { + struct { + __u8 ar; /* the access register number */ + __u8 key; /* access key, ignored if flag unset */ + }; + __u32 sida_offset; /* offset into the sida */ + __u8 reserved[32]; /* ignored */ + }; + }; + +The start address of the memory region has to be specified in the "gaddr" +field, and the length of the region in the "size" field (which must not +be 0). The maximum value for "size" can be obtained by checking the +KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the +userspace application where the read data should be written to for +a read access, or where the data that should be written is stored for +a write access. The "reserved" field is meant for future extensions. +Reserved and unused values are ignored. Future extension that add members must +introduce new flags. + +The type of operation is specified in the "op" field. Flags modifying +their behavior can be set in the "flags" field. Undefined flag bits must +be set to 0. + +Possible operations are: + * ``KVM_S390_MEMOP_LOGICAL_READ`` + * ``KVM_S390_MEMOP_LOGICAL_WRITE`` + * ``KVM_S390_MEMOP_ABSOLUTE_READ`` + * ``KVM_S390_MEMOP_ABSOLUTE_WRITE`` + * ``KVM_S390_MEMOP_SIDA_READ`` + * ``KVM_S390_MEMOP_SIDA_WRITE`` + +Logical read/write: +^^^^^^^^^^^^^^^^^^^ + +Access logical memory, i.e. translate the given guest address to an absolute +address given the state of the VCPU and use the absolute address as target of +the access. "ar" designates the access register number to be used; the valid +range is 0..15. +Logical accesses are permitted for the VCPU ioctl only. +Logical accesses are permitted for non-protected guests only. + +Supported flags: + * ``KVM_S390_MEMOP_F_CHECK_ONLY`` + * ``KVM_S390_MEMOP_F_INJECT_EXCEPTION`` + * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` + +The KVM_S390_MEMOP_F_CHECK_ONLY flag can be set to check whether the +corresponding memory access would cause an access exception; however, +no actual access to the data in memory at the destination is performed. +In this case, "buf" is unused and can be NULL. + +In case an access exception occurred during the access (or would occur +in case of KVM_S390_MEMOP_F_CHECK_ONLY), the ioctl returns a positive +error number indicating the type of exception. This exception is also +raised directly at the corresponding VCPU if the flag +KVM_S390_MEMOP_F_INJECT_EXCEPTION is set. +On protection exceptions, unless specified otherwise, the injected +translation-exception identifier (TEID) indicates suppression. + +If the KVM_S390_MEMOP_F_SKEY_PROTECTION flag is set, storage key +protection is also in effect and may cause exceptions if accesses are +prohibited given the access key designated by "key"; the valid range is 0..15. +KVM_S390_MEMOP_F_SKEY_PROTECTION is available if KVM_CAP_S390_MEM_OP_EXTENSION +is > 0. +Since the accessed memory may span multiple pages and those pages might have +different storage keys, it is possible that a protection exception occurs +after memory has been modified. In this case, if the exception is injected, +the TEID does not indicate suppression. + +Absolute read/write: +^^^^^^^^^^^^^^^^^^^^ + +Access absolute memory. This operation is intended to be used with the +KVM_S390_MEMOP_F_SKEY_PROTECTION flag, to allow accessing memory and performing +the checks required for storage key protection as one operation (as opposed to +user space getting the storage keys, performing the checks, and accessing +memory thereafter, which could lead to a delay between check and access). +Absolute accesses are permitted for the VM ioctl if KVM_CAP_S390_MEM_OP_EXTENSION +is > 0. +Currently absolute accesses are not permitted for VCPU ioctls. +Absolute accesses are permitted for non-protected guests only. + +Supported flags: + * ``KVM_S390_MEMOP_F_CHECK_ONLY`` + * ``KVM_S390_MEMOP_F_SKEY_PROTECTION`` + +The semantics of the flags are as for logical accesses. + +SIDA read/write: +^^^^^^^^^^^^^^^^ + +Access the secure instruction data area which contains memory operands necessary +for instruction emulation for protected guests. +SIDA accesses are available if the KVM_CAP_S390_PROTECTED capability is available. +SIDA accesses are permitted for the VCPU ioctl only. +SIDA accesses are permitted for protected guests only. + +No flags are supported. + +4.90 KVM_S390_GET_SKEYS +----------------------- + +:Capability: KVM_CAP_S390_SKEYS +:Architectures: s390 +:Type: vm ioctl +:Parameters: struct kvm_s390_skeys +:Returns: 0 on success, KVM_S390_GET_SKEYS_NONE if guest is not using storage + keys, negative value on error + +This ioctl is used to get guest storage key values on the s390 +architecture. The ioctl takes parameters via the kvm_s390_skeys struct:: + + struct kvm_s390_skeys { + __u64 start_gfn; + __u64 count; + __u64 skeydata_addr; + __u32 flags; + __u32 reserved[9]; + }; + +The start_gfn field is the number of the first guest frame whose storage keys +you want to get. + +The count field is the number of consecutive frames (starting from start_gfn) +whose storage keys to get. The count field must be at least 1 and the maximum +allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range +will cause the ioctl to return -EINVAL. + +The skeydata_addr field is the address to a buffer large enough to hold count +bytes. This buffer will be filled with storage key data by the ioctl. + +4.91 KVM_S390_SET_SKEYS +----------------------- + +:Capability: KVM_CAP_S390_SKEYS +:Architectures: s390 +:Type: vm ioctl +:Parameters: struct kvm_s390_skeys +:Returns: 0 on success, negative value on error + +This ioctl is used to set guest storage key values on the s390 +architecture. The ioctl takes parameters via the kvm_s390_skeys struct. +See section on KVM_S390_GET_SKEYS for struct definition. + +The start_gfn field is the number of the first guest frame whose storage keys +you want to set. + +The count field is the number of consecutive frames (starting from start_gfn) +whose storage keys to get. The count field must be at least 1 and the maximum +allowed value is defined as KVM_S390_SKEYS_MAX. Values outside this range +will cause the ioctl to return -EINVAL. + +The skeydata_addr field is the address to a buffer containing count bytes of +storage keys. Each byte in the buffer will be set as the storage key for a +single frame starting at start_gfn for count frames. + +Note: If any architecturally invalid key value is found in the given data then +the ioctl will return -EINVAL. + +4.92 KVM_S390_IRQ +----------------- + +:Capability: KVM_CAP_S390_INJECT_IRQ +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: struct kvm_s390_irq (in) +:Returns: 0 on success, -1 on error + +Errors: + + + ====== ================================================================= + EINVAL interrupt type is invalid + type is KVM_S390_SIGP_STOP and flag parameter is invalid value, + type is KVM_S390_INT_EXTERNAL_CALL and code is bigger + than the maximum of VCPUs + EBUSY type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped, + type is KVM_S390_SIGP_STOP and a stop irq is already pending, + type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt + is already pending + ====== ================================================================= + +Allows to inject an interrupt to the guest. + +Using struct kvm_s390_irq as a parameter allows +to inject additional payload which is not +possible via KVM_S390_INTERRUPT. + +Interrupt parameters are passed via kvm_s390_irq:: + + struct kvm_s390_irq { + __u64 type; + union { + struct kvm_s390_io_info io; + struct kvm_s390_ext_info ext; + struct kvm_s390_pgm_info pgm; + struct kvm_s390_emerg_info emerg; + struct kvm_s390_extcall_info extcall; + struct kvm_s390_prefix_info prefix; + struct kvm_s390_stop_info stop; + struct kvm_s390_mchk_info mchk; + char reserved[64]; + } u; + }; + +type can be one of the following: + +- KVM_S390_SIGP_STOP - sigp stop; parameter in .stop +- KVM_S390_PROGRAM_INT - program check; parameters in .pgm +- KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix +- KVM_S390_RESTART - restart; no parameters +- KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters +- KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters +- KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg +- KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall +- KVM_S390_MCHK - machine check interrupt; parameters in .mchk + +This is an asynchronous vcpu ioctl and can be invoked from any thread. + +4.94 KVM_S390_GET_IRQ_STATE +--------------------------- + +:Capability: KVM_CAP_S390_IRQ_STATE +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: struct kvm_s390_irq_state (out) +:Returns: >= number of bytes copied into buffer, + -EINVAL if buffer size is 0, + -ENOBUFS if buffer size is too small to fit all pending interrupts, + -EFAULT if the buffer address was invalid + +This ioctl allows userspace to retrieve the complete state of all currently +pending interrupts in a single buffer. Use cases include migration +and introspection. The parameter structure contains the address of a +userspace buffer and its length:: + + struct kvm_s390_irq_state { + __u64 buf; + __u32 flags; /* will stay unused for compatibility reasons */ + __u32 len; + __u32 reserved[4]; /* will stay unused for compatibility reasons */ + }; + +Userspace passes in the above struct and for each pending interrupt a +struct kvm_s390_irq is copied to the provided buffer. + +The structure contains a flags and a reserved field for future extensions. As +the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and +reserved, these fields can not be used in the future without breaking +compatibility. + +If -ENOBUFS is returned the buffer provided was too small and userspace +may retry with a bigger buffer. + +4.95 KVM_S390_SET_IRQ_STATE +--------------------------- + +:Capability: KVM_CAP_S390_IRQ_STATE +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: struct kvm_s390_irq_state (in) +:Returns: 0 on success, + -EFAULT if the buffer address was invalid, + -EINVAL for an invalid buffer length (see below), + -EBUSY if there were already interrupts pending, + errors occurring when actually injecting the + interrupt. See KVM_S390_IRQ. + +This ioctl allows userspace to set the complete state of all cpu-local +interrupts currently pending for the vcpu. It is intended for restoring +interrupt state after a migration. The input parameter is a userspace buffer +containing a struct kvm_s390_irq_state:: + + struct kvm_s390_irq_state { + __u64 buf; + __u32 flags; /* will stay unused for compatibility reasons */ + __u32 len; + __u32 reserved[4]; /* will stay unused for compatibility reasons */ + }; + +The restrictions for flags and reserved apply as well. +(see KVM_S390_GET_IRQ_STATE) + +The userspace memory referenced by buf contains a struct kvm_s390_irq +for each interrupt to be injected into the guest. +If one of the interrupts could not be injected for some reason the +ioctl aborts. + +len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0 +and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq), +which is the maximum number of possibly pending cpu-local interrupts. + +4.96 KVM_SMI +------------ + +:Capability: KVM_CAP_X86_SMM +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: none +:Returns: 0 on success, -1 on error + +Queues an SMI on the thread's vcpu. + +4.97 KVM_X86_SET_MSR_FILTER +---------------------------- + +:Capability: KVM_CAP_X86_MSR_FILTER +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_msr_filter +:Returns: 0 on success, < 0 on error + +:: + + struct kvm_msr_filter_range { + #define KVM_MSR_FILTER_READ (1 << 0) + #define KVM_MSR_FILTER_WRITE (1 << 1) + __u32 flags; + __u32 nmsrs; /* number of msrs in bitmap */ + __u32 base; /* MSR index the bitmap starts at */ + __u8 *bitmap; /* a 1 bit allows the operations in flags, 0 denies */ + }; + + #define KVM_MSR_FILTER_MAX_RANGES 16 + struct kvm_msr_filter { + #define KVM_MSR_FILTER_DEFAULT_ALLOW (0 << 0) + #define KVM_MSR_FILTER_DEFAULT_DENY (1 << 0) + __u32 flags; + struct kvm_msr_filter_range ranges[KVM_MSR_FILTER_MAX_RANGES]; + }; + +flags values for ``struct kvm_msr_filter_range``: + +``KVM_MSR_FILTER_READ`` + + Filter read accesses to MSRs using the given bitmap. A 0 in the bitmap + indicates that a read should immediately fail, while a 1 indicates that + a read for a particular MSR should be handled regardless of the default + filter action. + +``KVM_MSR_FILTER_WRITE`` + + Filter write accesses to MSRs using the given bitmap. A 0 in the bitmap + indicates that a write should immediately fail, while a 1 indicates that + a write for a particular MSR should be handled regardless of the default + filter action. + +``KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE`` + + Filter both read and write accesses to MSRs using the given bitmap. A 0 + in the bitmap indicates that both reads and writes should immediately fail, + while a 1 indicates that reads and writes for a particular MSR are not + filtered by this range. + +flags values for ``struct kvm_msr_filter``: + +``KVM_MSR_FILTER_DEFAULT_ALLOW`` + + If no filter range matches an MSR index that is getting accessed, KVM will + fall back to allowing access to the MSR. + +``KVM_MSR_FILTER_DEFAULT_DENY`` + + If no filter range matches an MSR index that is getting accessed, KVM will + fall back to rejecting access to the MSR. In this mode, all MSRs that should + be processed by KVM need to explicitly be marked as allowed in the bitmaps. + +This ioctl allows user space to define up to 16 bitmaps of MSR ranges to +specify whether a certain MSR access should be explicitly filtered for or not. + +If this ioctl has never been invoked, MSR accesses are not guarded and the +default KVM in-kernel emulation behavior is fully preserved. + +Calling this ioctl with an empty set of ranges (all nmsrs == 0) disables MSR +filtering. In that mode, ``KVM_MSR_FILTER_DEFAULT_DENY`` is invalid and causes +an error. + +As soon as the filtering is in place, every MSR access is processed through +the filtering except for accesses to the x2APIC MSRs (from 0x800 to 0x8ff); +x2APIC MSRs are always allowed, independent of the ``default_allow`` setting, +and their behavior depends on the ``X2APIC_ENABLE`` bit of the APIC base +register. + +.. warning:: + MSR accesses coming from nested vmentry/vmexit are not filtered. + This includes both writes to individual VMCS fields and reads/writes + through the MSR lists pointed to by the VMCS. + +If a bit is within one of the defined ranges, read and write accesses are +guarded by the bitmap's value for the MSR index if the kind of access +is included in the ``struct kvm_msr_filter_range`` flags. If no range +cover this particular access, the behavior is determined by the flags +field in the kvm_msr_filter struct: ``KVM_MSR_FILTER_DEFAULT_ALLOW`` +and ``KVM_MSR_FILTER_DEFAULT_DENY``. + +Each bitmap range specifies a range of MSRs to potentially allow access on. +The range goes from MSR index [base .. base+nmsrs]. The flags field +indicates whether reads, writes or both reads and writes are filtered +by setting a 1 bit in the bitmap for the corresponding MSR index. + +If an MSR access is not permitted through the filtering, it generates a +#GP inside the guest. When combined with KVM_CAP_X86_USER_SPACE_MSR, that +allows user space to deflect and potentially handle various MSR accesses +into user space. + +Note, invoking this ioctl while a vCPU is running is inherently racy. However, +KVM does guarantee that vCPUs will see either the previous filter or the new +filter, e.g. MSRs with identical settings in both the old and new filter will +have deterministic behavior. + +4.98 KVM_CREATE_SPAPR_TCE_64 +---------------------------- + +:Capability: KVM_CAP_SPAPR_TCE_64 +:Architectures: powerpc +:Type: vm ioctl +:Parameters: struct kvm_create_spapr_tce_64 (in) +:Returns: file descriptor for manipulating the created TCE table + +This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit +windows, described in 4.62 KVM_CREATE_SPAPR_TCE + +This capability uses extended struct in ioctl interface:: + + /* for KVM_CAP_SPAPR_TCE_64 */ + struct kvm_create_spapr_tce_64 { + __u64 liobn; + __u32 page_shift; + __u32 flags; + __u64 offset; /* in pages */ + __u64 size; /* in pages */ + }; + +The aim of extension is to support an additional bigger DMA window with +a variable page size. +KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and +a bus offset of the corresponding DMA window, @size and @offset are numbers +of IOMMU pages. + +@flags are not used at the moment. + +The rest of functionality is identical to KVM_CREATE_SPAPR_TCE. + +4.99 KVM_REINJECT_CONTROL +------------------------- + +:Capability: KVM_CAP_REINJECT_CONTROL +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_reinject_control (in) +:Returns: 0 on success, + -EFAULT if struct kvm_reinject_control cannot be read, + -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier. + +i8254 (PIT) has two modes, reinject and !reinject. The default is reinject, +where KVM queues elapsed i8254 ticks and monitors completion of interrupt from +vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its +interrupt whenever there isn't a pending interrupt from i8254. +!reinject mode injects an interrupt as soon as a tick arrives. + +:: + + struct kvm_reinject_control { + __u8 pit_reinject; + __u8 reserved[31]; + }; + +pit_reinject = 0 (!reinject mode) is recommended, unless running an old +operating system that uses the PIT for timing (e.g. Linux 2.4.x). + +4.100 KVM_PPC_CONFIGURE_V3_MMU +------------------------------ + +:Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3 +:Architectures: ppc +:Type: vm ioctl +:Parameters: struct kvm_ppc_mmuv3_cfg (in) +:Returns: 0 on success, + -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read, + -EINVAL if the configuration is invalid + +This ioctl controls whether the guest will use radix or HPT (hashed +page table) translation, and sets the pointer to the process table for +the guest. + +:: + + struct kvm_ppc_mmuv3_cfg { + __u64 flags; + __u64 process_table; + }; + +There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and +KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest +to use radix tree translation, and if clear, to use HPT translation. +KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest +to be able to use the global TLB and SLB invalidation instructions; +if clear, the guest may not use these instructions. + +The process_table field specifies the address and size of the guest +process table, which is in the guest's space. This field is formatted +as the second doubleword of the partition table entry, as defined in +the Power ISA V3.00, Book III section 5.7.6.1. + +4.101 KVM_PPC_GET_RMMU_INFO +--------------------------- + +:Capability: KVM_CAP_PPC_RADIX_MMU +:Architectures: ppc +:Type: vm ioctl +:Parameters: struct kvm_ppc_rmmu_info (out) +:Returns: 0 on success, + -EFAULT if struct kvm_ppc_rmmu_info cannot be written, + -EINVAL if no useful information can be returned + +This ioctl returns a structure containing two things: (a) a list +containing supported radix tree geometries, and (b) a list that maps +page sizes to put in the "AP" (actual page size) field for the tlbie +(TLB invalidate entry) instruction. + +:: + + struct kvm_ppc_rmmu_info { + struct kvm_ppc_radix_geom { + __u8 page_shift; + __u8 level_bits[4]; + __u8 pad[3]; + } geometries[8]; + __u32 ap_encodings[8]; + }; + +The geometries[] field gives up to 8 supported geometries for the +radix page table, in terms of the log base 2 of the smallest page +size, and the number of bits indexed at each level of the tree, from +the PTE level up to the PGD level in that order. Any unused entries +will have 0 in the page_shift field. + +The ap_encodings gives the supported page sizes and their AP field +encodings, encoded with the AP value in the top 3 bits and the log +base 2 of the page size in the bottom 6 bits. + +4.102 KVM_PPC_RESIZE_HPT_PREPARE +-------------------------------- + +:Capability: KVM_CAP_SPAPR_RESIZE_HPT +:Architectures: powerpc +:Type: vm ioctl +:Parameters: struct kvm_ppc_resize_hpt (in) +:Returns: 0 on successful completion, + >0 if a new HPT is being prepared, the value is an estimated + number of milliseconds until preparation is complete, + -EFAULT if struct kvm_reinject_control cannot be read, + -EINVAL if the supplied shift or flags are invalid, + -ENOMEM if unable to allocate the new HPT, + +Used to implement the PAPR extension for runtime resizing of a guest's +Hashed Page Table (HPT). Specifically this starts, stops or monitors +the preparation of a new potential HPT for the guest, essentially +implementing the H_RESIZE_HPT_PREPARE hypercall. + +:: + + struct kvm_ppc_resize_hpt { + __u64 flags; + __u32 shift; + __u32 pad; + }; + +If called with shift > 0 when there is no pending HPT for the guest, +this begins preparation of a new pending HPT of size 2^(shift) bytes. +It then returns a positive integer with the estimated number of +milliseconds until preparation is complete. + +If called when there is a pending HPT whose size does not match that +requested in the parameters, discards the existing pending HPT and +creates a new one as above. + +If called when there is a pending HPT of the size requested, will: + + * If preparation of the pending HPT is already complete, return 0 + * If preparation of the pending HPT has failed, return an error + code, then discard the pending HPT. + * If preparation of the pending HPT is still in progress, return an + estimated number of milliseconds until preparation is complete. + +If called with shift == 0, discards any currently pending HPT and +returns 0 (i.e. cancels any in-progress preparation). + +flags is reserved for future expansion, currently setting any bits in +flags will result in an -EINVAL. + +Normally this will be called repeatedly with the same parameters until +it returns <= 0. The first call will initiate preparation, subsequent +ones will monitor preparation until it completes or fails. + +4.103 KVM_PPC_RESIZE_HPT_COMMIT +------------------------------- + +:Capability: KVM_CAP_SPAPR_RESIZE_HPT +:Architectures: powerpc +:Type: vm ioctl +:Parameters: struct kvm_ppc_resize_hpt (in) +:Returns: 0 on successful completion, + -EFAULT if struct kvm_reinject_control cannot be read, + -EINVAL if the supplied shift or flags are invalid, + -ENXIO is there is no pending HPT, or the pending HPT doesn't + have the requested size, + -EBUSY if the pending HPT is not fully prepared, + -ENOSPC if there was a hash collision when moving existing + HPT entries to the new HPT, + -EIO on other error conditions + +Used to implement the PAPR extension for runtime resizing of a guest's +Hashed Page Table (HPT). Specifically this requests that the guest be +transferred to working with the new HPT, essentially implementing the +H_RESIZE_HPT_COMMIT hypercall. + +:: + + struct kvm_ppc_resize_hpt { + __u64 flags; + __u32 shift; + __u32 pad; + }; + +This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has +returned 0 with the same parameters. In other cases +KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or +-EBUSY, though others may be possible if the preparation was started, +but failed). + +This will have undefined effects on the guest if it has not already +placed itself in a quiescent state where no vcpu will make MMU enabled +memory accesses. + +On succsful completion, the pending HPT will become the guest's active +HPT and the previous HPT will be discarded. + +On failure, the guest will still be operating on its previous HPT. + +4.104 KVM_X86_GET_MCE_CAP_SUPPORTED +----------------------------------- + +:Capability: KVM_CAP_MCE +:Architectures: x86 +:Type: system ioctl +:Parameters: u64 mce_cap (out) +:Returns: 0 on success, -1 on error + +Returns supported MCE capabilities. The u64 mce_cap parameter +has the same format as the MSR_IA32_MCG_CAP register. Supported +capabilities will have the corresponding bits set. + +4.105 KVM_X86_SETUP_MCE +----------------------- + +:Capability: KVM_CAP_MCE +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: u64 mcg_cap (in) +:Returns: 0 on success, + -EFAULT if u64 mcg_cap cannot be read, + -EINVAL if the requested number of banks is invalid, + -EINVAL if requested MCE capability is not supported. + +Initializes MCE support for use. The u64 mcg_cap parameter +has the same format as the MSR_IA32_MCG_CAP register and +specifies which capabilities should be enabled. The maximum +supported number of error-reporting banks can be retrieved when +checking for KVM_CAP_MCE. The supported capabilities can be +retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. + +4.106 KVM_X86_SET_MCE +--------------------- + +:Capability: KVM_CAP_MCE +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_x86_mce (in) +:Returns: 0 on success, + -EFAULT if struct kvm_x86_mce cannot be read, + -EINVAL if the bank number is invalid, + -EINVAL if VAL bit is not set in status field. + +Inject a machine check error (MCE) into the guest. The input +parameter is:: + + struct kvm_x86_mce { + __u64 status; + __u64 addr; + __u64 misc; + __u64 mcg_status; + __u8 bank; + __u8 pad1[7]; + __u64 pad2[3]; + }; + +If the MCE being reported is an uncorrected error, KVM will +inject it as an MCE exception into the guest. If the guest +MCG_STATUS register reports that an MCE is in progress, KVM +causes an KVM_EXIT_SHUTDOWN vmexit. + +Otherwise, if the MCE is a corrected error, KVM will just +store it in the corresponding bank (provided this bank is +not holding a previously reported uncorrected error). + +4.107 KVM_S390_GET_CMMA_BITS +---------------------------- + +:Capability: KVM_CAP_S390_CMMA_MIGRATION +:Architectures: s390 +:Type: vm ioctl +:Parameters: struct kvm_s390_cmma_log (in, out) +:Returns: 0 on success, a negative value on error + +Errors: + + ====== ============================================================= + ENOMEM not enough memory can be allocated to complete the task + ENXIO if CMMA is not enabled + EINVAL if KVM_S390_CMMA_PEEK is not set but migration mode was not enabled + EINVAL if KVM_S390_CMMA_PEEK is not set but dirty tracking has been + disabled (and thus migration mode was automatically disabled) + EFAULT if the userspace address is invalid or if no page table is + present for the addresses (e.g. when using hugepages). + ====== ============================================================= + +This ioctl is used to get the values of the CMMA bits on the s390 +architecture. It is meant to be used in two scenarios: + +- During live migration to save the CMMA values. Live migration needs + to be enabled via the KVM_REQ_START_MIGRATION VM property. +- To non-destructively peek at the CMMA values, with the flag + KVM_S390_CMMA_PEEK set. + +The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired +values are written to a buffer whose location is indicated via the "values" +member in the kvm_s390_cmma_log struct. The values in the input struct are +also updated as needed. + +Each CMMA value takes up one byte. + +:: + + struct kvm_s390_cmma_log { + __u64 start_gfn; + __u32 count; + __u32 flags; + union { + __u64 remaining; + __u64 mask; + }; + __u64 values; + }; + +start_gfn is the number of the first guest frame whose CMMA values are +to be retrieved, + +count is the length of the buffer in bytes, + +values points to the buffer where the result will be written to. + +If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be +KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with +other ioctls. + +The result is written in the buffer pointed to by the field values, and +the values of the input parameter are updated as follows. + +Depending on the flags, different actions are performed. The only +supported flag so far is KVM_S390_CMMA_PEEK. + +The default behaviour if KVM_S390_CMMA_PEEK is not set is: +start_gfn will indicate the first page frame whose CMMA bits were dirty. +It is not necessarily the same as the one passed as input, as clean pages +are skipped. + +count will indicate the number of bytes actually written in the buffer. +It can (and very often will) be smaller than the input value, since the +buffer is only filled until 16 bytes of clean values are found (which +are then not copied in the buffer). Since a CMMA migration block needs +the base address and the length, for a total of 16 bytes, we will send +back some clean data if there is some dirty data afterwards, as long as +the size of the clean data does not exceed the size of the header. This +allows to minimize the amount of data to be saved or transferred over +the network at the expense of more roundtrips to userspace. The next +invocation of the ioctl will skip over all the clean values, saving +potentially more than just the 16 bytes we found. + +If KVM_S390_CMMA_PEEK is set: +the existing storage attributes are read even when not in migration +mode, and no other action is performed; + +the output start_gfn will be equal to the input start_gfn, + +the output count will be equal to the input count, except if the end of +memory has been reached. + +In both cases: +the field "remaining" will indicate the total number of dirty CMMA values +still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is +not enabled. + +mask is unused. + +values points to the userspace buffer where the result will be stored. + +4.108 KVM_S390_SET_CMMA_BITS +---------------------------- + +:Capability: KVM_CAP_S390_CMMA_MIGRATION +:Architectures: s390 +:Type: vm ioctl +:Parameters: struct kvm_s390_cmma_log (in) +:Returns: 0 on success, a negative value on error + +This ioctl is used to set the values of the CMMA bits on the s390 +architecture. It is meant to be used during live migration to restore +the CMMA values, but there are no restrictions on its use. +The ioctl takes parameters via the kvm_s390_cmma_values struct. +Each CMMA value takes up one byte. + +:: + + struct kvm_s390_cmma_log { + __u64 start_gfn; + __u32 count; + __u32 flags; + union { + __u64 remaining; + __u64 mask; + }; + __u64 values; + }; + +start_gfn indicates the starting guest frame number, + +count indicates how many values are to be considered in the buffer, + +flags is not used and must be 0. + +mask indicates which PGSTE bits are to be considered. + +remaining is not used. + +values points to the buffer in userspace where to store the values. + +This ioctl can fail with -ENOMEM if not enough memory can be allocated to +complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if +the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or +if the flags field was not 0, with -EFAULT if the userspace address is +invalid, if invalid pages are written to (e.g. after the end of memory) +or if no page table is present for the addresses (e.g. when using +hugepages). + +4.109 KVM_PPC_GET_CPU_CHAR +-------------------------- + +:Capability: KVM_CAP_PPC_GET_CPU_CHAR +:Architectures: powerpc +:Type: vm ioctl +:Parameters: struct kvm_ppc_cpu_char (out) +:Returns: 0 on successful completion, + -EFAULT if struct kvm_ppc_cpu_char cannot be written + +This ioctl gives userspace information about certain characteristics +of the CPU relating to speculative execution of instructions and +possible information leakage resulting from speculative execution (see +CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is +returned in struct kvm_ppc_cpu_char, which looks like this:: + + struct kvm_ppc_cpu_char { + __u64 character; /* characteristics of the CPU */ + __u64 behaviour; /* recommended software behaviour */ + __u64 character_mask; /* valid bits in character */ + __u64 behaviour_mask; /* valid bits in behaviour */ + }; + +For extensibility, the character_mask and behaviour_mask fields +indicate which bits of character and behaviour have been filled in by +the kernel. If the set of defined bits is extended in future then +userspace will be able to tell whether it is running on a kernel that +knows about the new bits. + +The character field describes attributes of the CPU which can help +with preventing inadvertent information disclosure - specifically, +whether there is an instruction to flash-invalidate the L1 data cache +(ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set +to a mode where entries can only be used by the thread that created +them, whether the bcctr[l] instruction prevents speculation, and +whether a speculation barrier instruction (ori 31,31,0) is provided. + +The behaviour field describes actions that software should take to +prevent inadvertent information disclosure, and thus describes which +vulnerabilities the hardware is subject to; specifically whether the +L1 data cache should be flushed when returning to user mode from the +kernel, and whether a speculation barrier should be placed between an +array bounds check and the array access. + +These fields use the same bit definitions as the new +H_GET_CPU_CHARACTERISTICS hypercall. + +4.110 KVM_MEMORY_ENCRYPT_OP +--------------------------- + +:Capability: basic +:Architectures: x86 +:Type: vm +:Parameters: an opaque platform specific structure (in/out) +:Returns: 0 on success; -1 on error + +If the platform supports creating encrypted VMs then this ioctl can be used +for issuing platform-specific memory encryption commands to manage those +encrypted VMs. + +Currently, this ioctl is used for issuing Secure Encrypted Virtualization +(SEV) commands on AMD Processors. The SEV commands are defined in +Documentation/virt/kvm/x86/amd-memory-encryption.rst. + +4.111 KVM_MEMORY_ENCRYPT_REG_REGION +----------------------------------- + +:Capability: basic +:Architectures: x86 +:Type: system +:Parameters: struct kvm_enc_region (in) +:Returns: 0 on success; -1 on error + +This ioctl can be used to register a guest memory region which may +contain encrypted data (e.g. guest RAM, SMRAM etc). + +It is used in the SEV-enabled guest. When encryption is enabled, a guest +memory region may contain encrypted data. The SEV memory encryption +engine uses a tweak such that two identical plaintext pages, each at +different locations will have differing ciphertexts. So swapping or +moving ciphertext of those pages will not result in plaintext being +swapped. So relocating (or migrating) physical backing pages for the SEV +guest will require some additional steps. + +Note: The current SEV key management spec does not provide commands to +swap or migrate (move) ciphertext pages. Hence, for now we pin the guest +memory region registered with the ioctl. + +4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION +------------------------------------- + +:Capability: basic +:Architectures: x86 +:Type: system +:Parameters: struct kvm_enc_region (in) +:Returns: 0 on success; -1 on error + +This ioctl can be used to unregister the guest memory region registered +with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above. + +4.113 KVM_HYPERV_EVENTFD +------------------------ + +:Capability: KVM_CAP_HYPERV_EVENTFD +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_hyperv_eventfd (in) + +This ioctl (un)registers an eventfd to receive notifications from the guest on +the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without +causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number +(bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit. + +:: + + struct kvm_hyperv_eventfd { + __u32 conn_id; + __s32 fd; + __u32 flags; + __u32 padding[3]; + }; + +The conn_id field should fit within 24 bits:: + + #define KVM_HYPERV_CONN_ID_MASK 0x00ffffff + +The acceptable values for the flags field are:: + + #define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0) + +:Returns: 0 on success, + -EINVAL if conn_id or flags is outside the allowed range, + -ENOENT on deassign if the conn_id isn't registered, + -EEXIST on assign if the conn_id is already registered + +4.114 KVM_GET_NESTED_STATE +-------------------------- + +:Capability: KVM_CAP_NESTED_STATE +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_nested_state (in/out) +:Returns: 0 on success, -1 on error + +Errors: + + ===== ============================================================= + E2BIG the total state size exceeds the value of 'size' specified by + the user; the size required will be written into size. + ===== ============================================================= + +:: + + struct kvm_nested_state { + __u16 flags; + __u16 format; + __u32 size; + + union { + struct kvm_vmx_nested_state_hdr vmx; + struct kvm_svm_nested_state_hdr svm; + + /* Pad the header to 128 bytes. */ + __u8 pad[120]; + } hdr; + + union { + struct kvm_vmx_nested_state_data vmx[0]; + struct kvm_svm_nested_state_data svm[0]; + } data; + }; + + #define KVM_STATE_NESTED_GUEST_MODE 0x00000001 + #define KVM_STATE_NESTED_RUN_PENDING 0x00000002 + #define KVM_STATE_NESTED_EVMCS 0x00000004 + + #define KVM_STATE_NESTED_FORMAT_VMX 0 + #define KVM_STATE_NESTED_FORMAT_SVM 1 + + #define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000 + + #define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001 + #define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002 + + #define KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE 0x00000001 + + struct kvm_vmx_nested_state_hdr { + __u64 vmxon_pa; + __u64 vmcs12_pa; + + struct { + __u16 flags; + } smm; + + __u32 flags; + __u64 preemption_timer_deadline; + }; + + struct kvm_vmx_nested_state_data { + __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; + __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE]; + }; + +This ioctl copies the vcpu's nested virtualization state from the kernel to +userspace. + +The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE +to the KVM_CHECK_EXTENSION ioctl(). + +4.115 KVM_SET_NESTED_STATE +-------------------------- + +:Capability: KVM_CAP_NESTED_STATE +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_nested_state (in) +:Returns: 0 on success, -1 on error + +This copies the vcpu's kvm_nested_state struct from userspace to the kernel. +For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE. + +4.116 KVM_(UN)REGISTER_COALESCED_MMIO +------------------------------------- + +:Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio) + KVM_CAP_COALESCED_PIO (for coalesced pio) +:Architectures: all +:Type: vm ioctl +:Parameters: struct kvm_coalesced_mmio_zone +:Returns: 0 on success, < 0 on error + +Coalesced I/O is a performance optimization that defers hardware +register write emulation so that userspace exits are avoided. It is +typically used to reduce the overhead of emulating frequently accessed +hardware registers. + +When a hardware register is configured for coalesced I/O, write accesses +do not exit to userspace and their value is recorded in a ring buffer +that is shared between kernel and userspace. + +Coalesced I/O is used if one or more write accesses to a hardware +register can be deferred until a read or a write to another hardware +register on the same device. This last access will cause a vmexit and +userspace will process accesses from the ring buffer before emulating +it. That will avoid exiting to userspace on repeated writes. + +Coalesced pio is based on coalesced mmio. There is little difference +between coalesced mmio and pio except that coalesced pio records accesses +to I/O ports. + +4.117 KVM_CLEAR_DIRTY_LOG (vm ioctl) +------------------------------------ + +:Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 +:Architectures: x86, arm64, mips +:Type: vm ioctl +:Parameters: struct kvm_clear_dirty_log (in) +:Returns: 0 on success, -1 on error + +:: + + /* for KVM_CLEAR_DIRTY_LOG */ + struct kvm_clear_dirty_log { + __u32 slot; + __u32 num_pages; + __u64 first_page; + union { + void __user *dirty_bitmap; /* one bit per page */ + __u64 padding; + }; + }; + +The ioctl clears the dirty status of pages in a memory slot, according to +the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap +field. Bit 0 of the bitmap corresponds to page "first_page" in the +memory slot, and num_pages is the size in bits of the input bitmap. +first_page must be a multiple of 64; num_pages must also be a multiple of +64 unless first_page + num_pages is the size of the memory slot. For each +bit that is set in the input bitmap, the corresponding page is marked "clean" +in KVM's dirty bitmap, and dirty tracking is re-enabled for that page +(for example via write-protection, or by clearing the dirty bit in +a page table entry). + +If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies +the address space for which you want to clear the dirty status. See +KVM_SET_USER_MEMORY_REGION for details on the usage of slot field. + +This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 +is enabled; for more information, see the description of the capability. +However, it can always be used as long as KVM_CHECK_EXTENSION confirms +that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is present. + +4.118 KVM_GET_SUPPORTED_HV_CPUID +-------------------------------- + +:Capability: KVM_CAP_HYPERV_CPUID (vcpu), KVM_CAP_SYS_HYPERV_CPUID (system) +:Architectures: x86 +:Type: system ioctl, vcpu ioctl +:Parameters: struct kvm_cpuid2 (in/out) +:Returns: 0 on success, -1 on error + +:: + + struct kvm_cpuid2 { + __u32 nent; + __u32 padding; + struct kvm_cpuid_entry2 entries[0]; + }; + + struct kvm_cpuid_entry2 { + __u32 function; + __u32 index; + __u32 flags; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding[3]; + }; + +This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in +KVM. Userspace can use the information returned by this ioctl to construct +cpuid information presented to guests consuming Hyper-V enlightenments (e.g. +Windows or Hyper-V guests). + +CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level +Functional Specification (TLFS). These leaves can't be obtained with +KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature +leaves (0x40000000, 0x40000001). + +Currently, the following list of CPUID leaves are returned: + + - HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS + - HYPERV_CPUID_INTERFACE + - HYPERV_CPUID_VERSION + - HYPERV_CPUID_FEATURES + - HYPERV_CPUID_ENLIGHTMENT_INFO + - HYPERV_CPUID_IMPLEMENT_LIMITS + - HYPERV_CPUID_NESTED_FEATURES + - HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS + - HYPERV_CPUID_SYNDBG_INTERFACE + - HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES + +Userspace invokes KVM_GET_SUPPORTED_HV_CPUID by passing a kvm_cpuid2 structure +with the 'nent' field indicating the number of entries in the variable-size +array 'entries'. If the number of entries is too low to describe all Hyper-V +feature leaves, an error (E2BIG) is returned. If the number is more or equal +to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the +number of valid entries in the 'entries' array, which is then filled. + +'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved, +userspace should not expect to get any particular value there. + +Note, vcpu version of KVM_GET_SUPPORTED_HV_CPUID is currently deprecated. Unlike +system ioctl which exposes all supported feature bits unconditionally, vcpu +version has the following quirks: + +- HYPERV_CPUID_NESTED_FEATURES leaf and HV_X64_ENLIGHTENED_VMCS_RECOMMENDED + feature bit are only exposed when Enlightened VMCS was previously enabled + on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS). +- HV_STIMER_DIRECT_MODE_AVAILABLE bit is only exposed with in-kernel LAPIC. + (presumes KVM_CREATE_IRQCHIP has already been called). + +4.119 KVM_ARM_VCPU_FINALIZE +--------------------------- + +:Architectures: arm64 +:Type: vcpu ioctl +:Parameters: int feature (in) +:Returns: 0 on success, -1 on error + +Errors: + + ====== ============================================================== + EPERM feature not enabled, needs configuration, or already finalized + EINVAL feature unknown or not present + ====== ============================================================== + +Recognised values for feature: + + ===== =========================================== + arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE) + ===== =========================================== + +Finalizes the configuration of the specified vcpu feature. + +The vcpu must already have been initialised, enabling the affected feature, by +means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in +features[]. + +For affected vcpu features, this is a mandatory step that must be performed +before the vcpu is fully usable. + +Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be +configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration +that should be performaned and how to do it are feature-dependent. + +Other calls that depend on a particular feature being finalized, such as +KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with +-EPERM unless the feature has already been finalized by means of a +KVM_ARM_VCPU_FINALIZE call. + +See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization +using this ioctl. + +4.120 KVM_SET_PMU_EVENT_FILTER +------------------------------ + +:Capability: KVM_CAP_PMU_EVENT_FILTER +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_pmu_event_filter (in) +:Returns: 0 on success, -1 on error + +:: + + struct kvm_pmu_event_filter { + __u32 action; + __u32 nevents; + __u32 fixed_counter_bitmap; + __u32 flags; + __u32 pad[4]; + __u64 events[0]; + }; + +This ioctl restricts the set of PMU events that the guest can program. +The argument holds a list of events which will be allowed or denied. +The eventsel+umask of each event the guest attempts to program is compared +against the events field to determine whether the guest should have access. +The events field only controls general purpose counters; fixed purpose +counters are controlled by the fixed_counter_bitmap. + +No flags are defined yet, the field must be zero. + +Valid values for 'action':: + + #define KVM_PMU_EVENT_ALLOW 0 + #define KVM_PMU_EVENT_DENY 1 + +4.121 KVM_PPC_SVM_OFF +--------------------- + +:Capability: basic +:Architectures: powerpc +:Type: vm ioctl +:Parameters: none +:Returns: 0 on successful completion, + +Errors: + + ====== ================================================================ + EINVAL if ultravisor failed to terminate the secure guest + ENOMEM if hypervisor failed to allocate new radix page tables for guest + ====== ================================================================ + +This ioctl is used to turn off the secure mode of the guest or transition +the guest from secure mode to normal mode. This is invoked when the guest +is reset. This has no effect if called for a normal guest. + +This ioctl issues an ultravisor call to terminate the secure guest, +unpins the VPA pages and releases all the device pages that are used to +track the secure pages by hypervisor. + +4.122 KVM_S390_NORMAL_RESET +--------------------------- + +:Capability: KVM_CAP_S390_VCPU_RESETS +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: none +:Returns: 0 + +This ioctl resets VCPU registers and control structures according to +the cpu reset definition in the POP (Principles Of Operation). + +4.123 KVM_S390_INITIAL_RESET +---------------------------- + +:Capability: none +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: none +:Returns: 0 + +This ioctl resets VCPU registers and control structures according to +the initial cpu reset definition in the POP. However, the cpu is not +put into ESA mode. This reset is a superset of the normal reset. + +4.124 KVM_S390_CLEAR_RESET +-------------------------- + +:Capability: KVM_CAP_S390_VCPU_RESETS +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: none +:Returns: 0 + +This ioctl resets VCPU registers and control structures according to +the clear cpu reset definition in the POP. However, the cpu is not put +into ESA mode. This reset is a superset of the initial reset. + + +4.125 KVM_S390_PV_COMMAND +------------------------- + +:Capability: KVM_CAP_S390_PROTECTED +:Architectures: s390 +:Type: vm ioctl +:Parameters: struct kvm_pv_cmd +:Returns: 0 on success, < 0 on error + +:: + + struct kvm_pv_cmd { + __u32 cmd; /* Command to be executed */ + __u16 rc; /* Ultravisor return code */ + __u16 rrc; /* Ultravisor return reason code */ + __u64 data; /* Data or address */ + __u32 flags; /* flags for future extensions. Must be 0 for now */ + __u32 reserved[3]; + }; + +**Ultravisor return codes** +The Ultravisor return (reason) codes are provided by the kernel if a +Ultravisor call has been executed to achieve the results expected by +the command. Therefore they are independent of the IOCTL return +code. If KVM changes `rc`, its value will always be greater than 0 +hence setting it to 0 before issuing a PV command is advised to be +able to detect a change of `rc`. + +**cmd values:** + +KVM_PV_ENABLE + Allocate memory and register the VM with the Ultravisor, thereby + donating memory to the Ultravisor that will become inaccessible to + KVM. All existing CPUs are converted to protected ones. After this + command has succeeded, any CPU added via hotplug will become + protected during its creation as well. + + Errors: + + ===== ============================= + EINTR an unmasked signal is pending + ===== ============================= + +KVM_PV_DISABLE + Deregister the VM from the Ultravisor and reclaim the memory that + had been donated to the Ultravisor, making it usable by the kernel + again. All registered VCPUs are converted back to non-protected + ones. + +KVM_PV_VM_SET_SEC_PARMS + Pass the image header from VM memory to the Ultravisor in + preparation of image unpacking and verification. + +KVM_PV_VM_UNPACK + Unpack (protect and decrypt) a page of the encrypted boot image. + +KVM_PV_VM_VERIFY + Verify the integrity of the unpacked image. Only if this succeeds, + KVM is allowed to start protected VCPUs. + +KVM_PV_INFO + :Capability: KVM_CAP_S390_PROTECTED_DUMP + + Presents an API that provides Ultravisor related data to userspace + via subcommands. len_max is the size of the user space buffer, + len_written is KVM's indication of how much bytes of that buffer + were actually written to. len_written can be used to determine the + valid fields if more response fields are added in the future. + + :: + + enum pv_cmd_info_id { + KVM_PV_INFO_VM, + KVM_PV_INFO_DUMP, + }; + + struct kvm_s390_pv_info_header { + __u32 id; + __u32 len_max; + __u32 len_written; + __u32 reserved; + }; + + struct kvm_s390_pv_info { + struct kvm_s390_pv_info_header header; + struct kvm_s390_pv_info_dump dump; + struct kvm_s390_pv_info_vm vm; + }; + +**subcommands:** + + KVM_PV_INFO_VM + This subcommand provides basic Ultravisor information for PV + hosts. These values are likely also exported as files in the sysfs + firmware UV query interface but they are more easily available to + programs in this API. + + The installed calls and feature_indication members provide the + installed UV calls and the UV's other feature indications. + + The max_* members provide information about the maximum number of PV + vcpus, PV guests and PV guest memory size. + + :: + + struct kvm_s390_pv_info_vm { + __u64 inst_calls_list[4]; + __u64 max_cpus; + __u64 max_guests; + __u64 max_guest_addr; + __u64 feature_indication; + }; + + + KVM_PV_INFO_DUMP + This subcommand provides information related to dumping PV guests. + + :: + + struct kvm_s390_pv_info_dump { + __u64 dump_cpu_buffer_len; + __u64 dump_config_mem_buffer_per_1m; + __u64 dump_config_finalize_len; + }; + +KVM_PV_DUMP + :Capability: KVM_CAP_S390_PROTECTED_DUMP + + Presents an API that provides calls which facilitate dumping a + protected VM. + + :: + + struct kvm_s390_pv_dmp { + __u64 subcmd; + __u64 buff_addr; + __u64 buff_len; + __u64 gaddr; /* For dump storage state */ + }; + + **subcommands:** + + KVM_PV_DUMP_INIT + Initializes the dump process of a protected VM. If this call does + not succeed all other subcommands will fail with -EINVAL. This + subcommand will return -EINVAL if a dump process has not yet been + completed. + + Not all PV vms can be dumped, the owner needs to set `dump + allowed` PCF bit 34 in the SE header to allow dumping. + + KVM_PV_DUMP_CONFIG_STOR_STATE + Stores `buff_len` bytes of tweak component values starting with + the 1MB block specified by the absolute guest address + (`gaddr`). `buff_len` needs to be `conf_dump_storage_state_len` + aligned and at least >= the `conf_dump_storage_state_len` value + provided by the dump uv_info data. buff_user might be written to + even if an error rc is returned. For instance if we encounter a + fault after writing the first page of data. + + KVM_PV_DUMP_COMPLETE + If the subcommand succeeds it completes the dump process and lets + KVM_PV_DUMP_INIT be called again. + + On success `conf_dump_finalize_len` bytes of completion data will be + stored to the `buff_addr`. The completion data contains a key + derivation seed, IV, tweak nonce and encryption keys as well as an + authentication tag all of which are needed to decrypt the dump at a + later time. + +4.126 KVM_XEN_HVM_SET_ATTR +-------------------------- + +:Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_xen_hvm_attr +:Returns: 0 on success, < 0 on error + +:: + + struct kvm_xen_hvm_attr { + __u16 type; + __u16 pad[3]; + union { + __u8 long_mode; + __u8 vector; + struct { + __u64 gfn; + } shared_info; + struct { + __u32 send_port; + __u32 type; /* EVTCHNSTAT_ipi / EVTCHNSTAT_interdomain */ + __u32 flags; + union { + struct { + __u32 port; + __u32 vcpu; + __u32 priority; + } port; + struct { + __u32 port; /* Zero for eventfd */ + __s32 fd; + } eventfd; + __u32 padding[4]; + } deliver; + } evtchn; + __u32 xen_version; + __u64 pad[8]; + } u; + }; + +type values: + +KVM_XEN_ATTR_TYPE_LONG_MODE + Sets the ABI mode of the VM to 32-bit or 64-bit (long mode). This + determines the layout of the shared info pages exposed to the VM. + +KVM_XEN_ATTR_TYPE_SHARED_INFO + Sets the guest physical frame number at which the Xen "shared info" + page resides. Note that although Xen places vcpu_info for the first + 32 vCPUs in the shared_info page, KVM does not automatically do so + and instead requires that KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO be used + explicitly even when the vcpu_info for a given vCPU resides at the + "default" location in the shared_info page. This is because KVM is + not aware of the Xen CPU id which is used as the index into the + vcpu_info[] array, so cannot know the correct default location. + + Note that the shared info page may be constantly written to by KVM; + it contains the event channel bitmap used to deliver interrupts to + a Xen guest, amongst other things. It is exempt from dirty tracking + mechanisms — KVM will not explicitly mark the page as dirty each + time an event channel interrupt is delivered to the guest! Thus, + userspace should always assume that the designated GFN is dirty if + any vCPU has been running or any event channel interrupts can be + routed to the guest. + +KVM_XEN_ATTR_TYPE_UPCALL_VECTOR + Sets the exception vector used to deliver Xen event channel upcalls. + This is the HVM-wide vector injected directly by the hypervisor + (not through the local APIC), typically configured by a guest via + HVM_PARAM_CALLBACK_IRQ. + +KVM_XEN_ATTR_TYPE_EVTCHN + This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates + support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It configures + an outbound port number for interception of EVTCHNOP_send requests + from the guest. A given sending port number may be directed back + to a specified vCPU (by APIC ID) / port / priority on the guest, + or to trigger events on an eventfd. The vCPU and priority can be + changed by setting KVM_XEN_EVTCHN_UPDATE in a subsequent call, + but other fields cannot change for a given sending port. A port + mapping is removed by using KVM_XEN_EVTCHN_DEASSIGN in the flags + field. + +KVM_XEN_ATTR_TYPE_XEN_VERSION + This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates + support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It configures + the 32-bit version code returned to the guest when it invokes the + XENVER_version call; typically (XEN_MAJOR << 16 | XEN_MINOR). PV + Xen guests will often use this to as a dummy hypercall to trigger + event channel delivery, so responding within the kernel without + exiting to userspace is beneficial. + +4.127 KVM_XEN_HVM_GET_ATTR +-------------------------- + +:Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_xen_hvm_attr +:Returns: 0 on success, < 0 on error + +Allows Xen VM attributes to be read. For the structure and types, +see KVM_XEN_HVM_SET_ATTR above. The KVM_XEN_ATTR_TYPE_EVTCHN +attribute cannot be read. + +4.128 KVM_XEN_VCPU_SET_ATTR +--------------------------- + +:Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_xen_vcpu_attr +:Returns: 0 on success, < 0 on error + +:: + + struct kvm_xen_vcpu_attr { + __u16 type; + __u16 pad[3]; + union { + __u64 gpa; + __u64 pad[4]; + struct { + __u64 state; + __u64 state_entry_time; + __u64 time_running; + __u64 time_runnable; + __u64 time_blocked; + __u64 time_offline; + } runstate; + __u32 vcpu_id; + struct { + __u32 port; + __u32 priority; + __u64 expires_ns; + } timer; + __u8 vector; + } u; + }; + +type values: + +KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO + Sets the guest physical address of the vcpu_info for a given vCPU. + As with the shared_info page for the VM, the corresponding page may be + dirtied at any time if event channel interrupt delivery is enabled, so + userspace should always assume that the page is dirty without relying + on dirty logging. + +KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO + Sets the guest physical address of an additional pvclock structure + for a given vCPU. This is typically used for guest vsyscall support. + +KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR + Sets the guest physical address of the vcpu_runstate_info for a given + vCPU. This is how a Xen guest tracks CPU state such as steal time. + +KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT + Sets the runstate (RUNSTATE_running/_runnable/_blocked/_offline) of + the given vCPU from the .u.runstate.state member of the structure. + KVM automatically accounts running and runnable time but blocked + and offline states are only entered explicitly. + +KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA + Sets all fields of the vCPU runstate data from the .u.runstate member + of the structure, including the current runstate. The state_entry_time + must equal the sum of the other four times. + +KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST + This *adds* the contents of the .u.runstate members of the structure + to the corresponding members of the given vCPU's runstate data, thus + permitting atomic adjustments to the runstate times. The adjustment + to the state_entry_time must equal the sum of the adjustments to the + other four times. The state field must be set to -1, or to a valid + runstate value (RUNSTATE_running, RUNSTATE_runnable, RUNSTATE_blocked + or RUNSTATE_offline) to set the current accounted state as of the + adjusted state_entry_time. + +KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID + This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates + support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the Xen + vCPU ID of the given vCPU, to allow timer-related VCPU operations to + be intercepted by KVM. + +KVM_XEN_VCPU_ATTR_TYPE_TIMER + This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates + support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the + event channel port/priority for the VIRQ_TIMER of the vCPU, as well + as allowing a pending timer to be saved/restored. + +KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR + This attribute is available when the KVM_CAP_XEN_HVM ioctl indicates + support for KVM_XEN_HVM_CONFIG_EVTCHN_SEND features. It sets the + per-vCPU local APIC upcall vector, configured by a Xen guest with + the HVMOP_set_evtchn_upcall_vector hypercall. This is typically + used by Windows guests, and is distinct from the HVM-wide upcall + vector configured with HVM_PARAM_CALLBACK_IRQ. + + +4.129 KVM_XEN_VCPU_GET_ATTR +--------------------------- + +:Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_SHARED_INFO +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_xen_vcpu_attr +:Returns: 0 on success, < 0 on error + +Allows Xen vCPU attributes to be read. For the structure and types, +see KVM_XEN_VCPU_SET_ATTR above. + +The KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST type may not be used +with the KVM_XEN_VCPU_GET_ATTR ioctl. + +4.130 KVM_ARM_MTE_COPY_TAGS +--------------------------- + +:Capability: KVM_CAP_ARM_MTE +:Architectures: arm64 +:Type: vm ioctl +:Parameters: struct kvm_arm_copy_mte_tags +:Returns: number of bytes copied, < 0 on error (-EINVAL for incorrect + arguments, -EFAULT if memory cannot be accessed). + +:: + + struct kvm_arm_copy_mte_tags { + __u64 guest_ipa; + __u64 length; + void __user *addr; + __u64 flags; + __u64 reserved[2]; + }; + +Copies Memory Tagging Extension (MTE) tags to/from guest tag memory. The +``guest_ipa`` and ``length`` fields must be ``PAGE_SIZE`` aligned. The ``addr`` +field must point to a buffer which the tags will be copied to or from. + +``flags`` specifies the direction of copy, either ``KVM_ARM_TAGS_TO_GUEST`` or +``KVM_ARM_TAGS_FROM_GUEST``. + +The size of the buffer to store the tags is ``(length / 16)`` bytes +(granules in MTE are 16 bytes long). Each byte contains a single tag +value. This matches the format of ``PTRACE_PEEKMTETAGS`` and +``PTRACE_POKEMTETAGS``. + +If an error occurs before any data is copied then a negative error code is +returned. If some tags have been copied before an error occurs then the number +of bytes successfully copied is returned. If the call completes successfully +then ``length`` is returned. + +4.131 KVM_GET_SREGS2 +-------------------- + +:Capability: KVM_CAP_SREGS2 +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_sregs2 (out) +:Returns: 0 on success, -1 on error + +Reads special registers from the vcpu. +This ioctl (when supported) replaces the KVM_GET_SREGS. + +:: + + struct kvm_sregs2 { + /* out (KVM_GET_SREGS2) / in (KVM_SET_SREGS2) */ + struct kvm_segment cs, ds, es, fs, gs, ss; + struct kvm_segment tr, ldt; + struct kvm_dtable gdt, idt; + __u64 cr0, cr2, cr3, cr4, cr8; + __u64 efer; + __u64 apic_base; + __u64 flags; + __u64 pdptrs[4]; + }; + +flags values for ``kvm_sregs2``: + +``KVM_SREGS2_FLAGS_PDPTRS_VALID`` + + Indicates thats the struct contain valid PDPTR values. + + +4.132 KVM_SET_SREGS2 +-------------------- + +:Capability: KVM_CAP_SREGS2 +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_sregs2 (in) +:Returns: 0 on success, -1 on error + +Writes special registers into the vcpu. +See KVM_GET_SREGS2 for the data structures. +This ioctl (when supported) replaces the KVM_SET_SREGS. + +4.133 KVM_GET_STATS_FD +---------------------- + +:Capability: KVM_CAP_STATS_BINARY_FD +:Architectures: all +:Type: vm ioctl, vcpu ioctl +:Parameters: none +:Returns: statistics file descriptor on success, < 0 on error + +Errors: + + ====== ====================================================== + ENOMEM if the fd could not be created due to lack of memory + EMFILE if the number of opened files exceeds the limit + ====== ====================================================== + +The returned file descriptor can be used to read VM/vCPU statistics data in +binary format. The data in the file descriptor consists of four blocks +organized as follows: + ++-------------+ +| Header | ++-------------+ +| id string | ++-------------+ +| Descriptors | ++-------------+ +| Stats Data | ++-------------+ + +Apart from the header starting at offset 0, please be aware that it is +not guaranteed that the four blocks are adjacent or in the above order; +the offsets of the id, descriptors and data blocks are found in the +header. However, all four blocks are aligned to 64 bit offsets in the +file and they do not overlap. + +All blocks except the data block are immutable. Userspace can read them +only one time after retrieving the file descriptor, and then use ``pread`` or +``lseek`` to read the statistics repeatedly. + +All data is in system endianness. + +The format of the header is as follows:: + + struct kvm_stats_header { + __u32 flags; + __u32 name_size; + __u32 num_desc; + __u32 id_offset; + __u32 desc_offset; + __u32 data_offset; + }; + +The ``flags`` field is not used at the moment. It is always read as 0. + +The ``name_size`` field is the size (in byte) of the statistics name string +(including trailing '\0') which is contained in the "id string" block and +appended at the end of every descriptor. + +The ``num_desc`` field is the number of descriptors that are included in the +descriptor block. (The actual number of values in the data block may be +larger, since each descriptor may comprise more than one value). + +The ``id_offset`` field is the offset of the id string from the start of the +file indicated by the file descriptor. It is a multiple of 8. + +The ``desc_offset`` field is the offset of the Descriptors block from the start +of the file indicated by the file descriptor. It is a multiple of 8. + +The ``data_offset`` field is the offset of the Stats Data block from the start +of the file indicated by the file descriptor. It is a multiple of 8. + +The id string block contains a string which identifies the file descriptor on +which KVM_GET_STATS_FD was invoked. The size of the block, including the +trailing ``'\0'``, is indicated by the ``name_size`` field in the header. + +The descriptors block is only needed to be read once for the lifetime of the +file descriptor contains a sequence of ``struct kvm_stats_desc``, each followed +by a string of size ``name_size``. +:: + + #define KVM_STATS_TYPE_SHIFT 0 + #define KVM_STATS_TYPE_MASK (0xF << KVM_STATS_TYPE_SHIFT) + #define KVM_STATS_TYPE_CUMULATIVE (0x0 << KVM_STATS_TYPE_SHIFT) + #define KVM_STATS_TYPE_INSTANT (0x1 << KVM_STATS_TYPE_SHIFT) + #define KVM_STATS_TYPE_PEAK (0x2 << KVM_STATS_TYPE_SHIFT) + #define KVM_STATS_TYPE_LINEAR_HIST (0x3 << KVM_STATS_TYPE_SHIFT) + #define KVM_STATS_TYPE_LOG_HIST (0x4 << KVM_STATS_TYPE_SHIFT) + #define KVM_STATS_TYPE_MAX KVM_STATS_TYPE_LOG_HIST + + #define KVM_STATS_UNIT_SHIFT 4 + #define KVM_STATS_UNIT_MASK (0xF << KVM_STATS_UNIT_SHIFT) + #define KVM_STATS_UNIT_NONE (0x0 << KVM_STATS_UNIT_SHIFT) + #define KVM_STATS_UNIT_BYTES (0x1 << KVM_STATS_UNIT_SHIFT) + #define KVM_STATS_UNIT_SECONDS (0x2 << KVM_STATS_UNIT_SHIFT) + #define KVM_STATS_UNIT_CYCLES (0x3 << KVM_STATS_UNIT_SHIFT) + #define KVM_STATS_UNIT_BOOLEAN (0x4 << KVM_STATS_UNIT_SHIFT) + #define KVM_STATS_UNIT_MAX KVM_STATS_UNIT_BOOLEAN + + #define KVM_STATS_BASE_SHIFT 8 + #define KVM_STATS_BASE_MASK (0xF << KVM_STATS_BASE_SHIFT) + #define KVM_STATS_BASE_POW10 (0x0 << KVM_STATS_BASE_SHIFT) + #define KVM_STATS_BASE_POW2 (0x1 << KVM_STATS_BASE_SHIFT) + #define KVM_STATS_BASE_MAX KVM_STATS_BASE_POW2 + + struct kvm_stats_desc { + __u32 flags; + __s16 exponent; + __u16 size; + __u32 offset; + __u32 bucket_size; + char name[]; + }; + +The ``flags`` field contains the type and unit of the statistics data described +by this descriptor. Its endianness is CPU native. +The following flags are supported: + +Bits 0-3 of ``flags`` encode the type: + + * ``KVM_STATS_TYPE_CUMULATIVE`` + The statistics reports a cumulative count. The value of data can only be increased. + Most of the counters used in KVM are of this type. + The corresponding ``size`` field for this type is always 1. + All cumulative statistics data are read/write. + * ``KVM_STATS_TYPE_INSTANT`` + The statistics reports an instantaneous value. Its value can be increased or + decreased. This type is usually used as a measurement of some resources, + like the number of dirty pages, the number of large pages, etc. + All instant statistics are read only. + The corresponding ``size`` field for this type is always 1. + * ``KVM_STATS_TYPE_PEAK`` + The statistics data reports a peak value, for example the maximum number + of items in a hash table bucket, the longest time waited and so on. + The value of data can only be increased. + The corresponding ``size`` field for this type is always 1. + * ``KVM_STATS_TYPE_LINEAR_HIST`` + The statistic is reported as a linear histogram. The number of + buckets is specified by the ``size`` field. The size of buckets is specified + by the ``hist_param`` field. The range of the Nth bucket (1 <= N < ``size``) + is [``hist_param``*(N-1), ``hist_param``*N), while the range of the last + bucket is [``hist_param``*(``size``-1), +INF). (+INF means positive infinity + value.) + * ``KVM_STATS_TYPE_LOG_HIST`` + The statistic is reported as a logarithmic histogram. The number of + buckets is specified by the ``size`` field. The range of the first bucket is + [0, 1), while the range of the last bucket is [pow(2, ``size``-2), +INF). + Otherwise, The Nth bucket (1 < N < ``size``) covers + [pow(2, N-2), pow(2, N-1)). + +Bits 4-7 of ``flags`` encode the unit: + + * ``KVM_STATS_UNIT_NONE`` + There is no unit for the value of statistics data. This usually means that + the value is a simple counter of an event. + * ``KVM_STATS_UNIT_BYTES`` + It indicates that the statistics data is used to measure memory size, in the + unit of Byte, KiByte, MiByte, GiByte, etc. The unit of the data is + determined by the ``exponent`` field in the descriptor. + * ``KVM_STATS_UNIT_SECONDS`` + It indicates that the statistics data is used to measure time or latency. + * ``KVM_STATS_UNIT_CYCLES`` + It indicates that the statistics data is used to measure CPU clock cycles. + * ``KVM_STATS_UNIT_BOOLEAN`` + It indicates that the statistic will always be either 0 or 1. Boolean + statistics of "peak" type will never go back from 1 to 0. Boolean + statistics can be linear histograms (with two buckets) but not logarithmic + histograms. + +Note that, in the case of histograms, the unit applies to the bucket +ranges, while the bucket value indicates how many samples fell in the +bucket's range. + +Bits 8-11 of ``flags``, together with ``exponent``, encode the scale of the +unit: + + * ``KVM_STATS_BASE_POW10`` + The scale is based on power of 10. It is used for measurement of time and + CPU clock cycles. For example, an exponent of -9 can be used with + ``KVM_STATS_UNIT_SECONDS`` to express that the unit is nanoseconds. + * ``KVM_STATS_BASE_POW2`` + The scale is based on power of 2. It is used for measurement of memory size. + For example, an exponent of 20 can be used with ``KVM_STATS_UNIT_BYTES`` to + express that the unit is MiB. + +The ``size`` field is the number of values of this statistics data. Its +value is usually 1 for most of simple statistics. 1 means it contains an +unsigned 64bit data. + +The ``offset`` field is the offset from the start of Data Block to the start of +the corresponding statistics data. + +The ``bucket_size`` field is used as a parameter for histogram statistics data. +It is only used by linear histogram statistics data, specifying the size of a +bucket in the unit expressed by bits 4-11 of ``flags`` together with ``exponent``. + +The ``name`` field is the name string of the statistics data. The name string +starts at the end of ``struct kvm_stats_desc``. The maximum length including +the trailing ``'\0'``, is indicated by ``name_size`` in the header. + +The Stats Data block contains an array of 64-bit values in the same order +as the descriptors in Descriptors block. + +4.134 KVM_GET_XSAVE2 +-------------------- + +:Capability: KVM_CAP_XSAVE2 +:Architectures: x86 +:Type: vcpu ioctl +:Parameters: struct kvm_xsave (out) +:Returns: 0 on success, -1 on error + + +:: + + struct kvm_xsave { + __u32 region[1024]; + __u32 extra[0]; + }; + +This ioctl would copy current vcpu's xsave struct to the userspace. It +copies as many bytes as are returned by KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) +when invoked on the vm file descriptor. The size value returned by +KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2) will always be at least 4096. +Currently, it is only greater than 4096 if a dynamic feature has been +enabled with ``arch_prctl()``, but this may change in the future. + +The offsets of the state save areas in struct kvm_xsave follow the contents +of CPUID leaf 0xD on the host. + +4.135 KVM_XEN_HVM_EVTCHN_SEND +----------------------------- + +:Capability: KVM_CAP_XEN_HVM / KVM_XEN_HVM_CONFIG_EVTCHN_SEND +:Architectures: x86 +:Type: vm ioctl +:Parameters: struct kvm_irq_routing_xen_evtchn +:Returns: 0 on success, < 0 on error + + +:: + + struct kvm_irq_routing_xen_evtchn { + __u32 port; + __u32 vcpu; + __u32 priority; + }; + +This ioctl injects an event channel interrupt directly to the guest vCPU. + +4.136 KVM_S390_PV_CPU_COMMAND +----------------------------- + +:Capability: KVM_CAP_S390_PROTECTED_DUMP +:Architectures: s390 +:Type: vcpu ioctl +:Parameters: none +:Returns: 0 on success, < 0 on error + +This ioctl closely mirrors `KVM_S390_PV_COMMAND` but handles requests +for vcpus. It re-uses the kvm_s390_pv_dmp struct and hence also shares +the command ids. + +**command:** + +KVM_PV_DUMP + Presents an API that provides calls which facilitate dumping a vcpu + of a protected VM. + +**subcommand:** + +KVM_PV_DUMP_CPU + Provides encrypted dump data like register values. + The length of the returned data is provided by uv_info.guest_cpu_stor_len. + +4.137 KVM_S390_ZPCI_OP +---------------------- + +:Capability: KVM_CAP_S390_ZPCI_OP +:Architectures: s390 +:Type: vm ioctl +:Parameters: struct kvm_s390_zpci_op (in) +:Returns: 0 on success, <0 on error + +Used to manage hardware-assisted virtualization features for zPCI devices. + +Parameters are specified via the following structure:: + + struct kvm_s390_zpci_op { + /* in */ + __u32 fh; /* target device */ + __u8 op; /* operation to perform */ + __u8 pad[3]; + union { + /* for KVM_S390_ZPCIOP_REG_AEN */ + struct { + __u64 ibv; /* Guest addr of interrupt bit vector */ + __u64 sb; /* Guest addr of summary bit */ + __u32 flags; + __u32 noi; /* Number of interrupts */ + __u8 isc; /* Guest interrupt subclass */ + __u8 sbo; /* Offset of guest summary bit vector */ + __u16 pad; + } reg_aen; + __u64 reserved[8]; + } u; + }; + +The type of operation is specified in the "op" field. +KVM_S390_ZPCIOP_REG_AEN is used to register the VM for adapter event +notification interpretation, which will allow firmware delivery of adapter +events directly to the vm, with KVM providing a backup delivery mechanism; +KVM_S390_ZPCIOP_DEREG_AEN is used to subsequently disable interpretation of +adapter event notifications. + +The target zPCI function must also be specified via the "fh" field. For the +KVM_S390_ZPCIOP_REG_AEN operation, additional information to establish firmware +delivery must be provided via the "reg_aen" struct. + +The "pad" and "reserved" fields may be used for future extensions and should be +set to 0s by userspace. + +5. The kvm_run structure +======================== + +Application code obtains a pointer to the kvm_run structure by +mmap()ing a vcpu fd. From that point, application code can control +execution by changing fields in kvm_run prior to calling the KVM_RUN +ioctl, and obtain information about the reason KVM_RUN returned by +looking up structure members. + +:: + + struct kvm_run { + /* in */ + __u8 request_interrupt_window; + +Request that KVM_RUN return when it becomes possible to inject external +interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. + +:: + + __u8 immediate_exit; + +This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN +exits immediately, returning -EINTR. In the common scenario where a +signal is used to "kick" a VCPU out of KVM_RUN, this field can be used +to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability. +Rather than blocking the signal outside KVM_RUN, userspace can set up +a signal handler that sets run->immediate_exit to a non-zero value. + +This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available. + +:: + + __u8 padding1[6]; + + /* out */ + __u32 exit_reason; + +When KVM_RUN has returned successfully (return value 0), this informs +application code why KVM_RUN has returned. Allowable values for this +field are detailed below. + +:: + + __u8 ready_for_interrupt_injection; + +If request_interrupt_window has been specified, this field indicates +an interrupt can be injected now with KVM_INTERRUPT. + +:: + + __u8 if_flag; + +The value of the current interrupt flag. Only valid if in-kernel +local APIC is not used. + +:: + + __u16 flags; + +More architecture-specific flags detailing state of the VCPU that may +affect the device's behavior. Current defined flags:: + + /* x86, set if the VCPU is in system management mode */ + #define KVM_RUN_X86_SMM (1 << 0) + /* x86, set if bus lock detected in VM */ + #define KVM_RUN_BUS_LOCK (1 << 1) + /* arm64, set for KVM_EXIT_DEBUG */ + #define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 << 0) + +:: + + /* in (pre_kvm_run), out (post_kvm_run) */ + __u64 cr8; + +The value of the cr8 register. Only valid if in-kernel local APIC is +not used. Both input and output. + +:: + + __u64 apic_base; + +The value of the APIC BASE msr. Only valid if in-kernel local +APIC is not used. Both input and output. + +:: + + union { + /* KVM_EXIT_UNKNOWN */ + struct { + __u64 hardware_exit_reason; + } hw; + +If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown +reasons. Further architecture-specific information is available in +hardware_exit_reason. + +:: + + /* KVM_EXIT_FAIL_ENTRY */ + struct { + __u64 hardware_entry_failure_reason; + __u32 cpu; /* if KVM_LAST_CPU */ + } fail_entry; + +If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due +to unknown reasons. Further architecture-specific information is +available in hardware_entry_failure_reason. + +:: + + /* KVM_EXIT_EXCEPTION */ + struct { + __u32 exception; + __u32 error_code; + } ex; + +Unused. + +:: + + /* KVM_EXIT_IO */ + struct { + #define KVM_EXIT_IO_IN 0 + #define KVM_EXIT_IO_OUT 1 + __u8 direction; + __u8 size; /* bytes */ + __u16 port; + __u32 count; + __u64 data_offset; /* relative to kvm_run start */ + } io; + +If exit_reason is KVM_EXIT_IO, then the vcpu has +executed a port I/O instruction which could not be satisfied by kvm. +data_offset describes where the data is located (KVM_EXIT_IO_OUT) or +where kvm expects application code to place the data for the next +KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array. + +:: + + /* KVM_EXIT_DEBUG */ + struct { + struct kvm_debug_exit_arch arch; + } debug; + +If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event +for which architecture specific information is returned. + +:: + + /* KVM_EXIT_MMIO */ + struct { + __u64 phys_addr; + __u8 data[8]; + __u32 len; + __u8 is_write; + } mmio; + +If exit_reason is KVM_EXIT_MMIO, then the vcpu has +executed a memory-mapped I/O instruction which could not be satisfied +by kvm. The 'data' member contains the written data if 'is_write' is +true, and should be filled by application code otherwise. + +The 'data' member contains, in its first 'len' bytes, the value as it would +appear if the VCPU performed a load or store of the appropriate width directly +to the byte array. + +.. note:: + + For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR, KVM_EXIT_XEN, + KVM_EXIT_EPR, KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR the corresponding + operations are complete (and guest state is consistent) only after userspace + has re-entered the kernel with KVM_RUN. The kernel side will first finish + incomplete operations and then check for pending signals. + + The pending state of the operation is not preserved in state which is + visible to userspace, thus userspace should ensure that the operation is + completed before performing a live migration. Userspace can re-enter the + guest with an unmasked signal pending or with the immediate_exit field set + to complete pending operations without allowing any further instructions + to be executed. + +:: + + /* KVM_EXIT_HYPERCALL */ + struct { + __u64 nr; + __u64 args[6]; + __u64 ret; + __u32 longmode; + __u32 pad; + } hypercall; + +Unused. This was once used for 'hypercall to userspace'. To implement +such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390). + +.. note:: KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO. + +:: + + /* KVM_EXIT_TPR_ACCESS */ + struct { + __u64 rip; + __u32 is_write; + __u32 pad; + } tpr_access; + +To be documented (KVM_TPR_ACCESS_REPORTING). + +:: + + /* KVM_EXIT_S390_SIEIC */ + struct { + __u8 icptcode; + __u64 mask; /* psw upper half */ + __u64 addr; /* psw lower half */ + __u16 ipa; + __u32 ipb; + } s390_sieic; + +s390 specific. + +:: + + /* KVM_EXIT_S390_RESET */ + #define KVM_S390_RESET_POR 1 + #define KVM_S390_RESET_CLEAR 2 + #define KVM_S390_RESET_SUBSYSTEM 4 + #define KVM_S390_RESET_CPU_INIT 8 + #define KVM_S390_RESET_IPL 16 + __u64 s390_reset_flags; + +s390 specific. + +:: + + /* KVM_EXIT_S390_UCONTROL */ + struct { + __u64 trans_exc_code; + __u32 pgm_code; + } s390_ucontrol; + +s390 specific. A page fault has occurred for a user controlled virtual +machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be +resolved by the kernel. +The program code and the translation exception code that were placed +in the cpu's lowcore are presented here as defined by the z Architecture +Principles of Operation Book in the Chapter for Dynamic Address Translation +(DAT) + +:: + + /* KVM_EXIT_DCR */ + struct { + __u32 dcrn; + __u32 data; + __u8 is_write; + } dcr; + +Deprecated - was used for 440 KVM. + +:: + + /* KVM_EXIT_OSI */ + struct { + __u64 gprs[32]; + } osi; + +MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch +hypercalls and exit with this exit struct that contains all the guest gprs. + +If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall. +Userspace can now handle the hypercall and when it's done modify the gprs as +necessary. Upon guest entry all guest GPRs will then be replaced by the values +in this struct. + +:: + + /* KVM_EXIT_PAPR_HCALL */ + struct { + __u64 nr; + __u64 ret; + __u64 args[9]; + } papr_hcall; + +This is used on 64-bit PowerPC when emulating a pSeries partition, +e.g. with the 'pseries' machine type in qemu. It occurs when the +guest does a hypercall using the 'sc 1' instruction. The 'nr' field +contains the hypercall number (from the guest R3), and 'args' contains +the arguments (from the guest R4 - R12). Userspace should put the +return code in 'ret' and any extra returned values in args[]. +The possible hypercalls are defined in the Power Architecture Platform +Requirements (PAPR) document available from www.power.org (free +developer registration required to access it). + +:: + + /* KVM_EXIT_S390_TSCH */ + struct { + __u16 subchannel_id; + __u16 subchannel_nr; + __u32 io_int_parm; + __u32 io_int_word; + __u32 ipb; + __u8 dequeued; + } s390_tsch; + +s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled +and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O +interrupt for the target subchannel has been dequeued and subchannel_id, +subchannel_nr, io_int_parm and io_int_word contain the parameters for that +interrupt. ipb is needed for instruction parameter decoding. + +:: + + /* KVM_EXIT_EPR */ + struct { + __u32 epr; + } epr; + +On FSL BookE PowerPC chips, the interrupt controller has a fast patch +interrupt acknowledge path to the core. When the core successfully +delivers an interrupt, it automatically populates the EPR register with +the interrupt vector number and acknowledges the interrupt inside +the interrupt controller. + +In case the interrupt controller lives in user space, we need to do +the interrupt acknowledge cycle through it to fetch the next to be +delivered interrupt vector using this exit. + +It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an +external interrupt has just been delivered into the guest. User space +should put the acknowledged interrupt vector into the 'epr' field. + +:: + + /* KVM_EXIT_SYSTEM_EVENT */ + struct { + #define KVM_SYSTEM_EVENT_SHUTDOWN 1 + #define KVM_SYSTEM_EVENT_RESET 2 + #define KVM_SYSTEM_EVENT_CRASH 3 + #define KVM_SYSTEM_EVENT_WAKEUP 4 + #define KVM_SYSTEM_EVENT_SUSPEND 5 + #define KVM_SYSTEM_EVENT_SEV_TERM 6 + __u32 type; + __u32 ndata; + __u64 data[16]; + } system_event; + +If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered +a system-level event using some architecture specific mechanism (hypercall +or some special instruction). In case of ARM64, this is triggered using +HVC instruction based PSCI call from the vcpu. + +The 'type' field describes the system-level event type. +Valid values for 'type' are: + + - KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the + VM. Userspace is not obliged to honour this, and if it does honour + this does not need to destroy the VM synchronously (ie it may call + KVM_RUN again before shutdown finally occurs). + - KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM. + As with SHUTDOWN, userspace can choose to ignore the request, or + to schedule the reset to occur in the future and may call KVM_RUN again. + - KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest + has requested a crash condition maintenance. Userspace can choose + to ignore the request, or to gather VM memory core dump and/or + reset/shutdown of the VM. + - KVM_SYSTEM_EVENT_SEV_TERM -- an AMD SEV guest requested termination. + The guest physical address of the guest's GHCB is stored in `data[0]`. + - KVM_SYSTEM_EVENT_WAKEUP -- the exiting vCPU is in a suspended state and + KVM has recognized a wakeup event. Userspace may honor this event by + marking the exiting vCPU as runnable, or deny it and call KVM_RUN again. + - KVM_SYSTEM_EVENT_SUSPEND -- the guest has requested a suspension of + the VM. + +If KVM_CAP_SYSTEM_EVENT_DATA is present, the 'data' field can contain +architecture specific information for the system-level event. Only +the first `ndata` items (possibly zero) of the data array are valid. + + - for arm64, data[0] is set to KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2 if + the guest issued a SYSTEM_RESET2 call according to v1.1 of the PSCI + specification. + + - for RISC-V, data[0] is set to the value of the second argument of the + ``sbi_system_reset`` call. + +Previous versions of Linux defined a `flags` member in this struct. The +field is now aliased to `data[0]`. Userspace can assume that it is only +written if ndata is greater than 0. + +For arm/arm64: +-------------- + +KVM_SYSTEM_EVENT_SUSPEND exits are enabled with the +KVM_CAP_ARM_SYSTEM_SUSPEND VM capability. If a guest invokes the PSCI +SYSTEM_SUSPEND function, KVM will exit to userspace with this event +type. + +It is the sole responsibility of userspace to implement the PSCI +SYSTEM_SUSPEND call according to ARM DEN0022D.b 5.19 "SYSTEM_SUSPEND". +KVM does not change the vCPU's state before exiting to userspace, so +the call parameters are left in-place in the vCPU registers. + +Userspace is _required_ to take action for such an exit. It must +either: + + - Honor the guest request to suspend the VM. Userspace can request + in-kernel emulation of suspension by setting the calling vCPU's + state to KVM_MP_STATE_SUSPENDED. Userspace must configure the vCPU's + state according to the parameters passed to the PSCI function when + the calling vCPU is resumed. See ARM DEN0022D.b 5.19.1 "Intended use" + for details on the function parameters. + + - Deny the guest request to suspend the VM. See ARM DEN0022D.b 5.19.2 + "Caller responsibilities" for possible return values. + +:: + + /* KVM_EXIT_IOAPIC_EOI */ + struct { + __u8 vector; + } eoi; + +Indicates that the VCPU's in-kernel local APIC received an EOI for a +level-triggered IOAPIC interrupt. This exit only triggers when the +IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled); +the userspace IOAPIC should process the EOI and retrigger the interrupt if +it is still asserted. Vector is the LAPIC interrupt vector for which the +EOI was received. + +:: + + struct kvm_hyperv_exit { + #define KVM_EXIT_HYPERV_SYNIC 1 + #define KVM_EXIT_HYPERV_HCALL 2 + #define KVM_EXIT_HYPERV_SYNDBG 3 + __u32 type; + __u32 pad1; + union { + struct { + __u32 msr; + __u32 pad2; + __u64 control; + __u64 evt_page; + __u64 msg_page; + } synic; + struct { + __u64 input; + __u64 result; + __u64 params[2]; + } hcall; + struct { + __u32 msr; + __u32 pad2; + __u64 control; + __u64 status; + __u64 send_page; + __u64 recv_page; + __u64 pending_page; + } syndbg; + } u; + }; + /* KVM_EXIT_HYPERV */ + struct kvm_hyperv_exit hyperv; + +Indicates that the VCPU exits into userspace to process some tasks +related to Hyper-V emulation. + +Valid values for 'type' are: + + - KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about + +Hyper-V SynIC state change. Notification is used to remap SynIC +event/message pages and to enable/disable SynIC messages/events processing +in userspace. + + - KVM_EXIT_HYPERV_SYNDBG -- synchronously notify user-space about + +Hyper-V Synthetic debugger state change. Notification is used to either update +the pending_page location or to send a control command (send the buffer located +in send_page or recv a buffer to recv_page). + +:: + + /* KVM_EXIT_ARM_NISV */ + struct { + __u64 esr_iss; + __u64 fault_ipa; + } arm_nisv; + +Used on arm64 systems. If a guest accesses memory not in a memslot, +KVM will typically return to userspace and ask it to do MMIO emulation on its +behalf. However, for certain classes of instructions, no instruction decode +(direction, length of memory access) is provided, and fetching and decoding +the instruction from the VM is overly complicated to live in the kernel. + +Historically, when this situation occurred, KVM would print a warning and kill +the VM. KVM assumed that if the guest accessed non-memslot memory, it was +trying to do I/O, which just couldn't be emulated, and the warning message was +phrased accordingly. However, what happened more often was that a guest bug +caused access outside the guest memory areas which should lead to a more +meaningful warning message and an external abort in the guest, if the access +did not fall within an I/O window. + +Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable +this capability at VM creation. Once this is done, these types of errors will +instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from +the ESR_EL2 in the esr_iss field, and the faulting IPA in the fault_ipa field. +Userspace can either fix up the access if it's actually an I/O access by +decoding the instruction from guest memory (if it's very brave) and continue +executing the guest, or it can decide to suspend, dump, or restart the guest. + +Note that KVM does not skip the faulting instruction as it does for +KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state +if it decides to decode and emulate the instruction. + +:: + + /* KVM_EXIT_X86_RDMSR / KVM_EXIT_X86_WRMSR */ + struct { + __u8 error; /* user -> kernel */ + __u8 pad[7]; + __u32 reason; /* kernel -> user */ + __u32 index; /* kernel -> user */ + __u64 data; /* kernel <-> user */ + } msr; + +Used on x86 systems. When the VM capability KVM_CAP_X86_USER_SPACE_MSR is +enabled, MSR accesses to registers that would invoke a #GP by KVM kernel code +will instead trigger a KVM_EXIT_X86_RDMSR exit for reads and KVM_EXIT_X86_WRMSR +exit for writes. + +The "reason" field specifies why the MSR trap occurred. User space will only +receive MSR exit traps when a particular reason was requested during through +ENABLE_CAP. Currently valid exit reasons are: + + KVM_MSR_EXIT_REASON_UNKNOWN - access to MSR that is unknown to KVM + KVM_MSR_EXIT_REASON_INVAL - access to invalid MSRs or reserved bits + KVM_MSR_EXIT_REASON_FILTER - access blocked by KVM_X86_SET_MSR_FILTER + +For KVM_EXIT_X86_RDMSR, the "index" field tells user space which MSR the guest +wants to read. To respond to this request with a successful read, user space +writes the respective data into the "data" field and must continue guest +execution to ensure the read data is transferred into guest register state. + +If the RDMSR request was unsuccessful, user space indicates that with a "1" in +the "error" field. This will inject a #GP into the guest when the VCPU is +executed again. + +For KVM_EXIT_X86_WRMSR, the "index" field tells user space which MSR the guest +wants to write. Once finished processing the event, user space must continue +vCPU execution. If the MSR write was unsuccessful, user space also sets the +"error" field to "1". + +:: + + + struct kvm_xen_exit { + #define KVM_EXIT_XEN_HCALL 1 + __u32 type; + union { + struct { + __u32 longmode; + __u32 cpl; + __u64 input; + __u64 result; + __u64 params[6]; + } hcall; + } u; + }; + /* KVM_EXIT_XEN */ + struct kvm_hyperv_exit xen; + +Indicates that the VCPU exits into userspace to process some tasks +related to Xen emulation. + +Valid values for 'type' are: + + - KVM_EXIT_XEN_HCALL -- synchronously notify user-space about Xen hypercall. + Userspace is expected to place the hypercall result into the appropriate + field before invoking KVM_RUN again. + +:: + + /* KVM_EXIT_RISCV_SBI */ + struct { + unsigned long extension_id; + unsigned long function_id; + unsigned long args[6]; + unsigned long ret[2]; + } riscv_sbi; + +If exit reason is KVM_EXIT_RISCV_SBI then it indicates that the VCPU has +done a SBI call which is not handled by KVM RISC-V kernel module. The details +of the SBI call are available in 'riscv_sbi' member of kvm_run structure. The +'extension_id' field of 'riscv_sbi' represents SBI extension ID whereas the +'function_id' field represents function ID of given SBI extension. The 'args' +array field of 'riscv_sbi' represents parameters for the SBI call and 'ret' +array field represents return values. The userspace should update the return +values of SBI call before resuming the VCPU. For more details on RISC-V SBI +spec refer, https://github.com/riscv/riscv-sbi-doc. + +:: + + /* KVM_EXIT_NOTIFY */ + struct { + #define KVM_NOTIFY_CONTEXT_INVALID (1 << 0) + __u32 flags; + } notify; + +Used on x86 systems. When the VM capability KVM_CAP_X86_NOTIFY_VMEXIT is +enabled, a VM exit generated if no event window occurs in VM non-root mode +for a specified amount of time. Once KVM_X86_NOTIFY_VMEXIT_USER is set when +enabling the cap, it would exit to userspace with the exit reason +KVM_EXIT_NOTIFY for further handling. The "flags" field contains more +detailed info. + +The valid value for 'flags' is: + + - KVM_NOTIFY_CONTEXT_INVALID -- the VM context is corrupted and not valid + in VMCS. It would run into unknown result if resume the target VM. + +:: + + /* Fix the size of the union. */ + char padding[256]; + }; + + /* + * shared registers between kvm and userspace. + * kvm_valid_regs specifies the register classes set by the host + * kvm_dirty_regs specified the register classes dirtied by userspace + * struct kvm_sync_regs is architecture specific, as well as the + * bits for kvm_valid_regs and kvm_dirty_regs + */ + __u64 kvm_valid_regs; + __u64 kvm_dirty_regs; + union { + struct kvm_sync_regs regs; + char padding[SYNC_REGS_SIZE_BYTES]; + } s; + +If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access +certain guest registers without having to call SET/GET_*REGS. Thus we can +avoid some system call overhead if userspace has to handle the exit. +Userspace can query the validity of the structure by checking +kvm_valid_regs for specific bits. These bits are architecture specific +and usually define the validity of a groups of registers. (e.g. one bit +for general purpose registers) + +Please note that the kernel is allowed to use the kvm_run structure as the +primary storage for certain register types. Therefore, the kernel may use the +values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set. + +:: + + }; + + + +6. Capabilities that can be enabled on vCPUs +============================================ + +There are certain capabilities that change the behavior of the virtual CPU or +the virtual machine when enabled. To enable them, please see section 4.37. +Below you can find a list of capabilities and what their effect on the vCPU or +the virtual machine is when enabling them. + +The following information is provided along with the description: + + Architectures: + which instruction set architectures provide this ioctl. + x86 includes both i386 and x86_64. + + Target: + whether this is a per-vcpu or per-vm capability. + + Parameters: + what parameters are accepted by the capability. + + Returns: + the return value. General error numbers (EBADF, ENOMEM, EINVAL) + are not detailed, but errors with specific meanings are. + + +6.1 KVM_CAP_PPC_OSI +------------------- + +:Architectures: ppc +:Target: vcpu +:Parameters: none +:Returns: 0 on success; -1 on error + +This capability enables interception of OSI hypercalls that otherwise would +be treated as normal system calls to be injected into the guest. OSI hypercalls +were invented by Mac-on-Linux to have a standardized communication mechanism +between the guest and the host. + +When this capability is enabled, KVM_EXIT_OSI can occur. + + +6.2 KVM_CAP_PPC_PAPR +-------------------- + +:Architectures: ppc +:Target: vcpu +:Parameters: none +:Returns: 0 on success; -1 on error + +This capability enables interception of PAPR hypercalls. PAPR hypercalls are +done using the hypercall instruction "sc 1". + +It also sets the guest privilege level to "supervisor" mode. Usually the guest +runs in "hypervisor" privilege mode with a few missing features. + +In addition to the above, it changes the semantics of SDR1. In this mode, the +HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the +HTAB invisible to the guest. + +When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur. + + +6.3 KVM_CAP_SW_TLB +------------------ + +:Architectures: ppc +:Target: vcpu +:Parameters: args[0] is the address of a struct kvm_config_tlb +:Returns: 0 on success; -1 on error + +:: + + struct kvm_config_tlb { + __u64 params; + __u64 array; + __u32 mmu_type; + __u32 array_len; + }; + +Configures the virtual CPU's TLB array, establishing a shared memory area +between userspace and KVM. The "params" and "array" fields are userspace +addresses of mmu-type-specific data structures. The "array_len" field is an +safety mechanism, and should be set to the size in bytes of the memory that +userspace has reserved for the array. It must be at least the size dictated +by "mmu_type" and "params". + +While KVM_RUN is active, the shared region is under control of KVM. Its +contents are undefined, and any modification by userspace results in +boundedly undefined behavior. + +On return from KVM_RUN, the shared region will reflect the current state of +the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB +to tell KVM which entries have been changed, prior to calling KVM_RUN again +on this vcpu. + +For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: + + - The "params" field is of type "struct kvm_book3e_206_tlb_params". + - The "array" field points to an array of type "struct + kvm_book3e_206_tlb_entry". + - The array consists of all entries in the first TLB, followed by all + entries in the second TLB. + - Within a TLB, entries are ordered first by increasing set number. Within a + set, entries are ordered by way (increasing ESEL). + - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1) + where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. + - The tsize field of mas1 shall be set to 4K on TLB0, even though the + hardware ignores this value for TLB0. + +6.4 KVM_CAP_S390_CSS_SUPPORT +---------------------------- + +:Architectures: s390 +:Target: vcpu +:Parameters: none +:Returns: 0 on success; -1 on error + +This capability enables support for handling of channel I/O instructions. + +TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are +handled in-kernel, while the other I/O instructions are passed to userspace. + +When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST +SUBCHANNEL intercepts. + +Note that even though this capability is enabled per-vcpu, the complete +virtual machine is affected. + +6.5 KVM_CAP_PPC_EPR +------------------- + +:Architectures: ppc +:Target: vcpu +:Parameters: args[0] defines whether the proxy facility is active +:Returns: 0 on success; -1 on error + +This capability enables or disables the delivery of interrupts through the +external proxy facility. + +When enabled (args[0] != 0), every time the guest gets an external interrupt +delivered, it automatically exits into user space with a KVM_EXIT_EPR exit +to receive the topmost interrupt vector. + +When disabled (args[0] == 0), behavior is as if this facility is unsupported. + +When this capability is enabled, KVM_EXIT_EPR can occur. + +6.6 KVM_CAP_IRQ_MPIC +-------------------- + +:Architectures: ppc +:Parameters: args[0] is the MPIC device fd; + args[1] is the MPIC CPU number for this vcpu + +This capability connects the vcpu to an in-kernel MPIC device. + +6.7 KVM_CAP_IRQ_XICS +-------------------- + +:Architectures: ppc +:Target: vcpu +:Parameters: args[0] is the XICS device fd; + args[1] is the XICS CPU number (server ID) for this vcpu + +This capability connects the vcpu to an in-kernel XICS device. + +6.8 KVM_CAP_S390_IRQCHIP +------------------------ + +:Architectures: s390 +:Target: vm +:Parameters: none + +This capability enables the in-kernel irqchip for s390. Please refer to +"4.24 KVM_CREATE_IRQCHIP" for details. + +6.9 KVM_CAP_MIPS_FPU +-------------------- + +:Architectures: mips +:Target: vcpu +:Parameters: args[0] is reserved for future use (should be 0). + +This capability allows the use of the host Floating Point Unit by the guest. It +allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is +done the ``KVM_REG_MIPS_FPR_*`` and ``KVM_REG_MIPS_FCR_*`` registers can be +accessed (depending on the current guest FPU register mode), and the Status.FR, +Config5.FRE bits are accessible via the KVM API and also from the guest, +depending on them being supported by the FPU. + +6.10 KVM_CAP_MIPS_MSA +--------------------- + +:Architectures: mips +:Target: vcpu +:Parameters: args[0] is reserved for future use (should be 0). + +This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest. +It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest. +Once this is done the ``KVM_REG_MIPS_VEC_*`` and ``KVM_REG_MIPS_MSA_*`` +registers can be accessed, and the Config5.MSAEn bit is accessible via the +KVM API and also from the guest. + +6.74 KVM_CAP_SYNC_REGS +---------------------- + +:Architectures: s390, x86 +:Target: s390: always enabled, x86: vcpu +:Parameters: none +:Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register + sets are supported + (bitfields defined in arch/x86/include/uapi/asm/kvm.h). + +As described above in the kvm_sync_regs struct info in section 5 (kvm_run): +KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers +without having to call SET/GET_*REGS". This reduces overhead by eliminating +repeated ioctl calls for setting and/or getting register values. This is +particularly important when userspace is making synchronous guest state +modifications, e.g. when emulating and/or intercepting instructions in +userspace. + +For s390 specifics, please refer to the source code. + +For x86: + +- the register sets to be copied out to kvm_run are selectable + by userspace (rather that all sets being copied out for every exit). +- vcpu_events are available in addition to regs and sregs. + +For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to +function as an input bit-array field set by userspace to indicate the +specific register sets to be copied out on the next exit. + +To indicate when userspace has modified values that should be copied into +the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set. +This is done using the same bitflags as for the 'kvm_valid_regs' field. +If the dirty bit is not set, then the register set values will not be copied +into the vCPU even if they've been modified. + +Unused bitfields in the bitarrays must be set to zero. + +:: + + struct kvm_sync_regs { + struct kvm_regs regs; + struct kvm_sregs sregs; + struct kvm_vcpu_events events; + }; + +6.75 KVM_CAP_PPC_IRQ_XIVE +------------------------- + +:Architectures: ppc +:Target: vcpu +:Parameters: args[0] is the XIVE device fd; + args[1] is the XIVE CPU number (server ID) for this vcpu + +This capability connects the vcpu to an in-kernel XIVE device. + +7. Capabilities that can be enabled on VMs +========================================== + +There are certain capabilities that change the behavior of the virtual +machine when enabled. To enable them, please see section 4.37. Below +you can find a list of capabilities and what their effect on the VM +is when enabling them. + +The following information is provided along with the description: + + Architectures: + which instruction set architectures provide this ioctl. + x86 includes both i386 and x86_64. + + Parameters: + what parameters are accepted by the capability. + + Returns: + the return value. General error numbers (EBADF, ENOMEM, EINVAL) + are not detailed, but errors with specific meanings are. + + +7.1 KVM_CAP_PPC_ENABLE_HCALL +---------------------------- + +:Architectures: ppc +:Parameters: args[0] is the sPAPR hcall number; + args[1] is 0 to disable, 1 to enable in-kernel handling + +This capability controls whether individual sPAPR hypercalls (hcalls) +get handled by the kernel or not. Enabling or disabling in-kernel +handling of an hcall is effective across the VM. On creation, an +initial set of hcalls are enabled for in-kernel handling, which +consists of those hcalls for which in-kernel handlers were implemented +before this capability was implemented. If disabled, the kernel will +not to attempt to handle the hcall, but will always exit to userspace +to handle it. Note that it may not make sense to enable some and +disable others of a group of related hcalls, but KVM does not prevent +userspace from doing that. + +If the hcall number specified is not one that has an in-kernel +implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL +error. + +7.2 KVM_CAP_S390_USER_SIGP +-------------------------- + +:Architectures: s390 +:Parameters: none + +This capability controls which SIGP orders will be handled completely in user +space. With this capability enabled, all fast orders will be handled completely +in the kernel: + +- SENSE +- SENSE RUNNING +- EXTERNAL CALL +- EMERGENCY SIGNAL +- CONDITIONAL EMERGENCY SIGNAL + +All other orders will be handled completely in user space. + +Only privileged operation exceptions will be checked for in the kernel (or even +in the hardware prior to interception). If this capability is not enabled, the +old way of handling SIGP orders is used (partially in kernel and user space). + +7.3 KVM_CAP_S390_VECTOR_REGISTERS +--------------------------------- + +:Architectures: s390 +:Parameters: none +:Returns: 0 on success, negative value on error + +Allows use of the vector registers introduced with z13 processor, and +provides for the synchronization between host and user space. Will +return -EINVAL if the machine does not support vectors. + +7.4 KVM_CAP_S390_USER_STSI +-------------------------- + +:Architectures: s390 +:Parameters: none + +This capability allows post-handlers for the STSI instruction. After +initial handling in the kernel, KVM exits to user space with +KVM_EXIT_S390_STSI to allow user space to insert further data. + +Before exiting to userspace, kvm handlers should fill in s390_stsi field of +vcpu->run:: + + struct { + __u64 addr; + __u8 ar; + __u8 reserved; + __u8 fc; + __u8 sel1; + __u16 sel2; + } s390_stsi; + + @addr - guest address of STSI SYSIB + @fc - function code + @sel1 - selector 1 + @sel2 - selector 2 + @ar - access register number + +KVM handlers should exit to userspace with rc = -EREMOTE. + +7.5 KVM_CAP_SPLIT_IRQCHIP +------------------------- + +:Architectures: x86 +:Parameters: args[0] - number of routes reserved for userspace IOAPICs +:Returns: 0 on success, -1 on error + +Create a local apic for each processor in the kernel. This can be used +instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the +IOAPIC and PIC (and also the PIT, even though this has to be enabled +separately). + +This capability also enables in kernel routing of interrupt requests; +when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are +used in the IRQ routing table. The first args[0] MSI routes are reserved +for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes, +a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace. + +Fails if VCPU has already been created, or if the irqchip is already in the +kernel (i.e. KVM_CREATE_IRQCHIP has already been called). + +7.6 KVM_CAP_S390_RI +------------------- + +:Architectures: s390 +:Parameters: none + +Allows use of runtime-instrumentation introduced with zEC12 processor. +Will return -EINVAL if the machine does not support runtime-instrumentation. +Will return -EBUSY if a VCPU has already been created. + +7.7 KVM_CAP_X2APIC_API +---------------------- + +:Architectures: x86 +:Parameters: args[0] - features that should be enabled +:Returns: 0 on success, -EINVAL when args[0] contains invalid features + +Valid feature flags in args[0] are:: + + #define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0) + #define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1) + +Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of +KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC, +allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their +respective sections. + +KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work +in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff +as a broadcast even in x2APIC mode in order to support physical x2APIC +without interrupt remapping. This is undesirable in logical mode, +where 0xff represents CPUs 0-7 in cluster 0. + +7.8 KVM_CAP_S390_USER_INSTR0 +---------------------------- + +:Architectures: s390 +:Parameters: none + +With this capability enabled, all illegal instructions 0x0000 (2 bytes) will +be intercepted and forwarded to user space. User space can use this +mechanism e.g. to realize 2-byte software breakpoints. The kernel will +not inject an operating exception for these instructions, user space has +to take care of that. + +This capability can be enabled dynamically even if VCPUs were already +created and are running. + +7.9 KVM_CAP_S390_GS +------------------- + +:Architectures: s390 +:Parameters: none +:Returns: 0 on success; -EINVAL if the machine does not support + guarded storage; -EBUSY if a VCPU has already been created. + +Allows use of guarded storage for the KVM guest. + +7.10 KVM_CAP_S390_AIS +--------------------- + +:Architectures: s390 +:Parameters: none + +Allow use of adapter-interruption suppression. +:Returns: 0 on success; -EBUSY if a VCPU has already been created. + +7.11 KVM_CAP_PPC_SMT +-------------------- + +:Architectures: ppc +:Parameters: vsmt_mode, flags + +Enabling this capability on a VM provides userspace with a way to set +the desired virtual SMT mode (i.e. the number of virtual CPUs per +virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2 +between 1 and 8. On POWER8, vsmt_mode must also be no greater than +the number of threads per subcore for the host. Currently flags must +be 0. A successful call to enable this capability will result in +vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is +subsequently queried for the VM. This capability is only supported by +HV KVM, and can only be set before any VCPUs have been created. +The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT +modes are available. + +7.12 KVM_CAP_PPC_FWNMI +---------------------- + +:Architectures: ppc +:Parameters: none + +With this capability a machine check exception in the guest address +space will cause KVM to exit the guest with NMI exit reason. This +enables QEMU to build error log and branch to guest kernel registered +machine check handling routine. Without this capability KVM will +branch to guests' 0x200 interrupt vector. + +7.13 KVM_CAP_X86_DISABLE_EXITS +------------------------------ + +:Architectures: x86 +:Parameters: args[0] defines which exits are disabled +:Returns: 0 on success, -EINVAL when args[0] contains invalid exits + +Valid bits in args[0] are:: + + #define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0) + #define KVM_X86_DISABLE_EXITS_HLT (1 << 1) + #define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2) + #define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3) + +Enabling this capability on a VM provides userspace with a way to no +longer intercept some instructions for improved latency in some +workloads, and is suggested when vCPUs are associated to dedicated +physical CPUs. More bits can be added in the future; userspace can +just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable +all such vmexits. + +Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits. + +7.14 KVM_CAP_S390_HPAGE_1M +-------------------------- + +:Architectures: s390 +:Parameters: none +:Returns: 0 on success, -EINVAL if hpage module parameter was not set + or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL + flag set + +With this capability the KVM support for memory backing with 1m pages +through hugetlbfs can be enabled for a VM. After the capability is +enabled, cmma can't be enabled anymore and pfmfi and the storage key +interpretation are disabled. If cmma has already been enabled or the +hpage module parameter is not set to 1, -EINVAL is returned. + +While it is generally possible to create a huge page backed VM without +this capability, the VM will not be able to run. + +7.15 KVM_CAP_MSR_PLATFORM_INFO +------------------------------ + +:Architectures: x86 +:Parameters: args[0] whether feature should be enabled or not + +With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise, +a #GP would be raised when the guest tries to access. Currently, this +capability does not enable write permissions of this MSR for the guest. + +7.16 KVM_CAP_PPC_NESTED_HV +-------------------------- + +:Architectures: ppc +:Parameters: none +:Returns: 0 on success, -EINVAL when the implementation doesn't support + nested-HV virtualization. + +HV-KVM on POWER9 and later systems allows for "nested-HV" +virtualization, which provides a way for a guest VM to run guests that +can run using the CPU's supervisor mode (privileged non-hypervisor +state). Enabling this capability on a VM depends on the CPU having +the necessary functionality and on the facility being enabled with a +kvm-hv module parameter. + +7.17 KVM_CAP_EXCEPTION_PAYLOAD +------------------------------ + +:Architectures: x86 +:Parameters: args[0] whether feature should be enabled or not + +With this capability enabled, CR2 will not be modified prior to the +emulated VM-exit when L1 intercepts a #PF exception that occurs in +L2. Similarly, for kvm-intel only, DR6 will not be modified prior to +the emulated VM-exit when L1 intercepts a #DB exception that occurs in +L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or +#DB) exception for L2, exception.has_payload will be set and the +faulting address (or the new DR6 bits*) will be reported in the +exception_payload field. Similarly, when userspace injects a #PF (or +#DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set +exception.has_payload and to put the faulting address - or the new DR6 +bits\ [#]_ - in the exception_payload field. + +This capability also enables exception.pending in struct +kvm_vcpu_events, which allows userspace to distinguish between pending +and injected exceptions. + + +.. [#] For the new DR6 bits, note that bit 16 is set iff the #DB exception + will clear DR6.RTM. + +7.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 + +:Architectures: x86, arm64, mips +:Parameters: args[0] whether feature should be enabled or not + +Valid flags are:: + + #define KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (1 << 0) + #define KVM_DIRTY_LOG_INITIALLY_SET (1 << 1) + +With KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is set, KVM_GET_DIRTY_LOG will not +automatically clear and write-protect all pages that are returned as dirty. +Rather, userspace will have to do this operation separately using +KVM_CLEAR_DIRTY_LOG. + +At the cost of a slightly more complicated operation, this provides better +scalability and responsiveness for two reasons. First, +KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather +than requiring to sync a full memslot; this ensures that KVM does not +take spinlocks for an extended period of time. Second, in some cases a +large amount of time can pass between a call to KVM_GET_DIRTY_LOG and +userspace actually using the data in the page. Pages can be modified +during this time, which is inefficient for both the guest and userspace: +the guest will incur a higher penalty due to write protection faults, +while userspace can see false reports of dirty pages. Manual reprotection +helps reducing this time, improving guest performance and reducing the +number of dirty log false positives. + +With KVM_DIRTY_LOG_INITIALLY_SET set, all the bits of the dirty bitmap +will be initialized to 1 when created. This also improves performance because +dirty logging can be enabled gradually in small chunks on the first call +to KVM_CLEAR_DIRTY_LOG. KVM_DIRTY_LOG_INITIALLY_SET depends on +KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE (it is also only available on +x86 and arm64 for now). + +KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name +KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make +it hard or impossible to use it correctly. The availability of +KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals that those bugs are fixed. +Userspace should not try to use KVM_CAP_MANUAL_DIRTY_LOG_PROTECT. + +7.19 KVM_CAP_PPC_SECURE_GUEST +------------------------------ + +:Architectures: ppc + +This capability indicates that KVM is running on a host that has +ultravisor firmware and thus can support a secure guest. On such a +system, a guest can ask the ultravisor to make it a secure guest, +one whose memory is inaccessible to the host except for pages which +are explicitly requested to be shared with the host. The ultravisor +notifies KVM when a guest requests to become a secure guest, and KVM +has the opportunity to veto the transition. + +If present, this capability can be enabled for a VM, meaning that KVM +will allow the transition to secure guest mode. Otherwise KVM will +veto the transition. + +7.20 KVM_CAP_HALT_POLL +---------------------- + +:Architectures: all +:Target: VM +:Parameters: args[0] is the maximum poll time in nanoseconds +:Returns: 0 on success; -1 on error + +KVM_CAP_HALT_POLL overrides the kvm.halt_poll_ns module parameter to set the +maximum halt-polling time for all vCPUs in the target VM. This capability can +be invoked at any time and any number of times to dynamically change the +maximum halt-polling time. + +See Documentation/virt/kvm/halt-polling.rst for more information on halt +polling. + +7.21 KVM_CAP_X86_USER_SPACE_MSR +------------------------------- + +:Architectures: x86 +:Target: VM +:Parameters: args[0] contains the mask of KVM_MSR_EXIT_REASON_* events to report +:Returns: 0 on success; -1 on error + +This capability enables trapping of #GP invoking RDMSR and WRMSR instructions +into user space. + +When a guest requests to read or write an MSR, KVM may not implement all MSRs +that are relevant to a respective system. It also does not differentiate by +CPU type. + +To allow more fine grained control over MSR handling, user space may enable +this capability. With it enabled, MSR accesses that match the mask specified in +args[0] and trigger a #GP event inside the guest by KVM will instead trigger +KVM_EXIT_X86_RDMSR and KVM_EXIT_X86_WRMSR exit notifications which user space +can then handle to implement model specific MSR handling and/or user notifications +to inform a user that an MSR was not handled. + +7.22 KVM_CAP_X86_BUS_LOCK_EXIT +------------------------------- + +:Architectures: x86 +:Target: VM +:Parameters: args[0] defines the policy used when bus locks detected in guest +:Returns: 0 on success, -EINVAL when args[0] contains invalid bits + +Valid bits in args[0] are:: + + #define KVM_BUS_LOCK_DETECTION_OFF (1 << 0) + #define KVM_BUS_LOCK_DETECTION_EXIT (1 << 1) + +Enabling this capability on a VM provides userspace with a way to select +a policy to handle the bus locks detected in guest. Userspace can obtain +the supported modes from the result of KVM_CHECK_EXTENSION and define it +through the KVM_ENABLE_CAP. + +KVM_BUS_LOCK_DETECTION_OFF and KVM_BUS_LOCK_DETECTION_EXIT are supported +currently and mutually exclusive with each other. More bits can be added in +the future. + +With KVM_BUS_LOCK_DETECTION_OFF set, bus locks in guest will not cause vm exits +so that no additional actions are needed. This is the default mode. + +With KVM_BUS_LOCK_DETECTION_EXIT set, vm exits happen when bus lock detected +in VM. KVM just exits to userspace when handling them. Userspace can enforce +its own throttling or other policy based mitigations. + +This capability is aimed to address the thread that VM can exploit bus locks to +degree the performance of the whole system. Once the userspace enable this +capability and select the KVM_BUS_LOCK_DETECTION_EXIT mode, KVM will set the +KVM_RUN_BUS_LOCK flag in vcpu-run->flags field and exit to userspace. Concerning +the bus lock vm exit can be preempted by a higher priority VM exit, the exit +notifications to userspace can be KVM_EXIT_BUS_LOCK or other reasons. +KVM_RUN_BUS_LOCK flag is used to distinguish between them. + +7.23 KVM_CAP_PPC_DAWR1 +---------------------- + +:Architectures: ppc +:Parameters: none +:Returns: 0 on success, -EINVAL when CPU doesn't support 2nd DAWR + +This capability can be used to check / enable 2nd DAWR feature provided +by POWER10 processor. + + +7.24 KVM_CAP_VM_COPY_ENC_CONTEXT_FROM +------------------------------------- + +Architectures: x86 SEV enabled +Type: vm +Parameters: args[0] is the fd of the source vm +Returns: 0 on success; ENOTTY on error + +This capability enables userspace to copy encryption context from the vm +indicated by the fd to the vm this is called on. + +This is intended to support in-guest workloads scheduled by the host. This +allows the in-guest workload to maintain its own NPTs and keeps the two vms +from accidentally clobbering each other with interrupts and the like (separate +APIC/MSRs/etc). + +7.25 KVM_CAP_SGX_ATTRIBUTE +-------------------------- + +:Architectures: x86 +:Target: VM +:Parameters: args[0] is a file handle of a SGX attribute file in securityfs +:Returns: 0 on success, -EINVAL if the file handle is invalid or if a requested + attribute is not supported by KVM. + +KVM_CAP_SGX_ATTRIBUTE enables a userspace VMM to grant a VM access to one or +more priveleged enclave attributes. args[0] must hold a file handle to a valid +SGX attribute file corresponding to an attribute that is supported/restricted +by KVM (currently only PROVISIONKEY). + +The SGX subsystem restricts access to a subset of enclave attributes to provide +additional security for an uncompromised kernel, e.g. use of the PROVISIONKEY +is restricted to deter malware from using the PROVISIONKEY to obtain a stable +system fingerprint. To prevent userspace from circumventing such restrictions +by running an enclave in a VM, KVM prevents access to privileged attributes by +default. + +See Documentation/x86/sgx.rst for more details. + +7.26 KVM_CAP_PPC_RPT_INVALIDATE +------------------------------- + +:Capability: KVM_CAP_PPC_RPT_INVALIDATE +:Architectures: ppc +:Type: vm + +This capability indicates that the kernel is capable of handling +H_RPT_INVALIDATE hcall. + +In order to enable the use of H_RPT_INVALIDATE in the guest, +user space might have to advertise it for the guest. For example, +IBM pSeries (sPAPR) guest starts using it if "hcall-rpt-invalidate" is +present in the "ibm,hypertas-functions" device-tree property. + +This capability is enabled for hypervisors on platforms like POWER9 +that support radix MMU. + +7.27 KVM_CAP_EXIT_ON_EMULATION_FAILURE +-------------------------------------- + +:Architectures: x86 +:Parameters: args[0] whether the feature should be enabled or not + +When this capability is enabled, an emulation failure will result in an exit +to userspace with KVM_INTERNAL_ERROR (except when the emulator was invoked +to handle a VMware backdoor instruction). Furthermore, KVM will now provide up +to 15 instruction bytes for any exit to userspace resulting from an emulation +failure. When these exits to userspace occur use the emulation_failure struct +instead of the internal struct. They both have the same layout, but the +emulation_failure struct matches the content better. It also explicitly +defines the 'flags' field which is used to describe the fields in the struct +that are valid (ie: if KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES is +set in the 'flags' field then both 'insn_size' and 'insn_bytes' have valid data +in them.) + +7.28 KVM_CAP_ARM_MTE +-------------------- + +:Architectures: arm64 +:Parameters: none + +This capability indicates that KVM (and the hardware) supports exposing the +Memory Tagging Extensions (MTE) to the guest. It must also be enabled by the +VMM before creating any VCPUs to allow the guest access. Note that MTE is only +available to a guest running in AArch64 mode and enabling this capability will +cause attempts to create AArch32 VCPUs to fail. + +When enabled the guest is able to access tags associated with any memory given +to the guest. KVM will ensure that the tags are maintained during swap or +hibernation of the host; however the VMM needs to manually save/restore the +tags as appropriate if the VM is migrated. + +When this capability is enabled all memory in memslots must be mapped as +not-shareable (no MAP_SHARED), attempts to create a memslot with a +MAP_SHARED mmap will result in an -EINVAL return. + +When enabled the VMM may make use of the ``KVM_ARM_MTE_COPY_TAGS`` ioctl to +perform a bulk copy of tags to/from the guest. + +7.29 KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM +------------------------------------- + +Architectures: x86 SEV enabled +Type: vm +Parameters: args[0] is the fd of the source vm +Returns: 0 on success + +This capability enables userspace to migrate the encryption context from the VM +indicated by the fd to the VM this is called on. + +This is intended to support intra-host migration of VMs between userspace VMMs, +upgrading the VMM process without interrupting the guest. + +7.30 KVM_CAP_PPC_AIL_MODE_3 +------------------------------- + +:Capability: KVM_CAP_PPC_AIL_MODE_3 +:Architectures: ppc +:Type: vm + +This capability indicates that the kernel supports the mode 3 setting for the +"Address Translation Mode on Interrupt" aka "Alternate Interrupt Location" +resource that is controlled with the H_SET_MODE hypercall. + +This capability allows a guest kernel to use a better-performance mode for +handling interrupts and system calls. + +7.31 KVM_CAP_DISABLE_QUIRKS2 +---------------------------- + +:Capability: KVM_CAP_DISABLE_QUIRKS2 +:Parameters: args[0] - set of KVM quirks to disable +:Architectures: x86 +:Type: vm + +This capability, if enabled, will cause KVM to disable some behavior +quirks. + +Calling KVM_CHECK_EXTENSION for this capability returns a bitmask of +quirks that can be disabled in KVM. + +The argument to KVM_ENABLE_CAP for this capability is a bitmask of +quirks to disable, and must be a subset of the bitmask returned by +KVM_CHECK_EXTENSION. + +The valid bits in cap.args[0] are: + +=================================== ============================================ + KVM_X86_QUIRK_LINT0_REENABLED By default, the reset value for the LVT + LINT0 register is 0x700 (APIC_MODE_EXTINT). + When this quirk is disabled, the reset value + is 0x10000 (APIC_LVT_MASKED). + + KVM_X86_QUIRK_CD_NW_CLEARED By default, KVM clears CR0.CD and CR0.NW. + When this quirk is disabled, KVM does not + change the value of CR0.CD and CR0.NW. + + KVM_X86_QUIRK_LAPIC_MMIO_HOLE By default, the MMIO LAPIC interface is + available even when configured for x2APIC + mode. When this quirk is disabled, KVM + disables the MMIO LAPIC interface if the + LAPIC is in x2APIC mode. + + KVM_X86_QUIRK_OUT_7E_INC_RIP By default, KVM pre-increments %rip before + exiting to userspace for an OUT instruction + to port 0x7e. When this quirk is disabled, + KVM does not pre-increment %rip before + exiting to userspace. + + KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT When this quirk is disabled, KVM sets + CPUID.01H:ECX[bit 3] (MONITOR/MWAIT) if + IA32_MISC_ENABLE[bit 18] (MWAIT) is set. + Additionally, when this quirk is disabled, + KVM clears CPUID.01H:ECX[bit 3] if + IA32_MISC_ENABLE[bit 18] is cleared. + + KVM_X86_QUIRK_FIX_HYPERCALL_INSN By default, KVM rewrites guest + VMMCALL/VMCALL instructions to match the + vendor's hypercall instruction for the + system. When this quirk is disabled, KVM + will no longer rewrite invalid guest + hypercall instructions. Executing the + incorrect hypercall instruction will + generate a #UD within the guest. + +KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS By default, KVM emulates MONITOR/MWAIT (if + they are intercepted) as NOPs regardless of + whether or not MONITOR/MWAIT are supported + according to guest CPUID. When this quirk + is disabled and KVM_X86_DISABLE_EXITS_MWAIT + is not set (MONITOR/MWAIT are intercepted), + KVM will inject a #UD on MONITOR/MWAIT if + they're unsupported per guest CPUID. Note, + KVM will modify MONITOR/MWAIT support in + guest CPUID on writes to MISC_ENABLE if + KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT is + disabled. +=================================== ============================================ + +7.32 KVM_CAP_MAX_VCPU_ID +------------------------ + +:Architectures: x86 +:Target: VM +:Parameters: args[0] - maximum APIC ID value set for current VM +:Returns: 0 on success, -EINVAL if args[0] is beyond KVM_MAX_VCPU_IDS + supported in KVM or if it has been set. + +This capability allows userspace to specify maximum possible APIC ID +assigned for current VM session prior to the creation of vCPUs, saving +memory for data structures indexed by the APIC ID. Userspace is able +to calculate the limit to APIC ID values from designated +CPU topology. + +The value can be changed only until KVM_ENABLE_CAP is set to a nonzero +value or until a vCPU is created. Upon creation of the first vCPU, +if the value was set to zero or KVM_ENABLE_CAP was not invoked, KVM +uses the return value of KVM_CHECK_EXTENSION(KVM_CAP_MAX_VCPU_ID) as +the maximum APIC ID. + +7.33 KVM_CAP_X86_NOTIFY_VMEXIT +------------------------------ + +:Architectures: x86 +:Target: VM +:Parameters: args[0] is the value of notify window as well as some flags +:Returns: 0 on success, -EINVAL if args[0] contains invalid flags or notify + VM exit is unsupported. + +Bits 63:32 of args[0] are used for notify window. +Bits 31:0 of args[0] are for some flags. Valid bits are:: + + #define KVM_X86_NOTIFY_VMEXIT_ENABLED (1 << 0) + #define KVM_X86_NOTIFY_VMEXIT_USER (1 << 1) + +This capability allows userspace to configure the notify VM exit on/off +in per-VM scope during VM creation. Notify VM exit is disabled by default. +When userspace sets KVM_X86_NOTIFY_VMEXIT_ENABLED bit in args[0], VMM will +enable this feature with the notify window provided, which will generate +a VM exit if no event window occurs in VM non-root mode for a specified of +time (notify window). + +If KVM_X86_NOTIFY_VMEXIT_USER is set in args[0], upon notify VM exits happen, +KVM would exit to userspace for handling. + +This capability is aimed to mitigate the threat that malicious VMs can +cause CPU stuck (due to event windows don't open up) and make the CPU +unavailable to host or other VMs. + +8. Other capabilities. +====================== + +This section lists capabilities that give information about other +features of the KVM implementation. + +8.1 KVM_CAP_PPC_HWRNG +--------------------- + +:Architectures: ppc + +This capability, if KVM_CHECK_EXTENSION indicates that it is +available, means that the kernel has an implementation of the +H_RANDOM hypercall backed by a hardware random-number generator. +If present, the kernel H_RANDOM handler can be enabled for guest use +with the KVM_CAP_PPC_ENABLE_HCALL capability. + +8.2 KVM_CAP_HYPERV_SYNIC +------------------------ + +:Architectures: x86 + +This capability, if KVM_CHECK_EXTENSION indicates that it is +available, means that the kernel has an implementation of the +Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is +used to support Windows Hyper-V based guest paravirt drivers(VMBus). + +In order to use SynIC, it has to be activated by setting this +capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this +will disable the use of APIC hardware virtualization even if supported +by the CPU, as it's incompatible with SynIC auto-EOI behavior. + +8.3 KVM_CAP_PPC_RADIX_MMU +------------------------- + +:Architectures: ppc + +This capability, if KVM_CHECK_EXTENSION indicates that it is +available, means that the kernel can support guests using the +radix MMU defined in Power ISA V3.00 (as implemented in the POWER9 +processor). + +8.4 KVM_CAP_PPC_HASH_MMU_V3 +--------------------------- + +:Architectures: ppc + +This capability, if KVM_CHECK_EXTENSION indicates that it is +available, means that the kernel can support guests using the +hashed page table MMU defined in Power ISA V3.00 (as implemented in +the POWER9 processor), including in-memory segment tables. + +8.5 KVM_CAP_MIPS_VZ +------------------- + +:Architectures: mips + +This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that +it is available, means that full hardware assisted virtualization capabilities +of the hardware are available for use through KVM. An appropriate +KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which +utilises it. + +If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is +available, it means that the VM is using full hardware assisted virtualization +capabilities of the hardware. This is useful to check after creating a VM with +KVM_VM_MIPS_DEFAULT. + +The value returned by KVM_CHECK_EXTENSION should be compared against known +values (see below). All other values are reserved. This is to allow for the +possibility of other hardware assisted virtualization implementations which +may be incompatible with the MIPS VZ ASE. + +== ========================================================================== + 0 The trap & emulate implementation is in use to run guest code in user + mode. Guest virtual memory segments are rearranged to fit the guest in the + user mode address space. + + 1 The MIPS VZ ASE is in use, providing full hardware assisted + virtualization, including standard guest virtual memory segments. +== ========================================================================== + +8.6 KVM_CAP_MIPS_TE +------------------- + +:Architectures: mips + +This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that +it is available, means that the trap & emulate implementation is available to +run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware +assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed +to KVM_CREATE_VM to create a VM which utilises it. + +If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is +available, it means that the VM is using trap & emulate. + +8.7 KVM_CAP_MIPS_64BIT +---------------------- + +:Architectures: mips + +This capability indicates the supported architecture type of the guest, i.e. the +supported register and address width. + +The values returned when this capability is checked by KVM_CHECK_EXTENSION on a +kvm VM handle correspond roughly to the CP0_Config.AT register field, and should +be checked specifically against known values (see below). All other values are +reserved. + +== ======================================================================== + 0 MIPS32 or microMIPS32. + Both registers and addresses are 32-bits wide. + It will only be possible to run 32-bit guest code. + + 1 MIPS64 or microMIPS64 with access only to 32-bit compatibility segments. + Registers are 64-bits wide, but addresses are 32-bits wide. + 64-bit guest code may run but cannot access MIPS64 memory segments. + It will also be possible to run 32-bit guest code. + + 2 MIPS64 or microMIPS64 with access to all address segments. + Both registers and addresses are 64-bits wide. + It will be possible to run 64-bit or 32-bit guest code. +== ======================================================================== + +8.9 KVM_CAP_ARM_USER_IRQ +------------------------ + +:Architectures: arm64 + +This capability, if KVM_CHECK_EXTENSION indicates that it is available, means +that if userspace creates a VM without an in-kernel interrupt controller, it +will be notified of changes to the output level of in-kernel emulated devices, +which can generate virtual interrupts, presented to the VM. +For such VMs, on every return to userspace, the kernel +updates the vcpu's run->s.regs.device_irq_level field to represent the actual +output level of the device. + +Whenever kvm detects a change in the device output level, kvm guarantees at +least one return to userspace before running the VM. This exit could either +be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way, +userspace can always sample the device output level and re-compute the state of +the userspace interrupt controller. Userspace should always check the state +of run->s.regs.device_irq_level on every kvm exit. +The value in run->s.regs.device_irq_level can represent both level and edge +triggered interrupt signals, depending on the device. Edge triggered interrupt +signals will exit to userspace with the bit in run->s.regs.device_irq_level +set exactly once per edge signal. + +The field run->s.regs.device_irq_level is available independent of +run->kvm_valid_regs or run->kvm_dirty_regs bits. + +If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a +number larger than 0 indicating the version of this capability is implemented +and thereby which bits in run->s.regs.device_irq_level can signal values. + +Currently the following bits are defined for the device_irq_level bitmap:: + + KVM_CAP_ARM_USER_IRQ >= 1: + + KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer + KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer + KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal + +Future versions of kvm may implement additional events. These will get +indicated by returning a higher number from KVM_CHECK_EXTENSION and will be +listed above. + +8.10 KVM_CAP_PPC_SMT_POSSIBLE +----------------------------- + +:Architectures: ppc + +Querying this capability returns a bitmap indicating the possible +virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N +(counting from the right) is set, then a virtual SMT mode of 2^N is +available. + +8.11 KVM_CAP_HYPERV_SYNIC2 +-------------------------- + +:Architectures: x86 + +This capability enables a newer version of Hyper-V Synthetic interrupt +controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM +doesn't clear SynIC message and event flags pages when they are enabled by +writing to the respective MSRs. + +8.12 KVM_CAP_HYPERV_VP_INDEX +---------------------------- + +:Architectures: x86 + +This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its +value is used to denote the target vcpu for a SynIC interrupt. For +compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this +capability is absent, userspace can still query this msr's value. + +8.13 KVM_CAP_S390_AIS_MIGRATION +------------------------------- + +:Architectures: s390 +:Parameters: none + +This capability indicates if the flic device will be able to get/set the +AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows +to discover this without having to create a flic device. + +8.14 KVM_CAP_S390_PSW +--------------------- + +:Architectures: s390 + +This capability indicates that the PSW is exposed via the kvm_run structure. + +8.15 KVM_CAP_S390_GMAP +---------------------- + +:Architectures: s390 + +This capability indicates that the user space memory used as guest mapping can +be anywhere in the user memory address space, as long as the memory slots are +aligned and sized to a segment (1MB) boundary. + +8.16 KVM_CAP_S390_COW +--------------------- + +:Architectures: s390 + +This capability indicates that the user space memory used as guest mapping can +use copy-on-write semantics as well as dirty pages tracking via read-only page +tables. + +8.17 KVM_CAP_S390_BPB +--------------------- + +:Architectures: s390 + +This capability indicates that kvm will implement the interfaces to handle +reset, migration and nested KVM for branch prediction blocking. The stfle +facility 82 should not be provided to the guest without this capability. + +8.18 KVM_CAP_HYPERV_TLBFLUSH +---------------------------- + +:Architectures: x86 + +This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush +hypercalls: +HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, +HvFlushVirtualAddressList, HvFlushVirtualAddressListEx. + +8.19 KVM_CAP_ARM_INJECT_SERROR_ESR +---------------------------------- + +:Architectures: arm64 + +This capability indicates that userspace can specify (via the +KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it +takes a virtual SError interrupt exception. +If KVM advertises this capability, userspace can only specify the ISS field for +the ESR syndrome. Other parts of the ESR, such as the EC are generated by the +CPU when the exception is taken. If this virtual SError is taken to EL1 using +AArch64, this value will be reported in the ISS field of ESR_ELx. + +See KVM_CAP_VCPU_EVENTS for more details. + +8.20 KVM_CAP_HYPERV_SEND_IPI +---------------------------- + +:Architectures: x86 + +This capability indicates that KVM supports paravirtualized Hyper-V IPI send +hypercalls: +HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx. + +8.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH +----------------------------------- + +:Architectures: x86 + +This capability indicates that KVM running on top of Hyper-V hypervisor +enables Direct TLB flush for its guests meaning that TLB flush +hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM. +Due to the different ABI for hypercall parameters between Hyper-V and +KVM, enabling this capability effectively disables all hypercall +handling by KVM (as some KVM hypercall may be mistakenly treated as TLB +flush hypercalls by Hyper-V) so userspace should disable KVM identification +in CPUID and only exposes Hyper-V identification. In this case, guest +thinks it's running on Hyper-V and only use Hyper-V hypercalls. + +8.22 KVM_CAP_S390_VCPU_RESETS +----------------------------- + +:Architectures: s390 + +This capability indicates that the KVM_S390_NORMAL_RESET and +KVM_S390_CLEAR_RESET ioctls are available. + +8.23 KVM_CAP_S390_PROTECTED +--------------------------- + +:Architectures: s390 + +This capability indicates that the Ultravisor has been initialized and +KVM can therefore start protected VMs. +This capability governs the KVM_S390_PV_COMMAND ioctl and the +KVM_MP_STATE_LOAD MP_STATE. KVM_SET_MP_STATE can fail for protected +guests when the state change is invalid. + +8.24 KVM_CAP_STEAL_TIME +----------------------- + +:Architectures: arm64, x86 + +This capability indicates that KVM supports steal time accounting. +When steal time accounting is supported it may be enabled with +architecture-specific interfaces. This capability and the architecture- +specific interfaces must be consistent, i.e. if one says the feature +is supported, than the other should as well and vice versa. For arm64 +see Documentation/virt/kvm/devices/vcpu.rst "KVM_ARM_VCPU_PVTIME_CTRL". +For x86 see Documentation/virt/kvm/x86/msr.rst "MSR_KVM_STEAL_TIME". + +8.25 KVM_CAP_S390_DIAG318 +------------------------- + +:Architectures: s390 + +This capability enables a guest to set information about its control program +(i.e. guest kernel type and version). The information is helpful during +system/firmware service events, providing additional data about the guest +environments running on the machine. + +The information is associated with the DIAGNOSE 0x318 instruction, which sets +an 8-byte value consisting of a one-byte Control Program Name Code (CPNC) and +a 7-byte Control Program Version Code (CPVC). The CPNC determines what +environment the control program is running in (e.g. Linux, z/VM...), and the +CPVC is used for information specific to OS (e.g. Linux version, Linux +distribution...) + +If this capability is available, then the CPNC and CPVC can be synchronized +between KVM and userspace via the sync regs mechanism (KVM_SYNC_DIAG318). + +8.26 KVM_CAP_X86_USER_SPACE_MSR +------------------------------- + +:Architectures: x86 + +This capability indicates that KVM supports deflection of MSR reads and +writes to user space. It can be enabled on a VM level. If enabled, MSR +accesses that would usually trigger a #GP by KVM into the guest will +instead get bounced to user space through the KVM_EXIT_X86_RDMSR and +KVM_EXIT_X86_WRMSR exit notifications. + +8.27 KVM_CAP_X86_MSR_FILTER +--------------------------- + +:Architectures: x86 + +This capability indicates that KVM supports that accesses to user defined MSRs +may be rejected. With this capability exposed, KVM exports new VM ioctl +KVM_X86_SET_MSR_FILTER which user space can call to specify bitmaps of MSR +ranges that KVM should reject access to. + +In combination with KVM_CAP_X86_USER_SPACE_MSR, this allows user space to +trap and emulate MSRs that are outside of the scope of KVM as well as +limit the attack surface on KVM's MSR emulation code. + +8.28 KVM_CAP_ENFORCE_PV_FEATURE_CPUID +------------------------------------- + +Architectures: x86 + +When enabled, KVM will disable paravirtual features provided to the +guest according to the bits in the KVM_CPUID_FEATURES CPUID leaf +(0x40000001). Otherwise, a guest may use the paravirtual features +regardless of what has actually been exposed through the CPUID leaf. + +8.29 KVM_CAP_DIRTY_LOG_RING/KVM_CAP_DIRTY_LOG_RING_ACQ_REL +---------------------------------------------------------- + +:Architectures: x86 +:Parameters: args[0] - size of the dirty log ring + +KVM is capable of tracking dirty memory using ring buffers that are +mmaped into userspace; there is one dirty ring per vcpu. + +The dirty ring is available to userspace as an array of +``struct kvm_dirty_gfn``. Each dirty entry it's defined as:: + + struct kvm_dirty_gfn { + __u32 flags; + __u32 slot; /* as_id | slot_id */ + __u64 offset; + }; + +The following values are defined for the flags field to define the +current state of the entry:: + + #define KVM_DIRTY_GFN_F_DIRTY BIT(0) + #define KVM_DIRTY_GFN_F_RESET BIT(1) + #define KVM_DIRTY_GFN_F_MASK 0x3 + +Userspace should call KVM_ENABLE_CAP ioctl right after KVM_CREATE_VM +ioctl to enable this capability for the new guest and set the size of +the rings. Enabling the capability is only allowed before creating any +vCPU, and the size of the ring must be a power of two. The larger the +ring buffer, the less likely the ring is full and the VM is forced to +exit to userspace. The optimal size depends on the workload, but it is +recommended that it be at least 64 KiB (4096 entries). + +Just like for dirty page bitmaps, the buffer tracks writes to +all user memory regions for which the KVM_MEM_LOG_DIRTY_PAGES flag was +set in KVM_SET_USER_MEMORY_REGION. Once a memory region is registered +with the flag set, userspace can start harvesting dirty pages from the +ring buffer. + +An entry in the ring buffer can be unused (flag bits ``00``), +dirty (flag bits ``01``) or harvested (flag bits ``1X``). The +state machine for the entry is as follows:: + + dirtied harvested reset + 00 -----------> 01 -------------> 1X -------+ + ^ | + | | + +------------------------------------------+ + +To harvest the dirty pages, userspace accesses the mmaped ring buffer +to read the dirty GFNs. If the flags has the DIRTY bit set (at this stage +the RESET bit must be cleared), then it means this GFN is a dirty GFN. +The userspace should harvest this GFN and mark the flags from state +``01b`` to ``1Xb`` (bit 0 will be ignored by KVM, but bit 1 must be set +to show that this GFN is harvested and waiting for a reset), and move +on to the next GFN. The userspace should continue to do this until the +flags of a GFN have the DIRTY bit cleared, meaning that it has harvested +all the dirty GFNs that were available. + +Note that on weakly ordered architectures, userspace accesses to the +ring buffer (and more specifically the 'flags' field) must be ordered, +using load-acquire/store-release accessors when available, or any +other memory barrier that will ensure this ordering. + +It's not necessary for userspace to harvest the all dirty GFNs at once. +However it must collect the dirty GFNs in sequence, i.e., the userspace +program cannot skip one dirty GFN to collect the one next to it. + +After processing one or more entries in the ring buffer, userspace +calls the VM ioctl KVM_RESET_DIRTY_RINGS to notify the kernel about +it, so that the kernel will reprotect those collected GFNs. +Therefore, the ioctl must be called *before* reading the content of +the dirty pages. + +The dirty ring can get full. When it happens, the KVM_RUN of the +vcpu will return with exit reason KVM_EXIT_DIRTY_LOG_FULL. + +The dirty ring interface has a major difference comparing to the +KVM_GET_DIRTY_LOG interface in that, when reading the dirty ring from +userspace, it's still possible that the kernel has not yet flushed the +processor's dirty page buffers into the kernel buffer (with dirty bitmaps, the +flushing is done by the KVM_GET_DIRTY_LOG ioctl). To achieve that, one +needs to kick the vcpu out of KVM_RUN using a signal. The resulting +vmexit ensures that all dirty GFNs are flushed to the dirty rings. + +NOTE: the capability KVM_CAP_DIRTY_LOG_RING and the corresponding +ioctl KVM_RESET_DIRTY_RINGS are mutual exclusive to the existing ioctls +KVM_GET_DIRTY_LOG and KVM_CLEAR_DIRTY_LOG. After enabling +KVM_CAP_DIRTY_LOG_RING with an acceptable dirty ring size, the virtual +machine will switch to ring-buffer dirty page tracking and further +KVM_GET_DIRTY_LOG or KVM_CLEAR_DIRTY_LOG ioctls will fail. + +NOTE: KVM_CAP_DIRTY_LOG_RING_ACQ_REL is the only capability that +should be exposed by weakly ordered architecture, in order to indicate +the additional memory ordering requirements imposed on userspace when +reading the state of an entry and mutating it from DIRTY to HARVESTED. +Architecture with TSO-like ordering (such as x86) are allowed to +expose both KVM_CAP_DIRTY_LOG_RING and KVM_CAP_DIRTY_LOG_RING_ACQ_REL +to userspace. + +8.30 KVM_CAP_XEN_HVM +-------------------- + +:Architectures: x86 + +This capability indicates the features that Xen supports for hosting Xen +PVHVM guests. Valid flags are:: + + #define KVM_XEN_HVM_CONFIG_HYPERCALL_MSR (1 << 0) + #define KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL (1 << 1) + #define KVM_XEN_HVM_CONFIG_SHARED_INFO (1 << 2) + #define KVM_XEN_HVM_CONFIG_RUNSTATE (1 << 3) + #define KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL (1 << 4) + #define KVM_XEN_HVM_CONFIG_EVTCHN_SEND (1 << 5) + +The KVM_XEN_HVM_CONFIG_HYPERCALL_MSR flag indicates that the KVM_XEN_HVM_CONFIG +ioctl is available, for the guest to set its hypercall page. + +If KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL is also set, the same flag may also be +provided in the flags to KVM_XEN_HVM_CONFIG, without providing hypercall page +contents, to request that KVM generate hypercall page content automatically +and also enable interception of guest hypercalls with KVM_EXIT_XEN. + +The KVM_XEN_HVM_CONFIG_SHARED_INFO flag indicates the availability of the +KVM_XEN_HVM_SET_ATTR, KVM_XEN_HVM_GET_ATTR, KVM_XEN_VCPU_SET_ATTR and +KVM_XEN_VCPU_GET_ATTR ioctls, as well as the delivery of exception vectors +for event channel upcalls when the evtchn_upcall_pending field of a vcpu's +vcpu_info is set. + +The KVM_XEN_HVM_CONFIG_RUNSTATE flag indicates that the runstate-related +features KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR/_CURRENT/_DATA/_ADJUST are +supported by the KVM_XEN_VCPU_SET_ATTR/KVM_XEN_VCPU_GET_ATTR ioctls. + +The KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL flag indicates that IRQ routing entries +of the type KVM_IRQ_ROUTING_XEN_EVTCHN are supported, with the priority +field set to indicate 2 level event channel delivery. + +The KVM_XEN_HVM_CONFIG_EVTCHN_SEND flag indicates that KVM supports +injecting event channel events directly into the guest with the +KVM_XEN_HVM_EVTCHN_SEND ioctl. It also indicates support for the +KVM_XEN_ATTR_TYPE_EVTCHN/XEN_VERSION HVM attributes and the +KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID/TIMER/UPCALL_VECTOR vCPU attributes. +related to event channel delivery, timers, and the XENVER_version +interception. + +8.31 KVM_CAP_PPC_MULTITCE +------------------------- + +:Capability: KVM_CAP_PPC_MULTITCE +:Architectures: ppc +:Type: vm + +This capability means the kernel is capable of handling hypercalls +H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user +space. This significantly accelerates DMA operations for PPC KVM guests. +User space should expect that its handlers for these hypercalls +are not going to be called if user space previously registered LIOBN +in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). + +In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, +user space might have to advertise it for the guest. For example, +IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is +present in the "ibm,hypertas-functions" device-tree property. + +The hypercalls mentioned above may or may not be processed successfully +in the kernel based fast path. If they can not be handled by the kernel, +they will get passed on to user space. So user space still has to have +an implementation for these despite the in kernel acceleration. + +This capability is always enabled. + +8.32 KVM_CAP_PTP_KVM +-------------------- + +:Architectures: arm64 + +This capability indicates that the KVM virtual PTP service is +supported in the host. A VMM can check whether the service is +available to the guest on migration. + +8.33 KVM_CAP_HYPERV_ENFORCE_CPUID +--------------------------------- + +Architectures: x86 + +When enabled, KVM will disable emulated Hyper-V features provided to the +guest according to the bits Hyper-V CPUID feature leaves. Otherwise, all +currently implmented Hyper-V features are provided unconditionally when +Hyper-V identification is set in the HYPERV_CPUID_INTERFACE (0x40000001) +leaf. + +8.34 KVM_CAP_EXIT_HYPERCALL +--------------------------- + +:Capability: KVM_CAP_EXIT_HYPERCALL +:Architectures: x86 +:Type: vm + +This capability, if enabled, will cause KVM to exit to userspace +with KVM_EXIT_HYPERCALL exit reason to process some hypercalls. + +Calling KVM_CHECK_EXTENSION for this capability will return a bitmask +of hypercalls that can be configured to exit to userspace. +Right now, the only such hypercall is KVM_HC_MAP_GPA_RANGE. + +The argument to KVM_ENABLE_CAP is also a bitmask, and must be a subset +of the result of KVM_CHECK_EXTENSION. KVM will forward to userspace +the hypercalls whose corresponding bit is in the argument, and return +ENOSYS for the others. + +8.35 KVM_CAP_PMU_CAPABILITY +--------------------------- + +:Capability KVM_CAP_PMU_CAPABILITY +:Architectures: x86 +:Type: vm +:Parameters: arg[0] is bitmask of PMU virtualization capabilities. +:Returns 0 on success, -EINVAL when arg[0] contains invalid bits + +This capability alters PMU virtualization in KVM. + +Calling KVM_CHECK_EXTENSION for this capability returns a bitmask of +PMU virtualization capabilities that can be adjusted on a VM. + +The argument to KVM_ENABLE_CAP is also a bitmask and selects specific +PMU virtualization capabilities to be applied to the VM. This can +only be invoked on a VM prior to the creation of VCPUs. + +At this time, KVM_PMU_CAP_DISABLE is the only capability. Setting +this capability will disable PMU virtualization for that VM. Usermode +should adjust CPUID leaf 0xA to reflect that the PMU is disabled. + +8.36 KVM_CAP_ARM_SYSTEM_SUSPEND +------------------------------- + +:Capability: KVM_CAP_ARM_SYSTEM_SUSPEND +:Architectures: arm64 +:Type: vm + +When enabled, KVM will exit to userspace with KVM_EXIT_SYSTEM_EVENT of +type KVM_SYSTEM_EVENT_SUSPEND to process the guest suspend request. + +8.37 KVM_CAP_S390_PROTECTED_DUMP +-------------------------------- + +:Capability: KVM_CAP_S390_PROTECTED_DUMP +:Architectures: s390 +:Type: vm + +This capability indicates that KVM and the Ultravisor support dumping +PV guests. The `KVM_PV_DUMP` command is available for the +`KVM_S390_PV_COMMAND` ioctl and the `KVM_PV_INFO` command provides +dump related UV data. Also the vcpu ioctl `KVM_S390_PV_CPU_COMMAND` is +available and supports the `KVM_PV_DUMP_CPU` subcommand. + +8.38 KVM_CAP_VM_DISABLE_NX_HUGE_PAGES +------------------------------------- + +:Capability: KVM_CAP_VM_DISABLE_NX_HUGE_PAGES +:Architectures: x86 +:Type: vm +:Parameters: arg[0] must be 0. +:Returns: 0 on success, -EPERM if the userspace process does not + have CAP_SYS_BOOT, -EINVAL if args[0] is not 0 or any vCPUs have been + created. + +This capability disables the NX huge pages mitigation for iTLB MULTIHIT. + +The capability has no effect if the nx_huge_pages module parameter is not set. + +This capability may only be set before any vCPUs are created. + +8.39 KVM_CAP_S390_CPU_TOPOLOGY +------------------------------ + +:Capability: KVM_CAP_S390_CPU_TOPOLOGY +:Architectures: s390 +:Type: vm + +This capability indicates that KVM will provide the S390 CPU Topology +facility which consist of the interpretation of the PTF instruction for +the function code 2 along with interception and forwarding of both the +PTF instruction with function codes 0 or 1 and the STSI(15,1,x) +instruction to the userland hypervisor. + +The stfle facility 11, CPU Topology facility, should not be indicated +to the guest without this capability. + +When this capability is present, KVM provides a new attribute group +on vm fd, KVM_S390_VM_CPU_TOPOLOGY. +This new attribute allows to get, set or clear the Modified Change +Topology Report (MTCR) bit of the SCA through the kvm_device_attr +structure. + +When getting the Modified Change Topology Report value, the attr->addr +must point to a byte where the value will be stored or retrieved from. + +9. Known KVM API problems +========================= + +In some cases, KVM's API has some inconsistencies or common pitfalls +that userspace need to be aware of. This section details some of +these issues. + +Most of them are architecture specific, so the section is split by +architecture. + +9.1. x86 +-------- + +``KVM_GET_SUPPORTED_CPUID`` issues +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +In general, ``KVM_GET_SUPPORTED_CPUID`` is designed so that it is possible +to take its result and pass it directly to ``KVM_SET_CPUID2``. This section +documents some cases in which that requires some care. + +Local APIC features +~~~~~~~~~~~~~~~~~~~ + +CPU[EAX=1]:ECX[21] (X2APIC) is reported by ``KVM_GET_SUPPORTED_CPUID``, +but it can only be enabled if ``KVM_CREATE_IRQCHIP`` or +``KVM_ENABLE_CAP(KVM_CAP_IRQCHIP_SPLIT)`` are used to enable in-kernel emulation of +the local APIC. + +The same is true for the ``KVM_FEATURE_PV_UNHALT`` paravirtualized feature. + +CPU[EAX=1]:ECX[24] (TSC_DEADLINE) is not reported by ``KVM_GET_SUPPORTED_CPUID``. +It can be enabled if ``KVM_CAP_TSC_DEADLINE_TIMER`` is present and the kernel +has enabled in-kernel emulation of the local APIC. + +CPU topology +~~~~~~~~~~~~ + +Several CPUID values include topology information for the host CPU: +0x0b and 0x1f for Intel systems, 0x8000001e for AMD systems. Different +versions of KVM return different values for this information and userspace +should not rely on it. Currently they return all zeroes. + +If userspace wishes to set up a guest topology, it should be careful that +the values of these three leaves differ for each CPU. In particular, +the APIC ID is found in EDX for all subleaves of 0x0b and 0x1f, and in EAX +for 0x8000001e; the latter also encodes the core id and node id in bits +7:0 of EBX and ECX respectively. + +Obsolete ioctls and capabilities +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +KVM_CAP_DISABLE_QUIRKS does not let userspace know which quirks are actually +available. Use ``KVM_CHECK_EXTENSION(KVM_CAP_DISABLE_QUIRKS2)`` instead if +available. + +Ordering of KVM_GET_*/KVM_SET_* ioctls +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +TBD |