summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel/watchdog.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /arch/powerpc/kernel/watchdog.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/powerpc/kernel/watchdog.c')
-rw-r--r--arch/powerpc/kernel/watchdog.c591
1 files changed, 591 insertions, 0 deletions
diff --git a/arch/powerpc/kernel/watchdog.c b/arch/powerpc/kernel/watchdog.c
new file mode 100644
index 000000000..dbcc4a793
--- /dev/null
+++ b/arch/powerpc/kernel/watchdog.c
@@ -0,0 +1,591 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Watchdog support on powerpc systems.
+ *
+ * Copyright 2017, IBM Corporation.
+ *
+ * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
+ */
+
+#define pr_fmt(fmt) "watchdog: " fmt
+
+#include <linux/kernel.h>
+#include <linux/param.h>
+#include <linux/init.h>
+#include <linux/percpu.h>
+#include <linux/cpu.h>
+#include <linux/nmi.h>
+#include <linux/module.h>
+#include <linux/export.h>
+#include <linux/kprobes.h>
+#include <linux/hardirq.h>
+#include <linux/reboot.h>
+#include <linux/slab.h>
+#include <linux/kdebug.h>
+#include <linux/sched/debug.h>
+#include <linux/delay.h>
+#include <linux/processor.h>
+#include <linux/smp.h>
+
+#include <asm/interrupt.h>
+#include <asm/paca.h>
+#include <asm/nmi.h>
+
+/*
+ * The powerpc watchdog ensures that each CPU is able to service timers.
+ * The watchdog sets up a simple timer on each CPU to run once per timer
+ * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
+ * the heartbeat.
+ *
+ * Then there are two systems to check that the heartbeat is still running.
+ * The local soft-NMI, and the SMP checker.
+ *
+ * The soft-NMI checker can detect lockups on the local CPU. When interrupts
+ * are disabled with local_irq_disable(), platforms that use soft-masking
+ * can leave hardware interrupts enabled and handle them with a masked
+ * interrupt handler. The masked handler can send the timer interrupt to the
+ * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
+ * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
+ *
+ * The soft-NMI checker will compare the heartbeat timestamp for this CPU
+ * with the current time, and take action if the difference exceeds the
+ * watchdog threshold.
+ *
+ * The limitation of the soft-NMI watchdog is that it does not work when
+ * interrupts are hard disabled or otherwise not being serviced. This is
+ * solved by also having a SMP watchdog where all CPUs check all other
+ * CPUs heartbeat.
+ *
+ * The SMP checker can detect lockups on other CPUs. A global "pending"
+ * cpumask is kept, containing all CPUs which enable the watchdog. Each
+ * CPU clears their pending bit in their heartbeat timer. When the bitmask
+ * becomes empty, the last CPU to clear its pending bit updates a global
+ * timestamp and refills the pending bitmask.
+ *
+ * In the heartbeat timer, if any CPU notices that the global timestamp has
+ * not been updated for a period exceeding the watchdog threshold, then it
+ * means the CPU(s) with their bit still set in the pending mask have had
+ * their heartbeat stop, and action is taken.
+ *
+ * Some platforms implement true NMI IPIs, which can be used by the SMP
+ * watchdog to detect an unresponsive CPU and pull it out of its stuck
+ * state with the NMI IPI, to get crash/debug data from it. This way the
+ * SMP watchdog can detect hardware interrupts off lockups.
+ */
+
+static cpumask_t wd_cpus_enabled __read_mostly;
+
+static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
+static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
+
+static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */
+
+static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
+static DEFINE_PER_CPU(u64, wd_timer_tb);
+
+/* SMP checker bits */
+static unsigned long __wd_smp_lock;
+static unsigned long __wd_reporting;
+static unsigned long __wd_nmi_output;
+static cpumask_t wd_smp_cpus_pending;
+static cpumask_t wd_smp_cpus_stuck;
+static u64 wd_smp_last_reset_tb;
+
+#ifdef CONFIG_PPC_PSERIES
+static u64 wd_timeout_pct;
+#endif
+
+/*
+ * Try to take the exclusive watchdog action / NMI IPI / printing lock.
+ * wd_smp_lock must be held. If this fails, we should return and wait
+ * for the watchdog to kick in again (or another CPU to trigger it).
+ *
+ * Importantly, if hardlockup_panic is set, wd_try_report failure should
+ * not delay the panic, because whichever other CPU is reporting will
+ * call panic.
+ */
+static bool wd_try_report(void)
+{
+ if (__wd_reporting)
+ return false;
+ __wd_reporting = 1;
+ return true;
+}
+
+/* End printing after successful wd_try_report. wd_smp_lock not required. */
+static void wd_end_reporting(void)
+{
+ smp_mb(); /* End printing "critical section" */
+ WARN_ON_ONCE(__wd_reporting == 0);
+ WRITE_ONCE(__wd_reporting, 0);
+}
+
+static inline void wd_smp_lock(unsigned long *flags)
+{
+ /*
+ * Avoid locking layers if possible.
+ * This may be called from low level interrupt handlers at some
+ * point in future.
+ */
+ raw_local_irq_save(*flags);
+ hard_irq_disable(); /* Make it soft-NMI safe */
+ while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
+ raw_local_irq_restore(*flags);
+ spin_until_cond(!test_bit(0, &__wd_smp_lock));
+ raw_local_irq_save(*flags);
+ hard_irq_disable();
+ }
+}
+
+static inline void wd_smp_unlock(unsigned long *flags)
+{
+ clear_bit_unlock(0, &__wd_smp_lock);
+ raw_local_irq_restore(*flags);
+}
+
+static void wd_lockup_ipi(struct pt_regs *regs)
+{
+ int cpu = raw_smp_processor_id();
+ u64 tb = get_tb();
+
+ pr_emerg("CPU %d Hard LOCKUP\n", cpu);
+ pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
+ cpu, tb, per_cpu(wd_timer_tb, cpu),
+ tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
+ print_modules();
+ print_irqtrace_events(current);
+ if (regs)
+ show_regs(regs);
+ else
+ dump_stack();
+
+ /*
+ * __wd_nmi_output must be set after we printk from NMI context.
+ *
+ * printk from NMI context defers printing to the console to irq_work.
+ * If that NMI was taken in some code that is hard-locked, then irqs
+ * are disabled so irq_work will never fire. That can result in the
+ * hard lockup messages being delayed (indefinitely, until something
+ * else kicks the console drivers).
+ *
+ * Setting __wd_nmi_output will cause another CPU to notice and kick
+ * the console drivers for us.
+ *
+ * xchg is not needed here (it could be a smp_mb and store), but xchg
+ * gives the memory ordering and atomicity required.
+ */
+ xchg(&__wd_nmi_output, 1);
+
+ /* Do not panic from here because that can recurse into NMI IPI layer */
+}
+
+static bool set_cpu_stuck(int cpu)
+{
+ cpumask_set_cpu(cpu, &wd_smp_cpus_stuck);
+ cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
+ /*
+ * See wd_smp_clear_cpu_pending()
+ */
+ smp_mb();
+ if (cpumask_empty(&wd_smp_cpus_pending)) {
+ wd_smp_last_reset_tb = get_tb();
+ cpumask_andnot(&wd_smp_cpus_pending,
+ &wd_cpus_enabled,
+ &wd_smp_cpus_stuck);
+ return true;
+ }
+ return false;
+}
+
+static void watchdog_smp_panic(int cpu)
+{
+ static cpumask_t wd_smp_cpus_ipi; // protected by reporting
+ unsigned long flags;
+ u64 tb, last_reset;
+ int c;
+
+ wd_smp_lock(&flags);
+ /* Double check some things under lock */
+ tb = get_tb();
+ last_reset = wd_smp_last_reset_tb;
+ if ((s64)(tb - last_reset) < (s64)wd_smp_panic_timeout_tb)
+ goto out;
+ if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
+ goto out;
+ if (!wd_try_report())
+ goto out;
+ for_each_online_cpu(c) {
+ if (!cpumask_test_cpu(c, &wd_smp_cpus_pending))
+ continue;
+ if (c == cpu)
+ continue; // should not happen
+
+ __cpumask_set_cpu(c, &wd_smp_cpus_ipi);
+ if (set_cpu_stuck(c))
+ break;
+ }
+ if (cpumask_empty(&wd_smp_cpus_ipi)) {
+ wd_end_reporting();
+ goto out;
+ }
+ wd_smp_unlock(&flags);
+
+ pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
+ cpu, cpumask_pr_args(&wd_smp_cpus_ipi));
+ pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
+ cpu, tb, last_reset, tb_to_ns(tb - last_reset) / 1000000);
+
+ if (!sysctl_hardlockup_all_cpu_backtrace) {
+ /*
+ * Try to trigger the stuck CPUs, unless we are going to
+ * get a backtrace on all of them anyway.
+ */
+ for_each_cpu(c, &wd_smp_cpus_ipi) {
+ smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
+ __cpumask_clear_cpu(c, &wd_smp_cpus_ipi);
+ }
+ } else {
+ trigger_allbutself_cpu_backtrace();
+ cpumask_clear(&wd_smp_cpus_ipi);
+ }
+
+ if (hardlockup_panic)
+ nmi_panic(NULL, "Hard LOCKUP");
+
+ wd_end_reporting();
+
+ return;
+
+out:
+ wd_smp_unlock(&flags);
+}
+
+static void wd_smp_clear_cpu_pending(int cpu)
+{
+ if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
+ if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
+ struct pt_regs *regs = get_irq_regs();
+ unsigned long flags;
+
+ pr_emerg("CPU %d became unstuck TB:%lld\n",
+ cpu, get_tb());
+ print_irqtrace_events(current);
+ if (regs)
+ show_regs(regs);
+ else
+ dump_stack();
+
+ wd_smp_lock(&flags);
+ cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
+ wd_smp_unlock(&flags);
+ } else {
+ /*
+ * The last CPU to clear pending should have reset the
+ * watchdog so we generally should not find it empty
+ * here if our CPU was clear. However it could happen
+ * due to a rare race with another CPU taking the
+ * last CPU out of the mask concurrently.
+ *
+ * We can't add a warning for it. But just in case
+ * there is a problem with the watchdog that is causing
+ * the mask to not be reset, try to kick it along here.
+ */
+ if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
+ goto none_pending;
+ }
+ return;
+ }
+
+ /*
+ * All other updates to wd_smp_cpus_pending are performed under
+ * wd_smp_lock. All of them are atomic except the case where the
+ * mask becomes empty and is reset. This will not happen here because
+ * cpu was tested to be in the bitmap (above), and a CPU only clears
+ * its own bit. _Except_ in the case where another CPU has detected a
+ * hard lockup on our CPU and takes us out of the pending mask. So in
+ * normal operation there will be no race here, no problem.
+ *
+ * In the lockup case, this atomic clear-bit vs a store that refills
+ * other bits in the accessed word wll not be a problem. The bit clear
+ * is atomic so it will not cause the store to get lost, and the store
+ * will never set this bit so it will not overwrite the bit clear. The
+ * only way for a stuck CPU to return to the pending bitmap is to
+ * become unstuck itself.
+ */
+ cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
+
+ /*
+ * Order the store to clear pending with the load(s) to check all
+ * words in the pending mask to check they are all empty. This orders
+ * with the same barrier on another CPU. This prevents two CPUs
+ * clearing the last 2 pending bits, but neither seeing the other's
+ * store when checking if the mask is empty, and missing an empty
+ * mask, which ends with a false positive.
+ */
+ smp_mb();
+ if (cpumask_empty(&wd_smp_cpus_pending)) {
+ unsigned long flags;
+
+none_pending:
+ /*
+ * Double check under lock because more than one CPU could see
+ * a clear mask with the lockless check after clearing their
+ * pending bits.
+ */
+ wd_smp_lock(&flags);
+ if (cpumask_empty(&wd_smp_cpus_pending)) {
+ wd_smp_last_reset_tb = get_tb();
+ cpumask_andnot(&wd_smp_cpus_pending,
+ &wd_cpus_enabled,
+ &wd_smp_cpus_stuck);
+ }
+ wd_smp_unlock(&flags);
+ }
+}
+
+static void watchdog_timer_interrupt(int cpu)
+{
+ u64 tb = get_tb();
+
+ per_cpu(wd_timer_tb, cpu) = tb;
+
+ wd_smp_clear_cpu_pending(cpu);
+
+ if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
+ watchdog_smp_panic(cpu);
+
+ if (__wd_nmi_output && xchg(&__wd_nmi_output, 0)) {
+ /*
+ * Something has called printk from NMI context. It might be
+ * stuck, so this triggers a flush that will get that
+ * printk output to the console.
+ *
+ * See wd_lockup_ipi.
+ */
+ printk_trigger_flush();
+ }
+}
+
+DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
+{
+ unsigned long flags;
+ int cpu = raw_smp_processor_id();
+ u64 tb;
+
+ /* should only arrive from kernel, with irqs disabled */
+ WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
+
+ if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
+ return 0;
+
+ __this_cpu_inc(irq_stat.soft_nmi_irqs);
+
+ tb = get_tb();
+ if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
+ /*
+ * Taking wd_smp_lock here means it is a soft-NMI lock, which
+ * means we can't take any regular or irqsafe spin locks while
+ * holding this lock. This is why timers can't printk while
+ * holding the lock.
+ */
+ wd_smp_lock(&flags);
+ if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
+ wd_smp_unlock(&flags);
+ return 0;
+ }
+ if (!wd_try_report()) {
+ wd_smp_unlock(&flags);
+ /* Couldn't report, try again in 100ms */
+ mtspr(SPRN_DEC, 100 * tb_ticks_per_usec * 1000);
+ return 0;
+ }
+
+ set_cpu_stuck(cpu);
+
+ wd_smp_unlock(&flags);
+
+ pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
+ cpu, (void *)regs->nip);
+ pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
+ cpu, tb, per_cpu(wd_timer_tb, cpu),
+ tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
+ print_modules();
+ print_irqtrace_events(current);
+ show_regs(regs);
+
+ xchg(&__wd_nmi_output, 1); // see wd_lockup_ipi
+
+ if (sysctl_hardlockup_all_cpu_backtrace)
+ trigger_allbutself_cpu_backtrace();
+
+ if (hardlockup_panic)
+ nmi_panic(regs, "Hard LOCKUP");
+
+ wd_end_reporting();
+ }
+ /*
+ * We are okay to change DEC in soft_nmi_interrupt because the masked
+ * handler has marked a DEC as pending, so the timer interrupt will be
+ * replayed as soon as local irqs are enabled again.
+ */
+ if (wd_panic_timeout_tb < 0x7fffffff)
+ mtspr(SPRN_DEC, wd_panic_timeout_tb);
+
+ return 0;
+}
+
+static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
+{
+ int cpu = smp_processor_id();
+
+ if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
+ return HRTIMER_NORESTART;
+
+ if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
+ return HRTIMER_NORESTART;
+
+ watchdog_timer_interrupt(cpu);
+
+ hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
+
+ return HRTIMER_RESTART;
+}
+
+void arch_touch_nmi_watchdog(void)
+{
+ unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
+ int cpu = smp_processor_id();
+ u64 tb;
+
+ if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
+ return;
+
+ tb = get_tb();
+ if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
+ per_cpu(wd_timer_tb, cpu) = tb;
+ wd_smp_clear_cpu_pending(cpu);
+ }
+}
+EXPORT_SYMBOL(arch_touch_nmi_watchdog);
+
+static void start_watchdog(void *arg)
+{
+ struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
+ int cpu = smp_processor_id();
+ unsigned long flags;
+
+ if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
+ WARN_ON(1);
+ return;
+ }
+
+ if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
+ return;
+
+ if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
+ return;
+
+ wd_smp_lock(&flags);
+ cpumask_set_cpu(cpu, &wd_cpus_enabled);
+ if (cpumask_weight(&wd_cpus_enabled) == 1) {
+ cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
+ wd_smp_last_reset_tb = get_tb();
+ }
+ wd_smp_unlock(&flags);
+
+ *this_cpu_ptr(&wd_timer_tb) = get_tb();
+
+ hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ hrtimer->function = watchdog_timer_fn;
+ hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
+ HRTIMER_MODE_REL_PINNED);
+}
+
+static int start_watchdog_on_cpu(unsigned int cpu)
+{
+ return smp_call_function_single(cpu, start_watchdog, NULL, true);
+}
+
+static void stop_watchdog(void *arg)
+{
+ struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
+ int cpu = smp_processor_id();
+ unsigned long flags;
+
+ if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
+ return; /* Can happen in CPU unplug case */
+
+ hrtimer_cancel(hrtimer);
+
+ wd_smp_lock(&flags);
+ cpumask_clear_cpu(cpu, &wd_cpus_enabled);
+ wd_smp_unlock(&flags);
+
+ wd_smp_clear_cpu_pending(cpu);
+}
+
+static int stop_watchdog_on_cpu(unsigned int cpu)
+{
+ return smp_call_function_single(cpu, stop_watchdog, NULL, true);
+}
+
+static void watchdog_calc_timeouts(void)
+{
+ u64 threshold = watchdog_thresh;
+
+#ifdef CONFIG_PPC_PSERIES
+ threshold += (READ_ONCE(wd_timeout_pct) * threshold) / 100;
+#endif
+
+ wd_panic_timeout_tb = threshold * ppc_tb_freq;
+
+ /* Have the SMP detector trigger a bit later */
+ wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
+
+ /* 2/5 is the factor that the perf based detector uses */
+ wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
+}
+
+void watchdog_nmi_stop(void)
+{
+ int cpu;
+
+ for_each_cpu(cpu, &wd_cpus_enabled)
+ stop_watchdog_on_cpu(cpu);
+}
+
+void watchdog_nmi_start(void)
+{
+ int cpu;
+
+ watchdog_calc_timeouts();
+ for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
+ start_watchdog_on_cpu(cpu);
+}
+
+/*
+ * Invoked from core watchdog init.
+ */
+int __init watchdog_nmi_probe(void)
+{
+ int err;
+
+ err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
+ "powerpc/watchdog:online",
+ start_watchdog_on_cpu,
+ stop_watchdog_on_cpu);
+ if (err < 0) {
+ pr_warn("could not be initialized");
+ return err;
+ }
+ return 0;
+}
+
+#ifdef CONFIG_PPC_PSERIES
+void watchdog_nmi_set_timeout_pct(u64 pct)
+{
+ pr_info("Set the NMI watchdog timeout factor to %llu%%\n", pct);
+ WRITE_ONCE(wd_timeout_pct, pct);
+ lockup_detector_reconfigure();
+}
+#endif