diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/gpu/drm/vc4/vc4_dsi.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/gpu/drm/vc4/vc4_dsi.c')
-rw-r--r-- | drivers/gpu/drm/vc4/vc4_dsi.c | 1822 |
1 files changed, 1822 insertions, 0 deletions
diff --git a/drivers/gpu/drm/vc4/vc4_dsi.c b/drivers/gpu/drm/vc4/vc4_dsi.c new file mode 100644 index 000000000..878e05d79 --- /dev/null +++ b/drivers/gpu/drm/vc4/vc4_dsi.c @@ -0,0 +1,1822 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2016 Broadcom + */ + +/** + * DOC: VC4 DSI0/DSI1 module + * + * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a + * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI + * controller. + * + * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, + * while the compute module brings both DSI0 and DSI1 out. + * + * This driver has been tested for DSI1 video-mode display only + * currently, with most of the information necessary for DSI0 + * hopefully present. + */ + +#include <linux/clk-provider.h> +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/component.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/i2c.h> +#include <linux/io.h> +#include <linux/of_address.h> +#include <linux/of_platform.h> +#include <linux/pm_runtime.h> + +#include <drm/drm_atomic_helper.h> +#include <drm/drm_bridge.h> +#include <drm/drm_edid.h> +#include <drm/drm_mipi_dsi.h> +#include <drm/drm_of.h> +#include <drm/drm_panel.h> +#include <drm/drm_probe_helper.h> +#include <drm/drm_simple_kms_helper.h> + +#include "vc4_drv.h" +#include "vc4_regs.h" + +#define DSI_CMD_FIFO_DEPTH 16 +#define DSI_PIX_FIFO_DEPTH 256 +#define DSI_PIX_FIFO_WIDTH 4 + +#define DSI0_CTRL 0x00 + +/* Command packet control. */ +#define DSI0_TXPKT1C 0x04 /* AKA PKTC */ +#define DSI1_TXPKT1C 0x04 +# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) +# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 +# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) +# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 + +# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) +# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 +/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ +# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 +/* Primary display where cmdfifo provides part of the payload and + * pixelvalve the rest. + */ +# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 +/* Secondary display where cmdfifo provides part of the payload and + * pixfifo the rest. + */ +# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 + +# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) +# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 + +# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) +# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 +/* Command only. Uses TXPKT1H and DISPLAY_NO */ +# define DSI_TXPKT1C_CMD_CTRL_TX 0 +/* Command with BTA for either ack or read data. */ +# define DSI_TXPKT1C_CMD_CTRL_RX 1 +/* Trigger according to TRIG_CMD */ +# define DSI_TXPKT1C_CMD_CTRL_TRIG 2 +/* BTA alone for getting error status after a command, or a TE trigger + * without a previous command. + */ +# define DSI_TXPKT1C_CMD_CTRL_BTA 3 + +# define DSI_TXPKT1C_CMD_MODE_LP BIT(3) +# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) +# define DSI_TXPKT1C_CMD_TE_EN BIT(1) +# define DSI_TXPKT1C_CMD_EN BIT(0) + +/* Command packet header. */ +#define DSI0_TXPKT1H 0x08 /* AKA PKTH */ +#define DSI1_TXPKT1H 0x08 +# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) +# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 +# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) +# define DSI_TXPKT1H_BC_PARAM_SHIFT 8 +# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) +# define DSI_TXPKT1H_BC_DT_SHIFT 0 + +#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ +#define DSI1_RXPKT1H 0x14 +# define DSI_RXPKT1H_CRC_ERR BIT(31) +# define DSI_RXPKT1H_DET_ERR BIT(30) +# define DSI_RXPKT1H_ECC_ERR BIT(29) +# define DSI_RXPKT1H_COR_ERR BIT(28) +# define DSI_RXPKT1H_INCOMP_PKT BIT(25) +# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) +/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ +# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) +# define DSI_RXPKT1H_BC_PARAM_SHIFT 8 +/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ +# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) +# define DSI_RXPKT1H_SHORT_1_SHIFT 16 +# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) +# define DSI_RXPKT1H_SHORT_0_SHIFT 8 +# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) +# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 + +#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ +#define DSI1_RXPKT2H 0x18 +# define DSI_RXPKT1H_DET_ERR BIT(30) +# define DSI_RXPKT1H_ECC_ERR BIT(29) +# define DSI_RXPKT1H_COR_ERR BIT(28) +# define DSI_RXPKT1H_INCOMP_PKT BIT(25) +# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) +# define DSI_RXPKT1H_BC_PARAM_SHIFT 8 +# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) +# define DSI_RXPKT1H_DT_SHIFT 0 + +#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ +#define DSI1_TXPKT_CMD_FIFO 0x1c + +#define DSI0_DISP0_CTRL 0x18 +# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) +# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 +# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) +# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 +# define DSI_DISP0_LP_STOP_DISABLE 0 +# define DSI_DISP0_LP_STOP_PERLINE 1 +# define DSI_DISP0_LP_STOP_PERFRAME 2 + +/* Transmit RGB pixels and null packets only during HACTIVE, instead + * of going to LP-STOP. + */ +# define DSI_DISP_HACTIVE_NULL BIT(10) +/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ +# define DSI_DISP_VBLP_CTRL BIT(9) +/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ +# define DSI_DISP_HFP_CTRL BIT(8) +/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ +# define DSI_DISP_HBP_CTRL BIT(7) +# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) +# define DSI_DISP0_CHANNEL_SHIFT 5 +/* Enables end events for HSYNC/VSYNC, not just start events. */ +# define DSI_DISP0_ST_END BIT(4) +# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) +# define DSI_DISP0_PFORMAT_SHIFT 2 +# define DSI_PFORMAT_RGB565 0 +# define DSI_PFORMAT_RGB666_PACKED 1 +# define DSI_PFORMAT_RGB666 2 +# define DSI_PFORMAT_RGB888 3 +/* Default is VIDEO mode. */ +# define DSI_DISP0_COMMAND_MODE BIT(1) +# define DSI_DISP0_ENABLE BIT(0) + +#define DSI0_DISP1_CTRL 0x1c +#define DSI1_DISP1_CTRL 0x2c +/* Format of the data written to TXPKT_PIX_FIFO. */ +# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) +# define DSI_DISP1_PFORMAT_SHIFT 1 +# define DSI_DISP1_PFORMAT_16BIT 0 +# define DSI_DISP1_PFORMAT_24BIT 1 +# define DSI_DISP1_PFORMAT_32BIT_LE 2 +# define DSI_DISP1_PFORMAT_32BIT_BE 3 + +/* DISP1 is always command mode. */ +# define DSI_DISP1_ENABLE BIT(0) + +#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ + +#define DSI0_INT_STAT 0x24 +#define DSI0_INT_EN 0x28 +# define DSI0_INT_FIFO_ERR BIT(25) +# define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23) +# define DSI0_INT_CMDC_DONE_SHIFT 23 +# define DSI0_INT_CMDC_DONE_NO_REPEAT 1 +# define DSI0_INT_CMDC_DONE_REPEAT 3 +# define DSI0_INT_PHY_DIR_RTF BIT(22) +# define DSI0_INT_PHY_D1_ULPS BIT(21) +# define DSI0_INT_PHY_D1_STOP BIT(20) +# define DSI0_INT_PHY_RXLPDT BIT(19) +# define DSI0_INT_PHY_RXTRIG BIT(18) +# define DSI0_INT_PHY_D0_ULPS BIT(17) +# define DSI0_INT_PHY_D0_LPDT BIT(16) +# define DSI0_INT_PHY_D0_FTR BIT(15) +# define DSI0_INT_PHY_D0_STOP BIT(14) +/* Signaled when the clock lane enters the given state. */ +# define DSI0_INT_PHY_CLK_ULPS BIT(13) +# define DSI0_INT_PHY_CLK_HS BIT(12) +# define DSI0_INT_PHY_CLK_FTR BIT(11) +/* Signaled on timeouts */ +# define DSI0_INT_PR_TO BIT(10) +# define DSI0_INT_TA_TO BIT(9) +# define DSI0_INT_LPRX_TO BIT(8) +# define DSI0_INT_HSTX_TO BIT(7) +/* Contention on a line when trying to drive the line low */ +# define DSI0_INT_ERR_CONT_LP1 BIT(6) +# define DSI0_INT_ERR_CONT_LP0 BIT(5) +/* Control error: incorrect line state sequence on data lane 0. */ +# define DSI0_INT_ERR_CONTROL BIT(4) +# define DSI0_INT_ERR_SYNC_ESC BIT(3) +# define DSI0_INT_RX2_PKT BIT(2) +# define DSI0_INT_RX1_PKT BIT(1) +# define DSI0_INT_CMD_PKT BIT(0) + +#define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \ + DSI0_INT_ERR_CONTROL | \ + DSI0_INT_ERR_CONT_LP0 | \ + DSI0_INT_ERR_CONT_LP1 | \ + DSI0_INT_HSTX_TO | \ + DSI0_INT_LPRX_TO | \ + DSI0_INT_TA_TO | \ + DSI0_INT_PR_TO) + +# define DSI1_INT_PHY_D3_ULPS BIT(30) +# define DSI1_INT_PHY_D3_STOP BIT(29) +# define DSI1_INT_PHY_D2_ULPS BIT(28) +# define DSI1_INT_PHY_D2_STOP BIT(27) +# define DSI1_INT_PHY_D1_ULPS BIT(26) +# define DSI1_INT_PHY_D1_STOP BIT(25) +# define DSI1_INT_PHY_D0_ULPS BIT(24) +# define DSI1_INT_PHY_D0_STOP BIT(23) +# define DSI1_INT_FIFO_ERR BIT(22) +# define DSI1_INT_PHY_DIR_RTF BIT(21) +# define DSI1_INT_PHY_RXLPDT BIT(20) +# define DSI1_INT_PHY_RXTRIG BIT(19) +# define DSI1_INT_PHY_D0_LPDT BIT(18) +# define DSI1_INT_PHY_DIR_FTR BIT(17) + +/* Signaled when the clock lane enters the given state. */ +# define DSI1_INT_PHY_CLOCK_ULPS BIT(16) +# define DSI1_INT_PHY_CLOCK_HS BIT(15) +# define DSI1_INT_PHY_CLOCK_STOP BIT(14) + +/* Signaled on timeouts */ +# define DSI1_INT_PR_TO BIT(13) +# define DSI1_INT_TA_TO BIT(12) +# define DSI1_INT_LPRX_TO BIT(11) +# define DSI1_INT_HSTX_TO BIT(10) + +/* Contention on a line when trying to drive the line low */ +# define DSI1_INT_ERR_CONT_LP1 BIT(9) +# define DSI1_INT_ERR_CONT_LP0 BIT(8) + +/* Control error: incorrect line state sequence on data lane 0. */ +# define DSI1_INT_ERR_CONTROL BIT(7) +/* LPDT synchronization error (bits received not a multiple of 8. */ + +# define DSI1_INT_ERR_SYNC_ESC BIT(6) +/* Signaled after receiving an error packet from the display in + * response to a read. + */ +# define DSI1_INT_RXPKT2 BIT(5) +/* Signaled after receiving a packet. The header and optional short + * response will be in RXPKT1H, and a long response will be in the + * RXPKT_FIFO. + */ +# define DSI1_INT_RXPKT1 BIT(4) +# define DSI1_INT_TXPKT2_DONE BIT(3) +# define DSI1_INT_TXPKT2_END BIT(2) +/* Signaled after all repeats of TXPKT1 are transferred. */ +# define DSI1_INT_TXPKT1_DONE BIT(1) +/* Signaled after each TXPKT1 repeat is scheduled. */ +# define DSI1_INT_TXPKT1_END BIT(0) + +#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ + DSI1_INT_ERR_CONTROL | \ + DSI1_INT_ERR_CONT_LP0 | \ + DSI1_INT_ERR_CONT_LP1 | \ + DSI1_INT_HSTX_TO | \ + DSI1_INT_LPRX_TO | \ + DSI1_INT_TA_TO | \ + DSI1_INT_PR_TO) + +#define DSI0_STAT 0x2c +#define DSI0_HSTX_TO_CNT 0x30 +#define DSI0_LPRX_TO_CNT 0x34 +#define DSI0_TA_TO_CNT 0x38 +#define DSI0_PR_TO_CNT 0x3c +#define DSI0_PHYC 0x40 +# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) +# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 +# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) +# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) +# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 +# define DSI1_PHYC_CLANE_ULPS BIT(17) +# define DSI1_PHYC_CLANE_ENABLE BIT(16) +# define DSI_PHYC_DLANE3_ULPS BIT(13) +# define DSI_PHYC_DLANE3_ENABLE BIT(12) +# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) +# define DSI0_PHYC_CLANE_ULPS BIT(9) +# define DSI_PHYC_DLANE2_ULPS BIT(9) +# define DSI0_PHYC_CLANE_ENABLE BIT(8) +# define DSI_PHYC_DLANE2_ENABLE BIT(8) +# define DSI_PHYC_DLANE1_ULPS BIT(5) +# define DSI_PHYC_DLANE1_ENABLE BIT(4) +# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) +# define DSI_PHYC_DLANE0_ULPS BIT(1) +# define DSI_PHYC_DLANE0_ENABLE BIT(0) + +#define DSI0_HS_CLT0 0x44 +#define DSI0_HS_CLT1 0x48 +#define DSI0_HS_CLT2 0x4c +#define DSI0_HS_DLT3 0x50 +#define DSI0_HS_DLT4 0x54 +#define DSI0_HS_DLT5 0x58 +#define DSI0_HS_DLT6 0x5c +#define DSI0_HS_DLT7 0x60 + +#define DSI0_PHY_AFEC0 0x64 +# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) +# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) +# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) +# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) +# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 +# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) +# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 +# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) +# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 +# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) +# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 +# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) +# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 +# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) +# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 +# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) +# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 +# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) +# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 +# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) +# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) +# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) +# define DSI1_PHY_AFEC0_RESET BIT(13) +# define DSI1_PHY_AFEC0_PD BIT(12) +# define DSI0_PHY_AFEC0_RESET BIT(11) +# define DSI1_PHY_AFEC0_PD_BG BIT(11) +# define DSI0_PHY_AFEC0_PD BIT(10) +# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10) +# define DSI0_PHY_AFEC0_PD_BG BIT(9) +# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) +# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) +# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8) +# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) +# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 +# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) +# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 + +#define DSI0_PHY_AFEC1 0x68 +# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) +# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 +# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) +# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 +# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) +# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 + +#define DSI0_TST_SEL 0x6c +#define DSI0_TST_MON 0x70 +#define DSI0_ID 0x74 +# define DSI_ID_VALUE 0x00647369 + +#define DSI1_CTRL 0x00 +# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) +# define DSI_CTRL_HS_CLKC_SHIFT 14 +# define DSI_CTRL_HS_CLKC_BYTE 0 +# define DSI_CTRL_HS_CLKC_DDR2 1 +# define DSI_CTRL_HS_CLKC_DDR 2 + +# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) +# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) +# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) +# define DSI_CTRL_SOFT_RESET_CFG BIT(10) +# define DSI_CTRL_CAL_BYTE BIT(9) +# define DSI_CTRL_INV_BYTE BIT(8) +# define DSI_CTRL_CLR_LDF BIT(7) +# define DSI0_CTRL_CLR_PBCF BIT(6) +# define DSI1_CTRL_CLR_RXF BIT(6) +# define DSI0_CTRL_CLR_CPBCF BIT(5) +# define DSI1_CTRL_CLR_PDF BIT(5) +# define DSI0_CTRL_CLR_PDF BIT(4) +# define DSI1_CTRL_CLR_CDF BIT(4) +# define DSI0_CTRL_CLR_CDF BIT(3) +# define DSI0_CTRL_CTRL2 BIT(2) +# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) +# define DSI0_CTRL_CTRL1 BIT(1) +# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) +# define DSI0_CTRL_CTRL0 BIT(0) +# define DSI1_CTRL_EN BIT(0) +# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ + DSI0_CTRL_CLR_PBCF | \ + DSI0_CTRL_CLR_CPBCF | \ + DSI0_CTRL_CLR_PDF | \ + DSI0_CTRL_CLR_CDF) +# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ + DSI1_CTRL_CLR_RXF | \ + DSI1_CTRL_CLR_PDF | \ + DSI1_CTRL_CLR_CDF) + +#define DSI1_TXPKT2C 0x0c +#define DSI1_TXPKT2H 0x10 +#define DSI1_TXPKT_PIX_FIFO 0x20 +#define DSI1_RXPKT_FIFO 0x24 +#define DSI1_DISP0_CTRL 0x28 +#define DSI1_INT_STAT 0x30 +#define DSI1_INT_EN 0x34 +/* State reporting bits. These mostly behave like INT_STAT, where + * writing a 1 clears the bit. + */ +#define DSI1_STAT 0x38 +# define DSI1_STAT_PHY_D3_ULPS BIT(31) +# define DSI1_STAT_PHY_D3_STOP BIT(30) +# define DSI1_STAT_PHY_D2_ULPS BIT(29) +# define DSI1_STAT_PHY_D2_STOP BIT(28) +# define DSI1_STAT_PHY_D1_ULPS BIT(27) +# define DSI1_STAT_PHY_D1_STOP BIT(26) +# define DSI1_STAT_PHY_D0_ULPS BIT(25) +# define DSI1_STAT_PHY_D0_STOP BIT(24) +# define DSI1_STAT_FIFO_ERR BIT(23) +# define DSI1_STAT_PHY_RXLPDT BIT(22) +# define DSI1_STAT_PHY_RXTRIG BIT(21) +# define DSI1_STAT_PHY_D0_LPDT BIT(20) +/* Set when in forward direction */ +# define DSI1_STAT_PHY_DIR BIT(19) +# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) +# define DSI1_STAT_PHY_CLOCK_HS BIT(17) +# define DSI1_STAT_PHY_CLOCK_STOP BIT(16) +# define DSI1_STAT_PR_TO BIT(15) +# define DSI1_STAT_TA_TO BIT(14) +# define DSI1_STAT_LPRX_TO BIT(13) +# define DSI1_STAT_HSTX_TO BIT(12) +# define DSI1_STAT_ERR_CONT_LP1 BIT(11) +# define DSI1_STAT_ERR_CONT_LP0 BIT(10) +# define DSI1_STAT_ERR_CONTROL BIT(9) +# define DSI1_STAT_ERR_SYNC_ESC BIT(8) +# define DSI1_STAT_RXPKT2 BIT(7) +# define DSI1_STAT_RXPKT1 BIT(6) +# define DSI1_STAT_TXPKT2_BUSY BIT(5) +# define DSI1_STAT_TXPKT2_DONE BIT(4) +# define DSI1_STAT_TXPKT2_END BIT(3) +# define DSI1_STAT_TXPKT1_BUSY BIT(2) +# define DSI1_STAT_TXPKT1_DONE BIT(1) +# define DSI1_STAT_TXPKT1_END BIT(0) + +#define DSI1_HSTX_TO_CNT 0x3c +#define DSI1_LPRX_TO_CNT 0x40 +#define DSI1_TA_TO_CNT 0x44 +#define DSI1_PR_TO_CNT 0x48 +#define DSI1_PHYC 0x4c + +#define DSI1_HS_CLT0 0x50 +# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) +# define DSI_HS_CLT0_CZERO_SHIFT 18 +# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) +# define DSI_HS_CLT0_CPRE_SHIFT 9 +# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) +# define DSI_HS_CLT0_CPREP_SHIFT 0 + +#define DSI1_HS_CLT1 0x54 +# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) +# define DSI_HS_CLT1_CTRAIL_SHIFT 9 +# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) +# define DSI_HS_CLT1_CPOST_SHIFT 0 + +#define DSI1_HS_CLT2 0x58 +# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) +# define DSI_HS_CLT2_WUP_SHIFT 0 + +#define DSI1_HS_DLT3 0x5c +# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) +# define DSI_HS_DLT3_EXIT_SHIFT 18 +# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) +# define DSI_HS_DLT3_ZERO_SHIFT 9 +# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) +# define DSI_HS_DLT3_PRE_SHIFT 0 + +#define DSI1_HS_DLT4 0x60 +# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) +# define DSI_HS_DLT4_ANLAT_SHIFT 18 +# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) +# define DSI_HS_DLT4_TRAIL_SHIFT 9 +# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) +# define DSI_HS_DLT4_LPX_SHIFT 0 + +#define DSI1_HS_DLT5 0x64 +# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) +# define DSI_HS_DLT5_INIT_SHIFT 0 + +#define DSI1_HS_DLT6 0x68 +# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) +# define DSI_HS_DLT6_TA_GET_SHIFT 24 +# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) +# define DSI_HS_DLT6_TA_SURE_SHIFT 16 +# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) +# define DSI_HS_DLT6_TA_GO_SHIFT 8 +# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) +# define DSI_HS_DLT6_LP_LPX_SHIFT 0 + +#define DSI1_HS_DLT7 0x6c +# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) +# define DSI_HS_DLT7_LP_WUP_SHIFT 0 + +#define DSI1_PHY_AFEC0 0x70 + +#define DSI1_PHY_AFEC1 0x74 +# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) +# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 +# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) +# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 +# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) +# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 +# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) +# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 +# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) +# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 + +#define DSI1_TST_SEL 0x78 +#define DSI1_TST_MON 0x7c +#define DSI1_PHY_TST1 0x80 +#define DSI1_PHY_TST2 0x84 +#define DSI1_PHY_FIFO_STAT 0x88 +/* Actually, all registers in the range that aren't otherwise claimed + * will return the ID. + */ +#define DSI1_ID 0x8c + +struct vc4_dsi_variant { + /* Whether we're on bcm2835's DSI0 or DSI1. */ + unsigned int port; + + bool broken_axi_workaround; + + const char *debugfs_name; + const struct debugfs_reg32 *regs; + size_t nregs; + +}; + +/* General DSI hardware state. */ +struct vc4_dsi { + struct vc4_encoder encoder; + struct mipi_dsi_host dsi_host; + + struct kref kref; + + struct platform_device *pdev; + + struct drm_bridge *bridge; + struct list_head bridge_chain; + + void __iomem *regs; + + struct dma_chan *reg_dma_chan; + dma_addr_t reg_dma_paddr; + u32 *reg_dma_mem; + dma_addr_t reg_paddr; + + const struct vc4_dsi_variant *variant; + + /* DSI channel for the panel we're connected to. */ + u32 channel; + u32 lanes; + u32 format; + u32 divider; + u32 mode_flags; + + /* Input clock from CPRMAN to the digital PHY, for the DSI + * escape clock. + */ + struct clk *escape_clock; + + /* Input clock to the analog PHY, used to generate the DSI bit + * clock. + */ + struct clk *pll_phy_clock; + + /* HS Clocks generated within the DSI analog PHY. */ + struct clk_fixed_factor phy_clocks[3]; + + struct clk_hw_onecell_data *clk_onecell; + + /* Pixel clock output to the pixelvalve, generated from the HS + * clock. + */ + struct clk *pixel_clock; + + struct completion xfer_completion; + int xfer_result; + + struct debugfs_regset32 regset; +}; + +#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) + +static inline struct vc4_dsi * +to_vc4_dsi(struct drm_encoder *encoder) +{ + return container_of(encoder, struct vc4_dsi, encoder.base); +} + +static inline void +dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) +{ + struct dma_chan *chan = dsi->reg_dma_chan; + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + int ret; + + /* DSI0 should be able to write normally. */ + if (!chan) { + writel(val, dsi->regs + offset); + return; + } + + *dsi->reg_dma_mem = val; + + tx = chan->device->device_prep_dma_memcpy(chan, + dsi->reg_paddr + offset, + dsi->reg_dma_paddr, + 4, 0); + if (!tx) { + DRM_ERROR("Failed to set up DMA register write\n"); + return; + } + + cookie = tx->tx_submit(tx); + ret = dma_submit_error(cookie); + if (ret) { + DRM_ERROR("Failed to submit DMA: %d\n", ret); + return; + } + ret = dma_sync_wait(chan, cookie); + if (ret) + DRM_ERROR("Failed to wait for DMA: %d\n", ret); +} + +#define DSI_READ(offset) readl(dsi->regs + (offset)) +#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) +#define DSI_PORT_READ(offset) \ + DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) +#define DSI_PORT_WRITE(offset, val) \ + DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) +#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) + +static const struct debugfs_reg32 dsi0_regs[] = { + VC4_REG32(DSI0_CTRL), + VC4_REG32(DSI0_STAT), + VC4_REG32(DSI0_HSTX_TO_CNT), + VC4_REG32(DSI0_LPRX_TO_CNT), + VC4_REG32(DSI0_TA_TO_CNT), + VC4_REG32(DSI0_PR_TO_CNT), + VC4_REG32(DSI0_DISP0_CTRL), + VC4_REG32(DSI0_DISP1_CTRL), + VC4_REG32(DSI0_INT_STAT), + VC4_REG32(DSI0_INT_EN), + VC4_REG32(DSI0_PHYC), + VC4_REG32(DSI0_HS_CLT0), + VC4_REG32(DSI0_HS_CLT1), + VC4_REG32(DSI0_HS_CLT2), + VC4_REG32(DSI0_HS_DLT3), + VC4_REG32(DSI0_HS_DLT4), + VC4_REG32(DSI0_HS_DLT5), + VC4_REG32(DSI0_HS_DLT6), + VC4_REG32(DSI0_HS_DLT7), + VC4_REG32(DSI0_PHY_AFEC0), + VC4_REG32(DSI0_PHY_AFEC1), + VC4_REG32(DSI0_ID), +}; + +static const struct debugfs_reg32 dsi1_regs[] = { + VC4_REG32(DSI1_CTRL), + VC4_REG32(DSI1_STAT), + VC4_REG32(DSI1_HSTX_TO_CNT), + VC4_REG32(DSI1_LPRX_TO_CNT), + VC4_REG32(DSI1_TA_TO_CNT), + VC4_REG32(DSI1_PR_TO_CNT), + VC4_REG32(DSI1_DISP0_CTRL), + VC4_REG32(DSI1_DISP1_CTRL), + VC4_REG32(DSI1_INT_STAT), + VC4_REG32(DSI1_INT_EN), + VC4_REG32(DSI1_PHYC), + VC4_REG32(DSI1_HS_CLT0), + VC4_REG32(DSI1_HS_CLT1), + VC4_REG32(DSI1_HS_CLT2), + VC4_REG32(DSI1_HS_DLT3), + VC4_REG32(DSI1_HS_DLT4), + VC4_REG32(DSI1_HS_DLT5), + VC4_REG32(DSI1_HS_DLT6), + VC4_REG32(DSI1_HS_DLT7), + VC4_REG32(DSI1_PHY_AFEC0), + VC4_REG32(DSI1_PHY_AFEC1), + VC4_REG32(DSI1_ID), +}; + +static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) +{ + u32 afec0 = DSI_PORT_READ(PHY_AFEC0); + + if (latch) + afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); + else + afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); + + DSI_PORT_WRITE(PHY_AFEC0, afec0); +} + +/* Enters or exits Ultra Low Power State. */ +static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) +{ + bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; + u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | + DSI_PHYC_DLANE0_ULPS | + (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | + (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | + (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); + u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | + DSI1_STAT_PHY_D0_ULPS | + (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | + (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | + (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); + u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | + DSI1_STAT_PHY_D0_STOP | + (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | + (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | + (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); + int ret; + bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & + DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); + + if (ulps == ulps_currently_enabled) + return; + + DSI_PORT_WRITE(STAT, stat_ulps); + DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); + ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); + if (ret) { + dev_warn(&dsi->pdev->dev, + "Timeout waiting for DSI ULPS entry: STAT 0x%08x", + DSI_PORT_READ(STAT)); + DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); + vc4_dsi_latch_ulps(dsi, false); + return; + } + + /* The DSI module can't be disabled while the module is + * generating ULPS state. So, to be able to disable the + * module, we have the AFE latch the ULPS state and continue + * on to having the module enter STOP. + */ + vc4_dsi_latch_ulps(dsi, ulps); + + DSI_PORT_WRITE(STAT, stat_stop); + DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); + ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); + if (ret) { + dev_warn(&dsi->pdev->dev, + "Timeout waiting for DSI STOP entry: STAT 0x%08x", + DSI_PORT_READ(STAT)); + DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); + return; + } +} + +static u32 +dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) +{ + /* The HS timings have to be rounded up to a multiple of 8 + * because we're using the byte clock. + */ + return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); +} + +/* ESC always runs at 100Mhz. */ +#define ESC_TIME_NS 10 + +static u32 +dsi_esc_timing(u32 ns) +{ + return DIV_ROUND_UP(ns, ESC_TIME_NS); +} + +static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) +{ + struct vc4_dsi *dsi = to_vc4_dsi(encoder); + struct device *dev = &dsi->pdev->dev; + struct drm_bridge *iter; + + list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { + if (iter->funcs->disable) + iter->funcs->disable(iter); + + if (iter == dsi->bridge) + break; + } + + vc4_dsi_ulps(dsi, true); + + list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) { + if (iter->funcs->post_disable) + iter->funcs->post_disable(iter); + } + + clk_disable_unprepare(dsi->pll_phy_clock); + clk_disable_unprepare(dsi->escape_clock); + clk_disable_unprepare(dsi->pixel_clock); + + pm_runtime_put(dev); +} + +/* Extends the mode's blank intervals to handle BCM2835's integer-only + * DSI PLL divider. + * + * On 2835, PLLD is set to 2Ghz, and may not be changed by the display + * driver since most peripherals are hanging off of the PLLD_PER + * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore + * the pixel clock), only has an integer divider off of DSI. + * + * To get our panel mode to refresh at the expected 60Hz, we need to + * extend the horizontal blank time. This means we drive a + * higher-than-expected clock rate to the panel, but that's what the + * firmware does too. + */ +static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, + const struct drm_display_mode *mode, + struct drm_display_mode *adjusted_mode) +{ + struct vc4_dsi *dsi = to_vc4_dsi(encoder); + struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); + unsigned long parent_rate = clk_get_rate(phy_parent); + unsigned long pixel_clock_hz = mode->clock * 1000; + unsigned long pll_clock = pixel_clock_hz * dsi->divider; + int divider; + + /* Find what divider gets us a faster clock than the requested + * pixel clock. + */ + for (divider = 1; divider < 255; divider++) { + if (parent_rate / (divider + 1) < pll_clock) + break; + } + + /* Now that we've picked a PLL divider, calculate back to its + * pixel clock. + */ + pll_clock = parent_rate / divider; + pixel_clock_hz = pll_clock / dsi->divider; + + adjusted_mode->clock = pixel_clock_hz / 1000; + + /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ + adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / + mode->clock; + adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; + adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; + + return true; +} + +static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) +{ + struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; + struct vc4_dsi *dsi = to_vc4_dsi(encoder); + struct device *dev = &dsi->pdev->dev; + bool debug_dump_regs = false; + struct drm_bridge *iter; + unsigned long hs_clock; + u32 ui_ns; + /* Minimum LP state duration in escape clock cycles. */ + u32 lpx = dsi_esc_timing(60); + unsigned long pixel_clock_hz = mode->clock * 1000; + unsigned long dsip_clock; + unsigned long phy_clock; + int ret; + + ret = pm_runtime_resume_and_get(dev); + if (ret) { + DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port); + return; + } + + if (debug_dump_regs) { + struct drm_printer p = drm_info_printer(&dsi->pdev->dev); + dev_info(&dsi->pdev->dev, "DSI regs before:\n"); + drm_print_regset32(&p, &dsi->regset); + } + + /* Round up the clk_set_rate() request slightly, since + * PLLD_DSI1 is an integer divider and its rate selection will + * never round up. + */ + phy_clock = (pixel_clock_hz + 1000) * dsi->divider; + ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); + if (ret) { + dev_err(&dsi->pdev->dev, + "Failed to set phy clock to %ld: %d\n", phy_clock, ret); + } + + /* Reset the DSI and all its fifos. */ + DSI_PORT_WRITE(CTRL, + DSI_CTRL_SOFT_RESET_CFG | + DSI_PORT_BIT(CTRL_RESET_FIFOS)); + + DSI_PORT_WRITE(CTRL, + DSI_CTRL_HSDT_EOT_DISABLE | + DSI_CTRL_RX_LPDT_EOT_DISABLE); + + /* Clear all stat bits so we see what has happened during enable. */ + DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); + + /* Set AFE CTR00/CTR1 to release powerdown of analog. */ + if (dsi->variant->port == 0) { + u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | + VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); + + if (dsi->lanes < 2) + afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; + + if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) + afec0 |= DSI0_PHY_AFEC0_RESET; + + DSI_PORT_WRITE(PHY_AFEC0, afec0); + + /* AFEC reset hold time */ + mdelay(1); + + DSI_PORT_WRITE(PHY_AFEC1, + VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | + VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | + VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); + } else { + u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | + VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | + VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | + VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | + VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | + VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | + VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); + + if (dsi->lanes < 4) + afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; + if (dsi->lanes < 3) + afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; + if (dsi->lanes < 2) + afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; + + afec0 |= DSI1_PHY_AFEC0_RESET; + + DSI_PORT_WRITE(PHY_AFEC0, afec0); + + DSI_PORT_WRITE(PHY_AFEC1, 0); + + /* AFEC reset hold time */ + mdelay(1); + } + + ret = clk_prepare_enable(dsi->escape_clock); + if (ret) { + DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); + return; + } + + ret = clk_prepare_enable(dsi->pll_phy_clock); + if (ret) { + DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); + return; + } + + hs_clock = clk_get_rate(dsi->pll_phy_clock); + + /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, + * not the pixel clock rate. DSIxP take from the APHY's byte, + * DDR2, or DDR4 clock (we use byte) and feed into the PV at + * that rate. Separately, a value derived from PIX_CLK_DIV + * and HS_CLKC is fed into the PV to divide down to the actual + * pixel clock for pushing pixels into DSI. + */ + dsip_clock = phy_clock / 8; + ret = clk_set_rate(dsi->pixel_clock, dsip_clock); + if (ret) { + dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", + dsip_clock, ret); + } + + ret = clk_prepare_enable(dsi->pixel_clock); + if (ret) { + DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); + return; + } + + /* How many ns one DSI unit interval is. Note that the clock + * is DDR, so there's an extra divide by 2. + */ + ui_ns = DIV_ROUND_UP(500000000, hs_clock); + + DSI_PORT_WRITE(HS_CLT0, + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), + DSI_HS_CLT0_CZERO) | + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), + DSI_HS_CLT0_CPRE) | + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), + DSI_HS_CLT0_CPREP)); + + DSI_PORT_WRITE(HS_CLT1, + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), + DSI_HS_CLT1_CTRAIL) | + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), + DSI_HS_CLT1_CPOST)); + + DSI_PORT_WRITE(HS_CLT2, + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), + DSI_HS_CLT2_WUP)); + + DSI_PORT_WRITE(HS_DLT3, + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), + DSI_HS_DLT3_EXIT) | + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), + DSI_HS_DLT3_ZERO) | + VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), + DSI_HS_DLT3_PRE)); + + DSI_PORT_WRITE(HS_DLT4, + VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), + DSI_HS_DLT4_LPX) | + VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), + dsi_hs_timing(ui_ns, 60, 4)), + DSI_HS_DLT4_TRAIL) | + VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); + + /* T_INIT is how long STOP is driven after power-up to + * indicate to the slave (also coming out of power-up) that + * master init is complete, and should be greater than the + * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The + * D-PHY spec gives a minimum 100us for T_INIT,MASTER and + * T_INIT,SLAVE, while allowing protocols on top of it to give + * greater minimums. The vc4 firmware uses an extremely + * conservative 5ms, and we maintain that here. + */ + DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, + 5 * 1000 * 1000, 0), + DSI_HS_DLT5_INIT)); + + DSI_PORT_WRITE(HS_DLT6, + VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | + VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | + VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | + VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); + + DSI_PORT_WRITE(HS_DLT7, + VC4_SET_FIELD(dsi_esc_timing(1000000), + DSI_HS_DLT7_LP_WUP)); + + DSI_PORT_WRITE(PHYC, + DSI_PHYC_DLANE0_ENABLE | + (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | + (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | + (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | + DSI_PORT_BIT(PHYC_CLANE_ENABLE) | + ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? + 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | + (dsi->variant->port == 0 ? + VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : + VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); + + DSI_PORT_WRITE(CTRL, + DSI_PORT_READ(CTRL) | + DSI_CTRL_CAL_BYTE); + + /* HS timeout in HS clock cycles: disabled. */ + DSI_PORT_WRITE(HSTX_TO_CNT, 0); + /* LP receive timeout in HS clocks. */ + DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); + /* Bus turnaround timeout */ + DSI_PORT_WRITE(TA_TO_CNT, 100000); + /* Display reset sequence timeout */ + DSI_PORT_WRITE(PR_TO_CNT, 100000); + + /* Set up DISP1 for transferring long command payloads through + * the pixfifo. + */ + DSI_PORT_WRITE(DISP1_CTRL, + VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, + DSI_DISP1_PFORMAT) | + DSI_DISP1_ENABLE); + + /* Ungate the block. */ + if (dsi->variant->port == 0) + DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); + else + DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); + + /* Bring AFE out of reset. */ + DSI_PORT_WRITE(PHY_AFEC0, + DSI_PORT_READ(PHY_AFEC0) & + ~DSI_PORT_BIT(PHY_AFEC0_RESET)); + + vc4_dsi_ulps(dsi, false); + + list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { + if (iter->funcs->pre_enable) + iter->funcs->pre_enable(iter); + } + + if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { + DSI_PORT_WRITE(DISP0_CTRL, + VC4_SET_FIELD(dsi->divider, + DSI_DISP0_PIX_CLK_DIV) | + VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | + VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, + DSI_DISP0_LP_STOP_CTRL) | + DSI_DISP0_ST_END | + DSI_DISP0_ENABLE); + } else { + DSI_PORT_WRITE(DISP0_CTRL, + DSI_DISP0_COMMAND_MODE | + DSI_DISP0_ENABLE); + } + + list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { + if (iter->funcs->enable) + iter->funcs->enable(iter); + } + + if (debug_dump_regs) { + struct drm_printer p = drm_info_printer(&dsi->pdev->dev); + dev_info(&dsi->pdev->dev, "DSI regs after:\n"); + drm_print_regset32(&p, &dsi->regset); + } +} + +static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, + const struct mipi_dsi_msg *msg) +{ + struct vc4_dsi *dsi = host_to_dsi(host); + struct mipi_dsi_packet packet; + u32 pkth = 0, pktc = 0; + int i, ret; + bool is_long = mipi_dsi_packet_format_is_long(msg->type); + u32 cmd_fifo_len = 0, pix_fifo_len = 0; + + mipi_dsi_create_packet(&packet, msg); + + pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); + pkth |= VC4_SET_FIELD(packet.header[1] | + (packet.header[2] << 8), + DSI_TXPKT1H_BC_PARAM); + if (is_long) { + /* Divide data across the various FIFOs we have available. + * The command FIFO takes byte-oriented data, but is of + * limited size. The pixel FIFO (never actually used for + * pixel data in reality) is word oriented, and substantially + * larger. So, we use the pixel FIFO for most of the data, + * sending the residual bytes in the command FIFO at the start. + * + * With this arrangement, the command FIFO will never get full. + */ + if (packet.payload_length <= 16) { + cmd_fifo_len = packet.payload_length; + pix_fifo_len = 0; + } else { + cmd_fifo_len = (packet.payload_length % + DSI_PIX_FIFO_WIDTH); + pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / + DSI_PIX_FIFO_WIDTH); + } + + WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); + + pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); + } + + if (msg->rx_len) { + pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, + DSI_TXPKT1C_CMD_CTRL); + } else { + pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, + DSI_TXPKT1C_CMD_CTRL); + } + + for (i = 0; i < cmd_fifo_len; i++) + DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); + for (i = 0; i < pix_fifo_len; i++) { + const u8 *pix = packet.payload + cmd_fifo_len + i * 4; + + DSI_PORT_WRITE(TXPKT_PIX_FIFO, + pix[0] | + pix[1] << 8 | + pix[2] << 16 | + pix[3] << 24); + } + + if (msg->flags & MIPI_DSI_MSG_USE_LPM) + pktc |= DSI_TXPKT1C_CMD_MODE_LP; + if (is_long) + pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; + + /* Send one copy of the packet. Larger repeats are used for pixel + * data in command mode. + */ + pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); + + pktc |= DSI_TXPKT1C_CMD_EN; + if (pix_fifo_len) { + pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, + DSI_TXPKT1C_DISPLAY_NO); + } else { + pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, + DSI_TXPKT1C_DISPLAY_NO); + } + + /* Enable the appropriate interrupt for the transfer completion. */ + dsi->xfer_result = 0; + reinit_completion(&dsi->xfer_completion); + if (dsi->variant->port == 0) { + DSI_PORT_WRITE(INT_STAT, + DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF); + if (msg->rx_len) { + DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED | + DSI0_INT_PHY_DIR_RTF)); + } else { + DSI_PORT_WRITE(INT_EN, + (DSI0_INTERRUPTS_ALWAYS_ENABLED | + VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT, + DSI0_INT_CMDC_DONE))); + } + } else { + DSI_PORT_WRITE(INT_STAT, + DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); + if (msg->rx_len) { + DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | + DSI1_INT_PHY_DIR_RTF)); + } else { + DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | + DSI1_INT_TXPKT1_DONE)); + } + } + + /* Send the packet. */ + DSI_PORT_WRITE(TXPKT1H, pkth); + DSI_PORT_WRITE(TXPKT1C, pktc); + + if (!wait_for_completion_timeout(&dsi->xfer_completion, + msecs_to_jiffies(1000))) { + dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); + dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", + DSI_PORT_READ(INT_STAT)); + ret = -ETIMEDOUT; + } else { + ret = dsi->xfer_result; + } + + DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); + + if (ret) + goto reset_fifo_and_return; + + if (ret == 0 && msg->rx_len) { + u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); + u8 *msg_rx = msg->rx_buf; + + if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { + u32 rxlen = VC4_GET_FIELD(rxpkt1h, + DSI_RXPKT1H_BC_PARAM); + + if (rxlen != msg->rx_len) { + DRM_ERROR("DSI returned %db, expecting %db\n", + rxlen, (int)msg->rx_len); + ret = -ENXIO; + goto reset_fifo_and_return; + } + + for (i = 0; i < msg->rx_len; i++) + msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); + } else { + /* FINISHME: Handle AWER */ + + msg_rx[0] = VC4_GET_FIELD(rxpkt1h, + DSI_RXPKT1H_SHORT_0); + if (msg->rx_len > 1) { + msg_rx[1] = VC4_GET_FIELD(rxpkt1h, + DSI_RXPKT1H_SHORT_1); + } + } + } + + return ret; + +reset_fifo_and_return: + DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); + + DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); + udelay(1); + DSI_PORT_WRITE(CTRL, + DSI_PORT_READ(CTRL) | + DSI_PORT_BIT(CTRL_RESET_FIFOS)); + + DSI_PORT_WRITE(TXPKT1C, 0); + DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); + return ret; +} + +static const struct component_ops vc4_dsi_ops; +static int vc4_dsi_host_attach(struct mipi_dsi_host *host, + struct mipi_dsi_device *device) +{ + struct vc4_dsi *dsi = host_to_dsi(host); + + dsi->lanes = device->lanes; + dsi->channel = device->channel; + dsi->mode_flags = device->mode_flags; + + switch (device->format) { + case MIPI_DSI_FMT_RGB888: + dsi->format = DSI_PFORMAT_RGB888; + dsi->divider = 24 / dsi->lanes; + break; + case MIPI_DSI_FMT_RGB666: + dsi->format = DSI_PFORMAT_RGB666; + dsi->divider = 24 / dsi->lanes; + break; + case MIPI_DSI_FMT_RGB666_PACKED: + dsi->format = DSI_PFORMAT_RGB666_PACKED; + dsi->divider = 18 / dsi->lanes; + break; + case MIPI_DSI_FMT_RGB565: + dsi->format = DSI_PFORMAT_RGB565; + dsi->divider = 16 / dsi->lanes; + break; + default: + dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", + dsi->format); + return 0; + } + + if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { + dev_err(&dsi->pdev->dev, + "Only VIDEO mode panels supported currently.\n"); + return 0; + } + + return component_add(&dsi->pdev->dev, &vc4_dsi_ops); +} + +static int vc4_dsi_host_detach(struct mipi_dsi_host *host, + struct mipi_dsi_device *device) +{ + struct vc4_dsi *dsi = host_to_dsi(host); + + component_del(&dsi->pdev->dev, &vc4_dsi_ops); + return 0; +} + +static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { + .attach = vc4_dsi_host_attach, + .detach = vc4_dsi_host_detach, + .transfer = vc4_dsi_host_transfer, +}; + +static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { + .disable = vc4_dsi_encoder_disable, + .enable = vc4_dsi_encoder_enable, + .mode_fixup = vc4_dsi_encoder_mode_fixup, +}; + +static int vc4_dsi_late_register(struct drm_encoder *encoder) +{ + struct drm_device *drm = encoder->dev; + struct vc4_dsi *dsi = to_vc4_dsi(encoder); + int ret; + + ret = vc4_debugfs_add_regset32(drm->primary, dsi->variant->debugfs_name, + &dsi->regset); + if (ret) + return ret; + + return 0; +} + +static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { + .late_register = vc4_dsi_late_register, +}; + +static const struct vc4_dsi_variant bcm2711_dsi1_variant = { + .port = 1, + .debugfs_name = "dsi1_regs", + .regs = dsi1_regs, + .nregs = ARRAY_SIZE(dsi1_regs), +}; + +static const struct vc4_dsi_variant bcm2835_dsi0_variant = { + .port = 0, + .debugfs_name = "dsi0_regs", + .regs = dsi0_regs, + .nregs = ARRAY_SIZE(dsi0_regs), +}; + +static const struct vc4_dsi_variant bcm2835_dsi1_variant = { + .port = 1, + .broken_axi_workaround = true, + .debugfs_name = "dsi1_regs", + .regs = dsi1_regs, + .nregs = ARRAY_SIZE(dsi1_regs), +}; + +static const struct of_device_id vc4_dsi_dt_match[] = { + { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant }, + { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant }, + { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, + {} +}; + +static void dsi_handle_error(struct vc4_dsi *dsi, + irqreturn_t *ret, u32 stat, u32 bit, + const char *type) +{ + if (!(stat & bit)) + return; + + DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type); + *ret = IRQ_HANDLED; +} + +/* + * Initial handler for port 1 where we need the reg_dma workaround. + * The register DMA writes sleep, so we can't do it in the top half. + * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the + * parent interrupt contrller until our interrupt thread is done. + */ +static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) +{ + struct vc4_dsi *dsi = data; + u32 stat = DSI_PORT_READ(INT_STAT); + + if (!stat) + return IRQ_NONE; + + return IRQ_WAKE_THREAD; +} + +/* + * Normal IRQ handler for port 0, or the threaded IRQ handler for port + * 1 where we need the reg_dma workaround. + */ +static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) +{ + struct vc4_dsi *dsi = data; + u32 stat = DSI_PORT_READ(INT_STAT); + irqreturn_t ret = IRQ_NONE; + + DSI_PORT_WRITE(INT_STAT, stat); + + dsi_handle_error(dsi, &ret, stat, + DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync"); + dsi_handle_error(dsi, &ret, stat, + DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence"); + dsi_handle_error(dsi, &ret, stat, + DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention"); + dsi_handle_error(dsi, &ret, stat, + DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention"); + dsi_handle_error(dsi, &ret, stat, + DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout"); + dsi_handle_error(dsi, &ret, stat, + DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout"); + dsi_handle_error(dsi, &ret, stat, + DSI_PORT_BIT(INT_TA_TO), "turnaround timeout"); + dsi_handle_error(dsi, &ret, stat, + DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout"); + + if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE : + DSI0_INT_CMDC_DONE_MASK) | + DSI_PORT_BIT(INT_PHY_DIR_RTF))) { + complete(&dsi->xfer_completion); + ret = IRQ_HANDLED; + } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) { + complete(&dsi->xfer_completion); + dsi->xfer_result = -ETIMEDOUT; + ret = IRQ_HANDLED; + } + + return ret; +} + +/** + * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog + * PHY that are consumed by CPRMAN (clk-bcm2835.c). + * @dsi: DSI encoder + */ +static int +vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) +{ + struct device *dev = &dsi->pdev->dev; + const char *parent_name = __clk_get_name(dsi->pll_phy_clock); + static const struct { + const char *name; + int div; + } phy_clocks[] = { + { "byte", 8 }, + { "ddr2", 4 }, + { "ddr", 2 }, + }; + int i; + + dsi->clk_onecell = devm_kzalloc(dev, + sizeof(*dsi->clk_onecell) + + ARRAY_SIZE(phy_clocks) * + sizeof(struct clk_hw *), + GFP_KERNEL); + if (!dsi->clk_onecell) + return -ENOMEM; + dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); + + for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { + struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; + struct clk_init_data init; + char clk_name[16]; + int ret; + + snprintf(clk_name, sizeof(clk_name), + "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); + + /* We just use core fixed factor clock ops for the PHY + * clocks. The clocks are actually gated by the + * PHY_AFEC0_DDRCLK_EN bits, which we should be + * setting if we use the DDR/DDR2 clocks. However, + * vc4_dsi_encoder_enable() is setting up both AFEC0, + * setting both our parent DSI PLL's rate and this + * clock's rate, so it knows if DDR/DDR2 are going to + * be used and could enable the gates itself. + */ + fix->mult = 1; + fix->div = phy_clocks[i].div; + fix->hw.init = &init; + + memset(&init, 0, sizeof(init)); + init.parent_names = &parent_name; + init.num_parents = 1; + init.name = clk_name; + init.ops = &clk_fixed_factor_ops; + + ret = devm_clk_hw_register(dev, &fix->hw); + if (ret) + return ret; + + dsi->clk_onecell->hws[i] = &fix->hw; + } + + return of_clk_add_hw_provider(dev->of_node, + of_clk_hw_onecell_get, + dsi->clk_onecell); +} + +static void vc4_dsi_dma_mem_release(void *ptr) +{ + struct vc4_dsi *dsi = ptr; + struct device *dev = &dsi->pdev->dev; + + dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr); + dsi->reg_dma_mem = NULL; +} + +static void vc4_dsi_dma_chan_release(void *ptr) +{ + struct vc4_dsi *dsi = ptr; + + dma_release_channel(dsi->reg_dma_chan); + dsi->reg_dma_chan = NULL; +} + +static void vc4_dsi_release(struct kref *kref) +{ + struct vc4_dsi *dsi = + container_of(kref, struct vc4_dsi, kref); + + kfree(dsi); +} + +static void vc4_dsi_get(struct vc4_dsi *dsi) +{ + kref_get(&dsi->kref); +} + +static void vc4_dsi_put(struct vc4_dsi *dsi) +{ + kref_put(&dsi->kref, &vc4_dsi_release); +} + +static void vc4_dsi_release_action(struct drm_device *drm, void *ptr) +{ + struct vc4_dsi *dsi = ptr; + + vc4_dsi_put(dsi); +} + +static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) +{ + struct platform_device *pdev = to_platform_device(dev); + struct drm_device *drm = dev_get_drvdata(master); + struct vc4_dsi *dsi = dev_get_drvdata(dev); + struct drm_encoder *encoder = &dsi->encoder.base; + int ret; + + vc4_dsi_get(dsi); + + ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi); + if (ret) + return ret; + + dsi->variant = of_device_get_match_data(dev); + + INIT_LIST_HEAD(&dsi->bridge_chain); + dsi->encoder.type = dsi->variant->port ? + VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0; + + dsi->regs = vc4_ioremap_regs(pdev, 0); + if (IS_ERR(dsi->regs)) + return PTR_ERR(dsi->regs); + + dsi->regset.base = dsi->regs; + dsi->regset.regs = dsi->variant->regs; + dsi->regset.nregs = dsi->variant->nregs; + + if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { + dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", + DSI_PORT_READ(ID), DSI_ID_VALUE); + return -ENODEV; + } + + /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to + * writes from the ARM. It does handle writes from the DMA engine, + * so set up a channel for talking to it. + */ + if (dsi->variant->broken_axi_workaround) { + dma_cap_mask_t dma_mask; + + dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, + &dsi->reg_dma_paddr, + GFP_KERNEL); + if (!dsi->reg_dma_mem) { + DRM_ERROR("Failed to get DMA memory\n"); + return -ENOMEM; + } + + ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi); + if (ret) + return ret; + + dma_cap_zero(dma_mask); + dma_cap_set(DMA_MEMCPY, dma_mask); + + dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); + if (IS_ERR(dsi->reg_dma_chan)) { + ret = PTR_ERR(dsi->reg_dma_chan); + if (ret != -EPROBE_DEFER) + DRM_ERROR("Failed to get DMA channel: %d\n", + ret); + return ret; + } + + ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi); + if (ret) + return ret; + + /* Get the physical address of the device's registers. The + * struct resource for the regs gives us the bus address + * instead. + */ + dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, + 0, NULL, NULL)); + } + + init_completion(&dsi->xfer_completion); + /* At startup enable error-reporting interrupts and nothing else. */ + DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); + /* Clear any existing interrupt state. */ + DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); + + if (dsi->reg_dma_mem) + ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), + vc4_dsi_irq_defer_to_thread_handler, + vc4_dsi_irq_handler, + IRQF_ONESHOT, + "vc4 dsi", dsi); + else + ret = devm_request_irq(dev, platform_get_irq(pdev, 0), + vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); + if (ret) { + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get interrupt: %d\n", ret); + return ret; + } + + dsi->escape_clock = devm_clk_get(dev, "escape"); + if (IS_ERR(dsi->escape_clock)) { + ret = PTR_ERR(dsi->escape_clock); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get escape clock: %d\n", ret); + return ret; + } + + dsi->pll_phy_clock = devm_clk_get(dev, "phy"); + if (IS_ERR(dsi->pll_phy_clock)) { + ret = PTR_ERR(dsi->pll_phy_clock); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get phy clock: %d\n", ret); + return ret; + } + + dsi->pixel_clock = devm_clk_get(dev, "pixel"); + if (IS_ERR(dsi->pixel_clock)) { + ret = PTR_ERR(dsi->pixel_clock); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get pixel clock: %d\n", ret); + return ret; + } + + dsi->bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0); + if (IS_ERR(dsi->bridge)) + return PTR_ERR(dsi->bridge); + + /* The esc clock rate is supposed to always be 100Mhz. */ + ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); + if (ret) { + dev_err(dev, "Failed to set esc clock: %d\n", ret); + return ret; + } + + ret = vc4_dsi_init_phy_clocks(dsi); + if (ret) + return ret; + + ret = drmm_encoder_init(drm, encoder, + &vc4_dsi_encoder_funcs, + DRM_MODE_ENCODER_DSI, + NULL); + if (ret) + return ret; + + drm_encoder_helper_add(encoder, &vc4_dsi_encoder_helper_funcs); + + ret = devm_pm_runtime_enable(dev); + if (ret) + return ret; + + ret = drm_bridge_attach(encoder, dsi->bridge, NULL, 0); + if (ret) + return ret; + /* Disable the atomic helper calls into the bridge. We + * manually call the bridge pre_enable / enable / etc. calls + * from our driver, since we need to sequence them within the + * encoder's enable/disable paths. + */ + list_splice_init(&encoder->bridge_chain, &dsi->bridge_chain); + + return 0; +} + +static void vc4_dsi_unbind(struct device *dev, struct device *master, + void *data) +{ + struct vc4_dsi *dsi = dev_get_drvdata(dev); + struct drm_encoder *encoder = &dsi->encoder.base; + + /* + * Restore the bridge_chain so the bridge detach procedure can happen + * normally. + */ + list_splice_init(&dsi->bridge_chain, &encoder->bridge_chain); +} + +static const struct component_ops vc4_dsi_ops = { + .bind = vc4_dsi_bind, + .unbind = vc4_dsi_unbind, +}; + +static int vc4_dsi_dev_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct vc4_dsi *dsi; + + dsi = kzalloc(sizeof(*dsi), GFP_KERNEL); + if (!dsi) + return -ENOMEM; + dev_set_drvdata(dev, dsi); + + kref_init(&dsi->kref); + dsi->pdev = pdev; + dsi->dsi_host.ops = &vc4_dsi_host_ops; + dsi->dsi_host.dev = dev; + mipi_dsi_host_register(&dsi->dsi_host); + + return 0; +} + +static int vc4_dsi_dev_remove(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct vc4_dsi *dsi = dev_get_drvdata(dev); + + mipi_dsi_host_unregister(&dsi->dsi_host); + vc4_dsi_put(dsi); + + return 0; +} + +struct platform_driver vc4_dsi_driver = { + .probe = vc4_dsi_dev_probe, + .remove = vc4_dsi_dev_remove, + .driver = { + .name = "vc4_dsi", + .of_match_table = vc4_dsi_dt_match, + }, +}; |