diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/powerpc/mm/numa.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/powerpc/mm/numa.c')
-rw-r--r-- | arch/powerpc/mm/numa.c | 1479 |
1 files changed, 1479 insertions, 0 deletions
diff --git a/arch/powerpc/mm/numa.c b/arch/powerpc/mm/numa.c new file mode 100644 index 000000000..16cfe56be --- /dev/null +++ b/arch/powerpc/mm/numa.c @@ -0,0 +1,1479 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * pSeries NUMA support + * + * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM + */ +#define pr_fmt(fmt) "numa: " fmt + +#include <linux/threads.h> +#include <linux/memblock.h> +#include <linux/init.h> +#include <linux/mm.h> +#include <linux/mmzone.h> +#include <linux/export.h> +#include <linux/nodemask.h> +#include <linux/cpu.h> +#include <linux/notifier.h> +#include <linux/of.h> +#include <linux/pfn.h> +#include <linux/cpuset.h> +#include <linux/node.h> +#include <linux/stop_machine.h> +#include <linux/proc_fs.h> +#include <linux/seq_file.h> +#include <linux/uaccess.h> +#include <linux/slab.h> +#include <asm/cputhreads.h> +#include <asm/sparsemem.h> +#include <asm/smp.h> +#include <asm/topology.h> +#include <asm/firmware.h> +#include <asm/paca.h> +#include <asm/hvcall.h> +#include <asm/setup.h> +#include <asm/vdso.h> +#include <asm/drmem.h> + +static int numa_enabled = 1; + +static char *cmdline __initdata; + +int numa_cpu_lookup_table[NR_CPUS]; +cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; +struct pglist_data *node_data[MAX_NUMNODES]; + +EXPORT_SYMBOL(numa_cpu_lookup_table); +EXPORT_SYMBOL(node_to_cpumask_map); +EXPORT_SYMBOL(node_data); + +static int primary_domain_index; +static int n_mem_addr_cells, n_mem_size_cells; + +#define FORM0_AFFINITY 0 +#define FORM1_AFFINITY 1 +#define FORM2_AFFINITY 2 +static int affinity_form; + +#define MAX_DISTANCE_REF_POINTS 4 +static int distance_ref_points_depth; +static const __be32 *distance_ref_points; +static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; +static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = { + [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 } +}; +static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE }; + +/* + * Allocate node_to_cpumask_map based on number of available nodes + * Requires node_possible_map to be valid. + * + * Note: cpumask_of_node() is not valid until after this is done. + */ +static void __init setup_node_to_cpumask_map(void) +{ + unsigned int node; + + /* setup nr_node_ids if not done yet */ + if (nr_node_ids == MAX_NUMNODES) + setup_nr_node_ids(); + + /* allocate the map */ + for_each_node(node) + alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); + + /* cpumask_of_node() will now work */ + pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); +} + +static int __init fake_numa_create_new_node(unsigned long end_pfn, + unsigned int *nid) +{ + unsigned long long mem; + char *p = cmdline; + static unsigned int fake_nid; + static unsigned long long curr_boundary; + + /* + * Modify node id, iff we started creating NUMA nodes + * We want to continue from where we left of the last time + */ + if (fake_nid) + *nid = fake_nid; + /* + * In case there are no more arguments to parse, the + * node_id should be the same as the last fake node id + * (we've handled this above). + */ + if (!p) + return 0; + + mem = memparse(p, &p); + if (!mem) + return 0; + + if (mem < curr_boundary) + return 0; + + curr_boundary = mem; + + if ((end_pfn << PAGE_SHIFT) > mem) { + /* + * Skip commas and spaces + */ + while (*p == ',' || *p == ' ' || *p == '\t') + p++; + + cmdline = p; + fake_nid++; + *nid = fake_nid; + pr_debug("created new fake_node with id %d\n", fake_nid); + return 1; + } + return 0; +} + +static void __init reset_numa_cpu_lookup_table(void) +{ + unsigned int cpu; + + for_each_possible_cpu(cpu) + numa_cpu_lookup_table[cpu] = -1; +} + +void map_cpu_to_node(int cpu, int node) +{ + update_numa_cpu_lookup_table(cpu, node); + + if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) { + pr_debug("adding cpu %d to node %d\n", cpu, node); + cpumask_set_cpu(cpu, node_to_cpumask_map[node]); + } +} + +#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) +void unmap_cpu_from_node(unsigned long cpu) +{ + int node = numa_cpu_lookup_table[cpu]; + + if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { + cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); + pr_debug("removing cpu %lu from node %d\n", cpu, node); + } else { + pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node); + } +} +#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ + +static int __associativity_to_nid(const __be32 *associativity, + int max_array_sz) +{ + int nid; + /* + * primary_domain_index is 1 based array index. + */ + int index = primary_domain_index - 1; + + if (!numa_enabled || index >= max_array_sz) + return NUMA_NO_NODE; + + nid = of_read_number(&associativity[index], 1); + + /* POWER4 LPAR uses 0xffff as invalid node */ + if (nid == 0xffff || nid >= nr_node_ids) + nid = NUMA_NO_NODE; + return nid; +} +/* + * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA + * info is found. + */ +static int associativity_to_nid(const __be32 *associativity) +{ + int array_sz = of_read_number(associativity, 1); + + /* Skip the first element in the associativity array */ + return __associativity_to_nid((associativity + 1), array_sz); +} + +static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) +{ + int dist; + int node1, node2; + + node1 = associativity_to_nid(cpu1_assoc); + node2 = associativity_to_nid(cpu2_assoc); + + dist = numa_distance_table[node1][node2]; + if (dist <= LOCAL_DISTANCE) + return 0; + else if (dist <= REMOTE_DISTANCE) + return 1; + else + return 2; +} + +static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) +{ + int dist = 0; + + int i, index; + + for (i = 0; i < distance_ref_points_depth; i++) { + index = be32_to_cpu(distance_ref_points[i]); + if (cpu1_assoc[index] == cpu2_assoc[index]) + break; + dist++; + } + + return dist; +} + +int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) +{ + /* We should not get called with FORM0 */ + VM_WARN_ON(affinity_form == FORM0_AFFINITY); + if (affinity_form == FORM1_AFFINITY) + return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc); + return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc); +} + +/* must hold reference to node during call */ +static const __be32 *of_get_associativity(struct device_node *dev) +{ + return of_get_property(dev, "ibm,associativity", NULL); +} + +int __node_distance(int a, int b) +{ + int i; + int distance = LOCAL_DISTANCE; + + if (affinity_form == FORM2_AFFINITY) + return numa_distance_table[a][b]; + else if (affinity_form == FORM0_AFFINITY) + return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); + + for (i = 0; i < distance_ref_points_depth; i++) { + if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) + break; + + /* Double the distance for each NUMA level */ + distance *= 2; + } + + return distance; +} +EXPORT_SYMBOL(__node_distance); + +/* Returns the nid associated with the given device tree node, + * or -1 if not found. + */ +static int of_node_to_nid_single(struct device_node *device) +{ + int nid = NUMA_NO_NODE; + const __be32 *tmp; + + tmp = of_get_associativity(device); + if (tmp) + nid = associativity_to_nid(tmp); + return nid; +} + +/* Walk the device tree upwards, looking for an associativity id */ +int of_node_to_nid(struct device_node *device) +{ + int nid = NUMA_NO_NODE; + + of_node_get(device); + while (device) { + nid = of_node_to_nid_single(device); + if (nid != -1) + break; + + device = of_get_next_parent(device); + } + of_node_put(device); + + return nid; +} +EXPORT_SYMBOL(of_node_to_nid); + +static void __initialize_form1_numa_distance(const __be32 *associativity, + int max_array_sz) +{ + int i, nid; + + if (affinity_form != FORM1_AFFINITY) + return; + + nid = __associativity_to_nid(associativity, max_array_sz); + if (nid != NUMA_NO_NODE) { + for (i = 0; i < distance_ref_points_depth; i++) { + const __be32 *entry; + int index = be32_to_cpu(distance_ref_points[i]) - 1; + + /* + * broken hierarchy, return with broken distance table + */ + if (WARN(index >= max_array_sz, "Broken ibm,associativity property")) + return; + + entry = &associativity[index]; + distance_lookup_table[nid][i] = of_read_number(entry, 1); + } + } +} + +static void initialize_form1_numa_distance(const __be32 *associativity) +{ + int array_sz; + + array_sz = of_read_number(associativity, 1); + /* Skip the first element in the associativity array */ + __initialize_form1_numa_distance(associativity + 1, array_sz); +} + +/* + * Used to update distance information w.r.t newly added node. + */ +void update_numa_distance(struct device_node *node) +{ + int nid; + + if (affinity_form == FORM0_AFFINITY) + return; + else if (affinity_form == FORM1_AFFINITY) { + const __be32 *associativity; + + associativity = of_get_associativity(node); + if (!associativity) + return; + + initialize_form1_numa_distance(associativity); + return; + } + + /* FORM2 affinity */ + nid = of_node_to_nid_single(node); + if (nid == NUMA_NO_NODE) + return; + + /* + * With FORM2 we expect NUMA distance of all possible NUMA + * nodes to be provided during boot. + */ + WARN(numa_distance_table[nid][nid] == -1, + "NUMA distance details for node %d not provided\n", nid); +} +EXPORT_SYMBOL_GPL(update_numa_distance); + +/* + * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN} + * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements} + */ +static void __init initialize_form2_numa_distance_lookup_table(void) +{ + int i, j; + struct device_node *root; + const __u8 *form2_distances; + const __be32 *numa_lookup_index; + int form2_distances_length; + int max_numa_index, distance_index; + + if (firmware_has_feature(FW_FEATURE_OPAL)) + root = of_find_node_by_path("/ibm,opal"); + else + root = of_find_node_by_path("/rtas"); + if (!root) + root = of_find_node_by_path("/"); + + numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL); + max_numa_index = of_read_number(&numa_lookup_index[0], 1); + + /* first element of the array is the size and is encode-int */ + form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL); + form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1); + /* Skip the size which is encoded int */ + form2_distances += sizeof(__be32); + + pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n", + form2_distances_length, max_numa_index); + + for (i = 0; i < max_numa_index; i++) + /* +1 skip the max_numa_index in the property */ + numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1); + + + if (form2_distances_length != max_numa_index * max_numa_index) { + WARN(1, "Wrong NUMA distance information\n"); + form2_distances = NULL; // don't use it + } + distance_index = 0; + for (i = 0; i < max_numa_index; i++) { + for (j = 0; j < max_numa_index; j++) { + int nodeA = numa_id_index_table[i]; + int nodeB = numa_id_index_table[j]; + int dist; + + if (form2_distances) + dist = form2_distances[distance_index++]; + else if (nodeA == nodeB) + dist = LOCAL_DISTANCE; + else + dist = REMOTE_DISTANCE; + numa_distance_table[nodeA][nodeB] = dist; + pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist); + } + } + + of_node_put(root); +} + +static int __init find_primary_domain_index(void) +{ + int index; + struct device_node *root; + + /* + * Check for which form of affinity. + */ + if (firmware_has_feature(FW_FEATURE_OPAL)) { + affinity_form = FORM1_AFFINITY; + } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) { + pr_debug("Using form 2 affinity\n"); + affinity_form = FORM2_AFFINITY; + } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) { + pr_debug("Using form 1 affinity\n"); + affinity_form = FORM1_AFFINITY; + } else + affinity_form = FORM0_AFFINITY; + + if (firmware_has_feature(FW_FEATURE_OPAL)) + root = of_find_node_by_path("/ibm,opal"); + else + root = of_find_node_by_path("/rtas"); + if (!root) + root = of_find_node_by_path("/"); + + /* + * This property is a set of 32-bit integers, each representing + * an index into the ibm,associativity nodes. + * + * With form 0 affinity the first integer is for an SMP configuration + * (should be all 0's) and the second is for a normal NUMA + * configuration. We have only one level of NUMA. + * + * With form 1 affinity the first integer is the most significant + * NUMA boundary and the following are progressively less significant + * boundaries. There can be more than one level of NUMA. + */ + distance_ref_points = of_get_property(root, + "ibm,associativity-reference-points", + &distance_ref_points_depth); + + if (!distance_ref_points) { + pr_debug("ibm,associativity-reference-points not found.\n"); + goto err; + } + + distance_ref_points_depth /= sizeof(int); + if (affinity_form == FORM0_AFFINITY) { + if (distance_ref_points_depth < 2) { + pr_warn("short ibm,associativity-reference-points\n"); + goto err; + } + + index = of_read_number(&distance_ref_points[1], 1); + } else { + /* + * Both FORM1 and FORM2 affinity find the primary domain details + * at the same offset. + */ + index = of_read_number(distance_ref_points, 1); + } + /* + * Warn and cap if the hardware supports more than + * MAX_DISTANCE_REF_POINTS domains. + */ + if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { + pr_warn("distance array capped at %d entries\n", + MAX_DISTANCE_REF_POINTS); + distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; + } + + of_node_put(root); + return index; + +err: + of_node_put(root); + return -1; +} + +static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) +{ + struct device_node *memory = NULL; + + memory = of_find_node_by_type(memory, "memory"); + if (!memory) + panic("numa.c: No memory nodes found!"); + + *n_addr_cells = of_n_addr_cells(memory); + *n_size_cells = of_n_size_cells(memory); + of_node_put(memory); +} + +static unsigned long read_n_cells(int n, const __be32 **buf) +{ + unsigned long result = 0; + + while (n--) { + result = (result << 32) | of_read_number(*buf, 1); + (*buf)++; + } + return result; +} + +struct assoc_arrays { + u32 n_arrays; + u32 array_sz; + const __be32 *arrays; +}; + +/* + * Retrieve and validate the list of associativity arrays for drconf + * memory from the ibm,associativity-lookup-arrays property of the + * device tree.. + * + * The layout of the ibm,associativity-lookup-arrays property is a number N + * indicating the number of associativity arrays, followed by a number M + * indicating the size of each associativity array, followed by a list + * of N associativity arrays. + */ +static int of_get_assoc_arrays(struct assoc_arrays *aa) +{ + struct device_node *memory; + const __be32 *prop; + u32 len; + + memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); + if (!memory) + return -1; + + prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); + if (!prop || len < 2 * sizeof(unsigned int)) { + of_node_put(memory); + return -1; + } + + aa->n_arrays = of_read_number(prop++, 1); + aa->array_sz = of_read_number(prop++, 1); + + of_node_put(memory); + + /* Now that we know the number of arrays and size of each array, + * revalidate the size of the property read in. + */ + if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) + return -1; + + aa->arrays = prop; + return 0; +} + +static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb) +{ + struct assoc_arrays aa = { .arrays = NULL }; + int default_nid = NUMA_NO_NODE; + int nid = default_nid; + int rc, index; + + if ((primary_domain_index < 0) || !numa_enabled) + return default_nid; + + rc = of_get_assoc_arrays(&aa); + if (rc) + return default_nid; + + if (primary_domain_index <= aa.array_sz && + !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { + const __be32 *associativity; + + index = lmb->aa_index * aa.array_sz; + associativity = &aa.arrays[index]; + nid = __associativity_to_nid(associativity, aa.array_sz); + if (nid > 0 && affinity_form == FORM1_AFFINITY) { + /* + * lookup array associativity entries have + * no length of the array as the first element. + */ + __initialize_form1_numa_distance(associativity, aa.array_sz); + } + } + return nid; +} + +/* + * This is like of_node_to_nid_single() for memory represented in the + * ibm,dynamic-reconfiguration-memory node. + */ +int of_drconf_to_nid_single(struct drmem_lmb *lmb) +{ + struct assoc_arrays aa = { .arrays = NULL }; + int default_nid = NUMA_NO_NODE; + int nid = default_nid; + int rc, index; + + if ((primary_domain_index < 0) || !numa_enabled) + return default_nid; + + rc = of_get_assoc_arrays(&aa); + if (rc) + return default_nid; + + if (primary_domain_index <= aa.array_sz && + !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { + const __be32 *associativity; + + index = lmb->aa_index * aa.array_sz; + associativity = &aa.arrays[index]; + nid = __associativity_to_nid(associativity, aa.array_sz); + } + return nid; +} + +#ifdef CONFIG_PPC_SPLPAR + +static int __vphn_get_associativity(long lcpu, __be32 *associativity) +{ + long rc, hwid; + + /* + * On a shared lpar, device tree will not have node associativity. + * At this time lppaca, or its __old_status field may not be + * updated. Hence kernel cannot detect if its on a shared lpar. So + * request an explicit associativity irrespective of whether the + * lpar is shared or dedicated. Use the device tree property as a + * fallback. cpu_to_phys_id is only valid between + * smp_setup_cpu_maps() and smp_setup_pacas(). + */ + if (firmware_has_feature(FW_FEATURE_VPHN)) { + if (cpu_to_phys_id) + hwid = cpu_to_phys_id[lcpu]; + else + hwid = get_hard_smp_processor_id(lcpu); + + rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity); + if (rc == H_SUCCESS) + return 0; + } + + return -1; +} + +static int vphn_get_nid(long lcpu) +{ + __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; + + + if (!__vphn_get_associativity(lcpu, associativity)) + return associativity_to_nid(associativity); + + return NUMA_NO_NODE; + +} +#else + +static int __vphn_get_associativity(long lcpu, __be32 *associativity) +{ + return -1; +} + +static int vphn_get_nid(long unused) +{ + return NUMA_NO_NODE; +} +#endif /* CONFIG_PPC_SPLPAR */ + +/* + * Figure out to which domain a cpu belongs and stick it there. + * Return the id of the domain used. + */ +static int numa_setup_cpu(unsigned long lcpu) +{ + struct device_node *cpu; + int fcpu = cpu_first_thread_sibling(lcpu); + int nid = NUMA_NO_NODE; + + if (!cpu_present(lcpu)) { + set_cpu_numa_node(lcpu, first_online_node); + return first_online_node; + } + + /* + * If a valid cpu-to-node mapping is already available, use it + * directly instead of querying the firmware, since it represents + * the most recent mapping notified to us by the platform (eg: VPHN). + * Since cpu_to_node binding remains the same for all threads in the + * core. If a valid cpu-to-node mapping is already available, for + * the first thread in the core, use it. + */ + nid = numa_cpu_lookup_table[fcpu]; + if (nid >= 0) { + map_cpu_to_node(lcpu, nid); + return nid; + } + + nid = vphn_get_nid(lcpu); + if (nid != NUMA_NO_NODE) + goto out_present; + + cpu = of_get_cpu_node(lcpu, NULL); + + if (!cpu) { + WARN_ON(1); + if (cpu_present(lcpu)) + goto out_present; + else + goto out; + } + + nid = of_node_to_nid_single(cpu); + of_node_put(cpu); + +out_present: + if (nid < 0 || !node_possible(nid)) + nid = first_online_node; + + /* + * Update for the first thread of the core. All threads of a core + * have to be part of the same node. This not only avoids querying + * for every other thread in the core, but always avoids a case + * where virtual node associativity change causes subsequent threads + * of a core to be associated with different nid. However if first + * thread is already online, expect it to have a valid mapping. + */ + if (fcpu != lcpu) { + WARN_ON(cpu_online(fcpu)); + map_cpu_to_node(fcpu, nid); + } + + map_cpu_to_node(lcpu, nid); +out: + return nid; +} + +static void verify_cpu_node_mapping(int cpu, int node) +{ + int base, sibling, i; + + /* Verify that all the threads in the core belong to the same node */ + base = cpu_first_thread_sibling(cpu); + + for (i = 0; i < threads_per_core; i++) { + sibling = base + i; + + if (sibling == cpu || cpu_is_offline(sibling)) + continue; + + if (cpu_to_node(sibling) != node) { + WARN(1, "CPU thread siblings %d and %d don't belong" + " to the same node!\n", cpu, sibling); + break; + } + } +} + +/* Must run before sched domains notifier. */ +static int ppc_numa_cpu_prepare(unsigned int cpu) +{ + int nid; + + nid = numa_setup_cpu(cpu); + verify_cpu_node_mapping(cpu, nid); + return 0; +} + +static int ppc_numa_cpu_dead(unsigned int cpu) +{ + return 0; +} + +/* + * Check and possibly modify a memory region to enforce the memory limit. + * + * Returns the size the region should have to enforce the memory limit. + * This will either be the original value of size, a truncated value, + * or zero. If the returned value of size is 0 the region should be + * discarded as it lies wholly above the memory limit. + */ +static unsigned long __init numa_enforce_memory_limit(unsigned long start, + unsigned long size) +{ + /* + * We use memblock_end_of_DRAM() in here instead of memory_limit because + * we've already adjusted it for the limit and it takes care of + * having memory holes below the limit. Also, in the case of + * iommu_is_off, memory_limit is not set but is implicitly enforced. + */ + + if (start + size <= memblock_end_of_DRAM()) + return size; + + if (start >= memblock_end_of_DRAM()) + return 0; + + return memblock_end_of_DRAM() - start; +} + +/* + * Reads the counter for a given entry in + * linux,drconf-usable-memory property + */ +static inline int __init read_usm_ranges(const __be32 **usm) +{ + /* + * For each lmb in ibm,dynamic-memory a corresponding + * entry in linux,drconf-usable-memory property contains + * a counter followed by that many (base, size) duple. + * read the counter from linux,drconf-usable-memory + */ + return read_n_cells(n_mem_size_cells, usm); +} + +/* + * Extract NUMA information from the ibm,dynamic-reconfiguration-memory + * node. This assumes n_mem_{addr,size}_cells have been set. + */ +static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, + const __be32 **usm, + void *data) +{ + unsigned int ranges, is_kexec_kdump = 0; + unsigned long base, size, sz; + int nid; + + /* + * Skip this block if the reserved bit is set in flags (0x80) + * or if the block is not assigned to this partition (0x8) + */ + if ((lmb->flags & DRCONF_MEM_RESERVED) + || !(lmb->flags & DRCONF_MEM_ASSIGNED)) + return 0; + + if (*usm) + is_kexec_kdump = 1; + + base = lmb->base_addr; + size = drmem_lmb_size(); + ranges = 1; + + if (is_kexec_kdump) { + ranges = read_usm_ranges(usm); + if (!ranges) /* there are no (base, size) duple */ + return 0; + } + + do { + if (is_kexec_kdump) { + base = read_n_cells(n_mem_addr_cells, usm); + size = read_n_cells(n_mem_size_cells, usm); + } + + nid = get_nid_and_numa_distance(lmb); + fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), + &nid); + node_set_online(nid); + sz = numa_enforce_memory_limit(base, size); + if (sz) + memblock_set_node(base, sz, &memblock.memory, nid); + } while (--ranges); + + return 0; +} + +static int __init parse_numa_properties(void) +{ + struct device_node *memory; + int default_nid = 0; + unsigned long i; + const __be32 *associativity; + + if (numa_enabled == 0) { + pr_warn("disabled by user\n"); + return -1; + } + + primary_domain_index = find_primary_domain_index(); + + if (primary_domain_index < 0) { + /* + * if we fail to parse primary_domain_index from device tree + * mark the numa disabled, boot with numa disabled. + */ + numa_enabled = false; + return primary_domain_index; + } + + pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index); + + /* + * If it is FORM2 initialize the distance table here. + */ + if (affinity_form == FORM2_AFFINITY) + initialize_form2_numa_distance_lookup_table(); + + /* + * Even though we connect cpus to numa domains later in SMP + * init, we need to know the node ids now. This is because + * each node to be onlined must have NODE_DATA etc backing it. + */ + for_each_present_cpu(i) { + __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE]; + struct device_node *cpu; + int nid = NUMA_NO_NODE; + + memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32)); + + if (__vphn_get_associativity(i, vphn_assoc) == 0) { + nid = associativity_to_nid(vphn_assoc); + initialize_form1_numa_distance(vphn_assoc); + } else { + + /* + * Don't fall back to default_nid yet -- we will plug + * cpus into nodes once the memory scan has discovered + * the topology. + */ + cpu = of_get_cpu_node(i, NULL); + BUG_ON(!cpu); + + associativity = of_get_associativity(cpu); + if (associativity) { + nid = associativity_to_nid(associativity); + initialize_form1_numa_distance(associativity); + } + of_node_put(cpu); + } + + /* node_set_online() is an UB if 'nid' is negative */ + if (likely(nid >= 0)) + node_set_online(nid); + } + + get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); + + for_each_node_by_type(memory, "memory") { + unsigned long start; + unsigned long size; + int nid; + int ranges; + const __be32 *memcell_buf; + unsigned int len; + + memcell_buf = of_get_property(memory, + "linux,usable-memory", &len); + if (!memcell_buf || len <= 0) + memcell_buf = of_get_property(memory, "reg", &len); + if (!memcell_buf || len <= 0) + continue; + + /* ranges in cell */ + ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); +new_range: + /* these are order-sensitive, and modify the buffer pointer */ + start = read_n_cells(n_mem_addr_cells, &memcell_buf); + size = read_n_cells(n_mem_size_cells, &memcell_buf); + + /* + * Assumption: either all memory nodes or none will + * have associativity properties. If none, then + * everything goes to default_nid. + */ + associativity = of_get_associativity(memory); + if (associativity) { + nid = associativity_to_nid(associativity); + initialize_form1_numa_distance(associativity); + } else + nid = default_nid; + + fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); + node_set_online(nid); + + size = numa_enforce_memory_limit(start, size); + if (size) + memblock_set_node(start, size, &memblock.memory, nid); + + if (--ranges) + goto new_range; + } + + /* + * Now do the same thing for each MEMBLOCK listed in the + * ibm,dynamic-memory property in the + * ibm,dynamic-reconfiguration-memory node. + */ + memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); + if (memory) { + walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb); + of_node_put(memory); + } + + return 0; +} + +static void __init setup_nonnuma(void) +{ + unsigned long top_of_ram = memblock_end_of_DRAM(); + unsigned long total_ram = memblock_phys_mem_size(); + unsigned long start_pfn, end_pfn; + unsigned int nid = 0; + int i; + + pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); + pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { + fake_numa_create_new_node(end_pfn, &nid); + memblock_set_node(PFN_PHYS(start_pfn), + PFN_PHYS(end_pfn - start_pfn), + &memblock.memory, nid); + node_set_online(nid); + } +} + +void __init dump_numa_cpu_topology(void) +{ + unsigned int node; + unsigned int cpu, count; + + if (!numa_enabled) + return; + + for_each_online_node(node) { + pr_info("Node %d CPUs:", node); + + count = 0; + /* + * If we used a CPU iterator here we would miss printing + * the holes in the cpumap. + */ + for (cpu = 0; cpu < nr_cpu_ids; cpu++) { + if (cpumask_test_cpu(cpu, + node_to_cpumask_map[node])) { + if (count == 0) + pr_cont(" %u", cpu); + ++count; + } else { + if (count > 1) + pr_cont("-%u", cpu - 1); + count = 0; + } + } + + if (count > 1) + pr_cont("-%u", nr_cpu_ids - 1); + pr_cont("\n"); + } +} + +/* Initialize NODE_DATA for a node on the local memory */ +static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) +{ + u64 spanned_pages = end_pfn - start_pfn; + const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); + u64 nd_pa; + void *nd; + int tnid; + + nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); + if (!nd_pa) + panic("Cannot allocate %zu bytes for node %d data\n", + nd_size, nid); + + nd = __va(nd_pa); + + /* report and initialize */ + pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", + nd_pa, nd_pa + nd_size - 1); + tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); + if (tnid != nid) + pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); + + node_data[nid] = nd; + memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); + NODE_DATA(nid)->node_id = nid; + NODE_DATA(nid)->node_start_pfn = start_pfn; + NODE_DATA(nid)->node_spanned_pages = spanned_pages; +} + +static void __init find_possible_nodes(void) +{ + struct device_node *rtas; + const __be32 *domains = NULL; + int prop_length, max_nodes; + u32 i; + + if (!numa_enabled) + return; + + rtas = of_find_node_by_path("/rtas"); + if (!rtas) + return; + + /* + * ibm,current-associativity-domains is a fairly recent property. If + * it doesn't exist, then fallback on ibm,max-associativity-domains. + * Current denotes what the platform can support compared to max + * which denotes what the Hypervisor can support. + * + * If the LPAR is migratable, new nodes might be activated after a LPM, + * so we should consider the max number in that case. + */ + if (!of_get_property(of_root, "ibm,migratable-partition", NULL)) + domains = of_get_property(rtas, + "ibm,current-associativity-domains", + &prop_length); + if (!domains) { + domains = of_get_property(rtas, "ibm,max-associativity-domains", + &prop_length); + if (!domains) + goto out; + } + + max_nodes = of_read_number(&domains[primary_domain_index], 1); + pr_info("Partition configured for %d NUMA nodes.\n", max_nodes); + + for (i = 0; i < max_nodes; i++) { + if (!node_possible(i)) + node_set(i, node_possible_map); + } + + prop_length /= sizeof(int); + if (prop_length > primary_domain_index + 2) + coregroup_enabled = 1; + +out: + of_node_put(rtas); +} + +void __init mem_topology_setup(void) +{ + int cpu; + + max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; + min_low_pfn = MEMORY_START >> PAGE_SHIFT; + + /* + * Linux/mm assumes node 0 to be online at boot. However this is not + * true on PowerPC, where node 0 is similar to any other node, it + * could be cpuless, memoryless node. So force node 0 to be offline + * for now. This will prevent cpuless, memoryless node 0 showing up + * unnecessarily as online. If a node has cpus or memory that need + * to be online, then node will anyway be marked online. + */ + node_set_offline(0); + + if (parse_numa_properties()) + setup_nonnuma(); + + /* + * Modify the set of possible NUMA nodes to reflect information + * available about the set of online nodes, and the set of nodes + * that we expect to make use of for this platform's affinity + * calculations. + */ + nodes_and(node_possible_map, node_possible_map, node_online_map); + + find_possible_nodes(); + + setup_node_to_cpumask_map(); + + reset_numa_cpu_lookup_table(); + + for_each_possible_cpu(cpu) { + /* + * Powerpc with CONFIG_NUMA always used to have a node 0, + * even if it was memoryless or cpuless. For all cpus that + * are possible but not present, cpu_to_node() would point + * to node 0. To remove a cpuless, memoryless dummy node, + * powerpc need to make sure all possible but not present + * cpu_to_node are set to a proper node. + */ + numa_setup_cpu(cpu); + } +} + +void __init initmem_init(void) +{ + int nid; + + memblock_dump_all(); + + for_each_online_node(nid) { + unsigned long start_pfn, end_pfn; + + get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); + setup_node_data(nid, start_pfn, end_pfn); + } + + sparse_init(); + + /* + * We need the numa_cpu_lookup_table to be accurate for all CPUs, + * even before we online them, so that we can use cpu_to_{node,mem} + * early in boot, cf. smp_prepare_cpus(). + * _nocalls() + manual invocation is used because cpuhp is not yet + * initialized for the boot CPU. + */ + cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", + ppc_numa_cpu_prepare, ppc_numa_cpu_dead); +} + +static int __init early_numa(char *p) +{ + if (!p) + return 0; + + if (strstr(p, "off")) + numa_enabled = 0; + + p = strstr(p, "fake="); + if (p) + cmdline = p + strlen("fake="); + + return 0; +} +early_param("numa", early_numa); + +#ifdef CONFIG_MEMORY_HOTPLUG +/* + * Find the node associated with a hot added memory section for + * memory represented in the device tree by the property + * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. + */ +static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) +{ + struct drmem_lmb *lmb; + unsigned long lmb_size; + int nid = NUMA_NO_NODE; + + lmb_size = drmem_lmb_size(); + + for_each_drmem_lmb(lmb) { + /* skip this block if it is reserved or not assigned to + * this partition */ + if ((lmb->flags & DRCONF_MEM_RESERVED) + || !(lmb->flags & DRCONF_MEM_ASSIGNED)) + continue; + + if ((scn_addr < lmb->base_addr) + || (scn_addr >= (lmb->base_addr + lmb_size))) + continue; + + nid = of_drconf_to_nid_single(lmb); + break; + } + + return nid; +} + +/* + * Find the node associated with a hot added memory section for memory + * represented in the device tree as a node (i.e. memory@XXXX) for + * each memblock. + */ +static int hot_add_node_scn_to_nid(unsigned long scn_addr) +{ + struct device_node *memory; + int nid = NUMA_NO_NODE; + + for_each_node_by_type(memory, "memory") { + unsigned long start, size; + int ranges; + const __be32 *memcell_buf; + unsigned int len; + + memcell_buf = of_get_property(memory, "reg", &len); + if (!memcell_buf || len <= 0) + continue; + + /* ranges in cell */ + ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); + + while (ranges--) { + start = read_n_cells(n_mem_addr_cells, &memcell_buf); + size = read_n_cells(n_mem_size_cells, &memcell_buf); + + if ((scn_addr < start) || (scn_addr >= (start + size))) + continue; + + nid = of_node_to_nid_single(memory); + break; + } + + if (nid >= 0) + break; + } + + of_node_put(memory); + + return nid; +} + +/* + * Find the node associated with a hot added memory section. Section + * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that + * sections are fully contained within a single MEMBLOCK. + */ +int hot_add_scn_to_nid(unsigned long scn_addr) +{ + struct device_node *memory = NULL; + int nid; + + if (!numa_enabled) + return first_online_node; + + memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); + if (memory) { + nid = hot_add_drconf_scn_to_nid(scn_addr); + of_node_put(memory); + } else { + nid = hot_add_node_scn_to_nid(scn_addr); + } + + if (nid < 0 || !node_possible(nid)) + nid = first_online_node; + + return nid; +} + +static u64 hot_add_drconf_memory_max(void) +{ + struct device_node *memory = NULL; + struct device_node *dn = NULL; + const __be64 *lrdr = NULL; + + dn = of_find_node_by_path("/rtas"); + if (dn) { + lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); + of_node_put(dn); + if (lrdr) + return be64_to_cpup(lrdr); + } + + memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); + if (memory) { + of_node_put(memory); + return drmem_lmb_memory_max(); + } + return 0; +} + +/* + * memory_hotplug_max - return max address of memory that may be added + * + * This is currently only used on systems that support drconfig memory + * hotplug. + */ +u64 memory_hotplug_max(void) +{ + return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); +} +#endif /* CONFIG_MEMORY_HOTPLUG */ + +/* Virtual Processor Home Node (VPHN) support */ +#ifdef CONFIG_PPC_SPLPAR +static int topology_inited; + +/* + * Retrieve the new associativity information for a virtual processor's + * home node. + */ +static long vphn_get_associativity(unsigned long cpu, + __be32 *associativity) +{ + long rc; + + rc = hcall_vphn(get_hard_smp_processor_id(cpu), + VPHN_FLAG_VCPU, associativity); + + switch (rc) { + case H_SUCCESS: + pr_debug("VPHN hcall succeeded. Reset polling...\n"); + goto out; + + case H_FUNCTION: + pr_err_ratelimited("VPHN unsupported. Disabling polling...\n"); + break; + case H_HARDWARE: + pr_err_ratelimited("hcall_vphn() experienced a hardware fault " + "preventing VPHN. Disabling polling...\n"); + break; + case H_PARAMETER: + pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. " + "Disabling polling...\n"); + break; + default: + pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n" + , rc); + break; + } +out: + return rc; +} + +void find_and_update_cpu_nid(int cpu) +{ + __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; + int new_nid; + + /* Use associativity from first thread for all siblings */ + if (vphn_get_associativity(cpu, associativity)) + return; + + /* Do not have previous associativity, so find it now. */ + new_nid = associativity_to_nid(associativity); + + if (new_nid < 0 || !node_possible(new_nid)) + new_nid = first_online_node; + else + // Associate node <-> cpu, so cpu_up() calls + // try_online_node() on the right node. + set_cpu_numa_node(cpu, new_nid); + + pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid); +} + +int cpu_to_coregroup_id(int cpu) +{ + __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; + int index; + + if (cpu < 0 || cpu > nr_cpu_ids) + return -1; + + if (!coregroup_enabled) + goto out; + + if (!firmware_has_feature(FW_FEATURE_VPHN)) + goto out; + + if (vphn_get_associativity(cpu, associativity)) + goto out; + + index = of_read_number(associativity, 1); + if (index > primary_domain_index + 1) + return of_read_number(&associativity[index - 1], 1); + +out: + return cpu_to_core_id(cpu); +} + +static int topology_update_init(void) +{ + topology_inited = 1; + return 0; +} +device_initcall(topology_update_init); +#endif /* CONFIG_PPC_SPLPAR */ |