diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/video/fbdev/kyro/STG4000InitDevice.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/video/fbdev/kyro/STG4000InitDevice.c')
-rw-r--r-- | drivers/video/fbdev/kyro/STG4000InitDevice.c | 323 |
1 files changed, 323 insertions, 0 deletions
diff --git a/drivers/video/fbdev/kyro/STG4000InitDevice.c b/drivers/video/fbdev/kyro/STG4000InitDevice.c new file mode 100644 index 000000000..edfa0a048 --- /dev/null +++ b/drivers/video/fbdev/kyro/STG4000InitDevice.c @@ -0,0 +1,323 @@ +/* + * linux/drivers/video/kyro/STG4000InitDevice.c + * + * Copyright (C) 2000 Imagination Technologies Ltd + * Copyright (C) 2002 STMicroelectronics + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file COPYING in the main directory of this archive + * for more details. + */ + +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/types.h> +#include <linux/pci.h> + +#include "STG4000Reg.h" +#include "STG4000Interface.h" + +/* SDRAM fixed settings */ +#define SDRAM_CFG_0 0x49A1 +#define SDRAM_CFG_1 0xA732 +#define SDRAM_CFG_2 0x31 +#define SDRAM_ARB_CFG 0xA0 +#define SDRAM_REFRESH 0x20 + +/* Reset values */ +#define PMX2_SOFTRESET_DAC_RST 0x0001 +#define PMX2_SOFTRESET_C1_RST 0x0004 +#define PMX2_SOFTRESET_C2_RST 0x0008 +#define PMX2_SOFTRESET_3D_RST 0x0010 +#define PMX2_SOFTRESET_VIDIN_RST 0x0020 +#define PMX2_SOFTRESET_TLB_RST 0x0040 +#define PMX2_SOFTRESET_SD_RST 0x0080 +#define PMX2_SOFTRESET_VGA_RST 0x0100 +#define PMX2_SOFTRESET_ROM_RST 0x0200 /* reserved bit, do not reset */ +#define PMX2_SOFTRESET_TA_RST 0x0400 +#define PMX2_SOFTRESET_REG_RST 0x4000 +#define PMX2_SOFTRESET_ALL 0x7fff + +/* Core clock freq */ +#define CORE_PLL_FREQ 1000000 + +/* Reference Clock freq */ +#define REF_FREQ 14318 + +/* PCI Registers */ +static u16 CorePllControl = 0x70; + +#define PCI_CONFIG_SUBSYS_ID 0x2e + +/* Misc */ +#define CORE_PLL_MODE_REG_0_7 3 +#define CORE_PLL_MODE_REG_8_15 2 +#define CORE_PLL_MODE_CONFIG_REG 1 +#define DAC_PLL_CONFIG_REG 0 + +#define STG_MAX_VCO 500000 +#define STG_MIN_VCO 100000 + +/* PLL Clock */ +#define STG4K3_PLL_SCALER 8 /* scale numbers by 2^8 for fixed point calc */ +#define STG4K3_PLL_MIN_R 2 /* Minimum multiplier */ +#define STG4K3_PLL_MAX_R 33 /* Max */ +#define STG4K3_PLL_MIN_F 2 /* Minimum divisor */ +#define STG4K3_PLL_MAX_F 513 /* Max */ +#define STG4K3_PLL_MIN_OD 0 /* Min output divider (shift) */ +#define STG4K3_PLL_MAX_OD 2 /* Max */ +#define STG4K3_PLL_MIN_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate */ +#define STG4K3_PLL_MAX_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate */ +#define STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate (restricted) */ +#define STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate (restricted) */ +#define STG4K3_PLL_MINR_VCO 100000000 /* Min VCO rate (restricted) */ +#define STG4K3_PLL_MAX_VCO 500000000 /* Max VCO rate */ +#define STG4K3_PLL_MAXR_VCO 500000000 /* Max VCO rate (restricted) */ + +#define OS_DELAY(X) \ +{ \ +volatile u32 i,count=0; \ + for(i=0;i<X;i++) count++; \ +} + +static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg, + u32 dwSubSysID, u32 dwRevID) +{ + u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 }; + u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 }; + u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 }; + u32 adwSDRAMRsh[] = { 36, 39, 40 }; + u32 adwChipSpeed[] = { 110, 120, 125 }; + u32 dwMemTypeIdx; + u32 dwChipSpeedIdx; + + /* Get memory tpye and chip speed indexs from the SubSysDevID */ + dwMemTypeIdx = (dwSubSysID & 0x70) >> 4; + dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7; + + if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2) + return 0; + + /* Program SD-RAM interface */ + STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]); + if (dwRevID < 5) { + STG_WRITE_REG(SDRAMConf0, 0x49A1); + STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]); + } else { + STG_WRITE_REG(SDRAMConf0, 0x4DF1); + STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]); + } + + STG_WRITE_REG(SDRAMConf2, 0x31); + STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]); + + return adwChipSpeed[dwChipSpeedIdx] * 10000; +} + +u32 ProgramClock(u32 refClock, + u32 coreClock, + u32 * FOut, u32 * ROut, u32 * POut) +{ + u32 R = 0, F = 0, OD = 0, ODIndex = 0; + u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0; + u32 ulBestClk = 0, ulBestScore = 0; + u32 ulScore, ulPhaseScore, ulVcoScore; + u32 ulTmp = 0, ulVCO; + u32 ulScaleClockReq, ulMinClock, ulMaxClock; + static const unsigned char ODValues[] = { 1, 2, 0 }; + + /* Translate clock in Hz */ + coreClock *= 100; /* in Hz */ + refClock *= 1000; /* in Hz */ + + /* Work out acceptable clock + * The method calculates ~ +- 0.4% (1/256) + */ + ulMinClock = coreClock - (coreClock >> 8); + ulMaxClock = coreClock + (coreClock >> 8); + + /* Scale clock required for use in calculations */ + ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER; + + /* Iterate through post divider values */ + for (ODIndex = 0; ODIndex < 3; ODIndex++) { + OD = ODValues[ODIndex]; + R = STG4K3_PLL_MIN_R; + + /* loop for pre-divider from min to max */ + while (R <= STG4K3_PLL_MAX_R) { + /* estimate required feedback multiplier */ + ulTmp = R * (ulScaleClockReq << OD); + + /* F = ClkRequired * R * (2^OD) / Fref */ + F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER)); + + /* compensate for accuracy */ + if (F > STG4K3_PLL_MIN_F) + F--; + + + /* + * We should be close to our target frequency (if it's + * achievable with current OD & R) let's iterate + * through F for best fit + */ + while ((F >= STG4K3_PLL_MIN_F) && + (F <= STG4K3_PLL_MAX_F)) { + /* Calc VCO at full accuracy */ + ulVCO = refClock / R; + ulVCO = F * ulVCO; + + /* + * Check it's within restricted VCO range + * unless of course the desired frequency is + * above the restricted range, then test + * against VCO limit + */ + if ((ulVCO >= STG4K3_PLL_MINR_VCO) && + ((ulVCO <= STG4K3_PLL_MAXR_VCO) || + ((coreClock > STG4K3_PLL_MAXR_VCO) + && (ulVCO <= STG4K3_PLL_MAX_VCO)))) { + ulTmp = (ulVCO >> OD); /* Clock = VCO / (2^OD) */ + + /* Is this clock good enough? */ + if ((ulTmp >= ulMinClock) + && (ulTmp <= ulMaxClock)) { + ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10); + + ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10); + ulScore = ulPhaseScore + ulVcoScore; + + if (!ulBestScore) { + ulBestOD = OD; + ulBestF = F; + ulBestR = R; + ulBestClk = ulTmp; + ulBestScore = + ulScore; + } + /* is this better, ( aim for highest Score) */ + /*-------------------------------------------------------------------------- + Here we want to use a scoring system which will take account of both the + value at the phase comparater and the VCO output + to do this we will use a cumulative score between the two + The way this ends up is that we choose the first value in the loop anyway + but we shall keep this code in case new restrictions come into play + --------------------------------------------------------------------------*/ + if ((ulScore >= ulBestScore) && (OD > 0)) { + ulBestOD = OD; + ulBestF = F; + ulBestR = R; + ulBestClk = ulTmp; + ulBestScore = + ulScore; + } + } + } + F++; + } + R++; + } + } + + /* + did we find anything? + Then return RFOD + */ + if (ulBestScore) { + *ROut = ulBestR; + *FOut = ulBestF; + + if ((ulBestOD == 2) || (ulBestOD == 3)) { + *POut = 3; + } else + *POut = ulBestOD; + + } + + return (ulBestClk); +} + +int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev) +{ + u32 F, R, P; + u16 core_pll = 0, sub; + u32 tmp; + u32 ulChipSpeed; + + STG_WRITE_REG(IntMask, 0xFFFF); + + /* Disable Primary Core Thread0 */ + tmp = STG_READ_REG(Thread0Enable); + CLEAR_BIT(0); + STG_WRITE_REG(Thread0Enable, tmp); + + /* Disable Primary Core Thread1 */ + tmp = STG_READ_REG(Thread1Enable); + CLEAR_BIT(0); + STG_WRITE_REG(Thread1Enable, tmp); + + STG_WRITE_REG(SoftwareReset, + PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); + STG_WRITE_REG(SoftwareReset, + PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | + PMX2_SOFTRESET_ROM_RST); + + /* Need to play around to reset TA */ + STG_WRITE_REG(TAConfiguration, 0); + STG_WRITE_REG(SoftwareReset, + PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); + STG_WRITE_REG(SoftwareReset, + PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | + PMX2_SOFTRESET_ROM_RST); + + pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub); + + ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, + (u32)pDev->revision); + + if (ulChipSpeed == 0) + return -EINVAL; + + ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P); + + core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11)); + + /* Set Core PLL Control to Core PLL Mode */ + + /* Send bits 0:7 of the Core PLL Mode register */ + tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF)); + pci_write_config_word(pDev, CorePllControl, tmp); + /* Without some delay between the PCI config writes the clock does + not reliably set when the code is compiled -O3 + */ + OS_DELAY(1000000); + + tmp |= SET_BIT(14); + pci_write_config_word(pDev, CorePllControl, tmp); + OS_DELAY(1000000); + + /* Send bits 8:15 of the Core PLL Mode register */ + tmp = + ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8)); + pci_write_config_word(pDev, CorePllControl, tmp); + OS_DELAY(1000000); + + tmp |= SET_BIT(14); + pci_write_config_word(pDev, CorePllControl, tmp); + OS_DELAY(1000000); + + STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL); + +#if 0 + /* Enable Primary Core Thread0 */ + tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0)); + STG_WRITE_REG(Thread0Enable, tmp); + + /* Enable Primary Core Thread1 */ + tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0)); + STG_WRITE_REG(Thread1Enable, tmp); +#endif + + return 0; +} |