diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/spi/spi-intel.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/spi/spi-intel.c')
-rw-r--r-- | drivers/spi/spi-intel.c | 1431 |
1 files changed, 1431 insertions, 0 deletions
diff --git a/drivers/spi/spi-intel.c b/drivers/spi/spi-intel.c new file mode 100644 index 000000000..54fc226e1 --- /dev/null +++ b/drivers/spi/spi-intel.c @@ -0,0 +1,1431 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Intel PCH/PCU SPI flash driver. + * + * Copyright (C) 2016 - 2022, Intel Corporation + * Author: Mika Westerberg <mika.westerberg@linux.intel.com> + */ + +#include <linux/iopoll.h> +#include <linux/module.h> + +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> + +#include <linux/spi/flash.h> +#include <linux/spi/spi.h> +#include <linux/spi/spi-mem.h> + +#include "spi-intel.h" + +/* Offsets are from @ispi->base */ +#define BFPREG 0x00 + +#define HSFSTS_CTL 0x04 +#define HSFSTS_CTL_FSMIE BIT(31) +#define HSFSTS_CTL_FDBC_SHIFT 24 +#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT) + +#define HSFSTS_CTL_FCYCLE_SHIFT 17 +#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT) +/* HW sequencer opcodes */ +#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT) +#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT) +#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT) +#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT) +#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT) +#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT) +#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT) + +#define HSFSTS_CTL_FGO BIT(16) +#define HSFSTS_CTL_FLOCKDN BIT(15) +#define HSFSTS_CTL_FDV BIT(14) +#define HSFSTS_CTL_SCIP BIT(5) +#define HSFSTS_CTL_AEL BIT(2) +#define HSFSTS_CTL_FCERR BIT(1) +#define HSFSTS_CTL_FDONE BIT(0) + +#define FADDR 0x08 +#define DLOCK 0x0c +#define FDATA(n) (0x10 + ((n) * 4)) + +#define FRACC 0x50 + +#define FREG(n) (0x54 + ((n) * 4)) +#define FREG_BASE_MASK GENMASK(14, 0) +#define FREG_LIMIT_SHIFT 16 +#define FREG_LIMIT_MASK GENMASK(30, 16) + +/* Offset is from @ispi->pregs */ +#define PR(n) ((n) * 4) +#define PR_WPE BIT(31) +#define PR_LIMIT_SHIFT 16 +#define PR_LIMIT_MASK GENMASK(30, 16) +#define PR_RPE BIT(15) +#define PR_BASE_MASK GENMASK(14, 0) + +/* Offsets are from @ispi->sregs */ +#define SSFSTS_CTL 0x00 +#define SSFSTS_CTL_FSMIE BIT(23) +#define SSFSTS_CTL_DS BIT(22) +#define SSFSTS_CTL_DBC_SHIFT 16 +#define SSFSTS_CTL_SPOP BIT(11) +#define SSFSTS_CTL_ACS BIT(10) +#define SSFSTS_CTL_SCGO BIT(9) +#define SSFSTS_CTL_COP_SHIFT 12 +#define SSFSTS_CTL_FRS BIT(7) +#define SSFSTS_CTL_DOFRS BIT(6) +#define SSFSTS_CTL_AEL BIT(4) +#define SSFSTS_CTL_FCERR BIT(3) +#define SSFSTS_CTL_FDONE BIT(2) +#define SSFSTS_CTL_SCIP BIT(0) + +#define PREOP_OPTYPE 0x04 +#define OPMENU0 0x08 +#define OPMENU1 0x0c + +#define OPTYPE_READ_NO_ADDR 0 +#define OPTYPE_WRITE_NO_ADDR 1 +#define OPTYPE_READ_WITH_ADDR 2 +#define OPTYPE_WRITE_WITH_ADDR 3 + +/* CPU specifics */ +#define BYT_PR 0x74 +#define BYT_SSFSTS_CTL 0x90 +#define BYT_FREG_NUM 5 +#define BYT_PR_NUM 5 + +#define LPT_PR 0x74 +#define LPT_SSFSTS_CTL 0x90 +#define LPT_FREG_NUM 5 +#define LPT_PR_NUM 5 + +#define BXT_PR 0x84 +#define BXT_SSFSTS_CTL 0xa0 +#define BXT_FREG_NUM 12 +#define BXT_PR_NUM 6 + +#define CNL_PR 0x84 +#define CNL_FREG_NUM 6 +#define CNL_PR_NUM 5 + +#define LVSCC 0xc4 +#define UVSCC 0xc8 +#define ERASE_OPCODE_SHIFT 8 +#define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT) +#define ERASE_64K_OPCODE_SHIFT 16 +#define ERASE_64K_OPCODE_MASK (0xff << ERASE_64K_OPCODE_SHIFT) + +/* Flash descriptor fields */ +#define FLVALSIG_MAGIC 0x0ff0a55a +#define FLMAP0_NC_MASK GENMASK(9, 8) +#define FLMAP0_NC_SHIFT 8 +#define FLMAP0_FCBA_MASK GENMASK(7, 0) + +#define FLCOMP_C0DEN_MASK GENMASK(3, 0) +#define FLCOMP_C0DEN_512K 0x00 +#define FLCOMP_C0DEN_1M 0x01 +#define FLCOMP_C0DEN_2M 0x02 +#define FLCOMP_C0DEN_4M 0x03 +#define FLCOMP_C0DEN_8M 0x04 +#define FLCOMP_C0DEN_16M 0x05 +#define FLCOMP_C0DEN_32M 0x06 +#define FLCOMP_C0DEN_64M 0x07 + +#define INTEL_SPI_TIMEOUT 5000 /* ms */ +#define INTEL_SPI_FIFO_SZ 64 + +/** + * struct intel_spi - Driver private data + * @dev: Device pointer + * @info: Pointer to board specific info + * @base: Beginning of MMIO space + * @pregs: Start of protection registers + * @sregs: Start of software sequencer registers + * @master: Pointer to the SPI controller structure + * @nregions: Maximum number of regions + * @pr_num: Maximum number of protected range registers + * @chip0_size: Size of the first flash chip in bytes + * @locked: Is SPI setting locked + * @swseq_reg: Use SW sequencer in register reads/writes + * @swseq_erase: Use SW sequencer in erase operation + * @atomic_preopcode: Holds preopcode when atomic sequence is requested + * @opcodes: Opcodes which are supported. This are programmed by BIOS + * before it locks down the controller. + * @mem_ops: Pointer to SPI MEM ops supported by the controller + */ +struct intel_spi { + struct device *dev; + const struct intel_spi_boardinfo *info; + void __iomem *base; + void __iomem *pregs; + void __iomem *sregs; + struct spi_controller *master; + size_t nregions; + size_t pr_num; + size_t chip0_size; + bool locked; + bool swseq_reg; + bool swseq_erase; + u8 atomic_preopcode; + u8 opcodes[8]; + const struct intel_spi_mem_op *mem_ops; +}; + +struct intel_spi_mem_op { + struct spi_mem_op mem_op; + u32 replacement_op; + int (*exec_op)(struct intel_spi *ispi, + const struct spi_mem *mem, + const struct intel_spi_mem_op *iop, + const struct spi_mem_op *op); +}; + +static bool writeable; +module_param(writeable, bool, 0); +MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)"); + +static void intel_spi_dump_regs(struct intel_spi *ispi) +{ + u32 value; + int i; + + dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG)); + + value = readl(ispi->base + HSFSTS_CTL); + dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value); + if (value & HSFSTS_CTL_FLOCKDN) + dev_dbg(ispi->dev, "-> Locked\n"); + + dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR)); + dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK)); + + for (i = 0; i < 16; i++) + dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n", + i, readl(ispi->base + FDATA(i))); + + dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC)); + + for (i = 0; i < ispi->nregions; i++) + dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i, + readl(ispi->base + FREG(i))); + for (i = 0; i < ispi->pr_num; i++) + dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i, + readl(ispi->pregs + PR(i))); + + if (ispi->sregs) { + value = readl(ispi->sregs + SSFSTS_CTL); + dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value); + dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n", + readl(ispi->sregs + PREOP_OPTYPE)); + dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", + readl(ispi->sregs + OPMENU0)); + dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", + readl(ispi->sregs + OPMENU1)); + } + + dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC)); + dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC)); + + dev_dbg(ispi->dev, "Protected regions:\n"); + for (i = 0; i < ispi->pr_num; i++) { + u32 base, limit; + + value = readl(ispi->pregs + PR(i)); + if (!(value & (PR_WPE | PR_RPE))) + continue; + + limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; + base = value & PR_BASE_MASK; + + dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n", + i, base << 12, (limit << 12) | 0xfff, + value & PR_WPE ? 'W' : '.', value & PR_RPE ? 'R' : '.'); + } + + dev_dbg(ispi->dev, "Flash regions:\n"); + for (i = 0; i < ispi->nregions; i++) { + u32 region, base, limit; + + region = readl(ispi->base + FREG(i)); + base = region & FREG_BASE_MASK; + limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; + + if (base >= limit || (i > 0 && limit == 0)) + dev_dbg(ispi->dev, " %02d disabled\n", i); + else + dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n", + i, base << 12, (limit << 12) | 0xfff); + } + + dev_dbg(ispi->dev, "Using %cW sequencer for register access\n", + ispi->swseq_reg ? 'S' : 'H'); + dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n", + ispi->swseq_erase ? 'S' : 'H'); +} + +/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */ +static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size) +{ + size_t bytes; + int i = 0; + + if (size > INTEL_SPI_FIFO_SZ) + return -EINVAL; + + while (size > 0) { + bytes = min_t(size_t, size, 4); + memcpy_fromio(buf, ispi->base + FDATA(i), bytes); + size -= bytes; + buf += bytes; + i++; + } + + return 0; +} + +/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */ +static int intel_spi_write_block(struct intel_spi *ispi, const void *buf, + size_t size) +{ + size_t bytes; + int i = 0; + + if (size > INTEL_SPI_FIFO_SZ) + return -EINVAL; + + while (size > 0) { + bytes = min_t(size_t, size, 4); + memcpy_toio(ispi->base + FDATA(i), buf, bytes); + size -= bytes; + buf += bytes; + i++; + } + + return 0; +} + +static int intel_spi_wait_hw_busy(struct intel_spi *ispi) +{ + u32 val; + + return readl_poll_timeout(ispi->base + HSFSTS_CTL, val, + !(val & HSFSTS_CTL_SCIP), 0, + INTEL_SPI_TIMEOUT * 1000); +} + +static int intel_spi_wait_sw_busy(struct intel_spi *ispi) +{ + u32 val; + + return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val, + !(val & SSFSTS_CTL_SCIP), 0, + INTEL_SPI_TIMEOUT * 1000); +} + +static bool intel_spi_set_writeable(struct intel_spi *ispi) +{ + if (!ispi->info->set_writeable) + return false; + + return ispi->info->set_writeable(ispi->base, ispi->info->data); +} + +static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype) +{ + int i; + int preop; + + if (ispi->locked) { + for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) + if (ispi->opcodes[i] == opcode) + return i; + + return -EINVAL; + } + + /* The lock is off, so just use index 0 */ + writel(opcode, ispi->sregs + OPMENU0); + preop = readw(ispi->sregs + PREOP_OPTYPE); + writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE); + + return 0; +} + +static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len) +{ + u32 val, status; + int ret; + + val = readl(ispi->base + HSFSTS_CTL); + val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK); + + switch (opcode) { + case SPINOR_OP_RDID: + val |= HSFSTS_CTL_FCYCLE_RDID; + break; + case SPINOR_OP_WRSR: + val |= HSFSTS_CTL_FCYCLE_WRSR; + break; + case SPINOR_OP_RDSR: + val |= HSFSTS_CTL_FCYCLE_RDSR; + break; + default: + return -EINVAL; + } + + if (len > INTEL_SPI_FIFO_SZ) + return -EINVAL; + + val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT; + val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; + val |= HSFSTS_CTL_FGO; + writel(val, ispi->base + HSFSTS_CTL); + + ret = intel_spi_wait_hw_busy(ispi); + if (ret) + return ret; + + status = readl(ispi->base + HSFSTS_CTL); + if (status & HSFSTS_CTL_FCERR) + return -EIO; + else if (status & HSFSTS_CTL_AEL) + return -EACCES; + + return 0; +} + +static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len, + int optype) +{ + u32 val = 0, status; + u8 atomic_preopcode; + int ret; + + ret = intel_spi_opcode_index(ispi, opcode, optype); + if (ret < 0) + return ret; + + if (len > INTEL_SPI_FIFO_SZ) + return -EINVAL; + + /* + * Always clear it after each SW sequencer operation regardless + * of whether it is successful or not. + */ + atomic_preopcode = ispi->atomic_preopcode; + ispi->atomic_preopcode = 0; + + /* Only mark 'Data Cycle' bit when there is data to be transferred */ + if (len > 0) + val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS; + val |= ret << SSFSTS_CTL_COP_SHIFT; + val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE; + val |= SSFSTS_CTL_SCGO; + if (atomic_preopcode) { + u16 preop; + + switch (optype) { + case OPTYPE_WRITE_NO_ADDR: + case OPTYPE_WRITE_WITH_ADDR: + /* Pick matching preopcode for the atomic sequence */ + preop = readw(ispi->sregs + PREOP_OPTYPE); + if ((preop & 0xff) == atomic_preopcode) + ; /* Do nothing */ + else if ((preop >> 8) == atomic_preopcode) + val |= SSFSTS_CTL_SPOP; + else + return -EINVAL; + + /* Enable atomic sequence */ + val |= SSFSTS_CTL_ACS; + break; + + default: + return -EINVAL; + } + } + writel(val, ispi->sregs + SSFSTS_CTL); + + ret = intel_spi_wait_sw_busy(ispi); + if (ret) + return ret; + + status = readl(ispi->sregs + SSFSTS_CTL); + if (status & SSFSTS_CTL_FCERR) + return -EIO; + else if (status & SSFSTS_CTL_AEL) + return -EACCES; + + return 0; +} + +static u32 intel_spi_chip_addr(const struct intel_spi *ispi, + const struct spi_mem *mem) +{ + /* Pick up the correct start address */ + if (!mem) + return 0; + return mem->spi->chip_select == 1 ? ispi->chip0_size : 0; +} + +static int intel_spi_read_reg(struct intel_spi *ispi, const struct spi_mem *mem, + const struct intel_spi_mem_op *iop, + const struct spi_mem_op *op) +{ + size_t nbytes = op->data.nbytes; + u8 opcode = op->cmd.opcode; + int ret; + + writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR); + + if (ispi->swseq_reg) + ret = intel_spi_sw_cycle(ispi, opcode, nbytes, + OPTYPE_READ_NO_ADDR); + else + ret = intel_spi_hw_cycle(ispi, opcode, nbytes); + + if (ret) + return ret; + + return intel_spi_read_block(ispi, op->data.buf.in, nbytes); +} + +static int intel_spi_write_reg(struct intel_spi *ispi, const struct spi_mem *mem, + const struct intel_spi_mem_op *iop, + const struct spi_mem_op *op) +{ + size_t nbytes = op->data.nbytes; + u8 opcode = op->cmd.opcode; + int ret; + + /* + * This is handled with atomic operation and preop code in Intel + * controller so we only verify that it is available. If the + * controller is not locked, program the opcode to the PREOP + * register for later use. + * + * When hardware sequencer is used there is no need to program + * any opcodes (it handles them automatically as part of a command). + */ + if (opcode == SPINOR_OP_WREN) { + u16 preop; + + if (!ispi->swseq_reg) + return 0; + + preop = readw(ispi->sregs + PREOP_OPTYPE); + if ((preop & 0xff) != opcode && (preop >> 8) != opcode) { + if (ispi->locked) + return -EINVAL; + writel(opcode, ispi->sregs + PREOP_OPTYPE); + } + + /* + * This enables atomic sequence on next SW sycle. Will + * be cleared after next operation. + */ + ispi->atomic_preopcode = opcode; + return 0; + } + + /* + * We hope that HW sequencer will do the right thing automatically and + * with the SW sequencer we cannot use preopcode anyway, so just ignore + * the Write Disable operation and pretend it was completed + * successfully. + */ + if (opcode == SPINOR_OP_WRDI) + return 0; + + writel(intel_spi_chip_addr(ispi, mem), ispi->base + FADDR); + + /* Write the value beforehand */ + ret = intel_spi_write_block(ispi, op->data.buf.out, nbytes); + if (ret) + return ret; + + if (ispi->swseq_reg) + return intel_spi_sw_cycle(ispi, opcode, nbytes, + OPTYPE_WRITE_NO_ADDR); + return intel_spi_hw_cycle(ispi, opcode, nbytes); +} + +static int intel_spi_read(struct intel_spi *ispi, const struct spi_mem *mem, + const struct intel_spi_mem_op *iop, + const struct spi_mem_op *op) +{ + u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; + size_t block_size, nbytes = op->data.nbytes; + void *read_buf = op->data.buf.in; + u32 val, status; + int ret; + + /* + * Atomic sequence is not expected with HW sequencer reads. Make + * sure it is cleared regardless. + */ + if (WARN_ON_ONCE(ispi->atomic_preopcode)) + ispi->atomic_preopcode = 0; + + while (nbytes > 0) { + block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); + + /* Read cannot cross 4K boundary */ + block_size = min_t(loff_t, addr + block_size, + round_up(addr + 1, SZ_4K)) - addr; + + writel(addr, ispi->base + FADDR); + + val = readl(ispi->base + HSFSTS_CTL); + val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); + val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; + val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; + val |= HSFSTS_CTL_FCYCLE_READ; + val |= HSFSTS_CTL_FGO; + writel(val, ispi->base + HSFSTS_CTL); + + ret = intel_spi_wait_hw_busy(ispi); + if (ret) + return ret; + + status = readl(ispi->base + HSFSTS_CTL); + if (status & HSFSTS_CTL_FCERR) + ret = -EIO; + else if (status & HSFSTS_CTL_AEL) + ret = -EACCES; + + if (ret < 0) { + dev_err(ispi->dev, "read error: %x: %#x\n", addr, status); + return ret; + } + + ret = intel_spi_read_block(ispi, read_buf, block_size); + if (ret) + return ret; + + nbytes -= block_size; + addr += block_size; + read_buf += block_size; + } + + return 0; +} + +static int intel_spi_write(struct intel_spi *ispi, const struct spi_mem *mem, + const struct intel_spi_mem_op *iop, + const struct spi_mem_op *op) +{ + u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; + size_t block_size, nbytes = op->data.nbytes; + const void *write_buf = op->data.buf.out; + u32 val, status; + int ret; + + /* Not needed with HW sequencer write, make sure it is cleared */ + ispi->atomic_preopcode = 0; + + while (nbytes > 0) { + block_size = min_t(size_t, nbytes, INTEL_SPI_FIFO_SZ); + + /* Write cannot cross 4K boundary */ + block_size = min_t(loff_t, addr + block_size, + round_up(addr + 1, SZ_4K)) - addr; + + writel(addr, ispi->base + FADDR); + + val = readl(ispi->base + HSFSTS_CTL); + val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); + val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; + val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT; + val |= HSFSTS_CTL_FCYCLE_WRITE; + + ret = intel_spi_write_block(ispi, write_buf, block_size); + if (ret) { + dev_err(ispi->dev, "failed to write block\n"); + return ret; + } + + /* Start the write now */ + val |= HSFSTS_CTL_FGO; + writel(val, ispi->base + HSFSTS_CTL); + + ret = intel_spi_wait_hw_busy(ispi); + if (ret) { + dev_err(ispi->dev, "timeout\n"); + return ret; + } + + status = readl(ispi->base + HSFSTS_CTL); + if (status & HSFSTS_CTL_FCERR) + ret = -EIO; + else if (status & HSFSTS_CTL_AEL) + ret = -EACCES; + + if (ret < 0) { + dev_err(ispi->dev, "write error: %x: %#x\n", addr, status); + return ret; + } + + nbytes -= block_size; + addr += block_size; + write_buf += block_size; + } + + return 0; +} + +static int intel_spi_erase(struct intel_spi *ispi, const struct spi_mem *mem, + const struct intel_spi_mem_op *iop, + const struct spi_mem_op *op) +{ + u32 addr = intel_spi_chip_addr(ispi, mem) + op->addr.val; + u8 opcode = op->cmd.opcode; + u32 val, status; + int ret; + + writel(addr, ispi->base + FADDR); + + if (ispi->swseq_erase) + return intel_spi_sw_cycle(ispi, opcode, 0, + OPTYPE_WRITE_WITH_ADDR); + + /* Not needed with HW sequencer erase, make sure it is cleared */ + ispi->atomic_preopcode = 0; + + val = readl(ispi->base + HSFSTS_CTL); + val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK); + val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE; + val |= HSFSTS_CTL_FGO; + val |= iop->replacement_op; + writel(val, ispi->base + HSFSTS_CTL); + + ret = intel_spi_wait_hw_busy(ispi); + if (ret) + return ret; + + status = readl(ispi->base + HSFSTS_CTL); + if (status & HSFSTS_CTL_FCERR) + return -EIO; + if (status & HSFSTS_CTL_AEL) + return -EACCES; + + return 0; +} + +static bool intel_spi_cmp_mem_op(const struct intel_spi_mem_op *iop, + const struct spi_mem_op *op) +{ + if (iop->mem_op.cmd.nbytes != op->cmd.nbytes || + iop->mem_op.cmd.buswidth != op->cmd.buswidth || + iop->mem_op.cmd.dtr != op->cmd.dtr || + iop->mem_op.cmd.opcode != op->cmd.opcode) + return false; + + if (iop->mem_op.addr.nbytes != op->addr.nbytes || + iop->mem_op.addr.dtr != op->addr.dtr) + return false; + + if (iop->mem_op.data.dir != op->data.dir || + iop->mem_op.data.dtr != op->data.dtr) + return false; + + if (iop->mem_op.data.dir != SPI_MEM_NO_DATA) { + if (iop->mem_op.data.buswidth != op->data.buswidth) + return false; + } + + return true; +} + +static const struct intel_spi_mem_op * +intel_spi_match_mem_op(struct intel_spi *ispi, const struct spi_mem_op *op) +{ + const struct intel_spi_mem_op *iop; + + for (iop = ispi->mem_ops; iop->mem_op.cmd.opcode; iop++) { + if (intel_spi_cmp_mem_op(iop, op)) + break; + } + + return iop->mem_op.cmd.opcode ? iop : NULL; +} + +static bool intel_spi_supports_mem_op(struct spi_mem *mem, + const struct spi_mem_op *op) +{ + struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); + const struct intel_spi_mem_op *iop; + + iop = intel_spi_match_mem_op(ispi, op); + if (!iop) { + dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); + return false; + } + + /* + * For software sequencer check that the opcode is actually + * present in the opmenu if it is locked. + */ + if (ispi->swseq_reg && ispi->locked) { + int i; + + /* Check if it is in the locked opcodes list */ + for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++) { + if (ispi->opcodes[i] == op->cmd.opcode) + return true; + } + + dev_dbg(ispi->dev, "%#x not supported\n", op->cmd.opcode); + return false; + } + + return true; +} + +static int intel_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) +{ + struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); + const struct intel_spi_mem_op *iop; + + iop = intel_spi_match_mem_op(ispi, op); + if (!iop) + return -EOPNOTSUPP; + + return iop->exec_op(ispi, mem, iop, op); +} + +static const char *intel_spi_get_name(struct spi_mem *mem) +{ + const struct intel_spi *ispi = spi_master_get_devdata(mem->spi->master); + + /* + * Return name of the flash controller device to be compatible + * with the MTD version. + */ + return dev_name(ispi->dev); +} + +static int intel_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) +{ + struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); + const struct intel_spi_mem_op *iop; + + iop = intel_spi_match_mem_op(ispi, &desc->info.op_tmpl); + if (!iop) + return -EOPNOTSUPP; + + desc->priv = (void *)iop; + return 0; +} + +static ssize_t intel_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, + size_t len, void *buf) +{ + struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); + const struct intel_spi_mem_op *iop = desc->priv; + struct spi_mem_op op = desc->info.op_tmpl; + int ret; + + /* Fill in the gaps */ + op.addr.val = offs; + op.data.nbytes = len; + op.data.buf.in = buf; + + ret = iop->exec_op(ispi, desc->mem, iop, &op); + return ret ? ret : len; +} + +static ssize_t intel_spi_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, + size_t len, const void *buf) +{ + struct intel_spi *ispi = spi_master_get_devdata(desc->mem->spi->master); + const struct intel_spi_mem_op *iop = desc->priv; + struct spi_mem_op op = desc->info.op_tmpl; + int ret; + + op.addr.val = offs; + op.data.nbytes = len; + op.data.buf.out = buf; + + ret = iop->exec_op(ispi, desc->mem, iop, &op); + return ret ? ret : len; +} + +static const struct spi_controller_mem_ops intel_spi_mem_ops = { + .supports_op = intel_spi_supports_mem_op, + .exec_op = intel_spi_exec_mem_op, + .get_name = intel_spi_get_name, + .dirmap_create = intel_spi_dirmap_create, + .dirmap_read = intel_spi_dirmap_read, + .dirmap_write = intel_spi_dirmap_write, +}; + +#define INTEL_SPI_OP_ADDR(__nbytes) \ + { \ + .nbytes = __nbytes, \ + } + +#define INTEL_SPI_OP_NO_DATA \ + { \ + .dir = SPI_MEM_NO_DATA, \ + } + +#define INTEL_SPI_OP_DATA_IN(__buswidth) \ + { \ + .dir = SPI_MEM_DATA_IN, \ + .buswidth = __buswidth, \ + } + +#define INTEL_SPI_OP_DATA_OUT(__buswidth) \ + { \ + .dir = SPI_MEM_DATA_OUT, \ + .buswidth = __buswidth, \ + } + +#define INTEL_SPI_MEM_OP(__cmd, __addr, __data, __exec_op) \ + { \ + .mem_op = { \ + .cmd = __cmd, \ + .addr = __addr, \ + .data = __data, \ + }, \ + .exec_op = __exec_op, \ + } + +#define INTEL_SPI_MEM_OP_REPL(__cmd, __addr, __data, __exec_op, __repl) \ + { \ + .mem_op = { \ + .cmd = __cmd, \ + .addr = __addr, \ + .data = __data, \ + }, \ + .exec_op = __exec_op, \ + .replacement_op = __repl, \ + } + +/* + * The controller handles pretty much everything internally based on the + * SFDP data but we want to make sure we only support the operations + * actually possible. Only check buswidth and transfer direction, the + * core validates data. + */ +#define INTEL_SPI_GENERIC_OPS \ + /* Status register operations */ \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), \ + SPI_MEM_OP_NO_ADDR, \ + INTEL_SPI_OP_DATA_IN(1), \ + intel_spi_read_reg), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1), \ + SPI_MEM_OP_NO_ADDR, \ + INTEL_SPI_OP_DATA_IN(1), \ + intel_spi_read_reg), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1), \ + SPI_MEM_OP_NO_ADDR, \ + INTEL_SPI_OP_DATA_OUT(1), \ + intel_spi_write_reg), \ + /* Normal read */ \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ + INTEL_SPI_OP_ADDR(3), \ + INTEL_SPI_OP_DATA_IN(1), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ + INTEL_SPI_OP_ADDR(3), \ + INTEL_SPI_OP_DATA_IN(2), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ + INTEL_SPI_OP_ADDR(3), \ + INTEL_SPI_OP_DATA_IN(4), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(1), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(2), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(4), \ + intel_spi_read), \ + /* Fast read */ \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ + INTEL_SPI_OP_ADDR(3), \ + INTEL_SPI_OP_DATA_IN(1), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ + INTEL_SPI_OP_ADDR(3), \ + INTEL_SPI_OP_DATA_IN(2), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ + INTEL_SPI_OP_ADDR(3), \ + INTEL_SPI_OP_DATA_IN(4), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(1), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(2), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(4), \ + intel_spi_read), \ + /* Read with 4-byte address opcode */ \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(1), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(2), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_4B, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(4), \ + intel_spi_read), \ + /* Fast read with 4-byte address opcode */ \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(1), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(2), \ + intel_spi_read), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ_FAST_4B, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_IN(4), \ + intel_spi_read), \ + /* Write operations */ \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \ + INTEL_SPI_OP_ADDR(3), \ + INTEL_SPI_OP_DATA_OUT(1), \ + intel_spi_write), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_OUT(1), \ + intel_spi_write), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_PP_4B, 1), \ + INTEL_SPI_OP_ADDR(4), \ + INTEL_SPI_OP_DATA_OUT(1), \ + intel_spi_write), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DATA, \ + intel_spi_write_reg), \ + INTEL_SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1), \ + SPI_MEM_OP_NO_ADDR, \ + SPI_MEM_OP_NO_DATA, \ + intel_spi_write_reg), \ + /* Erase operations */ \ + INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \ + INTEL_SPI_OP_ADDR(3), \ + SPI_MEM_OP_NO_DATA, \ + intel_spi_erase, \ + HSFSTS_CTL_FCYCLE_ERASE), \ + INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K, 1), \ + INTEL_SPI_OP_ADDR(4), \ + SPI_MEM_OP_NO_DATA, \ + intel_spi_erase, \ + HSFSTS_CTL_FCYCLE_ERASE), \ + INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_BE_4K_4B, 1), \ + INTEL_SPI_OP_ADDR(4), \ + SPI_MEM_OP_NO_DATA, \ + intel_spi_erase, \ + HSFSTS_CTL_FCYCLE_ERASE) \ + +static const struct intel_spi_mem_op generic_mem_ops[] = { + INTEL_SPI_GENERIC_OPS, + { }, +}; + +static const struct intel_spi_mem_op erase_64k_mem_ops[] = { + INTEL_SPI_GENERIC_OPS, + /* 64k sector erase operations */ + INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), + INTEL_SPI_OP_ADDR(3), + SPI_MEM_OP_NO_DATA, + intel_spi_erase, + HSFSTS_CTL_FCYCLE_ERASE_64K), + INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE, 1), + INTEL_SPI_OP_ADDR(4), + SPI_MEM_OP_NO_DATA, + intel_spi_erase, + HSFSTS_CTL_FCYCLE_ERASE_64K), + INTEL_SPI_MEM_OP_REPL(SPI_MEM_OP_CMD(SPINOR_OP_SE_4B, 1), + INTEL_SPI_OP_ADDR(4), + SPI_MEM_OP_NO_DATA, + intel_spi_erase, + HSFSTS_CTL_FCYCLE_ERASE_64K), + { }, +}; + +static int intel_spi_init(struct intel_spi *ispi) +{ + u32 opmenu0, opmenu1, lvscc, uvscc, val; + bool erase_64k = false; + int i; + + switch (ispi->info->type) { + case INTEL_SPI_BYT: + ispi->sregs = ispi->base + BYT_SSFSTS_CTL; + ispi->pregs = ispi->base + BYT_PR; + ispi->nregions = BYT_FREG_NUM; + ispi->pr_num = BYT_PR_NUM; + ispi->swseq_reg = true; + break; + + case INTEL_SPI_LPT: + ispi->sregs = ispi->base + LPT_SSFSTS_CTL; + ispi->pregs = ispi->base + LPT_PR; + ispi->nregions = LPT_FREG_NUM; + ispi->pr_num = LPT_PR_NUM; + ispi->swseq_reg = true; + break; + + case INTEL_SPI_BXT: + ispi->sregs = ispi->base + BXT_SSFSTS_CTL; + ispi->pregs = ispi->base + BXT_PR; + ispi->nregions = BXT_FREG_NUM; + ispi->pr_num = BXT_PR_NUM; + erase_64k = true; + break; + + case INTEL_SPI_CNL: + ispi->sregs = NULL; + ispi->pregs = ispi->base + CNL_PR; + ispi->nregions = CNL_FREG_NUM; + ispi->pr_num = CNL_PR_NUM; + erase_64k = true; + break; + + default: + return -EINVAL; + } + + /* Try to disable write protection if user asked to do so */ + if (writeable && !intel_spi_set_writeable(ispi)) { + dev_warn(ispi->dev, "can't disable chip write protection\n"); + writeable = false; + } + + /* Disable #SMI generation from HW sequencer */ + val = readl(ispi->base + HSFSTS_CTL); + val &= ~HSFSTS_CTL_FSMIE; + writel(val, ispi->base + HSFSTS_CTL); + + /* + * Determine whether erase operation should use HW or SW sequencer. + * + * The HW sequencer has a predefined list of opcodes, with only the + * erase opcode being programmable in LVSCC and UVSCC registers. + * If these registers don't contain a valid erase opcode, erase + * cannot be done using HW sequencer. + */ + lvscc = readl(ispi->base + LVSCC); + uvscc = readl(ispi->base + UVSCC); + if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK)) + ispi->swseq_erase = true; + /* SPI controller on Intel BXT supports 64K erase opcode */ + if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase) + if (!(lvscc & ERASE_64K_OPCODE_MASK) || + !(uvscc & ERASE_64K_OPCODE_MASK)) + erase_64k = false; + + if (!ispi->sregs && (ispi->swseq_reg || ispi->swseq_erase)) { + dev_err(ispi->dev, "software sequencer not supported, but required\n"); + return -EINVAL; + } + + /* + * Some controllers can only do basic operations using hardware + * sequencer. All other operations are supposed to be carried out + * using software sequencer. + */ + if (ispi->swseq_reg) { + /* Disable #SMI generation from SW sequencer */ + val = readl(ispi->sregs + SSFSTS_CTL); + val &= ~SSFSTS_CTL_FSMIE; + writel(val, ispi->sregs + SSFSTS_CTL); + } + + /* Check controller's lock status */ + val = readl(ispi->base + HSFSTS_CTL); + ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN); + + if (ispi->locked && ispi->sregs) { + /* + * BIOS programs allowed opcodes and then locks down the + * register. So read back what opcodes it decided to support. + * That's the set we are going to support as well. + */ + opmenu0 = readl(ispi->sregs + OPMENU0); + opmenu1 = readl(ispi->sregs + OPMENU1); + + if (opmenu0 && opmenu1) { + for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) { + ispi->opcodes[i] = opmenu0 >> i * 8; + ispi->opcodes[i + 4] = opmenu1 >> i * 8; + } + } + } + + if (erase_64k) { + dev_dbg(ispi->dev, "Using erase_64k memory operations"); + ispi->mem_ops = erase_64k_mem_ops; + } else { + dev_dbg(ispi->dev, "Using generic memory operations"); + ispi->mem_ops = generic_mem_ops; + } + + intel_spi_dump_regs(ispi); + return 0; +} + +static bool intel_spi_is_protected(const struct intel_spi *ispi, + unsigned int base, unsigned int limit) +{ + int i; + + for (i = 0; i < ispi->pr_num; i++) { + u32 pr_base, pr_limit, pr_value; + + pr_value = readl(ispi->pregs + PR(i)); + if (!(pr_value & (PR_WPE | PR_RPE))) + continue; + + pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT; + pr_base = pr_value & PR_BASE_MASK; + + if (pr_base >= base && pr_limit <= limit) + return true; + } + + return false; +} + +/* + * There will be a single partition holding all enabled flash regions. We + * call this "BIOS". + */ +static void intel_spi_fill_partition(struct intel_spi *ispi, + struct mtd_partition *part) +{ + u64 end; + int i; + + memset(part, 0, sizeof(*part)); + + /* Start from the mandatory descriptor region */ + part->size = 4096; + part->name = "BIOS"; + + /* + * Now try to find where this partition ends based on the flash + * region registers. + */ + for (i = 1; i < ispi->nregions; i++) { + u32 region, base, limit; + + region = readl(ispi->base + FREG(i)); + base = region & FREG_BASE_MASK; + limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT; + + if (base >= limit || limit == 0) + continue; + + /* + * If any of the regions have protection bits set, make the + * whole partition read-only to be on the safe side. + * + * Also if the user did not ask the chip to be writeable + * mask the bit too. + */ + if (!writeable || intel_spi_is_protected(ispi, base, limit)) + part->mask_flags |= MTD_WRITEABLE; + + end = (limit << 12) + 4096; + if (end > part->size) + part->size = end; + } +} + +static int intel_spi_read_desc(struct intel_spi *ispi) +{ + struct spi_mem_op op = + SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_READ, 0), + SPI_MEM_OP_ADDR(3, 0, 0), + SPI_MEM_OP_NO_DUMMY, + SPI_MEM_OP_DATA_IN(0, NULL, 0)); + u32 buf[2], nc, fcba, flcomp; + ssize_t ret; + + op.addr.val = 0x10; + op.data.buf.in = buf; + op.data.nbytes = sizeof(buf); + + ret = intel_spi_read(ispi, NULL, NULL, &op); + if (ret) { + dev_warn(ispi->dev, "failed to read descriptor\n"); + return ret; + } + + dev_dbg(ispi->dev, "FLVALSIG=0x%08x\n", buf[0]); + dev_dbg(ispi->dev, "FLMAP0=0x%08x\n", buf[1]); + + if (buf[0] != FLVALSIG_MAGIC) { + dev_warn(ispi->dev, "descriptor signature not valid\n"); + return -ENODEV; + } + + fcba = (buf[1] & FLMAP0_FCBA_MASK) << 4; + dev_dbg(ispi->dev, "FCBA=%#x\n", fcba); + + op.addr.val = fcba; + op.data.buf.in = &flcomp; + op.data.nbytes = sizeof(flcomp); + + ret = intel_spi_read(ispi, NULL, NULL, &op); + if (ret) { + dev_warn(ispi->dev, "failed to read FLCOMP\n"); + return -ENODEV; + } + + dev_dbg(ispi->dev, "FLCOMP=0x%08x\n", flcomp); + + switch (flcomp & FLCOMP_C0DEN_MASK) { + case FLCOMP_C0DEN_512K: + ispi->chip0_size = SZ_512K; + break; + case FLCOMP_C0DEN_1M: + ispi->chip0_size = SZ_1M; + break; + case FLCOMP_C0DEN_2M: + ispi->chip0_size = SZ_2M; + break; + case FLCOMP_C0DEN_4M: + ispi->chip0_size = SZ_4M; + break; + case FLCOMP_C0DEN_8M: + ispi->chip0_size = SZ_8M; + break; + case FLCOMP_C0DEN_16M: + ispi->chip0_size = SZ_16M; + break; + case FLCOMP_C0DEN_32M: + ispi->chip0_size = SZ_32M; + break; + case FLCOMP_C0DEN_64M: + ispi->chip0_size = SZ_64M; + break; + default: + return -EINVAL; + } + + dev_dbg(ispi->dev, "chip0 size %zd KB\n", ispi->chip0_size / SZ_1K); + + nc = (buf[1] & FLMAP0_NC_MASK) >> FLMAP0_NC_SHIFT; + if (!nc) + ispi->master->num_chipselect = 1; + else if (nc == 1) + ispi->master->num_chipselect = 2; + else + return -EINVAL; + + dev_dbg(ispi->dev, "%u flash components found\n", + ispi->master->num_chipselect); + return 0; +} + +static int intel_spi_populate_chip(struct intel_spi *ispi) +{ + struct flash_platform_data *pdata; + struct spi_board_info chip; + int ret; + + pdata = devm_kzalloc(ispi->dev, sizeof(*pdata), GFP_KERNEL); + if (!pdata) + return -ENOMEM; + + pdata->nr_parts = 1; + pdata->parts = devm_kcalloc(ispi->dev, pdata->nr_parts, + sizeof(*pdata->parts), GFP_KERNEL); + if (!pdata->parts) + return -ENOMEM; + + intel_spi_fill_partition(ispi, pdata->parts); + + memset(&chip, 0, sizeof(chip)); + snprintf(chip.modalias, 8, "spi-nor"); + chip.platform_data = pdata; + + if (!spi_new_device(ispi->master, &chip)) + return -ENODEV; + + ret = intel_spi_read_desc(ispi); + if (ret) + return ret; + + /* Add the second chip if present */ + if (ispi->master->num_chipselect < 2) + return 0; + + chip.platform_data = NULL; + chip.chip_select = 1; + + if (!spi_new_device(ispi->master, &chip)) + return -ENODEV; + return 0; +} + +/** + * intel_spi_probe() - Probe the Intel SPI flash controller + * @dev: Pointer to the parent device + * @mem: MMIO resource + * @info: Platform specific information + * + * Probes Intel SPI flash controller and creates the flash chip device. + * Returns %0 on success and negative errno in case of failure. + */ +int intel_spi_probe(struct device *dev, struct resource *mem, + const struct intel_spi_boardinfo *info) +{ + struct spi_controller *master; + struct intel_spi *ispi; + int ret; + + master = devm_spi_alloc_master(dev, sizeof(*ispi)); + if (!master) + return -ENOMEM; + + master->mem_ops = &intel_spi_mem_ops; + + ispi = spi_master_get_devdata(master); + + ispi->base = devm_ioremap_resource(dev, mem); + if (IS_ERR(ispi->base)) + return PTR_ERR(ispi->base); + + ispi->dev = dev; + ispi->master = master; + ispi->info = info; + + ret = intel_spi_init(ispi); + if (ret) + return ret; + + ret = devm_spi_register_master(dev, master); + if (ret) + return ret; + + return intel_spi_populate_chip(ispi); +} +EXPORT_SYMBOL_GPL(intel_spi_probe); + +MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver"); +MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); +MODULE_LICENSE("GPL v2"); |