summaryrefslogtreecommitdiffstats
path: root/drivers/rtc/Kconfig
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/rtc/Kconfig
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/rtc/Kconfig')
-rw-r--r--drivers/rtc/Kconfig1998
1 files changed, 1998 insertions, 0 deletions
diff --git a/drivers/rtc/Kconfig b/drivers/rtc/Kconfig
new file mode 100644
index 000000000..bb63edb50
--- /dev/null
+++ b/drivers/rtc/Kconfig
@@ -0,0 +1,1998 @@
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# RTC class/drivers configuration
+#
+
+config RTC_LIB
+ bool
+
+config RTC_MC146818_LIB
+ bool
+ select RTC_LIB
+
+menuconfig RTC_CLASS
+ bool "Real Time Clock"
+ default n
+ depends on !S390
+ select RTC_LIB
+ help
+ Generic RTC class support. If you say yes here, you will
+ be allowed to plug one or more RTCs to your system. You will
+ probably want to enable one or more of the interfaces below.
+
+if RTC_CLASS
+
+config RTC_HCTOSYS
+ bool "Set system time from RTC on startup and resume"
+ default y
+ help
+ If you say yes here, the system time (wall clock) will be set using
+ the value read from a specified RTC device. This is useful to avoid
+ unnecessary fsck runs at boot time, and to network better.
+
+config RTC_HCTOSYS_DEVICE
+ string "RTC used to set the system time"
+ depends on RTC_HCTOSYS
+ default "rtc0"
+ help
+ The RTC device that will be used to (re)initialize the system
+ clock, usually rtc0. Initialization is done when the system
+ starts up, and when it resumes from a low power state. This
+ device should record time in UTC, since the kernel won't do
+ timezone correction.
+
+ This clock should be battery-backed, so that it reads the correct
+ time when the system boots from a power-off state. Otherwise, your
+ system will need an external clock source (like an NTP server).
+
+ If the clock you specify here is not battery backed, it may still
+ be useful to reinitialize system time when resuming from system
+ sleep states. Do not specify an RTC here unless it stays powered
+ during all this system's supported sleep states.
+
+config RTC_SYSTOHC
+ bool "Set the RTC time based on NTP synchronization"
+ default y
+ help
+ If you say yes here, the system time (wall clock) will be stored
+ in the RTC specified by RTC_HCTOSYS_DEVICE approximately every 11
+ minutes if userspace reports synchronized NTP status.
+
+config RTC_SYSTOHC_DEVICE
+ string "RTC used to synchronize NTP adjustment"
+ depends on RTC_SYSTOHC
+ default RTC_HCTOSYS_DEVICE if RTC_HCTOSYS
+ default "rtc0"
+ help
+ The RTC device used for NTP synchronization. The main difference
+ between RTC_HCTOSYS_DEVICE and RTC_SYSTOHC_DEVICE is that this
+ one can sleep when setting time, because it runs in the workqueue
+ context.
+
+config RTC_DEBUG
+ bool "RTC debug support"
+ help
+ Say yes here to enable debugging support in the RTC framework
+ and individual RTC drivers.
+
+config RTC_LIB_KUNIT_TEST
+ tristate "KUnit test for RTC lib functions" if !KUNIT_ALL_TESTS
+ depends on KUNIT
+ default KUNIT_ALL_TESTS
+ help
+ Enable this option to test RTC library functions.
+
+ If unsure, say N.
+
+config RTC_NVMEM
+ bool "RTC non volatile storage support"
+ select NVMEM
+ default RTC_CLASS
+ help
+ Say yes here to add support for the non volatile (often battery
+ backed) storage present on RTCs.
+
+comment "RTC interfaces"
+
+config RTC_INTF_SYSFS
+ bool "/sys/class/rtc/rtcN (sysfs)"
+ depends on SYSFS
+ default RTC_CLASS
+ help
+ Say yes here if you want to use your RTCs using sysfs interfaces,
+ /sys/class/rtc/rtc0 through /sys/.../rtcN.
+
+ If unsure, say Y.
+
+config RTC_INTF_PROC
+ bool "/proc/driver/rtc (procfs for rtcN)"
+ depends on PROC_FS
+ default RTC_CLASS
+ help
+ Say yes here if you want to use your system clock RTC through
+ the proc interface, /proc/driver/rtc.
+ Other RTCs will not be available through that API.
+ If there is no RTC for the system clock, then the first RTC(rtc0)
+ is used by default.
+
+ If unsure, say Y.
+
+config RTC_INTF_DEV
+ bool "/dev/rtcN (character devices)"
+ default RTC_CLASS
+ help
+ Say yes here if you want to use your RTCs using the /dev
+ interfaces, which "udev" sets up as /dev/rtc0 through
+ /dev/rtcN.
+
+ You may want to set up a symbolic link so one of these
+ can be accessed as /dev/rtc, which is a name
+ expected by "hwclock" and some other programs. Recent
+ versions of "udev" are known to set up the symlink for you.
+
+ If unsure, say Y.
+
+config RTC_INTF_DEV_UIE_EMUL
+ bool "RTC UIE emulation on dev interface"
+ depends on RTC_INTF_DEV
+ help
+ Provides an emulation for RTC_UIE if the underlying rtc chip
+ driver does not expose RTC_UIE ioctls. Those requests generate
+ once-per-second update interrupts, used for synchronization.
+
+ The emulation code will read the time from the hardware
+ clock several times per second, please enable this option
+ only if you know that you really need it.
+
+config RTC_DRV_TEST
+ tristate "Test driver/device"
+ help
+ If you say yes here you get support for the
+ RTC test driver. It's a software RTC which can be
+ used to test the RTC subsystem APIs. It gets
+ the time from the system clock.
+ You want this driver only if you are doing development
+ on the RTC subsystem. Please read the source code
+ for further details.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-test.
+
+comment "I2C RTC drivers"
+
+if I2C
+
+config RTC_DRV_88PM860X
+ tristate "Marvell 88PM860x"
+ depends on MFD_88PM860X
+ help
+ If you say yes here you get support for RTC function in Marvell
+ 88PM860x chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-88pm860x.
+
+config RTC_DRV_88PM80X
+ tristate "Marvell 88PM80x"
+ depends on MFD_88PM800
+ help
+ If you say yes here you get support for RTC function in Marvell
+ 88PM80x chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-88pm80x.
+
+config RTC_DRV_ABB5ZES3
+ select REGMAP_I2C
+ tristate "Abracon AB-RTCMC-32.768kHz-B5ZE-S3"
+ help
+ If you say yes here you get support for the Abracon
+ AB-RTCMC-32.768kHz-B5ZE-S3 I2C RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ab-b5ze-s3.
+
+config RTC_DRV_ABEOZ9
+ select REGMAP_I2C
+ tristate "Abracon AB-RTCMC-32.768kHz-EOZ9"
+ help
+ If you say yes here you get support for the Abracon
+ AB-RTCMC-32.768kHz-EOA9 I2C RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ab-e0z9.
+
+config RTC_DRV_ABX80X
+ tristate "Abracon ABx80x"
+ select WATCHDOG_CORE if WATCHDOG
+ help
+ If you say yes here you get support for Abracon AB080X and AB180X
+ families of ultra-low-power battery- and capacitor-backed real-time
+ clock chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-abx80x.
+
+config RTC_DRV_AC100
+ tristate "X-Powers AC100"
+ depends on MFD_AC100
+ help
+ If you say yes here you get support for the real-time clock found
+ in X-Powers AC100 family peripheral ICs.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ac100.
+
+config RTC_DRV_BRCMSTB
+ tristate "Broadcom STB wake-timer"
+ depends on ARCH_BRCMSTB || BMIPS_GENERIC || COMPILE_TEST
+ default ARCH_BRCMSTB || BMIPS_GENERIC
+ help
+ If you say yes here you get support for the wake-timer found on
+ Broadcom STB SoCs (BCM7xxx).
+
+ This driver can also be built as a module. If so, the module will
+ be called rtc-brcmstb-waketimer.
+
+config RTC_DRV_AS3722
+ tristate "ams AS3722 RTC driver"
+ depends on MFD_AS3722
+ help
+ If you say yes here you get support for the RTC of ams AS3722 PMIC
+ chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-as3722.
+
+config RTC_DRV_DS1307
+ tristate "Dallas/Maxim DS1307/37/38/39/40/41, ST M41T00, EPSON RX-8025, ISL12057"
+ select REGMAP_I2C
+ select WATCHDOG_CORE if WATCHDOG
+ help
+ If you say yes here you get support for various compatible RTC
+ chips (often with battery backup) connected with I2C. This driver
+ should handle DS1307, DS1337, DS1338, DS1339, DS1340, DS1341,
+ ST M41T00, EPSON RX-8025, Intersil ISL12057 and probably other chips.
+ In some cases the RTC must already have been initialized (by
+ manufacturing or a bootloader).
+
+ The first seven registers on these chips hold an RTC, and other
+ registers may add features such as NVRAM, a trickle charger for
+ the RTC/NVRAM backup power, and alarms. NVRAM is visible in
+ sysfs, but other chip features may not be available.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1307.
+
+config RTC_DRV_DS1307_CENTURY
+ bool "Century bit support for rtc-ds1307"
+ depends on RTC_DRV_DS1307
+ default n
+ help
+ The DS1307 driver suffered from a bug where it was enabling the
+ century bit inconditionnally but never used it when reading the time.
+ It made the driver unable to support dates beyond 2099.
+ Setting this option will add proper support for the century bit but if
+ the time was previously set using a kernel predating this option,
+ reading the date will return a date in the next century.
+ To solve that, you could boot a kernel without this option set, set
+ the RTC date and then boot a kernel with this option set.
+
+config RTC_DRV_DS1374
+ tristate "Dallas/Maxim DS1374"
+ help
+ If you say yes here you get support for Dallas Semiconductor
+ DS1374 real-time clock chips. If an interrupt is associated
+ with the device, the alarm functionality is supported.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1374.
+
+config RTC_DRV_DS1374_WDT
+ bool "Dallas/Maxim DS1374 watchdog timer"
+ depends on RTC_DRV_DS1374 && WATCHDOG
+ select WATCHDOG_CORE
+ help
+ If you say Y here you will get support for the
+ watchdog timer in the Dallas Semiconductor DS1374
+ real-time clock chips.
+
+config RTC_DRV_DS1672
+ tristate "Dallas/Maxim DS1672"
+ help
+ If you say yes here you get support for the
+ Dallas/Maxim DS1672 timekeeping chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1672.
+
+config RTC_DRV_HYM8563
+ tristate "Haoyu Microelectronics HYM8563"
+ depends on OF
+ help
+ Say Y to enable support for the HYM8563 I2C RTC chip. Apart
+ from the usual rtc functions it provides a clock output of
+ up to 32kHz.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-hym8563.
+
+config RTC_DRV_LP8788
+ tristate "TI LP8788 RTC driver"
+ depends on MFD_LP8788
+ help
+ Say Y to enable support for the LP8788 RTC/ALARM driver.
+
+config RTC_DRV_MAX6900
+ tristate "Maxim MAX6900"
+ help
+ If you say yes here you will get support for the
+ Maxim MAX6900 I2C RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max6900.
+
+config RTC_DRV_MAX8907
+ tristate "Maxim MAX8907"
+ depends on MFD_MAX8907 || COMPILE_TEST
+ select REGMAP_IRQ
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX8907 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max8907.
+
+config RTC_DRV_MAX8925
+ tristate "Maxim MAX8925"
+ depends on MFD_MAX8925
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX8925 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max8925.
+
+config RTC_DRV_MAX8998
+ tristate "Maxim MAX8998"
+ depends on MFD_MAX8998
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX8998 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max8998.
+
+config RTC_DRV_MAX8997
+ tristate "Maxim MAX8997"
+ depends on MFD_MAX8997
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX8997 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max8997.
+
+config RTC_DRV_MAX77686
+ tristate "Maxim MAX77686"
+ depends on MFD_MAX77686 || MFD_MAX77620 || MFD_MAX77714 || COMPILE_TEST
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX77686/MAX77620/MAX77802 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max77686.
+
+config RTC_DRV_NCT3018Y
+ tristate "Nuvoton NCT3018Y"
+ depends on OF
+ help
+ If you say yes here you get support for the Nuvoton NCT3018Y I2C RTC
+ chip.
+
+ This driver can also be built as a module, if so, the module will be
+ called "rtc-nct3018y".
+
+config RTC_DRV_RK808
+ tristate "Rockchip RK805/RK808/RK809/RK817/RK818 RTC"
+ depends on MFD_RK808
+ help
+ If you say yes here you will get support for the
+ RTC of RK805, RK809 and RK817, RK808 and RK818 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rk808-rtc.
+
+config RTC_DRV_RS5C372
+ tristate "Ricoh R2025S/D, RS5C372A/B, RV5C386, RV5C387A"
+ help
+ If you say yes here you get support for the
+ Ricoh R2025S/D, RS5C372A, RS5C372B, RV5C386, and RV5C387A RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rs5c372.
+
+config RTC_DRV_ISL1208
+ tristate "Intersil ISL1208"
+ help
+ If you say yes here you get support for the
+ Intersil ISL1208 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-isl1208.
+
+config RTC_DRV_ISL12022
+ tristate "Intersil ISL12022"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the
+ Intersil ISL12022 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-isl12022.
+
+config RTC_DRV_ISL12026
+ tristate "Intersil ISL12026"
+ depends on OF || COMPILE_TEST
+ help
+ If you say yes here you get support for the
+ Intersil ISL12026 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-isl12026.
+
+config RTC_DRV_X1205
+ tristate "Xicor/Intersil X1205"
+ help
+ If you say yes here you get support for the
+ Xicor/Intersil X1205 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-x1205.
+
+config RTC_DRV_PCF8523
+ tristate "NXP PCF8523"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the NXP PCF8523 RTC
+ chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf8523.
+
+config RTC_DRV_PCF85063
+ tristate "NXP PCF85063"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the PCF85063 RTC chip
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf85063.
+
+config RTC_DRV_PCF85363
+ tristate "NXP PCF85363"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the PCF85363 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf85363.
+
+ The nvmem interface will be named pcf85363-#, where # is the
+ zero-based instance number.
+
+config RTC_DRV_PCF8563
+ tristate "Philips PCF8563/Epson RTC8564"
+ help
+ If you say yes here you get support for the
+ Philips PCF8563 RTC chip. The Epson RTC8564
+ should work as well.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf8563.
+
+config RTC_DRV_PCF8583
+ tristate "Philips PCF8583"
+ help
+ If you say yes here you get support for the Philips PCF8583
+ RTC chip found on Acorn RiscPCs. This driver supports the
+ platform specific method of retrieving the current year from
+ the RTC's SRAM. It will work on other platforms with the same
+ chip, but the year will probably have to be tweaked.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf8583.
+
+config RTC_DRV_M41T80
+ tristate "ST M41T62/65/M41T80/81/82/83/84/85/87 and compatible"
+ help
+ If you say Y here you will get support for the ST M41T60
+ and M41T80 RTC chips series. Currently, the following chips are
+ supported: M41T62, M41T65, M41T80, M41T81, M41T82, M41T83, M41ST84,
+ M41ST85, M41ST87, and MicroCrystal RV4162.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-m41t80.
+
+config RTC_DRV_M41T80_WDT
+ bool "ST M41T65/M41T80 series RTC watchdog timer"
+ depends on RTC_DRV_M41T80
+ help
+ If you say Y here you will get support for the
+ watchdog timer in the ST M41T60 and M41T80 RTC chips series.
+
+config RTC_DRV_BD70528
+ tristate "ROHM BD71815 and BD71828 PMIC RTC"
+ depends on MFD_ROHM_BD71828
+ help
+ If you say Y here you will get support for the RTC
+ block on ROHM BD71815 and BD71828 Power Management IC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-bd70528.
+
+config RTC_DRV_BQ32K
+ tristate "TI BQ32000"
+ help
+ If you say Y here you will get support for the TI
+ BQ32000 I2C RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-bq32k.
+
+config RTC_DRV_DM355EVM
+ tristate "TI DaVinci DM355 EVM RTC"
+ depends on MFD_DM355EVM_MSP
+ help
+ Supports the RTC firmware in the MSP430 on the DM355 EVM.
+
+config RTC_DRV_TWL92330
+ bool "TI TWL92330/Menelaus"
+ depends on MENELAUS
+ help
+ If you say yes here you get support for the RTC on the
+ TWL92330 "Menelaus" power management chip, used with OMAP2
+ platforms. The support is integrated with the rest of
+ the Menelaus driver; it's not separate module.
+
+config RTC_DRV_TWL4030
+ tristate "TI TWL4030/TWL5030/TWL6030/TPS659x0"
+ depends on TWL4030_CORE
+ depends on OF
+ help
+ If you say yes here you get support for the RTC on the
+ TWL4030/TWL5030/TWL6030 family chips, used mostly with OMAP3 platforms.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-twl.
+
+config RTC_DRV_PALMAS
+ tristate "TI Palmas RTC driver"
+ depends on MFD_PALMAS
+ help
+ If you say yes here you get support for the RTC of TI PALMA series PMIC
+ chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-palma.
+
+config RTC_DRV_TPS6586X
+ tristate "TI TPS6586X RTC driver"
+ depends on MFD_TPS6586X
+ help
+ TI Power Management IC TPS6586X supports RTC functionality
+ along with alarm. This driver supports the RTC driver for
+ the TPS6586X RTC module.
+
+config RTC_DRV_TPS65910
+ tristate "TI TPS65910 RTC driver"
+ depends on MFD_TPS65910
+ help
+ If you say yes here you get support for the RTC on the
+ TPS65910 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-tps65910.
+
+config RTC_DRV_RC5T583
+ tristate "RICOH 5T583 RTC driver"
+ depends on MFD_RC5T583
+ help
+ If you say yes here you get support for the RTC on the
+ RICOH 5T583 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rc5t583.
+
+config RTC_DRV_RC5T619
+ tristate "RICOH RC5T619 RTC driver"
+ depends on MFD_RN5T618
+ help
+ If you say yes here you get support for the RTC on the
+ RICOH RC5T619 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rc5t619.
+
+config RTC_DRV_S35390A
+ tristate "Seiko Instruments S-35390A"
+ select BITREVERSE
+ help
+ If you say yes here you will get support for the Seiko
+ Instruments S-35390A.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-s35390a.
+
+config RTC_DRV_FM3130
+ tristate "Ramtron FM3130"
+ help
+ If you say Y here you will get support for the
+ Ramtron FM3130 RTC chips.
+ Ramtron FM3130 is a chip with two separate devices inside,
+ RTC clock and FRAM. This driver provides only RTC functionality.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-fm3130.
+
+config RTC_DRV_RX8010
+ tristate "Epson RX8010SJ"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the Epson RX8010SJ RTC
+ chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rx8010.
+
+config RTC_DRV_RX8581
+ tristate "Epson RX-8571/RX-8581"
+ select REGMAP_I2C
+ help
+ If you say yes here you will get support for the Epson RX-8571/
+ RX-8581.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-rx8581.
+
+config RTC_DRV_RX8025
+ tristate "Epson RX-8025SA/NB"
+ help
+ If you say yes here you get support for the Epson
+ RX-8025SA/NB RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rx8025.
+
+config RTC_DRV_EM3027
+ tristate "EM Microelectronic EM3027"
+ help
+ If you say yes here you get support for the EM
+ Microelectronic EM3027 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-em3027.
+
+config RTC_DRV_RV3028
+ tristate "Micro Crystal RV3028"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the Micro Crystal
+ RV3028.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rv3028.
+
+config RTC_DRV_RV3032
+ tristate "Micro Crystal RV3032"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the Micro Crystal
+ RV3032.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rv3032.
+
+config RTC_DRV_RV8803
+ tristate "Micro Crystal RV8803, Epson RX8900"
+ help
+ If you say yes here you get support for the Micro Crystal RV8803 and
+ Epson RX8900 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rv8803.
+
+config RTC_DRV_S5M
+ tristate "Samsung S2M/S5M series"
+ depends on MFD_SEC_CORE || COMPILE_TEST
+ select REGMAP_IRQ
+ select REGMAP_I2C
+ help
+ If you say yes here you will get support for the
+ RTC of Samsung S2MPS14 and S5M PMIC series.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-s5m.
+
+config RTC_DRV_SD3078
+ tristate "ZXW Shenzhen whwave SD3078"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the ZXW Shenzhen whwave
+ SD3078 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-sd3078
+
+endif # I2C
+
+comment "SPI RTC drivers"
+
+if SPI_MASTER
+
+config RTC_DRV_M41T93
+ tristate "ST M41T93"
+ help
+ If you say yes here you will get support for the
+ ST M41T93 SPI RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-m41t93.
+
+config RTC_DRV_M41T94
+ tristate "ST M41T94"
+ help
+ If you say yes here you will get support for the
+ ST M41T94 SPI RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-m41t94.
+
+config RTC_DRV_DS1302
+ tristate "Dallas/Maxim DS1302"
+ depends on SPI
+ help
+ If you say yes here you get support for the Dallas DS1302 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1302.
+
+config RTC_DRV_DS1305
+ tristate "Dallas/Maxim DS1305/DS1306"
+ help
+ Select this driver to get support for the Dallas/Maxim DS1305
+ and DS1306 real time clock chips. These support a trickle
+ charger, alarms, and NVRAM in addition to the clock.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1305.
+
+config RTC_DRV_DS1343
+ select REGMAP_SPI
+ tristate "Dallas/Maxim DS1343/DS1344"
+ help
+ If you say yes here you get support for the
+ Dallas/Maxim DS1343 and DS1344 real time clock chips.
+ Support for trickle charger, alarm is provided.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1343.
+
+config RTC_DRV_DS1347
+ select REGMAP_SPI
+ tristate "Dallas/Maxim DS1347"
+ help
+ If you say yes here you get support for the
+ Dallas/Maxim DS1347 chips.
+
+ This driver only supports the RTC feature, and not other chip
+ features such as alarms.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1347.
+
+config RTC_DRV_DS1390
+ tristate "Dallas/Maxim DS1390/93/94"
+ help
+ If you say yes here you get support for the
+ Dallas/Maxim DS1390/93/94 chips.
+
+ This driver supports the RTC feature and trickle charging but not
+ other chip features such as alarms.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1390.
+
+config RTC_DRV_MAX6916
+ tristate "Maxim MAX6916"
+ help
+ If you say yes here you will get support for the
+ Maxim MAX6916 SPI RTC chip.
+
+ This driver only supports the RTC feature, and not other chip
+ features such as alarms.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max6916.
+
+config RTC_DRV_R9701
+ tristate "Epson RTC-9701JE"
+ help
+ If you say yes here you will get support for the
+ Epson RTC-9701JE SPI RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-r9701.
+
+config RTC_DRV_RX4581
+ tristate "Epson RX-4581"
+ help
+ If you say yes here you will get support for the Epson RX-4581.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-rx4581.
+
+config RTC_DRV_RS5C348
+ tristate "Ricoh RS5C348A/B"
+ help
+ If you say yes here you get support for the
+ Ricoh RS5C348A and RS5C348B RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rs5c348.
+
+config RTC_DRV_MAX6902
+ tristate "Maxim MAX6902"
+ help
+ If you say yes here you will get support for the
+ Maxim MAX6902 SPI RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max6902.
+
+config RTC_DRV_PCF2123
+ tristate "NXP PCF2123"
+ select REGMAP_SPI
+ help
+ If you say yes here you get support for the NXP PCF2123
+ RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf2123.
+
+config RTC_DRV_MCP795
+ tristate "Microchip MCP795"
+ help
+ If you say yes here you will get support for the Microchip MCP795.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-mcp795.
+
+endif # SPI_MASTER
+
+#
+# Helper to resolve issues with configs that have SPI enabled but I2C
+# modular. See SND_SOC_I2C_AND_SPI for more information
+#
+config RTC_I2C_AND_SPI
+ tristate
+ default m if I2C=m
+ default y if I2C=y
+ default y if SPI_MASTER=y
+
+comment "SPI and I2C RTC drivers"
+
+config RTC_DRV_DS3232
+ tristate "Dallas/Maxim DS3232/DS3234"
+ depends on RTC_I2C_AND_SPI
+ select REGMAP_I2C if I2C
+ select REGMAP_SPI if SPI_MASTER
+ help
+ If you say yes here you get support for Dallas Semiconductor
+ DS3232 and DS3234 real-time clock chips. If an interrupt is associated
+ with the device, the alarm functionality is supported.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds3232.
+
+config RTC_DRV_DS3232_HWMON
+ bool "HWMON support for Dallas/Maxim DS3232/DS3234"
+ depends on RTC_DRV_DS3232 && HWMON && !(RTC_DRV_DS3232=y && HWMON=m)
+ default y
+ help
+ Say Y here if you want to expose temperature sensor data on
+ rtc-ds3232
+
+config RTC_DRV_PCF2127
+ tristate "NXP PCF2127"
+ depends on RTC_I2C_AND_SPI
+ select REGMAP_I2C if I2C
+ select REGMAP_SPI if SPI_MASTER
+ select WATCHDOG_CORE if WATCHDOG
+ help
+ If you say yes here you get support for the NXP PCF2127/29 RTC
+ chips with integrated quartz crystal for industrial applications.
+ Both chips also have watchdog timer and tamper switch detection
+ features.
+
+ PCF2127 has an additional feature of 512 bytes battery backed
+ memory that's accessible using nvmem interface.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf2127.
+
+config RTC_DRV_RV3029C2
+ tristate "Micro Crystal RV3029/3049"
+ depends on RTC_I2C_AND_SPI
+ select REGMAP_I2C if I2C
+ select REGMAP_SPI if SPI_MASTER
+ help
+ If you say yes here you get support for the Micro Crystal
+ RV3029 and RV3049 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rv3029c2.
+
+config RTC_DRV_RV3029_HWMON
+ bool "HWMON support for RV3029/3049"
+ depends on RTC_DRV_RV3029C2 && HWMON
+ depends on !(RTC_DRV_RV3029C2=y && HWMON=m)
+ default y
+ help
+ Say Y here if you want to expose temperature sensor data on
+ rtc-rv3029.
+
+config RTC_DRV_RX6110
+ tristate "Epson RX-6110"
+ depends on RTC_I2C_AND_SPI
+ select REGMAP_SPI if SPI_MASTER
+ select REGMAP_I2C if I2C
+ help
+ If you say yes here you will get support for the Epson RX-6110.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-rx6110.
+
+comment "Platform RTC drivers"
+
+# this 'CMOS' RTC driver is arch dependent because it requires
+# <asm/mc146818rtc.h> defining CMOS_READ/CMOS_WRITE, and a
+# global rtc_lock ... it's not yet just another platform_device.
+
+config RTC_DRV_CMOS
+ tristate "PC-style 'CMOS'"
+ depends on X86 || ARM || PPC || MIPS || SPARC64
+ default y if X86
+ select RTC_MC146818_LIB
+ help
+ Say "yes" here to get direct support for the real time clock
+ found in every PC or ACPI-based system, and some other boards.
+ Specifically the original MC146818, compatibles like those in
+ PC south bridges, the DS12887 or M48T86, some multifunction
+ or LPC bus chips, and so on.
+
+ Your system will need to define the platform device used by
+ this driver, otherwise it won't be accessible. This means
+ you can safely enable this driver if you don't know whether
+ or not your board has this kind of hardware.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-cmos.
+
+config RTC_DRV_ALPHA
+ bool "Alpha PC-style CMOS"
+ depends on ALPHA
+ select RTC_MC146818_LIB
+ default y
+ help
+ Direct support for the real-time clock found on every Alpha
+ system, specifically MC146818 compatibles. If in doubt, say Y.
+
+config RTC_DRV_DS1216
+ tristate "Dallas DS1216"
+ depends on SNI_RM
+ help
+ If you say yes here you get support for the Dallas DS1216 RTC chips.
+
+config RTC_DRV_DS1286
+ tristate "Dallas DS1286"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the Dallas DS1286 RTC chips.
+
+config RTC_DRV_DS1511
+ tristate "Dallas DS1511"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the
+ Dallas DS1511 timekeeping/watchdog chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1511.
+
+config RTC_DRV_DS1553
+ tristate "Maxim/Dallas DS1553"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the
+ Maxim/Dallas DS1553 timekeeping chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1553.
+
+config RTC_DRV_DS1685_FAMILY
+ tristate "Dallas/Maxim DS1685 Family"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the Dallas/Maxim DS1685
+ family of real time chips. This family includes the DS1685/DS1687,
+ DS1689/DS1693, DS17285/DS17287, DS17485/DS17487, and
+ DS17885/DS17887 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1685.
+
+choice
+ prompt "Subtype"
+ depends on RTC_DRV_DS1685_FAMILY
+ default RTC_DRV_DS1685
+
+config RTC_DRV_DS1685
+ bool "DS1685/DS1687"
+ help
+ This enables support for the Dallas/Maxim DS1685/DS1687 real time
+ clock chip.
+
+ This chip is commonly found in SGI O2 (IP32) and SGI Octane (IP30)
+ systems, as well as EPPC-405-UC modules by electronic system design
+ GmbH.
+
+config RTC_DRV_DS1689
+ bool "DS1689/DS1693"
+ help
+ This enables support for the Dallas/Maxim DS1689/DS1693 real time
+ clock chip.
+
+ This is an older RTC chip, supplanted by the DS1685/DS1687 above,
+ which supports a few minor features such as Vcc, Vbat, and Power
+ Cycle counters, plus a customer-specific, 8-byte ROM/Serial number.
+
+ It also works for the even older DS1688/DS1691 RTC chips, which are
+ virtually the same and carry the same model number. Both chips
+ have 114 bytes of user NVRAM.
+
+config RTC_DRV_DS17285
+ bool "DS17285/DS17287"
+ help
+ This enables support for the Dallas/Maxim DS17285/DS17287 real time
+ clock chip.
+
+ This chip features 2kb of extended NV-SRAM. It may possibly be
+ found in some SGI O2 systems (rare).
+
+config RTC_DRV_DS17485
+ bool "DS17485/DS17487"
+ help
+ This enables support for the Dallas/Maxim DS17485/DS17487 real time
+ clock chip.
+
+ This chip features 4kb of extended NV-SRAM.
+
+config RTC_DRV_DS17885
+ bool "DS17885/DS17887"
+ help
+ This enables support for the Dallas/Maxim DS17885/DS17887 real time
+ clock chip.
+
+ This chip features 8kb of extended NV-SRAM.
+
+endchoice
+
+config RTC_DRV_DS1742
+ tristate "Maxim/Dallas DS1742/1743"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the
+ Maxim/Dallas DS1742/1743 timekeeping chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1742.
+
+config RTC_DRV_DS2404
+ tristate "Maxim/Dallas DS2404"
+ help
+ If you say yes here you get support for the
+ Dallas DS2404 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds2404.
+
+config RTC_DRV_DA9052
+ tristate "Dialog DA9052/DA9053 RTC"
+ depends on PMIC_DA9052
+ help
+ Say y here to support the RTC driver for Dialog Semiconductor
+ DA9052-BC and DA9053-AA/Bx PMICs.
+
+config RTC_DRV_DA9055
+ tristate "Dialog Semiconductor DA9055 RTC"
+ depends on MFD_DA9055
+ help
+ If you say yes here you will get support for the
+ RTC of the Dialog DA9055 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-da9055
+
+config RTC_DRV_DA9063
+ tristate "Dialog Semiconductor DA9063/DA9062 RTC"
+ depends on MFD_DA9063 || MFD_DA9062
+ help
+ If you say yes here you will get support for the RTC subsystem
+ for the Dialog Semiconductor PMIC chips DA9063 and DA9062.
+
+ This driver can also be built as a module. If so, the module
+ will be called "rtc-da9063".
+
+config RTC_DRV_EFI
+ tristate "EFI RTC"
+ depends on EFI && !X86
+ help
+ If you say yes here you will get support for the EFI
+ Real Time Clock.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-efi.
+
+config RTC_DRV_STK17TA8
+ tristate "Simtek STK17TA8"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the
+ Simtek STK17TA8 timekeeping chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-stk17ta8.
+
+config RTC_DRV_M48T86
+ tristate "ST M48T86/Dallas DS12887"
+ depends on HAS_IOMEM
+ help
+ If you say Y here you will get support for the
+ ST M48T86 and Dallas DS12887 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-m48t86.
+
+config RTC_DRV_M48T35
+ tristate "ST M48T35"
+ depends on HAS_IOMEM
+ help
+ If you say Y here you will get support for the
+ ST M48T35 RTC chip.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-m48t35".
+
+config RTC_DRV_M48T59
+ tristate "ST M48T59/M48T08/M48T02"
+ depends on HAS_IOMEM
+ help
+ If you say Y here you will get support for the
+ ST M48T59 RTC chip and compatible ST M48T08 and M48T02.
+
+ These chips are usually found in Sun SPARC and UltraSPARC
+ workstations.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-m48t59".
+
+config RTC_DRV_MSM6242
+ tristate "Oki MSM6242"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the Oki MSM6242
+ timekeeping chip. It is used in some Amiga models (e.g. A2000).
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-msm6242.
+
+config RTC_DRV_BQ4802
+ tristate "TI BQ4802"
+ depends on HAS_IOMEM
+ help
+ If you say Y here you will get support for the TI
+ BQ4802 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-bq4802.
+
+config RTC_DRV_RP5C01
+ tristate "Ricoh RP5C01"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the Ricoh RP5C01
+ timekeeping chip. It is used in some Amiga models (e.g. A3000
+ and A4000).
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rp5c01.
+
+config RTC_DRV_V3020
+ tristate "EM Microelectronic V3020"
+ help
+ If you say yes here you will get support for the
+ EM Microelectronic v3020 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-v3020.
+
+config RTC_DRV_GAMECUBE
+ tristate "Nintendo GameCube, Wii and Wii U RTC"
+ depends on GAMECUBE || WII || COMPILE_TEST
+ select REGMAP
+ help
+ If you say yes here you will get support for the RTC subsystem
+ of the Nintendo GameCube, Wii and Wii U.
+
+ This driver can also be built as a module. If so, the module
+ will be called "rtc-gamecube".
+
+config RTC_DRV_WM831X
+ tristate "Wolfson Microelectronics WM831x RTC"
+ depends on MFD_WM831X
+ help
+ If you say yes here you will get support for the RTC subsystem
+ of the Wolfson Microelectronics WM831X series PMICs.
+
+ This driver can also be built as a module. If so, the module
+ will be called "rtc-wm831x".
+
+config RTC_DRV_WM8350
+ tristate "Wolfson Microelectronics WM8350 RTC"
+ depends on MFD_WM8350
+ help
+ If you say yes here you will get support for the RTC subsystem
+ of the Wolfson Microelectronics WM8350.
+
+ This driver can also be built as a module. If so, the module
+ will be called "rtc-wm8350".
+
+config RTC_DRV_SC27XX
+ tristate "Spreadtrum SC27xx RTC"
+ depends on MFD_SC27XX_PMIC || COMPILE_TEST
+ help
+ If you say Y here you will get support for the RTC subsystem
+ of the Spreadtrum SC27xx series PMICs. The SC27xx series PMICs
+ includes the SC2720, SC2721, SC2723, SC2730 and SC2731 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-sc27xx.
+
+config RTC_DRV_SPEAR
+ tristate "SPEAR ST RTC"
+ depends on PLAT_SPEAR || COMPILE_TEST
+ default y
+ help
+ If you say Y here you will get support for the RTC found on
+ spear
+
+config RTC_DRV_PCF50633
+ depends on MFD_PCF50633
+ tristate "NXP PCF50633 RTC"
+ help
+ If you say yes here you get support for the RTC subsystem of the
+ NXP PCF50633 used in embedded systems.
+
+config RTC_DRV_AB8500
+ tristate "ST-Ericsson AB8500 RTC"
+ depends on AB8500_CORE
+ select RTC_INTF_DEV
+ select RTC_INTF_DEV_UIE_EMUL
+ help
+ Select this to enable the ST-Ericsson AB8500 power management IC RTC
+ support. This chip contains a battery- and capacitor-backed RTC.
+
+config RTC_DRV_OPAL
+ tristate "IBM OPAL RTC driver"
+ depends on PPC_POWERNV
+ default y
+ help
+ If you say yes here you get support for the PowerNV platform RTC
+ driver based on OPAL interfaces.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-opal.
+
+config RTC_DRV_OPTEE
+ tristate "OP-TEE based RTC driver"
+ depends on OPTEE
+ help
+ Select this to get support for OP-TEE based RTC control on SoCs where
+ RTC are not accessible to the normal world (Linux).
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-optee.
+
+config RTC_DRV_ZYNQMP
+ tristate "Xilinx Zynq Ultrascale+ MPSoC RTC"
+ depends on OF && HAS_IOMEM
+ help
+ If you say yes here you get support for the RTC controller found on
+ Xilinx Zynq Ultrascale+ MPSoC.
+
+config RTC_DRV_CROS_EC
+ tristate "Chrome OS EC RTC driver"
+ depends on CROS_EC
+ help
+ If you say yes here you will get support for the
+ Chrome OS Embedded Controller's RTC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-cros-ec.
+
+config RTC_DRV_NTXEC
+ tristate "Netronix embedded controller RTC"
+ depends on MFD_NTXEC
+ help
+ Say yes here if you want to support the RTC functionality of the
+ embedded controller found in certain e-book readers designed by the
+ original design manufacturer Netronix.
+
+comment "on-CPU RTC drivers"
+
+config RTC_DRV_ASM9260
+ tristate "Alphascale asm9260 RTC"
+ depends on MACH_ASM9260 || COMPILE_TEST
+ help
+ If you say yes here you get support for the RTC on the
+ Alphascale asm9260 SoC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-asm9260.
+
+config RTC_DRV_DAVINCI
+ tristate "TI DaVinci RTC"
+ depends on ARCH_DAVINCI_DM365 || COMPILE_TEST
+ help
+ If you say yes here you get support for the RTC on the
+ DaVinci platforms (DM365).
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-davinci.
+
+config RTC_DRV_DIGICOLOR
+ tristate "Conexant Digicolor RTC"
+ depends on ARCH_DIGICOLOR || COMPILE_TEST
+ help
+ If you say yes here you get support for the RTC on Conexant
+ Digicolor platforms. This currently includes the CX92755 SoC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-digicolor.
+
+config RTC_DRV_IMXDI
+ tristate "Freescale IMX DryIce Real Time Clock"
+ depends on ARCH_MXC
+ depends on OF
+ help
+ Support for Freescale IMX DryIce RTC
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-imxdi".
+
+config RTC_DRV_FSL_FTM_ALARM
+ tristate "Freescale FlexTimer alarm timer"
+ depends on ARCH_LAYERSCAPE || SOC_LS1021A || COMPILE_TEST
+ help
+ For the FlexTimer in LS1012A, LS1021A, LS1028A, LS1043A, LS1046A,
+ LS1088A, LS208xA, we can use FTM as the wakeup source.
+
+ Say y here to enable FTM alarm support. The FTM alarm provides
+ alarm functions for wakeup system from deep sleep.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-fsl-ftm-alarm".
+
+config RTC_DRV_MESON
+ tristate "Amlogic Meson RTC"
+ depends on (ARM && ARCH_MESON) || COMPILE_TEST
+ select REGMAP_MMIO
+ help
+ Support for the RTC block on the Amlogic Meson6, Meson8, Meson8b
+ and Meson8m2 SoCs.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-meson".
+
+config RTC_DRV_MESON_VRTC
+ tristate "Amlogic Meson Virtual RTC"
+ depends on ARCH_MESON || COMPILE_TEST
+ default m if ARCH_MESON
+ help
+ If you say yes here you will get support for the
+ Virtual RTC of Amlogic SoCs.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-meson-vrtc.
+
+config RTC_DRV_OMAP
+ tristate "TI OMAP Real Time Clock"
+ depends on ARCH_OMAP || ARCH_DAVINCI || COMPILE_TEST
+ depends on OF
+ depends on PINCTRL
+ select GENERIC_PINCONF
+ help
+ Say "yes" here to support the on chip real time clock
+ present on TI OMAP1, AM33xx, DA8xx/OMAP-L13x, AM43xx and DRA7xx.
+
+ This driver can also be built as a module, if so, module
+ will be called rtc-omap.
+
+config RTC_DRV_S3C
+ tristate "Samsung S3C series SoC RTC"
+ depends on ARCH_EXYNOS || ARCH_S3C64XX || ARCH_S3C24XX || ARCH_S5PV210 || \
+ COMPILE_TEST
+ help
+ RTC (Realtime Clock) driver for the clock inbuilt into the
+ Samsung S3C24XX series of SoCs. This can provide periodic
+ interrupt rates from 1Hz to 64Hz for user programs, and
+ wakeup from Alarm.
+
+ The driver currently supports the common features on all the
+ S3C24XX range, such as the S3C2410, S3C2412, S3C2413, S3C2440
+ and S3C2442.
+
+ This driver can also be build as a module. If so, the module
+ will be called rtc-s3c.
+
+config RTC_DRV_EP93XX
+ tristate "Cirrus Logic EP93XX"
+ depends on ARCH_EP93XX || COMPILE_TEST
+ help
+ If you say yes here you get support for the
+ RTC embedded in the Cirrus Logic EP93XX processors.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ep93xx.
+
+config RTC_DRV_SA1100
+ tristate "SA11x0/PXA2xx/PXA910"
+ depends on ARCH_SA1100 || ARCH_PXA || ARCH_MMP
+ help
+ If you say Y here you will get access to the real time clock
+ built into your SA11x0 or PXA2xx CPU.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-sa1100.
+
+config RTC_DRV_SH
+ tristate "SuperH On-Chip RTC"
+ depends on SUPERH || ARCH_RENESAS
+ help
+ Say Y here to enable support for the on-chip RTC found in
+ most SuperH processors. This RTC is also found in RZ/A SoCs.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-sh.
+
+config RTC_DRV_SUNPLUS
+ tristate "Sunplus SP7021 RTC"
+ depends on SOC_SP7021
+ help
+ Say 'yes' to get support for the real-time clock present in
+ Sunplus SP7021 - a SoC for industrial applications. It provides
+ RTC status check, timer/alarm functionalities, user data
+ reservation with the battery over 2.5V, RTC power status check
+ and battery charge.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-sunplus.
+
+config RTC_DRV_PL030
+ tristate "ARM AMBA PL030 RTC"
+ depends on ARM_AMBA
+ help
+ If you say Y here you will get access to ARM AMBA
+ PrimeCell PL030 RTC found on certain ARM SOCs.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-pl030.
+
+config RTC_DRV_PL031
+ tristate "ARM AMBA PL031 RTC"
+ depends on ARM_AMBA
+ help
+ If you say Y here you will get access to ARM AMBA
+ PrimeCell PL031 RTC found on certain ARM SOCs.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-pl031.
+
+config RTC_DRV_AT91RM9200
+ tristate "AT91RM9200 or some AT91SAM9 RTC"
+ depends on ARCH_AT91 || COMPILE_TEST
+ depends on OF
+ help
+ Driver for the internal RTC (Realtime Clock) module found on
+ Atmel AT91RM9200's and some AT91SAM9 chips. On AT91SAM9 chips
+ this is powered by the backup power supply.
+
+config RTC_DRV_AT91SAM9
+ tristate "AT91SAM9 RTT as RTC"
+ depends on ARCH_AT91 || COMPILE_TEST
+ depends on OF && HAS_IOMEM
+ select MFD_SYSCON
+ help
+ Some AT91SAM9 SoCs provide an RTT (Real Time Timer) block which
+ can be used as an RTC thanks to the backup power supply (e.g. a
+ small coin cell battery) which keeps this block and the GPBR
+ (General Purpose Backup Registers) block powered when the device
+ is shutdown.
+ Some AT91SAM9 SoCs provide a real RTC block, on those ones you'd
+ probably want to use the real RTC block instead of the "RTT as an
+ RTC" driver.
+
+config RTC_DRV_AU1XXX
+ tristate "Au1xxx Counter0 RTC support"
+ depends on MIPS_ALCHEMY
+ help
+ This is a driver for the Au1xxx on-chip Counter0 (Time-Of-Year
+ counter) to be used as a RTC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-au1xxx.
+
+config RTC_DRV_RS5C313
+ tristate "Ricoh RS5C313"
+ depends on SH_LANDISK
+ help
+ If you say yes here you get support for the Ricoh RS5C313 RTC chips.
+
+config RTC_DRV_RZN1
+ tristate "Renesas RZ/N1 RTC"
+ depends on ARCH_RZN1 || COMPILE_TEST
+ depends on OF && HAS_IOMEM
+ help
+ If you say yes here you get support for the Renesas RZ/N1 RTC.
+
+config RTC_DRV_GENERIC
+ tristate "Generic RTC support"
+ # Please consider writing a new RTC driver instead of using the generic
+ # RTC abstraction
+ depends on PARISC || M68K || PPC || SUPERH || COMPILE_TEST
+ help
+ Say Y or M here to enable RTC support on systems using the generic
+ RTC abstraction. If you do not know what you are doing, you should
+ just say Y.
+
+config RTC_DRV_PXA
+ tristate "PXA27x/PXA3xx"
+ depends on ARCH_PXA
+ select RTC_DRV_SA1100
+ help
+ If you say Y here you will get access to the real time clock
+ built into your PXA27x or PXA3xx CPU. This RTC is actually 2 RTCs
+ consisting of an SA1100 compatible RTC and the extended PXA RTC.
+
+ This RTC driver uses PXA RTC registers available since pxa27x
+ series (RDxR, RYxR) instead of legacy RCNR, RTAR.
+
+config RTC_DRV_VT8500
+ tristate "VIA/WonderMedia 85xx SoC RTC"
+ depends on ARCH_VT8500 || COMPILE_TEST
+ help
+ If you say Y here you will get access to the real time clock
+ built into your VIA VT8500 SoC or its relatives.
+
+
+config RTC_DRV_SUN4V
+ bool "SUN4V Hypervisor RTC"
+ depends on SPARC64
+ help
+ If you say Y here you will get support for the Hypervisor
+ based RTC on SUN4V systems.
+
+config RTC_DRV_SUN6I
+ bool "Allwinner A31 RTC"
+ default MACH_SUN6I || MACH_SUN8I
+ depends on COMMON_CLK
+ depends on ARCH_SUNXI || COMPILE_TEST
+ help
+ If you say Y here you will get support for the RTC found in
+ some Allwinner SoCs like the A31 or the A64.
+
+config RTC_DRV_SUNXI
+ tristate "Allwinner sun4i/sun7i RTC"
+ depends on MACH_SUN4I || MACH_SUN7I || COMPILE_TEST
+ help
+ If you say Y here you will get support for the RTC found on
+ Allwinner A10/A20.
+
+config RTC_DRV_STARFIRE
+ bool "Starfire RTC"
+ depends on SPARC64
+ help
+ If you say Y here you will get support for the RTC found on
+ Starfire systems.
+
+config RTC_DRV_MV
+ tristate "Marvell SoC RTC"
+ depends on ARCH_DOVE || ARCH_MVEBU || COMPILE_TEST
+ help
+ If you say yes here you will get support for the in-chip RTC
+ that can be found in some of Marvell's SoC devices, such as
+ the Kirkwood 88F6281 and 88F6192.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-mv.
+
+config RTC_DRV_ARMADA38X
+ tristate "Armada 38x Marvell SoC RTC"
+ depends on ARCH_MVEBU || COMPILE_TEST
+ depends on OF
+ help
+ If you say yes here you will get support for the in-chip RTC
+ that can be found in the Armada 38x Marvell's SoC device
+
+ This driver can also be built as a module. If so, the module
+ will be called armada38x-rtc.
+
+config RTC_DRV_CADENCE
+ tristate "Cadence RTC driver"
+ depends on OF && HAS_IOMEM
+ help
+ If you say Y here you will get access to Cadence RTC IP
+ found on certain SOCs.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-cadence.
+
+config RTC_DRV_FTRTC010
+ tristate "Faraday Technology FTRTC010 RTC"
+ depends on HAS_IOMEM
+ default ARCH_GEMINI
+ help
+ If you say Y here you will get support for the
+ Faraday Technolog FTRTC010 found on e.g. Gemini SoC's.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ftrtc010.
+
+config RTC_DRV_PS3
+ tristate "PS3 RTC"
+ depends on PPC_PS3
+ help
+ If you say yes here you will get support for the RTC on PS3.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ps3.
+
+config RTC_DRV_STMP
+ tristate "Freescale STMP3xxx/i.MX23/i.MX28 RTC"
+ depends on ARCH_MXS || COMPILE_TEST
+ select STMP_DEVICE
+ help
+ If you say yes here you will get support for the onboard
+ STMP3xxx/i.MX23/i.MX28 RTC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-stmp3xxx.
+
+config RTC_DRV_PCAP
+ tristate "PCAP RTC"
+ depends on EZX_PCAP
+ help
+ If you say Y here you will get support for the RTC found on
+ the PCAP2 ASIC used on some Motorola phones.
+
+config RTC_DRV_MC13XXX
+ depends on MFD_MC13XXX
+ tristate "Freescale MC13xxx RTC"
+ help
+ This enables support for the RTCs found on Freescale's PMICs
+ MC13783 and MC13892.
+
+config RTC_DRV_MPC5121
+ tristate "Freescale MPC5121 built-in RTC"
+ depends on PPC_MPC512x || PPC_MPC52xx
+ help
+ If you say yes here you will get support for the
+ built-in RTC on MPC5121 or on MPC5200.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-mpc5121.
+
+config RTC_DRV_JZ4740
+ tristate "Ingenic JZ4740 SoC"
+ depends on MIPS || COMPILE_TEST
+ depends on OF
+ help
+ If you say yes here you get support for the Ingenic JZ47xx SoCs RTC
+ controllers.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-jz4740.
+
+config RTC_DRV_LPC24XX
+ tristate "NXP RTC for LPC178x/18xx/408x/43xx"
+ depends on ARCH_LPC18XX || COMPILE_TEST
+ depends on OF && HAS_IOMEM
+ help
+ This enables support for the NXP RTC found which can be found on
+ NXP LPC178x/18xx/408x/43xx devices.
+
+ If you have one of the devices above enable this driver to use
+ the hardware RTC. This driver can also be built as a module. If
+ so, the module will be called rtc-lpc24xx.
+
+config RTC_DRV_LPC32XX
+ depends on ARCH_LPC32XX || COMPILE_TEST
+ tristate "NXP LPC32XX RTC"
+ help
+ This enables support for the NXP RTC in the LPC32XX
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-lpc32xx.
+
+config RTC_DRV_PM8XXX
+ tristate "Qualcomm PMIC8XXX RTC"
+ depends on MFD_PM8XXX || MFD_SPMI_PMIC || COMPILE_TEST
+ help
+ If you say yes here you get support for the
+ Qualcomm PMIC8XXX RTC.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-pm8xxx.
+
+config RTC_DRV_TEGRA
+ tristate "NVIDIA Tegra Internal RTC driver"
+ depends on ARCH_TEGRA || COMPILE_TEST
+ help
+ If you say yes here you get support for the
+ Tegra 200 series internal RTC module.
+
+ This drive can also be built as a module. If so, the module
+ will be called rtc-tegra.
+
+config RTC_DRV_LOONGSON1
+ tristate "loongson1 RTC support"
+ depends on MACH_LOONGSON32
+ help
+ This is a driver for the loongson1 on-chip Counter0 (Time-Of-Year
+ counter) to be used as a RTC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ls1x.
+
+config RTC_DRV_MXC
+ tristate "Freescale MXC Real Time Clock"
+ depends on ARCH_MXC || COMPILE_TEST
+ depends on HAS_IOMEM
+ depends on OF
+ help
+ If you say yes here you get support for the Freescale MXC
+ RTC module.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-mxc".
+
+config RTC_DRV_MXC_V2
+ tristate "Freescale MXC Real Time Clock for i.MX53"
+ depends on ARCH_MXC || COMPILE_TEST
+ depends on HAS_IOMEM
+ depends on OF
+ help
+ If you say yes here you get support for the Freescale MXC
+ SRTC module in i.MX53 processor.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-mxc_v2".
+
+config RTC_DRV_SNVS
+ tristate "Freescale SNVS RTC support"
+ select REGMAP_MMIO
+ depends on ARCH_MXC || COMPILE_TEST
+ depends on HAS_IOMEM
+ depends on OF
+ help
+ If you say yes here you get support for the Freescale SNVS
+ Low Power (LP) RTC module.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-snvs".
+
+config RTC_DRV_IMX_SC
+ depends on IMX_SCU
+ depends on HAVE_ARM_SMCCC
+ tristate "NXP i.MX System Controller RTC support"
+ help
+ If you say yes here you get support for the NXP i.MX System
+ Controller RTC module.
+
+config RTC_DRV_ST_LPC
+ tristate "STMicroelectronics LPC RTC"
+ depends on ARCH_STI
+ depends on OF
+ help
+ Say Y here to include STMicroelectronics Low Power Controller
+ (LPC) based RTC support.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-st-lpc.
+
+config RTC_DRV_MOXART
+ tristate "MOXA ART RTC"
+ depends on ARCH_MOXART || COMPILE_TEST
+ help
+ If you say yes here you get support for the MOXA ART
+ RTC module.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-moxart
+
+config RTC_DRV_MT2712
+ tristate "MediaTek MT2712 SoC based RTC"
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+ help
+ This enables support for the real time clock built in the MediaTek
+ SoCs for MT2712.
+
+ This drive can also be built as a module. If so, the module
+ will be called rtc-mt2712.
+
+config RTC_DRV_MT6397
+ tristate "MediaTek PMIC based RTC"
+ depends on MFD_MT6397 || (COMPILE_TEST && IRQ_DOMAIN)
+ help
+ This selects the MediaTek(R) RTC driver. RTC is part of MediaTek
+ MT6397 PMIC. You should enable MT6397 PMIC MFD before select
+ MediaTek(R) RTC driver.
+
+ If you want to use MediaTek(R) RTC interface, select Y or M here.
+
+config RTC_DRV_MT7622
+ tristate "MediaTek SoC based RTC"
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+ help
+ This enables support for the real time clock built in the MediaTek
+ SoCs.
+
+ This drive can also be built as a module. If so, the module
+ will be called rtc-mt7622.
+
+config RTC_DRV_XGENE
+ tristate "APM X-Gene RTC"
+ depends on HAS_IOMEM
+ depends on ARCH_XGENE || COMPILE_TEST
+ help
+ If you say yes here you get support for the APM X-Gene SoC real time
+ clock.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-xgene".
+
+config RTC_DRV_PIC32
+ tristate "Microchip PIC32 RTC"
+ depends on MACH_PIC32
+ default y
+ help
+ If you say yes here you get support for the PIC32 RTC module.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pic32
+
+config RTC_DRV_R7301
+ tristate "EPSON TOYOCOM RTC-7301SF/DG"
+ select REGMAP_MMIO
+ depends on OF && HAS_IOMEM
+ help
+ If you say yes here you get support for the EPSON TOYOCOM
+ RTC-7301SF/DG chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-r7301.
+
+config RTC_DRV_STM32
+ tristate "STM32 RTC"
+ select REGMAP_MMIO
+ depends on ARCH_STM32 || COMPILE_TEST
+ help
+ If you say yes here you get support for the STM32 On-Chip
+ Real Time Clock.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-stm32".
+
+config RTC_DRV_CPCAP
+ depends on MFD_CPCAP
+ tristate "Motorola CPCAP RTC"
+ help
+ Say y here for CPCAP rtc found on some Motorola phones
+ and tablets such as Droid 4.
+
+config RTC_DRV_RTD119X
+ bool "Realtek RTD129x RTC"
+ depends on ARCH_REALTEK || COMPILE_TEST
+ default ARCH_REALTEK
+ help
+ If you say yes here, you get support for the RTD1295 SoC
+ Real Time Clock.
+
+config RTC_DRV_ASPEED
+ tristate "ASPEED RTC"
+ depends on OF
+ depends on ARCH_ASPEED || COMPILE_TEST
+ help
+ If you say yes here you get support for the ASPEED BMC SoC real time
+ clocks.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-aspeed".
+
+config RTC_DRV_TI_K3
+ tristate "TI K3 RTC"
+ depends on ARCH_K3 || COMPILE_TEST
+ select REGMAP_MMIO
+ help
+ If you say yes here you get support for the Texas Instruments's
+ Real Time Clock for K3 architecture.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-ti-k3".
+
+comment "HID Sensor RTC drivers"
+
+config RTC_DRV_HID_SENSOR_TIME
+ tristate "HID Sensor Time"
+ depends on USB_HID
+ depends on HID_SENSOR_HUB && IIO
+ select HID_SENSOR_IIO_COMMON
+ help
+ Say yes here to build support for the HID Sensors of type Time.
+ This drivers makes such sensors available as RTCs.
+
+ If this driver is compiled as a module, it will be named
+ rtc-hid-sensor-time.
+
+config RTC_DRV_GOLDFISH
+ tristate "Goldfish Real Time Clock"
+ depends on HAS_IOMEM
+ help
+ Say yes to enable RTC driver for the Goldfish based virtual platform.
+
+ Goldfish is a code name for the virtual platform developed by Google
+ for Android emulation.
+
+config RTC_DRV_WILCO_EC
+ tristate "Wilco EC RTC"
+ depends on WILCO_EC
+ default m
+ help
+ If you say yes here, you get read/write support for the Real Time
+ Clock on the Wilco Embedded Controller (Wilco is a kind of Chromebook)
+
+ This can also be built as a module. If so, the module will
+ be named "rtc_wilco_ec".
+
+config RTC_DRV_MSC313
+ tristate "MStar MSC313 RTC"
+ depends on ARCH_MSTARV7 || COMPILE_TEST
+ help
+ If you say yes here you get support for the Mstar MSC313e On-Chip
+ Real Time Clock.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-msc313".
+
+config RTC_DRV_POLARFIRE_SOC
+ tristate "Microchip PolarFire SoC built-in RTC"
+ depends on SOC_MICROCHIP_POLARFIRE
+ help
+ If you say yes here you will get support for the
+ built-in RTC on Polarfire SoC.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-mpfs".
+
+endif # RTC_CLASS