diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/ethernet/intel/e1000e/mac.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e/mac.c')
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/mac.c | 1782 |
1 files changed, 1782 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/mac.c b/drivers/net/ethernet/intel/e1000e/mac.c new file mode 100644 index 000000000..5df7ad93f --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/mac.c @@ -0,0 +1,1782 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright(c) 1999 - 2018 Intel Corporation. */ + +#include "e1000.h" + +/** + * e1000e_get_bus_info_pcie - Get PCIe bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_bus_info *bus = &hw->bus; + struct e1000_adapter *adapter = hw->adapter; + u16 pcie_link_status, cap_offset; + + cap_offset = adapter->pdev->pcie_cap; + if (!cap_offset) { + bus->width = e1000_bus_width_unknown; + } else { + pci_read_config_word(adapter->pdev, + cap_offset + PCIE_LINK_STATUS, + &pcie_link_status); + bus->width = (enum e1000_bus_width)((pcie_link_status & + PCIE_LINK_WIDTH_MASK) >> + PCIE_LINK_WIDTH_SHIFT); + } + + mac->ops.set_lan_id(hw); + + return 0; +} + +/** + * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices + * + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading memory-mapped registers + * and swaps the port value if requested. + **/ +void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u32 reg; + + /* The status register reports the correct function number + * for the device regardless of function swap state. + */ + reg = er32(STATUS); + bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; +} + +/** + * e1000_set_lan_id_single_port - Set LAN id for a single port device + * @hw: pointer to the HW structure + * + * Sets the LAN function id to zero for a single port device. + **/ +void e1000_set_lan_id_single_port(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + + bus->func = 0; +} + +/** + * e1000_clear_vfta_generic - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_generic(struct e1000_hw *hw) +{ + u32 offset; + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + e1e_flush(); + } +} + +/** + * e1000_write_vfta_generic - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) +{ + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + e1e_flush(); +} + +/** + * e1000e_init_rx_addrs - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setup the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + u8 mac_addr[ETH_ALEN] = { 0 }; + + /* Setup the receive address */ + e_dbg("Programming MAC Address into RAR[0]\n"); + + hw->mac.ops.rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + e_dbg("Clearing RAR[1-%u]\n", rar_count - 1); + for (i = 1; i < rar_count; i++) + hw->mac.ops.rar_set(hw, mac_addr, i); +} + +/** + * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr + * @hw: pointer to the HW structure + * + * Checks the nvm for an alternate MAC address. An alternate MAC address + * can be setup by pre-boot software and must be treated like a permanent + * address and must override the actual permanent MAC address. If an + * alternate MAC address is found it is programmed into RAR0, replacing + * the permanent address that was installed into RAR0 by the Si on reset. + * This function will return SUCCESS unless it encounters an error while + * reading the EEPROM. + **/ +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) +{ + u32 i; + s32 ret_val; + u16 offset, nvm_alt_mac_addr_offset, nvm_data; + u8 alt_mac_addr[ETH_ALEN]; + + ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); + if (ret_val) + return ret_val; + + /* not supported on 82573 */ + if (hw->mac.type == e1000_82573) + return 0; + + ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, + &nvm_alt_mac_addr_offset); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + if ((nvm_alt_mac_addr_offset == 0xFFFF) || + (nvm_alt_mac_addr_offset == 0x0000)) + /* There is no Alternate MAC Address */ + return 0; + + if (hw->bus.func == E1000_FUNC_1) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; + for (i = 0; i < ETH_ALEN; i += 2) { + offset = nvm_alt_mac_addr_offset + (i >> 1); + ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + alt_mac_addr[i] = (u8)(nvm_data & 0xFF); + alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); + } + + /* if multicast bit is set, the alternate address will not be used */ + if (is_multicast_ether_addr(alt_mac_addr)) { + e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); + return 0; + } + + /* We have a valid alternate MAC address, and we want to treat it the + * same as the normal permanent MAC address stored by the HW into the + * RAR. Do this by mapping this address into RAR0. + */ + hw->mac.ops.rar_set(hw, alt_mac_addr, 0); + + return 0; +} + +u32 e1000e_rar_get_count_generic(struct e1000_hw *hw) +{ + return hw->mac.rar_entry_count; +} + +/** + * e1000e_rar_set_generic - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | + ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); + + rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + /* Some bridges will combine consecutive 32-bit writes into + * a single burst write, which will malfunction on some parts. + * The flushes avoid this. + */ + ew32(RAL(index), rar_low); + e1e_flush(); + ew32(RAH(index), rar_high); + e1e_flush(); + + return 0; +} + +/** + * e1000_hash_mc_addr - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. + **/ +static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* For a mc_filter_type of 0, bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + /* The portion of the address that is used for the hash table + * is determined by the mc_filter_type setting. + * The algorithm is such that there is a total of 8 bits of shifting. + * The bit_shift for a mc_filter_type of 0 represents the number of + * left-shifts where the MSB of mc_addr[5] would still fall within + * the hash_mask. Case 0 does this exactly. Since there are a total + * of 8 bits of shifting, then mc_addr[4] will shift right the + * remaining number of bits. Thus 8 - bit_shift. The rest of the + * cases are a variation of this algorithm...essentially raising the + * number of bits to shift mc_addr[5] left, while still keeping the + * 8-bit shifting total. + * + * For example, given the following Destination MAC Address and an + * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), + * we can see that the bit_shift for case 0 is 4. These are the hash + * values resulting from each mc_filter_type... + * [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + * + * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 + * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 + * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 + * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 + */ + switch (hw->mac.mc_filter_type) { + default: + case 0: + break; + case 1: + bit_shift += 1; + break; + case 2: + bit_shift += 2; + break; + case 3: + bit_shift += 4; + break; + } + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16)mc_addr[5]) << bit_shift))); + + return hash_value; +} + +/** + * e1000e_update_mc_addr_list_generic - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates entire Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) +{ + u32 hash_value, hash_bit, hash_reg; + int i; + + /* clear mta_shadow */ + memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); + + /* update mta_shadow from mc_addr_list */ + for (i = 0; (u32)i < mc_addr_count; i++) { + hash_value = e1000_hash_mc_addr(hw, mc_addr_list); + + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit); + mc_addr_list += (ETH_ALEN); + } + + /* replace the entire MTA table */ + for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); + e1e_flush(); +} + +/** + * e1000e_clear_hw_cntrs_base - Clear base hardware counters + * @hw: pointer to the HW structure + * + * Clears the base hardware counters by reading the counter registers. + **/ +void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) +{ + er32(CRCERRS); + er32(SYMERRS); + er32(MPC); + er32(SCC); + er32(ECOL); + er32(MCC); + er32(LATECOL); + er32(COLC); + er32(DC); + er32(SEC); + er32(RLEC); + er32(XONRXC); + er32(XONTXC); + er32(XOFFRXC); + er32(XOFFTXC); + er32(FCRUC); + er32(GPRC); + er32(BPRC); + er32(MPRC); + er32(GPTC); + er32(GORCL); + er32(GORCH); + er32(GOTCL); + er32(GOTCH); + er32(RNBC); + er32(RUC); + er32(RFC); + er32(ROC); + er32(RJC); + er32(TORL); + er32(TORH); + er32(TOTL); + er32(TOTH); + er32(TPR); + er32(TPT); + er32(MPTC); + er32(BPTC); +} + +/** + * e1000e_check_for_copper_link - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +s32 e1000e_check_for_copper_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + /* We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) + return 0; + mac->get_link_status = false; + + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val || !link) + goto out; + + /* Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000e_check_downshift(hw); + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) + return -E1000_ERR_CONFIG; + + /* Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + mac->ops.config_collision_dist(hw); + + /* Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) + e_dbg("Error configuring flow control\n"); + + return ret_val; + +out: + mac->get_link_status = true; + return ret_val; +} + +/** + * e1000e_check_for_fiber_link - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + ctrl = er32(CTRL); + status = er32(STATUS); + rxcw = er32(RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && + !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + return 0; + } + e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) { + e_dbg("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + ew32(TXCW, mac->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } + + return 0; +} + +/** + * e1000e_check_for_serdes_link - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + ctrl = er32(CTRL); + status = er32(STATUS); + rxcw = er32(RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + return 0; + } + e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) { + e_dbg("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + ew32(TXCW, mac->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } else if (!(E1000_TXCW_ANE & er32(TXCW))) { + /* If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + usleep_range(10, 20); + rxcw = er32(RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + e_dbg("SERDES: Link up - forced.\n"); + } + } else { + mac->serdes_has_link = false; + e_dbg("SERDES: Link down - force failed.\n"); + } + } + + if (E1000_TXCW_ANE & er32(TXCW)) { + status = er32(STATUS); + if (status & E1000_STATUS_LU) { + /* SYNCH bit and IV bit are sticky, so reread rxcw. */ + usleep_range(10, 20); + rxcw = er32(RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + e_dbg("SERDES: Link up - autoneg completed successfully.\n"); + } else { + mac->serdes_has_link = false; + e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n"); + } + } else { + mac->serdes_has_link = false; + e_dbg("SERDES: Link down - no sync.\n"); + } + } else { + mac->serdes_has_link = false; + e_dbg("SERDES: Link down - autoneg failed\n"); + } + } + + return 0; +} + +/** + * e1000_set_default_fc_generic - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 nvm_data; + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); + + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) + hw->fc.requested_mode = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) + hw->fc.requested_mode = e1000_fc_tx_pause; + else + hw->fc.requested_mode = e1000_fc_full; + + return 0; +} + +/** + * e1000e_setup_link_generic - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +s32 e1000e_setup_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + + /* In the case of the phy reset being blocked, we already have a link. + * We do not need to set it up again. + */ + if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) + return 0; + + /* If requested flow control is set to default, set flow control + * based on the EEPROM flow control settings. + */ + if (hw->fc.requested_mode == e1000_fc_default) { + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + return ret_val; + } + + /* Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); + + /* Call the necessary media_type subroutine to configure the link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + return ret_val; + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + e_dbg("Initializing the Flow Control address, type and timer regs\n"); + ew32(FCT, FLOW_CONTROL_TYPE); + ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); + ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); + + ew32(FCTTV, hw->fc.pause_time); + + return e1000e_set_fc_watermarks(hw); +} + +/** + * e1000_commit_fc_settings_generic - Configure flow control + * @hw: pointer to the HW structure + * + * Write the flow control settings to the Transmit Config Word Register (TXCW) + * base on the flow control settings in e1000_mac_info. + **/ +static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txcw; + + /* Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Transmit Config Word Register (TXCW) and re-start auto- + * negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we + * do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* Rx Flow control is enabled and Tx Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of Rx Pause ONLY, we will + * advertise that we support both symmetric and asymmetric Rx + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* Tx Flow control is enabled, and Rx Flow control is disabled, + * by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + e_dbg("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ew32(TXCW, txcw); + mac->txcw = txcw; + + return 0; +} + +/** + * e1000_poll_fiber_serdes_link_generic - Poll for link up + * @hw: pointer to the HW structure + * + * Polls for link up by reading the status register, if link fails to come + * up with auto-negotiation, then the link is forced if a signal is detected. + **/ +static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, status; + s32 ret_val; + + /* If we have a signal (the cable is plugged in, or assumed true for + * serdes media) then poll for a "Link-Up" indication in the Device + * Status Register. Time-out if a link isn't seen in 500 milliseconds + * seconds (Auto-negotiation should complete in less than 500 + * milliseconds even if the other end is doing it in SW). + */ + for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { + usleep_range(10000, 11000); + status = er32(STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == FIBER_LINK_UP_LIMIT) { + e_dbg("Never got a valid link from auto-neg!!!\n"); + mac->autoneg_failed = true; + /* AutoNeg failed to achieve a link, so we'll call + * mac->check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. + */ + ret_val = mac->ops.check_for_link(hw); + if (ret_val) { + e_dbg("Error while checking for link\n"); + return ret_val; + } + mac->autoneg_failed = false; + } else { + mac->autoneg_failed = false; + e_dbg("Valid Link Found\n"); + } + + return 0; +} + +/** + * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes + * links. Upon successful setup, poll for link. + **/ +s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + ctrl = er32(CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + hw->mac.ops.config_collision_dist(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + return ret_val; + + /* Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. + */ + e_dbg("Auto-negotiation enabled\n"); + + ew32(CTRL, ctrl); + e1e_flush(); + usleep_range(1000, 2000); + + /* For these adapters, the SW definable pin 1 is set when the optics + * detect a signal. If we have a signal, then poll for a "Link-Up" + * indication. + */ + if (hw->phy.media_type == e1000_media_type_internal_serdes || + (er32(CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + e_dbg("No signal detected\n"); + } + + return ret_val; +} + +/** + * e1000e_config_collision_dist_generic - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +void e1000e_config_collision_dist_generic(struct e1000_hw *hw) +{ + u32 tctl; + + tctl = er32(TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + ew32(TCTL, tctl); + e1e_flush(); +} + +/** + * e1000e_set_fc_watermarks - Set flow control high/low watermarks + * @hw: pointer to the HW structure + * + * Sets the flow control high/low threshold (watermark) registers. If + * flow control XON frame transmission is enabled, then set XON frame + * transmission as well. + **/ +s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) +{ + u32 fcrtl = 0, fcrth = 0; + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames is not enabled, then these + * registers will be set to 0. + */ + if (hw->fc.current_mode & e1000_fc_tx_pause) { + /* We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + fcrtl = hw->fc.low_water; + if (hw->fc.send_xon) + fcrtl |= E1000_FCRTL_XONE; + + fcrth = hw->fc.high_water; + } + ew32(FCRTL, fcrtl); + ew32(FCRTH, fcrth); + + return 0; +} + +/** + * e1000e_force_mac_fc - Force the MAC's flow control settings + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the + * device control register to reflect the adapter settings. TFCE and RFCE + * need to be explicitly set by software when a copper PHY is used because + * autonegotiation is managed by the PHY rather than the MAC. Software must + * also configure these bits when link is forced on a fiber connection. + **/ +s32 e1000e_force_mac_fc(struct e1000_hw *hw) +{ + u32 ctrl; + + ctrl = er32(CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc.current_mode" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not receive pause frames). + * 3: Both Rx and Tx flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); + + switch (hw->fc.current_mode) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + e_dbg("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ew32(CTRL, ctrl); + + return 0; +} + +/** + * e1000e_config_fc_after_link_up - Configures flow control after link + * @hw: pointer to the HW structure + * + * Checks the status of auto-negotiation after link up to ensure that the + * speed and duplex were not forced. If the link needed to be forced, then + * flow control needs to be forced also. If auto-negotiation is enabled + * and did not fail, then we configure flow control based on our link + * partner. + **/ +s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = 0; + u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; + u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; + u16 speed, duplex; + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (mac->autoneg_failed) { + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) + ret_val = e1000e_force_mac_fc(hw); + } else { + if (hw->phy.media_type == e1000_media_type_copper) + ret_val = e1000e_force_mac_fc(hw); + } + + if (ret_val) { + e_dbg("Error forcing flow control settings\n"); + return ret_val; + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); + if (ret_val) + return ret_val; + + if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) { + e_dbg("Copper PHY and Auto Neg has not completed.\n"); + return ret_val; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_fc_full + * + */ + if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && + (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) { + /* Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise Rx + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + e_dbg("Flow Control = FULL.\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + e_dbg("Flow Control = Rx PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && + (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && + (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && + (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { + hw->fc.current_mode = e1000_fc_tx_pause; + e_dbg("Flow Control = Tx PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && + (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && + !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && + (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { + hw->fc.current_mode = e1000_fc_rx_pause; + e_dbg("Flow Control = Rx PAUSE frames only.\n"); + } else { + /* Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + e_dbg("Flow Control = NONE.\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + e_dbg("Error getting link speed and duplex\n"); + return ret_val; + } + + if (duplex == HALF_DUPLEX) + hw->fc.current_mode = e1000_fc_none; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000e_force_mac_fc(hw); + if (ret_val) { + e_dbg("Error forcing flow control settings\n"); + return ret_val; + } + } + + /* Check for the case where we have SerDes media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_internal_serdes) && + mac->autoneg) { + /* Read the PCS_LSTS and check to see if AutoNeg + * has completed. + */ + pcs_status_reg = er32(PCS_LSTAT); + + if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { + e_dbg("PCS Auto Neg has not completed.\n"); + return ret_val; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (PCS_ANADV) and the Auto_Negotiation Base + * Page Ability Register (PCS_LPAB) to determine how + * flow control was negotiated. + */ + pcs_adv_reg = er32(PCS_ANADV); + pcs_lp_ability_reg = er32(PCS_LPAB); + + /* Two bits in the Auto Negotiation Advertisement Register + * (PCS_ANADV) and two bits in the Auto Negotiation Base + * Page Ability Register (PCS_LPAB) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | e1000_fc_full + * + */ + if ((pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { + /* Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise Rx + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + e_dbg("Flow Control = FULL.\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + e_dbg("Flow Control = Rx PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_adv_reg & E1000_TXCW_ASM_DIR) && + (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + e_dbg("Flow Control = Tx PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_adv_reg & E1000_TXCW_ASM_DIR) && + !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + e_dbg("Flow Control = Rx PAUSE frames only.\n"); + } else { + /* Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + e_dbg("Flow Control = NONE.\n"); + } + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + pcs_ctrl_reg = er32(PCS_LCTL); + pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; + ew32(PCS_LCTL, pcs_ctrl_reg); + + ret_val = e1000e_force_mac_fc(hw); + if (ret_val) { + e_dbg("Error forcing flow control settings\n"); + return ret_val; + } + } + + return 0; +} + +/** + * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Read the status register for the current speed/duplex and store the current + * speed and duplex for copper connections. + **/ +s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + u32 status; + + status = er32(STATUS); + if (status & E1000_STATUS_SPEED_1000) + *speed = SPEED_1000; + else if (status & E1000_STATUS_SPEED_100) + *speed = SPEED_100; + else + *speed = SPEED_10; + + if (status & E1000_STATUS_FD) + *duplex = FULL_DUPLEX; + else + *duplex = HALF_DUPLEX; + + e_dbg("%u Mbps, %s Duplex\n", + *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, + *duplex == FULL_DUPLEX ? "Full" : "Half"); + + return 0; +} + +/** + * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Sets the speed and duplex to gigabit full duplex (the only possible option) + * for fiber/serdes links. + **/ +s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused + *hw, u16 *speed, u16 *duplex) +{ + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + + return 0; +} + +/** + * e1000e_get_hw_semaphore - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) +{ + u32 swsm; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = er32(SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + udelay(100); + i++; + } + + if (i == timeout) { + e_dbg("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = er32(SWSM); + ew32(SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (er32(SWSM) & E1000_SWSM_SWESMBI) + break; + + udelay(100); + } + + if (i == timeout) { + /* Release semaphores */ + e1000e_put_hw_semaphore(hw); + e_dbg("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return 0; +} + +/** + * e1000e_put_hw_semaphore - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +void e1000e_put_hw_semaphore(struct e1000_hw *hw) +{ + u32 swsm; + + swsm = er32(SWSM); + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + ew32(SWSM, swsm); +} + +/** + * e1000e_get_auto_rd_done - Check for auto read completion + * @hw: pointer to the HW structure + * + * Check EEPROM for Auto Read done bit. + **/ +s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) +{ + s32 i = 0; + + while (i < AUTO_READ_DONE_TIMEOUT) { + if (er32(EECD) & E1000_EECD_AUTO_RD) + break; + usleep_range(1000, 2000); + i++; + } + + if (i == AUTO_READ_DONE_TIMEOUT) { + e_dbg("Auto read by HW from NVM has not completed.\n"); + return -E1000_ERR_RESET; + } + + return 0; +} + +/** + * e1000e_valid_led_default - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + + return 0; +} + +/** + * e1000e_id_led_init_generic - + * @hw: pointer to the HW structure + * + **/ +s32 e1000e_id_led_init_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 data, i, temp; + const u16 led_mask = 0x0F; + + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + return ret_val; + + mac->ledctl_default = er32(LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + + return 0; +} + +/** + * e1000e_setup_led_generic - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +s32 e1000e_setup_led_generic(struct e1000_hw *hw) +{ + u32 ledctl; + + if (hw->mac.ops.setup_led != e1000e_setup_led_generic) + return -E1000_ERR_CONFIG; + + if (hw->phy.media_type == e1000_media_type_fiber) { + ledctl = er32(LEDCTL); + hw->mac.ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + ew32(LEDCTL, ledctl); + } else if (hw->phy.media_type == e1000_media_type_copper) { + ew32(LEDCTL, hw->mac.ledctl_mode1); + } + + return 0; +} + +/** + * e1000e_cleanup_led_generic - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) +{ + ew32(LEDCTL, hw->mac.ledctl_default); + return 0; +} + +/** + * e1000e_blink_led_generic - Blink LED + * @hw: pointer to the HW structure + * + * Blink the LEDs which are set to be on. + **/ +s32 e1000e_blink_led_generic(struct e1000_hw *hw) +{ + u32 ledctl_blink = 0; + u32 i; + + if (hw->phy.media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* Set the blink bit for each LED that's "on" (0x0E) + * (or "off" if inverted) in ledctl_mode2. The blink + * logic in hardware only works when mode is set to "on" + * so it must be changed accordingly when the mode is + * "off" and inverted. + */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 32; i += 8) { + u32 mode = (hw->mac.ledctl_mode2 >> i) & + E1000_LEDCTL_LED0_MODE_MASK; + u32 led_default = hw->mac.ledctl_default >> i; + + if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && + (mode == E1000_LEDCTL_MODE_LED_ON)) || + ((led_default & E1000_LEDCTL_LED0_IVRT) && + (mode == E1000_LEDCTL_MODE_LED_OFF))) { + ledctl_blink &= + ~(E1000_LEDCTL_LED0_MODE_MASK << i); + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_MODE_LED_ON) << i; + } + } + } + + ew32(LEDCTL, ledctl_blink); + + return 0; +} + +/** + * e1000e_led_on_generic - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +s32 e1000e_led_on_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = er32(CTRL); + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + ew32(CTRL, ctrl); + break; + case e1000_media_type_copper: + ew32(LEDCTL, hw->mac.ledctl_mode2); + break; + default: + break; + } + + return 0; +} + +/** + * e1000e_led_off_generic - Turn LED off + * @hw: pointer to the HW structure + * + * Turn LED off. + **/ +s32 e1000e_led_off_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + ew32(CTRL, ctrl); + break; + case e1000_media_type_copper: + ew32(LEDCTL, hw->mac.ledctl_mode1); + break; + default: + break; + } + + return 0; +} + +/** + * e1000e_set_pcie_no_snoop - Set PCI-express capabilities + * @hw: pointer to the HW structure + * @no_snoop: bitmap of snoop events + * + * Set the PCI-express register to snoop for events enabled in 'no_snoop'. + **/ +void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) +{ + u32 gcr; + + if (no_snoop) { + gcr = er32(GCR); + gcr &= ~(PCIE_NO_SNOOP_ALL); + gcr |= no_snoop; + ew32(GCR, gcr); + } +} + +/** + * e1000e_disable_pcie_master - Disables PCI-express master access + * @hw: pointer to the HW structure + * + * Returns 0 if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused + * the master requests to be disabled. + * + * Disables PCI-Express master access and verifies there are no pending + * requests. + **/ +s32 e1000e_disable_pcie_master(struct e1000_hw *hw) +{ + u32 ctrl; + s32 timeout = MASTER_DISABLE_TIMEOUT; + + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + ew32(CTRL, ctrl); + + while (timeout) { + if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) + break; + usleep_range(100, 200); + timeout--; + } + + if (!timeout) { + e_dbg("Master requests are pending.\n"); + return -E1000_ERR_MASTER_REQUESTS_PENDING; + } + + return 0; +} + +/** + * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Reset the Adaptive Interframe Spacing throttle to default values. + **/ +void e1000e_reset_adaptive(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + if (!mac->adaptive_ifs) { + e_dbg("Not in Adaptive IFS mode!\n"); + return; + } + + mac->current_ifs_val = 0; + mac->ifs_min_val = IFS_MIN; + mac->ifs_max_val = IFS_MAX; + mac->ifs_step_size = IFS_STEP; + mac->ifs_ratio = IFS_RATIO; + + mac->in_ifs_mode = false; + ew32(AIT, 0); +} + +/** + * e1000e_update_adaptive - Update Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Update the Adaptive Interframe Spacing Throttle value based on the + * time between transmitted packets and time between collisions. + **/ +void e1000e_update_adaptive(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + if (!mac->adaptive_ifs) { + e_dbg("Not in Adaptive IFS mode!\n"); + return; + } + + if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { + if (mac->tx_packet_delta > MIN_NUM_XMITS) { + mac->in_ifs_mode = true; + if (mac->current_ifs_val < mac->ifs_max_val) { + if (!mac->current_ifs_val) + mac->current_ifs_val = mac->ifs_min_val; + else + mac->current_ifs_val += + mac->ifs_step_size; + ew32(AIT, mac->current_ifs_val); + } + } + } else { + if (mac->in_ifs_mode && + (mac->tx_packet_delta <= MIN_NUM_XMITS)) { + mac->current_ifs_val = 0; + mac->in_ifs_mode = false; + ew32(AIT, 0); + } + } +} |