diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/misc/habanalabs/common/firmware_if.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/misc/habanalabs/common/firmware_if.c')
-rw-r--r-- | drivers/misc/habanalabs/common/firmware_if.c | 3021 |
1 files changed, 3021 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/firmware_if.c b/drivers/misc/habanalabs/common/firmware_if.c new file mode 100644 index 000000000..f18e53bbb --- /dev/null +++ b/drivers/misc/habanalabs/common/firmware_if.c @@ -0,0 +1,3021 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2022 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include "habanalabs.h" +#include "../include/common/hl_boot_if.h" + +#include <linux/firmware.h> +#include <linux/crc32.h> +#include <linux/slab.h> +#include <linux/ctype.h> + +#define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */ + +static char *extract_fw_ver_from_str(const char *fw_str) +{ + char *str, *fw_ver, *whitespace; + u32 ver_offset; + + fw_ver = kmalloc(VERSION_MAX_LEN, GFP_KERNEL); + if (!fw_ver) + return NULL; + + str = strnstr(fw_str, "fw-", VERSION_MAX_LEN); + if (!str) + goto free_fw_ver; + + /* Skip the fw- part */ + str += 3; + ver_offset = str - fw_str; + + /* Copy until the next whitespace */ + whitespace = strnstr(str, " ", VERSION_MAX_LEN - ver_offset); + if (!whitespace) + goto free_fw_ver; + + strscpy(fw_ver, str, whitespace - str + 1); + + return fw_ver; + +free_fw_ver: + kfree(fw_ver); + return NULL; +} + +static int extract_fw_sub_versions(struct hl_device *hdev, char *preboot_ver) +{ + char major[8], minor[8], *first_dot, *second_dot; + int rc; + + first_dot = strnstr(preboot_ver, ".", 10); + if (first_dot) { + strscpy(major, preboot_ver, first_dot - preboot_ver + 1); + rc = kstrtou32(major, 10, &hdev->fw_major_version); + } else { + rc = -EINVAL; + } + + if (rc) { + dev_err(hdev->dev, "Error %d parsing preboot major version\n", rc); + goto out; + } + + /* skip the first dot */ + first_dot++; + + second_dot = strnstr(first_dot, ".", 10); + if (second_dot) { + strscpy(minor, first_dot, second_dot - first_dot + 1); + rc = kstrtou32(minor, 10, &hdev->fw_minor_version); + } else { + rc = -EINVAL; + } + + if (rc) + dev_err(hdev->dev, "Error %d parsing preboot minor version\n", rc); + +out: + kfree(preboot_ver); + return rc; +} + +static int hl_request_fw(struct hl_device *hdev, + const struct firmware **firmware_p, + const char *fw_name) +{ + size_t fw_size; + int rc; + + rc = request_firmware(firmware_p, fw_name, hdev->dev); + if (rc) { + dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n", + fw_name, rc); + goto out; + } + + fw_size = (*firmware_p)->size; + if ((fw_size % 4) != 0) { + dev_err(hdev->dev, "Illegal %s firmware size %zu\n", + fw_name, fw_size); + rc = -EINVAL; + goto release_fw; + } + + dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size); + + if (fw_size > FW_FILE_MAX_SIZE) { + dev_err(hdev->dev, + "FW file size %zu exceeds maximum of %u bytes\n", + fw_size, FW_FILE_MAX_SIZE); + rc = -EINVAL; + goto release_fw; + } + + return 0; + +release_fw: + release_firmware(*firmware_p); +out: + return rc; +} + +/** + * hl_release_firmware() - release FW + * + * @fw: fw descriptor + * + * note: this inline function added to serve as a comprehensive mirror for the + * hl_request_fw function. + */ +static inline void hl_release_firmware(const struct firmware *fw) +{ + release_firmware(fw); +} + +/** + * hl_fw_copy_fw_to_device() - copy FW to device + * + * @hdev: pointer to hl_device structure. + * @fw: fw descriptor + * @dst: IO memory mapped address space to copy firmware to + * @src_offset: offset in src FW to copy from + * @size: amount of bytes to copy (0 to copy the whole binary) + * + * actual copy of FW binary data to device, shared by static and dynamic loaders + */ +static int hl_fw_copy_fw_to_device(struct hl_device *hdev, + const struct firmware *fw, void __iomem *dst, + u32 src_offset, u32 size) +{ + const void *fw_data; + + /* size 0 indicates to copy the whole file */ + if (!size) + size = fw->size; + + if (src_offset + size > fw->size) { + dev_err(hdev->dev, + "size to copy(%u) and offset(%u) are invalid\n", + size, src_offset); + return -EINVAL; + } + + fw_data = (const void *) fw->data; + + memcpy_toio(dst, fw_data + src_offset, size); + return 0; +} + +/** + * hl_fw_copy_msg_to_device() - copy message to device + * + * @hdev: pointer to hl_device structure. + * @msg: message + * @dst: IO memory mapped address space to copy firmware to + * @src_offset: offset in src message to copy from + * @size: amount of bytes to copy (0 to copy the whole binary) + * + * actual copy of message data to device. + */ +static int hl_fw_copy_msg_to_device(struct hl_device *hdev, + struct lkd_msg_comms *msg, void __iomem *dst, + u32 src_offset, u32 size) +{ + void *msg_data; + + /* size 0 indicates to copy the whole file */ + if (!size) + size = sizeof(struct lkd_msg_comms); + + if (src_offset + size > sizeof(struct lkd_msg_comms)) { + dev_err(hdev->dev, + "size to copy(%u) and offset(%u) are invalid\n", + size, src_offset); + return -EINVAL; + } + + msg_data = (void *) msg; + + memcpy_toio(dst, msg_data + src_offset, size); + + return 0; +} + +/** + * hl_fw_load_fw_to_device() - Load F/W code to device's memory. + * + * @hdev: pointer to hl_device structure. + * @fw_name: the firmware image name + * @dst: IO memory mapped address space to copy firmware to + * @src_offset: offset in src FW to copy from + * @size: amount of bytes to copy (0 to copy the whole binary) + * + * Copy fw code from firmware file to device memory. + * + * Return: 0 on success, non-zero for failure. + */ +int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, + void __iomem *dst, u32 src_offset, u32 size) +{ + const struct firmware *fw; + int rc; + + rc = hl_request_fw(hdev, &fw, fw_name); + if (rc) + return rc; + + rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size); + + hl_release_firmware(fw); + return rc; +} + +int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value) +{ + struct cpucp_packet pkt = {}; + + pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.value = cpu_to_le64(value); + + return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); +} + +int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, + u16 len, u32 timeout, u64 *result) +{ + struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id]; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct cpucp_packet *pkt; + dma_addr_t pkt_dma_addr; + struct hl_bd *sent_bd; + u32 tmp, expected_ack_val, pi, opcode; + int rc; + + pkt = hl_cpu_accessible_dma_pool_alloc(hdev, len, &pkt_dma_addr); + if (!pkt) { + dev_err(hdev->dev, + "Failed to allocate DMA memory for packet to CPU\n"); + return -ENOMEM; + } + + memcpy(pkt, msg, len); + + mutex_lock(&hdev->send_cpu_message_lock); + + /* CPU-CP messages can be sent during soft-reset */ + if (hdev->disabled && !hdev->reset_info.in_compute_reset) { + rc = 0; + goto out; + } + + if (hdev->device_cpu_disabled) { + rc = -EIO; + goto out; + } + + /* set fence to a non valid value */ + pkt->fence = cpu_to_le32(UINT_MAX); + pi = queue->pi; + + /* + * The CPU queue is a synchronous queue with an effective depth of + * a single entry (although it is allocated with room for multiple + * entries). We lock on it using 'send_cpu_message_lock' which + * serializes accesses to the CPU queue. + * Which means that we don't need to lock the access to the entire H/W + * queues module when submitting a JOB to the CPU queue. + */ + hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), len, pkt_dma_addr); + + if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN) + expected_ack_val = queue->pi; + else + expected_ack_val = CPUCP_PACKET_FENCE_VAL; + + rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp, + (tmp == expected_ack_val), 1000, + timeout, true); + + hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id); + + if (rc == -ETIMEDOUT) { + /* If FW performed reset just before sending it a packet, we will get a timeout. + * This is expected behavior, hence no need for error message. + */ + if (!hl_device_operational(hdev, NULL) && !hdev->reset_info.in_compute_reset) + dev_dbg(hdev->dev, "Device CPU packet timeout (0x%x) due to FW reset\n", + tmp); + else + dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp); + hdev->device_cpu_disabled = true; + goto out; + } + + tmp = le32_to_cpu(pkt->ctl); + + rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT; + if (rc) { + opcode = (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT; + + if (!prop->supports_advanced_cpucp_rc) { + dev_dbg(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, opcode); + goto scrub_descriptor; + } + + switch (rc) { + case cpucp_packet_invalid: + dev_err(hdev->dev, + "CPU packet %d is not supported by F/W\n", opcode); + break; + case cpucp_packet_fault: + dev_err(hdev->dev, + "F/W failed processing CPU packet %d\n", opcode); + break; + case cpucp_packet_invalid_pkt: + dev_dbg(hdev->dev, + "CPU packet %d is not supported by F/W\n", opcode); + break; + case cpucp_packet_invalid_params: + dev_err(hdev->dev, + "F/W reports invalid parameters for CPU packet %d\n", opcode); + break; + + default: + dev_err(hdev->dev, + "Unknown F/W ERROR %d for CPU packet %d\n", rc, opcode); + } + + /* propagate the return code from the f/w to the callers who want to check it */ + if (result) + *result = rc; + + rc = -EIO; + + } else if (result) { + *result = le64_to_cpu(pkt->result); + } + +scrub_descriptor: + /* Scrub previous buffer descriptor 'ctl' field which contains the + * previous PI value written during packet submission. + * We must do this or else F/W can read an old value upon queue wraparound. + */ + sent_bd = queue->kernel_address; + sent_bd += hl_pi_2_offset(pi); + sent_bd->ctl = cpu_to_le32(UINT_MAX); + +out: + mutex_unlock(&hdev->send_cpu_message_lock); + + hl_cpu_accessible_dma_pool_free(hdev, len, pkt); + + return rc; +} + +int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type) +{ + struct cpucp_packet pkt; + u64 result; + int rc; + + memset(&pkt, 0, sizeof(pkt)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ << + CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.value = cpu_to_le64(event_type); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + 0, &result); + + if (rc) + dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type); + + return rc; +} + +int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, + size_t irq_arr_size) +{ + struct cpucp_unmask_irq_arr_packet *pkt; + size_t total_pkt_size; + u64 result; + int rc; + + total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) + + irq_arr_size; + + /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ + total_pkt_size = (total_pkt_size + 0x7) & ~0x7; + + /* total_pkt_size is casted to u16 later on */ + if (total_pkt_size > USHRT_MAX) { + dev_err(hdev->dev, "too many elements in IRQ array\n"); + return -EINVAL; + } + + pkt = kzalloc(total_pkt_size, GFP_KERNEL); + if (!pkt) + return -ENOMEM; + + pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0])); + memcpy(&pkt->irqs, irq_arr, irq_arr_size); + + pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY << + CPUCP_PKT_CTL_OPCODE_SHIFT); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt, + total_pkt_size, 0, &result); + + if (rc) + dev_err(hdev->dev, "failed to unmask IRQ array\n"); + + kfree(pkt); + + return rc; +} + +int hl_fw_test_cpu_queue(struct hl_device *hdev) +{ + struct cpucp_packet test_pkt = {}; + u64 result; + int rc; + + test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << + CPUCP_PKT_CTL_OPCODE_SHIFT); + test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt, + sizeof(test_pkt), 0, &result); + + if (!rc) { + if (result != CPUCP_PACKET_FENCE_VAL) + dev_err(hdev->dev, + "CPU queue test failed (%#08llx)\n", result); + } else { + dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc); + } + + return rc; +} + +void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, + dma_addr_t *dma_handle) +{ + u64 kernel_addr; + + kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size); + + *dma_handle = hdev->cpu_accessible_dma_address + + (kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem); + + return (void *) (uintptr_t) kernel_addr; +} + +void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, + void *vaddr) +{ + gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr, + size); +} + +int hl_fw_send_device_activity(struct hl_device *hdev, bool open) +{ + struct cpucp_packet pkt; + int rc; + + memset(&pkt, 0, sizeof(pkt)); + pkt.ctl = cpu_to_le32(CPUCP_PACKET_ACTIVE_STATUS_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.value = cpu_to_le64(open); + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); + if (rc) + dev_err(hdev->dev, "failed to send device activity msg(%u)\n", open); + + return rc; +} + +int hl_fw_send_heartbeat(struct hl_device *hdev) +{ + struct cpucp_packet hb_pkt; + u64 result; + int rc; + + memset(&hb_pkt, 0, sizeof(hb_pkt)); + hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << + CPUCP_PKT_CTL_OPCODE_SHIFT); + hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt, + sizeof(hb_pkt), 0, &result); + + if ((rc) || (result != CPUCP_PACKET_FENCE_VAL)) + return -EIO; + + if (le32_to_cpu(hb_pkt.status_mask) & + CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) { + dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n"); + rc = -EIO; + } + + return rc; +} + +static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val, + u32 sts_val) +{ + bool err_exists = false; + + if (!(err_val & CPU_BOOT_ERR0_ENABLED)) + return false; + + if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) { + dev_err(hdev->dev, + "Device boot error - DRAM initialization failed\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) { + dev_err(hdev->dev, "Device boot error - FIT image corrupted\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) { + dev_err(hdev->dev, + "Device boot error - Thermal Sensor initialization failed\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) { + if (hdev->bmc_enable) { + dev_err(hdev->dev, + "Device boot error - Skipped waiting for BMC\n"); + err_exists = true; + } else { + dev_info(hdev->dev, + "Device boot message - Skipped waiting for BMC\n"); + /* This is an info so we don't want it to disable the + * device + */ + err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED; + } + } + + if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) { + dev_err(hdev->dev, + "Device boot error - Serdes data from BMC not available\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) { + dev_err(hdev->dev, + "Device boot error - NIC F/W initialization failed\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) { + dev_err(hdev->dev, + "Device boot warning - security not ready\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) { + dev_err(hdev->dev, "Device boot error - security failure\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) { + dev_err(hdev->dev, "Device boot error - eFuse failure\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) { + dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_PLL_FAIL) { + dev_err(hdev->dev, "Device boot error - PLL failure\n"); + err_exists = true; + } + + if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) { + /* Ignore this bit, don't prevent driver loading */ + dev_dbg(hdev->dev, "device unusable status is set\n"); + err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL; + } + + if (err_val & CPU_BOOT_ERR0_BINNING_FAIL) { + dev_err(hdev->dev, "Device boot error - binning failure\n"); + err_exists = true; + } + + if (sts_val & CPU_BOOT_DEV_STS0_ENABLED) + dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val); + + /* All warnings should go here in order not to reach the unknown error validation */ + if (err_val & CPU_BOOT_ERR0_EEPROM_FAIL) { + dev_warn(hdev->dev, + "Device boot warning - EEPROM failure detected, default settings applied\n"); + /* This is a warning so we don't want it to disable the + * device + */ + err_val &= ~CPU_BOOT_ERR0_EEPROM_FAIL; + } + + if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) { + dev_warn(hdev->dev, + "Device boot warning - Skipped DRAM initialization\n"); + /* This is a warning so we don't want it to disable the + * device + */ + err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED; + } + + if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) { + dev_warn(hdev->dev, + "Device boot warning - Failed to load preboot primary image\n"); + /* This is a warning so we don't want it to disable the + * device as we have a secondary preboot image + */ + err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL; + } + + if (err_val & CPU_BOOT_ERR0_TPM_FAIL) { + dev_warn(hdev->dev, + "Device boot warning - TPM failure\n"); + /* This is a warning so we don't want it to disable the + * device + */ + err_val &= ~CPU_BOOT_ERR0_TPM_FAIL; + } + + if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) { + dev_err(hdev->dev, + "Device boot error - unknown ERR0 error 0x%08x\n", err_val); + err_exists = true; + } + + /* return error only if it's in the predefined mask */ + if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) & + lower_32_bits(hdev->boot_error_status_mask))) + return true; + + return false; +} + +/* placeholder for ERR1 as no errors defined there yet */ +static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val, + u32 sts_val) +{ + /* + * keep this variable to preserve the logic of the function. + * this way it would require less modifications when error will be + * added to DEV_ERR1 + */ + bool err_exists = false; + + if (!(err_val & CPU_BOOT_ERR1_ENABLED)) + return false; + + if (sts_val & CPU_BOOT_DEV_STS1_ENABLED) + dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val); + + if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) { + dev_err(hdev->dev, + "Device boot error - unknown ERR1 error 0x%08x\n", + err_val); + err_exists = true; + } + + /* return error only if it's in the predefined mask */ + if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) & + upper_32_bits(hdev->boot_error_status_mask))) + return true; + + return false; +} + +static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg, + u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg, + u32 cpu_boot_dev_status1_reg) +{ + u32 err_val, status_val; + bool err_exists = false; + + /* Some of the firmware status codes are deprecated in newer f/w + * versions. In those versions, the errors are reported + * in different registers. Therefore, we need to check those + * registers and print the exact errors. Moreover, there + * may be multiple errors, so we need to report on each error + * separately. Some of the error codes might indicate a state + * that is not an error per-se, but it is an error in production + * environment + */ + err_val = RREG32(boot_err0_reg); + status_val = RREG32(cpu_boot_dev_status0_reg); + err_exists = fw_report_boot_dev0(hdev, err_val, status_val); + + err_val = RREG32(boot_err1_reg); + status_val = RREG32(cpu_boot_dev_status1_reg); + err_exists |= fw_report_boot_dev1(hdev, err_val, status_val); + + if (err_exists) + return -EIO; + + return 0; +} + +int hl_fw_cpucp_info_get(struct hl_device *hdev, + u32 sts_boot_dev_sts0_reg, + u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, + u32 boot_err1_reg) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct cpucp_packet pkt = {}; + dma_addr_t cpucp_info_dma_addr; + void *cpucp_info_cpu_addr; + char *kernel_ver; + u64 result; + int rc; + + cpucp_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info), + &cpucp_info_dma_addr); + if (!cpucp_info_cpu_addr) { + dev_err(hdev->dev, + "Failed to allocate DMA memory for CPU-CP info packet\n"); + return -ENOMEM; + } + + memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.addr = cpu_to_le64(cpucp_info_dma_addr); + pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info)); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, + "Failed to handle CPU-CP info pkt, error %d\n", rc); + goto out; + } + + rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg, + sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg); + if (rc) { + dev_err(hdev->dev, "Errors in device boot\n"); + goto out; + } + + memcpy(&prop->cpucp_info, cpucp_info_cpu_addr, + sizeof(prop->cpucp_info)); + + rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors); + if (rc) { + dev_err(hdev->dev, + "Failed to build hwmon channel info, error %d\n", rc); + rc = -EFAULT; + goto out; + } + + kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version); + if (kernel_ver) { + dev_info(hdev->dev, "Linux version %s", kernel_ver); + kfree(kernel_ver); + } + + /* assume EQ code doesn't need to check eqe index */ + hdev->event_queue.check_eqe_index = false; + + /* Read FW application security bits again */ + if (prop->fw_cpu_boot_dev_sts0_valid) { + prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg); + if (prop->fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_EQ_INDEX_EN) + hdev->event_queue.check_eqe_index = true; + } + + if (prop->fw_cpu_boot_dev_sts1_valid) + prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg); + +out: + hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr); + + return rc; +} + +static int hl_fw_send_msi_info_msg(struct hl_device *hdev) +{ + struct cpucp_array_data_packet *pkt; + size_t total_pkt_size, data_size; + u64 result; + int rc; + + /* skip sending this info for unsupported ASICs */ + if (!hdev->asic_funcs->get_msi_info) + return 0; + + data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32); + total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size; + + /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ + total_pkt_size = (total_pkt_size + 0x7) & ~0x7; + + /* total_pkt_size is casted to u16 later on */ + if (total_pkt_size > USHRT_MAX) { + dev_err(hdev->dev, "CPUCP array data is too big\n"); + return -EINVAL; + } + + pkt = kzalloc(total_pkt_size, GFP_KERNEL); + if (!pkt) + return -ENOMEM; + + pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES); + + memset((void *) &pkt->data, 0xFF, data_size); + hdev->asic_funcs->get_msi_info(pkt->data); + + pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt, + total_pkt_size, 0, &result); + + /* + * in case packet result is invalid it means that FW does not support + * this feature and will use default/hard coded MSI values. no reason + * to stop the boot + */ + if (rc && result == cpucp_packet_invalid) + rc = 0; + + if (rc) + dev_err(hdev->dev, "failed to send CPUCP array data\n"); + + kfree(pkt); + + return rc; +} + +int hl_fw_cpucp_handshake(struct hl_device *hdev, + u32 sts_boot_dev_sts0_reg, + u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, + u32 boot_err1_reg) +{ + int rc; + + rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg, + sts_boot_dev_sts1_reg, boot_err0_reg, + boot_err1_reg); + if (rc) + return rc; + + return hl_fw_send_msi_info_msg(hdev); +} + +int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size) +{ + struct cpucp_packet pkt = {}; + void *eeprom_info_cpu_addr; + dma_addr_t eeprom_info_dma_addr; + u64 result; + int rc; + + eeprom_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, max_size, + &eeprom_info_dma_addr); + if (!eeprom_info_cpu_addr) { + dev_err(hdev->dev, + "Failed to allocate DMA memory for CPU-CP EEPROM packet\n"); + return -ENOMEM; + } + + memset(eeprom_info_cpu_addr, 0, max_size); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.addr = cpu_to_le64(eeprom_info_dma_addr); + pkt.data_max_size = cpu_to_le32(max_size); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_EEPROM_TIMEOUT_USEC, &result); + + if (rc) { + dev_err(hdev->dev, + "Failed to handle CPU-CP EEPROM packet, error %d\n", + rc); + goto out; + } + + /* result contains the actual size */ + memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size)); + +out: + hl_cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr); + + return rc; +} + +int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data) +{ + struct cpucp_monitor_dump *mon_dump_cpu_addr; + dma_addr_t mon_dump_dma_addr; + struct cpucp_packet pkt = {}; + size_t data_size; + __le32 *src_ptr; + u32 *dst_ptr; + u64 result; + int i, rc; + + data_size = sizeof(struct cpucp_monitor_dump); + mon_dump_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, data_size, &mon_dump_dma_addr); + if (!mon_dump_cpu_addr) { + dev_err(hdev->dev, + "Failed to allocate DMA memory for CPU-CP monitor-dump packet\n"); + return -ENOMEM; + } + + memset(mon_dump_cpu_addr, 0, data_size); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_MONITOR_DUMP_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.addr = cpu_to_le64(mon_dump_dma_addr); + pkt.data_max_size = cpu_to_le32(data_size); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_MON_DUMP_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, "Failed to handle CPU-CP monitor-dump packet, error %d\n", rc); + goto out; + } + + /* result contains the actual size */ + src_ptr = (__le32 *) mon_dump_cpu_addr; + dst_ptr = data; + for (i = 0; i < (data_size / sizeof(u32)); i++) { + *dst_ptr = le32_to_cpu(*src_ptr); + src_ptr++; + dst_ptr++; + } + +out: + hl_cpu_accessible_dma_pool_free(hdev, data_size, mon_dump_cpu_addr); + + return rc; +} + +int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, + struct hl_info_pci_counters *counters) +{ + struct cpucp_packet pkt = {}; + u64 result; + int rc; + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + + /* Fetch PCI rx counter */ + pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx); + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, + "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); + return rc; + } + counters->rx_throughput = result; + + memset(&pkt, 0, sizeof(pkt)); + pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + + /* Fetch PCI tx counter */ + pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx); + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, + "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); + return rc; + } + counters->tx_throughput = result; + + /* Fetch PCI replay counter */ + memset(&pkt, 0, sizeof(pkt)); + pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, + "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); + return rc; + } + counters->replay_cnt = (u32) result; + + return rc; +} + +int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy) +{ + struct cpucp_packet pkt = {}; + u64 result; + int rc; + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, + "Failed to handle CpuCP total energy pkt, error %d\n", + rc); + return rc; + } + + *total_energy = result; + + return rc; +} + +int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, + enum pll_index *pll_index) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u8 pll_byte, pll_bit_off; + bool dynamic_pll; + int fw_pll_idx; + + dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_DYN_PLL_EN); + + if (!dynamic_pll) { + /* + * in case we are working with legacy FW (each asic has unique + * PLL numbering) use the driver based index as they are + * aligned with fw legacy numbering + */ + *pll_index = input_pll_index; + return 0; + } + + /* retrieve a FW compatible PLL index based on + * ASIC specific user request + */ + fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index); + if (fw_pll_idx < 0) { + dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n", + input_pll_index, fw_pll_idx); + return -EINVAL; + } + + /* PLL map is a u8 array */ + pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3]; + pll_bit_off = fw_pll_idx & 0x7; + + if (!(pll_byte & BIT(pll_bit_off))) { + dev_err(hdev->dev, "PLL index %d is not supported\n", + fw_pll_idx); + return -EINVAL; + } + + *pll_index = fw_pll_idx; + + return 0; +} + +int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, + u16 *pll_freq_arr) +{ + struct cpucp_packet pkt; + enum pll_index used_pll_idx; + u64 result; + int rc; + + rc = get_used_pll_index(hdev, pll_index, &used_pll_idx); + if (rc) + return rc; + + memset(&pkt, 0, sizeof(pkt)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.pll_type = __cpu_to_le16((u16)used_pll_idx); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc); + return rc; + } + + pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result); + pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result); + pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result); + pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result); + + return 0; +} + +int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power) +{ + struct cpucp_packet pkt; + u64 result; + int rc; + + memset(&pkt, 0, sizeof(pkt)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.type = cpu_to_le16(CPUCP_POWER_INPUT); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, "Failed to read power, error %d\n", rc); + return rc; + } + + *power = result; + + return rc; +} + +int hl_fw_dram_replaced_row_get(struct hl_device *hdev, + struct cpucp_hbm_row_info *info) +{ + struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr; + dma_addr_t cpucp_repl_rows_info_dma_addr; + struct cpucp_packet pkt = {}; + u64 result; + int rc; + + cpucp_repl_rows_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, + sizeof(struct cpucp_hbm_row_info), + &cpucp_repl_rows_info_dma_addr); + if (!cpucp_repl_rows_info_cpu_addr) { + dev_err(hdev->dev, + "Failed to allocate DMA memory for CPU-CP replaced rows info packet\n"); + return -ENOMEM; + } + + memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr); + pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info)); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, &result); + if (rc) { + dev_err(hdev->dev, + "Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc); + goto out; + } + + memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info)); + +out: + hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_hbm_row_info), + cpucp_repl_rows_info_cpu_addr); + + return rc; +} + +int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num) +{ + struct cpucp_packet pkt; + u64 result; + int rc; + + memset(&pkt, 0, sizeof(pkt)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); + if (rc) { + dev_err(hdev->dev, + "Failed to handle CPU-CP pending rows info pkt, error %d\n", rc); + goto out; + } + + *pend_rows_num = (u32) result; +out: + return rc; +} + +int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid) +{ + struct cpucp_packet pkt; + int rc; + + memset(&pkt, 0, sizeof(pkt)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.value = cpu_to_le64(asid); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + HL_CPUCP_INFO_TIMEOUT_USEC, NULL); + if (rc) + dev_err(hdev->dev, + "Failed on ASID configuration request for engine core, error %d\n", + rc); + + return rc; +} + +void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev) +{ + struct static_fw_load_mgr *static_loader = + &hdev->fw_loader.static_loader; + int rc; + + if (hdev->asic_prop.dynamic_fw_load) { + rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader, + COMMS_RST_DEV, 0, false, + hdev->fw_loader.cpu_timeout); + if (rc) + dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n"); + } else { + WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV); + } +} + +void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev) +{ + struct static_fw_load_mgr *static_loader = + &hdev->fw_loader.static_loader; + int rc; + + if (hdev->device_cpu_is_halted) + return; + + /* Stop device CPU to make sure nothing bad happens */ + if (hdev->asic_prop.dynamic_fw_load) { + rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader, + COMMS_GOTO_WFE, 0, true, + hdev->fw_loader.cpu_timeout); + if (rc) + dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n"); + } else { + WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE); + msleep(static_loader->cpu_reset_wait_msec); + + /* Must clear this register in order to prevent preboot + * from reading WFE after reboot + */ + WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA); + } + + hdev->device_cpu_is_halted = true; +} + +static void detect_cpu_boot_status(struct hl_device *hdev, u32 status) +{ + /* Some of the status codes below are deprecated in newer f/w + * versions but we keep them here for backward compatibility + */ + switch (status) { + case CPU_BOOT_STATUS_NA: + dev_err(hdev->dev, + "Device boot progress - BTL/ROM did NOT run\n"); + break; + case CPU_BOOT_STATUS_IN_WFE: + dev_err(hdev->dev, + "Device boot progress - Stuck inside WFE loop\n"); + break; + case CPU_BOOT_STATUS_IN_BTL: + dev_err(hdev->dev, + "Device boot progress - Stuck in BTL\n"); + break; + case CPU_BOOT_STATUS_IN_PREBOOT: + dev_err(hdev->dev, + "Device boot progress - Stuck in Preboot\n"); + break; + case CPU_BOOT_STATUS_IN_SPL: + dev_err(hdev->dev, + "Device boot progress - Stuck in SPL\n"); + break; + case CPU_BOOT_STATUS_IN_UBOOT: + dev_err(hdev->dev, + "Device boot progress - Stuck in u-boot\n"); + break; + case CPU_BOOT_STATUS_DRAM_INIT_FAIL: + dev_err(hdev->dev, + "Device boot progress - DRAM initialization failed\n"); + break; + case CPU_BOOT_STATUS_UBOOT_NOT_READY: + dev_err(hdev->dev, + "Device boot progress - Cannot boot\n"); + break; + case CPU_BOOT_STATUS_TS_INIT_FAIL: + dev_err(hdev->dev, + "Device boot progress - Thermal Sensor initialization failed\n"); + break; + case CPU_BOOT_STATUS_SECURITY_READY: + dev_err(hdev->dev, + "Device boot progress - Stuck in preboot after security initialization\n"); + break; + default: + dev_err(hdev->dev, + "Device boot progress - Invalid status code %d\n", + status); + break; + } +} + +static int hl_fw_wait_preboot_ready(struct hl_device *hdev) +{ + struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load; + u32 status; + int rc; + + /* Need to check two possible scenarios: + * + * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where + * the preboot is waiting for the boot fit + * + * All other status values - for older firmwares where the uboot was + * loaded from the FLASH + */ + rc = hl_poll_timeout( + hdev, + pre_fw_load->cpu_boot_status_reg, + status, + (status == CPU_BOOT_STATUS_NIC_FW_RDY) || + (status == CPU_BOOT_STATUS_READY_TO_BOOT) || + (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT), + hdev->fw_poll_interval_usec, + pre_fw_load->wait_for_preboot_timeout); + + if (rc) { + dev_err(hdev->dev, "CPU boot ready status timeout\n"); + detect_cpu_boot_status(hdev, status); + + /* If we read all FF, then something is totally wrong, no point + * of reading specific errors + */ + if (status != -1) + fw_read_errors(hdev, pre_fw_load->boot_err0_reg, + pre_fw_load->boot_err1_reg, + pre_fw_load->sts_boot_dev_sts0_reg, + pre_fw_load->sts_boot_dev_sts1_reg); + return -EIO; + } + + hdev->fw_loader.fw_comp_loaded |= FW_TYPE_PREBOOT_CPU; + + return 0; +} + +static int hl_fw_read_preboot_caps(struct hl_device *hdev) +{ + struct pre_fw_load_props *pre_fw_load; + struct asic_fixed_properties *prop; + u32 reg_val; + int rc; + + prop = &hdev->asic_prop; + pre_fw_load = &hdev->fw_loader.pre_fw_load; + + rc = hl_fw_wait_preboot_ready(hdev); + if (rc) + return rc; + + /* + * the registers DEV_STS* contain FW capabilities/features. + * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED + * is set. + * In the first read of this register we store the value of this + * register ONLY if the register is enabled (which will be propagated + * to next stages) and also mark the register as valid. + * In case it is not enabled the stored value will be left 0- all + * caps/features are off + */ + reg_val = RREG32(pre_fw_load->sts_boot_dev_sts0_reg); + if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) { + prop->fw_cpu_boot_dev_sts0_valid = true; + prop->fw_preboot_cpu_boot_dev_sts0 = reg_val; + } + + reg_val = RREG32(pre_fw_load->sts_boot_dev_sts1_reg); + if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) { + prop->fw_cpu_boot_dev_sts1_valid = true; + prop->fw_preboot_cpu_boot_dev_sts1 = reg_val; + } + + prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_FW_LD_COM_EN); + + /* initialize FW loader once we know what load protocol is used */ + hdev->asic_funcs->init_firmware_loader(hdev); + + dev_dbg(hdev->dev, "Attempting %s FW load\n", + prop->dynamic_fw_load ? "dynamic" : "legacy"); + return 0; +} + +static int hl_fw_static_read_device_fw_version(struct hl_device *hdev, + enum hl_fw_component fwc) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct fw_load_mgr *fw_loader = &hdev->fw_loader; + struct static_fw_load_mgr *static_loader; + char *dest, *boot_ver, *preboot_ver; + u32 ver_off, limit; + const char *name; + char btl_ver[32]; + + static_loader = &hdev->fw_loader.static_loader; + + switch (fwc) { + case FW_COMP_BOOT_FIT: + ver_off = RREG32(static_loader->boot_fit_version_offset_reg); + dest = prop->uboot_ver; + name = "Boot-fit"; + limit = static_loader->boot_fit_version_max_off; + break; + case FW_COMP_PREBOOT: + ver_off = RREG32(static_loader->preboot_version_offset_reg); + dest = prop->preboot_ver; + name = "Preboot"; + limit = static_loader->preboot_version_max_off; + break; + default: + dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); + return -EIO; + } + + ver_off &= static_loader->sram_offset_mask; + + if (ver_off < limit) { + memcpy_fromio(dest, + hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off, + VERSION_MAX_LEN); + } else { + dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n", + name, ver_off); + strscpy(dest, "unavailable", VERSION_MAX_LEN); + return -EIO; + } + + if (fwc == FW_COMP_BOOT_FIT) { + boot_ver = extract_fw_ver_from_str(prop->uboot_ver); + if (boot_ver) { + dev_info(hdev->dev, "boot-fit version %s\n", boot_ver); + kfree(boot_ver); + } + } else if (fwc == FW_COMP_PREBOOT) { + preboot_ver = strnstr(prop->preboot_ver, "Preboot", + VERSION_MAX_LEN); + if (preboot_ver && preboot_ver != prop->preboot_ver) { + strscpy(btl_ver, prop->preboot_ver, + min((int) (preboot_ver - prop->preboot_ver), + 31)); + dev_info(hdev->dev, "%s\n", btl_ver); + } + + preboot_ver = extract_fw_ver_from_str(prop->preboot_ver); + if (preboot_ver) { + dev_info(hdev->dev, "preboot version %s\n", + preboot_ver); + kfree(preboot_ver); + } + } + + return 0; +} + +/** + * hl_fw_preboot_update_state - update internal data structures during + * handshake with preboot + * + * + * @hdev: pointer to the habanalabs device structure + * + * @return 0 on success, otherwise non-zero error code + */ +static void hl_fw_preboot_update_state(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1; + + cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0; + cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1; + + /* We read boot_dev_sts registers multiple times during boot: + * 1. preboot - a. Check whether the security status bits are valid + * b. Check whether fw security is enabled + * c. Check whether hard reset is done by preboot + * 2. boot cpu - a. Fetch boot cpu security status + * b. Check whether hard reset is done by boot cpu + * 3. FW application - a. Fetch fw application security status + * b. Check whether hard reset is done by fw app + */ + prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); + + prop->fw_security_enabled = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_SECURITY_EN); + + dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n", + cpu_boot_dev_sts0); + + dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n", + cpu_boot_dev_sts1); + + dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n", + prop->hard_reset_done_by_fw ? "enabled" : "disabled"); + + dev_dbg(hdev->dev, "firmware-level security is %s\n", + prop->fw_security_enabled ? "enabled" : "disabled"); + + dev_dbg(hdev->dev, "GIC controller is %s\n", + prop->gic_interrupts_enable ? "enabled" : "disabled"); +} + +static int hl_fw_static_read_preboot_status(struct hl_device *hdev) +{ + int rc; + + rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT); + if (rc) + return rc; + + return 0; +} + +int hl_fw_read_preboot_status(struct hl_device *hdev) +{ + int rc; + + if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU)) + return 0; + + /* get FW pre-load parameters */ + hdev->asic_funcs->init_firmware_preload_params(hdev); + + /* + * In order to determine boot method (static VS dynamic) we need to + * read the boot caps register + */ + rc = hl_fw_read_preboot_caps(hdev); + if (rc) + return rc; + + hl_fw_preboot_update_state(hdev); + + /* no need to read preboot status in dynamic load */ + if (hdev->asic_prop.dynamic_fw_load) + return 0; + + return hl_fw_static_read_preboot_status(hdev); +} + +/* associate string with COMM status */ +static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = { + [COMMS_STS_NOOP] = "NOOP", + [COMMS_STS_ACK] = "ACK", + [COMMS_STS_OK] = "OK", + [COMMS_STS_ERR] = "ERR", + [COMMS_STS_VALID_ERR] = "VALID_ERR", + [COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR", +}; + +/** + * hl_fw_dynamic_report_error_status - report error status + * + * @hdev: pointer to the habanalabs device structure + * @status: value of FW status register + * @expected_status: the expected status + */ +static void hl_fw_dynamic_report_error_status(struct hl_device *hdev, + u32 status, + enum comms_sts expected_status) +{ + enum comms_sts comm_status = + FIELD_GET(COMMS_STATUS_STATUS_MASK, status); + + if (comm_status < COMMS_STS_INVLD_LAST) + dev_err(hdev->dev, "Device status %s, expected status: %s\n", + hl_dynamic_fw_status_str[comm_status], + hl_dynamic_fw_status_str[expected_status]); + else + dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n", + comm_status, + hl_dynamic_fw_status_str[expected_status]); +} + +/** + * hl_fw_dynamic_send_cmd - send LKD to FW cmd + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @cmd: LKD to FW cmd code + * @size: size of next FW component to be loaded (0 if not necessary) + * + * LDK to FW exact command layout is defined at struct comms_command. + * note: the size argument is used only when the next FW component should be + * loaded, otherwise it shall be 0. the size is used by the FW in later + * protocol stages and when sending only indicating the amount of memory + * to be allocated by the FW to receive the next boot component. + */ +static void hl_fw_dynamic_send_cmd(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum comms_cmd cmd, unsigned int size) +{ + struct cpu_dyn_regs *dyn_regs; + u32 val; + + dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; + + val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd); + val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size); + + WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val); +} + +/** + * hl_fw_dynamic_extract_fw_response - update the FW response + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @response: FW response + * @status: the status read from CPU status register + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + struct fw_response *response, + u32 status) +{ + response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status); + response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) << + COMMS_STATUS_OFFSET_ALIGN_SHIFT; + response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status); + + if ((response->ram_type != COMMS_SRAM) && + (response->ram_type != COMMS_DRAM)) { + dev_err(hdev->dev, "FW status: invalid RAM type %u\n", + response->ram_type); + return -EIO; + } + + return 0; +} + +/** + * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @expected_status: expected status to wait for + * @timeout: timeout for status wait + * + * @return 0 on success, otherwise non-zero error code + * + * waiting for status from FW include polling the FW status register until + * expected status is received or timeout occurs (whatever occurs first). + */ +static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum comms_sts expected_status, + u32 timeout) +{ + struct cpu_dyn_regs *dyn_regs; + u32 status; + int rc; + + dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; + + /* Wait for expected status */ + rc = hl_poll_timeout( + hdev, + le32_to_cpu(dyn_regs->cpu_cmd_status_to_host), + status, + FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status, + hdev->fw_comms_poll_interval_usec, + timeout); + + if (rc) { + hl_fw_dynamic_report_error_status(hdev, status, + expected_status); + return -EIO; + } + + /* + * skip storing FW response for NOOP to preserve the actual desired + * FW status + */ + if (expected_status == COMMS_STS_NOOP) + return 0; + + rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader, + &fw_loader->dynamic_loader.response, + status); + return rc; +} + +/** + * hl_fw_dynamic_send_clear_cmd - send clear command to FW + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * + * @return 0 on success, otherwise non-zero error code + * + * after command cycle between LKD to FW CPU (i.e. LKD got an expected status + * from FW) we need to clear the CPU status register in order to avoid garbage + * between command cycles. + * This is done by sending clear command and polling the CPU to LKD status + * register to hold the status NOOP + */ +static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0); + + return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP, + fw_loader->cpu_timeout); +} + +/** + * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @cmd: LKD to FW cmd code + * @size: size of next FW component to be loaded (0 if not necessary) + * @wait_ok: if true also wait for OK response from FW + * @timeout: timeout for status wait + * + * @return 0 on success, otherwise non-zero error code + * + * brief: + * when sending protocol command we have the following steps: + * - send clear (clear command and verify clear status register) + * - send the actual protocol command + * - wait for ACK on the protocol command + * - send clear + * - send NOOP + * if, in addition, the specific protocol command should wait for OK then: + * - wait for OK + * - send clear + * - send NOOP + * + * NOTES: + * send clear: this is necessary in order to clear the status register to avoid + * leftovers between command + * NOOP command: necessary to avoid loop on the clear command by the FW + */ +int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum comms_cmd cmd, unsigned int size, + bool wait_ok, u32 timeout) +{ + int rc; + + /* first send clear command to clean former commands */ + rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); + + /* send the actual command */ + hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size); + + /* wait for ACK for the command */ + rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK, + timeout); + if (rc) + return rc; + + /* clear command to prepare for NOOP command */ + rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); + if (rc) + return rc; + + /* send the actual NOOP command */ + hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0); + + if (!wait_ok) + return 0; + + rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK, + timeout); + if (rc) + return rc; + + /* clear command to prepare for NOOP command */ + rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); + if (rc) + return rc; + + /* send the actual NOOP command */ + hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0); + + return 0; +} + +/** + * hl_fw_compat_crc32 - CRC compatible with FW + * + * @data: pointer to the data + * @size: size of the data + * + * @return the CRC32 result + * + * NOTE: kernel's CRC32 differs from standard CRC32 calculation. + * in order to be aligned we need to flip the bits of both the input + * initial CRC and kernel's CRC32 result. + * in addition both sides use initial CRC of 0, + */ +static u32 hl_fw_compat_crc32(u8 *data, size_t size) +{ + return ~crc32_le(~((u32)0), data, size); +} + +/** + * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory + * transfer (image or descriptor) between + * host and FW + * + * @hdev: pointer to the habanalabs device structure + * @addr: device address of memory transfer + * @size: memory transfer size + * @region: PCI memory region + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev, + u64 addr, size_t size, + struct pci_mem_region *region) +{ + u64 end_addr; + + /* now make sure that the memory transfer is within region's bounds */ + end_addr = addr + size; + if (end_addr >= region->region_base + region->region_size) { + dev_err(hdev->dev, + "dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n", + end_addr); + return -EIO; + } + + /* + * now make sure memory transfer is within predefined BAR bounds. + * this is to make sure we do not need to set the bar (e.g. for DRAM + * memory transfers) + */ + if (end_addr >= region->region_base - region->offset_in_bar + + region->bar_size) { + dev_err(hdev->dev, + "FW image beyond PCI BAR bounds\n"); + return -EIO; + } + + return 0; +} + +/** + * hl_fw_dynamic_validate_descriptor - validate FW descriptor + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @fw_desc: the descriptor form FW + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + struct lkd_fw_comms_desc *fw_desc) +{ + struct pci_mem_region *region; + enum pci_region region_id; + size_t data_size; + u32 data_crc32; + u8 *data_ptr; + u64 addr; + int rc; + + if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC) + dev_warn(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n", + fw_desc->header.magic); + + if (fw_desc->header.version != HL_COMMS_DESC_VER) + dev_warn(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n", + fw_desc->header.version); + + /* + * Calc CRC32 of data without header. use the size of the descriptor + * reported by firmware, without calculating it ourself, to allow adding + * more fields to the lkd_fw_comms_desc structure. + * note that no alignment/stride address issues here as all structures + * are 64 bit padded. + */ + data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header); + data_size = le16_to_cpu(fw_desc->header.size); + + data_crc32 = hl_fw_compat_crc32(data_ptr, data_size); + if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) { + dev_err(hdev->dev, "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n", + data_crc32, fw_desc->header.crc32); + return -EIO; + } + + /* find memory region to which to copy the image */ + addr = le64_to_cpu(fw_desc->img_addr); + region_id = hl_get_pci_memory_region(hdev, addr); + if ((region_id != PCI_REGION_SRAM) && ((region_id != PCI_REGION_DRAM))) { + dev_err(hdev->dev, "Invalid region to copy FW image address=%llx\n", addr); + return -EIO; + } + + region = &hdev->pci_mem_region[region_id]; + + /* store the region for the copy stage */ + fw_loader->dynamic_loader.image_region = region; + + /* + * here we know that the start address is valid, now make sure that the + * image is within region's bounds + */ + rc = hl_fw_dynamic_validate_memory_bound(hdev, addr, + fw_loader->dynamic_loader.fw_image_size, + region); + if (rc) { + dev_err(hdev->dev, "invalid mem transfer request for FW image\n"); + return rc; + } + + /* here we can mark the descriptor as valid as the content has been validated */ + fw_loader->dynamic_loader.fw_desc_valid = true; + + return 0; +} + +static int hl_fw_dynamic_validate_response(struct hl_device *hdev, + struct fw_response *response, + struct pci_mem_region *region) +{ + u64 device_addr; + int rc; + + device_addr = region->region_base + response->ram_offset; + + /* + * validate that the descriptor is within region's bounds + * Note that as the start address was supplied according to the RAM + * type- testing only the end address is enough + */ + rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr, + sizeof(struct lkd_fw_comms_desc), + region); + return rc; +} + +/** + * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + struct lkd_fw_comms_desc *fw_desc; + struct pci_mem_region *region; + struct fw_response *response; + enum pci_region region_id; + void __iomem *src; + int rc; + + fw_desc = &fw_loader->dynamic_loader.comm_desc; + response = &fw_loader->dynamic_loader.response; + + region_id = (response->ram_type == COMMS_SRAM) ? + PCI_REGION_SRAM : PCI_REGION_DRAM; + + region = &hdev->pci_mem_region[region_id]; + + rc = hl_fw_dynamic_validate_response(hdev, response, region); + if (rc) { + dev_err(hdev->dev, + "invalid mem transfer request for FW descriptor\n"); + return rc; + } + + /* + * extract address to copy the descriptor from + * in addition, as the descriptor value is going to be over-ridden by new data- we mark it + * as invalid. + * it will be marked again as valid once validated + */ + fw_loader->dynamic_loader.fw_desc_valid = false; + src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + + response->ram_offset; + memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc)); + + return hl_fw_dynamic_validate_descriptor(hdev, fw_loader, fw_desc); +} + +/** + * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @next_image_size: size to allocate for next FW component + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + size_t next_image_size) +{ + int rc; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC, + next_image_size, true, + fw_loader->cpu_timeout); + if (rc) + return rc; + + return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader); +} + +/** + * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties + * + * @hdev: pointer to the habanalabs device structure + * @fwc: the firmware component + * @fw_version: fw component's version string + */ +static int hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev, + enum hl_fw_component fwc, + const char *fw_version) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + char *preboot_ver, *boot_ver; + char btl_ver[32]; + + switch (fwc) { + case FW_COMP_BOOT_FIT: + strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN); + boot_ver = extract_fw_ver_from_str(prop->uboot_ver); + if (boot_ver) { + dev_info(hdev->dev, "boot-fit version %s\n", boot_ver); + kfree(boot_ver); + } + + break; + case FW_COMP_PREBOOT: + strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN); + preboot_ver = strnstr(prop->preboot_ver, "Preboot", + VERSION_MAX_LEN); + if (preboot_ver && preboot_ver != prop->preboot_ver) { + strscpy(btl_ver, prop->preboot_ver, + min((int) (preboot_ver - prop->preboot_ver), 31)); + dev_info(hdev->dev, "%s\n", btl_ver); + } + + preboot_ver = extract_fw_ver_from_str(prop->preboot_ver); + if (preboot_ver) { + int rc; + + dev_info(hdev->dev, "preboot version %s\n", preboot_ver); + + /* This function takes care of freeing preboot_ver */ + rc = extract_fw_sub_versions(hdev, preboot_ver); + if (rc) + return rc; + } + + break; + default: + dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); + return -EINVAL; + } + + return 0; +} + +/** + * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW + * + * @hdev: pointer to the habanalabs device structure + * @fw: fw descriptor + * @fw_loader: managing structure for loading device's FW + */ +static int hl_fw_dynamic_copy_image(struct hl_device *hdev, + const struct firmware *fw, + struct fw_load_mgr *fw_loader) +{ + struct lkd_fw_comms_desc *fw_desc; + struct pci_mem_region *region; + void __iomem *dest; + u64 addr; + int rc; + + fw_desc = &fw_loader->dynamic_loader.comm_desc; + addr = le64_to_cpu(fw_desc->img_addr); + + /* find memory region to which to copy the image */ + region = fw_loader->dynamic_loader.image_region; + + dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + + (addr - region->region_base); + + rc = hl_fw_copy_fw_to_device(hdev, fw, dest, + fw_loader->boot_fit_img.src_off, + fw_loader->boot_fit_img.copy_size); + + return rc; +} + +/** + * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW + * + * @hdev: pointer to the habanalabs device structure + * @msg: message + * @fw_loader: managing structure for loading device's FW + */ +static int hl_fw_dynamic_copy_msg(struct hl_device *hdev, + struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader) +{ + struct lkd_fw_comms_desc *fw_desc; + struct pci_mem_region *region; + void __iomem *dest; + u64 addr; + int rc; + + fw_desc = &fw_loader->dynamic_loader.comm_desc; + addr = le64_to_cpu(fw_desc->img_addr); + + /* find memory region to which to copy the image */ + region = fw_loader->dynamic_loader.image_region; + + dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + + (addr - region->region_base); + + rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0); + + return rc; +} + +/** + * hl_fw_boot_fit_update_state - update internal data structures after boot-fit + * is loaded + * + * @hdev: pointer to the habanalabs device structure + * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0 + * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1 + * + * @return 0 on success, otherwise non-zero error code + */ +static void hl_fw_boot_fit_update_state(struct hl_device *hdev, + u32 cpu_boot_dev_sts0_reg, + u32 cpu_boot_dev_sts1_reg) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU; + + /* Read boot_cpu status bits */ + if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) { + prop->fw_bootfit_cpu_boot_dev_sts0 = + RREG32(cpu_boot_dev_sts0_reg); + + prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); + + dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n", + prop->fw_bootfit_cpu_boot_dev_sts0); + } + + if (prop->fw_cpu_boot_dev_sts1_valid) { + prop->fw_bootfit_cpu_boot_dev_sts1 = + RREG32(cpu_boot_dev_sts1_reg); + + dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n", + prop->fw_bootfit_cpu_boot_dev_sts1); + } + + dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n", + prop->hard_reset_done_by_fw ? "enabled" : "disabled"); +} + +static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev) +{ + struct cpu_dyn_regs *dyn_regs = + &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + + /* Check whether all 3 interrupt interfaces are set, if not use a + * single interface + */ + if (!hdev->asic_prop.gic_interrupts_enable && + !(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) { + dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq; + dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq; + + dev_warn(hdev->dev, + "Using a single interrupt interface towards cpucp"); + } +} +/** + * hl_fw_dynamic_load_image - load FW image using dynamic protocol + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @load_fwc: the FW component to be loaded + * @img_ld_timeout: image load timeout + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_load_image(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum hl_fw_component load_fwc, + u32 img_ld_timeout) +{ + enum hl_fw_component cur_fwc; + const struct firmware *fw; + char *fw_name; + int rc = 0; + + /* + * when loading image we have one of 2 scenarios: + * 1. current FW component is preboot and we want to load boot-fit + * 2. current FW component is boot-fit and we want to load linux + */ + if (load_fwc == FW_COMP_BOOT_FIT) { + cur_fwc = FW_COMP_PREBOOT; + fw_name = fw_loader->boot_fit_img.image_name; + } else { + cur_fwc = FW_COMP_BOOT_FIT; + fw_name = fw_loader->linux_img.image_name; + } + + /* request FW in order to communicate to FW the size to be allocated */ + rc = hl_request_fw(hdev, &fw, fw_name); + if (rc) + return rc; + + /* store the image size for future validation */ + fw_loader->dynamic_loader.fw_image_size = fw->size; + + rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size); + if (rc) + goto release_fw; + + /* read preboot version */ + rc = hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc, + fw_loader->dynamic_loader.comm_desc.cur_fw_ver); + if (rc) + goto release_fw; + + /* update state according to boot stage */ + if (cur_fwc == FW_COMP_BOOT_FIT) { + struct cpu_dyn_regs *dyn_regs; + + dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; + hl_fw_boot_fit_update_state(hdev, + le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), + le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); + } + + /* copy boot fit to space allocated by FW */ + rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader); + if (rc) + goto release_fw; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY, + 0, true, + fw_loader->cpu_timeout); + if (rc) + goto release_fw; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC, + 0, false, + img_ld_timeout); + +release_fw: + hl_release_firmware(fw); + return rc; +} + +static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + struct dynamic_fw_load_mgr *dyn_loader; + u32 status; + int rc; + + dyn_loader = &fw_loader->dynamic_loader; + + /* + * Make sure CPU boot-loader is running + * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux + * yet there is a debug scenario in which we loading uboot (without Linux) + * which at later stage is relocated to DRAM. In this case we expect + * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the + * poll flags + */ + rc = hl_poll_timeout( + hdev, + le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status), + status, + (status == CPU_BOOT_STATUS_READY_TO_BOOT) || + (status == CPU_BOOT_STATUS_SRAM_AVAIL), + hdev->fw_poll_interval_usec, + dyn_loader->wait_for_bl_timeout); + if (rc) { + dev_err(hdev->dev, "failed to wait for boot\n"); + return rc; + } + + dev_dbg(hdev->dev, "uboot status = %d\n", status); + return 0; +} + +static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + struct dynamic_fw_load_mgr *dyn_loader; + u32 status; + int rc; + + dyn_loader = &fw_loader->dynamic_loader; + + /* Make sure CPU linux is running */ + + rc = hl_poll_timeout( + hdev, + le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status), + status, + (status == CPU_BOOT_STATUS_SRAM_AVAIL), + hdev->fw_poll_interval_usec, + fw_loader->cpu_timeout); + if (rc) { + dev_err(hdev->dev, "failed to wait for Linux\n"); + return rc; + } + + dev_dbg(hdev->dev, "Boot status = %d\n", status); + return 0; +} + +/** + * hl_fw_linux_update_state - update internal data structures after Linux + * is loaded. + * Note: Linux initialization is comprised mainly + * of two stages - loading kernel (SRAM_AVAIL) + * & loading ARMCP. + * Therefore reading boot device status in any of + * these stages might result in different values. + * + * @hdev: pointer to the habanalabs device structure + * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0 + * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1 + * + * @return 0 on success, otherwise non-zero error code + */ +static void hl_fw_linux_update_state(struct hl_device *hdev, + u32 cpu_boot_dev_sts0_reg, + u32 cpu_boot_dev_sts1_reg) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX; + + /* Read FW application security bits */ + if (prop->fw_cpu_boot_dev_sts0_valid) { + prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg); + + prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); + + if (prop->fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN) + prop->gic_interrupts_enable = false; + + dev_dbg(hdev->dev, + "Firmware application CPU status0 %#x\n", + prop->fw_app_cpu_boot_dev_sts0); + + dev_dbg(hdev->dev, "GIC controller is %s\n", + prop->gic_interrupts_enable ? + "enabled" : "disabled"); + } + + if (prop->fw_cpu_boot_dev_sts1_valid) { + prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg); + + dev_dbg(hdev->dev, + "Firmware application CPU status1 %#x\n", + prop->fw_app_cpu_boot_dev_sts1); + } + + dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n", + prop->hard_reset_done_by_fw ? "enabled" : "disabled"); + + dev_info(hdev->dev, "Successfully loaded firmware to device\n"); +} + +/** + * hl_fw_dynamic_send_msg - send a COMMS message with attached data + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @msg_type: message type + * @data: data to be sent + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_send_msg(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, u8 msg_type, void *data) +{ + struct lkd_msg_comms msg; + int rc; + + memset(&msg, 0, sizeof(msg)); + + /* create message to be sent */ + msg.header.type = msg_type; + msg.header.size = cpu_to_le16(sizeof(struct comms_msg_header)); + msg.header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC); + + switch (msg_type) { + case HL_COMMS_RESET_CAUSE_TYPE: + msg.reset_cause = *(__u8 *) data; + break; + + default: + dev_err(hdev->dev, + "Send COMMS message - invalid message type %u\n", + msg_type); + return -EINVAL; + } + + rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, + sizeof(struct lkd_msg_comms)); + if (rc) + return rc; + + /* copy message to space allocated by FW */ + rc = hl_fw_dynamic_copy_msg(hdev, &msg, fw_loader); + if (rc) + return rc; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY, + 0, true, + fw_loader->cpu_timeout); + if (rc) + return rc; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC, + 0, true, + fw_loader->cpu_timeout); + if (rc) + return rc; + + return 0; +} + +/** + * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * + * @return 0 on success, otherwise non-zero error code + * + * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol. + * the communication is done using registers: + * - LKD command register + * - FW status register + * the protocol is race free. this goal is achieved by splitting the requests + * and response to known synchronization points between the LKD and the FW. + * each response to LKD request is known and bound to a predefined timeout. + * in case of timeout expiration without the desired status from FW- the + * protocol (and hence the boot) will fail. + */ +static int hl_fw_dynamic_init_cpu(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + struct cpu_dyn_regs *dyn_regs; + int rc; + + dev_info(hdev->dev, + "Loading %sfirmware to device, may take some time...\n", + hdev->asic_prop.fw_security_enabled ? "secured " : ""); + + /* initialize FW descriptor as invalid */ + fw_loader->dynamic_loader.fw_desc_valid = false; + + /* + * In this stage, "cpu_dyn_regs" contains only LKD's hard coded values! + * It will be updated from FW after hl_fw_dynamic_request_descriptor(). + */ + dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE, + 0, true, + fw_loader->cpu_timeout); + if (rc) + goto protocol_err; + + if (hdev->reset_info.curr_reset_cause) { + rc = hl_fw_dynamic_send_msg(hdev, fw_loader, + HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause); + if (rc) + goto protocol_err; + + /* Clear current reset cause */ + hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; + } + + if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) { + rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0); + if (rc) + goto protocol_err; + + /* read preboot version */ + return hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT, + fw_loader->dynamic_loader.comm_desc.cur_fw_ver); + } + + /* load boot fit to FW */ + rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT, + fw_loader->boot_fit_timeout); + if (rc) { + dev_err(hdev->dev, "failed to load boot fit\n"); + goto protocol_err; + } + + /* + * when testing FW load (without Linux) on PLDM we don't want to + * wait until boot fit is active as it may take several hours. + * instead, we load the bootfit and let it do all initialization in + * the background. + */ + if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX)) + return 0; + + rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader); + if (rc) + goto protocol_err; + + /* Enable DRAM scrambling before Linux boot and after successful + * UBoot + */ + hdev->asic_funcs->init_cpu_scrambler_dram(hdev); + + if (!(hdev->fw_components & FW_TYPE_LINUX)) { + dev_info(hdev->dev, "Skip loading Linux F/W\n"); + return 0; + } + + if (fw_loader->skip_bmc) { + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, + COMMS_SKIP_BMC, 0, + true, + fw_loader->cpu_timeout); + if (rc) { + dev_err(hdev->dev, "failed to load boot fit\n"); + goto protocol_err; + } + } + + /* load Linux image to FW */ + rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX, + fw_loader->cpu_timeout); + if (rc) { + dev_err(hdev->dev, "failed to load Linux\n"); + goto protocol_err; + } + + rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader); + if (rc) + goto protocol_err; + + hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), + le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); + + hl_fw_dynamic_update_linux_interrupt_if(hdev); + + return 0; + +protocol_err: + if (fw_loader->dynamic_loader.fw_desc_valid) + fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0), + le32_to_cpu(dyn_regs->cpu_boot_err1), + le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), + le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); + return rc; +} + +/** + * hl_fw_static_init_cpu - initialize the device CPU using static protocol + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_static_init_cpu(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status; + u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg; + struct static_fw_load_mgr *static_loader; + u32 cpu_boot_status_reg; + int rc; + + if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) + return 0; + + /* init common loader parameters */ + cpu_timeout = fw_loader->cpu_timeout; + + /* init static loader parameters */ + static_loader = &fw_loader->static_loader; + cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg; + msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg; + cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg; + cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg; + cpu_boot_status_reg = static_loader->cpu_boot_status_reg; + + dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n", + cpu_timeout / USEC_PER_SEC); + + /* Wait for boot FIT request */ + rc = hl_poll_timeout( + hdev, + cpu_boot_status_reg, + status, + status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT, + hdev->fw_poll_interval_usec, + fw_loader->boot_fit_timeout); + + if (rc) { + dev_dbg(hdev->dev, + "No boot fit request received, resuming boot\n"); + } else { + rc = hdev->asic_funcs->load_boot_fit_to_device(hdev); + if (rc) + goto out; + + /* Clear device CPU message status */ + WREG32(cpu_msg_status_reg, CPU_MSG_CLR); + + /* Signal device CPU that boot loader is ready */ + WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); + + /* Poll for CPU device ack */ + rc = hl_poll_timeout( + hdev, + cpu_msg_status_reg, + status, + status == CPU_MSG_OK, + hdev->fw_poll_interval_usec, + fw_loader->boot_fit_timeout); + + if (rc) { + dev_err(hdev->dev, + "Timeout waiting for boot fit load ack\n"); + goto out; + } + + /* Clear message */ + WREG32(msg_to_cpu_reg, KMD_MSG_NA); + } + + /* + * Make sure CPU boot-loader is running + * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux + * yet there is a debug scenario in which we loading uboot (without Linux) + * which at later stage is relocated to DRAM. In this case we expect + * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the + * poll flags + */ + rc = hl_poll_timeout( + hdev, + cpu_boot_status_reg, + status, + (status == CPU_BOOT_STATUS_DRAM_RDY) || + (status == CPU_BOOT_STATUS_NIC_FW_RDY) || + (status == CPU_BOOT_STATUS_READY_TO_BOOT) || + (status == CPU_BOOT_STATUS_SRAM_AVAIL), + hdev->fw_poll_interval_usec, + cpu_timeout); + + dev_dbg(hdev->dev, "uboot status = %d\n", status); + + /* Read U-Boot version now in case we will later fail */ + hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT); + + /* update state according to boot stage */ + hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg, + cpu_boot_dev_status1_reg); + + if (rc) { + detect_cpu_boot_status(hdev, status); + rc = -EIO; + goto out; + } + + /* Enable DRAM scrambling before Linux boot and after successful + * UBoot + */ + hdev->asic_funcs->init_cpu_scrambler_dram(hdev); + + if (!(hdev->fw_components & FW_TYPE_LINUX)) { + dev_info(hdev->dev, "Skip loading Linux F/W\n"); + rc = 0; + goto out; + } + + if (status == CPU_BOOT_STATUS_SRAM_AVAIL) { + rc = 0; + goto out; + } + + dev_info(hdev->dev, + "Loading firmware to device, may take some time...\n"); + + rc = hdev->asic_funcs->load_firmware_to_device(hdev); + if (rc) + goto out; + + if (fw_loader->skip_bmc) { + WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC); + + rc = hl_poll_timeout( + hdev, + cpu_boot_status_reg, + status, + (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED), + hdev->fw_poll_interval_usec, + cpu_timeout); + + if (rc) { + dev_err(hdev->dev, + "Failed to get ACK on skipping BMC, %d\n", + status); + WREG32(msg_to_cpu_reg, KMD_MSG_NA); + rc = -EIO; + goto out; + } + } + + WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); + + rc = hl_poll_timeout( + hdev, + cpu_boot_status_reg, + status, + (status == CPU_BOOT_STATUS_SRAM_AVAIL), + hdev->fw_poll_interval_usec, + cpu_timeout); + + /* Clear message */ + WREG32(msg_to_cpu_reg, KMD_MSG_NA); + + if (rc) { + if (status == CPU_BOOT_STATUS_FIT_CORRUPTED) + dev_err(hdev->dev, + "Device reports FIT image is corrupted\n"); + else + dev_err(hdev->dev, + "Failed to load firmware to device, %d\n", + status); + + rc = -EIO; + goto out; + } + + rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg, + fw_loader->static_loader.boot_err1_reg, + cpu_boot_dev_status0_reg, + cpu_boot_dev_status1_reg); + if (rc) + return rc; + + hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg, + cpu_boot_dev_status1_reg); + + return 0; + +out: + fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg, + fw_loader->static_loader.boot_err1_reg, + cpu_boot_dev_status0_reg, + cpu_boot_dev_status1_reg); + + return rc; +} + +/** + * hl_fw_init_cpu - initialize the device CPU + * + * @hdev: pointer to the habanalabs device structure + * + * @return 0 on success, otherwise non-zero error code + * + * perform necessary initializations for device's CPU. takes into account if + * init protocol is static or dynamic. + */ +int hl_fw_init_cpu(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct fw_load_mgr *fw_loader = &hdev->fw_loader; + + return prop->dynamic_fw_load ? + hl_fw_dynamic_init_cpu(hdev, fw_loader) : + hl_fw_static_init_cpu(hdev, fw_loader); +} + +void hl_fw_set_pll_profile(struct hl_device *hdev) +{ + hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index, + hdev->asic_prop.max_freq_value); +} + +int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk) +{ + long value; + + if (!hl_device_operational(hdev, NULL)) + return -ENODEV; + + if (!hdev->pdev) { + *cur_clk = 0; + *max_clk = 0; + return 0; + } + + value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false); + + if (value < 0) { + dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value); + return value; + } + + *max_clk = (value / 1000 / 1000); + + value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true); + + if (value < 0) { + dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value); + return value; + } + + *cur_clk = (value / 1000 / 1000); + + return 0; +} + +long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr) +{ + struct cpucp_packet pkt; + u32 used_pll_idx; + u64 result; + int rc; + + rc = get_used_pll_index(hdev, pll_index, &used_pll_idx); + if (rc) + return rc; + + memset(&pkt, 0, sizeof(pkt)); + + if (curr) + pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET << + CPUCP_PKT_CTL_OPCODE_SHIFT); + else + pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); + + pkt.pll_index = cpu_to_le32((u32)used_pll_idx); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); + + if (rc) { + dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n", + used_pll_idx, rc); + return rc; + } + + return (long) result; +} + +void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq) +{ + struct cpucp_packet pkt; + u32 used_pll_idx; + int rc; + + rc = get_used_pll_index(hdev, pll_index, &used_pll_idx); + if (rc) + return; + + memset(&pkt, 0, sizeof(pkt)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.pll_index = cpu_to_le32((u32)used_pll_idx); + pkt.value = cpu_to_le64(freq); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); + + if (rc) + dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n", + used_pll_idx, rc); +} + +long hl_fw_get_max_power(struct hl_device *hdev) +{ + struct cpucp_packet pkt; + u64 result; + int rc; + + memset(&pkt, 0, sizeof(pkt)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); + + if (rc) { + dev_err(hdev->dev, "Failed to get max power, error %d\n", rc); + return rc; + } + + return result; +} + +void hl_fw_set_max_power(struct hl_device *hdev) +{ + struct cpucp_packet pkt; + int rc; + + /* TODO: remove this after simulator supports this packet */ + if (!hdev->pdev) + return; + + memset(&pkt, 0, sizeof(pkt)); + + pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.value = cpu_to_le64(hdev->max_power); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); + + if (rc) + dev_err(hdev->dev, "Failed to set max power, error %d\n", rc); +} + +static int hl_fw_get_sec_attest_data(struct hl_device *hdev, u32 packet_id, void *data, u32 size, + u32 nonce, u32 timeout) +{ + struct cpucp_packet pkt = {}; + dma_addr_t req_dma_addr; + void *req_cpu_addr; + int rc; + + req_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, size, &req_dma_addr); + if (!req_cpu_addr) { + dev_err(hdev->dev, + "Failed to allocate DMA memory for CPU-CP packet %u\n", packet_id); + return -ENOMEM; + } + + memset(data, 0, size); + + pkt.ctl = cpu_to_le32(packet_id << CPUCP_PKT_CTL_OPCODE_SHIFT); + pkt.addr = cpu_to_le64(req_dma_addr); + pkt.data_max_size = cpu_to_le32(size); + pkt.nonce = cpu_to_le32(nonce); + + rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), + timeout, NULL); + if (rc) { + dev_err(hdev->dev, + "Failed to handle CPU-CP pkt %u, error %d\n", packet_id, rc); + goto out; + } + + memcpy(data, req_cpu_addr, size); + +out: + hl_cpu_accessible_dma_pool_free(hdev, size, req_cpu_addr); + + return rc; +} + +int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, + u32 nonce) +{ + return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_SEC_ATTEST_GET, sec_attest_info, + sizeof(struct cpucp_sec_attest_info), nonce, + HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC); +} |