diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/ethernet/intel/ice/ice_ptp.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/intel/ice/ice_ptp.c')
-rw-r--r-- | drivers/net/ethernet/intel/ice/ice_ptp.c | 2734 |
1 files changed, 2734 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/ice/ice_ptp.c b/drivers/net/ethernet/intel/ice/ice_ptp.c new file mode 100644 index 000000000..46b0063a5 --- /dev/null +++ b/drivers/net/ethernet/intel/ice/ice_ptp.c @@ -0,0 +1,2734 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (C) 2021, Intel Corporation. */ + +#include "ice.h" +#include "ice_lib.h" +#include "ice_trace.h" + +#define E810_OUT_PROP_DELAY_NS 1 + +#define UNKNOWN_INCVAL_E822 0x100000000ULL + +static const struct ptp_pin_desc ice_pin_desc_e810t[] = { + /* name idx func chan */ + { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, + { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, + { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, + { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, + { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, +}; + +/** + * ice_get_sma_config_e810t + * @hw: pointer to the hw struct + * @ptp_pins: pointer to the ptp_pin_desc struture + * + * Read the configuration of the SMA control logic and put it into the + * ptp_pin_desc structure + */ +static int +ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) +{ + u8 data, i; + int status; + + /* Read initial pin state */ + status = ice_read_sma_ctrl_e810t(hw, &data); + if (status) + return status; + + /* initialize with defaults */ + for (i = 0; i < NUM_PTP_PINS_E810T; i++) { + snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name), + "%s", ice_pin_desc_e810t[i].name); + ptp_pins[i].index = ice_pin_desc_e810t[i].index; + ptp_pins[i].func = ice_pin_desc_e810t[i].func; + ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; + } + + /* Parse SMA1/UFL1 */ + switch (data & ICE_SMA1_MASK_E810T) { + case ICE_SMA1_MASK_E810T: + default: + ptp_pins[SMA1].func = PTP_PF_NONE; + ptp_pins[UFL1].func = PTP_PF_NONE; + break; + case ICE_SMA1_DIR_EN_E810T: + ptp_pins[SMA1].func = PTP_PF_PEROUT; + ptp_pins[UFL1].func = PTP_PF_NONE; + break; + case ICE_SMA1_TX_EN_E810T: + ptp_pins[SMA1].func = PTP_PF_EXTTS; + ptp_pins[UFL1].func = PTP_PF_NONE; + break; + case 0: + ptp_pins[SMA1].func = PTP_PF_EXTTS; + ptp_pins[UFL1].func = PTP_PF_PEROUT; + break; + } + + /* Parse SMA2/UFL2 */ + switch (data & ICE_SMA2_MASK_E810T) { + case ICE_SMA2_MASK_E810T: + default: + ptp_pins[SMA2].func = PTP_PF_NONE; + ptp_pins[UFL2].func = PTP_PF_NONE; + break; + case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): + ptp_pins[SMA2].func = PTP_PF_EXTTS; + ptp_pins[UFL2].func = PTP_PF_NONE; + break; + case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): + ptp_pins[SMA2].func = PTP_PF_PEROUT; + ptp_pins[UFL2].func = PTP_PF_NONE; + break; + case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): + ptp_pins[SMA2].func = PTP_PF_NONE; + ptp_pins[UFL2].func = PTP_PF_EXTTS; + break; + case ICE_SMA2_DIR_EN_E810T: + ptp_pins[SMA2].func = PTP_PF_PEROUT; + ptp_pins[UFL2].func = PTP_PF_EXTTS; + break; + } + + return 0; +} + +/** + * ice_ptp_set_sma_config_e810t + * @hw: pointer to the hw struct + * @ptp_pins: pointer to the ptp_pin_desc struture + * + * Set the configuration of the SMA control logic based on the configuration in + * num_pins parameter + */ +static int +ice_ptp_set_sma_config_e810t(struct ice_hw *hw, + const struct ptp_pin_desc *ptp_pins) +{ + int status; + u8 data; + + /* SMA1 and UFL1 cannot be set to TX at the same time */ + if (ptp_pins[SMA1].func == PTP_PF_PEROUT && + ptp_pins[UFL1].func == PTP_PF_PEROUT) + return -EINVAL; + + /* SMA2 and UFL2 cannot be set to RX at the same time */ + if (ptp_pins[SMA2].func == PTP_PF_EXTTS && + ptp_pins[UFL2].func == PTP_PF_EXTTS) + return -EINVAL; + + /* Read initial pin state value */ + status = ice_read_sma_ctrl_e810t(hw, &data); + if (status) + return status; + + /* Set the right sate based on the desired configuration */ + data &= ~ICE_SMA1_MASK_E810T; + if (ptp_pins[SMA1].func == PTP_PF_NONE && + ptp_pins[UFL1].func == PTP_PF_NONE) { + dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); + data |= ICE_SMA1_MASK_E810T; + } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && + ptp_pins[UFL1].func == PTP_PF_NONE) { + dev_info(ice_hw_to_dev(hw), "SMA1 RX"); + data |= ICE_SMA1_TX_EN_E810T; + } else if (ptp_pins[SMA1].func == PTP_PF_NONE && + ptp_pins[UFL1].func == PTP_PF_PEROUT) { + /* U.FL 1 TX will always enable SMA 1 RX */ + dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); + } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && + ptp_pins[UFL1].func == PTP_PF_PEROUT) { + dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); + } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && + ptp_pins[UFL1].func == PTP_PF_NONE) { + dev_info(ice_hw_to_dev(hw), "SMA1 TX"); + data |= ICE_SMA1_DIR_EN_E810T; + } + + data &= ~ICE_SMA2_MASK_E810T; + if (ptp_pins[SMA2].func == PTP_PF_NONE && + ptp_pins[UFL2].func == PTP_PF_NONE) { + dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); + data |= ICE_SMA2_MASK_E810T; + } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && + ptp_pins[UFL2].func == PTP_PF_NONE) { + dev_info(ice_hw_to_dev(hw), "SMA2 RX"); + data |= (ICE_SMA2_TX_EN_E810T | + ICE_SMA2_UFL2_RX_DIS_E810T); + } else if (ptp_pins[SMA2].func == PTP_PF_NONE && + ptp_pins[UFL2].func == PTP_PF_EXTTS) { + dev_info(ice_hw_to_dev(hw), "UFL2 RX"); + data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); + } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && + ptp_pins[UFL2].func == PTP_PF_NONE) { + dev_info(ice_hw_to_dev(hw), "SMA2 TX"); + data |= (ICE_SMA2_DIR_EN_E810T | + ICE_SMA2_UFL2_RX_DIS_E810T); + } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && + ptp_pins[UFL2].func == PTP_PF_EXTTS) { + dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); + data |= ICE_SMA2_DIR_EN_E810T; + } + + return ice_write_sma_ctrl_e810t(hw, data); +} + +/** + * ice_ptp_set_sma_e810t + * @info: the driver's PTP info structure + * @pin: pin index in kernel structure + * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) + * + * Set the configuration of a single SMA pin + */ +static int +ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, + enum ptp_pin_function func) +{ + struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; + struct ice_pf *pf = ptp_info_to_pf(info); + struct ice_hw *hw = &pf->hw; + int err; + + if (pin < SMA1 || func > PTP_PF_PEROUT) + return -EOPNOTSUPP; + + err = ice_get_sma_config_e810t(hw, ptp_pins); + if (err) + return err; + + /* Disable the same function on the other pin sharing the channel */ + if (pin == SMA1 && ptp_pins[UFL1].func == func) + ptp_pins[UFL1].func = PTP_PF_NONE; + if (pin == UFL1 && ptp_pins[SMA1].func == func) + ptp_pins[SMA1].func = PTP_PF_NONE; + + if (pin == SMA2 && ptp_pins[UFL2].func == func) + ptp_pins[UFL2].func = PTP_PF_NONE; + if (pin == UFL2 && ptp_pins[SMA2].func == func) + ptp_pins[SMA2].func = PTP_PF_NONE; + + /* Set up new pin function in the temp table */ + ptp_pins[pin].func = func; + + return ice_ptp_set_sma_config_e810t(hw, ptp_pins); +} + +/** + * ice_verify_pin_e810t + * @info: the driver's PTP info structure + * @pin: Pin index + * @func: Assigned function + * @chan: Assigned channel + * + * Verify if pin supports requested pin function. If the Check pins consistency. + * Reconfigure the SMA logic attached to the given pin to enable its + * desired functionality + */ +static int +ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, + enum ptp_pin_function func, unsigned int chan) +{ + /* Don't allow channel reassignment */ + if (chan != ice_pin_desc_e810t[pin].chan) + return -EOPNOTSUPP; + + /* Check if functions are properly assigned */ + switch (func) { + case PTP_PF_NONE: + break; + case PTP_PF_EXTTS: + if (pin == UFL1) + return -EOPNOTSUPP; + break; + case PTP_PF_PEROUT: + if (pin == UFL2 || pin == GNSS) + return -EOPNOTSUPP; + break; + case PTP_PF_PHYSYNC: + return -EOPNOTSUPP; + } + + return ice_ptp_set_sma_e810t(info, pin, func); +} + +/** + * ice_set_tx_tstamp - Enable or disable Tx timestamping + * @pf: The PF pointer to search in + * @on: bool value for whether timestamps are enabled or disabled + */ +static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) +{ + struct ice_vsi *vsi; + u32 val; + u16 i; + + vsi = ice_get_main_vsi(pf); + if (!vsi) + return; + + /* Set the timestamp enable flag for all the Tx rings */ + ice_for_each_txq(vsi, i) { + if (!vsi->tx_rings[i]) + continue; + vsi->tx_rings[i]->ptp_tx = on; + } + + /* Configure the Tx timestamp interrupt */ + val = rd32(&pf->hw, PFINT_OICR_ENA); + if (on) + val |= PFINT_OICR_TSYN_TX_M; + else + val &= ~PFINT_OICR_TSYN_TX_M; + wr32(&pf->hw, PFINT_OICR_ENA, val); + + pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; +} + +/** + * ice_set_rx_tstamp - Enable or disable Rx timestamping + * @pf: The PF pointer to search in + * @on: bool value for whether timestamps are enabled or disabled + */ +static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) +{ + struct ice_vsi *vsi; + u16 i; + + vsi = ice_get_main_vsi(pf); + if (!vsi) + return; + + /* Set the timestamp flag for all the Rx rings */ + ice_for_each_rxq(vsi, i) { + if (!vsi->rx_rings[i]) + continue; + vsi->rx_rings[i]->ptp_rx = on; + } + + pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL : + HWTSTAMP_FILTER_NONE; +} + +/** + * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit + * @pf: Board private structure + * @ena: bool value to enable or disable time stamp + * + * This function will configure timestamping during PTP initialization + * and deinitialization + */ +void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) +{ + ice_set_tx_tstamp(pf, ena); + ice_set_rx_tstamp(pf, ena); +} + +/** + * ice_get_ptp_clock_index - Get the PTP clock index + * @pf: the PF pointer + * + * Determine the clock index of the PTP clock associated with this device. If + * this is the PF controlling the clock, just use the local access to the + * clock device pointer. + * + * Otherwise, read from the driver shared parameters to determine the clock + * index value. + * + * Returns: the index of the PTP clock associated with this device, or -1 if + * there is no associated clock. + */ +int ice_get_ptp_clock_index(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + enum ice_aqc_driver_params param_idx; + struct ice_hw *hw = &pf->hw; + u8 tmr_idx; + u32 value; + int err; + + /* Use the ptp_clock structure if we're the main PF */ + if (pf->ptp.clock) + return ptp_clock_index(pf->ptp.clock); + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; + if (!tmr_idx) + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; + else + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; + + err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); + if (err) { + dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", + err, ice_aq_str(hw->adminq.sq_last_status)); + return -1; + } + + /* The PTP clock index is an integer, and will be between 0 and + * INT_MAX. The highest bit of the driver shared parameter is used to + * indicate whether or not the currently stored clock index is valid. + */ + if (!(value & PTP_SHARED_CLK_IDX_VALID)) + return -1; + + return value & ~PTP_SHARED_CLK_IDX_VALID; +} + +/** + * ice_set_ptp_clock_index - Set the PTP clock index + * @pf: the PF pointer + * + * Set the PTP clock index for this device into the shared driver parameters, + * so that other PFs associated with this device can read it. + * + * If the PF is unable to store the clock index, it will log an error, but + * will continue operating PTP. + */ +static void ice_set_ptp_clock_index(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + enum ice_aqc_driver_params param_idx; + struct ice_hw *hw = &pf->hw; + u8 tmr_idx; + u32 value; + int err; + + if (!pf->ptp.clock) + return; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; + if (!tmr_idx) + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; + else + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; + + value = (u32)ptp_clock_index(pf->ptp.clock); + if (value > INT_MAX) { + dev_err(dev, "PTP Clock index is too large to store\n"); + return; + } + value |= PTP_SHARED_CLK_IDX_VALID; + + err = ice_aq_set_driver_param(hw, param_idx, value, NULL); + if (err) { + dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", + err, ice_aq_str(hw->adminq.sq_last_status)); + } +} + +/** + * ice_clear_ptp_clock_index - Clear the PTP clock index + * @pf: the PF pointer + * + * Clear the PTP clock index for this device. Must be called when + * unregistering the PTP clock, in order to ensure other PFs stop reporting + * a clock object that no longer exists. + */ +static void ice_clear_ptp_clock_index(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + enum ice_aqc_driver_params param_idx; + struct ice_hw *hw = &pf->hw; + u8 tmr_idx; + int err; + + /* Do not clear the index if we don't own the timer */ + if (!hw->func_caps.ts_func_info.src_tmr_owned) + return; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; + if (!tmr_idx) + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; + else + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; + + err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); + if (err) { + dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", + err, ice_aq_str(hw->adminq.sq_last_status)); + } +} + +/** + * ice_ptp_read_src_clk_reg - Read the source clock register + * @pf: Board private structure + * @sts: Optional parameter for holding a pair of system timestamps from + * the system clock. Will be ignored if NULL is given. + */ +static u64 +ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) +{ + struct ice_hw *hw = &pf->hw; + u32 hi, lo, lo2; + u8 tmr_idx; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + /* Read the system timestamp pre PHC read */ + ptp_read_system_prets(sts); + + lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); + + /* Read the system timestamp post PHC read */ + ptp_read_system_postts(sts); + + hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); + lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); + + if (lo2 < lo) { + /* if TIME_L rolled over read TIME_L again and update + * system timestamps + */ + ptp_read_system_prets(sts); + lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); + ptp_read_system_postts(sts); + hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); + } + + return ((u64)hi << 32) | lo; +} + +/** + * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b + * @cached_phc_time: recently cached copy of PHC time + * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value + * + * Hardware captures timestamps which contain only 32 bits of nominal + * nanoseconds, as opposed to the 64bit timestamps that the stack expects. + * Note that the captured timestamp values may be 40 bits, but the lower + * 8 bits are sub-nanoseconds and generally discarded. + * + * Extend the 32bit nanosecond timestamp using the following algorithm and + * assumptions: + * + * 1) have a recently cached copy of the PHC time + * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 + * seconds) before or after the PHC time was captured. + * 3) calculate the delta between the cached time and the timestamp + * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was + * captured after the PHC time. In this case, the full timestamp is just + * the cached PHC time plus the delta. + * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the + * timestamp was captured *before* the PHC time, i.e. because the PHC + * cache was updated after the timestamp was captured by hardware. In this + * case, the full timestamp is the cached time minus the inverse delta. + * + * This algorithm works even if the PHC time was updated after a Tx timestamp + * was requested, but before the Tx timestamp event was reported from + * hardware. + * + * This calculation primarily relies on keeping the cached PHC time up to + * date. If the timestamp was captured more than 2^31 nanoseconds after the + * PHC time, it is possible that the lower 32bits of PHC time have + * overflowed more than once, and we might generate an incorrect timestamp. + * + * This is prevented by (a) periodically updating the cached PHC time once + * a second, and (b) discarding any Tx timestamp packet if it has waited for + * a timestamp for more than one second. + */ +static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) +{ + u32 delta, phc_time_lo; + u64 ns; + + /* Extract the lower 32 bits of the PHC time */ + phc_time_lo = (u32)cached_phc_time; + + /* Calculate the delta between the lower 32bits of the cached PHC + * time and the in_tstamp value + */ + delta = (in_tstamp - phc_time_lo); + + /* Do not assume that the in_tstamp is always more recent than the + * cached PHC time. If the delta is large, it indicates that the + * in_tstamp was taken in the past, and should be converted + * forward. + */ + if (delta > (U32_MAX / 2)) { + /* reverse the delta calculation here */ + delta = (phc_time_lo - in_tstamp); + ns = cached_phc_time - delta; + } else { + ns = cached_phc_time + delta; + } + + return ns; +} + +/** + * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds + * @pf: Board private structure + * @in_tstamp: Ingress/egress 40b timestamp value + * + * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal + * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. + * + * *--------------------------------------------------------------* + * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | + * *--------------------------------------------------------------* + * + * The low bit is an indicator of whether the timestamp is valid. The next + * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, + * and the remaining 32 bits are the lower 32 bits of the PHC timer. + * + * It is assumed that the caller verifies the timestamp is valid prior to + * calling this function. + * + * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC + * time stored in the device private PTP structure as the basis for timestamp + * extension. + * + * See ice_ptp_extend_32b_ts for a detailed explanation of the extension + * algorithm. + */ +static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) +{ + const u64 mask = GENMASK_ULL(31, 0); + unsigned long discard_time; + + /* Discard the hardware timestamp if the cached PHC time is too old */ + discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); + if (time_is_before_jiffies(discard_time)) { + pf->ptp.tx_hwtstamp_discarded++; + return 0; + } + + return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, + (in_tstamp >> 8) & mask); +} + +/** + * ice_ptp_tx_tstamp - Process Tx timestamps for a port + * @tx: the PTP Tx timestamp tracker + * + * Process timestamps captured by the PHY associated with this port. To do + * this, loop over each index with a waiting skb. + * + * If a given index has a valid timestamp, perform the following steps: + * + * 1) copy the timestamp out of the PHY register + * 4) clear the timestamp valid bit in the PHY register + * 5) unlock the index by clearing the associated in_use bit. + * 2) extend the 40b timestamp value to get a 64bit timestamp + * 3) send that timestamp to the stack + * + * Returns true if all timestamps were handled, and false if any slots remain + * without a timestamp. + * + * After looping, if we still have waiting SKBs, return false. This may cause + * us effectively poll even when not strictly necessary. We do this because + * it's possible a new timestamp was requested around the same time as the + * interrupt. In some cases hardware might not interrupt us again when the + * timestamp is captured. + * + * Note that we only take the tracking lock when clearing the bit and when + * checking if we need to re-queue this task. The only place where bits can be + * set is the hard xmit routine where an SKB has a request flag set. The only + * places where we clear bits are this work function, or the periodic cleanup + * thread. If the cleanup thread clears a bit we're processing we catch it + * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread + * starts a new timestamp, we might not begin processing it right away but we + * will notice it at the end when we re-queue the task. If a Tx thread starts + * a new timestamp just after this function exits without re-queuing, + * the interrupt when the timestamp finishes should trigger. Avoiding holding + * the lock for the entire function is important in order to ensure that Tx + * threads do not get blocked while waiting for the lock. + */ +static bool ice_ptp_tx_tstamp(struct ice_ptp_tx *tx) +{ + struct ice_ptp_port *ptp_port; + bool more_timestamps; + struct ice_pf *pf; + u8 idx; + + if (!tx->init) + return true; + + ptp_port = container_of(tx, struct ice_ptp_port, tx); + pf = ptp_port_to_pf(ptp_port); + + for_each_set_bit(idx, tx->in_use, tx->len) { + struct skb_shared_hwtstamps shhwtstamps = {}; + u8 phy_idx = idx + tx->quad_offset; + u64 raw_tstamp, tstamp; + struct sk_buff *skb; + int err; + + ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); + + err = ice_read_phy_tstamp(&pf->hw, tx->quad, phy_idx, + &raw_tstamp); + if (err) + continue; + + ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); + + /* Check if the timestamp is invalid or stale */ + if (!(raw_tstamp & ICE_PTP_TS_VALID) || + raw_tstamp == tx->tstamps[idx].cached_tstamp) + continue; + + /* The timestamp is valid, so we'll go ahead and clear this + * index and then send the timestamp up to the stack. + */ + spin_lock(&tx->lock); + tx->tstamps[idx].cached_tstamp = raw_tstamp; + clear_bit(idx, tx->in_use); + skb = tx->tstamps[idx].skb; + tx->tstamps[idx].skb = NULL; + spin_unlock(&tx->lock); + + /* it's (unlikely but) possible we raced with the cleanup + * thread for discarding old timestamp requests. + */ + if (!skb) + continue; + + /* Extend the timestamp using cached PHC time */ + tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); + if (tstamp) { + shhwtstamps.hwtstamp = ns_to_ktime(tstamp); + ice_trace(tx_tstamp_complete, skb, idx); + } + + skb_tstamp_tx(skb, &shhwtstamps); + dev_kfree_skb_any(skb); + } + + /* Check if we still have work to do. If so, re-queue this task to + * poll for remaining timestamps. + */ + spin_lock(&tx->lock); + more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len); + spin_unlock(&tx->lock); + + return !more_timestamps; +} + +/** + * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps + * @tx: Tx tracking structure to initialize + * + * Assumes that the length has already been initialized. Do not call directly, + * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead. + */ +static int +ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) +{ + tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL); + if (!tx->tstamps) + return -ENOMEM; + + tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL); + if (!tx->in_use) { + kfree(tx->tstamps); + tx->tstamps = NULL; + return -ENOMEM; + } + + spin_lock_init(&tx->lock); + + tx->init = 1; + + return 0; +} + +/** + * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker + * @pf: Board private structure + * @tx: the tracker to flush + */ +static void +ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) +{ + u8 idx; + + for (idx = 0; idx < tx->len; idx++) { + u8 phy_idx = idx + tx->quad_offset; + + spin_lock(&tx->lock); + if (tx->tstamps[idx].skb) { + dev_kfree_skb_any(tx->tstamps[idx].skb); + tx->tstamps[idx].skb = NULL; + pf->ptp.tx_hwtstamp_flushed++; + } + clear_bit(idx, tx->in_use); + spin_unlock(&tx->lock); + + /* Clear any potential residual timestamp in the PHY block */ + if (!pf->hw.reset_ongoing) + ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx); + } +} + +/** + * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker + * @pf: Board private structure + * @tx: Tx tracking structure to release + * + * Free memory associated with the Tx timestamp tracker. + */ +static void +ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) +{ + tx->init = 0; + + /* wait for potentially outstanding interrupt to complete */ + synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); + + ice_ptp_flush_tx_tracker(pf, tx); + + kfree(tx->tstamps); + tx->tstamps = NULL; + + bitmap_free(tx->in_use); + tx->in_use = NULL; + + tx->len = 0; +} + +/** + * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps + * @pf: Board private structure + * @tx: the Tx tracking structure to initialize + * @port: the port this structure tracks + * + * Initialize the Tx timestamp tracker for this port. For generic MAC devices, + * the timestamp block is shared for all ports in the same quad. To avoid + * ports using the same timestamp index, logically break the block of + * registers into chunks based on the port number. + */ +static int +ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) +{ + tx->quad = port / ICE_PORTS_PER_QUAD; + tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT; + tx->len = INDEX_PER_PORT; + + return ice_ptp_alloc_tx_tracker(tx); +} + +/** + * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps + * @pf: Board private structure + * @tx: the Tx tracking structure to initialize + * + * Initialize the Tx timestamp tracker for this PF. For E810 devices, each + * port has its own block of timestamps, independent of the other ports. + */ +static int +ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) +{ + tx->quad = pf->hw.port_info->lport; + tx->quad_offset = 0; + tx->len = INDEX_PER_QUAD; + + return ice_ptp_alloc_tx_tracker(tx); +} + +/** + * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped + * @pf: pointer to the PF struct + * @tx: PTP Tx tracker to clean up + * + * Loop through the Tx timestamp requests and see if any of them have been + * waiting for a long time. Discard any SKBs that have been waiting for more + * than 2 seconds. This is long enough to be reasonably sure that the + * timestamp will never be captured. This might happen if the packet gets + * discarded before it reaches the PHY timestamping block. + */ +static void ice_ptp_tx_tstamp_cleanup(struct ice_pf *pf, struct ice_ptp_tx *tx) +{ + struct ice_hw *hw = &pf->hw; + u8 idx; + + if (!tx->init) + return; + + for_each_set_bit(idx, tx->in_use, tx->len) { + struct sk_buff *skb; + u64 raw_tstamp; + + /* Check if this SKB has been waiting for too long */ + if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ)) + continue; + + /* Read tstamp to be able to use this register again */ + ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset, + &raw_tstamp); + + spin_lock(&tx->lock); + skb = tx->tstamps[idx].skb; + tx->tstamps[idx].skb = NULL; + clear_bit(idx, tx->in_use); + spin_unlock(&tx->lock); + + /* Count the number of Tx timestamps which have timed out */ + pf->ptp.tx_hwtstamp_timeouts++; + + /* Free the SKB after we've cleared the bit */ + dev_kfree_skb_any(skb); + } +} + +/** + * ice_ptp_update_cached_phctime - Update the cached PHC time values + * @pf: Board specific private structure + * + * This function updates the system time values which are cached in the PF + * structure and the Rx rings. + * + * This function must be called periodically to ensure that the cached value + * is never more than 2 seconds old. + * + * Note that the cached copy in the PF PTP structure is always updated, even + * if we can't update the copy in the Rx rings. + * + * Return: + * * 0 - OK, successfully updated + * * -EAGAIN - PF was busy, need to reschedule the update + */ +static int ice_ptp_update_cached_phctime(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + unsigned long update_before; + u64 systime; + int i; + + update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000); + if (pf->ptp.cached_phc_time && + time_is_before_jiffies(update_before)) { + unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies; + + dev_warn(dev, "%u msecs passed between update to cached PHC time\n", + jiffies_to_msecs(time_taken)); + pf->ptp.late_cached_phc_updates++; + } + + /* Read the current PHC time */ + systime = ice_ptp_read_src_clk_reg(pf, NULL); + + /* Update the cached PHC time stored in the PF structure */ + WRITE_ONCE(pf->ptp.cached_phc_time, systime); + WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies); + + if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) + return -EAGAIN; + + ice_for_each_vsi(pf, i) { + struct ice_vsi *vsi = pf->vsi[i]; + int j; + + if (!vsi) + continue; + + if (vsi->type != ICE_VSI_PF) + continue; + + ice_for_each_rxq(vsi, j) { + if (!vsi->rx_rings[j]) + continue; + WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); + } + } + clear_bit(ICE_CFG_BUSY, pf->state); + + return 0; +} + +/** + * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update + * @pf: Board specific private structure + * + * This function must be called when the cached PHC time is no longer valid, + * such as after a time adjustment. It discards any outstanding Tx timestamps, + * and updates the cached PHC time for both the PF and Rx rings. If updating + * the PHC time cannot be done immediately, a warning message is logged and + * the work item is scheduled. + * + * These steps are required in order to ensure that we do not accidentally + * report a timestamp extended by the wrong PHC cached copy. Note that we + * do not directly update the cached timestamp here because it is possible + * this might produce an error when ICE_CFG_BUSY is set. If this occurred, we + * would have to try again. During that time window, timestamps might be + * requested and returned with an invalid extension. Thus, on failure to + * immediately update the cached PHC time we would need to zero the value + * anyways. For this reason, we just zero the value immediately and queue the + * update work item. + */ +static void ice_ptp_reset_cached_phctime(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + int err; + + /* Update the cached PHC time immediately if possible, otherwise + * schedule the work item to execute soon. + */ + err = ice_ptp_update_cached_phctime(pf); + if (err) { + /* If another thread is updating the Rx rings, we won't + * properly reset them here. This could lead to reporting of + * invalid timestamps, but there isn't much we can do. + */ + dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n", + __func__); + + /* Queue the work item to update the Rx rings when possible */ + kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, + msecs_to_jiffies(10)); + } + + /* Flush any outstanding Tx timestamps */ + ice_ptp_flush_tx_tracker(pf, &pf->ptp.port.tx); +} + +/** + * ice_ptp_read_time - Read the time from the device + * @pf: Board private structure + * @ts: timespec structure to hold the current time value + * @sts: Optional parameter for holding a pair of system timestamps from + * the system clock. Will be ignored if NULL is given. + * + * This function reads the source clock registers and stores them in a timespec. + * However, since the registers are 64 bits of nanoseconds, we must convert the + * result to a timespec before we can return. + */ +static void +ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, + struct ptp_system_timestamp *sts) +{ + u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); + + *ts = ns_to_timespec64(time_ns); +} + +/** + * ice_ptp_write_init - Set PHC time to provided value + * @pf: Board private structure + * @ts: timespec structure that holds the new time value + * + * Set the PHC time to the specified time provided in the timespec. + */ +static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) +{ + u64 ns = timespec64_to_ns(ts); + struct ice_hw *hw = &pf->hw; + + return ice_ptp_init_time(hw, ns); +} + +/** + * ice_ptp_write_adj - Adjust PHC clock time atomically + * @pf: Board private structure + * @adj: Adjustment in nanoseconds + * + * Perform an atomic adjustment of the PHC time by the specified number of + * nanoseconds. + */ +static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) +{ + struct ice_hw *hw = &pf->hw; + + return ice_ptp_adj_clock(hw, adj); +} + +/** + * ice_base_incval - Get base timer increment value + * @pf: Board private structure + * + * Look up the base timer increment value for this device. The base increment + * value is used to define the nominal clock tick rate. This increment value + * is programmed during device initialization. It is also used as the basis + * for calculating adjustments using scaled_ppm. + */ +static u64 ice_base_incval(struct ice_pf *pf) +{ + struct ice_hw *hw = &pf->hw; + u64 incval; + + if (ice_is_e810(hw)) + incval = ICE_PTP_NOMINAL_INCVAL_E810; + else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) + incval = ice_e822_nominal_incval(ice_e822_time_ref(hw)); + else + incval = UNKNOWN_INCVAL_E822; + + dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", + incval); + + return incval; +} + +/** + * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad + * @pf: The PF private data structure + * @quad: The quad (0-4) + */ +static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad) +{ + struct ice_hw *hw = &pf->hw; + + ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); + ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); +} + +/** + * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state + * @port: PTP port for which Tx FIFO is checked + */ +static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) +{ + int quad = port->port_num / ICE_PORTS_PER_QUAD; + int offs = port->port_num % ICE_PORTS_PER_QUAD; + struct ice_pf *pf; + struct ice_hw *hw; + u32 val, phy_sts; + int err; + + pf = ptp_port_to_pf(port); + hw = &pf->hw; + + if (port->tx_fifo_busy_cnt == FIFO_OK) + return 0; + + /* need to read FIFO state */ + if (offs == 0 || offs == 1) + err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS, + &val); + else + err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS, + &val); + + if (err) { + dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", + port->port_num, err); + return err; + } + + if (offs & 0x1) + phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S; + else + phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S; + + if (phy_sts & FIFO_EMPTY) { + port->tx_fifo_busy_cnt = FIFO_OK; + return 0; + } + + port->tx_fifo_busy_cnt++; + + dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", + port->tx_fifo_busy_cnt, port->port_num); + + if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { + dev_dbg(ice_pf_to_dev(pf), + "Port %d Tx FIFO still not empty; resetting quad %d\n", + port->port_num, quad); + ice_ptp_reset_ts_memory_quad(pf, quad); + port->tx_fifo_busy_cnt = FIFO_OK; + return 0; + } + + return -EAGAIN; +} + +/** + * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid + * @port: the PTP port to check + * + * Checks whether the Tx offset for the PHY associated with this port is + * valid. Returns 0 if the offset is valid, and a non-zero error code if it is + * not. + */ +static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port) +{ + struct ice_pf *pf = ptp_port_to_pf(port); + struct device *dev = ice_pf_to_dev(pf); + struct ice_hw *hw = &pf->hw; + u32 val; + int err; + + err = ice_ptp_check_tx_fifo(port); + if (err) + return err; + + err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS, + &val); + if (err) { + dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n", + port->port_num, err); + return -EAGAIN; + } + + if (!(val & P_REG_TX_OV_STATUS_OV_M)) + return -EAGAIN; + + return 0; +} + +/** + * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid + * @port: the PTP port to check + * + * Checks whether the Rx offset for the PHY associated with this port is + * valid. Returns 0 if the offset is valid, and a non-zero error code if it is + * not. + */ +static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port) +{ + struct ice_pf *pf = ptp_port_to_pf(port); + struct device *dev = ice_pf_to_dev(pf); + struct ice_hw *hw = &pf->hw; + int err; + u32 val; + + err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS, + &val); + if (err) { + dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n", + port->port_num, err); + return err; + } + + if (!(val & P_REG_RX_OV_STATUS_OV_M)) + return -EAGAIN; + + return 0; +} + +/** + * ice_ptp_check_offset_valid - Check port offset valid bit + * @port: Port for which offset valid bit is checked + * + * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the + * offset is not ready. + */ +static int ice_ptp_check_offset_valid(struct ice_ptp_port *port) +{ + int tx_err, rx_err; + + /* always check both Tx and Rx offset validity */ + tx_err = ice_ptp_check_tx_offset_valid(port); + rx_err = ice_ptp_check_rx_offset_valid(port); + + if (tx_err || rx_err) + return -EAGAIN; + + return 0; +} + +/** + * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets + * @work: Pointer to the kthread_work structure for this task + * + * Check whether both the Tx and Rx offsets are valid for enabling the vernier + * calibration. + * + * Once we have valid offsets from hardware, update the total Tx and Rx + * offsets, and exit bypass mode. This enables more precise timestamps using + * the extra data measured during the vernier calibration process. + */ +static void ice_ptp_wait_for_offset_valid(struct kthread_work *work) +{ + struct ice_ptp_port *port; + int err; + struct device *dev; + struct ice_pf *pf; + struct ice_hw *hw; + + port = container_of(work, struct ice_ptp_port, ov_work.work); + pf = ptp_port_to_pf(port); + hw = &pf->hw; + dev = ice_pf_to_dev(pf); + + if (ice_is_reset_in_progress(pf->state)) + return; + + if (ice_ptp_check_offset_valid(port)) { + /* Offsets not ready yet, try again later */ + kthread_queue_delayed_work(pf->ptp.kworker, + &port->ov_work, + msecs_to_jiffies(100)); + return; + } + + /* Offsets are valid, so it is safe to exit bypass mode */ + err = ice_phy_exit_bypass_e822(hw, port->port_num); + if (err) { + dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n", + port->port_num, err); + return; + } +} + +/** + * ice_ptp_port_phy_stop - Stop timestamping for a PHY port + * @ptp_port: PTP port to stop + */ +static int +ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) +{ + struct ice_pf *pf = ptp_port_to_pf(ptp_port); + u8 port = ptp_port->port_num; + struct ice_hw *hw = &pf->hw; + int err; + + if (ice_is_e810(hw)) + return 0; + + mutex_lock(&ptp_port->ps_lock); + + kthread_cancel_delayed_work_sync(&ptp_port->ov_work); + + err = ice_stop_phy_timer_e822(hw, port, true); + if (err) + dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", + port, err); + + mutex_unlock(&ptp_port->ps_lock); + + return err; +} + +/** + * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping + * @ptp_port: PTP port for which the PHY start is set + * + * Start the PHY timestamping block, and initiate Vernier timestamping + * calibration. If timestamping cannot be calibrated (such as if link is down) + * then disable the timestamping block instead. + */ +static int +ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) +{ + struct ice_pf *pf = ptp_port_to_pf(ptp_port); + u8 port = ptp_port->port_num; + struct ice_hw *hw = &pf->hw; + int err; + + if (ice_is_e810(hw)) + return 0; + + if (!ptp_port->link_up) + return ice_ptp_port_phy_stop(ptp_port); + + mutex_lock(&ptp_port->ps_lock); + + kthread_cancel_delayed_work_sync(&ptp_port->ov_work); + + /* temporarily disable Tx timestamps while calibrating PHY offset */ + ptp_port->tx.calibrating = true; + ptp_port->tx_fifo_busy_cnt = 0; + + /* Start the PHY timer in bypass mode */ + err = ice_start_phy_timer_e822(hw, port, true); + if (err) + goto out_unlock; + + /* Enable Tx timestamps right away */ + ptp_port->tx.calibrating = false; + + kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); + +out_unlock: + if (err) + dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", + port, err); + + mutex_unlock(&ptp_port->ps_lock); + + return err; +} + +/** + * ice_ptp_link_change - Set or clear port registers for timestamping + * @pf: Board private structure + * @port: Port for which the PHY start is set + * @linkup: Link is up or down + */ +int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) +{ + struct ice_ptp_port *ptp_port; + + if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) + return 0; + + if (port >= ICE_NUM_EXTERNAL_PORTS) + return -EINVAL; + + ptp_port = &pf->ptp.port; + if (ptp_port->port_num != port) + return -EINVAL; + + /* Update cached link err for this port immediately */ + ptp_port->link_up = linkup; + + if (!test_bit(ICE_FLAG_PTP, pf->flags)) + /* PTP is not setup */ + return -EAGAIN; + + return ice_ptp_port_phy_restart(ptp_port); +} + +/** + * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads + * @pf: The PF private data structure + */ +static void ice_ptp_reset_ts_memory(struct ice_pf *pf) +{ + int quad; + + quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD; + ice_ptp_reset_ts_memory_quad(pf, quad); +} + +/** + * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt + * @pf: PF private structure + * @ena: bool value to enable or disable interrupt + * @threshold: Minimum number of packets at which intr is triggered + * + * Utility function to enable or disable Tx timestamp interrupt and threshold + */ +static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold) +{ + struct ice_hw *hw = &pf->hw; + int err = 0; + int quad; + u32 val; + + ice_ptp_reset_ts_memory(pf); + + for (quad = 0; quad < ICE_MAX_QUAD; quad++) { + err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, + &val); + if (err) + break; + + if (ena) { + val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; + val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; + val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) & + Q_REG_TX_MEM_GBL_CFG_INTR_THR_M); + } else { + val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; + } + + err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, + val); + if (err) + break; + } + + if (err) + dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", + err); + return err; +} + +/** + * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block + * @pf: Board private structure + */ +static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) +{ + ice_ptp_port_phy_restart(&pf->ptp.port); +} + +/** + * ice_ptp_adjfine - Adjust clock increment rate + * @info: the driver's PTP info structure + * @scaled_ppm: Parts per million with 16-bit fractional field + * + * Adjust the frequency of the clock by the indicated scaled ppm from the + * base frequency. + */ +static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + struct ice_hw *hw = &pf->hw; + u64 incval, diff; + int neg_adj = 0; + int err; + + incval = ice_base_incval(pf); + + if (scaled_ppm < 0) { + neg_adj = 1; + scaled_ppm = -scaled_ppm; + } + + diff = mul_u64_u64_div_u64(incval, (u64)scaled_ppm, + 1000000ULL << 16); + if (neg_adj) + incval -= diff; + else + incval += diff; + + err = ice_ptp_write_incval_locked(hw, incval); + if (err) { + dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", + err); + return -EIO; + } + + return 0; +} + +/** + * ice_ptp_extts_event - Process PTP external clock event + * @pf: Board private structure + */ +void ice_ptp_extts_event(struct ice_pf *pf) +{ + struct ptp_clock_event event; + struct ice_hw *hw = &pf->hw; + u8 chan, tmr_idx; + u32 hi, lo; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + /* Event time is captured by one of the two matched registers + * GLTSYN_EVNT_L: 32 LSB of sampled time event + * GLTSYN_EVNT_H: 32 MSB of sampled time event + * Event is defined in GLTSYN_EVNT_0 register + */ + for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { + /* Check if channel is enabled */ + if (pf->ptp.ext_ts_irq & (1 << chan)) { + lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); + hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); + event.timestamp = (((u64)hi) << 32) | lo; + event.type = PTP_CLOCK_EXTTS; + event.index = chan; + + /* Fire event */ + ptp_clock_event(pf->ptp.clock, &event); + pf->ptp.ext_ts_irq &= ~(1 << chan); + } + } +} + +/** + * ice_ptp_cfg_extts - Configure EXTTS pin and channel + * @pf: Board private structure + * @ena: true to enable; false to disable + * @chan: GPIO channel (0-3) + * @gpio_pin: GPIO pin + * @extts_flags: request flags from the ptp_extts_request.flags + */ +static int +ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, + unsigned int extts_flags) +{ + u32 func, aux_reg, gpio_reg, irq_reg; + struct ice_hw *hw = &pf->hw; + u8 tmr_idx; + + if (chan > (unsigned int)pf->ptp.info.n_ext_ts) + return -EINVAL; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + irq_reg = rd32(hw, PFINT_OICR_ENA); + + if (ena) { + /* Enable the interrupt */ + irq_reg |= PFINT_OICR_TSYN_EVNT_M; + aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; + +#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) +#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) + + /* set event level to requested edge */ + if (extts_flags & PTP_FALLING_EDGE) + aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; + if (extts_flags & PTP_RISING_EDGE) + aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; + + /* Write GPIO CTL reg. + * 0x1 is input sampled by EVENT register(channel) + * + num_in_channels * tmr_idx + */ + func = 1 + chan + (tmr_idx * 3); + gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & + GLGEN_GPIO_CTL_PIN_FUNC_M); + pf->ptp.ext_ts_chan |= (1 << chan); + } else { + /* clear the values we set to reset defaults */ + aux_reg = 0; + gpio_reg = 0; + pf->ptp.ext_ts_chan &= ~(1 << chan); + if (!pf->ptp.ext_ts_chan) + irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; + } + + wr32(hw, PFINT_OICR_ENA, irq_reg); + wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); + wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); + + return 0; +} + +/** + * ice_ptp_cfg_clkout - Configure clock to generate periodic wave + * @pf: Board private structure + * @chan: GPIO channel (0-3) + * @config: desired periodic clk configuration. NULL will disable channel + * @store: If set to true the values will be stored + * + * Configure the internal clock generator modules to generate the clock wave of + * specified period. + */ +static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, + struct ice_perout_channel *config, bool store) +{ + u64 current_time, period, start_time, phase; + struct ice_hw *hw = &pf->hw; + u32 func, val, gpio_pin; + u8 tmr_idx; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + /* 0. Reset mode & out_en in AUX_OUT */ + wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); + + /* If we're disabling the output, clear out CLKO and TGT and keep + * output level low + */ + if (!config || !config->ena) { + wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); + wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); + wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); + + val = GLGEN_GPIO_CTL_PIN_DIR_M; + gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; + wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); + + /* Store the value if requested */ + if (store) + memset(&pf->ptp.perout_channels[chan], 0, + sizeof(struct ice_perout_channel)); + + return 0; + } + period = config->period; + start_time = config->start_time; + div64_u64_rem(start_time, period, &phase); + gpio_pin = config->gpio_pin; + + /* 1. Write clkout with half of required period value */ + if (period & 0x1) { + dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); + goto err; + } + + period >>= 1; + + /* For proper operation, the GLTSYN_CLKO must be larger than clock tick + */ +#define MIN_PULSE 3 + if (period <= MIN_PULSE || period > U32_MAX) { + dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", + MIN_PULSE * 2); + goto err; + } + + wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); + + /* Allow time for programming before start_time is hit */ + current_time = ice_ptp_read_src_clk_reg(pf, NULL); + + /* if start time is in the past start the timer at the nearest second + * maintaining phase + */ + if (start_time < current_time) + start_time = div64_u64(current_time + NSEC_PER_SEC - 1, + NSEC_PER_SEC) * NSEC_PER_SEC + phase; + + if (ice_is_e810(hw)) + start_time -= E810_OUT_PROP_DELAY_NS; + else + start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw)); + + /* 2. Write TARGET time */ + wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); + wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); + + /* 3. Write AUX_OUT register */ + val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; + wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); + + /* 4. write GPIO CTL reg */ + func = 8 + chan + (tmr_idx * 4); + val = GLGEN_GPIO_CTL_PIN_DIR_M | + ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); + wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); + + /* Store the value if requested */ + if (store) { + memcpy(&pf->ptp.perout_channels[chan], config, + sizeof(struct ice_perout_channel)); + pf->ptp.perout_channels[chan].start_time = phase; + } + + return 0; +err: + dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); + return -EFAULT; +} + +/** + * ice_ptp_disable_all_clkout - Disable all currently configured outputs + * @pf: pointer to the PF structure + * + * Disable all currently configured clock outputs. This is necessary before + * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to + * re-enable the clocks again. + */ +static void ice_ptp_disable_all_clkout(struct ice_pf *pf) +{ + uint i; + + for (i = 0; i < pf->ptp.info.n_per_out; i++) + if (pf->ptp.perout_channels[i].ena) + ice_ptp_cfg_clkout(pf, i, NULL, false); +} + +/** + * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs + * @pf: pointer to the PF structure + * + * Enable all currently configured clock outputs. Use this after + * ice_ptp_disable_all_clkout to reconfigure the output signals according to + * their configuration. + */ +static void ice_ptp_enable_all_clkout(struct ice_pf *pf) +{ + uint i; + + for (i = 0; i < pf->ptp.info.n_per_out; i++) + if (pf->ptp.perout_channels[i].ena) + ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], + false); +} + +/** + * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC + * @info: the driver's PTP info structure + * @rq: The requested feature to change + * @on: Enable/disable flag + */ +static int +ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, + struct ptp_clock_request *rq, int on) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + struct ice_perout_channel clk_cfg = {0}; + bool sma_pres = false; + unsigned int chan; + u32 gpio_pin; + int err; + + if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) + sma_pres = true; + + switch (rq->type) { + case PTP_CLK_REQ_PEROUT: + chan = rq->perout.index; + if (sma_pres) { + if (chan == ice_pin_desc_e810t[SMA1].chan) + clk_cfg.gpio_pin = GPIO_20; + else if (chan == ice_pin_desc_e810t[SMA2].chan) + clk_cfg.gpio_pin = GPIO_22; + else + return -1; + } else if (ice_is_e810t(&pf->hw)) { + if (chan == 0) + clk_cfg.gpio_pin = GPIO_20; + else + clk_cfg.gpio_pin = GPIO_22; + } else if (chan == PPS_CLK_GEN_CHAN) { + clk_cfg.gpio_pin = PPS_PIN_INDEX; + } else { + clk_cfg.gpio_pin = chan; + } + + clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + + rq->perout.period.nsec); + clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + + rq->perout.start.nsec); + clk_cfg.ena = !!on; + + err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); + break; + case PTP_CLK_REQ_EXTTS: + chan = rq->extts.index; + if (sma_pres) { + if (chan < ice_pin_desc_e810t[SMA2].chan) + gpio_pin = GPIO_21; + else + gpio_pin = GPIO_23; + } else if (ice_is_e810t(&pf->hw)) { + if (chan == 0) + gpio_pin = GPIO_21; + else + gpio_pin = GPIO_23; + } else { + gpio_pin = chan; + } + + err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, + rq->extts.flags); + break; + default: + return -EOPNOTSUPP; + } + + return err; +} + +/** + * ice_ptp_gettimex64 - Get the time of the clock + * @info: the driver's PTP info structure + * @ts: timespec64 structure to hold the current time value + * @sts: Optional parameter for holding a pair of system timestamps from + * the system clock. Will be ignored if NULL is given. + * + * Read the device clock and return the correct value on ns, after converting it + * into a timespec struct. + */ +static int +ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, + struct ptp_system_timestamp *sts) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + struct ice_hw *hw = &pf->hw; + + if (!ice_ptp_lock(hw)) { + dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); + return -EBUSY; + } + + ice_ptp_read_time(pf, ts, sts); + ice_ptp_unlock(hw); + + return 0; +} + +/** + * ice_ptp_settime64 - Set the time of the clock + * @info: the driver's PTP info structure + * @ts: timespec64 structure that holds the new time value + * + * Set the device clock to the user input value. The conversion from timespec + * to ns happens in the write function. + */ +static int +ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + struct timespec64 ts64 = *ts; + struct ice_hw *hw = &pf->hw; + int err; + + /* For Vernier mode, we need to recalibrate after new settime + * Start with disabling timestamp block + */ + if (pf->ptp.port.link_up) + ice_ptp_port_phy_stop(&pf->ptp.port); + + if (!ice_ptp_lock(hw)) { + err = -EBUSY; + goto exit; + } + + /* Disable periodic outputs */ + ice_ptp_disable_all_clkout(pf); + + err = ice_ptp_write_init(pf, &ts64); + ice_ptp_unlock(hw); + + if (!err) + ice_ptp_reset_cached_phctime(pf); + + /* Reenable periodic outputs */ + ice_ptp_enable_all_clkout(pf); + + /* Recalibrate and re-enable timestamp block */ + if (pf->ptp.port.link_up) + ice_ptp_port_phy_restart(&pf->ptp.port); +exit: + if (err) { + dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); + return err; + } + + return 0; +} + +/** + * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment + * @info: the driver's PTP info structure + * @delta: Offset in nanoseconds to adjust the time by + */ +static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) +{ + struct timespec64 now, then; + int ret; + + then = ns_to_timespec64(delta); + ret = ice_ptp_gettimex64(info, &now, NULL); + if (ret) + return ret; + now = timespec64_add(now, then); + + return ice_ptp_settime64(info, (const struct timespec64 *)&now); +} + +/** + * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta + * @info: the driver's PTP info structure + * @delta: Offset in nanoseconds to adjust the time by + */ +static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + struct ice_hw *hw = &pf->hw; + struct device *dev; + int err; + + dev = ice_pf_to_dev(pf); + + /* Hardware only supports atomic adjustments using signed 32-bit + * integers. For any adjustment outside this range, perform + * a non-atomic get->adjust->set flow. + */ + if (delta > S32_MAX || delta < S32_MIN) { + dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); + return ice_ptp_adjtime_nonatomic(info, delta); + } + + if (!ice_ptp_lock(hw)) { + dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); + return -EBUSY; + } + + /* Disable periodic outputs */ + ice_ptp_disable_all_clkout(pf); + + err = ice_ptp_write_adj(pf, delta); + + /* Reenable periodic outputs */ + ice_ptp_enable_all_clkout(pf); + + ice_ptp_unlock(hw); + + if (err) { + dev_err(dev, "PTP failed to adjust time, err %d\n", err); + return err; + } + + ice_ptp_reset_cached_phctime(pf); + + return 0; +} + +#ifdef CONFIG_ICE_HWTS +/** + * ice_ptp_get_syncdevicetime - Get the cross time stamp info + * @device: Current device time + * @system: System counter value read synchronously with device time + * @ctx: Context provided by timekeeping code + * + * Read device and system (ART) clock simultaneously and return the corrected + * clock values in ns. + */ +static int +ice_ptp_get_syncdevicetime(ktime_t *device, + struct system_counterval_t *system, + void *ctx) +{ + struct ice_pf *pf = (struct ice_pf *)ctx; + struct ice_hw *hw = &pf->hw; + u32 hh_lock, hh_art_ctl; + int i; + + /* Get the HW lock */ + hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); + if (hh_lock & PFHH_SEM_BUSY_M) { + dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); + return -EFAULT; + } + + /* Start the ART and device clock sync sequence */ + hh_art_ctl = rd32(hw, GLHH_ART_CTL); + hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; + wr32(hw, GLHH_ART_CTL, hh_art_ctl); + +#define MAX_HH_LOCK_TRIES 100 + + for (i = 0; i < MAX_HH_LOCK_TRIES; i++) { + /* Wait for sync to complete */ + hh_art_ctl = rd32(hw, GLHH_ART_CTL); + if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { + udelay(1); + continue; + } else { + u32 hh_ts_lo, hh_ts_hi, tmr_idx; + u64 hh_ts; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; + /* Read ART time */ + hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); + hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); + hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; + *system = convert_art_ns_to_tsc(hh_ts); + /* Read Device source clock time */ + hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); + hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); + hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; + *device = ns_to_ktime(hh_ts); + break; + } + } + /* Release HW lock */ + hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); + hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; + wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); + + if (i == MAX_HH_LOCK_TRIES) + return -ETIMEDOUT; + + return 0; +} + +/** + * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp + * @info: the driver's PTP info structure + * @cts: The memory to fill the cross timestamp info + * + * Capture a cross timestamp between the ART and the device PTP hardware + * clock. Fill the cross timestamp information and report it back to the + * caller. + * + * This is only valid for E822 devices which have support for generating the + * cross timestamp via PCIe PTM. + * + * In order to correctly correlate the ART timestamp back to the TSC time, the + * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. + */ +static int +ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info, + struct system_device_crosststamp *cts) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + + return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, + pf, NULL, cts); +} +#endif /* CONFIG_ICE_HWTS */ + +/** + * ice_ptp_get_ts_config - ioctl interface to read the timestamping config + * @pf: Board private structure + * @ifr: ioctl data + * + * Copy the timestamping config to user buffer + */ +int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) +{ + struct hwtstamp_config *config; + + if (!test_bit(ICE_FLAG_PTP, pf->flags)) + return -EIO; + + config = &pf->ptp.tstamp_config; + + return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? + -EFAULT : 0; +} + +/** + * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode + * @pf: Board private structure + * @config: hwtstamp settings requested or saved + */ +static int +ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) +{ + switch (config->tx_type) { + case HWTSTAMP_TX_OFF: + ice_set_tx_tstamp(pf, false); + break; + case HWTSTAMP_TX_ON: + ice_set_tx_tstamp(pf, true); + break; + default: + return -ERANGE; + } + + switch (config->rx_filter) { + case HWTSTAMP_FILTER_NONE: + ice_set_rx_tstamp(pf, false); + break; + case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: + case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: + case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: + case HWTSTAMP_FILTER_PTP_V2_EVENT: + case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: + case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: + case HWTSTAMP_FILTER_PTP_V2_SYNC: + case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: + case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: + case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: + case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: + case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: + case HWTSTAMP_FILTER_NTP_ALL: + case HWTSTAMP_FILTER_ALL: + ice_set_rx_tstamp(pf, true); + break; + default: + return -ERANGE; + } + + return 0; +} + +/** + * ice_ptp_set_ts_config - ioctl interface to control the timestamping + * @pf: Board private structure + * @ifr: ioctl data + * + * Get the user config and store it + */ +int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) +{ + struct hwtstamp_config config; + int err; + + if (!test_bit(ICE_FLAG_PTP, pf->flags)) + return -EAGAIN; + + if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) + return -EFAULT; + + err = ice_ptp_set_timestamp_mode(pf, &config); + if (err) + return err; + + /* Return the actual configuration set */ + config = pf->ptp.tstamp_config; + + return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? + -EFAULT : 0; +} + +/** + * ice_ptp_rx_hwtstamp - Check for an Rx timestamp + * @rx_ring: Ring to get the VSI info + * @rx_desc: Receive descriptor + * @skb: Particular skb to send timestamp with + * + * The driver receives a notification in the receive descriptor with timestamp. + * The timestamp is in ns, so we must convert the result first. + */ +void +ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, + union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) +{ + struct skb_shared_hwtstamps *hwtstamps; + u64 ts_ns, cached_time; + u32 ts_high; + + if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID)) + return; + + cached_time = READ_ONCE(rx_ring->cached_phctime); + + /* Do not report a timestamp if we don't have a cached PHC time */ + if (!cached_time) + return; + + /* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached + * PHC value, rather than accessing the PF. This also allows us to + * simply pass the upper 32bits of nanoseconds directly. Calling + * ice_ptp_extend_40b_ts is unnecessary as it would just discard these + * bits itself. + */ + ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); + ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high); + + hwtstamps = skb_hwtstamps(skb); + memset(hwtstamps, 0, sizeof(*hwtstamps)); + hwtstamps->hwtstamp = ns_to_ktime(ts_ns); +} + +/** + * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins + * @pf: pointer to the PF structure + * @info: PTP clock info structure + * + * Disable the OS access to the SMA pins. Called to clear out the OS + * indications of pin support when we fail to setup the E810-T SMA control + * register. + */ +static void +ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) +{ + struct device *dev = ice_pf_to_dev(pf); + + dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); + + info->enable = NULL; + info->verify = NULL; + info->n_pins = 0; + info->n_ext_ts = 0; + info->n_per_out = 0; +} + +/** + * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins + * @pf: pointer to the PF structure + * @info: PTP clock info structure + * + * Finish setting up the SMA pins by allocating pin_config, and setting it up + * according to the current status of the SMA. On failure, disable all of the + * extended SMA pin support. + */ +static void +ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) +{ + struct device *dev = ice_pf_to_dev(pf); + int err; + + /* Allocate memory for kernel pins interface */ + info->pin_config = devm_kcalloc(dev, info->n_pins, + sizeof(*info->pin_config), GFP_KERNEL); + if (!info->pin_config) { + ice_ptp_disable_sma_pins_e810t(pf, info); + return; + } + + /* Read current SMA status */ + err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); + if (err) + ice_ptp_disable_sma_pins_e810t(pf, info); +} + +/** + * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs + * @pf: pointer to the PF instance + * @info: PTP clock capabilities + */ +static void +ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info) +{ + info->n_per_out = N_PER_OUT_E810; + + if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) + info->n_ext_ts = N_EXT_TS_E810; + + if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { + info->n_ext_ts = N_EXT_TS_E810; + info->n_pins = NUM_PTP_PINS_E810T; + info->verify = ice_verify_pin_e810t; + + /* Complete setup of the SMA pins */ + ice_ptp_setup_sma_pins_e810t(pf, info); + } +} + +/** + * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support + * @pf: Board private structure + * @info: PTP info to fill + * + * Assign functions to the PTP capabiltiies structure for E822 devices. + * Functions which operate across all device families should be set directly + * in ice_ptp_set_caps. Only add functions here which are distinct for E822 + * devices. + */ +static void +ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info) +{ +#ifdef CONFIG_ICE_HWTS + if (boot_cpu_has(X86_FEATURE_ART) && + boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) + info->getcrosststamp = ice_ptp_getcrosststamp_e822; +#endif /* CONFIG_ICE_HWTS */ +} + +/** + * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support + * @pf: Board private structure + * @info: PTP info to fill + * + * Assign functions to the PTP capabiltiies structure for E810 devices. + * Functions which operate across all device families should be set directly + * in ice_ptp_set_caps. Only add functions here which are distinct for e810 + * devices. + */ +static void +ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) +{ + info->enable = ice_ptp_gpio_enable_e810; + ice_ptp_setup_pins_e810(pf, info); +} + +/** + * ice_ptp_set_caps - Set PTP capabilities + * @pf: Board private structure + */ +static void ice_ptp_set_caps(struct ice_pf *pf) +{ + struct ptp_clock_info *info = &pf->ptp.info; + struct device *dev = ice_pf_to_dev(pf); + + snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", + dev_driver_string(dev), dev_name(dev)); + info->owner = THIS_MODULE; + info->max_adj = 100000000; + info->adjtime = ice_ptp_adjtime; + info->adjfine = ice_ptp_adjfine; + info->gettimex64 = ice_ptp_gettimex64; + info->settime64 = ice_ptp_settime64; + + if (ice_is_e810(&pf->hw)) + ice_ptp_set_funcs_e810(pf, info); + else + ice_ptp_set_funcs_e822(pf, info); +} + +/** + * ice_ptp_create_clock - Create PTP clock device for userspace + * @pf: Board private structure + * + * This function creates a new PTP clock device. It only creates one if we + * don't already have one. Will return error if it can't create one, but success + * if we already have a device. Should be used by ice_ptp_init to create clock + * initially, and prevent global resets from creating new clock devices. + */ +static long ice_ptp_create_clock(struct ice_pf *pf) +{ + struct ptp_clock_info *info; + struct ptp_clock *clock; + struct device *dev; + + /* No need to create a clock device if we already have one */ + if (pf->ptp.clock) + return 0; + + ice_ptp_set_caps(pf); + + info = &pf->ptp.info; + dev = ice_pf_to_dev(pf); + + /* Attempt to register the clock before enabling the hardware. */ + clock = ptp_clock_register(info, dev); + if (IS_ERR(clock)) + return PTR_ERR(clock); + + pf->ptp.clock = clock; + + return 0; +} + +/** + * ice_ptp_request_ts - Request an available Tx timestamp index + * @tx: the PTP Tx timestamp tracker to request from + * @skb: the SKB to associate with this timestamp request + */ +s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) +{ + u8 idx; + + /* Check if this tracker is initialized */ + if (!tx->init || tx->calibrating) + return -1; + + spin_lock(&tx->lock); + /* Find and set the first available index */ + idx = find_first_zero_bit(tx->in_use, tx->len); + if (idx < tx->len) { + /* We got a valid index that no other thread could have set. Store + * a reference to the skb and the start time to allow discarding old + * requests. + */ + set_bit(idx, tx->in_use); + tx->tstamps[idx].start = jiffies; + tx->tstamps[idx].skb = skb_get(skb); + skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; + ice_trace(tx_tstamp_request, skb, idx); + } + + spin_unlock(&tx->lock); + + /* return the appropriate PHY timestamp register index, -1 if no + * indexes were available. + */ + if (idx >= tx->len) + return -1; + else + return idx + tx->quad_offset; +} + +/** + * ice_ptp_process_ts - Process the PTP Tx timestamps + * @pf: Board private structure + * + * Returns true if timestamps are processed. + */ +bool ice_ptp_process_ts(struct ice_pf *pf) +{ + return ice_ptp_tx_tstamp(&pf->ptp.port.tx); +} + +static void ice_ptp_periodic_work(struct kthread_work *work) +{ + struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); + struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); + int err; + + if (!test_bit(ICE_FLAG_PTP, pf->flags)) + return; + + err = ice_ptp_update_cached_phctime(pf); + + ice_ptp_tx_tstamp_cleanup(pf, &pf->ptp.port.tx); + + /* Run twice a second or reschedule if phc update failed */ + kthread_queue_delayed_work(ptp->kworker, &ptp->work, + msecs_to_jiffies(err ? 10 : 500)); +} + +/** + * ice_ptp_reset - Initialize PTP hardware clock support after reset + * @pf: Board private structure + */ +void ice_ptp_reset(struct ice_pf *pf) +{ + struct ice_ptp *ptp = &pf->ptp; + struct ice_hw *hw = &pf->hw; + struct timespec64 ts; + int err, itr = 1; + u64 time_diff; + + if (test_bit(ICE_PFR_REQ, pf->state)) + goto pfr; + + if (!hw->func_caps.ts_func_info.src_tmr_owned) + goto reset_ts; + + err = ice_ptp_init_phc(hw); + if (err) + goto err; + + /* Acquire the global hardware lock */ + if (!ice_ptp_lock(hw)) { + err = -EBUSY; + goto err; + } + + /* Write the increment time value to PHY and LAN */ + err = ice_ptp_write_incval(hw, ice_base_incval(pf)); + if (err) { + ice_ptp_unlock(hw); + goto err; + } + + /* Write the initial Time value to PHY and LAN using the cached PHC + * time before the reset and time difference between stopping and + * starting the clock. + */ + if (ptp->cached_phc_time) { + time_diff = ktime_get_real_ns() - ptp->reset_time; + ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); + } else { + ts = ktime_to_timespec64(ktime_get_real()); + } + err = ice_ptp_write_init(pf, &ts); + if (err) { + ice_ptp_unlock(hw); + goto err; + } + + /* Release the global hardware lock */ + ice_ptp_unlock(hw); + + if (!ice_is_e810(hw)) { + /* Enable quad interrupts */ + err = ice_ptp_tx_ena_intr(pf, true, itr); + if (err) + goto err; + } + +reset_ts: + /* Restart the PHY timestamping block */ + ice_ptp_reset_phy_timestamping(pf); + +pfr: + /* Init Tx structures */ + if (ice_is_e810(&pf->hw)) { + err = ice_ptp_init_tx_e810(pf, &ptp->port.tx); + } else { + kthread_init_delayed_work(&ptp->port.ov_work, + ice_ptp_wait_for_offset_valid); + err = ice_ptp_init_tx_e822(pf, &ptp->port.tx, + ptp->port.port_num); + } + if (err) + goto err; + + set_bit(ICE_FLAG_PTP, pf->flags); + + /* Start periodic work going */ + kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); + + dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); + return; + +err: + dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); +} + +/** + * ice_ptp_prepare_for_reset - Prepare PTP for reset + * @pf: Board private structure + */ +void ice_ptp_prepare_for_reset(struct ice_pf *pf) +{ + struct ice_ptp *ptp = &pf->ptp; + u8 src_tmr; + + clear_bit(ICE_FLAG_PTP, pf->flags); + + /* Disable timestamping for both Tx and Rx */ + ice_ptp_cfg_timestamp(pf, false); + + kthread_cancel_delayed_work_sync(&ptp->work); + + if (test_bit(ICE_PFR_REQ, pf->state)) + return; + + ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); + + /* Disable periodic outputs */ + ice_ptp_disable_all_clkout(pf); + + src_tmr = ice_get_ptp_src_clock_index(&pf->hw); + + /* Disable source clock */ + wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); + + /* Acquire PHC and system timer to restore after reset */ + ptp->reset_time = ktime_get_real_ns(); +} + +/** + * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device + * @pf: Board private structure + * + * Setup and initialize a PTP clock device that represents the device hardware + * clock. Save the clock index for other functions connected to the same + * hardware resource. + */ +static int ice_ptp_init_owner(struct ice_pf *pf) +{ + struct ice_hw *hw = &pf->hw; + struct timespec64 ts; + int err, itr = 1; + + err = ice_ptp_init_phc(hw); + if (err) { + dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", + err); + return err; + } + + /* Acquire the global hardware lock */ + if (!ice_ptp_lock(hw)) { + err = -EBUSY; + goto err_exit; + } + + /* Write the increment time value to PHY and LAN */ + err = ice_ptp_write_incval(hw, ice_base_incval(pf)); + if (err) { + ice_ptp_unlock(hw); + goto err_exit; + } + + ts = ktime_to_timespec64(ktime_get_real()); + /* Write the initial Time value to PHY and LAN */ + err = ice_ptp_write_init(pf, &ts); + if (err) { + ice_ptp_unlock(hw); + goto err_exit; + } + + /* Release the global hardware lock */ + ice_ptp_unlock(hw); + + if (!ice_is_e810(hw)) { + /* Enable quad interrupts */ + err = ice_ptp_tx_ena_intr(pf, true, itr); + if (err) + goto err_exit; + } + + /* Ensure we have a clock device */ + err = ice_ptp_create_clock(pf); + if (err) + goto err_clk; + + /* Store the PTP clock index for other PFs */ + ice_set_ptp_clock_index(pf); + + return 0; + +err_clk: + pf->ptp.clock = NULL; +err_exit: + return err; +} + +/** + * ice_ptp_init_work - Initialize PTP work threads + * @pf: Board private structure + * @ptp: PF PTP structure + */ +static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) +{ + struct kthread_worker *kworker; + + /* Initialize work functions */ + kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); + + /* Allocate a kworker for handling work required for the ports + * connected to the PTP hardware clock. + */ + kworker = kthread_create_worker(0, "ice-ptp-%s", + dev_name(ice_pf_to_dev(pf))); + if (IS_ERR(kworker)) + return PTR_ERR(kworker); + + ptp->kworker = kworker; + + /* Start periodic work going */ + kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); + + return 0; +} + +/** + * ice_ptp_init_port - Initialize PTP port structure + * @pf: Board private structure + * @ptp_port: PTP port structure + */ +static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) +{ + mutex_init(&ptp_port->ps_lock); + + if (ice_is_e810(&pf->hw)) + return ice_ptp_init_tx_e810(pf, &ptp_port->tx); + + kthread_init_delayed_work(&ptp_port->ov_work, + ice_ptp_wait_for_offset_valid); + return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num); +} + +/** + * ice_ptp_init - Initialize PTP hardware clock support + * @pf: Board private structure + * + * Set up the device for interacting with the PTP hardware clock for all + * functions, both the function that owns the clock hardware, and the + * functions connected to the clock hardware. + * + * The clock owner will allocate and register a ptp_clock with the + * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work + * items used for asynchronous work such as Tx timestamps and periodic work. + */ +void ice_ptp_init(struct ice_pf *pf) +{ + struct ice_ptp *ptp = &pf->ptp; + struct ice_hw *hw = &pf->hw; + int err; + + /* If this function owns the clock hardware, it must allocate and + * configure the PTP clock device to represent it. + */ + if (hw->func_caps.ts_func_info.src_tmr_owned) { + err = ice_ptp_init_owner(pf); + if (err) + goto err; + } + + ptp->port.port_num = hw->pf_id; + err = ice_ptp_init_port(pf, &ptp->port); + if (err) + goto err; + + /* Start the PHY timestamping block */ + ice_ptp_reset_phy_timestamping(pf); + + set_bit(ICE_FLAG_PTP, pf->flags); + err = ice_ptp_init_work(pf, ptp); + if (err) + goto err; + + dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); + return; + +err: + /* If we registered a PTP clock, release it */ + if (pf->ptp.clock) { + ptp_clock_unregister(ptp->clock); + pf->ptp.clock = NULL; + } + clear_bit(ICE_FLAG_PTP, pf->flags); + dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); +} + +/** + * ice_ptp_release - Disable the driver/HW support and unregister the clock + * @pf: Board private structure + * + * This function handles the cleanup work required from the initialization by + * clearing out the important information and unregistering the clock + */ +void ice_ptp_release(struct ice_pf *pf) +{ + if (!test_bit(ICE_FLAG_PTP, pf->flags)) + return; + + /* Disable timestamping for both Tx and Rx */ + ice_ptp_cfg_timestamp(pf, false); + + ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); + + clear_bit(ICE_FLAG_PTP, pf->flags); + + kthread_cancel_delayed_work_sync(&pf->ptp.work); + + ice_ptp_port_phy_stop(&pf->ptp.port); + mutex_destroy(&pf->ptp.port.ps_lock); + if (pf->ptp.kworker) { + kthread_destroy_worker(pf->ptp.kworker); + pf->ptp.kworker = NULL; + } + + if (!pf->ptp.clock) + return; + + /* Disable periodic outputs */ + ice_ptp_disable_all_clkout(pf); + + ice_clear_ptp_clock_index(pf); + ptp_clock_unregister(pf->ptp.clock); + pf->ptp.clock = NULL; + + dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); +} |