summaryrefslogtreecommitdiffstats
path: root/fs/f2fs/node.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /fs/f2fs/node.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/f2fs/node.c')
-rw-r--r--fs/f2fs/node.c3438
1 files changed, 3438 insertions, 0 deletions
diff --git a/fs/f2fs/node.c b/fs/f2fs/node.c
new file mode 100644
index 000000000..c6d0e0709
--- /dev/null
+++ b/fs/f2fs/node.c
@@ -0,0 +1,3438 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * fs/f2fs/node.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/mpage.h>
+#include <linux/sched/mm.h>
+#include <linux/blkdev.h>
+#include <linux/pagevec.h>
+#include <linux/swap.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+#include "xattr.h"
+#include "iostat.h"
+#include <trace/events/f2fs.h>
+
+#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
+
+static struct kmem_cache *nat_entry_slab;
+static struct kmem_cache *free_nid_slab;
+static struct kmem_cache *nat_entry_set_slab;
+static struct kmem_cache *fsync_node_entry_slab;
+
+/*
+ * Check whether the given nid is within node id range.
+ */
+int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
+ set_sbi_flag(sbi, SBI_NEED_FSCK);
+ f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
+ __func__, nid);
+ f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
+ return -EFSCORRUPTED;
+ }
+ return 0;
+}
+
+bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
+ struct sysinfo val;
+ unsigned long avail_ram;
+ unsigned long mem_size = 0;
+ bool res = false;
+
+ if (!nm_i)
+ return true;
+
+ si_meminfo(&val);
+
+ /* only uses low memory */
+ avail_ram = val.totalram - val.totalhigh;
+
+ /*
+ * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
+ */
+ if (type == FREE_NIDS) {
+ mem_size = (nm_i->nid_cnt[FREE_NID] *
+ sizeof(struct free_nid)) >> PAGE_SHIFT;
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
+ } else if (type == NAT_ENTRIES) {
+ mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
+ sizeof(struct nat_entry)) >> PAGE_SHIFT;
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
+ if (excess_cached_nats(sbi))
+ res = false;
+ } else if (type == DIRTY_DENTS) {
+ if (sbi->sb->s_bdi->wb.dirty_exceeded)
+ return false;
+ mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
+ } else if (type == INO_ENTRIES) {
+ int i;
+
+ for (i = 0; i < MAX_INO_ENTRY; i++)
+ mem_size += sbi->im[i].ino_num *
+ sizeof(struct ino_entry);
+ mem_size >>= PAGE_SHIFT;
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
+ } else if (type == READ_EXTENT_CACHE) {
+ struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
+
+ mem_size = (atomic_read(&eti->total_ext_tree) *
+ sizeof(struct extent_tree) +
+ atomic_read(&eti->total_ext_node) *
+ sizeof(struct extent_node)) >> PAGE_SHIFT;
+ res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
+ } else if (type == DISCARD_CACHE) {
+ mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
+ sizeof(struct discard_cmd)) >> PAGE_SHIFT;
+ res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
+ } else if (type == COMPRESS_PAGE) {
+#ifdef CONFIG_F2FS_FS_COMPRESSION
+ unsigned long free_ram = val.freeram;
+
+ /*
+ * free memory is lower than watermark or cached page count
+ * exceed threshold, deny caching compress page.
+ */
+ res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
+ (COMPRESS_MAPPING(sbi)->nrpages <
+ free_ram * sbi->compress_percent / 100);
+#else
+ res = false;
+#endif
+ } else {
+ if (!sbi->sb->s_bdi->wb.dirty_exceeded)
+ return true;
+ }
+ return res;
+}
+
+static void clear_node_page_dirty(struct page *page)
+{
+ if (PageDirty(page)) {
+ f2fs_clear_page_cache_dirty_tag(page);
+ clear_page_dirty_for_io(page);
+ dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
+ }
+ ClearPageUptodate(page);
+}
+
+static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
+}
+
+static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct page *src_page;
+ struct page *dst_page;
+ pgoff_t dst_off;
+ void *src_addr;
+ void *dst_addr;
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
+
+ /* get current nat block page with lock */
+ src_page = get_current_nat_page(sbi, nid);
+ if (IS_ERR(src_page))
+ return src_page;
+ dst_page = f2fs_grab_meta_page(sbi, dst_off);
+ f2fs_bug_on(sbi, PageDirty(src_page));
+
+ src_addr = page_address(src_page);
+ dst_addr = page_address(dst_page);
+ memcpy(dst_addr, src_addr, PAGE_SIZE);
+ set_page_dirty(dst_page);
+ f2fs_put_page(src_page, 1);
+
+ set_to_next_nat(nm_i, nid);
+
+ return dst_page;
+}
+
+static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
+ nid_t nid, bool no_fail)
+{
+ struct nat_entry *new;
+
+ new = f2fs_kmem_cache_alloc(nat_entry_slab,
+ GFP_F2FS_ZERO, no_fail, sbi);
+ if (new) {
+ nat_set_nid(new, nid);
+ nat_reset_flag(new);
+ }
+ return new;
+}
+
+static void __free_nat_entry(struct nat_entry *e)
+{
+ kmem_cache_free(nat_entry_slab, e);
+}
+
+/* must be locked by nat_tree_lock */
+static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
+ struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
+{
+ if (no_fail)
+ f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
+ else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
+ return NULL;
+
+ if (raw_ne)
+ node_info_from_raw_nat(&ne->ni, raw_ne);
+
+ spin_lock(&nm_i->nat_list_lock);
+ list_add_tail(&ne->list, &nm_i->nat_entries);
+ spin_unlock(&nm_i->nat_list_lock);
+
+ nm_i->nat_cnt[TOTAL_NAT]++;
+ nm_i->nat_cnt[RECLAIMABLE_NAT]++;
+ return ne;
+}
+
+static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
+{
+ struct nat_entry *ne;
+
+ ne = radix_tree_lookup(&nm_i->nat_root, n);
+
+ /* for recent accessed nat entry, move it to tail of lru list */
+ if (ne && !get_nat_flag(ne, IS_DIRTY)) {
+ spin_lock(&nm_i->nat_list_lock);
+ if (!list_empty(&ne->list))
+ list_move_tail(&ne->list, &nm_i->nat_entries);
+ spin_unlock(&nm_i->nat_list_lock);
+ }
+
+ return ne;
+}
+
+static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
+ nid_t start, unsigned int nr, struct nat_entry **ep)
+{
+ return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
+}
+
+static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
+{
+ radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
+ nm_i->nat_cnt[TOTAL_NAT]--;
+ nm_i->nat_cnt[RECLAIMABLE_NAT]--;
+ __free_nat_entry(e);
+}
+
+static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
+ struct nat_entry *ne)
+{
+ nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
+ struct nat_entry_set *head;
+
+ head = radix_tree_lookup(&nm_i->nat_set_root, set);
+ if (!head) {
+ head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
+ GFP_NOFS, true, NULL);
+
+ INIT_LIST_HEAD(&head->entry_list);
+ INIT_LIST_HEAD(&head->set_list);
+ head->set = set;
+ head->entry_cnt = 0;
+ f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
+ }
+ return head;
+}
+
+static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
+ struct nat_entry *ne)
+{
+ struct nat_entry_set *head;
+ bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
+
+ if (!new_ne)
+ head = __grab_nat_entry_set(nm_i, ne);
+
+ /*
+ * update entry_cnt in below condition:
+ * 1. update NEW_ADDR to valid block address;
+ * 2. update old block address to new one;
+ */
+ if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
+ !get_nat_flag(ne, IS_DIRTY)))
+ head->entry_cnt++;
+
+ set_nat_flag(ne, IS_PREALLOC, new_ne);
+
+ if (get_nat_flag(ne, IS_DIRTY))
+ goto refresh_list;
+
+ nm_i->nat_cnt[DIRTY_NAT]++;
+ nm_i->nat_cnt[RECLAIMABLE_NAT]--;
+ set_nat_flag(ne, IS_DIRTY, true);
+refresh_list:
+ spin_lock(&nm_i->nat_list_lock);
+ if (new_ne)
+ list_del_init(&ne->list);
+ else
+ list_move_tail(&ne->list, &head->entry_list);
+ spin_unlock(&nm_i->nat_list_lock);
+}
+
+static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
+ struct nat_entry_set *set, struct nat_entry *ne)
+{
+ spin_lock(&nm_i->nat_list_lock);
+ list_move_tail(&ne->list, &nm_i->nat_entries);
+ spin_unlock(&nm_i->nat_list_lock);
+
+ set_nat_flag(ne, IS_DIRTY, false);
+ set->entry_cnt--;
+ nm_i->nat_cnt[DIRTY_NAT]--;
+ nm_i->nat_cnt[RECLAIMABLE_NAT]++;
+}
+
+static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
+ nid_t start, unsigned int nr, struct nat_entry_set **ep)
+{
+ return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
+ start, nr);
+}
+
+bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
+{
+ return NODE_MAPPING(sbi) == page->mapping &&
+ IS_DNODE(page) && is_cold_node(page);
+}
+
+void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
+{
+ spin_lock_init(&sbi->fsync_node_lock);
+ INIT_LIST_HEAD(&sbi->fsync_node_list);
+ sbi->fsync_seg_id = 0;
+ sbi->fsync_node_num = 0;
+}
+
+static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
+ struct page *page)
+{
+ struct fsync_node_entry *fn;
+ unsigned long flags;
+ unsigned int seq_id;
+
+ fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
+ GFP_NOFS, true, NULL);
+
+ get_page(page);
+ fn->page = page;
+ INIT_LIST_HEAD(&fn->list);
+
+ spin_lock_irqsave(&sbi->fsync_node_lock, flags);
+ list_add_tail(&fn->list, &sbi->fsync_node_list);
+ fn->seq_id = sbi->fsync_seg_id++;
+ seq_id = fn->seq_id;
+ sbi->fsync_node_num++;
+ spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
+
+ return seq_id;
+}
+
+void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
+{
+ struct fsync_node_entry *fn;
+ unsigned long flags;
+
+ spin_lock_irqsave(&sbi->fsync_node_lock, flags);
+ list_for_each_entry(fn, &sbi->fsync_node_list, list) {
+ if (fn->page == page) {
+ list_del(&fn->list);
+ sbi->fsync_node_num--;
+ spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
+ kmem_cache_free(fsync_node_entry_slab, fn);
+ put_page(page);
+ return;
+ }
+ }
+ spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
+ f2fs_bug_on(sbi, 1);
+}
+
+void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&sbi->fsync_node_lock, flags);
+ sbi->fsync_seg_id = 0;
+ spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
+}
+
+int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+ bool need = false;
+
+ f2fs_down_read(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (e) {
+ if (!get_nat_flag(e, IS_CHECKPOINTED) &&
+ !get_nat_flag(e, HAS_FSYNCED_INODE))
+ need = true;
+ }
+ f2fs_up_read(&nm_i->nat_tree_lock);
+ return need;
+}
+
+bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+ bool is_cp = true;
+
+ f2fs_down_read(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (e && !get_nat_flag(e, IS_CHECKPOINTED))
+ is_cp = false;
+ f2fs_up_read(&nm_i->nat_tree_lock);
+ return is_cp;
+}
+
+bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+ bool need_update = true;
+
+ f2fs_down_read(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, ino);
+ if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
+ (get_nat_flag(e, IS_CHECKPOINTED) ||
+ get_nat_flag(e, HAS_FSYNCED_INODE)))
+ need_update = false;
+ f2fs_up_read(&nm_i->nat_tree_lock);
+ return need_update;
+}
+
+/* must be locked by nat_tree_lock */
+static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
+ struct f2fs_nat_entry *ne)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *new, *e;
+
+ /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
+ if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
+ return;
+
+ new = __alloc_nat_entry(sbi, nid, false);
+ if (!new)
+ return;
+
+ f2fs_down_write(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (!e)
+ e = __init_nat_entry(nm_i, new, ne, false);
+ else
+ f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
+ nat_get_blkaddr(e) !=
+ le32_to_cpu(ne->block_addr) ||
+ nat_get_version(e) != ne->version);
+ f2fs_up_write(&nm_i->nat_tree_lock);
+ if (e != new)
+ __free_nat_entry(new);
+}
+
+static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
+ block_t new_blkaddr, bool fsync_done)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+ struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
+
+ f2fs_down_write(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, ni->nid);
+ if (!e) {
+ e = __init_nat_entry(nm_i, new, NULL, true);
+ copy_node_info(&e->ni, ni);
+ f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
+ } else if (new_blkaddr == NEW_ADDR) {
+ /*
+ * when nid is reallocated,
+ * previous nat entry can be remained in nat cache.
+ * So, reinitialize it with new information.
+ */
+ copy_node_info(&e->ni, ni);
+ f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
+ }
+ /* let's free early to reduce memory consumption */
+ if (e != new)
+ __free_nat_entry(new);
+
+ /* sanity check */
+ f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
+ f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
+ new_blkaddr == NULL_ADDR);
+ f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
+ new_blkaddr == NEW_ADDR);
+ f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
+ new_blkaddr == NEW_ADDR);
+
+ /* increment version no as node is removed */
+ if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
+ unsigned char version = nat_get_version(e);
+
+ nat_set_version(e, inc_node_version(version));
+ }
+
+ /* change address */
+ nat_set_blkaddr(e, new_blkaddr);
+ if (!__is_valid_data_blkaddr(new_blkaddr))
+ set_nat_flag(e, IS_CHECKPOINTED, false);
+ __set_nat_cache_dirty(nm_i, e);
+
+ /* update fsync_mark if its inode nat entry is still alive */
+ if (ni->nid != ni->ino)
+ e = __lookup_nat_cache(nm_i, ni->ino);
+ if (e) {
+ if (fsync_done && ni->nid == ni->ino)
+ set_nat_flag(e, HAS_FSYNCED_INODE, true);
+ set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
+ }
+ f2fs_up_write(&nm_i->nat_tree_lock);
+}
+
+int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ int nr = nr_shrink;
+
+ if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
+ return 0;
+
+ spin_lock(&nm_i->nat_list_lock);
+ while (nr_shrink) {
+ struct nat_entry *ne;
+
+ if (list_empty(&nm_i->nat_entries))
+ break;
+
+ ne = list_first_entry(&nm_i->nat_entries,
+ struct nat_entry, list);
+ list_del(&ne->list);
+ spin_unlock(&nm_i->nat_list_lock);
+
+ __del_from_nat_cache(nm_i, ne);
+ nr_shrink--;
+
+ spin_lock(&nm_i->nat_list_lock);
+ }
+ spin_unlock(&nm_i->nat_list_lock);
+
+ f2fs_up_write(&nm_i->nat_tree_lock);
+ return nr - nr_shrink;
+}
+
+int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
+ struct node_info *ni, bool checkpoint_context)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_journal *journal = curseg->journal;
+ nid_t start_nid = START_NID(nid);
+ struct f2fs_nat_block *nat_blk;
+ struct page *page = NULL;
+ struct f2fs_nat_entry ne;
+ struct nat_entry *e;
+ pgoff_t index;
+ block_t blkaddr;
+ int i;
+
+ ni->nid = nid;
+retry:
+ /* Check nat cache */
+ f2fs_down_read(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (e) {
+ ni->ino = nat_get_ino(e);
+ ni->blk_addr = nat_get_blkaddr(e);
+ ni->version = nat_get_version(e);
+ f2fs_up_read(&nm_i->nat_tree_lock);
+ return 0;
+ }
+
+ /*
+ * Check current segment summary by trying to grab journal_rwsem first.
+ * This sem is on the critical path on the checkpoint requiring the above
+ * nat_tree_lock. Therefore, we should retry, if we failed to grab here
+ * while not bothering checkpoint.
+ */
+ if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
+ down_read(&curseg->journal_rwsem);
+ } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
+ !down_read_trylock(&curseg->journal_rwsem)) {
+ f2fs_up_read(&nm_i->nat_tree_lock);
+ goto retry;
+ }
+
+ i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
+ if (i >= 0) {
+ ne = nat_in_journal(journal, i);
+ node_info_from_raw_nat(ni, &ne);
+ }
+ up_read(&curseg->journal_rwsem);
+ if (i >= 0) {
+ f2fs_up_read(&nm_i->nat_tree_lock);
+ goto cache;
+ }
+
+ /* Fill node_info from nat page */
+ index = current_nat_addr(sbi, nid);
+ f2fs_up_read(&nm_i->nat_tree_lock);
+
+ page = f2fs_get_meta_page(sbi, index);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ nat_blk = (struct f2fs_nat_block *)page_address(page);
+ ne = nat_blk->entries[nid - start_nid];
+ node_info_from_raw_nat(ni, &ne);
+ f2fs_put_page(page, 1);
+cache:
+ blkaddr = le32_to_cpu(ne.block_addr);
+ if (__is_valid_data_blkaddr(blkaddr) &&
+ !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
+ return -EFAULT;
+
+ /* cache nat entry */
+ cache_nat_entry(sbi, nid, &ne);
+ return 0;
+}
+
+/*
+ * readahead MAX_RA_NODE number of node pages.
+ */
+static void f2fs_ra_node_pages(struct page *parent, int start, int n)
+{
+ struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
+ struct blk_plug plug;
+ int i, end;
+ nid_t nid;
+
+ blk_start_plug(&plug);
+
+ /* Then, try readahead for siblings of the desired node */
+ end = start + n;
+ end = min(end, NIDS_PER_BLOCK);
+ for (i = start; i < end; i++) {
+ nid = get_nid(parent, i, false);
+ f2fs_ra_node_page(sbi, nid);
+ }
+
+ blk_finish_plug(&plug);
+}
+
+pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
+{
+ const long direct_index = ADDRS_PER_INODE(dn->inode);
+ const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
+ const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
+ unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
+ int cur_level = dn->cur_level;
+ int max_level = dn->max_level;
+ pgoff_t base = 0;
+
+ if (!dn->max_level)
+ return pgofs + 1;
+
+ while (max_level-- > cur_level)
+ skipped_unit *= NIDS_PER_BLOCK;
+
+ switch (dn->max_level) {
+ case 3:
+ base += 2 * indirect_blks;
+ fallthrough;
+ case 2:
+ base += 2 * direct_blks;
+ fallthrough;
+ case 1:
+ base += direct_index;
+ break;
+ default:
+ f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
+ }
+
+ return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
+}
+
+/*
+ * The maximum depth is four.
+ * Offset[0] will have raw inode offset.
+ */
+static int get_node_path(struct inode *inode, long block,
+ int offset[4], unsigned int noffset[4])
+{
+ const long direct_index = ADDRS_PER_INODE(inode);
+ const long direct_blks = ADDRS_PER_BLOCK(inode);
+ const long dptrs_per_blk = NIDS_PER_BLOCK;
+ const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
+ const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
+ int n = 0;
+ int level = 0;
+
+ noffset[0] = 0;
+
+ if (block < direct_index) {
+ offset[n] = block;
+ goto got;
+ }
+ block -= direct_index;
+ if (block < direct_blks) {
+ offset[n++] = NODE_DIR1_BLOCK;
+ noffset[n] = 1;
+ offset[n] = block;
+ level = 1;
+ goto got;
+ }
+ block -= direct_blks;
+ if (block < direct_blks) {
+ offset[n++] = NODE_DIR2_BLOCK;
+ noffset[n] = 2;
+ offset[n] = block;
+ level = 1;
+ goto got;
+ }
+ block -= direct_blks;
+ if (block < indirect_blks) {
+ offset[n++] = NODE_IND1_BLOCK;
+ noffset[n] = 3;
+ offset[n++] = block / direct_blks;
+ noffset[n] = 4 + offset[n - 1];
+ offset[n] = block % direct_blks;
+ level = 2;
+ goto got;
+ }
+ block -= indirect_blks;
+ if (block < indirect_blks) {
+ offset[n++] = NODE_IND2_BLOCK;
+ noffset[n] = 4 + dptrs_per_blk;
+ offset[n++] = block / direct_blks;
+ noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
+ offset[n] = block % direct_blks;
+ level = 2;
+ goto got;
+ }
+ block -= indirect_blks;
+ if (block < dindirect_blks) {
+ offset[n++] = NODE_DIND_BLOCK;
+ noffset[n] = 5 + (dptrs_per_blk * 2);
+ offset[n++] = block / indirect_blks;
+ noffset[n] = 6 + (dptrs_per_blk * 2) +
+ offset[n - 1] * (dptrs_per_blk + 1);
+ offset[n++] = (block / direct_blks) % dptrs_per_blk;
+ noffset[n] = 7 + (dptrs_per_blk * 2) +
+ offset[n - 2] * (dptrs_per_blk + 1) +
+ offset[n - 1];
+ offset[n] = block % direct_blks;
+ level = 3;
+ goto got;
+ } else {
+ return -E2BIG;
+ }
+got:
+ return level;
+}
+
+/*
+ * Caller should call f2fs_put_dnode(dn).
+ * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
+ * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
+ */
+int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
+ struct page *npage[4];
+ struct page *parent = NULL;
+ int offset[4];
+ unsigned int noffset[4];
+ nid_t nids[4];
+ int level, i = 0;
+ int err = 0;
+
+ level = get_node_path(dn->inode, index, offset, noffset);
+ if (level < 0)
+ return level;
+
+ nids[0] = dn->inode->i_ino;
+ npage[0] = dn->inode_page;
+
+ if (!npage[0]) {
+ npage[0] = f2fs_get_node_page(sbi, nids[0]);
+ if (IS_ERR(npage[0]))
+ return PTR_ERR(npage[0]);
+ }
+
+ /* if inline_data is set, should not report any block indices */
+ if (f2fs_has_inline_data(dn->inode) && index) {
+ err = -ENOENT;
+ f2fs_put_page(npage[0], 1);
+ goto release_out;
+ }
+
+ parent = npage[0];
+ if (level != 0)
+ nids[1] = get_nid(parent, offset[0], true);
+ dn->inode_page = npage[0];
+ dn->inode_page_locked = true;
+
+ /* get indirect or direct nodes */
+ for (i = 1; i <= level; i++) {
+ bool done = false;
+
+ if (!nids[i] && mode == ALLOC_NODE) {
+ /* alloc new node */
+ if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
+ err = -ENOSPC;
+ goto release_pages;
+ }
+
+ dn->nid = nids[i];
+ npage[i] = f2fs_new_node_page(dn, noffset[i]);
+ if (IS_ERR(npage[i])) {
+ f2fs_alloc_nid_failed(sbi, nids[i]);
+ err = PTR_ERR(npage[i]);
+ goto release_pages;
+ }
+
+ set_nid(parent, offset[i - 1], nids[i], i == 1);
+ f2fs_alloc_nid_done(sbi, nids[i]);
+ done = true;
+ } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
+ npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
+ if (IS_ERR(npage[i])) {
+ err = PTR_ERR(npage[i]);
+ goto release_pages;
+ }
+ done = true;
+ }
+ if (i == 1) {
+ dn->inode_page_locked = false;
+ unlock_page(parent);
+ } else {
+ f2fs_put_page(parent, 1);
+ }
+
+ if (!done) {
+ npage[i] = f2fs_get_node_page(sbi, nids[i]);
+ if (IS_ERR(npage[i])) {
+ err = PTR_ERR(npage[i]);
+ f2fs_put_page(npage[0], 0);
+ goto release_out;
+ }
+ }
+ if (i < level) {
+ parent = npage[i];
+ nids[i + 1] = get_nid(parent, offset[i], false);
+ }
+ }
+ dn->nid = nids[level];
+ dn->ofs_in_node = offset[level];
+ dn->node_page = npage[level];
+ dn->data_blkaddr = f2fs_data_blkaddr(dn);
+
+ if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
+ f2fs_sb_has_readonly(sbi)) {
+ unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
+ block_t blkaddr;
+
+ if (!c_len)
+ goto out;
+
+ blkaddr = f2fs_data_blkaddr(dn);
+ if (blkaddr == COMPRESS_ADDR)
+ blkaddr = data_blkaddr(dn->inode, dn->node_page,
+ dn->ofs_in_node + 1);
+
+ f2fs_update_read_extent_tree_range_compressed(dn->inode,
+ index, blkaddr,
+ F2FS_I(dn->inode)->i_cluster_size,
+ c_len);
+ }
+out:
+ return 0;
+
+release_pages:
+ f2fs_put_page(parent, 1);
+ if (i > 1)
+ f2fs_put_page(npage[0], 0);
+release_out:
+ dn->inode_page = NULL;
+ dn->node_page = NULL;
+ if (err == -ENOENT) {
+ dn->cur_level = i;
+ dn->max_level = level;
+ dn->ofs_in_node = offset[level];
+ }
+ return err;
+}
+
+static int truncate_node(struct dnode_of_data *dn)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
+ struct node_info ni;
+ int err;
+ pgoff_t index;
+
+ err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
+ if (err)
+ return err;
+
+ /* Deallocate node address */
+ f2fs_invalidate_blocks(sbi, ni.blk_addr);
+ dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
+ set_node_addr(sbi, &ni, NULL_ADDR, false);
+
+ if (dn->nid == dn->inode->i_ino) {
+ f2fs_remove_orphan_inode(sbi, dn->nid);
+ dec_valid_inode_count(sbi);
+ f2fs_inode_synced(dn->inode);
+ }
+
+ clear_node_page_dirty(dn->node_page);
+ set_sbi_flag(sbi, SBI_IS_DIRTY);
+
+ index = dn->node_page->index;
+ f2fs_put_page(dn->node_page, 1);
+
+ invalidate_mapping_pages(NODE_MAPPING(sbi),
+ index, index);
+
+ dn->node_page = NULL;
+ trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
+
+ return 0;
+}
+
+static int truncate_dnode(struct dnode_of_data *dn)
+{
+ struct page *page;
+ int err;
+
+ if (dn->nid == 0)
+ return 1;
+
+ /* get direct node */
+ page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
+ if (PTR_ERR(page) == -ENOENT)
+ return 1;
+ else if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ /* Make dnode_of_data for parameter */
+ dn->node_page = page;
+ dn->ofs_in_node = 0;
+ f2fs_truncate_data_blocks(dn);
+ err = truncate_node(dn);
+ if (err) {
+ f2fs_put_page(page, 1);
+ return err;
+ }
+
+ return 1;
+}
+
+static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
+ int ofs, int depth)
+{
+ struct dnode_of_data rdn = *dn;
+ struct page *page;
+ struct f2fs_node *rn;
+ nid_t child_nid;
+ unsigned int child_nofs;
+ int freed = 0;
+ int i, ret;
+
+ if (dn->nid == 0)
+ return NIDS_PER_BLOCK + 1;
+
+ trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
+
+ page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
+ if (IS_ERR(page)) {
+ trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
+ return PTR_ERR(page);
+ }
+
+ f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
+
+ rn = F2FS_NODE(page);
+ if (depth < 3) {
+ for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
+ child_nid = le32_to_cpu(rn->in.nid[i]);
+ if (child_nid == 0)
+ continue;
+ rdn.nid = child_nid;
+ ret = truncate_dnode(&rdn);
+ if (ret < 0)
+ goto out_err;
+ if (set_nid(page, i, 0, false))
+ dn->node_changed = true;
+ }
+ } else {
+ child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
+ for (i = ofs; i < NIDS_PER_BLOCK; i++) {
+ child_nid = le32_to_cpu(rn->in.nid[i]);
+ if (child_nid == 0) {
+ child_nofs += NIDS_PER_BLOCK + 1;
+ continue;
+ }
+ rdn.nid = child_nid;
+ ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
+ if (ret == (NIDS_PER_BLOCK + 1)) {
+ if (set_nid(page, i, 0, false))
+ dn->node_changed = true;
+ child_nofs += ret;
+ } else if (ret < 0 && ret != -ENOENT) {
+ goto out_err;
+ }
+ }
+ freed = child_nofs;
+ }
+
+ if (!ofs) {
+ /* remove current indirect node */
+ dn->node_page = page;
+ ret = truncate_node(dn);
+ if (ret)
+ goto out_err;
+ freed++;
+ } else {
+ f2fs_put_page(page, 1);
+ }
+ trace_f2fs_truncate_nodes_exit(dn->inode, freed);
+ return freed;
+
+out_err:
+ f2fs_put_page(page, 1);
+ trace_f2fs_truncate_nodes_exit(dn->inode, ret);
+ return ret;
+}
+
+static int truncate_partial_nodes(struct dnode_of_data *dn,
+ struct f2fs_inode *ri, int *offset, int depth)
+{
+ struct page *pages[2];
+ nid_t nid[3];
+ nid_t child_nid;
+ int err = 0;
+ int i;
+ int idx = depth - 2;
+
+ nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
+ if (!nid[0])
+ return 0;
+
+ /* get indirect nodes in the path */
+ for (i = 0; i < idx + 1; i++) {
+ /* reference count'll be increased */
+ pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
+ if (IS_ERR(pages[i])) {
+ err = PTR_ERR(pages[i]);
+ idx = i - 1;
+ goto fail;
+ }
+ nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
+ }
+
+ f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
+
+ /* free direct nodes linked to a partial indirect node */
+ for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
+ child_nid = get_nid(pages[idx], i, false);
+ if (!child_nid)
+ continue;
+ dn->nid = child_nid;
+ err = truncate_dnode(dn);
+ if (err < 0)
+ goto fail;
+ if (set_nid(pages[idx], i, 0, false))
+ dn->node_changed = true;
+ }
+
+ if (offset[idx + 1] == 0) {
+ dn->node_page = pages[idx];
+ dn->nid = nid[idx];
+ err = truncate_node(dn);
+ if (err)
+ goto fail;
+ } else {
+ f2fs_put_page(pages[idx], 1);
+ }
+ offset[idx]++;
+ offset[idx + 1] = 0;
+ idx--;
+fail:
+ for (i = idx; i >= 0; i--)
+ f2fs_put_page(pages[i], 1);
+
+ trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
+
+ return err;
+}
+
+/*
+ * All the block addresses of data and nodes should be nullified.
+ */
+int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+ int err = 0, cont = 1;
+ int level, offset[4], noffset[4];
+ unsigned int nofs = 0;
+ struct f2fs_inode *ri;
+ struct dnode_of_data dn;
+ struct page *page;
+
+ trace_f2fs_truncate_inode_blocks_enter(inode, from);
+
+ level = get_node_path(inode, from, offset, noffset);
+ if (level < 0) {
+ trace_f2fs_truncate_inode_blocks_exit(inode, level);
+ return level;
+ }
+
+ page = f2fs_get_node_page(sbi, inode->i_ino);
+ if (IS_ERR(page)) {
+ trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
+ return PTR_ERR(page);
+ }
+
+ set_new_dnode(&dn, inode, page, NULL, 0);
+ unlock_page(page);
+
+ ri = F2FS_INODE(page);
+ switch (level) {
+ case 0:
+ case 1:
+ nofs = noffset[1];
+ break;
+ case 2:
+ nofs = noffset[1];
+ if (!offset[level - 1])
+ goto skip_partial;
+ err = truncate_partial_nodes(&dn, ri, offset, level);
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ nofs += 1 + NIDS_PER_BLOCK;
+ break;
+ case 3:
+ nofs = 5 + 2 * NIDS_PER_BLOCK;
+ if (!offset[level - 1])
+ goto skip_partial;
+ err = truncate_partial_nodes(&dn, ri, offset, level);
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ break;
+ default:
+ BUG();
+ }
+
+skip_partial:
+ while (cont) {
+ dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
+ switch (offset[0]) {
+ case NODE_DIR1_BLOCK:
+ case NODE_DIR2_BLOCK:
+ err = truncate_dnode(&dn);
+ break;
+
+ case NODE_IND1_BLOCK:
+ case NODE_IND2_BLOCK:
+ err = truncate_nodes(&dn, nofs, offset[1], 2);
+ break;
+
+ case NODE_DIND_BLOCK:
+ err = truncate_nodes(&dn, nofs, offset[1], 3);
+ cont = 0;
+ break;
+
+ default:
+ BUG();
+ }
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ if (offset[1] == 0 &&
+ ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
+ lock_page(page);
+ BUG_ON(page->mapping != NODE_MAPPING(sbi));
+ f2fs_wait_on_page_writeback(page, NODE, true, true);
+ ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
+ set_page_dirty(page);
+ unlock_page(page);
+ }
+ offset[1] = 0;
+ offset[0]++;
+ nofs += err;
+ }
+fail:
+ f2fs_put_page(page, 0);
+ trace_f2fs_truncate_inode_blocks_exit(inode, err);
+ return err > 0 ? 0 : err;
+}
+
+/* caller must lock inode page */
+int f2fs_truncate_xattr_node(struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+ nid_t nid = F2FS_I(inode)->i_xattr_nid;
+ struct dnode_of_data dn;
+ struct page *npage;
+ int err;
+
+ if (!nid)
+ return 0;
+
+ npage = f2fs_get_node_page(sbi, nid);
+ if (IS_ERR(npage))
+ return PTR_ERR(npage);
+
+ set_new_dnode(&dn, inode, NULL, npage, nid);
+ err = truncate_node(&dn);
+ if (err) {
+ f2fs_put_page(npage, 1);
+ return err;
+ }
+
+ f2fs_i_xnid_write(inode, 0);
+
+ return 0;
+}
+
+/*
+ * Caller should grab and release a rwsem by calling f2fs_lock_op() and
+ * f2fs_unlock_op().
+ */
+int f2fs_remove_inode_page(struct inode *inode)
+{
+ struct dnode_of_data dn;
+ int err;
+
+ set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
+ err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
+ if (err)
+ return err;
+
+ err = f2fs_truncate_xattr_node(inode);
+ if (err) {
+ f2fs_put_dnode(&dn);
+ return err;
+ }
+
+ /* remove potential inline_data blocks */
+ if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
+ S_ISLNK(inode->i_mode))
+ f2fs_truncate_data_blocks_range(&dn, 1);
+
+ /* 0 is possible, after f2fs_new_inode() has failed */
+ if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
+ f2fs_put_dnode(&dn);
+ return -EIO;
+ }
+
+ if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
+ f2fs_warn(F2FS_I_SB(inode),
+ "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
+ inode->i_ino, (unsigned long long)inode->i_blocks);
+ set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
+ }
+
+ /* will put inode & node pages */
+ err = truncate_node(&dn);
+ if (err) {
+ f2fs_put_dnode(&dn);
+ return err;
+ }
+ return 0;
+}
+
+struct page *f2fs_new_inode_page(struct inode *inode)
+{
+ struct dnode_of_data dn;
+
+ /* allocate inode page for new inode */
+ set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
+
+ /* caller should f2fs_put_page(page, 1); */
+ return f2fs_new_node_page(&dn, 0);
+}
+
+struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
+ struct node_info new_ni;
+ struct page *page;
+ int err;
+
+ if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
+ return ERR_PTR(-EPERM);
+
+ page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
+ goto fail;
+
+#ifdef CONFIG_F2FS_CHECK_FS
+ err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
+ if (err) {
+ dec_valid_node_count(sbi, dn->inode, !ofs);
+ goto fail;
+ }
+ if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
+ err = -EFSCORRUPTED;
+ set_sbi_flag(sbi, SBI_NEED_FSCK);
+ f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
+ goto fail;
+ }
+#endif
+ new_ni.nid = dn->nid;
+ new_ni.ino = dn->inode->i_ino;
+ new_ni.blk_addr = NULL_ADDR;
+ new_ni.flag = 0;
+ new_ni.version = 0;
+ set_node_addr(sbi, &new_ni, NEW_ADDR, false);
+
+ f2fs_wait_on_page_writeback(page, NODE, true, true);
+ fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
+ set_cold_node(page, S_ISDIR(dn->inode->i_mode));
+ if (!PageUptodate(page))
+ SetPageUptodate(page);
+ if (set_page_dirty(page))
+ dn->node_changed = true;
+
+ if (f2fs_has_xattr_block(ofs))
+ f2fs_i_xnid_write(dn->inode, dn->nid);
+
+ if (ofs == 0)
+ inc_valid_inode_count(sbi);
+ return page;
+
+fail:
+ clear_node_page_dirty(page);
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+}
+
+/*
+ * Caller should do after getting the following values.
+ * 0: f2fs_put_page(page, 0)
+ * LOCKED_PAGE or error: f2fs_put_page(page, 1)
+ */
+static int read_node_page(struct page *page, blk_opf_t op_flags)
+{
+ struct f2fs_sb_info *sbi = F2FS_P_SB(page);
+ struct node_info ni;
+ struct f2fs_io_info fio = {
+ .sbi = sbi,
+ .type = NODE,
+ .op = REQ_OP_READ,
+ .op_flags = op_flags,
+ .page = page,
+ .encrypted_page = NULL,
+ };
+ int err;
+
+ if (PageUptodate(page)) {
+ if (!f2fs_inode_chksum_verify(sbi, page)) {
+ ClearPageUptodate(page);
+ return -EFSBADCRC;
+ }
+ return LOCKED_PAGE;
+ }
+
+ err = f2fs_get_node_info(sbi, page->index, &ni, false);
+ if (err)
+ return err;
+
+ /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
+ if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
+ ClearPageUptodate(page);
+ return -ENOENT;
+ }
+
+ fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
+
+ err = f2fs_submit_page_bio(&fio);
+
+ if (!err)
+ f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
+
+ return err;
+}
+
+/*
+ * Readahead a node page
+ */
+void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct page *apage;
+ int err;
+
+ if (!nid)
+ return;
+ if (f2fs_check_nid_range(sbi, nid))
+ return;
+
+ apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
+ if (apage)
+ return;
+
+ apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
+ if (!apage)
+ return;
+
+ err = read_node_page(apage, REQ_RAHEAD);
+ f2fs_put_page(apage, err ? 1 : 0);
+}
+
+static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
+ struct page *parent, int start)
+{
+ struct page *page;
+ int err;
+
+ if (!nid)
+ return ERR_PTR(-ENOENT);
+ if (f2fs_check_nid_range(sbi, nid))
+ return ERR_PTR(-EINVAL);
+repeat:
+ page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ err = read_node_page(page, 0);
+ if (err < 0) {
+ goto out_put_err;
+ } else if (err == LOCKED_PAGE) {
+ err = 0;
+ goto page_hit;
+ }
+
+ if (parent)
+ f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
+
+ lock_page(page);
+
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+ f2fs_put_page(page, 1);
+ goto repeat;
+ }
+
+ if (unlikely(!PageUptodate(page))) {
+ err = -EIO;
+ goto out_err;
+ }
+
+ if (!f2fs_inode_chksum_verify(sbi, page)) {
+ err = -EFSBADCRC;
+ goto out_err;
+ }
+page_hit:
+ if (likely(nid == nid_of_node(page)))
+ return page;
+
+ f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
+ nid, nid_of_node(page), ino_of_node(page),
+ ofs_of_node(page), cpver_of_node(page),
+ next_blkaddr_of_node(page));
+ set_sbi_flag(sbi, SBI_NEED_FSCK);
+ f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
+ err = -EFSCORRUPTED;
+out_err:
+ ClearPageUptodate(page);
+out_put_err:
+ /* ENOENT comes from read_node_page which is not an error. */
+ if (err != -ENOENT)
+ f2fs_handle_page_eio(sbi, page->index, NODE);
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+}
+
+struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
+{
+ return __get_node_page(sbi, nid, NULL, 0);
+}
+
+struct page *f2fs_get_node_page_ra(struct page *parent, int start)
+{
+ struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
+ nid_t nid = get_nid(parent, start, false);
+
+ return __get_node_page(sbi, nid, parent, start);
+}
+
+static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct inode *inode;
+ struct page *page;
+ int ret;
+
+ /* should flush inline_data before evict_inode */
+ inode = ilookup(sbi->sb, ino);
+ if (!inode)
+ return;
+
+ page = f2fs_pagecache_get_page(inode->i_mapping, 0,
+ FGP_LOCK|FGP_NOWAIT, 0);
+ if (!page)
+ goto iput_out;
+
+ if (!PageUptodate(page))
+ goto page_out;
+
+ if (!PageDirty(page))
+ goto page_out;
+
+ if (!clear_page_dirty_for_io(page))
+ goto page_out;
+
+ ret = f2fs_write_inline_data(inode, page);
+ inode_dec_dirty_pages(inode);
+ f2fs_remove_dirty_inode(inode);
+ if (ret)
+ set_page_dirty(page);
+page_out:
+ f2fs_put_page(page, 1);
+iput_out:
+ iput(inode);
+}
+
+static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ pgoff_t index;
+ struct pagevec pvec;
+ struct page *last_page = NULL;
+ int nr_pages;
+
+ pagevec_init(&pvec);
+ index = 0;
+
+ while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
+ PAGECACHE_TAG_DIRTY))) {
+ int i;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+
+ if (unlikely(f2fs_cp_error(sbi))) {
+ f2fs_put_page(last_page, 0);
+ pagevec_release(&pvec);
+ return ERR_PTR(-EIO);
+ }
+
+ if (!IS_DNODE(page) || !is_cold_node(page))
+ continue;
+ if (ino_of_node(page) != ino)
+ continue;
+
+ lock_page(page);
+
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+continue_unlock:
+ unlock_page(page);
+ continue;
+ }
+ if (ino_of_node(page) != ino)
+ goto continue_unlock;
+
+ if (!PageDirty(page)) {
+ /* someone wrote it for us */
+ goto continue_unlock;
+ }
+
+ if (last_page)
+ f2fs_put_page(last_page, 0);
+
+ get_page(page);
+ last_page = page;
+ unlock_page(page);
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+ }
+ return last_page;
+}
+
+static int __write_node_page(struct page *page, bool atomic, bool *submitted,
+ struct writeback_control *wbc, bool do_balance,
+ enum iostat_type io_type, unsigned int *seq_id)
+{
+ struct f2fs_sb_info *sbi = F2FS_P_SB(page);
+ nid_t nid;
+ struct node_info ni;
+ struct f2fs_io_info fio = {
+ .sbi = sbi,
+ .ino = ino_of_node(page),
+ .type = NODE,
+ .op = REQ_OP_WRITE,
+ .op_flags = wbc_to_write_flags(wbc),
+ .page = page,
+ .encrypted_page = NULL,
+ .submitted = false,
+ .io_type = io_type,
+ .io_wbc = wbc,
+ };
+ unsigned int seq;
+
+ trace_f2fs_writepage(page, NODE);
+
+ if (unlikely(f2fs_cp_error(sbi))) {
+ ClearPageUptodate(page);
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+ unlock_page(page);
+ return 0;
+ }
+
+ if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
+ goto redirty_out;
+
+ if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
+ wbc->sync_mode == WB_SYNC_NONE &&
+ IS_DNODE(page) && is_cold_node(page))
+ goto redirty_out;
+
+ /* get old block addr of this node page */
+ nid = nid_of_node(page);
+ f2fs_bug_on(sbi, page->index != nid);
+
+ if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
+ goto redirty_out;
+
+ if (wbc->for_reclaim) {
+ if (!f2fs_down_read_trylock(&sbi->node_write))
+ goto redirty_out;
+ } else {
+ f2fs_down_read(&sbi->node_write);
+ }
+
+ /* This page is already truncated */
+ if (unlikely(ni.blk_addr == NULL_ADDR)) {
+ ClearPageUptodate(page);
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+ f2fs_up_read(&sbi->node_write);
+ unlock_page(page);
+ return 0;
+ }
+
+ if (__is_valid_data_blkaddr(ni.blk_addr) &&
+ !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
+ DATA_GENERIC_ENHANCE)) {
+ f2fs_up_read(&sbi->node_write);
+ goto redirty_out;
+ }
+
+ if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
+ fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
+
+ /* should add to global list before clearing PAGECACHE status */
+ if (f2fs_in_warm_node_list(sbi, page)) {
+ seq = f2fs_add_fsync_node_entry(sbi, page);
+ if (seq_id)
+ *seq_id = seq;
+ }
+
+ set_page_writeback(page);
+ ClearPageError(page);
+
+ fio.old_blkaddr = ni.blk_addr;
+ f2fs_do_write_node_page(nid, &fio);
+ set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+ f2fs_up_read(&sbi->node_write);
+
+ if (wbc->for_reclaim) {
+ f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
+ submitted = NULL;
+ }
+
+ unlock_page(page);
+
+ if (unlikely(f2fs_cp_error(sbi))) {
+ f2fs_submit_merged_write(sbi, NODE);
+ submitted = NULL;
+ }
+ if (submitted)
+ *submitted = fio.submitted;
+
+ if (do_balance)
+ f2fs_balance_fs(sbi, false);
+ return 0;
+
+redirty_out:
+ redirty_page_for_writepage(wbc, page);
+ return AOP_WRITEPAGE_ACTIVATE;
+}
+
+int f2fs_move_node_page(struct page *node_page, int gc_type)
+{
+ int err = 0;
+
+ if (gc_type == FG_GC) {
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_ALL,
+ .nr_to_write = 1,
+ .for_reclaim = 0,
+ };
+
+ f2fs_wait_on_page_writeback(node_page, NODE, true, true);
+
+ set_page_dirty(node_page);
+
+ if (!clear_page_dirty_for_io(node_page)) {
+ err = -EAGAIN;
+ goto out_page;
+ }
+
+ if (__write_node_page(node_page, false, NULL,
+ &wbc, false, FS_GC_NODE_IO, NULL)) {
+ err = -EAGAIN;
+ unlock_page(node_page);
+ }
+ goto release_page;
+ } else {
+ /* set page dirty and write it */
+ if (!PageWriteback(node_page))
+ set_page_dirty(node_page);
+ }
+out_page:
+ unlock_page(node_page);
+release_page:
+ f2fs_put_page(node_page, 0);
+ return err;
+}
+
+static int f2fs_write_node_page(struct page *page,
+ struct writeback_control *wbc)
+{
+ return __write_node_page(page, false, NULL, wbc, false,
+ FS_NODE_IO, NULL);
+}
+
+int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
+ struct writeback_control *wbc, bool atomic,
+ unsigned int *seq_id)
+{
+ pgoff_t index;
+ struct pagevec pvec;
+ int ret = 0;
+ struct page *last_page = NULL;
+ bool marked = false;
+ nid_t ino = inode->i_ino;
+ int nr_pages;
+ int nwritten = 0;
+
+ if (atomic) {
+ last_page = last_fsync_dnode(sbi, ino);
+ if (IS_ERR_OR_NULL(last_page))
+ return PTR_ERR_OR_ZERO(last_page);
+ }
+retry:
+ pagevec_init(&pvec);
+ index = 0;
+
+ while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
+ PAGECACHE_TAG_DIRTY))) {
+ int i;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+ bool submitted = false;
+
+ if (unlikely(f2fs_cp_error(sbi))) {
+ f2fs_put_page(last_page, 0);
+ pagevec_release(&pvec);
+ ret = -EIO;
+ goto out;
+ }
+
+ if (!IS_DNODE(page) || !is_cold_node(page))
+ continue;
+ if (ino_of_node(page) != ino)
+ continue;
+
+ lock_page(page);
+
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+continue_unlock:
+ unlock_page(page);
+ continue;
+ }
+ if (ino_of_node(page) != ino)
+ goto continue_unlock;
+
+ if (!PageDirty(page) && page != last_page) {
+ /* someone wrote it for us */
+ goto continue_unlock;
+ }
+
+ f2fs_wait_on_page_writeback(page, NODE, true, true);
+
+ set_fsync_mark(page, 0);
+ set_dentry_mark(page, 0);
+
+ if (!atomic || page == last_page) {
+ set_fsync_mark(page, 1);
+ percpu_counter_inc(&sbi->rf_node_block_count);
+ if (IS_INODE(page)) {
+ if (is_inode_flag_set(inode,
+ FI_DIRTY_INODE))
+ f2fs_update_inode(inode, page);
+ set_dentry_mark(page,
+ f2fs_need_dentry_mark(sbi, ino));
+ }
+ /* may be written by other thread */
+ if (!PageDirty(page))
+ set_page_dirty(page);
+ }
+
+ if (!clear_page_dirty_for_io(page))
+ goto continue_unlock;
+
+ ret = __write_node_page(page, atomic &&
+ page == last_page,
+ &submitted, wbc, true,
+ FS_NODE_IO, seq_id);
+ if (ret) {
+ unlock_page(page);
+ f2fs_put_page(last_page, 0);
+ break;
+ } else if (submitted) {
+ nwritten++;
+ }
+
+ if (page == last_page) {
+ f2fs_put_page(page, 0);
+ marked = true;
+ break;
+ }
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+
+ if (ret || marked)
+ break;
+ }
+ if (!ret && atomic && !marked) {
+ f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
+ ino, last_page->index);
+ lock_page(last_page);
+ f2fs_wait_on_page_writeback(last_page, NODE, true, true);
+ set_page_dirty(last_page);
+ unlock_page(last_page);
+ goto retry;
+ }
+out:
+ if (nwritten)
+ f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
+ return ret ? -EIO : 0;
+}
+
+static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+ bool clean;
+
+ if (inode->i_ino != ino)
+ return 0;
+
+ if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
+ return 0;
+
+ spin_lock(&sbi->inode_lock[DIRTY_META]);
+ clean = list_empty(&F2FS_I(inode)->gdirty_list);
+ spin_unlock(&sbi->inode_lock[DIRTY_META]);
+
+ if (clean)
+ return 0;
+
+ inode = igrab(inode);
+ if (!inode)
+ return 0;
+ return 1;
+}
+
+static bool flush_dirty_inode(struct page *page)
+{
+ struct f2fs_sb_info *sbi = F2FS_P_SB(page);
+ struct inode *inode;
+ nid_t ino = ino_of_node(page);
+
+ inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
+ if (!inode)
+ return false;
+
+ f2fs_update_inode(inode, page);
+ unlock_page(page);
+
+ iput(inode);
+ return true;
+}
+
+void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
+{
+ pgoff_t index = 0;
+ struct pagevec pvec;
+ int nr_pages;
+
+ pagevec_init(&pvec);
+
+ while ((nr_pages = pagevec_lookup_tag(&pvec,
+ NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
+ int i;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+
+ if (!IS_DNODE(page))
+ continue;
+
+ lock_page(page);
+
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+continue_unlock:
+ unlock_page(page);
+ continue;
+ }
+
+ if (!PageDirty(page)) {
+ /* someone wrote it for us */
+ goto continue_unlock;
+ }
+
+ /* flush inline_data, if it's async context. */
+ if (page_private_inline(page)) {
+ clear_page_private_inline(page);
+ unlock_page(page);
+ flush_inline_data(sbi, ino_of_node(page));
+ continue;
+ }
+ unlock_page(page);
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+ }
+}
+
+int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
+ struct writeback_control *wbc,
+ bool do_balance, enum iostat_type io_type)
+{
+ pgoff_t index;
+ struct pagevec pvec;
+ int step = 0;
+ int nwritten = 0;
+ int ret = 0;
+ int nr_pages, done = 0;
+
+ pagevec_init(&pvec);
+
+next_step:
+ index = 0;
+
+ while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
+ NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
+ int i;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+ bool submitted = false;
+
+ /* give a priority to WB_SYNC threads */
+ if (atomic_read(&sbi->wb_sync_req[NODE]) &&
+ wbc->sync_mode == WB_SYNC_NONE) {
+ done = 1;
+ break;
+ }
+
+ /*
+ * flushing sequence with step:
+ * 0. indirect nodes
+ * 1. dentry dnodes
+ * 2. file dnodes
+ */
+ if (step == 0 && IS_DNODE(page))
+ continue;
+ if (step == 1 && (!IS_DNODE(page) ||
+ is_cold_node(page)))
+ continue;
+ if (step == 2 && (!IS_DNODE(page) ||
+ !is_cold_node(page)))
+ continue;
+lock_node:
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ lock_page(page);
+ else if (!trylock_page(page))
+ continue;
+
+ if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
+continue_unlock:
+ unlock_page(page);
+ continue;
+ }
+
+ if (!PageDirty(page)) {
+ /* someone wrote it for us */
+ goto continue_unlock;
+ }
+
+ /* flush inline_data/inode, if it's async context. */
+ if (!do_balance)
+ goto write_node;
+
+ /* flush inline_data */
+ if (page_private_inline(page)) {
+ clear_page_private_inline(page);
+ unlock_page(page);
+ flush_inline_data(sbi, ino_of_node(page));
+ goto lock_node;
+ }
+
+ /* flush dirty inode */
+ if (IS_INODE(page) && flush_dirty_inode(page))
+ goto lock_node;
+write_node:
+ f2fs_wait_on_page_writeback(page, NODE, true, true);
+
+ if (!clear_page_dirty_for_io(page))
+ goto continue_unlock;
+
+ set_fsync_mark(page, 0);
+ set_dentry_mark(page, 0);
+
+ ret = __write_node_page(page, false, &submitted,
+ wbc, do_balance, io_type, NULL);
+ if (ret)
+ unlock_page(page);
+ else if (submitted)
+ nwritten++;
+
+ if (--wbc->nr_to_write == 0)
+ break;
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+
+ if (wbc->nr_to_write == 0) {
+ step = 2;
+ break;
+ }
+ }
+
+ if (step < 2) {
+ if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
+ wbc->sync_mode == WB_SYNC_NONE && step == 1)
+ goto out;
+ step++;
+ goto next_step;
+ }
+out:
+ if (nwritten)
+ f2fs_submit_merged_write(sbi, NODE);
+
+ if (unlikely(f2fs_cp_error(sbi)))
+ return -EIO;
+ return ret;
+}
+
+int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
+ unsigned int seq_id)
+{
+ struct fsync_node_entry *fn;
+ struct page *page;
+ struct list_head *head = &sbi->fsync_node_list;
+ unsigned long flags;
+ unsigned int cur_seq_id = 0;
+ int ret2, ret = 0;
+
+ while (seq_id && cur_seq_id < seq_id) {
+ spin_lock_irqsave(&sbi->fsync_node_lock, flags);
+ if (list_empty(head)) {
+ spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
+ break;
+ }
+ fn = list_first_entry(head, struct fsync_node_entry, list);
+ if (fn->seq_id > seq_id) {
+ spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
+ break;
+ }
+ cur_seq_id = fn->seq_id;
+ page = fn->page;
+ get_page(page);
+ spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
+
+ f2fs_wait_on_page_writeback(page, NODE, true, false);
+ if (TestClearPageError(page))
+ ret = -EIO;
+
+ put_page(page);
+
+ if (ret)
+ break;
+ }
+
+ ret2 = filemap_check_errors(NODE_MAPPING(sbi));
+ if (!ret)
+ ret = ret2;
+
+ return ret;
+}
+
+static int f2fs_write_node_pages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
+ struct blk_plug plug;
+ long diff;
+
+ if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
+ goto skip_write;
+
+ /* balancing f2fs's metadata in background */
+ f2fs_balance_fs_bg(sbi, true);
+
+ /* collect a number of dirty node pages and write together */
+ if (wbc->sync_mode != WB_SYNC_ALL &&
+ get_pages(sbi, F2FS_DIRTY_NODES) <
+ nr_pages_to_skip(sbi, NODE))
+ goto skip_write;
+
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ atomic_inc(&sbi->wb_sync_req[NODE]);
+ else if (atomic_read(&sbi->wb_sync_req[NODE])) {
+ /* to avoid potential deadlock */
+ if (current->plug)
+ blk_finish_plug(current->plug);
+ goto skip_write;
+ }
+
+ trace_f2fs_writepages(mapping->host, wbc, NODE);
+
+ diff = nr_pages_to_write(sbi, NODE, wbc);
+ blk_start_plug(&plug);
+ f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
+ blk_finish_plug(&plug);
+ wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
+
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ atomic_dec(&sbi->wb_sync_req[NODE]);
+ return 0;
+
+skip_write:
+ wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
+ trace_f2fs_writepages(mapping->host, wbc, NODE);
+ return 0;
+}
+
+static bool f2fs_dirty_node_folio(struct address_space *mapping,
+ struct folio *folio)
+{
+ trace_f2fs_set_page_dirty(&folio->page, NODE);
+
+ if (!folio_test_uptodate(folio))
+ folio_mark_uptodate(folio);
+#ifdef CONFIG_F2FS_CHECK_FS
+ if (IS_INODE(&folio->page))
+ f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
+#endif
+ if (filemap_dirty_folio(mapping, folio)) {
+ inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
+ set_page_private_reference(&folio->page);
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Structure of the f2fs node operations
+ */
+const struct address_space_operations f2fs_node_aops = {
+ .writepage = f2fs_write_node_page,
+ .writepages = f2fs_write_node_pages,
+ .dirty_folio = f2fs_dirty_node_folio,
+ .invalidate_folio = f2fs_invalidate_folio,
+ .release_folio = f2fs_release_folio,
+ .migrate_folio = filemap_migrate_folio,
+};
+
+static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
+ nid_t n)
+{
+ return radix_tree_lookup(&nm_i->free_nid_root, n);
+}
+
+static int __insert_free_nid(struct f2fs_sb_info *sbi,
+ struct free_nid *i)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
+
+ if (err)
+ return err;
+
+ nm_i->nid_cnt[FREE_NID]++;
+ list_add_tail(&i->list, &nm_i->free_nid_list);
+ return 0;
+}
+
+static void __remove_free_nid(struct f2fs_sb_info *sbi,
+ struct free_nid *i, enum nid_state state)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ f2fs_bug_on(sbi, state != i->state);
+ nm_i->nid_cnt[state]--;
+ if (state == FREE_NID)
+ list_del(&i->list);
+ radix_tree_delete(&nm_i->free_nid_root, i->nid);
+}
+
+static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
+ enum nid_state org_state, enum nid_state dst_state)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ f2fs_bug_on(sbi, org_state != i->state);
+ i->state = dst_state;
+ nm_i->nid_cnt[org_state]--;
+ nm_i->nid_cnt[dst_state]++;
+
+ switch (dst_state) {
+ case PREALLOC_NID:
+ list_del(&i->list);
+ break;
+ case FREE_NID:
+ list_add_tail(&i->list, &nm_i->free_nid_list);
+ break;
+ default:
+ BUG_ON(1);
+ }
+}
+
+bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned int i;
+ bool ret = true;
+
+ f2fs_down_read(&nm_i->nat_tree_lock);
+ for (i = 0; i < nm_i->nat_blocks; i++) {
+ if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
+ ret = false;
+ break;
+ }
+ }
+ f2fs_up_read(&nm_i->nat_tree_lock);
+
+ return ret;
+}
+
+static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
+ bool set, bool build)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
+ unsigned int nid_ofs = nid - START_NID(nid);
+
+ if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
+ return;
+
+ if (set) {
+ if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
+ return;
+ __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
+ nm_i->free_nid_count[nat_ofs]++;
+ } else {
+ if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
+ return;
+ __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
+ if (!build)
+ nm_i->free_nid_count[nat_ofs]--;
+ }
+}
+
+/* return if the nid is recognized as free */
+static bool add_free_nid(struct f2fs_sb_info *sbi,
+ nid_t nid, bool build, bool update)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i, *e;
+ struct nat_entry *ne;
+ int err = -EINVAL;
+ bool ret = false;
+
+ /* 0 nid should not be used */
+ if (unlikely(nid == 0))
+ return false;
+
+ if (unlikely(f2fs_check_nid_range(sbi, nid)))
+ return false;
+
+ i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
+ i->nid = nid;
+ i->state = FREE_NID;
+
+ radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
+
+ spin_lock(&nm_i->nid_list_lock);
+
+ if (build) {
+ /*
+ * Thread A Thread B
+ * - f2fs_create
+ * - f2fs_new_inode
+ * - f2fs_alloc_nid
+ * - __insert_nid_to_list(PREALLOC_NID)
+ * - f2fs_balance_fs_bg
+ * - f2fs_build_free_nids
+ * - __f2fs_build_free_nids
+ * - scan_nat_page
+ * - add_free_nid
+ * - __lookup_nat_cache
+ * - f2fs_add_link
+ * - f2fs_init_inode_metadata
+ * - f2fs_new_inode_page
+ * - f2fs_new_node_page
+ * - set_node_addr
+ * - f2fs_alloc_nid_done
+ * - __remove_nid_from_list(PREALLOC_NID)
+ * - __insert_nid_to_list(FREE_NID)
+ */
+ ne = __lookup_nat_cache(nm_i, nid);
+ if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
+ nat_get_blkaddr(ne) != NULL_ADDR))
+ goto err_out;
+
+ e = __lookup_free_nid_list(nm_i, nid);
+ if (e) {
+ if (e->state == FREE_NID)
+ ret = true;
+ goto err_out;
+ }
+ }
+ ret = true;
+ err = __insert_free_nid(sbi, i);
+err_out:
+ if (update) {
+ update_free_nid_bitmap(sbi, nid, ret, build);
+ if (!build)
+ nm_i->available_nids++;
+ }
+ spin_unlock(&nm_i->nid_list_lock);
+ radix_tree_preload_end();
+
+ if (err)
+ kmem_cache_free(free_nid_slab, i);
+ return ret;
+}
+
+static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i;
+ bool need_free = false;
+
+ spin_lock(&nm_i->nid_list_lock);
+ i = __lookup_free_nid_list(nm_i, nid);
+ if (i && i->state == FREE_NID) {
+ __remove_free_nid(sbi, i, FREE_NID);
+ need_free = true;
+ }
+ spin_unlock(&nm_i->nid_list_lock);
+
+ if (need_free)
+ kmem_cache_free(free_nid_slab, i);
+}
+
+static int scan_nat_page(struct f2fs_sb_info *sbi,
+ struct page *nat_page, nid_t start_nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct f2fs_nat_block *nat_blk = page_address(nat_page);
+ block_t blk_addr;
+ unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
+ int i;
+
+ __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
+
+ i = start_nid % NAT_ENTRY_PER_BLOCK;
+
+ for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
+ if (unlikely(start_nid >= nm_i->max_nid))
+ break;
+
+ blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
+
+ if (blk_addr == NEW_ADDR)
+ return -EINVAL;
+
+ if (blk_addr == NULL_ADDR) {
+ add_free_nid(sbi, start_nid, true, true);
+ } else {
+ spin_lock(&NM_I(sbi)->nid_list_lock);
+ update_free_nid_bitmap(sbi, start_nid, false, true);
+ spin_unlock(&NM_I(sbi)->nid_list_lock);
+ }
+ }
+
+ return 0;
+}
+
+static void scan_curseg_cache(struct f2fs_sb_info *sbi)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_journal *journal = curseg->journal;
+ int i;
+
+ down_read(&curseg->journal_rwsem);
+ for (i = 0; i < nats_in_cursum(journal); i++) {
+ block_t addr;
+ nid_t nid;
+
+ addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
+ nid = le32_to_cpu(nid_in_journal(journal, i));
+ if (addr == NULL_ADDR)
+ add_free_nid(sbi, nid, true, false);
+ else
+ remove_free_nid(sbi, nid);
+ }
+ up_read(&curseg->journal_rwsem);
+}
+
+static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned int i, idx;
+ nid_t nid;
+
+ f2fs_down_read(&nm_i->nat_tree_lock);
+
+ for (i = 0; i < nm_i->nat_blocks; i++) {
+ if (!test_bit_le(i, nm_i->nat_block_bitmap))
+ continue;
+ if (!nm_i->free_nid_count[i])
+ continue;
+ for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
+ idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
+ NAT_ENTRY_PER_BLOCK, idx);
+ if (idx >= NAT_ENTRY_PER_BLOCK)
+ break;
+
+ nid = i * NAT_ENTRY_PER_BLOCK + idx;
+ add_free_nid(sbi, nid, true, false);
+
+ if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
+ goto out;
+ }
+ }
+out:
+ scan_curseg_cache(sbi);
+
+ f2fs_up_read(&nm_i->nat_tree_lock);
+}
+
+static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
+ bool sync, bool mount)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ int i = 0, ret;
+ nid_t nid = nm_i->next_scan_nid;
+
+ if (unlikely(nid >= nm_i->max_nid))
+ nid = 0;
+
+ if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
+ nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
+
+ /* Enough entries */
+ if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
+ return 0;
+
+ if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
+ return 0;
+
+ if (!mount) {
+ /* try to find free nids in free_nid_bitmap */
+ scan_free_nid_bits(sbi);
+
+ if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
+ return 0;
+ }
+
+ /* readahead nat pages to be scanned */
+ f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
+ META_NAT, true);
+
+ f2fs_down_read(&nm_i->nat_tree_lock);
+
+ while (1) {
+ if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
+ nm_i->nat_block_bitmap)) {
+ struct page *page = get_current_nat_page(sbi, nid);
+
+ if (IS_ERR(page)) {
+ ret = PTR_ERR(page);
+ } else {
+ ret = scan_nat_page(sbi, page, nid);
+ f2fs_put_page(page, 1);
+ }
+
+ if (ret) {
+ f2fs_up_read(&nm_i->nat_tree_lock);
+ f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
+ return ret;
+ }
+ }
+
+ nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
+ if (unlikely(nid >= nm_i->max_nid))
+ nid = 0;
+
+ if (++i >= FREE_NID_PAGES)
+ break;
+ }
+
+ /* go to the next free nat pages to find free nids abundantly */
+ nm_i->next_scan_nid = nid;
+
+ /* find free nids from current sum_pages */
+ scan_curseg_cache(sbi);
+
+ f2fs_up_read(&nm_i->nat_tree_lock);
+
+ f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
+ nm_i->ra_nid_pages, META_NAT, false);
+
+ return 0;
+}
+
+int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
+{
+ int ret;
+
+ mutex_lock(&NM_I(sbi)->build_lock);
+ ret = __f2fs_build_free_nids(sbi, sync, mount);
+ mutex_unlock(&NM_I(sbi)->build_lock);
+
+ return ret;
+}
+
+/*
+ * If this function returns success, caller can obtain a new nid
+ * from second parameter of this function.
+ * The returned nid could be used ino as well as nid when inode is created.
+ */
+bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i = NULL;
+retry:
+ if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
+ f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
+ return false;
+ }
+
+ spin_lock(&nm_i->nid_list_lock);
+
+ if (unlikely(nm_i->available_nids == 0)) {
+ spin_unlock(&nm_i->nid_list_lock);
+ return false;
+ }
+
+ /* We should not use stale free nids created by f2fs_build_free_nids */
+ if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
+ f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
+ i = list_first_entry(&nm_i->free_nid_list,
+ struct free_nid, list);
+ *nid = i->nid;
+
+ __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
+ nm_i->available_nids--;
+
+ update_free_nid_bitmap(sbi, *nid, false, false);
+
+ spin_unlock(&nm_i->nid_list_lock);
+ return true;
+ }
+ spin_unlock(&nm_i->nid_list_lock);
+
+ /* Let's scan nat pages and its caches to get free nids */
+ if (!f2fs_build_free_nids(sbi, true, false))
+ goto retry;
+ return false;
+}
+
+/*
+ * f2fs_alloc_nid() should be called prior to this function.
+ */
+void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i;
+
+ spin_lock(&nm_i->nid_list_lock);
+ i = __lookup_free_nid_list(nm_i, nid);
+ f2fs_bug_on(sbi, !i);
+ __remove_free_nid(sbi, i, PREALLOC_NID);
+ spin_unlock(&nm_i->nid_list_lock);
+
+ kmem_cache_free(free_nid_slab, i);
+}
+
+/*
+ * f2fs_alloc_nid() should be called prior to this function.
+ */
+void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i;
+ bool need_free = false;
+
+ if (!nid)
+ return;
+
+ spin_lock(&nm_i->nid_list_lock);
+ i = __lookup_free_nid_list(nm_i, nid);
+ f2fs_bug_on(sbi, !i);
+
+ if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
+ __remove_free_nid(sbi, i, PREALLOC_NID);
+ need_free = true;
+ } else {
+ __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
+ }
+
+ nm_i->available_nids++;
+
+ update_free_nid_bitmap(sbi, nid, true, false);
+
+ spin_unlock(&nm_i->nid_list_lock);
+
+ if (need_free)
+ kmem_cache_free(free_nid_slab, i);
+}
+
+int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ int nr = nr_shrink;
+
+ if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
+ return 0;
+
+ if (!mutex_trylock(&nm_i->build_lock))
+ return 0;
+
+ while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
+ struct free_nid *i, *next;
+ unsigned int batch = SHRINK_NID_BATCH_SIZE;
+
+ spin_lock(&nm_i->nid_list_lock);
+ list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
+ if (!nr_shrink || !batch ||
+ nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
+ break;
+ __remove_free_nid(sbi, i, FREE_NID);
+ kmem_cache_free(free_nid_slab, i);
+ nr_shrink--;
+ batch--;
+ }
+ spin_unlock(&nm_i->nid_list_lock);
+ }
+
+ mutex_unlock(&nm_i->build_lock);
+
+ return nr - nr_shrink;
+}
+
+int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
+{
+ void *src_addr, *dst_addr;
+ size_t inline_size;
+ struct page *ipage;
+ struct f2fs_inode *ri;
+
+ ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
+ if (IS_ERR(ipage))
+ return PTR_ERR(ipage);
+
+ ri = F2FS_INODE(page);
+ if (ri->i_inline & F2FS_INLINE_XATTR) {
+ if (!f2fs_has_inline_xattr(inode)) {
+ set_inode_flag(inode, FI_INLINE_XATTR);
+ stat_inc_inline_xattr(inode);
+ }
+ } else {
+ if (f2fs_has_inline_xattr(inode)) {
+ stat_dec_inline_xattr(inode);
+ clear_inode_flag(inode, FI_INLINE_XATTR);
+ }
+ goto update_inode;
+ }
+
+ dst_addr = inline_xattr_addr(inode, ipage);
+ src_addr = inline_xattr_addr(inode, page);
+ inline_size = inline_xattr_size(inode);
+
+ f2fs_wait_on_page_writeback(ipage, NODE, true, true);
+ memcpy(dst_addr, src_addr, inline_size);
+update_inode:
+ f2fs_update_inode(inode, ipage);
+ f2fs_put_page(ipage, 1);
+ return 0;
+}
+
+int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
+{
+ struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
+ nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
+ nid_t new_xnid;
+ struct dnode_of_data dn;
+ struct node_info ni;
+ struct page *xpage;
+ int err;
+
+ if (!prev_xnid)
+ goto recover_xnid;
+
+ /* 1: invalidate the previous xattr nid */
+ err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
+ if (err)
+ return err;
+
+ f2fs_invalidate_blocks(sbi, ni.blk_addr);
+ dec_valid_node_count(sbi, inode, false);
+ set_node_addr(sbi, &ni, NULL_ADDR, false);
+
+recover_xnid:
+ /* 2: update xattr nid in inode */
+ if (!f2fs_alloc_nid(sbi, &new_xnid))
+ return -ENOSPC;
+
+ set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
+ xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
+ if (IS_ERR(xpage)) {
+ f2fs_alloc_nid_failed(sbi, new_xnid);
+ return PTR_ERR(xpage);
+ }
+
+ f2fs_alloc_nid_done(sbi, new_xnid);
+ f2fs_update_inode_page(inode);
+
+ /* 3: update and set xattr node page dirty */
+ if (page) {
+ memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
+ VALID_XATTR_BLOCK_SIZE);
+ set_page_dirty(xpage);
+ }
+ f2fs_put_page(xpage, 1);
+
+ return 0;
+}
+
+int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
+{
+ struct f2fs_inode *src, *dst;
+ nid_t ino = ino_of_node(page);
+ struct node_info old_ni, new_ni;
+ struct page *ipage;
+ int err;
+
+ err = f2fs_get_node_info(sbi, ino, &old_ni, false);
+ if (err)
+ return err;
+
+ if (unlikely(old_ni.blk_addr != NULL_ADDR))
+ return -EINVAL;
+retry:
+ ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
+ if (!ipage) {
+ memalloc_retry_wait(GFP_NOFS);
+ goto retry;
+ }
+
+ /* Should not use this inode from free nid list */
+ remove_free_nid(sbi, ino);
+
+ if (!PageUptodate(ipage))
+ SetPageUptodate(ipage);
+ fill_node_footer(ipage, ino, ino, 0, true);
+ set_cold_node(ipage, false);
+
+ src = F2FS_INODE(page);
+ dst = F2FS_INODE(ipage);
+
+ memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
+ dst->i_size = 0;
+ dst->i_blocks = cpu_to_le64(1);
+ dst->i_links = cpu_to_le32(1);
+ dst->i_xattr_nid = 0;
+ dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
+ if (dst->i_inline & F2FS_EXTRA_ATTR) {
+ dst->i_extra_isize = src->i_extra_isize;
+
+ if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
+ F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
+ i_inline_xattr_size))
+ dst->i_inline_xattr_size = src->i_inline_xattr_size;
+
+ if (f2fs_sb_has_project_quota(sbi) &&
+ F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
+ i_projid))
+ dst->i_projid = src->i_projid;
+
+ if (f2fs_sb_has_inode_crtime(sbi) &&
+ F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
+ i_crtime_nsec)) {
+ dst->i_crtime = src->i_crtime;
+ dst->i_crtime_nsec = src->i_crtime_nsec;
+ }
+ }
+
+ new_ni = old_ni;
+ new_ni.ino = ino;
+
+ if (unlikely(inc_valid_node_count(sbi, NULL, true)))
+ WARN_ON(1);
+ set_node_addr(sbi, &new_ni, NEW_ADDR, false);
+ inc_valid_inode_count(sbi);
+ set_page_dirty(ipage);
+ f2fs_put_page(ipage, 1);
+ return 0;
+}
+
+int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
+ unsigned int segno, struct f2fs_summary_block *sum)
+{
+ struct f2fs_node *rn;
+ struct f2fs_summary *sum_entry;
+ block_t addr;
+ int i, idx, last_offset, nrpages;
+
+ /* scan the node segment */
+ last_offset = sbi->blocks_per_seg;
+ addr = START_BLOCK(sbi, segno);
+ sum_entry = &sum->entries[0];
+
+ for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
+ nrpages = bio_max_segs(last_offset - i);
+
+ /* readahead node pages */
+ f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
+
+ for (idx = addr; idx < addr + nrpages; idx++) {
+ struct page *page = f2fs_get_tmp_page(sbi, idx);
+
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ rn = F2FS_NODE(page);
+ sum_entry->nid = rn->footer.nid;
+ sum_entry->version = 0;
+ sum_entry->ofs_in_node = 0;
+ sum_entry++;
+ f2fs_put_page(page, 1);
+ }
+
+ invalidate_mapping_pages(META_MAPPING(sbi), addr,
+ addr + nrpages);
+ }
+ return 0;
+}
+
+static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_journal *journal = curseg->journal;
+ int i;
+
+ down_write(&curseg->journal_rwsem);
+ for (i = 0; i < nats_in_cursum(journal); i++) {
+ struct nat_entry *ne;
+ struct f2fs_nat_entry raw_ne;
+ nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
+
+ if (f2fs_check_nid_range(sbi, nid))
+ continue;
+
+ raw_ne = nat_in_journal(journal, i);
+
+ ne = __lookup_nat_cache(nm_i, nid);
+ if (!ne) {
+ ne = __alloc_nat_entry(sbi, nid, true);
+ __init_nat_entry(nm_i, ne, &raw_ne, true);
+ }
+
+ /*
+ * if a free nat in journal has not been used after last
+ * checkpoint, we should remove it from available nids,
+ * since later we will add it again.
+ */
+ if (!get_nat_flag(ne, IS_DIRTY) &&
+ le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
+ spin_lock(&nm_i->nid_list_lock);
+ nm_i->available_nids--;
+ spin_unlock(&nm_i->nid_list_lock);
+ }
+
+ __set_nat_cache_dirty(nm_i, ne);
+ }
+ update_nats_in_cursum(journal, -i);
+ up_write(&curseg->journal_rwsem);
+}
+
+static void __adjust_nat_entry_set(struct nat_entry_set *nes,
+ struct list_head *head, int max)
+{
+ struct nat_entry_set *cur;
+
+ if (nes->entry_cnt >= max)
+ goto add_out;
+
+ list_for_each_entry(cur, head, set_list) {
+ if (cur->entry_cnt >= nes->entry_cnt) {
+ list_add(&nes->set_list, cur->set_list.prev);
+ return;
+ }
+ }
+add_out:
+ list_add_tail(&nes->set_list, head);
+}
+
+static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
+ unsigned int valid)
+{
+ if (valid == 0) {
+ __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
+ __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
+ return;
+ }
+
+ __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
+ if (valid == NAT_ENTRY_PER_BLOCK)
+ __set_bit_le(nat_ofs, nm_i->full_nat_bits);
+ else
+ __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
+}
+
+static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
+ struct page *page)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
+ struct f2fs_nat_block *nat_blk = page_address(page);
+ int valid = 0;
+ int i = 0;
+
+ if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
+ return;
+
+ if (nat_index == 0) {
+ valid = 1;
+ i = 1;
+ }
+ for (; i < NAT_ENTRY_PER_BLOCK; i++) {
+ if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
+ valid++;
+ }
+
+ __update_nat_bits(nm_i, nat_index, valid);
+}
+
+void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned int nat_ofs;
+
+ f2fs_down_read(&nm_i->nat_tree_lock);
+
+ for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
+ unsigned int valid = 0, nid_ofs = 0;
+
+ /* handle nid zero due to it should never be used */
+ if (unlikely(nat_ofs == 0)) {
+ valid = 1;
+ nid_ofs = 1;
+ }
+
+ for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
+ if (!test_bit_le(nid_ofs,
+ nm_i->free_nid_bitmap[nat_ofs]))
+ valid++;
+ }
+
+ __update_nat_bits(nm_i, nat_ofs, valid);
+ }
+
+ f2fs_up_read(&nm_i->nat_tree_lock);
+}
+
+static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
+ struct nat_entry_set *set, struct cp_control *cpc)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_journal *journal = curseg->journal;
+ nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
+ bool to_journal = true;
+ struct f2fs_nat_block *nat_blk;
+ struct nat_entry *ne, *cur;
+ struct page *page = NULL;
+
+ /*
+ * there are two steps to flush nat entries:
+ * #1, flush nat entries to journal in current hot data summary block.
+ * #2, flush nat entries to nat page.
+ */
+ if ((cpc->reason & CP_UMOUNT) ||
+ !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
+ to_journal = false;
+
+ if (to_journal) {
+ down_write(&curseg->journal_rwsem);
+ } else {
+ page = get_next_nat_page(sbi, start_nid);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ nat_blk = page_address(page);
+ f2fs_bug_on(sbi, !nat_blk);
+ }
+
+ /* flush dirty nats in nat entry set */
+ list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
+ struct f2fs_nat_entry *raw_ne;
+ nid_t nid = nat_get_nid(ne);
+ int offset;
+
+ f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
+
+ if (to_journal) {
+ offset = f2fs_lookup_journal_in_cursum(journal,
+ NAT_JOURNAL, nid, 1);
+ f2fs_bug_on(sbi, offset < 0);
+ raw_ne = &nat_in_journal(journal, offset);
+ nid_in_journal(journal, offset) = cpu_to_le32(nid);
+ } else {
+ raw_ne = &nat_blk->entries[nid - start_nid];
+ }
+ raw_nat_from_node_info(raw_ne, &ne->ni);
+ nat_reset_flag(ne);
+ __clear_nat_cache_dirty(NM_I(sbi), set, ne);
+ if (nat_get_blkaddr(ne) == NULL_ADDR) {
+ add_free_nid(sbi, nid, false, true);
+ } else {
+ spin_lock(&NM_I(sbi)->nid_list_lock);
+ update_free_nid_bitmap(sbi, nid, false, false);
+ spin_unlock(&NM_I(sbi)->nid_list_lock);
+ }
+ }
+
+ if (to_journal) {
+ up_write(&curseg->journal_rwsem);
+ } else {
+ update_nat_bits(sbi, start_nid, page);
+ f2fs_put_page(page, 1);
+ }
+
+ /* Allow dirty nats by node block allocation in write_begin */
+ if (!set->entry_cnt) {
+ radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
+ kmem_cache_free(nat_entry_set_slab, set);
+ }
+ return 0;
+}
+
+/*
+ * This function is called during the checkpointing process.
+ */
+int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_journal *journal = curseg->journal;
+ struct nat_entry_set *setvec[SETVEC_SIZE];
+ struct nat_entry_set *set, *tmp;
+ unsigned int found;
+ nid_t set_idx = 0;
+ LIST_HEAD(sets);
+ int err = 0;
+
+ /*
+ * during unmount, let's flush nat_bits before checking
+ * nat_cnt[DIRTY_NAT].
+ */
+ if (cpc->reason & CP_UMOUNT) {
+ f2fs_down_write(&nm_i->nat_tree_lock);
+ remove_nats_in_journal(sbi);
+ f2fs_up_write(&nm_i->nat_tree_lock);
+ }
+
+ if (!nm_i->nat_cnt[DIRTY_NAT])
+ return 0;
+
+ f2fs_down_write(&nm_i->nat_tree_lock);
+
+ /*
+ * if there are no enough space in journal to store dirty nat
+ * entries, remove all entries from journal and merge them
+ * into nat entry set.
+ */
+ if (cpc->reason & CP_UMOUNT ||
+ !__has_cursum_space(journal,
+ nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
+ remove_nats_in_journal(sbi);
+
+ while ((found = __gang_lookup_nat_set(nm_i,
+ set_idx, SETVEC_SIZE, setvec))) {
+ unsigned idx;
+
+ set_idx = setvec[found - 1]->set + 1;
+ for (idx = 0; idx < found; idx++)
+ __adjust_nat_entry_set(setvec[idx], &sets,
+ MAX_NAT_JENTRIES(journal));
+ }
+
+ /* flush dirty nats in nat entry set */
+ list_for_each_entry_safe(set, tmp, &sets, set_list) {
+ err = __flush_nat_entry_set(sbi, set, cpc);
+ if (err)
+ break;
+ }
+
+ f2fs_up_write(&nm_i->nat_tree_lock);
+ /* Allow dirty nats by node block allocation in write_begin */
+
+ return err;
+}
+
+static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
+ unsigned int i;
+ __u64 cp_ver = cur_cp_version(ckpt);
+ block_t nat_bits_addr;
+
+ nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
+ nm_i->nat_bits = f2fs_kvzalloc(sbi,
+ nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
+ if (!nm_i->nat_bits)
+ return -ENOMEM;
+
+ nm_i->full_nat_bits = nm_i->nat_bits + 8;
+ nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
+
+ if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
+ return 0;
+
+ nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
+ nm_i->nat_bits_blocks;
+ for (i = 0; i < nm_i->nat_bits_blocks; i++) {
+ struct page *page;
+
+ page = f2fs_get_meta_page(sbi, nat_bits_addr++);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
+ page_address(page), F2FS_BLKSIZE);
+ f2fs_put_page(page, 1);
+ }
+
+ cp_ver |= (cur_cp_crc(ckpt) << 32);
+ if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
+ clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
+ f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
+ cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
+ return 0;
+ }
+
+ f2fs_notice(sbi, "Found nat_bits in checkpoint");
+ return 0;
+}
+
+static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned int i = 0;
+ nid_t nid, last_nid;
+
+ if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
+ return;
+
+ for (i = 0; i < nm_i->nat_blocks; i++) {
+ i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
+ if (i >= nm_i->nat_blocks)
+ break;
+
+ __set_bit_le(i, nm_i->nat_block_bitmap);
+
+ nid = i * NAT_ENTRY_PER_BLOCK;
+ last_nid = nid + NAT_ENTRY_PER_BLOCK;
+
+ spin_lock(&NM_I(sbi)->nid_list_lock);
+ for (; nid < last_nid; nid++)
+ update_free_nid_bitmap(sbi, nid, true, true);
+ spin_unlock(&NM_I(sbi)->nid_list_lock);
+ }
+
+ for (i = 0; i < nm_i->nat_blocks; i++) {
+ i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
+ if (i >= nm_i->nat_blocks)
+ break;
+
+ __set_bit_le(i, nm_i->nat_block_bitmap);
+ }
+}
+
+static int init_node_manager(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned char *version_bitmap;
+ unsigned int nat_segs;
+ int err;
+
+ nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
+
+ /* segment_count_nat includes pair segment so divide to 2. */
+ nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
+ nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
+ nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
+
+ /* not used nids: 0, node, meta, (and root counted as valid node) */
+ nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
+ F2FS_RESERVED_NODE_NUM;
+ nm_i->nid_cnt[FREE_NID] = 0;
+ nm_i->nid_cnt[PREALLOC_NID] = 0;
+ nm_i->ram_thresh = DEF_RAM_THRESHOLD;
+ nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
+ nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
+ nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
+
+ INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
+ INIT_LIST_HEAD(&nm_i->free_nid_list);
+ INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
+ INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
+ INIT_LIST_HEAD(&nm_i->nat_entries);
+ spin_lock_init(&nm_i->nat_list_lock);
+
+ mutex_init(&nm_i->build_lock);
+ spin_lock_init(&nm_i->nid_list_lock);
+ init_f2fs_rwsem(&nm_i->nat_tree_lock);
+
+ nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
+ nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
+ version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
+ nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
+ GFP_KERNEL);
+ if (!nm_i->nat_bitmap)
+ return -ENOMEM;
+
+ err = __get_nat_bitmaps(sbi);
+ if (err)
+ return err;
+
+#ifdef CONFIG_F2FS_CHECK_FS
+ nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
+ GFP_KERNEL);
+ if (!nm_i->nat_bitmap_mir)
+ return -ENOMEM;
+#endif
+
+ return 0;
+}
+
+static int init_free_nid_cache(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ int i;
+
+ nm_i->free_nid_bitmap =
+ f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
+ nm_i->nat_blocks),
+ GFP_KERNEL);
+ if (!nm_i->free_nid_bitmap)
+ return -ENOMEM;
+
+ for (i = 0; i < nm_i->nat_blocks; i++) {
+ nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
+ f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
+ if (!nm_i->free_nid_bitmap[i])
+ return -ENOMEM;
+ }
+
+ nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
+ GFP_KERNEL);
+ if (!nm_i->nat_block_bitmap)
+ return -ENOMEM;
+
+ nm_i->free_nid_count =
+ f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
+ nm_i->nat_blocks),
+ GFP_KERNEL);
+ if (!nm_i->free_nid_count)
+ return -ENOMEM;
+ return 0;
+}
+
+int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
+{
+ int err;
+
+ sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
+ GFP_KERNEL);
+ if (!sbi->nm_info)
+ return -ENOMEM;
+
+ err = init_node_manager(sbi);
+ if (err)
+ return err;
+
+ err = init_free_nid_cache(sbi);
+ if (err)
+ return err;
+
+ /* load free nid status from nat_bits table */
+ load_free_nid_bitmap(sbi);
+
+ return f2fs_build_free_nids(sbi, true, true);
+}
+
+void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i, *next_i;
+ struct nat_entry *natvec[NATVEC_SIZE];
+ struct nat_entry_set *setvec[SETVEC_SIZE];
+ nid_t nid = 0;
+ unsigned int found;
+
+ if (!nm_i)
+ return;
+
+ /* destroy free nid list */
+ spin_lock(&nm_i->nid_list_lock);
+ list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
+ __remove_free_nid(sbi, i, FREE_NID);
+ spin_unlock(&nm_i->nid_list_lock);
+ kmem_cache_free(free_nid_slab, i);
+ spin_lock(&nm_i->nid_list_lock);
+ }
+ f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
+ f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
+ f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
+ spin_unlock(&nm_i->nid_list_lock);
+
+ /* destroy nat cache */
+ f2fs_down_write(&nm_i->nat_tree_lock);
+ while ((found = __gang_lookup_nat_cache(nm_i,
+ nid, NATVEC_SIZE, natvec))) {
+ unsigned idx;
+
+ nid = nat_get_nid(natvec[found - 1]) + 1;
+ for (idx = 0; idx < found; idx++) {
+ spin_lock(&nm_i->nat_list_lock);
+ list_del(&natvec[idx]->list);
+ spin_unlock(&nm_i->nat_list_lock);
+
+ __del_from_nat_cache(nm_i, natvec[idx]);
+ }
+ }
+ f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
+
+ /* destroy nat set cache */
+ nid = 0;
+ while ((found = __gang_lookup_nat_set(nm_i,
+ nid, SETVEC_SIZE, setvec))) {
+ unsigned idx;
+
+ nid = setvec[found - 1]->set + 1;
+ for (idx = 0; idx < found; idx++) {
+ /* entry_cnt is not zero, when cp_error was occurred */
+ f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
+ radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
+ kmem_cache_free(nat_entry_set_slab, setvec[idx]);
+ }
+ }
+ f2fs_up_write(&nm_i->nat_tree_lock);
+
+ kvfree(nm_i->nat_block_bitmap);
+ if (nm_i->free_nid_bitmap) {
+ int i;
+
+ for (i = 0; i < nm_i->nat_blocks; i++)
+ kvfree(nm_i->free_nid_bitmap[i]);
+ kvfree(nm_i->free_nid_bitmap);
+ }
+ kvfree(nm_i->free_nid_count);
+
+ kvfree(nm_i->nat_bitmap);
+ kvfree(nm_i->nat_bits);
+#ifdef CONFIG_F2FS_CHECK_FS
+ kvfree(nm_i->nat_bitmap_mir);
+#endif
+ sbi->nm_info = NULL;
+ kfree(nm_i);
+}
+
+int __init f2fs_create_node_manager_caches(void)
+{
+ nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
+ sizeof(struct nat_entry));
+ if (!nat_entry_slab)
+ goto fail;
+
+ free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
+ sizeof(struct free_nid));
+ if (!free_nid_slab)
+ goto destroy_nat_entry;
+
+ nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
+ sizeof(struct nat_entry_set));
+ if (!nat_entry_set_slab)
+ goto destroy_free_nid;
+
+ fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
+ sizeof(struct fsync_node_entry));
+ if (!fsync_node_entry_slab)
+ goto destroy_nat_entry_set;
+ return 0;
+
+destroy_nat_entry_set:
+ kmem_cache_destroy(nat_entry_set_slab);
+destroy_free_nid:
+ kmem_cache_destroy(free_nid_slab);
+destroy_nat_entry:
+ kmem_cache_destroy(nat_entry_slab);
+fail:
+ return -ENOMEM;
+}
+
+void f2fs_destroy_node_manager_caches(void)
+{
+ kmem_cache_destroy(fsync_node_entry_slab);
+ kmem_cache_destroy(nat_entry_set_slab);
+ kmem_cache_destroy(free_nid_slab);
+ kmem_cache_destroy(nat_entry_slab);
+}