summaryrefslogtreecommitdiffstats
path: root/drivers/nvme/host/pci.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/nvme/host/pci.c
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/nvme/host/pci.c')
-rw-r--r--drivers/nvme/host/pci.c3646
1 files changed, 3646 insertions, 0 deletions
diff --git a/drivers/nvme/host/pci.c b/drivers/nvme/host/pci.c
new file mode 100644
index 000000000..3d0129099
--- /dev/null
+++ b/drivers/nvme/host/pci.c
@@ -0,0 +1,3646 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NVM Express device driver
+ * Copyright (c) 2011-2014, Intel Corporation.
+ */
+
+#include <linux/acpi.h>
+#include <linux/aer.h>
+#include <linux/async.h>
+#include <linux/blkdev.h>
+#include <linux/blk-mq.h>
+#include <linux/blk-mq-pci.h>
+#include <linux/blk-integrity.h>
+#include <linux/dmi.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/memremap.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/once.h>
+#include <linux/pci.h>
+#include <linux/suspend.h>
+#include <linux/t10-pi.h>
+#include <linux/types.h>
+#include <linux/io-64-nonatomic-lo-hi.h>
+#include <linux/io-64-nonatomic-hi-lo.h>
+#include <linux/sed-opal.h>
+#include <linux/pci-p2pdma.h>
+
+#include "trace.h"
+#include "nvme.h"
+
+#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
+#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
+
+#define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
+
+/*
+ * These can be higher, but we need to ensure that any command doesn't
+ * require an sg allocation that needs more than a page of data.
+ */
+#define NVME_MAX_KB_SZ 4096
+#define NVME_MAX_SEGS 127
+
+static int use_threaded_interrupts;
+module_param(use_threaded_interrupts, int, 0444);
+
+static bool use_cmb_sqes = true;
+module_param(use_cmb_sqes, bool, 0444);
+MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
+
+static unsigned int max_host_mem_size_mb = 128;
+module_param(max_host_mem_size_mb, uint, 0444);
+MODULE_PARM_DESC(max_host_mem_size_mb,
+ "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
+
+static unsigned int sgl_threshold = SZ_32K;
+module_param(sgl_threshold, uint, 0644);
+MODULE_PARM_DESC(sgl_threshold,
+ "Use SGLs when average request segment size is larger or equal to "
+ "this size. Use 0 to disable SGLs.");
+
+#define NVME_PCI_MIN_QUEUE_SIZE 2
+#define NVME_PCI_MAX_QUEUE_SIZE 4095
+static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
+static const struct kernel_param_ops io_queue_depth_ops = {
+ .set = io_queue_depth_set,
+ .get = param_get_uint,
+};
+
+static unsigned int io_queue_depth = 1024;
+module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
+MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
+
+static int io_queue_count_set(const char *val, const struct kernel_param *kp)
+{
+ unsigned int n;
+ int ret;
+
+ ret = kstrtouint(val, 10, &n);
+ if (ret != 0 || n > num_possible_cpus())
+ return -EINVAL;
+ return param_set_uint(val, kp);
+}
+
+static const struct kernel_param_ops io_queue_count_ops = {
+ .set = io_queue_count_set,
+ .get = param_get_uint,
+};
+
+static unsigned int write_queues;
+module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
+MODULE_PARM_DESC(write_queues,
+ "Number of queues to use for writes. If not set, reads and writes "
+ "will share a queue set.");
+
+static unsigned int poll_queues;
+module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
+MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
+
+static bool noacpi;
+module_param(noacpi, bool, 0444);
+MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
+
+struct nvme_dev;
+struct nvme_queue;
+
+static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
+static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
+static void nvme_update_attrs(struct nvme_dev *dev);
+
+/*
+ * Represents an NVM Express device. Each nvme_dev is a PCI function.
+ */
+struct nvme_dev {
+ struct nvme_queue *queues;
+ struct blk_mq_tag_set tagset;
+ struct blk_mq_tag_set admin_tagset;
+ u32 __iomem *dbs;
+ struct device *dev;
+ struct dma_pool *prp_page_pool;
+ struct dma_pool *prp_small_pool;
+ unsigned online_queues;
+ unsigned max_qid;
+ unsigned io_queues[HCTX_MAX_TYPES];
+ unsigned int num_vecs;
+ u32 q_depth;
+ int io_sqes;
+ u32 db_stride;
+ void __iomem *bar;
+ unsigned long bar_mapped_size;
+ struct work_struct remove_work;
+ struct mutex shutdown_lock;
+ bool subsystem;
+ u64 cmb_size;
+ bool cmb_use_sqes;
+ u32 cmbsz;
+ u32 cmbloc;
+ struct nvme_ctrl ctrl;
+ u32 last_ps;
+ bool hmb;
+
+ mempool_t *iod_mempool;
+
+ /* shadow doorbell buffer support: */
+ __le32 *dbbuf_dbs;
+ dma_addr_t dbbuf_dbs_dma_addr;
+ __le32 *dbbuf_eis;
+ dma_addr_t dbbuf_eis_dma_addr;
+
+ /* host memory buffer support: */
+ u64 host_mem_size;
+ u32 nr_host_mem_descs;
+ dma_addr_t host_mem_descs_dma;
+ struct nvme_host_mem_buf_desc *host_mem_descs;
+ void **host_mem_desc_bufs;
+ unsigned int nr_allocated_queues;
+ unsigned int nr_write_queues;
+ unsigned int nr_poll_queues;
+};
+
+static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
+{
+ return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
+ NVME_PCI_MAX_QUEUE_SIZE);
+}
+
+static inline unsigned int sq_idx(unsigned int qid, u32 stride)
+{
+ return qid * 2 * stride;
+}
+
+static inline unsigned int cq_idx(unsigned int qid, u32 stride)
+{
+ return (qid * 2 + 1) * stride;
+}
+
+static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
+{
+ return container_of(ctrl, struct nvme_dev, ctrl);
+}
+
+/*
+ * An NVM Express queue. Each device has at least two (one for admin
+ * commands and one for I/O commands).
+ */
+struct nvme_queue {
+ struct nvme_dev *dev;
+ spinlock_t sq_lock;
+ void *sq_cmds;
+ /* only used for poll queues: */
+ spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
+ struct nvme_completion *cqes;
+ dma_addr_t sq_dma_addr;
+ dma_addr_t cq_dma_addr;
+ u32 __iomem *q_db;
+ u32 q_depth;
+ u16 cq_vector;
+ u16 sq_tail;
+ u16 last_sq_tail;
+ u16 cq_head;
+ u16 qid;
+ u8 cq_phase;
+ u8 sqes;
+ unsigned long flags;
+#define NVMEQ_ENABLED 0
+#define NVMEQ_SQ_CMB 1
+#define NVMEQ_DELETE_ERROR 2
+#define NVMEQ_POLLED 3
+ __le32 *dbbuf_sq_db;
+ __le32 *dbbuf_cq_db;
+ __le32 *dbbuf_sq_ei;
+ __le32 *dbbuf_cq_ei;
+ struct completion delete_done;
+};
+
+/*
+ * The nvme_iod describes the data in an I/O.
+ *
+ * The sg pointer contains the list of PRP/SGL chunk allocations in addition
+ * to the actual struct scatterlist.
+ */
+struct nvme_iod {
+ struct nvme_request req;
+ struct nvme_command cmd;
+ bool use_sgl;
+ bool aborted;
+ s8 nr_allocations; /* PRP list pool allocations. 0 means small
+ pool in use */
+ unsigned int dma_len; /* length of single DMA segment mapping */
+ dma_addr_t first_dma;
+ dma_addr_t meta_dma;
+ struct sg_table sgt;
+};
+
+static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
+{
+ return dev->nr_allocated_queues * 8 * dev->db_stride;
+}
+
+static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
+{
+ unsigned int mem_size = nvme_dbbuf_size(dev);
+
+ if (dev->dbbuf_dbs) {
+ /*
+ * Clear the dbbuf memory so the driver doesn't observe stale
+ * values from the previous instantiation.
+ */
+ memset(dev->dbbuf_dbs, 0, mem_size);
+ memset(dev->dbbuf_eis, 0, mem_size);
+ return 0;
+ }
+
+ dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
+ &dev->dbbuf_dbs_dma_addr,
+ GFP_KERNEL);
+ if (!dev->dbbuf_dbs)
+ return -ENOMEM;
+ dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
+ &dev->dbbuf_eis_dma_addr,
+ GFP_KERNEL);
+ if (!dev->dbbuf_eis) {
+ dma_free_coherent(dev->dev, mem_size,
+ dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
+ dev->dbbuf_dbs = NULL;
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
+{
+ unsigned int mem_size = nvme_dbbuf_size(dev);
+
+ if (dev->dbbuf_dbs) {
+ dma_free_coherent(dev->dev, mem_size,
+ dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
+ dev->dbbuf_dbs = NULL;
+ }
+ if (dev->dbbuf_eis) {
+ dma_free_coherent(dev->dev, mem_size,
+ dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
+ dev->dbbuf_eis = NULL;
+ }
+}
+
+static void nvme_dbbuf_init(struct nvme_dev *dev,
+ struct nvme_queue *nvmeq, int qid)
+{
+ if (!dev->dbbuf_dbs || !qid)
+ return;
+
+ nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
+ nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
+ nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
+ nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
+}
+
+static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
+{
+ if (!nvmeq->qid)
+ return;
+
+ nvmeq->dbbuf_sq_db = NULL;
+ nvmeq->dbbuf_cq_db = NULL;
+ nvmeq->dbbuf_sq_ei = NULL;
+ nvmeq->dbbuf_cq_ei = NULL;
+}
+
+static void nvme_dbbuf_set(struct nvme_dev *dev)
+{
+ struct nvme_command c = { };
+ unsigned int i;
+
+ if (!dev->dbbuf_dbs)
+ return;
+
+ c.dbbuf.opcode = nvme_admin_dbbuf;
+ c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
+ c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
+
+ if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
+ dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
+ /* Free memory and continue on */
+ nvme_dbbuf_dma_free(dev);
+
+ for (i = 1; i <= dev->online_queues; i++)
+ nvme_dbbuf_free(&dev->queues[i]);
+ }
+}
+
+static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
+{
+ return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
+}
+
+/* Update dbbuf and return true if an MMIO is required */
+static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
+ volatile __le32 *dbbuf_ei)
+{
+ if (dbbuf_db) {
+ u16 old_value, event_idx;
+
+ /*
+ * Ensure that the queue is written before updating
+ * the doorbell in memory
+ */
+ wmb();
+
+ old_value = le32_to_cpu(*dbbuf_db);
+ *dbbuf_db = cpu_to_le32(value);
+
+ /*
+ * Ensure that the doorbell is updated before reading the event
+ * index from memory. The controller needs to provide similar
+ * ordering to ensure the envent index is updated before reading
+ * the doorbell.
+ */
+ mb();
+
+ event_idx = le32_to_cpu(*dbbuf_ei);
+ if (!nvme_dbbuf_need_event(event_idx, value, old_value))
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * Will slightly overestimate the number of pages needed. This is OK
+ * as it only leads to a small amount of wasted memory for the lifetime of
+ * the I/O.
+ */
+static int nvme_pci_npages_prp(void)
+{
+ unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
+ unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
+ return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
+}
+
+/*
+ * Calculates the number of pages needed for the SGL segments. For example a 4k
+ * page can accommodate 256 SGL descriptors.
+ */
+static int nvme_pci_npages_sgl(void)
+{
+ return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
+ NVME_CTRL_PAGE_SIZE);
+}
+
+static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_dev *dev = data;
+ struct nvme_queue *nvmeq = &dev->queues[0];
+
+ WARN_ON(hctx_idx != 0);
+ WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
+
+ hctx->driver_data = nvmeq;
+ return 0;
+}
+
+static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_dev *dev = data;
+ struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
+
+ WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
+ hctx->driver_data = nvmeq;
+ return 0;
+}
+
+static int nvme_pci_init_request(struct blk_mq_tag_set *set,
+ struct request *req, unsigned int hctx_idx,
+ unsigned int numa_node)
+{
+ struct nvme_dev *dev = set->driver_data;
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ nvme_req(req)->ctrl = &dev->ctrl;
+ nvme_req(req)->cmd = &iod->cmd;
+ return 0;
+}
+
+static int queue_irq_offset(struct nvme_dev *dev)
+{
+ /* if we have more than 1 vec, admin queue offsets us by 1 */
+ if (dev->num_vecs > 1)
+ return 1;
+
+ return 0;
+}
+
+static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
+{
+ struct nvme_dev *dev = set->driver_data;
+ int i, qoff, offset;
+
+ offset = queue_irq_offset(dev);
+ for (i = 0, qoff = 0; i < set->nr_maps; i++) {
+ struct blk_mq_queue_map *map = &set->map[i];
+
+ map->nr_queues = dev->io_queues[i];
+ if (!map->nr_queues) {
+ BUG_ON(i == HCTX_TYPE_DEFAULT);
+ continue;
+ }
+
+ /*
+ * The poll queue(s) doesn't have an IRQ (and hence IRQ
+ * affinity), so use the regular blk-mq cpu mapping
+ */
+ map->queue_offset = qoff;
+ if (i != HCTX_TYPE_POLL && offset)
+ blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
+ else
+ blk_mq_map_queues(map);
+ qoff += map->nr_queues;
+ offset += map->nr_queues;
+ }
+}
+
+/*
+ * Write sq tail if we are asked to, or if the next command would wrap.
+ */
+static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
+{
+ if (!write_sq) {
+ u16 next_tail = nvmeq->sq_tail + 1;
+
+ if (next_tail == nvmeq->q_depth)
+ next_tail = 0;
+ if (next_tail != nvmeq->last_sq_tail)
+ return;
+ }
+
+ if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
+ nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
+ writel(nvmeq->sq_tail, nvmeq->q_db);
+ nvmeq->last_sq_tail = nvmeq->sq_tail;
+}
+
+static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
+ struct nvme_command *cmd)
+{
+ memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
+ absolute_pointer(cmd), sizeof(*cmd));
+ if (++nvmeq->sq_tail == nvmeq->q_depth)
+ nvmeq->sq_tail = 0;
+}
+
+static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
+{
+ struct nvme_queue *nvmeq = hctx->driver_data;
+
+ spin_lock(&nvmeq->sq_lock);
+ if (nvmeq->sq_tail != nvmeq->last_sq_tail)
+ nvme_write_sq_db(nvmeq, true);
+ spin_unlock(&nvmeq->sq_lock);
+}
+
+static void **nvme_pci_iod_list(struct request *req)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
+}
+
+static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
+{
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+ int nseg = blk_rq_nr_phys_segments(req);
+ unsigned int avg_seg_size;
+
+ avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
+
+ if (!nvme_ctrl_sgl_supported(&dev->ctrl))
+ return false;
+ if (!nvmeq->qid)
+ return false;
+ if (!sgl_threshold || avg_seg_size < sgl_threshold)
+ return false;
+ return true;
+}
+
+static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
+{
+ const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ dma_addr_t dma_addr = iod->first_dma;
+ int i;
+
+ for (i = 0; i < iod->nr_allocations; i++) {
+ __le64 *prp_list = nvme_pci_iod_list(req)[i];
+ dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
+
+ dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
+ dma_addr = next_dma_addr;
+ }
+}
+
+static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
+{
+ const int last_sg = SGES_PER_PAGE - 1;
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ dma_addr_t dma_addr = iod->first_dma;
+ int i;
+
+ for (i = 0; i < iod->nr_allocations; i++) {
+ struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
+ dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
+
+ dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
+ dma_addr = next_dma_addr;
+ }
+}
+
+static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ if (iod->dma_len) {
+ dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
+ rq_dma_dir(req));
+ return;
+ }
+
+ WARN_ON_ONCE(!iod->sgt.nents);
+
+ dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
+
+ if (iod->nr_allocations == 0)
+ dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
+ iod->first_dma);
+ else if (iod->use_sgl)
+ nvme_free_sgls(dev, req);
+ else
+ nvme_free_prps(dev, req);
+ mempool_free(iod->sgt.sgl, dev->iod_mempool);
+}
+
+static void nvme_print_sgl(struct scatterlist *sgl, int nents)
+{
+ int i;
+ struct scatterlist *sg;
+
+ for_each_sg(sgl, sg, nents, i) {
+ dma_addr_t phys = sg_phys(sg);
+ pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
+ "dma_address:%pad dma_length:%d\n",
+ i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
+ sg_dma_len(sg));
+ }
+}
+
+static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
+ struct request *req, struct nvme_rw_command *cmnd)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct dma_pool *pool;
+ int length = blk_rq_payload_bytes(req);
+ struct scatterlist *sg = iod->sgt.sgl;
+ int dma_len = sg_dma_len(sg);
+ u64 dma_addr = sg_dma_address(sg);
+ int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
+ __le64 *prp_list;
+ void **list = nvme_pci_iod_list(req);
+ dma_addr_t prp_dma;
+ int nprps, i;
+
+ length -= (NVME_CTRL_PAGE_SIZE - offset);
+ if (length <= 0) {
+ iod->first_dma = 0;
+ goto done;
+ }
+
+ dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
+ if (dma_len) {
+ dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
+ } else {
+ sg = sg_next(sg);
+ dma_addr = sg_dma_address(sg);
+ dma_len = sg_dma_len(sg);
+ }
+
+ if (length <= NVME_CTRL_PAGE_SIZE) {
+ iod->first_dma = dma_addr;
+ goto done;
+ }
+
+ nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
+ if (nprps <= (256 / 8)) {
+ pool = dev->prp_small_pool;
+ iod->nr_allocations = 0;
+ } else {
+ pool = dev->prp_page_pool;
+ iod->nr_allocations = 1;
+ }
+
+ prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
+ if (!prp_list) {
+ iod->nr_allocations = -1;
+ return BLK_STS_RESOURCE;
+ }
+ list[0] = prp_list;
+ iod->first_dma = prp_dma;
+ i = 0;
+ for (;;) {
+ if (i == NVME_CTRL_PAGE_SIZE >> 3) {
+ __le64 *old_prp_list = prp_list;
+ prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
+ if (!prp_list)
+ goto free_prps;
+ list[iod->nr_allocations++] = prp_list;
+ prp_list[0] = old_prp_list[i - 1];
+ old_prp_list[i - 1] = cpu_to_le64(prp_dma);
+ i = 1;
+ }
+ prp_list[i++] = cpu_to_le64(dma_addr);
+ dma_len -= NVME_CTRL_PAGE_SIZE;
+ dma_addr += NVME_CTRL_PAGE_SIZE;
+ length -= NVME_CTRL_PAGE_SIZE;
+ if (length <= 0)
+ break;
+ if (dma_len > 0)
+ continue;
+ if (unlikely(dma_len < 0))
+ goto bad_sgl;
+ sg = sg_next(sg);
+ dma_addr = sg_dma_address(sg);
+ dma_len = sg_dma_len(sg);
+ }
+done:
+ cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
+ cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
+ return BLK_STS_OK;
+free_prps:
+ nvme_free_prps(dev, req);
+ return BLK_STS_RESOURCE;
+bad_sgl:
+ WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
+ "Invalid SGL for payload:%d nents:%d\n",
+ blk_rq_payload_bytes(req), iod->sgt.nents);
+ return BLK_STS_IOERR;
+}
+
+static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
+ struct scatterlist *sg)
+{
+ sge->addr = cpu_to_le64(sg_dma_address(sg));
+ sge->length = cpu_to_le32(sg_dma_len(sg));
+ sge->type = NVME_SGL_FMT_DATA_DESC << 4;
+}
+
+static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
+ dma_addr_t dma_addr, int entries)
+{
+ sge->addr = cpu_to_le64(dma_addr);
+ if (entries < SGES_PER_PAGE) {
+ sge->length = cpu_to_le32(entries * sizeof(*sge));
+ sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
+ } else {
+ sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
+ sge->type = NVME_SGL_FMT_SEG_DESC << 4;
+ }
+}
+
+static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
+ struct request *req, struct nvme_rw_command *cmd)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct dma_pool *pool;
+ struct nvme_sgl_desc *sg_list;
+ struct scatterlist *sg = iod->sgt.sgl;
+ unsigned int entries = iod->sgt.nents;
+ dma_addr_t sgl_dma;
+ int i = 0;
+
+ /* setting the transfer type as SGL */
+ cmd->flags = NVME_CMD_SGL_METABUF;
+
+ if (entries == 1) {
+ nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
+ return BLK_STS_OK;
+ }
+
+ if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
+ pool = dev->prp_small_pool;
+ iod->nr_allocations = 0;
+ } else {
+ pool = dev->prp_page_pool;
+ iod->nr_allocations = 1;
+ }
+
+ sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
+ if (!sg_list) {
+ iod->nr_allocations = -1;
+ return BLK_STS_RESOURCE;
+ }
+
+ nvme_pci_iod_list(req)[0] = sg_list;
+ iod->first_dma = sgl_dma;
+
+ nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
+
+ do {
+ if (i == SGES_PER_PAGE) {
+ struct nvme_sgl_desc *old_sg_desc = sg_list;
+ struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
+
+ sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
+ if (!sg_list)
+ goto free_sgls;
+
+ i = 0;
+ nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
+ sg_list[i++] = *link;
+ nvme_pci_sgl_set_seg(link, sgl_dma, entries);
+ }
+
+ nvme_pci_sgl_set_data(&sg_list[i++], sg);
+ sg = sg_next(sg);
+ } while (--entries > 0);
+
+ return BLK_STS_OK;
+free_sgls:
+ nvme_free_sgls(dev, req);
+ return BLK_STS_RESOURCE;
+}
+
+static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
+ struct request *req, struct nvme_rw_command *cmnd,
+ struct bio_vec *bv)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
+ unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
+
+ iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
+ if (dma_mapping_error(dev->dev, iod->first_dma))
+ return BLK_STS_RESOURCE;
+ iod->dma_len = bv->bv_len;
+
+ cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
+ if (bv->bv_len > first_prp_len)
+ cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
+ else
+ cmnd->dptr.prp2 = 0;
+ return BLK_STS_OK;
+}
+
+static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
+ struct request *req, struct nvme_rw_command *cmnd,
+ struct bio_vec *bv)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
+ if (dma_mapping_error(dev->dev, iod->first_dma))
+ return BLK_STS_RESOURCE;
+ iod->dma_len = bv->bv_len;
+
+ cmnd->flags = NVME_CMD_SGL_METABUF;
+ cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
+ cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
+ cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
+ return BLK_STS_OK;
+}
+
+static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
+ struct nvme_command *cmnd)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ blk_status_t ret = BLK_STS_RESOURCE;
+ int rc;
+
+ if (blk_rq_nr_phys_segments(req) == 1) {
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+ struct bio_vec bv = req_bvec(req);
+
+ if (!is_pci_p2pdma_page(bv.bv_page)) {
+ if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
+ return nvme_setup_prp_simple(dev, req,
+ &cmnd->rw, &bv);
+
+ if (nvmeq->qid && sgl_threshold &&
+ nvme_ctrl_sgl_supported(&dev->ctrl))
+ return nvme_setup_sgl_simple(dev, req,
+ &cmnd->rw, &bv);
+ }
+ }
+
+ iod->dma_len = 0;
+ iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
+ if (!iod->sgt.sgl)
+ return BLK_STS_RESOURCE;
+ sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
+ iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
+ if (!iod->sgt.orig_nents)
+ goto out_free_sg;
+
+ rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
+ DMA_ATTR_NO_WARN);
+ if (rc) {
+ if (rc == -EREMOTEIO)
+ ret = BLK_STS_TARGET;
+ goto out_free_sg;
+ }
+
+ iod->use_sgl = nvme_pci_use_sgls(dev, req);
+ if (iod->use_sgl)
+ ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
+ else
+ ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
+ if (ret != BLK_STS_OK)
+ goto out_unmap_sg;
+ return BLK_STS_OK;
+
+out_unmap_sg:
+ dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
+out_free_sg:
+ mempool_free(iod->sgt.sgl, dev->iod_mempool);
+ return ret;
+}
+
+static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
+ struct nvme_command *cmnd)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
+ rq_dma_dir(req), 0);
+ if (dma_mapping_error(dev->dev, iod->meta_dma))
+ return BLK_STS_IOERR;
+ cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
+ return BLK_STS_OK;
+}
+
+static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ blk_status_t ret;
+
+ iod->aborted = false;
+ iod->nr_allocations = -1;
+ iod->sgt.nents = 0;
+
+ ret = nvme_setup_cmd(req->q->queuedata, req);
+ if (ret)
+ return ret;
+
+ if (blk_rq_nr_phys_segments(req)) {
+ ret = nvme_map_data(dev, req, &iod->cmd);
+ if (ret)
+ goto out_free_cmd;
+ }
+
+ if (blk_integrity_rq(req)) {
+ ret = nvme_map_metadata(dev, req, &iod->cmd);
+ if (ret)
+ goto out_unmap_data;
+ }
+
+ blk_mq_start_request(req);
+ return BLK_STS_OK;
+out_unmap_data:
+ nvme_unmap_data(dev, req);
+out_free_cmd:
+ nvme_cleanup_cmd(req);
+ return ret;
+}
+
+/*
+ * NOTE: ns is NULL when called on the admin queue.
+ */
+static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct nvme_queue *nvmeq = hctx->driver_data;
+ struct nvme_dev *dev = nvmeq->dev;
+ struct request *req = bd->rq;
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ blk_status_t ret;
+
+ /*
+ * We should not need to do this, but we're still using this to
+ * ensure we can drain requests on a dying queue.
+ */
+ if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
+ return BLK_STS_IOERR;
+
+ if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
+ return nvme_fail_nonready_command(&dev->ctrl, req);
+
+ ret = nvme_prep_rq(dev, req);
+ if (unlikely(ret))
+ return ret;
+ spin_lock(&nvmeq->sq_lock);
+ nvme_sq_copy_cmd(nvmeq, &iod->cmd);
+ nvme_write_sq_db(nvmeq, bd->last);
+ spin_unlock(&nvmeq->sq_lock);
+ return BLK_STS_OK;
+}
+
+static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
+{
+ spin_lock(&nvmeq->sq_lock);
+ while (!rq_list_empty(*rqlist)) {
+ struct request *req = rq_list_pop(rqlist);
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ nvme_sq_copy_cmd(nvmeq, &iod->cmd);
+ }
+ nvme_write_sq_db(nvmeq, true);
+ spin_unlock(&nvmeq->sq_lock);
+}
+
+static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
+{
+ /*
+ * We should not need to do this, but we're still using this to
+ * ensure we can drain requests on a dying queue.
+ */
+ if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
+ return false;
+ if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
+ return false;
+
+ req->mq_hctx->tags->rqs[req->tag] = req;
+ return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
+}
+
+static void nvme_queue_rqs(struct request **rqlist)
+{
+ struct request *req, *next, *prev = NULL;
+ struct request *requeue_list = NULL;
+
+ rq_list_for_each_safe(rqlist, req, next) {
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+
+ if (!nvme_prep_rq_batch(nvmeq, req)) {
+ /* detach 'req' and add to remainder list */
+ rq_list_move(rqlist, &requeue_list, req, prev);
+
+ req = prev;
+ if (!req)
+ continue;
+ }
+
+ if (!next || req->mq_hctx != next->mq_hctx) {
+ /* detach rest of list, and submit */
+ req->rq_next = NULL;
+ nvme_submit_cmds(nvmeq, rqlist);
+ *rqlist = next;
+ prev = NULL;
+ } else
+ prev = req;
+ }
+
+ *rqlist = requeue_list;
+}
+
+static __always_inline void nvme_pci_unmap_rq(struct request *req)
+{
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+ struct nvme_dev *dev = nvmeq->dev;
+
+ if (blk_integrity_rq(req)) {
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+
+ dma_unmap_page(dev->dev, iod->meta_dma,
+ rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
+ }
+
+ if (blk_rq_nr_phys_segments(req))
+ nvme_unmap_data(dev, req);
+}
+
+static void nvme_pci_complete_rq(struct request *req)
+{
+ nvme_pci_unmap_rq(req);
+ nvme_complete_rq(req);
+}
+
+static void nvme_pci_complete_batch(struct io_comp_batch *iob)
+{
+ nvme_complete_batch(iob, nvme_pci_unmap_rq);
+}
+
+/* We read the CQE phase first to check if the rest of the entry is valid */
+static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
+{
+ struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
+
+ return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
+}
+
+static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
+{
+ u16 head = nvmeq->cq_head;
+
+ if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
+ nvmeq->dbbuf_cq_ei))
+ writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
+}
+
+static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
+{
+ if (!nvmeq->qid)
+ return nvmeq->dev->admin_tagset.tags[0];
+ return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
+}
+
+static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
+ struct io_comp_batch *iob, u16 idx)
+{
+ struct nvme_completion *cqe = &nvmeq->cqes[idx];
+ __u16 command_id = READ_ONCE(cqe->command_id);
+ struct request *req;
+
+ /*
+ * AEN requests are special as they don't time out and can
+ * survive any kind of queue freeze and often don't respond to
+ * aborts. We don't even bother to allocate a struct request
+ * for them but rather special case them here.
+ */
+ if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
+ nvme_complete_async_event(&nvmeq->dev->ctrl,
+ cqe->status, &cqe->result);
+ return;
+ }
+
+ req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
+ if (unlikely(!req)) {
+ dev_warn(nvmeq->dev->ctrl.device,
+ "invalid id %d completed on queue %d\n",
+ command_id, le16_to_cpu(cqe->sq_id));
+ return;
+ }
+
+ trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
+ if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
+ !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
+ nvme_pci_complete_batch))
+ nvme_pci_complete_rq(req);
+}
+
+static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
+{
+ u32 tmp = nvmeq->cq_head + 1;
+
+ if (tmp == nvmeq->q_depth) {
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase ^= 1;
+ } else {
+ nvmeq->cq_head = tmp;
+ }
+}
+
+static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
+ struct io_comp_batch *iob)
+{
+ int found = 0;
+
+ while (nvme_cqe_pending(nvmeq)) {
+ found++;
+ /*
+ * load-load control dependency between phase and the rest of
+ * the cqe requires a full read memory barrier
+ */
+ dma_rmb();
+ nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
+ nvme_update_cq_head(nvmeq);
+ }
+
+ if (found)
+ nvme_ring_cq_doorbell(nvmeq);
+ return found;
+}
+
+static irqreturn_t nvme_irq(int irq, void *data)
+{
+ struct nvme_queue *nvmeq = data;
+ DEFINE_IO_COMP_BATCH(iob);
+
+ if (nvme_poll_cq(nvmeq, &iob)) {
+ if (!rq_list_empty(iob.req_list))
+ nvme_pci_complete_batch(&iob);
+ return IRQ_HANDLED;
+ }
+ return IRQ_NONE;
+}
+
+static irqreturn_t nvme_irq_check(int irq, void *data)
+{
+ struct nvme_queue *nvmeq = data;
+
+ if (nvme_cqe_pending(nvmeq))
+ return IRQ_WAKE_THREAD;
+ return IRQ_NONE;
+}
+
+/*
+ * Poll for completions for any interrupt driven queue
+ * Can be called from any context.
+ */
+static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
+{
+ struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
+
+ WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
+
+ disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
+ nvme_poll_cq(nvmeq, NULL);
+ enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
+}
+
+static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
+{
+ struct nvme_queue *nvmeq = hctx->driver_data;
+ bool found;
+
+ if (!nvme_cqe_pending(nvmeq))
+ return 0;
+
+ spin_lock(&nvmeq->cq_poll_lock);
+ found = nvme_poll_cq(nvmeq, iob);
+ spin_unlock(&nvmeq->cq_poll_lock);
+
+ return found;
+}
+
+static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
+{
+ struct nvme_dev *dev = to_nvme_dev(ctrl);
+ struct nvme_queue *nvmeq = &dev->queues[0];
+ struct nvme_command c = { };
+
+ c.common.opcode = nvme_admin_async_event;
+ c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
+
+ spin_lock(&nvmeq->sq_lock);
+ nvme_sq_copy_cmd(nvmeq, &c);
+ nvme_write_sq_db(nvmeq, true);
+ spin_unlock(&nvmeq->sq_lock);
+}
+
+static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
+{
+ struct nvme_command c = { };
+
+ c.delete_queue.opcode = opcode;
+ c.delete_queue.qid = cpu_to_le16(id);
+
+ return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq, s16 vector)
+{
+ struct nvme_command c = { };
+ int flags = NVME_QUEUE_PHYS_CONTIG;
+
+ if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
+ flags |= NVME_CQ_IRQ_ENABLED;
+
+ /*
+ * Note: we (ab)use the fact that the prp fields survive if no data
+ * is attached to the request.
+ */
+ c.create_cq.opcode = nvme_admin_create_cq;
+ c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
+ c.create_cq.cqid = cpu_to_le16(qid);
+ c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_cq.cq_flags = cpu_to_le16(flags);
+ c.create_cq.irq_vector = cpu_to_le16(vector);
+
+ return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq)
+{
+ struct nvme_ctrl *ctrl = &dev->ctrl;
+ struct nvme_command c = { };
+ int flags = NVME_QUEUE_PHYS_CONTIG;
+
+ /*
+ * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
+ * set. Since URGENT priority is zeroes, it makes all queues
+ * URGENT.
+ */
+ if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
+ flags |= NVME_SQ_PRIO_MEDIUM;
+
+ /*
+ * Note: we (ab)use the fact that the prp fields survive if no data
+ * is attached to the request.
+ */
+ c.create_sq.opcode = nvme_admin_create_sq;
+ c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
+ c.create_sq.sqid = cpu_to_le16(qid);
+ c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_sq.sq_flags = cpu_to_le16(flags);
+ c.create_sq.cqid = cpu_to_le16(qid);
+
+ return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
+}
+
+static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
+{
+ return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
+}
+
+static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
+{
+ return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
+}
+
+static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
+{
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+
+ dev_warn(nvmeq->dev->ctrl.device,
+ "Abort status: 0x%x", nvme_req(req)->status);
+ atomic_inc(&nvmeq->dev->ctrl.abort_limit);
+ blk_mq_free_request(req);
+ return RQ_END_IO_NONE;
+}
+
+static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
+{
+ /* If true, indicates loss of adapter communication, possibly by a
+ * NVMe Subsystem reset.
+ */
+ bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
+
+ /* If there is a reset/reinit ongoing, we shouldn't reset again. */
+ switch (dev->ctrl.state) {
+ case NVME_CTRL_RESETTING:
+ case NVME_CTRL_CONNECTING:
+ return false;
+ default:
+ break;
+ }
+
+ /* We shouldn't reset unless the controller is on fatal error state
+ * _or_ if we lost the communication with it.
+ */
+ if (!(csts & NVME_CSTS_CFS) && !nssro)
+ return false;
+
+ return true;
+}
+
+static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
+{
+ /* Read a config register to help see what died. */
+ u16 pci_status;
+ int result;
+
+ result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
+ &pci_status);
+ if (result == PCIBIOS_SUCCESSFUL)
+ dev_warn(dev->ctrl.device,
+ "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
+ csts, pci_status);
+ else
+ dev_warn(dev->ctrl.device,
+ "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
+ csts, result);
+
+ if (csts != ~0)
+ return;
+
+ dev_warn(dev->ctrl.device,
+ "Does your device have a faulty power saving mode enabled?\n");
+ dev_warn(dev->ctrl.device,
+ "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
+}
+
+static enum blk_eh_timer_return nvme_timeout(struct request *req)
+{
+ struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
+ struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
+ struct nvme_dev *dev = nvmeq->dev;
+ struct request *abort_req;
+ struct nvme_command cmd = { };
+ u32 csts = readl(dev->bar + NVME_REG_CSTS);
+
+ /* If PCI error recovery process is happening, we cannot reset or
+ * the recovery mechanism will surely fail.
+ */
+ mb();
+ if (pci_channel_offline(to_pci_dev(dev->dev)))
+ return BLK_EH_RESET_TIMER;
+
+ /*
+ * Reset immediately if the controller is failed
+ */
+ if (nvme_should_reset(dev, csts)) {
+ nvme_warn_reset(dev, csts);
+ nvme_dev_disable(dev, false);
+ nvme_reset_ctrl(&dev->ctrl);
+ return BLK_EH_DONE;
+ }
+
+ /*
+ * Did we miss an interrupt?
+ */
+ if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
+ nvme_poll(req->mq_hctx, NULL);
+ else
+ nvme_poll_irqdisable(nvmeq);
+
+ if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
+ dev_warn(dev->ctrl.device,
+ "I/O %d QID %d timeout, completion polled\n",
+ req->tag, nvmeq->qid);
+ return BLK_EH_DONE;
+ }
+
+ /*
+ * Shutdown immediately if controller times out while starting. The
+ * reset work will see the pci device disabled when it gets the forced
+ * cancellation error. All outstanding requests are completed on
+ * shutdown, so we return BLK_EH_DONE.
+ */
+ switch (dev->ctrl.state) {
+ case NVME_CTRL_CONNECTING:
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
+ fallthrough;
+ case NVME_CTRL_DELETING:
+ dev_warn_ratelimited(dev->ctrl.device,
+ "I/O %d QID %d timeout, disable controller\n",
+ req->tag, nvmeq->qid);
+ nvme_req(req)->flags |= NVME_REQ_CANCELLED;
+ nvme_dev_disable(dev, true);
+ return BLK_EH_DONE;
+ case NVME_CTRL_RESETTING:
+ return BLK_EH_RESET_TIMER;
+ default:
+ break;
+ }
+
+ /*
+ * Shutdown the controller immediately and schedule a reset if the
+ * command was already aborted once before and still hasn't been
+ * returned to the driver, or if this is the admin queue.
+ */
+ if (!nvmeq->qid || iod->aborted) {
+ dev_warn(dev->ctrl.device,
+ "I/O %d QID %d timeout, reset controller\n",
+ req->tag, nvmeq->qid);
+ nvme_req(req)->flags |= NVME_REQ_CANCELLED;
+ nvme_dev_disable(dev, false);
+ nvme_reset_ctrl(&dev->ctrl);
+
+ return BLK_EH_DONE;
+ }
+
+ if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
+ atomic_inc(&dev->ctrl.abort_limit);
+ return BLK_EH_RESET_TIMER;
+ }
+ iod->aborted = true;
+
+ cmd.abort.opcode = nvme_admin_abort_cmd;
+ cmd.abort.cid = nvme_cid(req);
+ cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
+
+ dev_warn(nvmeq->dev->ctrl.device,
+ "I/O %d (%s) QID %d timeout, aborting\n",
+ req->tag,
+ nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
+ nvmeq->qid);
+
+ abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
+ BLK_MQ_REQ_NOWAIT);
+ if (IS_ERR(abort_req)) {
+ atomic_inc(&dev->ctrl.abort_limit);
+ return BLK_EH_RESET_TIMER;
+ }
+ nvme_init_request(abort_req, &cmd);
+
+ abort_req->end_io = abort_endio;
+ abort_req->end_io_data = NULL;
+ blk_execute_rq_nowait(abort_req, false);
+
+ /*
+ * The aborted req will be completed on receiving the abort req.
+ * We enable the timer again. If hit twice, it'll cause a device reset,
+ * as the device then is in a faulty state.
+ */
+ return BLK_EH_RESET_TIMER;
+}
+
+static void nvme_free_queue(struct nvme_queue *nvmeq)
+{
+ dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
+ (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
+ if (!nvmeq->sq_cmds)
+ return;
+
+ if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
+ pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
+ nvmeq->sq_cmds, SQ_SIZE(nvmeq));
+ } else {
+ dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
+ nvmeq->sq_cmds, nvmeq->sq_dma_addr);
+ }
+}
+
+static void nvme_free_queues(struct nvme_dev *dev, int lowest)
+{
+ int i;
+
+ for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
+ dev->ctrl.queue_count--;
+ nvme_free_queue(&dev->queues[i]);
+ }
+}
+
+/**
+ * nvme_suspend_queue - put queue into suspended state
+ * @nvmeq: queue to suspend
+ */
+static int nvme_suspend_queue(struct nvme_queue *nvmeq)
+{
+ if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
+ return 1;
+
+ /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
+ mb();
+
+ nvmeq->dev->online_queues--;
+ if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
+ nvme_stop_admin_queue(&nvmeq->dev->ctrl);
+ if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
+ pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
+ return 0;
+}
+
+static void nvme_suspend_io_queues(struct nvme_dev *dev)
+{
+ int i;
+
+ for (i = dev->ctrl.queue_count - 1; i > 0; i--)
+ nvme_suspend_queue(&dev->queues[i]);
+}
+
+static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
+{
+ struct nvme_queue *nvmeq = &dev->queues[0];
+
+ if (shutdown)
+ nvme_shutdown_ctrl(&dev->ctrl);
+ else
+ nvme_disable_ctrl(&dev->ctrl);
+
+ nvme_poll_irqdisable(nvmeq);
+}
+
+/*
+ * Called only on a device that has been disabled and after all other threads
+ * that can check this device's completion queues have synced, except
+ * nvme_poll(). This is the last chance for the driver to see a natural
+ * completion before nvme_cancel_request() terminates all incomplete requests.
+ */
+static void nvme_reap_pending_cqes(struct nvme_dev *dev)
+{
+ int i;
+
+ for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
+ spin_lock(&dev->queues[i].cq_poll_lock);
+ nvme_poll_cq(&dev->queues[i], NULL);
+ spin_unlock(&dev->queues[i].cq_poll_lock);
+ }
+}
+
+static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
+ int entry_size)
+{
+ int q_depth = dev->q_depth;
+ unsigned q_size_aligned = roundup(q_depth * entry_size,
+ NVME_CTRL_PAGE_SIZE);
+
+ if (q_size_aligned * nr_io_queues > dev->cmb_size) {
+ u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
+
+ mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
+ q_depth = div_u64(mem_per_q, entry_size);
+
+ /*
+ * Ensure the reduced q_depth is above some threshold where it
+ * would be better to map queues in system memory with the
+ * original depth
+ */
+ if (q_depth < 64)
+ return -ENOMEM;
+ }
+
+ return q_depth;
+}
+
+static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
+ int qid)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
+ nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
+ if (nvmeq->sq_cmds) {
+ nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
+ nvmeq->sq_cmds);
+ if (nvmeq->sq_dma_addr) {
+ set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
+ return 0;
+ }
+
+ pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
+ }
+ }
+
+ nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
+ &nvmeq->sq_dma_addr, GFP_KERNEL);
+ if (!nvmeq->sq_cmds)
+ return -ENOMEM;
+ return 0;
+}
+
+static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
+{
+ struct nvme_queue *nvmeq = &dev->queues[qid];
+
+ if (dev->ctrl.queue_count > qid)
+ return 0;
+
+ nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
+ nvmeq->q_depth = depth;
+ nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
+ &nvmeq->cq_dma_addr, GFP_KERNEL);
+ if (!nvmeq->cqes)
+ goto free_nvmeq;
+
+ if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
+ goto free_cqdma;
+
+ nvmeq->dev = dev;
+ spin_lock_init(&nvmeq->sq_lock);
+ spin_lock_init(&nvmeq->cq_poll_lock);
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ nvmeq->qid = qid;
+ dev->ctrl.queue_count++;
+
+ return 0;
+
+ free_cqdma:
+ dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
+ nvmeq->cq_dma_addr);
+ free_nvmeq:
+ return -ENOMEM;
+}
+
+static int queue_request_irq(struct nvme_queue *nvmeq)
+{
+ struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
+ int nr = nvmeq->dev->ctrl.instance;
+
+ if (use_threaded_interrupts) {
+ return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
+ nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
+ } else {
+ return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
+ NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
+ }
+}
+
+static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+
+ nvmeq->sq_tail = 0;
+ nvmeq->last_sq_tail = 0;
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
+ nvme_dbbuf_init(dev, nvmeq, qid);
+ dev->online_queues++;
+ wmb(); /* ensure the first interrupt sees the initialization */
+}
+
+/*
+ * Try getting shutdown_lock while setting up IO queues.
+ */
+static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
+{
+ /*
+ * Give up if the lock is being held by nvme_dev_disable.
+ */
+ if (!mutex_trylock(&dev->shutdown_lock))
+ return -ENODEV;
+
+ /*
+ * Controller is in wrong state, fail early.
+ */
+ if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
+ mutex_unlock(&dev->shutdown_lock);
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+ int result;
+ u16 vector = 0;
+
+ clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
+
+ /*
+ * A queue's vector matches the queue identifier unless the controller
+ * has only one vector available.
+ */
+ if (!polled)
+ vector = dev->num_vecs == 1 ? 0 : qid;
+ else
+ set_bit(NVMEQ_POLLED, &nvmeq->flags);
+
+ result = adapter_alloc_cq(dev, qid, nvmeq, vector);
+ if (result)
+ return result;
+
+ result = adapter_alloc_sq(dev, qid, nvmeq);
+ if (result < 0)
+ return result;
+ if (result)
+ goto release_cq;
+
+ nvmeq->cq_vector = vector;
+
+ result = nvme_setup_io_queues_trylock(dev);
+ if (result)
+ return result;
+ nvme_init_queue(nvmeq, qid);
+ if (!polled) {
+ result = queue_request_irq(nvmeq);
+ if (result < 0)
+ goto release_sq;
+ }
+
+ set_bit(NVMEQ_ENABLED, &nvmeq->flags);
+ mutex_unlock(&dev->shutdown_lock);
+ return result;
+
+release_sq:
+ dev->online_queues--;
+ mutex_unlock(&dev->shutdown_lock);
+ adapter_delete_sq(dev, qid);
+release_cq:
+ adapter_delete_cq(dev, qid);
+ return result;
+}
+
+static const struct blk_mq_ops nvme_mq_admin_ops = {
+ .queue_rq = nvme_queue_rq,
+ .complete = nvme_pci_complete_rq,
+ .init_hctx = nvme_admin_init_hctx,
+ .init_request = nvme_pci_init_request,
+ .timeout = nvme_timeout,
+};
+
+static const struct blk_mq_ops nvme_mq_ops = {
+ .queue_rq = nvme_queue_rq,
+ .queue_rqs = nvme_queue_rqs,
+ .complete = nvme_pci_complete_rq,
+ .commit_rqs = nvme_commit_rqs,
+ .init_hctx = nvme_init_hctx,
+ .init_request = nvme_pci_init_request,
+ .map_queues = nvme_pci_map_queues,
+ .timeout = nvme_timeout,
+ .poll = nvme_poll,
+};
+
+static void nvme_dev_remove_admin(struct nvme_dev *dev)
+{
+ if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
+ /*
+ * If the controller was reset during removal, it's possible
+ * user requests may be waiting on a stopped queue. Start the
+ * queue to flush these to completion.
+ */
+ nvme_start_admin_queue(&dev->ctrl);
+ blk_mq_destroy_queue(dev->ctrl.admin_q);
+ blk_mq_free_tag_set(&dev->admin_tagset);
+ }
+}
+
+static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
+{
+ struct blk_mq_tag_set *set = &dev->admin_tagset;
+
+ set->ops = &nvme_mq_admin_ops;
+ set->nr_hw_queues = 1;
+
+ set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
+ set->timeout = NVME_ADMIN_TIMEOUT;
+ set->numa_node = dev->ctrl.numa_node;
+ set->cmd_size = sizeof(struct nvme_iod);
+ set->flags = BLK_MQ_F_NO_SCHED;
+ set->driver_data = dev;
+
+ if (blk_mq_alloc_tag_set(set))
+ return -ENOMEM;
+ dev->ctrl.admin_tagset = set;
+
+ dev->ctrl.admin_q = blk_mq_init_queue(set);
+ if (IS_ERR(dev->ctrl.admin_q)) {
+ blk_mq_free_tag_set(set);
+ dev->ctrl.admin_q = NULL;
+ return -ENOMEM;
+ }
+ if (!blk_get_queue(dev->ctrl.admin_q)) {
+ nvme_dev_remove_admin(dev);
+ dev->ctrl.admin_q = NULL;
+ return -ENODEV;
+ }
+ return 0;
+}
+
+static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
+{
+ return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
+}
+
+static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (size <= dev->bar_mapped_size)
+ return 0;
+ if (size > pci_resource_len(pdev, 0))
+ return -ENOMEM;
+ if (dev->bar)
+ iounmap(dev->bar);
+ dev->bar = ioremap(pci_resource_start(pdev, 0), size);
+ if (!dev->bar) {
+ dev->bar_mapped_size = 0;
+ return -ENOMEM;
+ }
+ dev->bar_mapped_size = size;
+ dev->dbs = dev->bar + NVME_REG_DBS;
+
+ return 0;
+}
+
+static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
+{
+ int result;
+ u32 aqa;
+ struct nvme_queue *nvmeq;
+
+ result = nvme_remap_bar(dev, db_bar_size(dev, 0));
+ if (result < 0)
+ return result;
+
+ dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
+ NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
+
+ if (dev->subsystem &&
+ (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
+ writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
+
+ result = nvme_disable_ctrl(&dev->ctrl);
+ if (result < 0)
+ return result;
+
+ result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
+ if (result)
+ return result;
+
+ dev->ctrl.numa_node = dev_to_node(dev->dev);
+
+ nvmeq = &dev->queues[0];
+ aqa = nvmeq->q_depth - 1;
+ aqa |= aqa << 16;
+
+ writel(aqa, dev->bar + NVME_REG_AQA);
+ lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
+ lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
+
+ result = nvme_enable_ctrl(&dev->ctrl);
+ if (result)
+ return result;
+
+ nvmeq->cq_vector = 0;
+ nvme_init_queue(nvmeq, 0);
+ result = queue_request_irq(nvmeq);
+ if (result) {
+ dev->online_queues--;
+ return result;
+ }
+
+ set_bit(NVMEQ_ENABLED, &nvmeq->flags);
+ return result;
+}
+
+static int nvme_create_io_queues(struct nvme_dev *dev)
+{
+ unsigned i, max, rw_queues;
+ int ret = 0;
+
+ for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
+ if (nvme_alloc_queue(dev, i, dev->q_depth)) {
+ ret = -ENOMEM;
+ break;
+ }
+ }
+
+ max = min(dev->max_qid, dev->ctrl.queue_count - 1);
+ if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
+ rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
+ dev->io_queues[HCTX_TYPE_READ];
+ } else {
+ rw_queues = max;
+ }
+
+ for (i = dev->online_queues; i <= max; i++) {
+ bool polled = i > rw_queues;
+
+ ret = nvme_create_queue(&dev->queues[i], i, polled);
+ if (ret)
+ break;
+ }
+
+ /*
+ * Ignore failing Create SQ/CQ commands, we can continue with less
+ * than the desired amount of queues, and even a controller without
+ * I/O queues can still be used to issue admin commands. This might
+ * be useful to upgrade a buggy firmware for example.
+ */
+ return ret >= 0 ? 0 : ret;
+}
+
+static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
+{
+ u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
+
+ return 1ULL << (12 + 4 * szu);
+}
+
+static u32 nvme_cmb_size(struct nvme_dev *dev)
+{
+ return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
+}
+
+static void nvme_map_cmb(struct nvme_dev *dev)
+{
+ u64 size, offset;
+ resource_size_t bar_size;
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ int bar;
+
+ if (dev->cmb_size)
+ return;
+
+ if (NVME_CAP_CMBS(dev->ctrl.cap))
+ writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
+
+ dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
+ if (!dev->cmbsz)
+ return;
+ dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
+
+ size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
+ offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
+ bar = NVME_CMB_BIR(dev->cmbloc);
+ bar_size = pci_resource_len(pdev, bar);
+
+ if (offset > bar_size)
+ return;
+
+ /*
+ * Tell the controller about the host side address mapping the CMB,
+ * and enable CMB decoding for the NVMe 1.4+ scheme:
+ */
+ if (NVME_CAP_CMBS(dev->ctrl.cap)) {
+ hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
+ (pci_bus_address(pdev, bar) + offset),
+ dev->bar + NVME_REG_CMBMSC);
+ }
+
+ /*
+ * Controllers may support a CMB size larger than their BAR,
+ * for example, due to being behind a bridge. Reduce the CMB to
+ * the reported size of the BAR
+ */
+ if (size > bar_size - offset)
+ size = bar_size - offset;
+
+ if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
+ dev_warn(dev->ctrl.device,
+ "failed to register the CMB\n");
+ return;
+ }
+
+ dev->cmb_size = size;
+ dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
+
+ if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
+ (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
+ pci_p2pmem_publish(pdev, true);
+
+ nvme_update_attrs(dev);
+}
+
+static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
+{
+ u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
+ u64 dma_addr = dev->host_mem_descs_dma;
+ struct nvme_command c = { };
+ int ret;
+
+ c.features.opcode = nvme_admin_set_features;
+ c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
+ c.features.dword11 = cpu_to_le32(bits);
+ c.features.dword12 = cpu_to_le32(host_mem_size);
+ c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
+ c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
+ c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
+
+ ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
+ if (ret) {
+ dev_warn(dev->ctrl.device,
+ "failed to set host mem (err %d, flags %#x).\n",
+ ret, bits);
+ } else
+ dev->hmb = bits & NVME_HOST_MEM_ENABLE;
+
+ return ret;
+}
+
+static void nvme_free_host_mem(struct nvme_dev *dev)
+{
+ int i;
+
+ for (i = 0; i < dev->nr_host_mem_descs; i++) {
+ struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
+ size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
+
+ dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
+ le64_to_cpu(desc->addr),
+ DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
+ }
+
+ kfree(dev->host_mem_desc_bufs);
+ dev->host_mem_desc_bufs = NULL;
+ dma_free_coherent(dev->dev,
+ dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
+ dev->host_mem_descs, dev->host_mem_descs_dma);
+ dev->host_mem_descs = NULL;
+ dev->nr_host_mem_descs = 0;
+}
+
+static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
+ u32 chunk_size)
+{
+ struct nvme_host_mem_buf_desc *descs;
+ u32 max_entries, len;
+ dma_addr_t descs_dma;
+ int i = 0;
+ void **bufs;
+ u64 size, tmp;
+
+ tmp = (preferred + chunk_size - 1);
+ do_div(tmp, chunk_size);
+ max_entries = tmp;
+
+ if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
+ max_entries = dev->ctrl.hmmaxd;
+
+ descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
+ &descs_dma, GFP_KERNEL);
+ if (!descs)
+ goto out;
+
+ bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
+ if (!bufs)
+ goto out_free_descs;
+
+ for (size = 0; size < preferred && i < max_entries; size += len) {
+ dma_addr_t dma_addr;
+
+ len = min_t(u64, chunk_size, preferred - size);
+ bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
+ DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
+ if (!bufs[i])
+ break;
+
+ descs[i].addr = cpu_to_le64(dma_addr);
+ descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
+ i++;
+ }
+
+ if (!size)
+ goto out_free_bufs;
+
+ dev->nr_host_mem_descs = i;
+ dev->host_mem_size = size;
+ dev->host_mem_descs = descs;
+ dev->host_mem_descs_dma = descs_dma;
+ dev->host_mem_desc_bufs = bufs;
+ return 0;
+
+out_free_bufs:
+ while (--i >= 0) {
+ size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
+
+ dma_free_attrs(dev->dev, size, bufs[i],
+ le64_to_cpu(descs[i].addr),
+ DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
+ }
+
+ kfree(bufs);
+out_free_descs:
+ dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
+ descs_dma);
+out:
+ dev->host_mem_descs = NULL;
+ return -ENOMEM;
+}
+
+static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
+{
+ u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
+ u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
+ u64 chunk_size;
+
+ /* start big and work our way down */
+ for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
+ if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
+ if (!min || dev->host_mem_size >= min)
+ return 0;
+ nvme_free_host_mem(dev);
+ }
+ }
+
+ return -ENOMEM;
+}
+
+static int nvme_setup_host_mem(struct nvme_dev *dev)
+{
+ u64 max = (u64)max_host_mem_size_mb * SZ_1M;
+ u64 preferred = (u64)dev->ctrl.hmpre * 4096;
+ u64 min = (u64)dev->ctrl.hmmin * 4096;
+ u32 enable_bits = NVME_HOST_MEM_ENABLE;
+ int ret;
+
+ preferred = min(preferred, max);
+ if (min > max) {
+ dev_warn(dev->ctrl.device,
+ "min host memory (%lld MiB) above limit (%d MiB).\n",
+ min >> ilog2(SZ_1M), max_host_mem_size_mb);
+ nvme_free_host_mem(dev);
+ return 0;
+ }
+
+ /*
+ * If we already have a buffer allocated check if we can reuse it.
+ */
+ if (dev->host_mem_descs) {
+ if (dev->host_mem_size >= min)
+ enable_bits |= NVME_HOST_MEM_RETURN;
+ else
+ nvme_free_host_mem(dev);
+ }
+
+ if (!dev->host_mem_descs) {
+ if (nvme_alloc_host_mem(dev, min, preferred)) {
+ dev_warn(dev->ctrl.device,
+ "failed to allocate host memory buffer.\n");
+ return 0; /* controller must work without HMB */
+ }
+
+ dev_info(dev->ctrl.device,
+ "allocated %lld MiB host memory buffer.\n",
+ dev->host_mem_size >> ilog2(SZ_1M));
+ }
+
+ ret = nvme_set_host_mem(dev, enable_bits);
+ if (ret)
+ nvme_free_host_mem(dev);
+ return ret;
+}
+
+static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+
+ return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
+ ndev->cmbloc, ndev->cmbsz);
+}
+static DEVICE_ATTR_RO(cmb);
+
+static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+
+ return sysfs_emit(buf, "%u\n", ndev->cmbloc);
+}
+static DEVICE_ATTR_RO(cmbloc);
+
+static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+
+ return sysfs_emit(buf, "%u\n", ndev->cmbsz);
+}
+static DEVICE_ATTR_RO(cmbsz);
+
+static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
+ char *buf)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+
+ return sysfs_emit(buf, "%d\n", ndev->hmb);
+}
+
+static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
+ bool new;
+ int ret;
+
+ if (strtobool(buf, &new) < 0)
+ return -EINVAL;
+
+ if (new == ndev->hmb)
+ return count;
+
+ if (new) {
+ ret = nvme_setup_host_mem(ndev);
+ } else {
+ ret = nvme_set_host_mem(ndev, 0);
+ if (!ret)
+ nvme_free_host_mem(ndev);
+ }
+
+ if (ret < 0)
+ return ret;
+
+ return count;
+}
+static DEVICE_ATTR_RW(hmb);
+
+static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
+ struct attribute *a, int n)
+{
+ struct nvme_ctrl *ctrl =
+ dev_get_drvdata(container_of(kobj, struct device, kobj));
+ struct nvme_dev *dev = to_nvme_dev(ctrl);
+
+ if (a == &dev_attr_cmb.attr ||
+ a == &dev_attr_cmbloc.attr ||
+ a == &dev_attr_cmbsz.attr) {
+ if (!dev->cmbsz)
+ return 0;
+ }
+ if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
+ return 0;
+
+ return a->mode;
+}
+
+static struct attribute *nvme_pci_attrs[] = {
+ &dev_attr_cmb.attr,
+ &dev_attr_cmbloc.attr,
+ &dev_attr_cmbsz.attr,
+ &dev_attr_hmb.attr,
+ NULL,
+};
+
+static const struct attribute_group nvme_pci_dev_attrs_group = {
+ .attrs = nvme_pci_attrs,
+ .is_visible = nvme_pci_attrs_are_visible,
+};
+
+static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
+ &nvme_dev_attrs_group,
+ &nvme_pci_dev_attrs_group,
+ NULL,
+};
+
+static void nvme_update_attrs(struct nvme_dev *dev)
+{
+ sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
+}
+
+/*
+ * nirqs is the number of interrupts available for write and read
+ * queues. The core already reserved an interrupt for the admin queue.
+ */
+static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
+{
+ struct nvme_dev *dev = affd->priv;
+ unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
+
+ /*
+ * If there is no interrupt available for queues, ensure that
+ * the default queue is set to 1. The affinity set size is
+ * also set to one, but the irq core ignores it for this case.
+ *
+ * If only one interrupt is available or 'write_queue' == 0, combine
+ * write and read queues.
+ *
+ * If 'write_queues' > 0, ensure it leaves room for at least one read
+ * queue.
+ */
+ if (!nrirqs) {
+ nrirqs = 1;
+ nr_read_queues = 0;
+ } else if (nrirqs == 1 || !nr_write_queues) {
+ nr_read_queues = 0;
+ } else if (nr_write_queues >= nrirqs) {
+ nr_read_queues = 1;
+ } else {
+ nr_read_queues = nrirqs - nr_write_queues;
+ }
+
+ dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
+ affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
+ dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
+ affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
+ affd->nr_sets = nr_read_queues ? 2 : 1;
+}
+
+static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ struct irq_affinity affd = {
+ .pre_vectors = 1,
+ .calc_sets = nvme_calc_irq_sets,
+ .priv = dev,
+ };
+ unsigned int irq_queues, poll_queues;
+
+ /*
+ * Poll queues don't need interrupts, but we need at least one I/O queue
+ * left over for non-polled I/O.
+ */
+ poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
+ dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
+
+ /*
+ * Initialize for the single interrupt case, will be updated in
+ * nvme_calc_irq_sets().
+ */
+ dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
+ dev->io_queues[HCTX_TYPE_READ] = 0;
+
+ /*
+ * We need interrupts for the admin queue and each non-polled I/O queue,
+ * but some Apple controllers require all queues to use the first
+ * vector.
+ */
+ irq_queues = 1;
+ if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
+ irq_queues += (nr_io_queues - poll_queues);
+ return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
+ PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
+}
+
+static void nvme_disable_io_queues(struct nvme_dev *dev)
+{
+ if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
+ __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
+}
+
+static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
+{
+ /*
+ * If tags are shared with admin queue (Apple bug), then
+ * make sure we only use one IO queue.
+ */
+ if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
+ return 1;
+ return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
+}
+
+static int nvme_setup_io_queues(struct nvme_dev *dev)
+{
+ struct nvme_queue *adminq = &dev->queues[0];
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ unsigned int nr_io_queues;
+ unsigned long size;
+ int result;
+
+ /*
+ * Sample the module parameters once at reset time so that we have
+ * stable values to work with.
+ */
+ dev->nr_write_queues = write_queues;
+ dev->nr_poll_queues = poll_queues;
+
+ nr_io_queues = dev->nr_allocated_queues - 1;
+ result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
+ if (result < 0)
+ return result;
+
+ if (nr_io_queues == 0)
+ return 0;
+
+ /*
+ * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
+ * from set to unset. If there is a window to it is truely freed,
+ * pci_free_irq_vectors() jumping into this window will crash.
+ * And take lock to avoid racing with pci_free_irq_vectors() in
+ * nvme_dev_disable() path.
+ */
+ result = nvme_setup_io_queues_trylock(dev);
+ if (result)
+ return result;
+ if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
+ pci_free_irq(pdev, 0, adminq);
+
+ if (dev->cmb_use_sqes) {
+ result = nvme_cmb_qdepth(dev, nr_io_queues,
+ sizeof(struct nvme_command));
+ if (result > 0)
+ dev->q_depth = result;
+ else
+ dev->cmb_use_sqes = false;
+ }
+
+ do {
+ size = db_bar_size(dev, nr_io_queues);
+ result = nvme_remap_bar(dev, size);
+ if (!result)
+ break;
+ if (!--nr_io_queues) {
+ result = -ENOMEM;
+ goto out_unlock;
+ }
+ } while (1);
+ adminq->q_db = dev->dbs;
+
+ retry:
+ /* Deregister the admin queue's interrupt */
+ if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
+ pci_free_irq(pdev, 0, adminq);
+
+ /*
+ * If we enable msix early due to not intx, disable it again before
+ * setting up the full range we need.
+ */
+ pci_free_irq_vectors(pdev);
+
+ result = nvme_setup_irqs(dev, nr_io_queues);
+ if (result <= 0) {
+ result = -EIO;
+ goto out_unlock;
+ }
+
+ dev->num_vecs = result;
+ result = max(result - 1, 1);
+ dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
+
+ /*
+ * Should investigate if there's a performance win from allocating
+ * more queues than interrupt vectors; it might allow the submission
+ * path to scale better, even if the receive path is limited by the
+ * number of interrupts.
+ */
+ result = queue_request_irq(adminq);
+ if (result)
+ goto out_unlock;
+ set_bit(NVMEQ_ENABLED, &adminq->flags);
+ mutex_unlock(&dev->shutdown_lock);
+
+ result = nvme_create_io_queues(dev);
+ if (result || dev->online_queues < 2)
+ return result;
+
+ if (dev->online_queues - 1 < dev->max_qid) {
+ nr_io_queues = dev->online_queues - 1;
+ nvme_disable_io_queues(dev);
+ result = nvme_setup_io_queues_trylock(dev);
+ if (result)
+ return result;
+ nvme_suspend_io_queues(dev);
+ goto retry;
+ }
+ dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
+ dev->io_queues[HCTX_TYPE_DEFAULT],
+ dev->io_queues[HCTX_TYPE_READ],
+ dev->io_queues[HCTX_TYPE_POLL]);
+ return 0;
+out_unlock:
+ mutex_unlock(&dev->shutdown_lock);
+ return result;
+}
+
+static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
+ blk_status_t error)
+{
+ struct nvme_queue *nvmeq = req->end_io_data;
+
+ blk_mq_free_request(req);
+ complete(&nvmeq->delete_done);
+ return RQ_END_IO_NONE;
+}
+
+static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
+ blk_status_t error)
+{
+ struct nvme_queue *nvmeq = req->end_io_data;
+
+ if (error)
+ set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
+
+ return nvme_del_queue_end(req, error);
+}
+
+static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
+{
+ struct request_queue *q = nvmeq->dev->ctrl.admin_q;
+ struct request *req;
+ struct nvme_command cmd = { };
+
+ cmd.delete_queue.opcode = opcode;
+ cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
+
+ req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
+ if (IS_ERR(req))
+ return PTR_ERR(req);
+ nvme_init_request(req, &cmd);
+
+ if (opcode == nvme_admin_delete_cq)
+ req->end_io = nvme_del_cq_end;
+ else
+ req->end_io = nvme_del_queue_end;
+ req->end_io_data = nvmeq;
+
+ init_completion(&nvmeq->delete_done);
+ blk_execute_rq_nowait(req, false);
+ return 0;
+}
+
+static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
+{
+ int nr_queues = dev->online_queues - 1, sent = 0;
+ unsigned long timeout;
+
+ retry:
+ timeout = NVME_ADMIN_TIMEOUT;
+ while (nr_queues > 0) {
+ if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
+ break;
+ nr_queues--;
+ sent++;
+ }
+ while (sent) {
+ struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
+
+ timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
+ timeout);
+ if (timeout == 0)
+ return false;
+
+ sent--;
+ if (nr_queues)
+ goto retry;
+ }
+ return true;
+}
+
+static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
+{
+ struct blk_mq_tag_set * set = &dev->tagset;
+ int ret;
+
+ set->ops = &nvme_mq_ops;
+ set->nr_hw_queues = dev->online_queues - 1;
+ set->nr_maps = 1;
+ if (dev->io_queues[HCTX_TYPE_READ])
+ set->nr_maps = 2;
+ if (dev->io_queues[HCTX_TYPE_POLL])
+ set->nr_maps = 3;
+ set->timeout = NVME_IO_TIMEOUT;
+ set->numa_node = dev->ctrl.numa_node;
+ set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
+ set->cmd_size = sizeof(struct nvme_iod);
+ set->flags = BLK_MQ_F_SHOULD_MERGE;
+ set->driver_data = dev;
+
+ /*
+ * Some Apple controllers requires tags to be unique
+ * across admin and IO queue, so reserve the first 32
+ * tags of the IO queue.
+ */
+ if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
+ set->reserved_tags = NVME_AQ_DEPTH;
+
+ ret = blk_mq_alloc_tag_set(set);
+ if (ret) {
+ dev_warn(dev->ctrl.device,
+ "IO queues tagset allocation failed %d\n", ret);
+ return;
+ }
+ dev->ctrl.tagset = set;
+}
+
+static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
+{
+ blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
+ /* free previously allocated queues that are no longer usable */
+ nvme_free_queues(dev, dev->online_queues);
+}
+
+static int nvme_pci_enable(struct nvme_dev *dev)
+{
+ int result = -ENOMEM;
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ int dma_address_bits = 64;
+
+ if (pci_enable_device_mem(pdev))
+ return result;
+
+ pci_set_master(pdev);
+
+ if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
+ dma_address_bits = 48;
+ if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
+ goto disable;
+
+ if (readl(dev->bar + NVME_REG_CSTS) == -1) {
+ result = -ENODEV;
+ goto disable;
+ }
+
+ /*
+ * Some devices and/or platforms don't advertise or work with INTx
+ * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
+ * adjust this later.
+ */
+ result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
+ if (result < 0)
+ return result;
+
+ dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
+
+ dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
+ io_queue_depth);
+ dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
+ dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
+ dev->dbs = dev->bar + 4096;
+
+ /*
+ * Some Apple controllers require a non-standard SQE size.
+ * Interestingly they also seem to ignore the CC:IOSQES register
+ * so we don't bother updating it here.
+ */
+ if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
+ dev->io_sqes = 7;
+ else
+ dev->io_sqes = NVME_NVM_IOSQES;
+
+ /*
+ * Temporary fix for the Apple controller found in the MacBook8,1 and
+ * some MacBook7,1 to avoid controller resets and data loss.
+ */
+ if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
+ dev->q_depth = 2;
+ dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
+ "set queue depth=%u to work around controller resets\n",
+ dev->q_depth);
+ } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
+ (pdev->device == 0xa821 || pdev->device == 0xa822) &&
+ NVME_CAP_MQES(dev->ctrl.cap) == 0) {
+ dev->q_depth = 64;
+ dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
+ "set queue depth=%u\n", dev->q_depth);
+ }
+
+ /*
+ * Controllers with the shared tags quirk need the IO queue to be
+ * big enough so that we get 32 tags for the admin queue
+ */
+ if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
+ (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
+ dev->q_depth = NVME_AQ_DEPTH + 2;
+ dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
+ dev->q_depth);
+ }
+
+
+ nvme_map_cmb(dev);
+
+ pci_enable_pcie_error_reporting(pdev);
+ pci_save_state(pdev);
+ return 0;
+
+ disable:
+ pci_disable_device(pdev);
+ return result;
+}
+
+static void nvme_dev_unmap(struct nvme_dev *dev)
+{
+ if (dev->bar)
+ iounmap(dev->bar);
+ pci_release_mem_regions(to_pci_dev(dev->dev));
+}
+
+static void nvme_pci_disable(struct nvme_dev *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ pci_free_irq_vectors(pdev);
+
+ if (pci_is_enabled(pdev)) {
+ pci_disable_pcie_error_reporting(pdev);
+ pci_disable_device(pdev);
+ }
+}
+
+static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
+{
+ bool dead = true, freeze = false;
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ mutex_lock(&dev->shutdown_lock);
+ if (pci_is_enabled(pdev)) {
+ u32 csts;
+
+ if (pci_device_is_present(pdev))
+ csts = readl(dev->bar + NVME_REG_CSTS);
+ else
+ csts = ~0;
+
+ if (dev->ctrl.state == NVME_CTRL_LIVE ||
+ dev->ctrl.state == NVME_CTRL_RESETTING) {
+ freeze = true;
+ nvme_start_freeze(&dev->ctrl);
+ }
+ dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
+ pdev->error_state != pci_channel_io_normal);
+ }
+
+ /*
+ * Give the controller a chance to complete all entered requests if
+ * doing a safe shutdown.
+ */
+ if (!dead && shutdown && freeze)
+ nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
+
+ nvme_stop_queues(&dev->ctrl);
+
+ if (!dead && dev->ctrl.queue_count > 0) {
+ nvme_disable_io_queues(dev);
+ nvme_disable_admin_queue(dev, shutdown);
+ }
+ nvme_suspend_io_queues(dev);
+ nvme_suspend_queue(&dev->queues[0]);
+ nvme_pci_disable(dev);
+ nvme_reap_pending_cqes(dev);
+
+ nvme_cancel_tagset(&dev->ctrl);
+ nvme_cancel_admin_tagset(&dev->ctrl);
+
+ /*
+ * The driver will not be starting up queues again if shutting down so
+ * must flush all entered requests to their failed completion to avoid
+ * deadlocking blk-mq hot-cpu notifier.
+ */
+ if (shutdown) {
+ nvme_start_queues(&dev->ctrl);
+ if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
+ nvme_start_admin_queue(&dev->ctrl);
+ }
+ mutex_unlock(&dev->shutdown_lock);
+}
+
+static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
+{
+ if (!nvme_wait_reset(&dev->ctrl))
+ return -EBUSY;
+ nvme_dev_disable(dev, shutdown);
+ return 0;
+}
+
+static int nvme_setup_prp_pools(struct nvme_dev *dev)
+{
+ dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
+ NVME_CTRL_PAGE_SIZE,
+ NVME_CTRL_PAGE_SIZE, 0);
+ if (!dev->prp_page_pool)
+ return -ENOMEM;
+
+ /* Optimisation for I/Os between 4k and 128k */
+ dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
+ 256, 256, 0);
+ if (!dev->prp_small_pool) {
+ dma_pool_destroy(dev->prp_page_pool);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+static void nvme_release_prp_pools(struct nvme_dev *dev)
+{
+ dma_pool_destroy(dev->prp_page_pool);
+ dma_pool_destroy(dev->prp_small_pool);
+}
+
+static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
+{
+ size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
+ size_t alloc_size = sizeof(__le64 *) * npages +
+ sizeof(struct scatterlist) * NVME_MAX_SEGS;
+
+ WARN_ON_ONCE(alloc_size > PAGE_SIZE);
+ dev->iod_mempool = mempool_create_node(1,
+ mempool_kmalloc, mempool_kfree,
+ (void *)alloc_size, GFP_KERNEL,
+ dev_to_node(dev->dev));
+ if (!dev->iod_mempool)
+ return -ENOMEM;
+ return 0;
+}
+
+static void nvme_free_tagset(struct nvme_dev *dev)
+{
+ if (dev->tagset.tags)
+ blk_mq_free_tag_set(&dev->tagset);
+ dev->ctrl.tagset = NULL;
+}
+
+/* pairs with nvme_pci_alloc_dev */
+static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
+{
+ struct nvme_dev *dev = to_nvme_dev(ctrl);
+
+ nvme_dbbuf_dma_free(dev);
+ nvme_free_tagset(dev);
+ if (dev->ctrl.admin_q)
+ blk_put_queue(dev->ctrl.admin_q);
+ free_opal_dev(dev->ctrl.opal_dev);
+ mempool_destroy(dev->iod_mempool);
+ put_device(dev->dev);
+ kfree(dev->queues);
+ kfree(dev);
+}
+
+static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
+{
+ /*
+ * Set state to deleting now to avoid blocking nvme_wait_reset(), which
+ * may be holding this pci_dev's device lock.
+ */
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
+ nvme_get_ctrl(&dev->ctrl);
+ nvme_dev_disable(dev, false);
+ nvme_kill_queues(&dev->ctrl);
+ if (!queue_work(nvme_wq, &dev->remove_work))
+ nvme_put_ctrl(&dev->ctrl);
+}
+
+static void nvme_reset_work(struct work_struct *work)
+{
+ struct nvme_dev *dev =
+ container_of(work, struct nvme_dev, ctrl.reset_work);
+ bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
+ int result;
+
+ if (dev->ctrl.state != NVME_CTRL_RESETTING) {
+ dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
+ dev->ctrl.state);
+ result = -ENODEV;
+ goto out;
+ }
+
+ /*
+ * If we're called to reset a live controller first shut it down before
+ * moving on.
+ */
+ if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
+ nvme_dev_disable(dev, false);
+ nvme_sync_queues(&dev->ctrl);
+
+ mutex_lock(&dev->shutdown_lock);
+ result = nvme_pci_enable(dev);
+ if (result)
+ goto out_unlock;
+
+ result = nvme_pci_configure_admin_queue(dev);
+ if (result)
+ goto out_unlock;
+
+ if (!dev->ctrl.admin_q) {
+ result = nvme_pci_alloc_admin_tag_set(dev);
+ if (result)
+ goto out_unlock;
+ } else {
+ nvme_start_admin_queue(&dev->ctrl);
+ }
+
+ dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
+
+ /*
+ * Limit the max command size to prevent iod->sg allocations going
+ * over a single page.
+ */
+ dev->ctrl.max_hw_sectors = min_t(u32,
+ NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
+ dev->ctrl.max_segments = NVME_MAX_SEGS;
+
+ /*
+ * Don't limit the IOMMU merged segment size.
+ */
+ dma_set_max_seg_size(dev->dev, 0xffffffff);
+
+ mutex_unlock(&dev->shutdown_lock);
+
+ /*
+ * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
+ * initializing procedure here.
+ */
+ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
+ dev_warn(dev->ctrl.device,
+ "failed to mark controller CONNECTING\n");
+ result = -EBUSY;
+ goto out;
+ }
+
+ /*
+ * We do not support an SGL for metadata (yet), so we are limited to a
+ * single integrity segment for the separate metadata pointer.
+ */
+ dev->ctrl.max_integrity_segments = 1;
+
+ result = nvme_init_ctrl_finish(&dev->ctrl);
+ if (result)
+ goto out;
+
+ if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
+ if (!dev->ctrl.opal_dev)
+ dev->ctrl.opal_dev =
+ init_opal_dev(&dev->ctrl, &nvme_sec_submit);
+ else if (was_suspend)
+ opal_unlock_from_suspend(dev->ctrl.opal_dev);
+ } else {
+ free_opal_dev(dev->ctrl.opal_dev);
+ dev->ctrl.opal_dev = NULL;
+ }
+
+ if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
+ result = nvme_dbbuf_dma_alloc(dev);
+ if (result)
+ dev_warn(dev->dev,
+ "unable to allocate dma for dbbuf\n");
+ }
+
+ if (dev->ctrl.hmpre) {
+ result = nvme_setup_host_mem(dev);
+ if (result < 0)
+ goto out;
+ }
+
+ result = nvme_setup_io_queues(dev);
+ if (result)
+ goto out;
+
+ /*
+ * Keep the controller around but remove all namespaces if we don't have
+ * any working I/O queue.
+ */
+ if (dev->online_queues < 2) {
+ dev_warn(dev->ctrl.device, "IO queues not created\n");
+ nvme_kill_queues(&dev->ctrl);
+ nvme_remove_namespaces(&dev->ctrl);
+ nvme_free_tagset(dev);
+ } else {
+ nvme_start_queues(&dev->ctrl);
+ nvme_wait_freeze(&dev->ctrl);
+ if (!dev->ctrl.tagset)
+ nvme_pci_alloc_tag_set(dev);
+ else
+ nvme_pci_update_nr_queues(dev);
+ nvme_dbbuf_set(dev);
+ nvme_unfreeze(&dev->ctrl);
+ }
+
+ /*
+ * If only admin queue live, keep it to do further investigation or
+ * recovery.
+ */
+ if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
+ dev_warn(dev->ctrl.device,
+ "failed to mark controller live state\n");
+ result = -ENODEV;
+ goto out;
+ }
+
+ nvme_start_ctrl(&dev->ctrl);
+ return;
+
+ out_unlock:
+ mutex_unlock(&dev->shutdown_lock);
+ out:
+ if (result)
+ dev_warn(dev->ctrl.device,
+ "Removing after probe failure status: %d\n", result);
+ nvme_remove_dead_ctrl(dev);
+}
+
+static void nvme_remove_dead_ctrl_work(struct work_struct *work)
+{
+ struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (pci_get_drvdata(pdev))
+ device_release_driver(&pdev->dev);
+ nvme_put_ctrl(&dev->ctrl);
+}
+
+static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
+{
+ *val = readl(to_nvme_dev(ctrl)->bar + off);
+ return 0;
+}
+
+static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
+{
+ writel(val, to_nvme_dev(ctrl)->bar + off);
+ return 0;
+}
+
+static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
+{
+ *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
+ return 0;
+}
+
+static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
+{
+ struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
+
+ return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
+}
+
+static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
+{
+ struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
+ struct nvme_subsystem *subsys = ctrl->subsys;
+
+ dev_err(ctrl->device,
+ "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
+ pdev->vendor, pdev->device,
+ nvme_strlen(subsys->model, sizeof(subsys->model)),
+ subsys->model, nvme_strlen(subsys->firmware_rev,
+ sizeof(subsys->firmware_rev)),
+ subsys->firmware_rev);
+}
+
+static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
+{
+ struct nvme_dev *dev = to_nvme_dev(ctrl);
+
+ return dma_pci_p2pdma_supported(dev->dev);
+}
+
+static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
+ .name = "pcie",
+ .module = THIS_MODULE,
+ .flags = NVME_F_METADATA_SUPPORTED,
+ .dev_attr_groups = nvme_pci_dev_attr_groups,
+ .reg_read32 = nvme_pci_reg_read32,
+ .reg_write32 = nvme_pci_reg_write32,
+ .reg_read64 = nvme_pci_reg_read64,
+ .free_ctrl = nvme_pci_free_ctrl,
+ .submit_async_event = nvme_pci_submit_async_event,
+ .get_address = nvme_pci_get_address,
+ .print_device_info = nvme_pci_print_device_info,
+ .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
+};
+
+static int nvme_dev_map(struct nvme_dev *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (pci_request_mem_regions(pdev, "nvme"))
+ return -ENODEV;
+
+ if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
+ goto release;
+
+ return 0;
+ release:
+ pci_release_mem_regions(pdev);
+ return -ENODEV;
+}
+
+static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
+{
+ if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
+ /*
+ * Several Samsung devices seem to drop off the PCIe bus
+ * randomly when APST is on and uses the deepest sleep state.
+ * This has been observed on a Samsung "SM951 NVMe SAMSUNG
+ * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
+ * 950 PRO 256GB", but it seems to be restricted to two Dell
+ * laptops.
+ */
+ if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
+ (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
+ dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
+ return NVME_QUIRK_NO_DEEPEST_PS;
+ } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
+ /*
+ * Samsung SSD 960 EVO drops off the PCIe bus after system
+ * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
+ * within few minutes after bootup on a Coffee Lake board -
+ * ASUS PRIME Z370-A
+ */
+ if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
+ (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
+ dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
+ return NVME_QUIRK_NO_APST;
+ } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
+ pdev->device == 0xa808 || pdev->device == 0xa809)) ||
+ (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
+ /*
+ * Forcing to use host managed nvme power settings for
+ * lowest idle power with quick resume latency on
+ * Samsung and Toshiba SSDs based on suspend behavior
+ * on Coffee Lake board for LENOVO C640
+ */
+ if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
+ dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
+ return NVME_QUIRK_SIMPLE_SUSPEND;
+ } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
+ pdev->device == 0x500f)) {
+ /*
+ * Exclude some Kingston NV1 and A2000 devices from
+ * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
+ * lot fo energy with s2idle sleep on some TUXEDO platforms.
+ */
+ if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
+ dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
+ dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
+ dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
+ return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
+ }
+
+ return 0;
+}
+
+static void nvme_async_probe(void *data, async_cookie_t cookie)
+{
+ struct nvme_dev *dev = data;
+
+ flush_work(&dev->ctrl.reset_work);
+ flush_work(&dev->ctrl.scan_work);
+ nvme_put_ctrl(&dev->ctrl);
+}
+
+static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
+ const struct pci_device_id *id)
+{
+ unsigned long quirks = id->driver_data;
+ int node = dev_to_node(&pdev->dev);
+ struct nvme_dev *dev;
+ int ret = -ENOMEM;
+
+ dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
+ if (!dev)
+ return ERR_PTR(-ENOMEM);
+ INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
+ INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
+ mutex_init(&dev->shutdown_lock);
+
+ dev->nr_write_queues = write_queues;
+ dev->nr_poll_queues = poll_queues;
+ dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
+ dev->queues = kcalloc_node(dev->nr_allocated_queues,
+ sizeof(struct nvme_queue), GFP_KERNEL, node);
+ if (!dev->queues)
+ goto out_free_dev;
+
+ dev->dev = get_device(&pdev->dev);
+
+ quirks |= check_vendor_combination_bug(pdev);
+ if (!noacpi &&
+ !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
+ acpi_storage_d3(&pdev->dev)) {
+ /*
+ * Some systems use a bios work around to ask for D3 on
+ * platforms that support kernel managed suspend.
+ */
+ dev_info(&pdev->dev,
+ "platform quirk: setting simple suspend\n");
+ quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
+ }
+ ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
+ quirks);
+ if (ret)
+ goto out_put_device;
+ return dev;
+
+out_put_device:
+ put_device(dev->dev);
+ kfree(dev->queues);
+out_free_dev:
+ kfree(dev);
+ return ERR_PTR(ret);
+}
+
+static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+ struct nvme_dev *dev;
+ int result = -ENOMEM;
+
+ dev = nvme_pci_alloc_dev(pdev, id);
+ if (IS_ERR(dev))
+ return PTR_ERR(dev);
+
+ result = nvme_dev_map(dev);
+ if (result)
+ goto out_uninit_ctrl;
+
+ result = nvme_setup_prp_pools(dev);
+ if (result)
+ goto out_dev_unmap;
+
+ result = nvme_pci_alloc_iod_mempool(dev);
+ if (result)
+ goto out_release_prp_pools;
+
+ dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
+ pci_set_drvdata(pdev, dev);
+
+ nvme_reset_ctrl(&dev->ctrl);
+ async_schedule(nvme_async_probe, dev);
+ return 0;
+
+out_release_prp_pools:
+ nvme_release_prp_pools(dev);
+out_dev_unmap:
+ nvme_dev_unmap(dev);
+out_uninit_ctrl:
+ nvme_uninit_ctrl(&dev->ctrl);
+ return result;
+}
+
+static void nvme_reset_prepare(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ /*
+ * We don't need to check the return value from waiting for the reset
+ * state as pci_dev device lock is held, making it impossible to race
+ * with ->remove().
+ */
+ nvme_disable_prepare_reset(dev, false);
+ nvme_sync_queues(&dev->ctrl);
+}
+
+static void nvme_reset_done(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ if (!nvme_try_sched_reset(&dev->ctrl))
+ flush_work(&dev->ctrl.reset_work);
+}
+
+static void nvme_shutdown(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ nvme_disable_prepare_reset(dev, true);
+}
+
+/*
+ * The driver's remove may be called on a device in a partially initialized
+ * state. This function must not have any dependencies on the device state in
+ * order to proceed.
+ */
+static void nvme_remove(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
+ pci_set_drvdata(pdev, NULL);
+
+ if (!pci_device_is_present(pdev)) {
+ nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
+ nvme_dev_disable(dev, true);
+ }
+
+ flush_work(&dev->ctrl.reset_work);
+ nvme_stop_ctrl(&dev->ctrl);
+ nvme_remove_namespaces(&dev->ctrl);
+ nvme_dev_disable(dev, true);
+ nvme_free_host_mem(dev);
+ nvme_dev_remove_admin(dev);
+ nvme_free_queues(dev, 0);
+ nvme_release_prp_pools(dev);
+ nvme_dev_unmap(dev);
+ nvme_uninit_ctrl(&dev->ctrl);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
+{
+ return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
+}
+
+static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
+{
+ return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
+}
+
+static int nvme_resume(struct device *dev)
+{
+ struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
+ struct nvme_ctrl *ctrl = &ndev->ctrl;
+
+ if (ndev->last_ps == U32_MAX ||
+ nvme_set_power_state(ctrl, ndev->last_ps) != 0)
+ goto reset;
+ if (ctrl->hmpre && nvme_setup_host_mem(ndev))
+ goto reset;
+
+ return 0;
+reset:
+ return nvme_try_sched_reset(ctrl);
+}
+
+static int nvme_suspend(struct device *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev);
+ struct nvme_dev *ndev = pci_get_drvdata(pdev);
+ struct nvme_ctrl *ctrl = &ndev->ctrl;
+ int ret = -EBUSY;
+
+ ndev->last_ps = U32_MAX;
+
+ /*
+ * The platform does not remove power for a kernel managed suspend so
+ * use host managed nvme power settings for lowest idle power if
+ * possible. This should have quicker resume latency than a full device
+ * shutdown. But if the firmware is involved after the suspend or the
+ * device does not support any non-default power states, shut down the
+ * device fully.
+ *
+ * If ASPM is not enabled for the device, shut down the device and allow
+ * the PCI bus layer to put it into D3 in order to take the PCIe link
+ * down, so as to allow the platform to achieve its minimum low-power
+ * state (which may not be possible if the link is up).
+ */
+ if (pm_suspend_via_firmware() || !ctrl->npss ||
+ !pcie_aspm_enabled(pdev) ||
+ (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
+ return nvme_disable_prepare_reset(ndev, true);
+
+ nvme_start_freeze(ctrl);
+ nvme_wait_freeze(ctrl);
+ nvme_sync_queues(ctrl);
+
+ if (ctrl->state != NVME_CTRL_LIVE)
+ goto unfreeze;
+
+ /*
+ * Host memory access may not be successful in a system suspend state,
+ * but the specification allows the controller to access memory in a
+ * non-operational power state.
+ */
+ if (ndev->hmb) {
+ ret = nvme_set_host_mem(ndev, 0);
+ if (ret < 0)
+ goto unfreeze;
+ }
+
+ ret = nvme_get_power_state(ctrl, &ndev->last_ps);
+ if (ret < 0)
+ goto unfreeze;
+
+ /*
+ * A saved state prevents pci pm from generically controlling the
+ * device's power. If we're using protocol specific settings, we don't
+ * want pci interfering.
+ */
+ pci_save_state(pdev);
+
+ ret = nvme_set_power_state(ctrl, ctrl->npss);
+ if (ret < 0)
+ goto unfreeze;
+
+ if (ret) {
+ /* discard the saved state */
+ pci_load_saved_state(pdev, NULL);
+
+ /*
+ * Clearing npss forces a controller reset on resume. The
+ * correct value will be rediscovered then.
+ */
+ ret = nvme_disable_prepare_reset(ndev, true);
+ ctrl->npss = 0;
+ }
+unfreeze:
+ nvme_unfreeze(ctrl);
+ return ret;
+}
+
+static int nvme_simple_suspend(struct device *dev)
+{
+ struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
+
+ return nvme_disable_prepare_reset(ndev, true);
+}
+
+static int nvme_simple_resume(struct device *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev);
+ struct nvme_dev *ndev = pci_get_drvdata(pdev);
+
+ return nvme_try_sched_reset(&ndev->ctrl);
+}
+
+static const struct dev_pm_ops nvme_dev_pm_ops = {
+ .suspend = nvme_suspend,
+ .resume = nvme_resume,
+ .freeze = nvme_simple_suspend,
+ .thaw = nvme_simple_resume,
+ .poweroff = nvme_simple_suspend,
+ .restore = nvme_simple_resume,
+};
+#endif /* CONFIG_PM_SLEEP */
+
+static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
+ pci_channel_state_t state)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ /*
+ * A frozen channel requires a reset. When detected, this method will
+ * shutdown the controller to quiesce. The controller will be restarted
+ * after the slot reset through driver's slot_reset callback.
+ */
+ switch (state) {
+ case pci_channel_io_normal:
+ return PCI_ERS_RESULT_CAN_RECOVER;
+ case pci_channel_io_frozen:
+ dev_warn(dev->ctrl.device,
+ "frozen state error detected, reset controller\n");
+ nvme_dev_disable(dev, false);
+ return PCI_ERS_RESULT_NEED_RESET;
+ case pci_channel_io_perm_failure:
+ dev_warn(dev->ctrl.device,
+ "failure state error detected, request disconnect\n");
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+ return PCI_ERS_RESULT_NEED_RESET;
+}
+
+static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ dev_info(dev->ctrl.device, "restart after slot reset\n");
+ pci_restore_state(pdev);
+ nvme_reset_ctrl(&dev->ctrl);
+ return PCI_ERS_RESULT_RECOVERED;
+}
+
+static void nvme_error_resume(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ flush_work(&dev->ctrl.reset_work);
+}
+
+static const struct pci_error_handlers nvme_err_handler = {
+ .error_detected = nvme_error_detected,
+ .slot_reset = nvme_slot_reset,
+ .resume = nvme_error_resume,
+ .reset_prepare = nvme_reset_prepare,
+ .reset_done = nvme_reset_done,
+};
+
+static const struct pci_device_id nvme_id_table[] = {
+ { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
+ .driver_data = NVME_QUIRK_STRIPE_SIZE |
+ NVME_QUIRK_DEALLOCATE_ZEROES, },
+ { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
+ .driver_data = NVME_QUIRK_STRIPE_SIZE |
+ NVME_QUIRK_DEALLOCATE_ZEROES, },
+ { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
+ .driver_data = NVME_QUIRK_STRIPE_SIZE |
+ NVME_QUIRK_DEALLOCATE_ZEROES |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
+ .driver_data = NVME_QUIRK_STRIPE_SIZE |
+ NVME_QUIRK_DEALLOCATE_ZEROES, },
+ { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
+ NVME_QUIRK_MEDIUM_PRIO_SQ |
+ NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
+ NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
+ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
+ .driver_data = NVME_QUIRK_IDENTIFY_CNS |
+ NVME_QUIRK_DISABLE_WRITE_ZEROES |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
+ .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
+ NVME_QUIRK_NO_NS_DESC_LIST, },
+ { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
+ { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
+ { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
+ { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
+ { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
+ .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
+ NVME_QUIRK_DISABLE_WRITE_ZEROES|
+ NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
+ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
+ .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
+ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
+ .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
+ { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
+ NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
+ { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
+ { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
+ .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
+ { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
+ .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
+ { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
+ { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
+ .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
+ { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
+ .driver_data = NVME_QUIRK_BOGUS_NID |
+ NVME_QUIRK_IGNORE_DEV_SUBNQN, },
+ { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
+ .driver_data = NVME_QUIRK_BOGUS_NID, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
+ .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
+ { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
+ .driver_data = NVME_QUIRK_SINGLE_VECTOR },
+ { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
+ { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
+ .driver_data = NVME_QUIRK_SINGLE_VECTOR |
+ NVME_QUIRK_128_BYTES_SQES |
+ NVME_QUIRK_SHARED_TAGS |
+ NVME_QUIRK_SKIP_CID_GEN },
+ { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
+ { 0, }
+};
+MODULE_DEVICE_TABLE(pci, nvme_id_table);
+
+static struct pci_driver nvme_driver = {
+ .name = "nvme",
+ .id_table = nvme_id_table,
+ .probe = nvme_probe,
+ .remove = nvme_remove,
+ .shutdown = nvme_shutdown,
+#ifdef CONFIG_PM_SLEEP
+ .driver = {
+ .pm = &nvme_dev_pm_ops,
+ },
+#endif
+ .sriov_configure = pci_sriov_configure_simple,
+ .err_handler = &nvme_err_handler,
+};
+
+static int __init nvme_init(void)
+{
+ BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
+ BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
+ BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
+ S8_MAX);
+
+ return pci_register_driver(&nvme_driver);
+}
+
+static void __exit nvme_exit(void)
+{
+ pci_unregister_driver(&nvme_driver);
+ flush_workqueue(nvme_wq);
+}
+
+MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
+MODULE_LICENSE("GPL");
+MODULE_VERSION("1.0");
+module_init(nvme_init);
+module_exit(nvme_exit);