diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/nvme/host/core.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/nvme/host/core.c')
-rw-r--r-- | drivers/nvme/host/core.c | 5551 |
1 files changed, 5551 insertions, 0 deletions
diff --git a/drivers/nvme/host/core.c b/drivers/nvme/host/core.c new file mode 100644 index 000000000..0c088db94 --- /dev/null +++ b/drivers/nvme/host/core.c @@ -0,0 +1,5551 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * NVM Express device driver + * Copyright (c) 2011-2014, Intel Corporation. + */ + +#include <linux/blkdev.h> +#include <linux/blk-mq.h> +#include <linux/blk-integrity.h> +#include <linux/compat.h> +#include <linux/delay.h> +#include <linux/errno.h> +#include <linux/hdreg.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/backing-dev.h> +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/pr.h> +#include <linux/ptrace.h> +#include <linux/nvme_ioctl.h> +#include <linux/pm_qos.h> +#include <asm/unaligned.h> + +#include "nvme.h" +#include "fabrics.h" +#include <linux/nvme-auth.h> + +#define CREATE_TRACE_POINTS +#include "trace.h" + +#define NVME_MINORS (1U << MINORBITS) + +struct nvme_ns_info { + struct nvme_ns_ids ids; + u32 nsid; + __le32 anagrpid; + bool is_shared; + bool is_readonly; + bool is_ready; + bool is_removed; +}; + +unsigned int admin_timeout = 60; +module_param(admin_timeout, uint, 0644); +MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); +EXPORT_SYMBOL_GPL(admin_timeout); + +unsigned int nvme_io_timeout = 30; +module_param_named(io_timeout, nvme_io_timeout, uint, 0644); +MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); +EXPORT_SYMBOL_GPL(nvme_io_timeout); + +static unsigned char shutdown_timeout = 5; +module_param(shutdown_timeout, byte, 0644); +MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); + +static u8 nvme_max_retries = 5; +module_param_named(max_retries, nvme_max_retries, byte, 0644); +MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); + +static unsigned long default_ps_max_latency_us = 100000; +module_param(default_ps_max_latency_us, ulong, 0644); +MODULE_PARM_DESC(default_ps_max_latency_us, + "max power saving latency for new devices; use PM QOS to change per device"); + +static bool force_apst; +module_param(force_apst, bool, 0644); +MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); + +static unsigned long apst_primary_timeout_ms = 100; +module_param(apst_primary_timeout_ms, ulong, 0644); +MODULE_PARM_DESC(apst_primary_timeout_ms, + "primary APST timeout in ms"); + +static unsigned long apst_secondary_timeout_ms = 2000; +module_param(apst_secondary_timeout_ms, ulong, 0644); +MODULE_PARM_DESC(apst_secondary_timeout_ms, + "secondary APST timeout in ms"); + +static unsigned long apst_primary_latency_tol_us = 15000; +module_param(apst_primary_latency_tol_us, ulong, 0644); +MODULE_PARM_DESC(apst_primary_latency_tol_us, + "primary APST latency tolerance in us"); + +static unsigned long apst_secondary_latency_tol_us = 100000; +module_param(apst_secondary_latency_tol_us, ulong, 0644); +MODULE_PARM_DESC(apst_secondary_latency_tol_us, + "secondary APST latency tolerance in us"); + +/* + * nvme_wq - hosts nvme related works that are not reset or delete + * nvme_reset_wq - hosts nvme reset works + * nvme_delete_wq - hosts nvme delete works + * + * nvme_wq will host works such as scan, aen handling, fw activation, + * keep-alive, periodic reconnects etc. nvme_reset_wq + * runs reset works which also flush works hosted on nvme_wq for + * serialization purposes. nvme_delete_wq host controller deletion + * works which flush reset works for serialization. + */ +struct workqueue_struct *nvme_wq; +EXPORT_SYMBOL_GPL(nvme_wq); + +struct workqueue_struct *nvme_reset_wq; +EXPORT_SYMBOL_GPL(nvme_reset_wq); + +struct workqueue_struct *nvme_delete_wq; +EXPORT_SYMBOL_GPL(nvme_delete_wq); + +static LIST_HEAD(nvme_subsystems); +static DEFINE_MUTEX(nvme_subsystems_lock); + +static DEFINE_IDA(nvme_instance_ida); +static dev_t nvme_ctrl_base_chr_devt; +static struct class *nvme_class; +static struct class *nvme_subsys_class; + +static DEFINE_IDA(nvme_ns_chr_minor_ida); +static dev_t nvme_ns_chr_devt; +static struct class *nvme_ns_chr_class; + +static void nvme_put_subsystem(struct nvme_subsystem *subsys); +static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, + unsigned nsid); +static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, + struct nvme_command *cmd); + +void nvme_queue_scan(struct nvme_ctrl *ctrl) +{ + /* + * Only new queue scan work when admin and IO queues are both alive + */ + if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) + queue_work(nvme_wq, &ctrl->scan_work); +} + +/* + * Use this function to proceed with scheduling reset_work for a controller + * that had previously been set to the resetting state. This is intended for + * code paths that can't be interrupted by other reset attempts. A hot removal + * may prevent this from succeeding. + */ +int nvme_try_sched_reset(struct nvme_ctrl *ctrl) +{ + if (ctrl->state != NVME_CTRL_RESETTING) + return -EBUSY; + if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) + return -EBUSY; + return 0; +} +EXPORT_SYMBOL_GPL(nvme_try_sched_reset); + +static void nvme_failfast_work(struct work_struct *work) +{ + struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), + struct nvme_ctrl, failfast_work); + + if (ctrl->state != NVME_CTRL_CONNECTING) + return; + + set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); + dev_info(ctrl->device, "failfast expired\n"); + nvme_kick_requeue_lists(ctrl); +} + +static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) +{ + if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) + return; + + schedule_delayed_work(&ctrl->failfast_work, + ctrl->opts->fast_io_fail_tmo * HZ); +} + +static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) +{ + if (!ctrl->opts) + return; + + cancel_delayed_work_sync(&ctrl->failfast_work); + clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); +} + + +int nvme_reset_ctrl(struct nvme_ctrl *ctrl) +{ + if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) + return -EBUSY; + if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) + return -EBUSY; + return 0; +} +EXPORT_SYMBOL_GPL(nvme_reset_ctrl); + +int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) +{ + int ret; + + ret = nvme_reset_ctrl(ctrl); + if (!ret) { + flush_work(&ctrl->reset_work); + if (ctrl->state != NVME_CTRL_LIVE) + ret = -ENETRESET; + } + + return ret; +} + +static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) +{ + dev_info(ctrl->device, + "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); + + flush_work(&ctrl->reset_work); + nvme_stop_ctrl(ctrl); + nvme_remove_namespaces(ctrl); + ctrl->ops->delete_ctrl(ctrl); + nvme_uninit_ctrl(ctrl); +} + +static void nvme_delete_ctrl_work(struct work_struct *work) +{ + struct nvme_ctrl *ctrl = + container_of(work, struct nvme_ctrl, delete_work); + + nvme_do_delete_ctrl(ctrl); +} + +int nvme_delete_ctrl(struct nvme_ctrl *ctrl) +{ + if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) + return -EBUSY; + if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) + return -EBUSY; + return 0; +} +EXPORT_SYMBOL_GPL(nvme_delete_ctrl); + +static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) +{ + /* + * Keep a reference until nvme_do_delete_ctrl() complete, + * since ->delete_ctrl can free the controller. + */ + nvme_get_ctrl(ctrl); + if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) + nvme_do_delete_ctrl(ctrl); + nvme_put_ctrl(ctrl); +} + +static blk_status_t nvme_error_status(u16 status) +{ + switch (status & 0x7ff) { + case NVME_SC_SUCCESS: + return BLK_STS_OK; + case NVME_SC_CAP_EXCEEDED: + return BLK_STS_NOSPC; + case NVME_SC_LBA_RANGE: + case NVME_SC_CMD_INTERRUPTED: + case NVME_SC_NS_NOT_READY: + return BLK_STS_TARGET; + case NVME_SC_BAD_ATTRIBUTES: + case NVME_SC_ONCS_NOT_SUPPORTED: + case NVME_SC_INVALID_OPCODE: + case NVME_SC_INVALID_FIELD: + case NVME_SC_INVALID_NS: + return BLK_STS_NOTSUPP; + case NVME_SC_WRITE_FAULT: + case NVME_SC_READ_ERROR: + case NVME_SC_UNWRITTEN_BLOCK: + case NVME_SC_ACCESS_DENIED: + case NVME_SC_READ_ONLY: + case NVME_SC_COMPARE_FAILED: + return BLK_STS_MEDIUM; + case NVME_SC_GUARD_CHECK: + case NVME_SC_APPTAG_CHECK: + case NVME_SC_REFTAG_CHECK: + case NVME_SC_INVALID_PI: + return BLK_STS_PROTECTION; + case NVME_SC_RESERVATION_CONFLICT: + return BLK_STS_NEXUS; + case NVME_SC_HOST_PATH_ERROR: + return BLK_STS_TRANSPORT; + case NVME_SC_ZONE_TOO_MANY_ACTIVE: + return BLK_STS_ZONE_ACTIVE_RESOURCE; + case NVME_SC_ZONE_TOO_MANY_OPEN: + return BLK_STS_ZONE_OPEN_RESOURCE; + default: + return BLK_STS_IOERR; + } +} + +static void nvme_retry_req(struct request *req) +{ + unsigned long delay = 0; + u16 crd; + + /* The mask and shift result must be <= 3 */ + crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; + if (crd) + delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; + + nvme_req(req)->retries++; + blk_mq_requeue_request(req, false); + blk_mq_delay_kick_requeue_list(req->q, delay); +} + +static void nvme_log_error(struct request *req) +{ + struct nvme_ns *ns = req->q->queuedata; + struct nvme_request *nr = nvme_req(req); + + if (ns) { + pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", + ns->disk ? ns->disk->disk_name : "?", + nvme_get_opcode_str(nr->cmd->common.opcode), + nr->cmd->common.opcode, + (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), + (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, + nvme_get_error_status_str(nr->status), + nr->status >> 8 & 7, /* Status Code Type */ + nr->status & 0xff, /* Status Code */ + nr->status & NVME_SC_MORE ? "MORE " : "", + nr->status & NVME_SC_DNR ? "DNR " : ""); + return; + } + + pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", + dev_name(nr->ctrl->device), + nvme_get_admin_opcode_str(nr->cmd->common.opcode), + nr->cmd->common.opcode, + nvme_get_error_status_str(nr->status), + nr->status >> 8 & 7, /* Status Code Type */ + nr->status & 0xff, /* Status Code */ + nr->status & NVME_SC_MORE ? "MORE " : "", + nr->status & NVME_SC_DNR ? "DNR " : ""); +} + +enum nvme_disposition { + COMPLETE, + RETRY, + FAILOVER, + AUTHENTICATE, +}; + +static inline enum nvme_disposition nvme_decide_disposition(struct request *req) +{ + if (likely(nvme_req(req)->status == 0)) + return COMPLETE; + + if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) + return AUTHENTICATE; + + if (blk_noretry_request(req) || + (nvme_req(req)->status & NVME_SC_DNR) || + nvme_req(req)->retries >= nvme_max_retries) + return COMPLETE; + + if (req->cmd_flags & REQ_NVME_MPATH) { + if (nvme_is_path_error(nvme_req(req)->status) || + blk_queue_dying(req->q)) + return FAILOVER; + } else { + if (blk_queue_dying(req->q)) + return COMPLETE; + } + + return RETRY; +} + +static inline void nvme_end_req_zoned(struct request *req) +{ + if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && + req_op(req) == REQ_OP_ZONE_APPEND) + req->__sector = nvme_lba_to_sect(req->q->queuedata, + le64_to_cpu(nvme_req(req)->result.u64)); +} + +static inline void nvme_end_req(struct request *req) +{ + blk_status_t status = nvme_error_status(nvme_req(req)->status); + + if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) + nvme_log_error(req); + nvme_end_req_zoned(req); + nvme_trace_bio_complete(req); + blk_mq_end_request(req, status); +} + +void nvme_complete_rq(struct request *req) +{ + struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; + + trace_nvme_complete_rq(req); + nvme_cleanup_cmd(req); + + /* + * Completions of long-running commands should not be able to + * defer sending of periodic keep alives, since the controller + * may have completed processing such commands a long time ago + * (arbitrarily close to command submission time). + * req->deadline - req->timeout is the command submission time + * in jiffies. + */ + if (ctrl->kas && + req->deadline - req->timeout >= ctrl->ka_last_check_time) + ctrl->comp_seen = true; + + switch (nvme_decide_disposition(req)) { + case COMPLETE: + nvme_end_req(req); + return; + case RETRY: + nvme_retry_req(req); + return; + case FAILOVER: + nvme_failover_req(req); + return; + case AUTHENTICATE: +#ifdef CONFIG_NVME_AUTH + queue_work(nvme_wq, &ctrl->dhchap_auth_work); + nvme_retry_req(req); +#else + nvme_end_req(req); +#endif + return; + } +} +EXPORT_SYMBOL_GPL(nvme_complete_rq); + +void nvme_complete_batch_req(struct request *req) +{ + trace_nvme_complete_rq(req); + nvme_cleanup_cmd(req); + nvme_end_req_zoned(req); +} +EXPORT_SYMBOL_GPL(nvme_complete_batch_req); + +/* + * Called to unwind from ->queue_rq on a failed command submission so that the + * multipathing code gets called to potentially failover to another path. + * The caller needs to unwind all transport specific resource allocations and + * must return propagate the return value. + */ +blk_status_t nvme_host_path_error(struct request *req) +{ + nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; + blk_mq_set_request_complete(req); + nvme_complete_rq(req); + return BLK_STS_OK; +} +EXPORT_SYMBOL_GPL(nvme_host_path_error); + +bool nvme_cancel_request(struct request *req, void *data) +{ + dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, + "Cancelling I/O %d", req->tag); + + /* don't abort one completed request */ + if (blk_mq_request_completed(req)) + return true; + + nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; + nvme_req(req)->flags |= NVME_REQ_CANCELLED; + blk_mq_complete_request(req); + return true; +} +EXPORT_SYMBOL_GPL(nvme_cancel_request); + +void nvme_cancel_tagset(struct nvme_ctrl *ctrl) +{ + if (ctrl->tagset) { + blk_mq_tagset_busy_iter(ctrl->tagset, + nvme_cancel_request, ctrl); + blk_mq_tagset_wait_completed_request(ctrl->tagset); + } +} +EXPORT_SYMBOL_GPL(nvme_cancel_tagset); + +void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) +{ + if (ctrl->admin_tagset) { + blk_mq_tagset_busy_iter(ctrl->admin_tagset, + nvme_cancel_request, ctrl); + blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); + } +} +EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); + +bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, + enum nvme_ctrl_state new_state) +{ + enum nvme_ctrl_state old_state; + unsigned long flags; + bool changed = false; + + spin_lock_irqsave(&ctrl->lock, flags); + + old_state = ctrl->state; + switch (new_state) { + case NVME_CTRL_LIVE: + switch (old_state) { + case NVME_CTRL_NEW: + case NVME_CTRL_RESETTING: + case NVME_CTRL_CONNECTING: + changed = true; + fallthrough; + default: + break; + } + break; + case NVME_CTRL_RESETTING: + switch (old_state) { + case NVME_CTRL_NEW: + case NVME_CTRL_LIVE: + changed = true; + fallthrough; + default: + break; + } + break; + case NVME_CTRL_CONNECTING: + switch (old_state) { + case NVME_CTRL_NEW: + case NVME_CTRL_RESETTING: + changed = true; + fallthrough; + default: + break; + } + break; + case NVME_CTRL_DELETING: + switch (old_state) { + case NVME_CTRL_LIVE: + case NVME_CTRL_RESETTING: + case NVME_CTRL_CONNECTING: + changed = true; + fallthrough; + default: + break; + } + break; + case NVME_CTRL_DELETING_NOIO: + switch (old_state) { + case NVME_CTRL_DELETING: + case NVME_CTRL_DEAD: + changed = true; + fallthrough; + default: + break; + } + break; + case NVME_CTRL_DEAD: + switch (old_state) { + case NVME_CTRL_DELETING: + changed = true; + fallthrough; + default: + break; + } + break; + default: + break; + } + + if (changed) { + ctrl->state = new_state; + wake_up_all(&ctrl->state_wq); + } + + spin_unlock_irqrestore(&ctrl->lock, flags); + if (!changed) + return false; + + if (ctrl->state == NVME_CTRL_LIVE) { + if (old_state == NVME_CTRL_CONNECTING) + nvme_stop_failfast_work(ctrl); + nvme_kick_requeue_lists(ctrl); + } else if (ctrl->state == NVME_CTRL_CONNECTING && + old_state == NVME_CTRL_RESETTING) { + nvme_start_failfast_work(ctrl); + } + return changed; +} +EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); + +/* + * Returns true for sink states that can't ever transition back to live. + */ +static bool nvme_state_terminal(struct nvme_ctrl *ctrl) +{ + switch (ctrl->state) { + case NVME_CTRL_NEW: + case NVME_CTRL_LIVE: + case NVME_CTRL_RESETTING: + case NVME_CTRL_CONNECTING: + return false; + case NVME_CTRL_DELETING: + case NVME_CTRL_DELETING_NOIO: + case NVME_CTRL_DEAD: + return true; + default: + WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); + return true; + } +} + +/* + * Waits for the controller state to be resetting, or returns false if it is + * not possible to ever transition to that state. + */ +bool nvme_wait_reset(struct nvme_ctrl *ctrl) +{ + wait_event(ctrl->state_wq, + nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || + nvme_state_terminal(ctrl)); + return ctrl->state == NVME_CTRL_RESETTING; +} +EXPORT_SYMBOL_GPL(nvme_wait_reset); + +static void nvme_free_ns_head(struct kref *ref) +{ + struct nvme_ns_head *head = + container_of(ref, struct nvme_ns_head, ref); + + nvme_mpath_remove_disk(head); + ida_free(&head->subsys->ns_ida, head->instance); + cleanup_srcu_struct(&head->srcu); + nvme_put_subsystem(head->subsys); + kfree(head); +} + +bool nvme_tryget_ns_head(struct nvme_ns_head *head) +{ + return kref_get_unless_zero(&head->ref); +} + +void nvme_put_ns_head(struct nvme_ns_head *head) +{ + kref_put(&head->ref, nvme_free_ns_head); +} + +static void nvme_free_ns(struct kref *kref) +{ + struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); + + put_disk(ns->disk); + nvme_put_ns_head(ns->head); + nvme_put_ctrl(ns->ctrl); + kfree(ns); +} + +static inline bool nvme_get_ns(struct nvme_ns *ns) +{ + return kref_get_unless_zero(&ns->kref); +} + +void nvme_put_ns(struct nvme_ns *ns) +{ + kref_put(&ns->kref, nvme_free_ns); +} +EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); + +static inline void nvme_clear_nvme_request(struct request *req) +{ + nvme_req(req)->status = 0; + nvme_req(req)->retries = 0; + nvme_req(req)->flags = 0; + req->rq_flags |= RQF_DONTPREP; +} + +/* initialize a passthrough request */ +void nvme_init_request(struct request *req, struct nvme_command *cmd) +{ + if (req->q->queuedata) + req->timeout = NVME_IO_TIMEOUT; + else /* no queuedata implies admin queue */ + req->timeout = NVME_ADMIN_TIMEOUT; + + /* passthru commands should let the driver set the SGL flags */ + cmd->common.flags &= ~NVME_CMD_SGL_ALL; + + req->cmd_flags |= REQ_FAILFAST_DRIVER; + if (req->mq_hctx->type == HCTX_TYPE_POLL) + req->cmd_flags |= REQ_POLLED; + nvme_clear_nvme_request(req); + req->rq_flags |= RQF_QUIET; + memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); +} +EXPORT_SYMBOL_GPL(nvme_init_request); + +/* + * For something we're not in a state to send to the device the default action + * is to busy it and retry it after the controller state is recovered. However, + * if the controller is deleting or if anything is marked for failfast or + * nvme multipath it is immediately failed. + * + * Note: commands used to initialize the controller will be marked for failfast. + * Note: nvme cli/ioctl commands are marked for failfast. + */ +blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, + struct request *rq) +{ + if (ctrl->state != NVME_CTRL_DELETING_NOIO && + ctrl->state != NVME_CTRL_DELETING && + ctrl->state != NVME_CTRL_DEAD && + !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && + !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) + return BLK_STS_RESOURCE; + return nvme_host_path_error(rq); +} +EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); + +bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, + bool queue_live) +{ + struct nvme_request *req = nvme_req(rq); + + /* + * currently we have a problem sending passthru commands + * on the admin_q if the controller is not LIVE because we can't + * make sure that they are going out after the admin connect, + * controller enable and/or other commands in the initialization + * sequence. until the controller will be LIVE, fail with + * BLK_STS_RESOURCE so that they will be rescheduled. + */ + if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) + return false; + + if (ctrl->ops->flags & NVME_F_FABRICS) { + /* + * Only allow commands on a live queue, except for the connect + * command, which is require to set the queue live in the + * appropinquate states. + */ + switch (ctrl->state) { + case NVME_CTRL_CONNECTING: + if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && + (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || + req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || + req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) + return true; + break; + default: + break; + case NVME_CTRL_DEAD: + return false; + } + } + + return queue_live; +} +EXPORT_SYMBOL_GPL(__nvme_check_ready); + +static inline void nvme_setup_flush(struct nvme_ns *ns, + struct nvme_command *cmnd) +{ + memset(cmnd, 0, sizeof(*cmnd)); + cmnd->common.opcode = nvme_cmd_flush; + cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); +} + +static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, + struct nvme_command *cmnd) +{ + unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; + struct nvme_dsm_range *range; + struct bio *bio; + + /* + * Some devices do not consider the DSM 'Number of Ranges' field when + * determining how much data to DMA. Always allocate memory for maximum + * number of segments to prevent device reading beyond end of buffer. + */ + static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; + + range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); + if (!range) { + /* + * If we fail allocation our range, fallback to the controller + * discard page. If that's also busy, it's safe to return + * busy, as we know we can make progress once that's freed. + */ + if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) + return BLK_STS_RESOURCE; + + range = page_address(ns->ctrl->discard_page); + } + + if (queue_max_discard_segments(req->q) == 1) { + u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req)); + u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9); + + range[0].cattr = cpu_to_le32(0); + range[0].nlb = cpu_to_le32(nlb); + range[0].slba = cpu_to_le64(slba); + n = 1; + } else { + __rq_for_each_bio(bio, req) { + u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); + u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; + + if (n < segments) { + range[n].cattr = cpu_to_le32(0); + range[n].nlb = cpu_to_le32(nlb); + range[n].slba = cpu_to_le64(slba); + } + n++; + } + } + + if (WARN_ON_ONCE(n != segments)) { + if (virt_to_page(range) == ns->ctrl->discard_page) + clear_bit_unlock(0, &ns->ctrl->discard_page_busy); + else + kfree(range); + return BLK_STS_IOERR; + } + + memset(cmnd, 0, sizeof(*cmnd)); + cmnd->dsm.opcode = nvme_cmd_dsm; + cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); + cmnd->dsm.nr = cpu_to_le32(segments - 1); + cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); + + req->special_vec.bv_page = virt_to_page(range); + req->special_vec.bv_offset = offset_in_page(range); + req->special_vec.bv_len = alloc_size; + req->rq_flags |= RQF_SPECIAL_PAYLOAD; + + return BLK_STS_OK; +} + +static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, + struct request *req) +{ + u32 upper, lower; + u64 ref48; + + /* both rw and write zeroes share the same reftag format */ + switch (ns->guard_type) { + case NVME_NVM_NS_16B_GUARD: + cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); + break; + case NVME_NVM_NS_64B_GUARD: + ref48 = ext_pi_ref_tag(req); + lower = lower_32_bits(ref48); + upper = upper_32_bits(ref48); + + cmnd->rw.reftag = cpu_to_le32(lower); + cmnd->rw.cdw3 = cpu_to_le32(upper); + break; + default: + break; + } +} + +static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, + struct request *req, struct nvme_command *cmnd) +{ + memset(cmnd, 0, sizeof(*cmnd)); + + if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) + return nvme_setup_discard(ns, req, cmnd); + + cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; + cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); + cmnd->write_zeroes.slba = + cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); + cmnd->write_zeroes.length = + cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); + + if (nvme_ns_has_pi(ns)) { + cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); + + switch (ns->pi_type) { + case NVME_NS_DPS_PI_TYPE1: + case NVME_NS_DPS_PI_TYPE2: + nvme_set_ref_tag(ns, cmnd, req); + break; + } + } + + return BLK_STS_OK; +} + +static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, + struct request *req, struct nvme_command *cmnd, + enum nvme_opcode op) +{ + u16 control = 0; + u32 dsmgmt = 0; + + if (req->cmd_flags & REQ_FUA) + control |= NVME_RW_FUA; + if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) + control |= NVME_RW_LR; + + if (req->cmd_flags & REQ_RAHEAD) + dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; + + cmnd->rw.opcode = op; + cmnd->rw.flags = 0; + cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); + cmnd->rw.cdw2 = 0; + cmnd->rw.cdw3 = 0; + cmnd->rw.metadata = 0; + cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); + cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); + cmnd->rw.reftag = 0; + cmnd->rw.apptag = 0; + cmnd->rw.appmask = 0; + + if (ns->ms) { + /* + * If formated with metadata, the block layer always provides a + * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else + * we enable the PRACT bit for protection information or set the + * namespace capacity to zero to prevent any I/O. + */ + if (!blk_integrity_rq(req)) { + if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) + return BLK_STS_NOTSUPP; + control |= NVME_RW_PRINFO_PRACT; + } + + switch (ns->pi_type) { + case NVME_NS_DPS_PI_TYPE3: + control |= NVME_RW_PRINFO_PRCHK_GUARD; + break; + case NVME_NS_DPS_PI_TYPE1: + case NVME_NS_DPS_PI_TYPE2: + control |= NVME_RW_PRINFO_PRCHK_GUARD | + NVME_RW_PRINFO_PRCHK_REF; + if (op == nvme_cmd_zone_append) + control |= NVME_RW_APPEND_PIREMAP; + nvme_set_ref_tag(ns, cmnd, req); + break; + } + } + + cmnd->rw.control = cpu_to_le16(control); + cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); + return 0; +} + +void nvme_cleanup_cmd(struct request *req) +{ + if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { + struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; + + if (req->special_vec.bv_page == ctrl->discard_page) + clear_bit_unlock(0, &ctrl->discard_page_busy); + else + kfree(bvec_virt(&req->special_vec)); + } +} +EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); + +blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) +{ + struct nvme_command *cmd = nvme_req(req)->cmd; + blk_status_t ret = BLK_STS_OK; + + if (!(req->rq_flags & RQF_DONTPREP)) + nvme_clear_nvme_request(req); + + switch (req_op(req)) { + case REQ_OP_DRV_IN: + case REQ_OP_DRV_OUT: + /* these are setup prior to execution in nvme_init_request() */ + break; + case REQ_OP_FLUSH: + nvme_setup_flush(ns, cmd); + break; + case REQ_OP_ZONE_RESET_ALL: + case REQ_OP_ZONE_RESET: + ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); + break; + case REQ_OP_ZONE_OPEN: + ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); + break; + case REQ_OP_ZONE_CLOSE: + ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); + break; + case REQ_OP_ZONE_FINISH: + ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); + break; + case REQ_OP_WRITE_ZEROES: + ret = nvme_setup_write_zeroes(ns, req, cmd); + break; + case REQ_OP_DISCARD: + ret = nvme_setup_discard(ns, req, cmd); + break; + case REQ_OP_READ: + ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); + break; + case REQ_OP_WRITE: + ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); + break; + case REQ_OP_ZONE_APPEND: + ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); + break; + default: + WARN_ON_ONCE(1); + return BLK_STS_IOERR; + } + + cmd->common.command_id = nvme_cid(req); + trace_nvme_setup_cmd(req, cmd); + return ret; +} +EXPORT_SYMBOL_GPL(nvme_setup_cmd); + +/* + * Return values: + * 0: success + * >0: nvme controller's cqe status response + * <0: kernel error in lieu of controller response + */ +static int nvme_execute_rq(struct request *rq, bool at_head) +{ + blk_status_t status; + + status = blk_execute_rq(rq, at_head); + if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) + return -EINTR; + if (nvme_req(rq)->status) + return nvme_req(rq)->status; + return blk_status_to_errno(status); +} + +/* + * Returns 0 on success. If the result is negative, it's a Linux error code; + * if the result is positive, it's an NVM Express status code + */ +int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, + union nvme_result *result, void *buffer, unsigned bufflen, + int qid, int at_head, blk_mq_req_flags_t flags) +{ + struct request *req; + int ret; + + if (qid == NVME_QID_ANY) + req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); + else + req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, + qid - 1); + + if (IS_ERR(req)) + return PTR_ERR(req); + nvme_init_request(req, cmd); + + if (buffer && bufflen) { + ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); + if (ret) + goto out; + } + + ret = nvme_execute_rq(req, at_head); + if (result && ret >= 0) + *result = nvme_req(req)->result; + out: + blk_mq_free_request(req); + return ret; +} +EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); + +int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, + void *buffer, unsigned bufflen) +{ + return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, + NVME_QID_ANY, 0, 0); +} +EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); + +static u32 nvme_known_admin_effects(u8 opcode) +{ + switch (opcode) { + case nvme_admin_format_nvm: + return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | + NVME_CMD_EFFECTS_CSE_MASK; + case nvme_admin_sanitize_nvm: + return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; + default: + break; + } + return 0; +} + +static u32 nvme_known_nvm_effects(u8 opcode) +{ + switch (opcode) { + case nvme_cmd_write: + case nvme_cmd_write_zeroes: + case nvme_cmd_write_uncor: + return NVME_CMD_EFFECTS_LBCC; + default: + return 0; + } +} + +u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) +{ + u32 effects = 0; + + if (ns) { + if (ns->head->effects) + effects = le32_to_cpu(ns->head->effects->iocs[opcode]); + if (ns->head->ids.csi == NVME_CSI_NVM) + effects |= nvme_known_nvm_effects(opcode); + if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) + dev_warn_once(ctrl->device, + "IO command:%02x has unusual effects:%08x\n", + opcode, effects); + + /* + * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, + * which would deadlock when done on an I/O command. Note that + * We already warn about an unusual effect above. + */ + effects &= ~NVME_CMD_EFFECTS_CSE_MASK; + } else { + if (ctrl->effects) + effects = le32_to_cpu(ctrl->effects->acs[opcode]); + effects |= nvme_known_admin_effects(opcode); + } + + return effects; +} +EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); + +static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, + u8 opcode) +{ + u32 effects = nvme_command_effects(ctrl, ns, opcode); + + /* + * For simplicity, IO to all namespaces is quiesced even if the command + * effects say only one namespace is affected. + */ + if (effects & NVME_CMD_EFFECTS_CSE_MASK) { + mutex_lock(&ctrl->scan_lock); + mutex_lock(&ctrl->subsys->lock); + nvme_mpath_start_freeze(ctrl->subsys); + nvme_mpath_wait_freeze(ctrl->subsys); + nvme_start_freeze(ctrl); + nvme_wait_freeze(ctrl); + } + return effects; +} + +void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, + struct nvme_command *cmd, int status) +{ + if (effects & NVME_CMD_EFFECTS_CSE_MASK) { + nvme_unfreeze(ctrl); + nvme_mpath_unfreeze(ctrl->subsys); + mutex_unlock(&ctrl->subsys->lock); + nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); + mutex_unlock(&ctrl->scan_lock); + } + if (effects & NVME_CMD_EFFECTS_CCC) + nvme_init_ctrl_finish(ctrl); + if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { + nvme_queue_scan(ctrl); + flush_work(&ctrl->scan_work); + } + + switch (cmd->common.opcode) { + case nvme_admin_set_features: + switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { + case NVME_FEAT_KATO: + /* + * Keep alive commands interval on the host should be + * updated when KATO is modified by Set Features + * commands. + */ + if (!status) + nvme_update_keep_alive(ctrl, cmd); + break; + default: + break; + } + break; + default: + break; + } +} +EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); + +int nvme_execute_passthru_rq(struct request *rq, u32 *effects) +{ + struct nvme_command *cmd = nvme_req(rq)->cmd; + struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; + struct nvme_ns *ns = rq->q->queuedata; + + *effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); + return nvme_execute_rq(rq, false); +} +EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); + +/* + * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: + * + * The host should send Keep Alive commands at half of the Keep Alive Timeout + * accounting for transport roundtrip times [..]. + */ +static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) +{ + unsigned long delay = ctrl->kato * HZ / 2; + + /* + * When using Traffic Based Keep Alive, we need to run + * nvme_keep_alive_work at twice the normal frequency, as one + * command completion can postpone sending a keep alive command + * by up to twice the delay between runs. + */ + if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) + delay /= 2; + return delay; +} + +static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) +{ + queue_delayed_work(nvme_wq, &ctrl->ka_work, + nvme_keep_alive_work_period(ctrl)); +} + +static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, + blk_status_t status) +{ + struct nvme_ctrl *ctrl = rq->end_io_data; + unsigned long flags; + bool startka = false; + unsigned long rtt = jiffies - (rq->deadline - rq->timeout); + unsigned long delay = nvme_keep_alive_work_period(ctrl); + + /* + * Subtract off the keepalive RTT so nvme_keep_alive_work runs + * at the desired frequency. + */ + if (rtt <= delay) { + delay -= rtt; + } else { + dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", + jiffies_to_msecs(rtt)); + delay = 0; + } + + blk_mq_free_request(rq); + + if (status) { + dev_err(ctrl->device, + "failed nvme_keep_alive_end_io error=%d\n", + status); + return RQ_END_IO_NONE; + } + + ctrl->ka_last_check_time = jiffies; + ctrl->comp_seen = false; + spin_lock_irqsave(&ctrl->lock, flags); + if (ctrl->state == NVME_CTRL_LIVE || + ctrl->state == NVME_CTRL_CONNECTING) + startka = true; + spin_unlock_irqrestore(&ctrl->lock, flags); + if (startka) + queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); + return RQ_END_IO_NONE; +} + +static void nvme_keep_alive_work(struct work_struct *work) +{ + struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), + struct nvme_ctrl, ka_work); + bool comp_seen = ctrl->comp_seen; + struct request *rq; + + ctrl->ka_last_check_time = jiffies; + + if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { + dev_dbg(ctrl->device, + "reschedule traffic based keep-alive timer\n"); + ctrl->comp_seen = false; + nvme_queue_keep_alive_work(ctrl); + return; + } + + rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), + BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); + if (IS_ERR(rq)) { + /* allocation failure, reset the controller */ + dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); + nvme_reset_ctrl(ctrl); + return; + } + nvme_init_request(rq, &ctrl->ka_cmd); + + rq->timeout = ctrl->kato * HZ; + rq->end_io = nvme_keep_alive_end_io; + rq->end_io_data = ctrl; + blk_execute_rq_nowait(rq, false); +} + +static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) +{ + if (unlikely(ctrl->kato == 0)) + return; + + nvme_queue_keep_alive_work(ctrl); +} + +void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) +{ + if (unlikely(ctrl->kato == 0)) + return; + + cancel_delayed_work_sync(&ctrl->ka_work); +} +EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); + +static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, + struct nvme_command *cmd) +{ + unsigned int new_kato = + DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); + + dev_info(ctrl->device, + "keep alive interval updated from %u ms to %u ms\n", + ctrl->kato * 1000 / 2, new_kato * 1000 / 2); + + nvme_stop_keep_alive(ctrl); + ctrl->kato = new_kato; + nvme_start_keep_alive(ctrl); +} + +/* + * In NVMe 1.0 the CNS field was just a binary controller or namespace + * flag, thus sending any new CNS opcodes has a big chance of not working. + * Qemu unfortunately had that bug after reporting a 1.1 version compliance + * (but not for any later version). + */ +static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) +{ + if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) + return ctrl->vs < NVME_VS(1, 2, 0); + return ctrl->vs < NVME_VS(1, 1, 0); +} + +static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) +{ + struct nvme_command c = { }; + int error; + + /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ + c.identify.opcode = nvme_admin_identify; + c.identify.cns = NVME_ID_CNS_CTRL; + + *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); + if (!*id) + return -ENOMEM; + + error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, + sizeof(struct nvme_id_ctrl)); + if (error) + kfree(*id); + return error; +} + +static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, + struct nvme_ns_id_desc *cur, bool *csi_seen) +{ + const char *warn_str = "ctrl returned bogus length:"; + void *data = cur; + + switch (cur->nidt) { + case NVME_NIDT_EUI64: + if (cur->nidl != NVME_NIDT_EUI64_LEN) { + dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", + warn_str, cur->nidl); + return -1; + } + if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) + return NVME_NIDT_EUI64_LEN; + memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); + return NVME_NIDT_EUI64_LEN; + case NVME_NIDT_NGUID: + if (cur->nidl != NVME_NIDT_NGUID_LEN) { + dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", + warn_str, cur->nidl); + return -1; + } + if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) + return NVME_NIDT_NGUID_LEN; + memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); + return NVME_NIDT_NGUID_LEN; + case NVME_NIDT_UUID: + if (cur->nidl != NVME_NIDT_UUID_LEN) { + dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", + warn_str, cur->nidl); + return -1; + } + if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) + return NVME_NIDT_UUID_LEN; + uuid_copy(&ids->uuid, data + sizeof(*cur)); + return NVME_NIDT_UUID_LEN; + case NVME_NIDT_CSI: + if (cur->nidl != NVME_NIDT_CSI_LEN) { + dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", + warn_str, cur->nidl); + return -1; + } + memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); + *csi_seen = true; + return NVME_NIDT_CSI_LEN; + default: + /* Skip unknown types */ + return cur->nidl; + } +} + +static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, + struct nvme_ns_info *info) +{ + struct nvme_command c = { }; + bool csi_seen = false; + int status, pos, len; + void *data; + + if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) + return 0; + if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) + return 0; + + c.identify.opcode = nvme_admin_identify; + c.identify.nsid = cpu_to_le32(info->nsid); + c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; + + data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); + if (!data) + return -ENOMEM; + + status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, + NVME_IDENTIFY_DATA_SIZE); + if (status) { + dev_warn(ctrl->device, + "Identify Descriptors failed (nsid=%u, status=0x%x)\n", + info->nsid, status); + goto free_data; + } + + for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { + struct nvme_ns_id_desc *cur = data + pos; + + if (cur->nidl == 0) + break; + + len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); + if (len < 0) + break; + + len += sizeof(*cur); + } + + if (nvme_multi_css(ctrl) && !csi_seen) { + dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", + info->nsid); + status = -EINVAL; + } + +free_data: + kfree(data); + return status; +} + +static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, + struct nvme_id_ns **id) +{ + struct nvme_command c = { }; + int error; + + /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ + c.identify.opcode = nvme_admin_identify; + c.identify.nsid = cpu_to_le32(nsid); + c.identify.cns = NVME_ID_CNS_NS; + + *id = kmalloc(sizeof(**id), GFP_KERNEL); + if (!*id) + return -ENOMEM; + + error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); + if (error) { + dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); + kfree(*id); + } + return error; +} + +static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, + struct nvme_ns_info *info) +{ + struct nvme_ns_ids *ids = &info->ids; + struct nvme_id_ns *id; + int ret; + + ret = nvme_identify_ns(ctrl, info->nsid, &id); + if (ret) + return ret; + + if (id->ncap == 0) { + /* namespace not allocated or attached */ + info->is_removed = true; + ret = -ENODEV; + goto error; + } + + info->anagrpid = id->anagrpid; + info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; + info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; + info->is_ready = true; + if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { + dev_info(ctrl->device, + "Ignoring bogus Namespace Identifiers\n"); + } else { + if (ctrl->vs >= NVME_VS(1, 1, 0) && + !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) + memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); + if (ctrl->vs >= NVME_VS(1, 2, 0) && + !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) + memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); + } + +error: + kfree(id); + return ret; +} + +static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, + struct nvme_ns_info *info) +{ + struct nvme_id_ns_cs_indep *id; + struct nvme_command c = { + .identify.opcode = nvme_admin_identify, + .identify.nsid = cpu_to_le32(info->nsid), + .identify.cns = NVME_ID_CNS_NS_CS_INDEP, + }; + int ret; + + id = kmalloc(sizeof(*id), GFP_KERNEL); + if (!id) + return -ENOMEM; + + ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); + if (!ret) { + info->anagrpid = id->anagrpid; + info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; + info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; + info->is_ready = id->nstat & NVME_NSTAT_NRDY; + } + kfree(id); + return ret; +} + +static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, + unsigned int dword11, void *buffer, size_t buflen, u32 *result) +{ + union nvme_result res = { 0 }; + struct nvme_command c = { }; + int ret; + + c.features.opcode = op; + c.features.fid = cpu_to_le32(fid); + c.features.dword11 = cpu_to_le32(dword11); + + ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, + buffer, buflen, NVME_QID_ANY, 0, 0); + if (ret >= 0 && result) + *result = le32_to_cpu(res.u32); + return ret; +} + +int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, + unsigned int dword11, void *buffer, size_t buflen, + u32 *result) +{ + return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, + buflen, result); +} +EXPORT_SYMBOL_GPL(nvme_set_features); + +int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, + unsigned int dword11, void *buffer, size_t buflen, + u32 *result) +{ + return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, + buflen, result); +} +EXPORT_SYMBOL_GPL(nvme_get_features); + +int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) +{ + u32 q_count = (*count - 1) | ((*count - 1) << 16); + u32 result; + int status, nr_io_queues; + + status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, + &result); + if (status < 0) + return status; + + /* + * Degraded controllers might return an error when setting the queue + * count. We still want to be able to bring them online and offer + * access to the admin queue, as that might be only way to fix them up. + */ + if (status > 0) { + dev_err(ctrl->device, "Could not set queue count (%d)\n", status); + *count = 0; + } else { + nr_io_queues = min(result & 0xffff, result >> 16) + 1; + *count = min(*count, nr_io_queues); + } + + return 0; +} +EXPORT_SYMBOL_GPL(nvme_set_queue_count); + +#define NVME_AEN_SUPPORTED \ + (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ + NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) + +static void nvme_enable_aen(struct nvme_ctrl *ctrl) +{ + u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; + int status; + + if (!supported_aens) + return; + + status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, + NULL, 0, &result); + if (status) + dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", + supported_aens); + + queue_work(nvme_wq, &ctrl->async_event_work); +} + +static int nvme_ns_open(struct nvme_ns *ns) +{ + + /* should never be called due to GENHD_FL_HIDDEN */ + if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) + goto fail; + if (!nvme_get_ns(ns)) + goto fail; + if (!try_module_get(ns->ctrl->ops->module)) + goto fail_put_ns; + + return 0; + +fail_put_ns: + nvme_put_ns(ns); +fail: + return -ENXIO; +} + +static void nvme_ns_release(struct nvme_ns *ns) +{ + + module_put(ns->ctrl->ops->module); + nvme_put_ns(ns); +} + +static int nvme_open(struct block_device *bdev, fmode_t mode) +{ + return nvme_ns_open(bdev->bd_disk->private_data); +} + +static void nvme_release(struct gendisk *disk, fmode_t mode) +{ + nvme_ns_release(disk->private_data); +} + +int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) +{ + /* some standard values */ + geo->heads = 1 << 6; + geo->sectors = 1 << 5; + geo->cylinders = get_capacity(bdev->bd_disk) >> 11; + return 0; +} + +#ifdef CONFIG_BLK_DEV_INTEGRITY +static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, + u32 max_integrity_segments) +{ + struct blk_integrity integrity = { }; + + switch (ns->pi_type) { + case NVME_NS_DPS_PI_TYPE3: + switch (ns->guard_type) { + case NVME_NVM_NS_16B_GUARD: + integrity.profile = &t10_pi_type3_crc; + integrity.tag_size = sizeof(u16) + sizeof(u32); + integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; + break; + case NVME_NVM_NS_64B_GUARD: + integrity.profile = &ext_pi_type3_crc64; + integrity.tag_size = sizeof(u16) + 6; + integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; + break; + default: + integrity.profile = NULL; + break; + } + break; + case NVME_NS_DPS_PI_TYPE1: + case NVME_NS_DPS_PI_TYPE2: + switch (ns->guard_type) { + case NVME_NVM_NS_16B_GUARD: + integrity.profile = &t10_pi_type1_crc; + integrity.tag_size = sizeof(u16); + integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; + break; + case NVME_NVM_NS_64B_GUARD: + integrity.profile = &ext_pi_type1_crc64; + integrity.tag_size = sizeof(u16); + integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; + break; + default: + integrity.profile = NULL; + break; + } + break; + default: + integrity.profile = NULL; + break; + } + + integrity.tuple_size = ns->ms; + blk_integrity_register(disk, &integrity); + blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); +} +#else +static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, + u32 max_integrity_segments) +{ +} +#endif /* CONFIG_BLK_DEV_INTEGRITY */ + +static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) +{ + struct nvme_ctrl *ctrl = ns->ctrl; + struct request_queue *queue = disk->queue; + u32 size = queue_logical_block_size(queue); + + if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) + ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); + + if (ctrl->max_discard_sectors == 0) { + blk_queue_max_discard_sectors(queue, 0); + return; + } + + BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < + NVME_DSM_MAX_RANGES); + + queue->limits.discard_granularity = size; + + /* If discard is already enabled, don't reset queue limits */ + if (queue->limits.max_discard_sectors) + return; + + blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); + blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); + + if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) + blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); +} + +static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) +{ + return uuid_equal(&a->uuid, &b->uuid) && + memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && + memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && + a->csi == b->csi; +} + +static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) +{ + bool first = id->dps & NVME_NS_DPS_PI_FIRST; + unsigned lbaf = nvme_lbaf_index(id->flbas); + struct nvme_ctrl *ctrl = ns->ctrl; + struct nvme_command c = { }; + struct nvme_id_ns_nvm *nvm; + int ret = 0; + u32 elbaf; + + ns->pi_size = 0; + ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); + if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { + ns->pi_size = sizeof(struct t10_pi_tuple); + ns->guard_type = NVME_NVM_NS_16B_GUARD; + goto set_pi; + } + + nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); + if (!nvm) + return -ENOMEM; + + c.identify.opcode = nvme_admin_identify; + c.identify.nsid = cpu_to_le32(ns->head->ns_id); + c.identify.cns = NVME_ID_CNS_CS_NS; + c.identify.csi = NVME_CSI_NVM; + + ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); + if (ret) + goto free_data; + + elbaf = le32_to_cpu(nvm->elbaf[lbaf]); + + /* no support for storage tag formats right now */ + if (nvme_elbaf_sts(elbaf)) + goto free_data; + + ns->guard_type = nvme_elbaf_guard_type(elbaf); + switch (ns->guard_type) { + case NVME_NVM_NS_64B_GUARD: + ns->pi_size = sizeof(struct crc64_pi_tuple); + break; + case NVME_NVM_NS_16B_GUARD: + ns->pi_size = sizeof(struct t10_pi_tuple); + break; + default: + break; + } + +free_data: + kfree(nvm); +set_pi: + if (ns->pi_size && (first || ns->ms == ns->pi_size)) + ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; + else + ns->pi_type = 0; + + return ret; +} + +static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) +{ + struct nvme_ctrl *ctrl = ns->ctrl; + int ret; + + ret = nvme_init_ms(ns, id); + if (ret) + return ret; + + ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); + if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) + return 0; + + if (ctrl->ops->flags & NVME_F_FABRICS) { + /* + * The NVMe over Fabrics specification only supports metadata as + * part of the extended data LBA. We rely on HCA/HBA support to + * remap the separate metadata buffer from the block layer. + */ + if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) + return 0; + + ns->features |= NVME_NS_EXT_LBAS; + + /* + * The current fabrics transport drivers support namespace + * metadata formats only if nvme_ns_has_pi() returns true. + * Suppress support for all other formats so the namespace will + * have a 0 capacity and not be usable through the block stack. + * + * Note, this check will need to be modified if any drivers + * gain the ability to use other metadata formats. + */ + if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) + ns->features |= NVME_NS_METADATA_SUPPORTED; + } else { + /* + * For PCIe controllers, we can't easily remap the separate + * metadata buffer from the block layer and thus require a + * separate metadata buffer for block layer metadata/PI support. + * We allow extended LBAs for the passthrough interface, though. + */ + if (id->flbas & NVME_NS_FLBAS_META_EXT) + ns->features |= NVME_NS_EXT_LBAS; + else + ns->features |= NVME_NS_METADATA_SUPPORTED; + } + return 0; +} + +static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, + struct request_queue *q) +{ + bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; + + if (ctrl->max_hw_sectors) { + u32 max_segments = + (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; + + max_segments = min_not_zero(max_segments, ctrl->max_segments); + blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); + blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); + } + blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); + blk_queue_dma_alignment(q, 3); + blk_queue_write_cache(q, vwc, vwc); +} + +static void nvme_update_disk_info(struct gendisk *disk, + struct nvme_ns *ns, struct nvme_id_ns *id) +{ + sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); + unsigned short bs = 1 << ns->lba_shift; + u32 atomic_bs, phys_bs, io_opt = 0; + + /* + * The block layer can't support LBA sizes larger than the page size + * or smaller than a sector size yet, so catch this early and don't + * allow block I/O. + */ + if (ns->lba_shift > PAGE_SHIFT || ns->lba_shift < SECTOR_SHIFT) { + capacity = 0; + bs = (1 << 9); + } + + blk_integrity_unregister(disk); + + atomic_bs = phys_bs = bs; + if (id->nabo == 0) { + /* + * Bit 1 indicates whether NAWUPF is defined for this namespace + * and whether it should be used instead of AWUPF. If NAWUPF == + * 0 then AWUPF must be used instead. + */ + if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) + atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; + else + atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; + } + + if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { + /* NPWG = Namespace Preferred Write Granularity */ + phys_bs = bs * (1 + le16_to_cpu(id->npwg)); + /* NOWS = Namespace Optimal Write Size */ + io_opt = bs * (1 + le16_to_cpu(id->nows)); + } + + blk_queue_logical_block_size(disk->queue, bs); + /* + * Linux filesystems assume writing a single physical block is + * an atomic operation. Hence limit the physical block size to the + * value of the Atomic Write Unit Power Fail parameter. + */ + blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); + blk_queue_io_min(disk->queue, phys_bs); + blk_queue_io_opt(disk->queue, io_opt); + + /* + * Register a metadata profile for PI, or the plain non-integrity NVMe + * metadata masquerading as Type 0 if supported, otherwise reject block + * I/O to namespaces with metadata except when the namespace supports + * PI, as it can strip/insert in that case. + */ + if (ns->ms) { + if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && + (ns->features & NVME_NS_METADATA_SUPPORTED)) + nvme_init_integrity(disk, ns, + ns->ctrl->max_integrity_segments); + else if (!nvme_ns_has_pi(ns)) + capacity = 0; + } + + set_capacity_and_notify(disk, capacity); + + nvme_config_discard(disk, ns); + blk_queue_max_write_zeroes_sectors(disk->queue, + ns->ctrl->max_zeroes_sectors); +} + +static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) +{ + return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); +} + +static inline bool nvme_first_scan(struct gendisk *disk) +{ + /* nvme_alloc_ns() scans the disk prior to adding it */ + return !disk_live(disk); +} + +static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) +{ + struct nvme_ctrl *ctrl = ns->ctrl; + u32 iob; + + if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && + is_power_of_2(ctrl->max_hw_sectors)) + iob = ctrl->max_hw_sectors; + else + iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); + + if (!iob) + return; + + if (!is_power_of_2(iob)) { + if (nvme_first_scan(ns->disk)) + pr_warn("%s: ignoring unaligned IO boundary:%u\n", + ns->disk->disk_name, iob); + return; + } + + if (blk_queue_is_zoned(ns->disk->queue)) { + if (nvme_first_scan(ns->disk)) + pr_warn("%s: ignoring zoned namespace IO boundary\n", + ns->disk->disk_name); + return; + } + + blk_queue_chunk_sectors(ns->queue, iob); +} + +static int nvme_update_ns_info_generic(struct nvme_ns *ns, + struct nvme_ns_info *info) +{ + blk_mq_freeze_queue(ns->disk->queue); + nvme_set_queue_limits(ns->ctrl, ns->queue); + set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); + blk_mq_unfreeze_queue(ns->disk->queue); + + if (nvme_ns_head_multipath(ns->head)) { + blk_mq_freeze_queue(ns->head->disk->queue); + set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); + nvme_mpath_revalidate_paths(ns); + blk_stack_limits(&ns->head->disk->queue->limits, + &ns->queue->limits, 0); + ns->head->disk->flags |= GENHD_FL_HIDDEN; + blk_mq_unfreeze_queue(ns->head->disk->queue); + } + + /* Hide the block-interface for these devices */ + ns->disk->flags |= GENHD_FL_HIDDEN; + set_bit(NVME_NS_READY, &ns->flags); + + return 0; +} + +static int nvme_update_ns_info_block(struct nvme_ns *ns, + struct nvme_ns_info *info) +{ + struct nvme_id_ns *id; + unsigned lbaf; + int ret; + + ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); + if (ret) + return ret; + + if (id->ncap == 0) { + /* namespace not allocated or attached */ + info->is_removed = true; + ret = -ENODEV; + goto error; + } + + blk_mq_freeze_queue(ns->disk->queue); + lbaf = nvme_lbaf_index(id->flbas); + ns->lba_shift = id->lbaf[lbaf].ds; + nvme_set_queue_limits(ns->ctrl, ns->queue); + + ret = nvme_configure_metadata(ns, id); + if (ret < 0) { + blk_mq_unfreeze_queue(ns->disk->queue); + goto out; + } + nvme_set_chunk_sectors(ns, id); + nvme_update_disk_info(ns->disk, ns, id); + + if (ns->head->ids.csi == NVME_CSI_ZNS) { + ret = nvme_update_zone_info(ns, lbaf); + if (ret) { + blk_mq_unfreeze_queue(ns->disk->queue); + goto out; + } + } + + set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); + set_bit(NVME_NS_READY, &ns->flags); + blk_mq_unfreeze_queue(ns->disk->queue); + + if (blk_queue_is_zoned(ns->queue)) { + ret = nvme_revalidate_zones(ns); + if (ret && !nvme_first_scan(ns->disk)) + goto out; + } + + if (nvme_ns_head_multipath(ns->head)) { + blk_mq_freeze_queue(ns->head->disk->queue); + nvme_update_disk_info(ns->head->disk, ns, id); + set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); + nvme_mpath_revalidate_paths(ns); + blk_stack_limits(&ns->head->disk->queue->limits, + &ns->queue->limits, 0); + disk_update_readahead(ns->head->disk); + blk_mq_unfreeze_queue(ns->head->disk->queue); + } + + ret = 0; +out: + /* + * If probing fails due an unsupported feature, hide the block device, + * but still allow other access. + */ + if (ret == -ENODEV) { + ns->disk->flags |= GENHD_FL_HIDDEN; + set_bit(NVME_NS_READY, &ns->flags); + ret = 0; + } + +error: + kfree(id); + return ret; +} + +static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) +{ + switch (info->ids.csi) { + case NVME_CSI_ZNS: + if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { + dev_info(ns->ctrl->device, + "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", + info->nsid); + return nvme_update_ns_info_generic(ns, info); + } + return nvme_update_ns_info_block(ns, info); + case NVME_CSI_NVM: + return nvme_update_ns_info_block(ns, info); + default: + dev_info(ns->ctrl->device, + "block device for nsid %u not supported (csi %u)\n", + info->nsid, info->ids.csi); + return nvme_update_ns_info_generic(ns, info); + } +} + +static char nvme_pr_type(enum pr_type type) +{ + switch (type) { + case PR_WRITE_EXCLUSIVE: + return 1; + case PR_EXCLUSIVE_ACCESS: + return 2; + case PR_WRITE_EXCLUSIVE_REG_ONLY: + return 3; + case PR_EXCLUSIVE_ACCESS_REG_ONLY: + return 4; + case PR_WRITE_EXCLUSIVE_ALL_REGS: + return 5; + case PR_EXCLUSIVE_ACCESS_ALL_REGS: + return 6; + default: + return 0; + } +} + +static int nvme_send_ns_head_pr_command(struct block_device *bdev, + struct nvme_command *c, u8 data[16]) +{ + struct nvme_ns_head *head = bdev->bd_disk->private_data; + int srcu_idx = srcu_read_lock(&head->srcu); + struct nvme_ns *ns = nvme_find_path(head); + int ret = -EWOULDBLOCK; + + if (ns) { + c->common.nsid = cpu_to_le32(ns->head->ns_id); + ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); + } + srcu_read_unlock(&head->srcu, srcu_idx); + return ret; +} + +static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, + u8 data[16]) +{ + c->common.nsid = cpu_to_le32(ns->head->ns_id); + return nvme_submit_sync_cmd(ns->queue, c, data, 16); +} + +static int nvme_pr_command(struct block_device *bdev, u32 cdw10, + u64 key, u64 sa_key, u8 op) +{ + struct nvme_command c = { }; + u8 data[16] = { 0, }; + + put_unaligned_le64(key, &data[0]); + put_unaligned_le64(sa_key, &data[8]); + + c.common.opcode = op; + c.common.cdw10 = cpu_to_le32(cdw10); + + if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && + bdev->bd_disk->fops == &nvme_ns_head_ops) + return nvme_send_ns_head_pr_command(bdev, &c, data); + return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); +} + +static int nvme_pr_register(struct block_device *bdev, u64 old, + u64 new, unsigned flags) +{ + u32 cdw10; + + if (flags & ~PR_FL_IGNORE_KEY) + return -EOPNOTSUPP; + + cdw10 = old ? 2 : 0; + cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; + cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ + return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); +} + +static int nvme_pr_reserve(struct block_device *bdev, u64 key, + enum pr_type type, unsigned flags) +{ + u32 cdw10; + + if (flags & ~PR_FL_IGNORE_KEY) + return -EOPNOTSUPP; + + cdw10 = nvme_pr_type(type) << 8; + cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); + return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); +} + +static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, + enum pr_type type, bool abort) +{ + u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); + + return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); +} + +static int nvme_pr_clear(struct block_device *bdev, u64 key) +{ + u32 cdw10 = 1 | (key ? 0 : 1 << 3); + + return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); +} + +static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) +{ + u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3); + + return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); +} + +const struct pr_ops nvme_pr_ops = { + .pr_register = nvme_pr_register, + .pr_reserve = nvme_pr_reserve, + .pr_release = nvme_pr_release, + .pr_preempt = nvme_pr_preempt, + .pr_clear = nvme_pr_clear, +}; + +#ifdef CONFIG_BLK_SED_OPAL +int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, + bool send) +{ + struct nvme_ctrl *ctrl = data; + struct nvme_command cmd = { }; + + if (send) + cmd.common.opcode = nvme_admin_security_send; + else + cmd.common.opcode = nvme_admin_security_recv; + cmd.common.nsid = 0; + cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); + cmd.common.cdw11 = cpu_to_le32(len); + + return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, + NVME_QID_ANY, 1, 0); +} +EXPORT_SYMBOL_GPL(nvme_sec_submit); +#endif /* CONFIG_BLK_SED_OPAL */ + +#ifdef CONFIG_BLK_DEV_ZONED +static int nvme_report_zones(struct gendisk *disk, sector_t sector, + unsigned int nr_zones, report_zones_cb cb, void *data) +{ + return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, + data); +} +#else +#define nvme_report_zones NULL +#endif /* CONFIG_BLK_DEV_ZONED */ + +static const struct block_device_operations nvme_bdev_ops = { + .owner = THIS_MODULE, + .ioctl = nvme_ioctl, + .compat_ioctl = blkdev_compat_ptr_ioctl, + .open = nvme_open, + .release = nvme_release, + .getgeo = nvme_getgeo, + .report_zones = nvme_report_zones, + .pr_ops = &nvme_pr_ops, +}; + +static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled) +{ + unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies; + u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; + int ret; + + while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { + if (csts == ~0) + return -ENODEV; + if ((csts & NVME_CSTS_RDY) == bit) + break; + + usleep_range(1000, 2000); + if (fatal_signal_pending(current)) + return -EINTR; + if (time_after(jiffies, timeout_jiffies)) { + dev_err(ctrl->device, + "Device not ready; aborting %s, CSTS=0x%x\n", + enabled ? "initialisation" : "reset", csts); + return -ENODEV; + } + } + + return ret; +} + +/* + * If the device has been passed off to us in an enabled state, just clear + * the enabled bit. The spec says we should set the 'shutdown notification + * bits', but doing so may cause the device to complete commands to the + * admin queue ... and we don't know what memory that might be pointing at! + */ +int nvme_disable_ctrl(struct nvme_ctrl *ctrl) +{ + int ret; + + ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; + ctrl->ctrl_config &= ~NVME_CC_ENABLE; + + ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); + if (ret) + return ret; + + if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) + msleep(NVME_QUIRK_DELAY_AMOUNT); + + return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false); +} +EXPORT_SYMBOL_GPL(nvme_disable_ctrl); + +int nvme_enable_ctrl(struct nvme_ctrl *ctrl) +{ + unsigned dev_page_min; + u32 timeout; + int ret; + + ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); + if (ret) { + dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); + return ret; + } + dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; + + if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { + dev_err(ctrl->device, + "Minimum device page size %u too large for host (%u)\n", + 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); + return -ENODEV; + } + + if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) + ctrl->ctrl_config = NVME_CC_CSS_CSI; + else + ctrl->ctrl_config = NVME_CC_CSS_NVM; + + if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) + ctrl->ctrl_config |= NVME_CC_CRIME; + + ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; + ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; + ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; + ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); + if (ret) + return ret; + + /* Flush write to device (required if transport is PCI) */ + ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); + if (ret) + return ret; + + /* CAP value may change after initial CC write */ + ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); + if (ret) + return ret; + + timeout = NVME_CAP_TIMEOUT(ctrl->cap); + if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { + u32 crto, ready_timeout; + + ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); + if (ret) { + dev_err(ctrl->device, "Reading CRTO failed (%d)\n", + ret); + return ret; + } + + /* + * CRTO should always be greater or equal to CAP.TO, but some + * devices are known to get this wrong. Use the larger of the + * two values. + */ + if (ctrl->ctrl_config & NVME_CC_CRIME) + ready_timeout = NVME_CRTO_CRIMT(crto); + else + ready_timeout = NVME_CRTO_CRWMT(crto); + + if (ready_timeout < timeout) + dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", + crto, ctrl->cap); + else + timeout = ready_timeout; + } + + ctrl->ctrl_config |= NVME_CC_ENABLE; + ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); + if (ret) + return ret; + return nvme_wait_ready(ctrl, timeout, true); +} +EXPORT_SYMBOL_GPL(nvme_enable_ctrl); + +int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) +{ + unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); + u32 csts; + int ret; + + ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; + ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; + + ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); + if (ret) + return ret; + + while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { + if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) + break; + + msleep(100); + if (fatal_signal_pending(current)) + return -EINTR; + if (time_after(jiffies, timeout)) { + dev_err(ctrl->device, + "Device shutdown incomplete; abort shutdown\n"); + return -ENODEV; + } + } + + return ret; +} +EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); + +static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) +{ + __le64 ts; + int ret; + + if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) + return 0; + + ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); + ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), + NULL); + if (ret) + dev_warn_once(ctrl->device, + "could not set timestamp (%d)\n", ret); + return ret; +} + +static int nvme_configure_host_options(struct nvme_ctrl *ctrl) +{ + struct nvme_feat_host_behavior *host; + u8 acre = 0, lbafee = 0; + int ret; + + /* Don't bother enabling the feature if retry delay is not reported */ + if (ctrl->crdt[0]) + acre = NVME_ENABLE_ACRE; + if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) + lbafee = NVME_ENABLE_LBAFEE; + + if (!acre && !lbafee) + return 0; + + host = kzalloc(sizeof(*host), GFP_KERNEL); + if (!host) + return 0; + + host->acre = acre; + host->lbafee = lbafee; + ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, + host, sizeof(*host), NULL); + kfree(host); + return ret; +} + +/* + * The function checks whether the given total (exlat + enlat) latency of + * a power state allows the latter to be used as an APST transition target. + * It does so by comparing the latency to the primary and secondary latency + * tolerances defined by module params. If there's a match, the corresponding + * timeout value is returned and the matching tolerance index (1 or 2) is + * reported. + */ +static bool nvme_apst_get_transition_time(u64 total_latency, + u64 *transition_time, unsigned *last_index) +{ + if (total_latency <= apst_primary_latency_tol_us) { + if (*last_index == 1) + return false; + *last_index = 1; + *transition_time = apst_primary_timeout_ms; + return true; + } + if (apst_secondary_timeout_ms && + total_latency <= apst_secondary_latency_tol_us) { + if (*last_index <= 2) + return false; + *last_index = 2; + *transition_time = apst_secondary_timeout_ms; + return true; + } + return false; +} + +/* + * APST (Autonomous Power State Transition) lets us program a table of power + * state transitions that the controller will perform automatically. + * + * Depending on module params, one of the two supported techniques will be used: + * + * - If the parameters provide explicit timeouts and tolerances, they will be + * used to build a table with up to 2 non-operational states to transition to. + * The default parameter values were selected based on the values used by + * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic + * regeneration of the APST table in the event of switching between external + * and battery power, the timeouts and tolerances reflect a compromise + * between values used by Microsoft for AC and battery scenarios. + * - If not, we'll configure the table with a simple heuristic: we are willing + * to spend at most 2% of the time transitioning between power states. + * Therefore, when running in any given state, we will enter the next + * lower-power non-operational state after waiting 50 * (enlat + exlat) + * microseconds, as long as that state's exit latency is under the requested + * maximum latency. + * + * We will not autonomously enter any non-operational state for which the total + * latency exceeds ps_max_latency_us. + * + * Users can set ps_max_latency_us to zero to turn off APST. + */ +static int nvme_configure_apst(struct nvme_ctrl *ctrl) +{ + struct nvme_feat_auto_pst *table; + unsigned apste = 0; + u64 max_lat_us = 0; + __le64 target = 0; + int max_ps = -1; + int state; + int ret; + unsigned last_lt_index = UINT_MAX; + + /* + * If APST isn't supported or if we haven't been initialized yet, + * then don't do anything. + */ + if (!ctrl->apsta) + return 0; + + if (ctrl->npss > 31) { + dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); + return 0; + } + + table = kzalloc(sizeof(*table), GFP_KERNEL); + if (!table) + return 0; + + if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { + /* Turn off APST. */ + dev_dbg(ctrl->device, "APST disabled\n"); + goto done; + } + + /* + * Walk through all states from lowest- to highest-power. + * According to the spec, lower-numbered states use more power. NPSS, + * despite the name, is the index of the lowest-power state, not the + * number of states. + */ + for (state = (int)ctrl->npss; state >= 0; state--) { + u64 total_latency_us, exit_latency_us, transition_ms; + + if (target) + table->entries[state] = target; + + /* + * Don't allow transitions to the deepest state if it's quirked + * off. + */ + if (state == ctrl->npss && + (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) + continue; + + /* + * Is this state a useful non-operational state for higher-power + * states to autonomously transition to? + */ + if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) + continue; + + exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); + if (exit_latency_us > ctrl->ps_max_latency_us) + continue; + + total_latency_us = exit_latency_us + + le32_to_cpu(ctrl->psd[state].entry_lat); + + /* + * This state is good. It can be used as the APST idle target + * for higher power states. + */ + if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { + if (!nvme_apst_get_transition_time(total_latency_us, + &transition_ms, &last_lt_index)) + continue; + } else { + transition_ms = total_latency_us + 19; + do_div(transition_ms, 20); + if (transition_ms > (1 << 24) - 1) + transition_ms = (1 << 24) - 1; + } + + target = cpu_to_le64((state << 3) | (transition_ms << 8)); + if (max_ps == -1) + max_ps = state; + if (total_latency_us > max_lat_us) + max_lat_us = total_latency_us; + } + + if (max_ps == -1) + dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); + else + dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", + max_ps, max_lat_us, (int)sizeof(*table), table); + apste = 1; + +done: + ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, + table, sizeof(*table), NULL); + if (ret) + dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); + kfree(table); + return ret; +} + +static void nvme_set_latency_tolerance(struct device *dev, s32 val) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + u64 latency; + + switch (val) { + case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: + case PM_QOS_LATENCY_ANY: + latency = U64_MAX; + break; + + default: + latency = val; + } + + if (ctrl->ps_max_latency_us != latency) { + ctrl->ps_max_latency_us = latency; + if (ctrl->state == NVME_CTRL_LIVE) + nvme_configure_apst(ctrl); + } +} + +struct nvme_core_quirk_entry { + /* + * NVMe model and firmware strings are padded with spaces. For + * simplicity, strings in the quirk table are padded with NULLs + * instead. + */ + u16 vid; + const char *mn; + const char *fr; + unsigned long quirks; +}; + +static const struct nvme_core_quirk_entry core_quirks[] = { + { + /* + * This Toshiba device seems to die using any APST states. See: + * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 + */ + .vid = 0x1179, + .mn = "THNSF5256GPUK TOSHIBA", + .quirks = NVME_QUIRK_NO_APST, + }, + { + /* + * This LiteON CL1-3D*-Q11 firmware version has a race + * condition associated with actions related to suspend to idle + * LiteON has resolved the problem in future firmware + */ + .vid = 0x14a4, + .fr = "22301111", + .quirks = NVME_QUIRK_SIMPLE_SUSPEND, + }, + { + /* + * This Kioxia CD6-V Series / HPE PE8030 device times out and + * aborts I/O during any load, but more easily reproducible + * with discards (fstrim). + * + * The device is left in a state where it is also not possible + * to use "nvme set-feature" to disable APST, but booting with + * nvme_core.default_ps_max_latency=0 works. + */ + .vid = 0x1e0f, + .mn = "KCD6XVUL6T40", + .quirks = NVME_QUIRK_NO_APST, + }, + { + /* + * The external Samsung X5 SSD fails initialization without a + * delay before checking if it is ready and has a whole set of + * other problems. To make this even more interesting, it + * shares the PCI ID with internal Samsung 970 Evo Plus that + * does not need or want these quirks. + */ + .vid = 0x144d, + .mn = "Samsung Portable SSD X5", + .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | + NVME_QUIRK_NO_DEEPEST_PS | + NVME_QUIRK_IGNORE_DEV_SUBNQN, + } +}; + +/* match is null-terminated but idstr is space-padded. */ +static bool string_matches(const char *idstr, const char *match, size_t len) +{ + size_t matchlen; + + if (!match) + return true; + + matchlen = strlen(match); + WARN_ON_ONCE(matchlen > len); + + if (memcmp(idstr, match, matchlen)) + return false; + + for (; matchlen < len; matchlen++) + if (idstr[matchlen] != ' ') + return false; + + return true; +} + +static bool quirk_matches(const struct nvme_id_ctrl *id, + const struct nvme_core_quirk_entry *q) +{ + return q->vid == le16_to_cpu(id->vid) && + string_matches(id->mn, q->mn, sizeof(id->mn)) && + string_matches(id->fr, q->fr, sizeof(id->fr)); +} + +static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, + struct nvme_id_ctrl *id) +{ + size_t nqnlen; + int off; + + if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { + nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); + if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { + strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); + return; + } + + if (ctrl->vs >= NVME_VS(1, 2, 1)) + dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); + } + + /* + * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe + * Base Specification 2.0. It is slightly different from the format + * specified there due to historic reasons, and we can't change it now. + */ + off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, + "nqn.2014.08.org.nvmexpress:%04x%04x", + le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); + memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); + off += sizeof(id->sn); + memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); + off += sizeof(id->mn); + memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); +} + +static void nvme_release_subsystem(struct device *dev) +{ + struct nvme_subsystem *subsys = + container_of(dev, struct nvme_subsystem, dev); + + if (subsys->instance >= 0) + ida_free(&nvme_instance_ida, subsys->instance); + kfree(subsys); +} + +static void nvme_destroy_subsystem(struct kref *ref) +{ + struct nvme_subsystem *subsys = + container_of(ref, struct nvme_subsystem, ref); + + mutex_lock(&nvme_subsystems_lock); + list_del(&subsys->entry); + mutex_unlock(&nvme_subsystems_lock); + + ida_destroy(&subsys->ns_ida); + device_del(&subsys->dev); + put_device(&subsys->dev); +} + +static void nvme_put_subsystem(struct nvme_subsystem *subsys) +{ + kref_put(&subsys->ref, nvme_destroy_subsystem); +} + +static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) +{ + struct nvme_subsystem *subsys; + + lockdep_assert_held(&nvme_subsystems_lock); + + /* + * Fail matches for discovery subsystems. This results + * in each discovery controller bound to a unique subsystem. + * This avoids issues with validating controller values + * that can only be true when there is a single unique subsystem. + * There may be multiple and completely independent entities + * that provide discovery controllers. + */ + if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) + return NULL; + + list_for_each_entry(subsys, &nvme_subsystems, entry) { + if (strcmp(subsys->subnqn, subsysnqn)) + continue; + if (!kref_get_unless_zero(&subsys->ref)) + continue; + return subsys; + } + + return NULL; +} + +#define SUBSYS_ATTR_RO(_name, _mode, _show) \ + struct device_attribute subsys_attr_##_name = \ + __ATTR(_name, _mode, _show, NULL) + +static ssize_t nvme_subsys_show_nqn(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_subsystem *subsys = + container_of(dev, struct nvme_subsystem, dev); + + return sysfs_emit(buf, "%s\n", subsys->subnqn); +} +static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); + +static ssize_t nvme_subsys_show_type(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_subsystem *subsys = + container_of(dev, struct nvme_subsystem, dev); + + switch (subsys->subtype) { + case NVME_NQN_DISC: + return sysfs_emit(buf, "discovery\n"); + case NVME_NQN_NVME: + return sysfs_emit(buf, "nvm\n"); + default: + return sysfs_emit(buf, "reserved\n"); + } +} +static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); + +#define nvme_subsys_show_str_function(field) \ +static ssize_t subsys_##field##_show(struct device *dev, \ + struct device_attribute *attr, char *buf) \ +{ \ + struct nvme_subsystem *subsys = \ + container_of(dev, struct nvme_subsystem, dev); \ + return sysfs_emit(buf, "%.*s\n", \ + (int)sizeof(subsys->field), subsys->field); \ +} \ +static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); + +nvme_subsys_show_str_function(model); +nvme_subsys_show_str_function(serial); +nvme_subsys_show_str_function(firmware_rev); + +static struct attribute *nvme_subsys_attrs[] = { + &subsys_attr_model.attr, + &subsys_attr_serial.attr, + &subsys_attr_firmware_rev.attr, + &subsys_attr_subsysnqn.attr, + &subsys_attr_subsystype.attr, +#ifdef CONFIG_NVME_MULTIPATH + &subsys_attr_iopolicy.attr, +#endif + NULL, +}; + +static const struct attribute_group nvme_subsys_attrs_group = { + .attrs = nvme_subsys_attrs, +}; + +static const struct attribute_group *nvme_subsys_attrs_groups[] = { + &nvme_subsys_attrs_group, + NULL, +}; + +static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) +{ + return ctrl->opts && ctrl->opts->discovery_nqn; +} + +static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, + struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) +{ + struct nvme_ctrl *tmp; + + lockdep_assert_held(&nvme_subsystems_lock); + + list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { + if (nvme_state_terminal(tmp)) + continue; + + if (tmp->cntlid == ctrl->cntlid) { + dev_err(ctrl->device, + "Duplicate cntlid %u with %s, subsys %s, rejecting\n", + ctrl->cntlid, dev_name(tmp->device), + subsys->subnqn); + return false; + } + + if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || + nvme_discovery_ctrl(ctrl)) + continue; + + dev_err(ctrl->device, + "Subsystem does not support multiple controllers\n"); + return false; + } + + return true; +} + +static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) +{ + struct nvme_subsystem *subsys, *found; + int ret; + + subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); + if (!subsys) + return -ENOMEM; + + subsys->instance = -1; + mutex_init(&subsys->lock); + kref_init(&subsys->ref); + INIT_LIST_HEAD(&subsys->ctrls); + INIT_LIST_HEAD(&subsys->nsheads); + nvme_init_subnqn(subsys, ctrl, id); + memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); + memcpy(subsys->model, id->mn, sizeof(subsys->model)); + subsys->vendor_id = le16_to_cpu(id->vid); + subsys->cmic = id->cmic; + + /* Versions prior to 1.4 don't necessarily report a valid type */ + if (id->cntrltype == NVME_CTRL_DISC || + !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) + subsys->subtype = NVME_NQN_DISC; + else + subsys->subtype = NVME_NQN_NVME; + + if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { + dev_err(ctrl->device, + "Subsystem %s is not a discovery controller", + subsys->subnqn); + kfree(subsys); + return -EINVAL; + } + subsys->awupf = le16_to_cpu(id->awupf); + nvme_mpath_default_iopolicy(subsys); + + subsys->dev.class = nvme_subsys_class; + subsys->dev.release = nvme_release_subsystem; + subsys->dev.groups = nvme_subsys_attrs_groups; + dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); + device_initialize(&subsys->dev); + + mutex_lock(&nvme_subsystems_lock); + found = __nvme_find_get_subsystem(subsys->subnqn); + if (found) { + put_device(&subsys->dev); + subsys = found; + + if (!nvme_validate_cntlid(subsys, ctrl, id)) { + ret = -EINVAL; + goto out_put_subsystem; + } + } else { + ret = device_add(&subsys->dev); + if (ret) { + dev_err(ctrl->device, + "failed to register subsystem device.\n"); + put_device(&subsys->dev); + goto out_unlock; + } + ida_init(&subsys->ns_ida); + list_add_tail(&subsys->entry, &nvme_subsystems); + } + + ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, + dev_name(ctrl->device)); + if (ret) { + dev_err(ctrl->device, + "failed to create sysfs link from subsystem.\n"); + goto out_put_subsystem; + } + + if (!found) + subsys->instance = ctrl->instance; + ctrl->subsys = subsys; + list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); + mutex_unlock(&nvme_subsystems_lock); + return 0; + +out_put_subsystem: + nvme_put_subsystem(subsys); +out_unlock: + mutex_unlock(&nvme_subsystems_lock); + return ret; +} + +int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, + void *log, size_t size, u64 offset) +{ + struct nvme_command c = { }; + u32 dwlen = nvme_bytes_to_numd(size); + + c.get_log_page.opcode = nvme_admin_get_log_page; + c.get_log_page.nsid = cpu_to_le32(nsid); + c.get_log_page.lid = log_page; + c.get_log_page.lsp = lsp; + c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); + c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); + c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); + c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); + c.get_log_page.csi = csi; + + return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); +} + +static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, + struct nvme_effects_log **log) +{ + struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); + int ret; + + if (cel) + goto out; + + cel = kzalloc(sizeof(*cel), GFP_KERNEL); + if (!cel) + return -ENOMEM; + + ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, + cel, sizeof(*cel), 0); + if (ret) { + kfree(cel); + return ret; + } + + xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); +out: + *log = cel; + return 0; +} + +static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) +{ + u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; + + if (check_shl_overflow(1U, units + page_shift - 9, &val)) + return UINT_MAX; + return val; +} + +static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) +{ + struct nvme_command c = { }; + struct nvme_id_ctrl_nvm *id; + int ret; + + if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { + ctrl->max_discard_sectors = UINT_MAX; + ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; + } else { + ctrl->max_discard_sectors = 0; + ctrl->max_discard_segments = 0; + } + + /* + * Even though NVMe spec explicitly states that MDTS is not applicable + * to the write-zeroes, we are cautious and limit the size to the + * controllers max_hw_sectors value, which is based on the MDTS field + * and possibly other limiting factors. + */ + if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && + !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) + ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; + else + ctrl->max_zeroes_sectors = 0; + + if (ctrl->subsys->subtype != NVME_NQN_NVME || + nvme_ctrl_limited_cns(ctrl)) + return 0; + + id = kzalloc(sizeof(*id), GFP_KERNEL); + if (!id) + return -ENOMEM; + + c.identify.opcode = nvme_admin_identify; + c.identify.cns = NVME_ID_CNS_CS_CTRL; + c.identify.csi = NVME_CSI_NVM; + + ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); + if (ret) + goto free_data; + + if (id->dmrl) + ctrl->max_discard_segments = id->dmrl; + ctrl->dmrsl = le32_to_cpu(id->dmrsl); + if (id->wzsl) + ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); + +free_data: + kfree(id); + return ret; +} + +static int nvme_init_identify(struct nvme_ctrl *ctrl) +{ + struct nvme_id_ctrl *id; + u32 max_hw_sectors; + bool prev_apst_enabled; + int ret; + + ret = nvme_identify_ctrl(ctrl, &id); + if (ret) { + dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); + return -EIO; + } + + if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { + ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); + if (ret < 0) + goto out_free; + } + + if (!(ctrl->ops->flags & NVME_F_FABRICS)) + ctrl->cntlid = le16_to_cpu(id->cntlid); + + if (!ctrl->identified) { + unsigned int i; + + /* + * Check for quirks. Quirk can depend on firmware version, + * so, in principle, the set of quirks present can change + * across a reset. As a possible future enhancement, we + * could re-scan for quirks every time we reinitialize + * the device, but we'd have to make sure that the driver + * behaves intelligently if the quirks change. + */ + for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { + if (quirk_matches(id, &core_quirks[i])) + ctrl->quirks |= core_quirks[i].quirks; + } + + ret = nvme_init_subsystem(ctrl, id); + if (ret) + goto out_free; + } + memcpy(ctrl->subsys->firmware_rev, id->fr, + sizeof(ctrl->subsys->firmware_rev)); + + if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { + dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); + ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; + } + + ctrl->crdt[0] = le16_to_cpu(id->crdt1); + ctrl->crdt[1] = le16_to_cpu(id->crdt2); + ctrl->crdt[2] = le16_to_cpu(id->crdt3); + + ctrl->oacs = le16_to_cpu(id->oacs); + ctrl->oncs = le16_to_cpu(id->oncs); + ctrl->mtfa = le16_to_cpu(id->mtfa); + ctrl->oaes = le32_to_cpu(id->oaes); + ctrl->wctemp = le16_to_cpu(id->wctemp); + ctrl->cctemp = le16_to_cpu(id->cctemp); + + atomic_set(&ctrl->abort_limit, id->acl + 1); + ctrl->vwc = id->vwc; + if (id->mdts) + max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); + else + max_hw_sectors = UINT_MAX; + ctrl->max_hw_sectors = + min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); + + nvme_set_queue_limits(ctrl, ctrl->admin_q); + ctrl->sgls = le32_to_cpu(id->sgls); + ctrl->kas = le16_to_cpu(id->kas); + ctrl->max_namespaces = le32_to_cpu(id->mnan); + ctrl->ctratt = le32_to_cpu(id->ctratt); + + ctrl->cntrltype = id->cntrltype; + ctrl->dctype = id->dctype; + + if (id->rtd3e) { + /* us -> s */ + u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; + + ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, + shutdown_timeout, 60); + + if (ctrl->shutdown_timeout != shutdown_timeout) + dev_info(ctrl->device, + "Shutdown timeout set to %u seconds\n", + ctrl->shutdown_timeout); + } else + ctrl->shutdown_timeout = shutdown_timeout; + + ctrl->npss = id->npss; + ctrl->apsta = id->apsta; + prev_apst_enabled = ctrl->apst_enabled; + if (ctrl->quirks & NVME_QUIRK_NO_APST) { + if (force_apst && id->apsta) { + dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); + ctrl->apst_enabled = true; + } else { + ctrl->apst_enabled = false; + } + } else { + ctrl->apst_enabled = id->apsta; + } + memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); + + if (ctrl->ops->flags & NVME_F_FABRICS) { + ctrl->icdoff = le16_to_cpu(id->icdoff); + ctrl->ioccsz = le32_to_cpu(id->ioccsz); + ctrl->iorcsz = le32_to_cpu(id->iorcsz); + ctrl->maxcmd = le16_to_cpu(id->maxcmd); + + /* + * In fabrics we need to verify the cntlid matches the + * admin connect + */ + if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { + dev_err(ctrl->device, + "Mismatching cntlid: Connect %u vs Identify " + "%u, rejecting\n", + ctrl->cntlid, le16_to_cpu(id->cntlid)); + ret = -EINVAL; + goto out_free; + } + + if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { + dev_err(ctrl->device, + "keep-alive support is mandatory for fabrics\n"); + ret = -EINVAL; + goto out_free; + } + } else { + ctrl->hmpre = le32_to_cpu(id->hmpre); + ctrl->hmmin = le32_to_cpu(id->hmmin); + ctrl->hmminds = le32_to_cpu(id->hmminds); + ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); + } + + ret = nvme_mpath_init_identify(ctrl, id); + if (ret < 0) + goto out_free; + + if (ctrl->apst_enabled && !prev_apst_enabled) + dev_pm_qos_expose_latency_tolerance(ctrl->device); + else if (!ctrl->apst_enabled && prev_apst_enabled) + dev_pm_qos_hide_latency_tolerance(ctrl->device); + +out_free: + kfree(id); + return ret; +} + +/* + * Initialize the cached copies of the Identify data and various controller + * register in our nvme_ctrl structure. This should be called as soon as + * the admin queue is fully up and running. + */ +int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) +{ + int ret; + + ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); + if (ret) { + dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); + return ret; + } + + ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); + + if (ctrl->vs >= NVME_VS(1, 1, 0)) + ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); + + ret = nvme_init_identify(ctrl); + if (ret) + return ret; + + ret = nvme_configure_apst(ctrl); + if (ret < 0) + return ret; + + ret = nvme_configure_timestamp(ctrl); + if (ret < 0) + return ret; + + ret = nvme_configure_host_options(ctrl); + if (ret < 0) + return ret; + + if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { + /* + * Do not return errors unless we are in a controller reset, + * the controller works perfectly fine without hwmon. + */ + ret = nvme_hwmon_init(ctrl); + if (ret == -EINTR) + return ret; + } + + ctrl->identified = true; + + return 0; +} +EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); + +static int nvme_dev_open(struct inode *inode, struct file *file) +{ + struct nvme_ctrl *ctrl = + container_of(inode->i_cdev, struct nvme_ctrl, cdev); + + switch (ctrl->state) { + case NVME_CTRL_LIVE: + break; + default: + return -EWOULDBLOCK; + } + + nvme_get_ctrl(ctrl); + if (!try_module_get(ctrl->ops->module)) { + nvme_put_ctrl(ctrl); + return -EINVAL; + } + + file->private_data = ctrl; + return 0; +} + +static int nvme_dev_release(struct inode *inode, struct file *file) +{ + struct nvme_ctrl *ctrl = + container_of(inode->i_cdev, struct nvme_ctrl, cdev); + + module_put(ctrl->ops->module); + nvme_put_ctrl(ctrl); + return 0; +} + +static const struct file_operations nvme_dev_fops = { + .owner = THIS_MODULE, + .open = nvme_dev_open, + .release = nvme_dev_release, + .unlocked_ioctl = nvme_dev_ioctl, + .compat_ioctl = compat_ptr_ioctl, + .uring_cmd = nvme_dev_uring_cmd, +}; + +static ssize_t nvme_sysfs_reset(struct device *dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + int ret; + + ret = nvme_reset_ctrl_sync(ctrl); + if (ret < 0) + return ret; + return count; +} +static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); + +static ssize_t nvme_sysfs_rescan(struct device *dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + nvme_queue_scan(ctrl); + return count; +} +static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); + +static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) +{ + struct gendisk *disk = dev_to_disk(dev); + + if (disk->fops == &nvme_bdev_ops) + return nvme_get_ns_from_dev(dev)->head; + else + return disk->private_data; +} + +static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_ns_head *head = dev_to_ns_head(dev); + struct nvme_ns_ids *ids = &head->ids; + struct nvme_subsystem *subsys = head->subsys; + int serial_len = sizeof(subsys->serial); + int model_len = sizeof(subsys->model); + + if (!uuid_is_null(&ids->uuid)) + return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); + + if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) + return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); + + if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) + return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); + + while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || + subsys->serial[serial_len - 1] == '\0')) + serial_len--; + while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || + subsys->model[model_len - 1] == '\0')) + model_len--; + + return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, + serial_len, subsys->serial, model_len, subsys->model, + head->ns_id); +} +static DEVICE_ATTR_RO(wwid); + +static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); +} +static DEVICE_ATTR_RO(nguid); + +static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; + + /* For backward compatibility expose the NGUID to userspace if + * we have no UUID set + */ + if (uuid_is_null(&ids->uuid)) { + dev_warn_ratelimited(dev, + "No UUID available providing old NGUID\n"); + return sysfs_emit(buf, "%pU\n", ids->nguid); + } + return sysfs_emit(buf, "%pU\n", &ids->uuid); +} +static DEVICE_ATTR_RO(uuid); + +static ssize_t eui_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); +} +static DEVICE_ATTR_RO(eui); + +static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); +} +static DEVICE_ATTR_RO(nsid); + +static struct attribute *nvme_ns_id_attrs[] = { + &dev_attr_wwid.attr, + &dev_attr_uuid.attr, + &dev_attr_nguid.attr, + &dev_attr_eui.attr, + &dev_attr_nsid.attr, +#ifdef CONFIG_NVME_MULTIPATH + &dev_attr_ana_grpid.attr, + &dev_attr_ana_state.attr, +#endif + NULL, +}; + +static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, + struct attribute *a, int n) +{ + struct device *dev = container_of(kobj, struct device, kobj); + struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; + + if (a == &dev_attr_uuid.attr) { + if (uuid_is_null(&ids->uuid) && + !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) + return 0; + } + if (a == &dev_attr_nguid.attr) { + if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) + return 0; + } + if (a == &dev_attr_eui.attr) { + if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) + return 0; + } +#ifdef CONFIG_NVME_MULTIPATH + if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { + if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ + return 0; + if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) + return 0; + } +#endif + return a->mode; +} + +static const struct attribute_group nvme_ns_id_attr_group = { + .attrs = nvme_ns_id_attrs, + .is_visible = nvme_ns_id_attrs_are_visible, +}; + +const struct attribute_group *nvme_ns_id_attr_groups[] = { + &nvme_ns_id_attr_group, + NULL, +}; + +#define nvme_show_str_function(field) \ +static ssize_t field##_show(struct device *dev, \ + struct device_attribute *attr, char *buf) \ +{ \ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ + return sysfs_emit(buf, "%.*s\n", \ + (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ +} \ +static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); + +nvme_show_str_function(model); +nvme_show_str_function(serial); +nvme_show_str_function(firmware_rev); + +#define nvme_show_int_function(field) \ +static ssize_t field##_show(struct device *dev, \ + struct device_attribute *attr, char *buf) \ +{ \ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ + return sysfs_emit(buf, "%d\n", ctrl->field); \ +} \ +static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); + +nvme_show_int_function(cntlid); +nvme_show_int_function(numa_node); +nvme_show_int_function(queue_count); +nvme_show_int_function(sqsize); +nvme_show_int_function(kato); + +static ssize_t nvme_sysfs_delete(struct device *dev, + struct device_attribute *attr, const char *buf, + size_t count) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + if (!test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags)) + return -EBUSY; + + if (device_remove_file_self(dev, attr)) + nvme_delete_ctrl_sync(ctrl); + return count; +} +static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); + +static ssize_t nvme_sysfs_show_transport(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%s\n", ctrl->ops->name); +} +static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); + +static ssize_t nvme_sysfs_show_state(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + static const char *const state_name[] = { + [NVME_CTRL_NEW] = "new", + [NVME_CTRL_LIVE] = "live", + [NVME_CTRL_RESETTING] = "resetting", + [NVME_CTRL_CONNECTING] = "connecting", + [NVME_CTRL_DELETING] = "deleting", + [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", + [NVME_CTRL_DEAD] = "dead", + }; + + if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && + state_name[ctrl->state]) + return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); + + return sysfs_emit(buf, "unknown state\n"); +} + +static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); + +static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); +} +static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); + +static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); +} +static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); + +static ssize_t nvme_sysfs_show_hostid(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); +} +static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); + +static ssize_t nvme_sysfs_show_address(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); +} +static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); + +static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + struct nvmf_ctrl_options *opts = ctrl->opts; + + if (ctrl->opts->max_reconnects == -1) + return sysfs_emit(buf, "off\n"); + return sysfs_emit(buf, "%d\n", + opts->max_reconnects * opts->reconnect_delay); +} + +static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + struct nvmf_ctrl_options *opts = ctrl->opts; + int ctrl_loss_tmo, err; + + err = kstrtoint(buf, 10, &ctrl_loss_tmo); + if (err) + return -EINVAL; + + if (ctrl_loss_tmo < 0) + opts->max_reconnects = -1; + else + opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, + opts->reconnect_delay); + return count; +} +static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, + nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); + +static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + if (ctrl->opts->reconnect_delay == -1) + return sysfs_emit(buf, "off\n"); + return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); +} + +static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + unsigned int v; + int err; + + err = kstrtou32(buf, 10, &v); + if (err) + return err; + + ctrl->opts->reconnect_delay = v; + return count; +} +static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, + nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); + +static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + if (ctrl->opts->fast_io_fail_tmo == -1) + return sysfs_emit(buf, "off\n"); + return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); +} + +static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + struct nvmf_ctrl_options *opts = ctrl->opts; + int fast_io_fail_tmo, err; + + err = kstrtoint(buf, 10, &fast_io_fail_tmo); + if (err) + return -EINVAL; + + if (fast_io_fail_tmo < 0) + opts->fast_io_fail_tmo = -1; + else + opts->fast_io_fail_tmo = fast_io_fail_tmo; + return count; +} +static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, + nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); + +static ssize_t cntrltype_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + static const char * const type[] = { + [NVME_CTRL_IO] = "io\n", + [NVME_CTRL_DISC] = "discovery\n", + [NVME_CTRL_ADMIN] = "admin\n", + }; + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype]) + return sysfs_emit(buf, "reserved\n"); + + return sysfs_emit(buf, type[ctrl->cntrltype]); +} +static DEVICE_ATTR_RO(cntrltype); + +static ssize_t dctype_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + static const char * const type[] = { + [NVME_DCTYPE_NOT_REPORTED] = "none\n", + [NVME_DCTYPE_DDC] = "ddc\n", + [NVME_DCTYPE_CDC] = "cdc\n", + }; + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype]) + return sysfs_emit(buf, "reserved\n"); + + return sysfs_emit(buf, type[ctrl->dctype]); +} +static DEVICE_ATTR_RO(dctype); + +#ifdef CONFIG_NVME_AUTH +static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + struct nvmf_ctrl_options *opts = ctrl->opts; + + if (!opts->dhchap_secret) + return sysfs_emit(buf, "none\n"); + return sysfs_emit(buf, "%s\n", opts->dhchap_secret); +} + +static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + struct nvmf_ctrl_options *opts = ctrl->opts; + char *dhchap_secret; + + if (!ctrl->opts->dhchap_secret) + return -EINVAL; + if (count < 7) + return -EINVAL; + if (memcmp(buf, "DHHC-1:", 7)) + return -EINVAL; + + dhchap_secret = kzalloc(count + 1, GFP_KERNEL); + if (!dhchap_secret) + return -ENOMEM; + memcpy(dhchap_secret, buf, count); + nvme_auth_stop(ctrl); + if (strcmp(dhchap_secret, opts->dhchap_secret)) { + struct nvme_dhchap_key *key, *host_key; + int ret; + + ret = nvme_auth_generate_key(dhchap_secret, &key); + if (ret) { + kfree(dhchap_secret); + return ret; + } + kfree(opts->dhchap_secret); + opts->dhchap_secret = dhchap_secret; + host_key = ctrl->host_key; + ctrl->host_key = key; + nvme_auth_free_key(host_key); + } else + kfree(dhchap_secret); + /* Start re-authentication */ + dev_info(ctrl->device, "re-authenticating controller\n"); + queue_work(nvme_wq, &ctrl->dhchap_auth_work); + + return count; +} +static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR, + nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store); + +static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + struct nvmf_ctrl_options *opts = ctrl->opts; + + if (!opts->dhchap_ctrl_secret) + return sysfs_emit(buf, "none\n"); + return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret); +} + +static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + struct nvmf_ctrl_options *opts = ctrl->opts; + char *dhchap_secret; + + if (!ctrl->opts->dhchap_ctrl_secret) + return -EINVAL; + if (count < 7) + return -EINVAL; + if (memcmp(buf, "DHHC-1:", 7)) + return -EINVAL; + + dhchap_secret = kzalloc(count + 1, GFP_KERNEL); + if (!dhchap_secret) + return -ENOMEM; + memcpy(dhchap_secret, buf, count); + nvme_auth_stop(ctrl); + if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) { + struct nvme_dhchap_key *key, *ctrl_key; + int ret; + + ret = nvme_auth_generate_key(dhchap_secret, &key); + if (ret) { + kfree(dhchap_secret); + return ret; + } + kfree(opts->dhchap_ctrl_secret); + opts->dhchap_ctrl_secret = dhchap_secret; + ctrl_key = ctrl->ctrl_key; + ctrl->ctrl_key = key; + nvme_auth_free_key(ctrl_key); + } else + kfree(dhchap_secret); + /* Start re-authentication */ + dev_info(ctrl->device, "re-authenticating controller\n"); + queue_work(nvme_wq, &ctrl->dhchap_auth_work); + + return count; +} +static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR, + nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store); +#endif + +static struct attribute *nvme_dev_attrs[] = { + &dev_attr_reset_controller.attr, + &dev_attr_rescan_controller.attr, + &dev_attr_model.attr, + &dev_attr_serial.attr, + &dev_attr_firmware_rev.attr, + &dev_attr_cntlid.attr, + &dev_attr_delete_controller.attr, + &dev_attr_transport.attr, + &dev_attr_subsysnqn.attr, + &dev_attr_address.attr, + &dev_attr_state.attr, + &dev_attr_numa_node.attr, + &dev_attr_queue_count.attr, + &dev_attr_sqsize.attr, + &dev_attr_hostnqn.attr, + &dev_attr_hostid.attr, + &dev_attr_ctrl_loss_tmo.attr, + &dev_attr_reconnect_delay.attr, + &dev_attr_fast_io_fail_tmo.attr, + &dev_attr_kato.attr, + &dev_attr_cntrltype.attr, + &dev_attr_dctype.attr, +#ifdef CONFIG_NVME_AUTH + &dev_attr_dhchap_secret.attr, + &dev_attr_dhchap_ctrl_secret.attr, +#endif + NULL +}; + +static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, + struct attribute *a, int n) +{ + struct device *dev = container_of(kobj, struct device, kobj); + struct nvme_ctrl *ctrl = dev_get_drvdata(dev); + + if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) + return 0; + if (a == &dev_attr_address.attr && !ctrl->ops->get_address) + return 0; + if (a == &dev_attr_hostnqn.attr && !ctrl->opts) + return 0; + if (a == &dev_attr_hostid.attr && !ctrl->opts) + return 0; + if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) + return 0; + if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) + return 0; + if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) + return 0; +#ifdef CONFIG_NVME_AUTH + if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts) + return 0; + if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts) + return 0; +#endif + + return a->mode; +} + +const struct attribute_group nvme_dev_attrs_group = { + .attrs = nvme_dev_attrs, + .is_visible = nvme_dev_attrs_are_visible, +}; +EXPORT_SYMBOL_GPL(nvme_dev_attrs_group); + +static const struct attribute_group *nvme_dev_attr_groups[] = { + &nvme_dev_attrs_group, + NULL, +}; + +static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, + unsigned nsid) +{ + struct nvme_ns_head *h; + + lockdep_assert_held(&ctrl->subsys->lock); + + list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { + /* + * Private namespaces can share NSIDs under some conditions. + * In that case we can't use the same ns_head for namespaces + * with the same NSID. + */ + if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) + continue; + if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) + return h; + } + + return NULL; +} + +static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, + struct nvme_ns_ids *ids) +{ + bool has_uuid = !uuid_is_null(&ids->uuid); + bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); + bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); + struct nvme_ns_head *h; + + lockdep_assert_held(&subsys->lock); + + list_for_each_entry(h, &subsys->nsheads, entry) { + if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) + return -EINVAL; + if (has_nguid && + memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) + return -EINVAL; + if (has_eui64 && + memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) + return -EINVAL; + } + + return 0; +} + +static void nvme_cdev_rel(struct device *dev) +{ + ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); +} + +void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) +{ + cdev_device_del(cdev, cdev_device); + put_device(cdev_device); +} + +int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, + const struct file_operations *fops, struct module *owner) +{ + int minor, ret; + + minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); + if (minor < 0) + return minor; + cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); + cdev_device->class = nvme_ns_chr_class; + cdev_device->release = nvme_cdev_rel; + device_initialize(cdev_device); + cdev_init(cdev, fops); + cdev->owner = owner; + ret = cdev_device_add(cdev, cdev_device); + if (ret) + put_device(cdev_device); + + return ret; +} + +static int nvme_ns_chr_open(struct inode *inode, struct file *file) +{ + return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); +} + +static int nvme_ns_chr_release(struct inode *inode, struct file *file) +{ + nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); + return 0; +} + +static const struct file_operations nvme_ns_chr_fops = { + .owner = THIS_MODULE, + .open = nvme_ns_chr_open, + .release = nvme_ns_chr_release, + .unlocked_ioctl = nvme_ns_chr_ioctl, + .compat_ioctl = compat_ptr_ioctl, + .uring_cmd = nvme_ns_chr_uring_cmd, + .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, +}; + +static int nvme_add_ns_cdev(struct nvme_ns *ns) +{ + int ret; + + ns->cdev_device.parent = ns->ctrl->device; + ret = dev_set_name(&ns->cdev_device, "ng%dn%d", + ns->ctrl->instance, ns->head->instance); + if (ret) + return ret; + + return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, + ns->ctrl->ops->module); +} + +static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, + struct nvme_ns_info *info) +{ + struct nvme_ns_head *head; + size_t size = sizeof(*head); + int ret = -ENOMEM; + +#ifdef CONFIG_NVME_MULTIPATH + size += num_possible_nodes() * sizeof(struct nvme_ns *); +#endif + + head = kzalloc(size, GFP_KERNEL); + if (!head) + goto out; + ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); + if (ret < 0) + goto out_free_head; + head->instance = ret; + INIT_LIST_HEAD(&head->list); + ret = init_srcu_struct(&head->srcu); + if (ret) + goto out_ida_remove; + head->subsys = ctrl->subsys; + head->ns_id = info->nsid; + head->ids = info->ids; + head->shared = info->is_shared; + kref_init(&head->ref); + + if (head->ids.csi) { + ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); + if (ret) + goto out_cleanup_srcu; + } else + head->effects = ctrl->effects; + + ret = nvme_mpath_alloc_disk(ctrl, head); + if (ret) + goto out_cleanup_srcu; + + list_add_tail(&head->entry, &ctrl->subsys->nsheads); + + kref_get(&ctrl->subsys->ref); + + return head; +out_cleanup_srcu: + cleanup_srcu_struct(&head->srcu); +out_ida_remove: + ida_free(&ctrl->subsys->ns_ida, head->instance); +out_free_head: + kfree(head); +out: + if (ret > 0) + ret = blk_status_to_errno(nvme_error_status(ret)); + return ERR_PTR(ret); +} + +static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, + struct nvme_ns_ids *ids) +{ + struct nvme_subsystem *s; + int ret = 0; + + /* + * Note that this check is racy as we try to avoid holding the global + * lock over the whole ns_head creation. But it is only intended as + * a sanity check anyway. + */ + mutex_lock(&nvme_subsystems_lock); + list_for_each_entry(s, &nvme_subsystems, entry) { + if (s == this) + continue; + mutex_lock(&s->lock); + ret = nvme_subsys_check_duplicate_ids(s, ids); + mutex_unlock(&s->lock); + if (ret) + break; + } + mutex_unlock(&nvme_subsystems_lock); + + return ret; +} + +static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) +{ + struct nvme_ctrl *ctrl = ns->ctrl; + struct nvme_ns_head *head = NULL; + int ret; + + ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); + if (ret) { + /* + * We've found two different namespaces on two different + * subsystems that report the same ID. This is pretty nasty + * for anything that actually requires unique device + * identification. In the kernel we need this for multipathing, + * and in user space the /dev/disk/by-id/ links rely on it. + * + * If the device also claims to be multi-path capable back off + * here now and refuse the probe the second device as this is a + * recipe for data corruption. If not this is probably a + * cheap consumer device if on the PCIe bus, so let the user + * proceed and use the shiny toy, but warn that with changing + * probing order (which due to our async probing could just be + * device taking longer to startup) the other device could show + * up at any time. + */ + nvme_print_device_info(ctrl); + if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ + ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && + info->is_shared)) { + dev_err(ctrl->device, + "ignoring nsid %d because of duplicate IDs\n", + info->nsid); + return ret; + } + + dev_err(ctrl->device, + "clearing duplicate IDs for nsid %d\n", info->nsid); + dev_err(ctrl->device, + "use of /dev/disk/by-id/ may cause data corruption\n"); + memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); + memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); + memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); + ctrl->quirks |= NVME_QUIRK_BOGUS_NID; + } + + mutex_lock(&ctrl->subsys->lock); + head = nvme_find_ns_head(ctrl, info->nsid); + if (!head) { + ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); + if (ret) { + dev_err(ctrl->device, + "duplicate IDs in subsystem for nsid %d\n", + info->nsid); + goto out_unlock; + } + head = nvme_alloc_ns_head(ctrl, info); + if (IS_ERR(head)) { + ret = PTR_ERR(head); + goto out_unlock; + } + } else { + ret = -EINVAL; + if (!info->is_shared || !head->shared) { + dev_err(ctrl->device, + "Duplicate unshared namespace %d\n", + info->nsid); + goto out_put_ns_head; + } + if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { + dev_err(ctrl->device, + "IDs don't match for shared namespace %d\n", + info->nsid); + goto out_put_ns_head; + } + + if (!multipath && !list_empty(&head->list)) { + dev_warn(ctrl->device, + "Found shared namespace %d, but multipathing not supported.\n", + info->nsid); + dev_warn_once(ctrl->device, + "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); + } + } + + list_add_tail_rcu(&ns->siblings, &head->list); + ns->head = head; + mutex_unlock(&ctrl->subsys->lock); + return 0; + +out_put_ns_head: + nvme_put_ns_head(head); +out_unlock: + mutex_unlock(&ctrl->subsys->lock); + return ret; +} + +struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) +{ + struct nvme_ns *ns, *ret = NULL; + + down_read(&ctrl->namespaces_rwsem); + list_for_each_entry(ns, &ctrl->namespaces, list) { + if (ns->head->ns_id == nsid) { + if (!nvme_get_ns(ns)) + continue; + ret = ns; + break; + } + if (ns->head->ns_id > nsid) + break; + } + up_read(&ctrl->namespaces_rwsem); + return ret; +} +EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); + +/* + * Add the namespace to the controller list while keeping the list ordered. + */ +static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) +{ + struct nvme_ns *tmp; + + list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { + if (tmp->head->ns_id < ns->head->ns_id) { + list_add(&ns->list, &tmp->list); + return; + } + } + list_add(&ns->list, &ns->ctrl->namespaces); +} + +static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) +{ + struct nvme_ns *ns; + struct gendisk *disk; + int node = ctrl->numa_node; + + ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); + if (!ns) + return; + + disk = blk_mq_alloc_disk(ctrl->tagset, ns); + if (IS_ERR(disk)) + goto out_free_ns; + disk->fops = &nvme_bdev_ops; + disk->private_data = ns; + + ns->disk = disk; + ns->queue = disk->queue; + + if (ctrl->opts && ctrl->opts->data_digest) + blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); + + blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); + if (ctrl->ops->supports_pci_p2pdma && + ctrl->ops->supports_pci_p2pdma(ctrl)) + blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); + + ns->ctrl = ctrl; + kref_init(&ns->kref); + + if (nvme_init_ns_head(ns, info)) + goto out_cleanup_disk; + + /* + * If multipathing is enabled, the device name for all disks and not + * just those that represent shared namespaces needs to be based on the + * subsystem instance. Using the controller instance for private + * namespaces could lead to naming collisions between shared and private + * namespaces if they don't use a common numbering scheme. + * + * If multipathing is not enabled, disk names must use the controller + * instance as shared namespaces will show up as multiple block + * devices. + */ + if (ns->head->disk) { + sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, + ctrl->instance, ns->head->instance); + disk->flags |= GENHD_FL_HIDDEN; + } else if (multipath) { + sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, + ns->head->instance); + } else { + sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, + ns->head->instance); + } + + if (nvme_update_ns_info(ns, info)) + goto out_unlink_ns; + + down_write(&ctrl->namespaces_rwsem); + nvme_ns_add_to_ctrl_list(ns); + up_write(&ctrl->namespaces_rwsem); + nvme_get_ctrl(ctrl); + + if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) + goto out_cleanup_ns_from_list; + + if (!nvme_ns_head_multipath(ns->head)) + nvme_add_ns_cdev(ns); + + nvme_mpath_add_disk(ns, info->anagrpid); + nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); + + return; + + out_cleanup_ns_from_list: + nvme_put_ctrl(ctrl); + down_write(&ctrl->namespaces_rwsem); + list_del_init(&ns->list); + up_write(&ctrl->namespaces_rwsem); + out_unlink_ns: + mutex_lock(&ctrl->subsys->lock); + list_del_rcu(&ns->siblings); + if (list_empty(&ns->head->list)) + list_del_init(&ns->head->entry); + mutex_unlock(&ctrl->subsys->lock); + nvme_put_ns_head(ns->head); + out_cleanup_disk: + put_disk(disk); + out_free_ns: + kfree(ns); +} + +static void nvme_ns_remove(struct nvme_ns *ns) +{ + bool last_path = false; + + if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) + return; + + clear_bit(NVME_NS_READY, &ns->flags); + set_capacity(ns->disk, 0); + nvme_fault_inject_fini(&ns->fault_inject); + + /* + * Ensure that !NVME_NS_READY is seen by other threads to prevent + * this ns going back into current_path. + */ + synchronize_srcu(&ns->head->srcu); + + /* wait for concurrent submissions */ + if (nvme_mpath_clear_current_path(ns)) + synchronize_srcu(&ns->head->srcu); + + mutex_lock(&ns->ctrl->subsys->lock); + list_del_rcu(&ns->siblings); + if (list_empty(&ns->head->list)) { + list_del_init(&ns->head->entry); + last_path = true; + } + mutex_unlock(&ns->ctrl->subsys->lock); + + /* guarantee not available in head->list */ + synchronize_srcu(&ns->head->srcu); + + if (!nvme_ns_head_multipath(ns->head)) + nvme_cdev_del(&ns->cdev, &ns->cdev_device); + del_gendisk(ns->disk); + + down_write(&ns->ctrl->namespaces_rwsem); + list_del_init(&ns->list); + up_write(&ns->ctrl->namespaces_rwsem); + + if (last_path) + nvme_mpath_shutdown_disk(ns->head); + nvme_put_ns(ns); +} + +static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) +{ + struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); + + if (ns) { + nvme_ns_remove(ns); + nvme_put_ns(ns); + } +} + +static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) +{ + int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; + + if (test_bit(NVME_NS_DEAD, &ns->flags)) + goto out; + + ret = NVME_SC_INVALID_NS | NVME_SC_DNR; + if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { + dev_err(ns->ctrl->device, + "identifiers changed for nsid %d\n", ns->head->ns_id); + goto out; + } + + ret = nvme_update_ns_info(ns, info); +out: + /* + * Only remove the namespace if we got a fatal error back from the + * device, otherwise ignore the error and just move on. + * + * TODO: we should probably schedule a delayed retry here. + */ + if (ret > 0 && (ret & NVME_SC_DNR)) + nvme_ns_remove(ns); +} + +static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) +{ + struct nvme_ns_info info = { .nsid = nsid }; + struct nvme_ns *ns; + int ret; + + if (nvme_identify_ns_descs(ctrl, &info)) + return; + + if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { + dev_warn(ctrl->device, + "command set not reported for nsid: %d\n", nsid); + return; + } + + /* + * If available try to use the Command Set Idependent Identify Namespace + * data structure to find all the generic information that is needed to + * set up a namespace. If not fall back to the legacy version. + */ + if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || + (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) + ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); + else + ret = nvme_ns_info_from_identify(ctrl, &info); + + if (info.is_removed) + nvme_ns_remove_by_nsid(ctrl, nsid); + + /* + * Ignore the namespace if it is not ready. We will get an AEN once it + * becomes ready and restart the scan. + */ + if (ret || !info.is_ready) + return; + + ns = nvme_find_get_ns(ctrl, nsid); + if (ns) { + nvme_validate_ns(ns, &info); + nvme_put_ns(ns); + } else { + nvme_alloc_ns(ctrl, &info); + } +} + +static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, + unsigned nsid) +{ + struct nvme_ns *ns, *next; + LIST_HEAD(rm_list); + + down_write(&ctrl->namespaces_rwsem); + list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { + if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) + list_move_tail(&ns->list, &rm_list); + } + up_write(&ctrl->namespaces_rwsem); + + list_for_each_entry_safe(ns, next, &rm_list, list) + nvme_ns_remove(ns); + +} + +static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) +{ + const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); + __le32 *ns_list; + u32 prev = 0; + int ret = 0, i; + + if (nvme_ctrl_limited_cns(ctrl)) + return -EOPNOTSUPP; + + ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); + if (!ns_list) + return -ENOMEM; + + for (;;) { + struct nvme_command cmd = { + .identify.opcode = nvme_admin_identify, + .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, + .identify.nsid = cpu_to_le32(prev), + }; + + ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, + NVME_IDENTIFY_DATA_SIZE); + if (ret) { + dev_warn(ctrl->device, + "Identify NS List failed (status=0x%x)\n", ret); + goto free; + } + + for (i = 0; i < nr_entries; i++) { + u32 nsid = le32_to_cpu(ns_list[i]); + + if (!nsid) /* end of the list? */ + goto out; + nvme_scan_ns(ctrl, nsid); + while (++prev < nsid) + nvme_ns_remove_by_nsid(ctrl, prev); + } + } + out: + nvme_remove_invalid_namespaces(ctrl, prev); + free: + kfree(ns_list); + return ret; +} + +static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) +{ + struct nvme_id_ctrl *id; + u32 nn, i; + + if (nvme_identify_ctrl(ctrl, &id)) + return; + nn = le32_to_cpu(id->nn); + kfree(id); + + for (i = 1; i <= nn; i++) + nvme_scan_ns(ctrl, i); + + nvme_remove_invalid_namespaces(ctrl, nn); +} + +static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) +{ + size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); + __le32 *log; + int error; + + log = kzalloc(log_size, GFP_KERNEL); + if (!log) + return; + + /* + * We need to read the log to clear the AEN, but we don't want to rely + * on it for the changed namespace information as userspace could have + * raced with us in reading the log page, which could cause us to miss + * updates. + */ + error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, + NVME_CSI_NVM, log, log_size, 0); + if (error) + dev_warn(ctrl->device, + "reading changed ns log failed: %d\n", error); + + kfree(log); +} + +static void nvme_scan_work(struct work_struct *work) +{ + struct nvme_ctrl *ctrl = + container_of(work, struct nvme_ctrl, scan_work); + int ret; + + /* No tagset on a live ctrl means IO queues could not created */ + if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) + return; + + /* + * Identify controller limits can change at controller reset due to + * new firmware download, even though it is not common we cannot ignore + * such scenario. Controller's non-mdts limits are reported in the unit + * of logical blocks that is dependent on the format of attached + * namespace. Hence re-read the limits at the time of ns allocation. + */ + ret = nvme_init_non_mdts_limits(ctrl); + if (ret < 0) { + dev_warn(ctrl->device, + "reading non-mdts-limits failed: %d\n", ret); + return; + } + + if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { + dev_info(ctrl->device, "rescanning namespaces.\n"); + nvme_clear_changed_ns_log(ctrl); + } + + mutex_lock(&ctrl->scan_lock); + if (nvme_scan_ns_list(ctrl) != 0) + nvme_scan_ns_sequential(ctrl); + mutex_unlock(&ctrl->scan_lock); +} + +/* + * This function iterates the namespace list unlocked to allow recovery from + * controller failure. It is up to the caller to ensure the namespace list is + * not modified by scan work while this function is executing. + */ +void nvme_remove_namespaces(struct nvme_ctrl *ctrl) +{ + struct nvme_ns *ns, *next; + LIST_HEAD(ns_list); + + /* + * make sure to requeue I/O to all namespaces as these + * might result from the scan itself and must complete + * for the scan_work to make progress + */ + nvme_mpath_clear_ctrl_paths(ctrl); + + /* prevent racing with ns scanning */ + flush_work(&ctrl->scan_work); + + /* + * The dead states indicates the controller was not gracefully + * disconnected. In that case, we won't be able to flush any data while + * removing the namespaces' disks; fail all the queues now to avoid + * potentially having to clean up the failed sync later. + */ + if (ctrl->state == NVME_CTRL_DEAD) + nvme_kill_queues(ctrl); + + /* this is a no-op when called from the controller reset handler */ + nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); + + down_write(&ctrl->namespaces_rwsem); + list_splice_init(&ctrl->namespaces, &ns_list); + up_write(&ctrl->namespaces_rwsem); + + list_for_each_entry_safe(ns, next, &ns_list, list) + nvme_ns_remove(ns); +} +EXPORT_SYMBOL_GPL(nvme_remove_namespaces); + +static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) +{ + struct nvme_ctrl *ctrl = + container_of(dev, struct nvme_ctrl, ctrl_device); + struct nvmf_ctrl_options *opts = ctrl->opts; + int ret; + + ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); + if (ret) + return ret; + + if (opts) { + ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); + if (ret) + return ret; + + ret = add_uevent_var(env, "NVME_TRSVCID=%s", + opts->trsvcid ?: "none"); + if (ret) + return ret; + + ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", + opts->host_traddr ?: "none"); + if (ret) + return ret; + + ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", + opts->host_iface ?: "none"); + } + return ret; +} + +static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) +{ + char *envp[2] = { envdata, NULL }; + + kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); +} + +static void nvme_aen_uevent(struct nvme_ctrl *ctrl) +{ + char *envp[2] = { NULL, NULL }; + u32 aen_result = ctrl->aen_result; + + ctrl->aen_result = 0; + if (!aen_result) + return; + + envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); + if (!envp[0]) + return; + kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); + kfree(envp[0]); +} + +static void nvme_async_event_work(struct work_struct *work) +{ + struct nvme_ctrl *ctrl = + container_of(work, struct nvme_ctrl, async_event_work); + + nvme_aen_uevent(ctrl); + + /* + * The transport drivers must guarantee AER submission here is safe by + * flushing ctrl async_event_work after changing the controller state + * from LIVE and before freeing the admin queue. + */ + if (ctrl->state == NVME_CTRL_LIVE) + ctrl->ops->submit_async_event(ctrl); +} + +static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) +{ + + u32 csts; + + if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) + return false; + + if (csts == ~0) + return false; + + return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); +} + +static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) +{ + struct nvme_fw_slot_info_log *log; + + log = kmalloc(sizeof(*log), GFP_KERNEL); + if (!log) + return; + + if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, + log, sizeof(*log), 0)) + dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); + kfree(log); +} + +static void nvme_fw_act_work(struct work_struct *work) +{ + struct nvme_ctrl *ctrl = container_of(work, + struct nvme_ctrl, fw_act_work); + unsigned long fw_act_timeout; + + nvme_auth_stop(ctrl); + + if (ctrl->mtfa) + fw_act_timeout = jiffies + + msecs_to_jiffies(ctrl->mtfa * 100); + else + fw_act_timeout = jiffies + + msecs_to_jiffies(admin_timeout * 1000); + + nvme_stop_queues(ctrl); + while (nvme_ctrl_pp_status(ctrl)) { + if (time_after(jiffies, fw_act_timeout)) { + dev_warn(ctrl->device, + "Fw activation timeout, reset controller\n"); + nvme_try_sched_reset(ctrl); + return; + } + msleep(100); + } + + if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) + return; + + nvme_start_queues(ctrl); + /* read FW slot information to clear the AER */ + nvme_get_fw_slot_info(ctrl); + + queue_work(nvme_wq, &ctrl->async_event_work); +} + +static u32 nvme_aer_type(u32 result) +{ + return result & 0x7; +} + +static u32 nvme_aer_subtype(u32 result) +{ + return (result & 0xff00) >> 8; +} + +static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) +{ + u32 aer_notice_type = nvme_aer_subtype(result); + bool requeue = true; + + switch (aer_notice_type) { + case NVME_AER_NOTICE_NS_CHANGED: + set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); + nvme_queue_scan(ctrl); + break; + case NVME_AER_NOTICE_FW_ACT_STARTING: + /* + * We are (ab)using the RESETTING state to prevent subsequent + * recovery actions from interfering with the controller's + * firmware activation. + */ + if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { + requeue = false; + queue_work(nvme_wq, &ctrl->fw_act_work); + } + break; +#ifdef CONFIG_NVME_MULTIPATH + case NVME_AER_NOTICE_ANA: + if (!ctrl->ana_log_buf) + break; + queue_work(nvme_wq, &ctrl->ana_work); + break; +#endif + case NVME_AER_NOTICE_DISC_CHANGED: + ctrl->aen_result = result; + break; + default: + dev_warn(ctrl->device, "async event result %08x\n", result); + } + return requeue; +} + +static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) +{ + dev_warn(ctrl->device, "resetting controller due to AER\n"); + nvme_reset_ctrl(ctrl); +} + +void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, + volatile union nvme_result *res) +{ + u32 result = le32_to_cpu(res->u32); + u32 aer_type = nvme_aer_type(result); + u32 aer_subtype = nvme_aer_subtype(result); + bool requeue = true; + + if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) + return; + + trace_nvme_async_event(ctrl, result); + switch (aer_type) { + case NVME_AER_NOTICE: + requeue = nvme_handle_aen_notice(ctrl, result); + break; + case NVME_AER_ERROR: + /* + * For a persistent internal error, don't run async_event_work + * to submit a new AER. The controller reset will do it. + */ + if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { + nvme_handle_aer_persistent_error(ctrl); + return; + } + fallthrough; + case NVME_AER_SMART: + case NVME_AER_CSS: + case NVME_AER_VS: + ctrl->aen_result = result; + break; + default: + break; + } + + if (requeue) + queue_work(nvme_wq, &ctrl->async_event_work); +} +EXPORT_SYMBOL_GPL(nvme_complete_async_event); + +int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, + const struct blk_mq_ops *ops, unsigned int cmd_size) +{ + int ret; + + memset(set, 0, sizeof(*set)); + set->ops = ops; + set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; + if (ctrl->ops->flags & NVME_F_FABRICS) + set->reserved_tags = NVMF_RESERVED_TAGS; + set->numa_node = ctrl->numa_node; + set->flags = BLK_MQ_F_NO_SCHED; + if (ctrl->ops->flags & NVME_F_BLOCKING) + set->flags |= BLK_MQ_F_BLOCKING; + set->cmd_size = cmd_size; + set->driver_data = ctrl; + set->nr_hw_queues = 1; + set->timeout = NVME_ADMIN_TIMEOUT; + ret = blk_mq_alloc_tag_set(set); + if (ret) + return ret; + + ctrl->admin_q = blk_mq_init_queue(set); + if (IS_ERR(ctrl->admin_q)) { + ret = PTR_ERR(ctrl->admin_q); + goto out_free_tagset; + } + + if (ctrl->ops->flags & NVME_F_FABRICS) { + ctrl->fabrics_q = blk_mq_init_queue(set); + if (IS_ERR(ctrl->fabrics_q)) { + ret = PTR_ERR(ctrl->fabrics_q); + goto out_cleanup_admin_q; + } + } + + ctrl->admin_tagset = set; + return 0; + +out_cleanup_admin_q: + blk_mq_destroy_queue(ctrl->admin_q); +out_free_tagset: + blk_mq_free_tag_set(set); + ctrl->admin_q = NULL; + ctrl->fabrics_q = NULL; + return ret; +} +EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); + +void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) +{ + blk_mq_destroy_queue(ctrl->admin_q); + if (ctrl->ops->flags & NVME_F_FABRICS) + blk_mq_destroy_queue(ctrl->fabrics_q); + blk_mq_free_tag_set(ctrl->admin_tagset); +} +EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); + +int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, + const struct blk_mq_ops *ops, unsigned int nr_maps, + unsigned int cmd_size) +{ + int ret; + + memset(set, 0, sizeof(*set)); + set->ops = ops; + set->queue_depth = ctrl->sqsize + 1; + set->reserved_tags = NVMF_RESERVED_TAGS; + set->numa_node = ctrl->numa_node; + set->flags = BLK_MQ_F_SHOULD_MERGE; + if (ctrl->ops->flags & NVME_F_BLOCKING) + set->flags |= BLK_MQ_F_BLOCKING; + set->cmd_size = cmd_size, + set->driver_data = ctrl; + set->nr_hw_queues = ctrl->queue_count - 1; + set->timeout = NVME_IO_TIMEOUT; + set->nr_maps = nr_maps; + ret = blk_mq_alloc_tag_set(set); + if (ret) + return ret; + + if (ctrl->ops->flags & NVME_F_FABRICS) { + ctrl->connect_q = blk_mq_init_queue(set); + if (IS_ERR(ctrl->connect_q)) { + ret = PTR_ERR(ctrl->connect_q); + goto out_free_tag_set; + } + } + + ctrl->tagset = set; + return 0; + +out_free_tag_set: + blk_mq_free_tag_set(set); + ctrl->connect_q = NULL; + return ret; +} +EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); + +void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) +{ + if (ctrl->ops->flags & NVME_F_FABRICS) + blk_mq_destroy_queue(ctrl->connect_q); + blk_mq_free_tag_set(ctrl->tagset); +} +EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); + +void nvme_stop_ctrl(struct nvme_ctrl *ctrl) +{ + nvme_mpath_stop(ctrl); + nvme_auth_stop(ctrl); + nvme_stop_keep_alive(ctrl); + nvme_stop_failfast_work(ctrl); + flush_work(&ctrl->async_event_work); + cancel_work_sync(&ctrl->fw_act_work); + if (ctrl->ops->stop_ctrl) + ctrl->ops->stop_ctrl(ctrl); +} +EXPORT_SYMBOL_GPL(nvme_stop_ctrl); + +void nvme_start_ctrl(struct nvme_ctrl *ctrl) +{ + nvme_start_keep_alive(ctrl); + + nvme_enable_aen(ctrl); + + /* + * persistent discovery controllers need to send indication to userspace + * to re-read the discovery log page to learn about possible changes + * that were missed. We identify persistent discovery controllers by + * checking that they started once before, hence are reconnecting back. + */ + if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && + nvme_discovery_ctrl(ctrl)) + nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); + + if (ctrl->queue_count > 1) { + nvme_queue_scan(ctrl); + nvme_start_queues(ctrl); + nvme_mpath_update(ctrl); + } + + nvme_change_uevent(ctrl, "NVME_EVENT=connected"); + set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); +} +EXPORT_SYMBOL_GPL(nvme_start_ctrl); + +void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) +{ + nvme_hwmon_exit(ctrl); + nvme_fault_inject_fini(&ctrl->fault_inject); + dev_pm_qos_hide_latency_tolerance(ctrl->device); + cdev_device_del(&ctrl->cdev, ctrl->device); + nvme_put_ctrl(ctrl); +} +EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); + +static void nvme_free_cels(struct nvme_ctrl *ctrl) +{ + struct nvme_effects_log *cel; + unsigned long i; + + xa_for_each(&ctrl->cels, i, cel) { + xa_erase(&ctrl->cels, i); + kfree(cel); + } + + xa_destroy(&ctrl->cels); +} + +static void nvme_free_ctrl(struct device *dev) +{ + struct nvme_ctrl *ctrl = + container_of(dev, struct nvme_ctrl, ctrl_device); + struct nvme_subsystem *subsys = ctrl->subsys; + + if (!subsys || ctrl->instance != subsys->instance) + ida_free(&nvme_instance_ida, ctrl->instance); + + nvme_free_cels(ctrl); + nvme_mpath_uninit(ctrl); + nvme_auth_stop(ctrl); + nvme_auth_free(ctrl); + __free_page(ctrl->discard_page); + + if (subsys) { + mutex_lock(&nvme_subsystems_lock); + list_del(&ctrl->subsys_entry); + sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); + mutex_unlock(&nvme_subsystems_lock); + } + + ctrl->ops->free_ctrl(ctrl); + + if (subsys) + nvme_put_subsystem(subsys); +} + +/* + * Initialize a NVMe controller structures. This needs to be called during + * earliest initialization so that we have the initialized structured around + * during probing. + */ +int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, + const struct nvme_ctrl_ops *ops, unsigned long quirks) +{ + int ret; + + ctrl->state = NVME_CTRL_NEW; + clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); + spin_lock_init(&ctrl->lock); + mutex_init(&ctrl->scan_lock); + INIT_LIST_HEAD(&ctrl->namespaces); + xa_init(&ctrl->cels); + init_rwsem(&ctrl->namespaces_rwsem); + ctrl->dev = dev; + ctrl->ops = ops; + ctrl->quirks = quirks; + ctrl->numa_node = NUMA_NO_NODE; + INIT_WORK(&ctrl->scan_work, nvme_scan_work); + INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); + INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); + INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); + init_waitqueue_head(&ctrl->state_wq); + + INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); + INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); + memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); + ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; + + BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > + PAGE_SIZE); + ctrl->discard_page = alloc_page(GFP_KERNEL); + if (!ctrl->discard_page) { + ret = -ENOMEM; + goto out; + } + + ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); + if (ret < 0) + goto out; + ctrl->instance = ret; + + device_initialize(&ctrl->ctrl_device); + ctrl->device = &ctrl->ctrl_device; + ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), + ctrl->instance); + ctrl->device->class = nvme_class; + ctrl->device->parent = ctrl->dev; + if (ops->dev_attr_groups) + ctrl->device->groups = ops->dev_attr_groups; + else + ctrl->device->groups = nvme_dev_attr_groups; + ctrl->device->release = nvme_free_ctrl; + dev_set_drvdata(ctrl->device, ctrl); + ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); + if (ret) + goto out_release_instance; + + nvme_get_ctrl(ctrl); + cdev_init(&ctrl->cdev, &nvme_dev_fops); + ctrl->cdev.owner = ops->module; + ret = cdev_device_add(&ctrl->cdev, ctrl->device); + if (ret) + goto out_free_name; + + /* + * Initialize latency tolerance controls. The sysfs files won't + * be visible to userspace unless the device actually supports APST. + */ + ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; + dev_pm_qos_update_user_latency_tolerance(ctrl->device, + min(default_ps_max_latency_us, (unsigned long)S32_MAX)); + + nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); + nvme_mpath_init_ctrl(ctrl); + ret = nvme_auth_init_ctrl(ctrl); + if (ret) + goto out_free_cdev; + + return 0; +out_free_cdev: + nvme_fault_inject_fini(&ctrl->fault_inject); + dev_pm_qos_hide_latency_tolerance(ctrl->device); + cdev_device_del(&ctrl->cdev, ctrl->device); +out_free_name: + nvme_put_ctrl(ctrl); + kfree_const(ctrl->device->kobj.name); +out_release_instance: + ida_free(&nvme_instance_ida, ctrl->instance); +out: + if (ctrl->discard_page) + __free_page(ctrl->discard_page); + return ret; +} +EXPORT_SYMBOL_GPL(nvme_init_ctrl); + +static void nvme_start_ns_queue(struct nvme_ns *ns) +{ + if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) + blk_mq_unquiesce_queue(ns->queue); +} + +static void nvme_stop_ns_queue(struct nvme_ns *ns) +{ + if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) + blk_mq_quiesce_queue(ns->queue); + else + blk_mq_wait_quiesce_done(ns->queue); +} + +/* + * Prepare a queue for teardown. + * + * This must forcibly unquiesce queues to avoid blocking dispatch, and only set + * the capacity to 0 after that to avoid blocking dispatchers that may be + * holding bd_butex. This will end buffered writers dirtying pages that can't + * be synced. + */ +static void nvme_set_queue_dying(struct nvme_ns *ns) +{ + if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) + return; + + blk_mark_disk_dead(ns->disk); + nvme_start_ns_queue(ns); + + set_capacity_and_notify(ns->disk, 0); +} + +/** + * nvme_kill_queues(): Ends all namespace queues + * @ctrl: the dead controller that needs to end + * + * Call this function when the driver determines it is unable to get the + * controller in a state capable of servicing IO. + */ +void nvme_kill_queues(struct nvme_ctrl *ctrl) +{ + struct nvme_ns *ns; + + down_read(&ctrl->namespaces_rwsem); + + /* Forcibly unquiesce queues to avoid blocking dispatch */ + if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) + nvme_start_admin_queue(ctrl); + + list_for_each_entry(ns, &ctrl->namespaces, list) + nvme_set_queue_dying(ns); + + up_read(&ctrl->namespaces_rwsem); +} +EXPORT_SYMBOL_GPL(nvme_kill_queues); + +void nvme_unfreeze(struct nvme_ctrl *ctrl) +{ + struct nvme_ns *ns; + + down_read(&ctrl->namespaces_rwsem); + list_for_each_entry(ns, &ctrl->namespaces, list) + blk_mq_unfreeze_queue(ns->queue); + up_read(&ctrl->namespaces_rwsem); +} +EXPORT_SYMBOL_GPL(nvme_unfreeze); + +int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) +{ + struct nvme_ns *ns; + + down_read(&ctrl->namespaces_rwsem); + list_for_each_entry(ns, &ctrl->namespaces, list) { + timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); + if (timeout <= 0) + break; + } + up_read(&ctrl->namespaces_rwsem); + return timeout; +} +EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); + +void nvme_wait_freeze(struct nvme_ctrl *ctrl) +{ + struct nvme_ns *ns; + + down_read(&ctrl->namespaces_rwsem); + list_for_each_entry(ns, &ctrl->namespaces, list) + blk_mq_freeze_queue_wait(ns->queue); + up_read(&ctrl->namespaces_rwsem); +} +EXPORT_SYMBOL_GPL(nvme_wait_freeze); + +void nvme_start_freeze(struct nvme_ctrl *ctrl) +{ + struct nvme_ns *ns; + + down_read(&ctrl->namespaces_rwsem); + list_for_each_entry(ns, &ctrl->namespaces, list) + blk_freeze_queue_start(ns->queue); + up_read(&ctrl->namespaces_rwsem); +} +EXPORT_SYMBOL_GPL(nvme_start_freeze); + +void nvme_stop_queues(struct nvme_ctrl *ctrl) +{ + struct nvme_ns *ns; + + down_read(&ctrl->namespaces_rwsem); + list_for_each_entry(ns, &ctrl->namespaces, list) + nvme_stop_ns_queue(ns); + up_read(&ctrl->namespaces_rwsem); +} +EXPORT_SYMBOL_GPL(nvme_stop_queues); + +void nvme_start_queues(struct nvme_ctrl *ctrl) +{ + struct nvme_ns *ns; + + down_read(&ctrl->namespaces_rwsem); + list_for_each_entry(ns, &ctrl->namespaces, list) + nvme_start_ns_queue(ns); + up_read(&ctrl->namespaces_rwsem); +} +EXPORT_SYMBOL_GPL(nvme_start_queues); + +void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) +{ + if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) + blk_mq_quiesce_queue(ctrl->admin_q); + else + blk_mq_wait_quiesce_done(ctrl->admin_q); +} +EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); + +void nvme_start_admin_queue(struct nvme_ctrl *ctrl) +{ + if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) + blk_mq_unquiesce_queue(ctrl->admin_q); +} +EXPORT_SYMBOL_GPL(nvme_start_admin_queue); + +void nvme_sync_io_queues(struct nvme_ctrl *ctrl) +{ + struct nvme_ns *ns; + + down_read(&ctrl->namespaces_rwsem); + list_for_each_entry(ns, &ctrl->namespaces, list) + blk_sync_queue(ns->queue); + up_read(&ctrl->namespaces_rwsem); +} +EXPORT_SYMBOL_GPL(nvme_sync_io_queues); + +void nvme_sync_queues(struct nvme_ctrl *ctrl) +{ + nvme_sync_io_queues(ctrl); + if (ctrl->admin_q) + blk_sync_queue(ctrl->admin_q); +} +EXPORT_SYMBOL_GPL(nvme_sync_queues); + +struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) +{ + if (file->f_op != &nvme_dev_fops) + return NULL; + return file->private_data; +} +EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); + +/* + * Check we didn't inadvertently grow the command structure sizes: + */ +static inline void _nvme_check_size(void) +{ + BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); + BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); + BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); + BUILD_BUG_ON(sizeof(struct nvme_features) != 64); + BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); + BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); + BUILD_BUG_ON(sizeof(struct nvme_command) != 64); + BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != + NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); + BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); + BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); + BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); + BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); + BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); +} + + +static int __init nvme_core_init(void) +{ + int result = -ENOMEM; + + _nvme_check_size(); + + nvme_wq = alloc_workqueue("nvme-wq", + WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); + if (!nvme_wq) + goto out; + + nvme_reset_wq = alloc_workqueue("nvme-reset-wq", + WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); + if (!nvme_reset_wq) + goto destroy_wq; + + nvme_delete_wq = alloc_workqueue("nvme-delete-wq", + WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); + if (!nvme_delete_wq) + goto destroy_reset_wq; + + result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, + NVME_MINORS, "nvme"); + if (result < 0) + goto destroy_delete_wq; + + nvme_class = class_create(THIS_MODULE, "nvme"); + if (IS_ERR(nvme_class)) { + result = PTR_ERR(nvme_class); + goto unregister_chrdev; + } + nvme_class->dev_uevent = nvme_class_uevent; + + nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); + if (IS_ERR(nvme_subsys_class)) { + result = PTR_ERR(nvme_subsys_class); + goto destroy_class; + } + + result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, + "nvme-generic"); + if (result < 0) + goto destroy_subsys_class; + + nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); + if (IS_ERR(nvme_ns_chr_class)) { + result = PTR_ERR(nvme_ns_chr_class); + goto unregister_generic_ns; + } + + return 0; + +unregister_generic_ns: + unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); +destroy_subsys_class: + class_destroy(nvme_subsys_class); +destroy_class: + class_destroy(nvme_class); +unregister_chrdev: + unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); +destroy_delete_wq: + destroy_workqueue(nvme_delete_wq); +destroy_reset_wq: + destroy_workqueue(nvme_reset_wq); +destroy_wq: + destroy_workqueue(nvme_wq); +out: + return result; +} + +static void __exit nvme_core_exit(void) +{ + class_destroy(nvme_ns_chr_class); + class_destroy(nvme_subsys_class); + class_destroy(nvme_class); + unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); + unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); + destroy_workqueue(nvme_delete_wq); + destroy_workqueue(nvme_reset_wq); + destroy_workqueue(nvme_wq); + ida_destroy(&nvme_ns_chr_minor_ida); + ida_destroy(&nvme_instance_ida); +} + +MODULE_LICENSE("GPL"); +MODULE_VERSION("1.0"); +module_init(nvme_core_init); +module_exit(nvme_core_exit); |