summaryrefslogtreecommitdiffstats
path: root/kernel/auditsc.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /kernel/auditsc.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/auditsc.c')
-rw-r--r--kernel/auditsc.c3027
1 files changed, 3027 insertions, 0 deletions
diff --git a/kernel/auditsc.c b/kernel/auditsc.c
new file mode 100644
index 000000000..c5f41fc75
--- /dev/null
+++ b/kernel/auditsc.c
@@ -0,0 +1,3027 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/* auditsc.c -- System-call auditing support
+ * Handles all system-call specific auditing features.
+ *
+ * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
+ * Copyright 2005 Hewlett-Packard Development Company, L.P.
+ * Copyright (C) 2005, 2006 IBM Corporation
+ * All Rights Reserved.
+ *
+ * Written by Rickard E. (Rik) Faith <faith@redhat.com>
+ *
+ * Many of the ideas implemented here are from Stephen C. Tweedie,
+ * especially the idea of avoiding a copy by using getname.
+ *
+ * The method for actual interception of syscall entry and exit (not in
+ * this file -- see entry.S) is based on a GPL'd patch written by
+ * okir@suse.de and Copyright 2003 SuSE Linux AG.
+ *
+ * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
+ * 2006.
+ *
+ * The support of additional filter rules compares (>, <, >=, <=) was
+ * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
+ *
+ * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
+ * filesystem information.
+ *
+ * Subject and object context labeling support added by <danjones@us.ibm.com>
+ * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/init.h>
+#include <asm/types.h>
+#include <linux/atomic.h>
+#include <linux/fs.h>
+#include <linux/namei.h>
+#include <linux/mm.h>
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/mount.h>
+#include <linux/socket.h>
+#include <linux/mqueue.h>
+#include <linux/audit.h>
+#include <linux/personality.h>
+#include <linux/time.h>
+#include <linux/netlink.h>
+#include <linux/compiler.h>
+#include <asm/unistd.h>
+#include <linux/security.h>
+#include <linux/list.h>
+#include <linux/binfmts.h>
+#include <linux/highmem.h>
+#include <linux/syscalls.h>
+#include <asm/syscall.h>
+#include <linux/capability.h>
+#include <linux/fs_struct.h>
+#include <linux/compat.h>
+#include <linux/ctype.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/fsnotify_backend.h>
+#include <uapi/linux/limits.h>
+#include <uapi/linux/netfilter/nf_tables.h>
+#include <uapi/linux/openat2.h> // struct open_how
+
+#include "audit.h"
+
+/* flags stating the success for a syscall */
+#define AUDITSC_INVALID 0
+#define AUDITSC_SUCCESS 1
+#define AUDITSC_FAILURE 2
+
+/* no execve audit message should be longer than this (userspace limits),
+ * see the note near the top of audit_log_execve_info() about this value */
+#define MAX_EXECVE_AUDIT_LEN 7500
+
+/* max length to print of cmdline/proctitle value during audit */
+#define MAX_PROCTITLE_AUDIT_LEN 128
+
+/* number of audit rules */
+int audit_n_rules;
+
+/* determines whether we collect data for signals sent */
+int audit_signals;
+
+struct audit_aux_data {
+ struct audit_aux_data *next;
+ int type;
+};
+
+/* Number of target pids per aux struct. */
+#define AUDIT_AUX_PIDS 16
+
+struct audit_aux_data_pids {
+ struct audit_aux_data d;
+ pid_t target_pid[AUDIT_AUX_PIDS];
+ kuid_t target_auid[AUDIT_AUX_PIDS];
+ kuid_t target_uid[AUDIT_AUX_PIDS];
+ unsigned int target_sessionid[AUDIT_AUX_PIDS];
+ u32 target_sid[AUDIT_AUX_PIDS];
+ char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
+ int pid_count;
+};
+
+struct audit_aux_data_bprm_fcaps {
+ struct audit_aux_data d;
+ struct audit_cap_data fcap;
+ unsigned int fcap_ver;
+ struct audit_cap_data old_pcap;
+ struct audit_cap_data new_pcap;
+};
+
+struct audit_tree_refs {
+ struct audit_tree_refs *next;
+ struct audit_chunk *c[31];
+};
+
+struct audit_nfcfgop_tab {
+ enum audit_nfcfgop op;
+ const char *s;
+};
+
+static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
+ { AUDIT_XT_OP_REGISTER, "xt_register" },
+ { AUDIT_XT_OP_REPLACE, "xt_replace" },
+ { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
+ { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
+ { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
+ { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
+ { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
+ { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
+ { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
+ { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
+ { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
+ { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
+ { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
+ { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
+ { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
+ { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
+ { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
+ { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
+ { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
+ { AUDIT_NFT_OP_INVALID, "nft_invalid" },
+};
+
+static int audit_match_perm(struct audit_context *ctx, int mask)
+{
+ unsigned n;
+
+ if (unlikely(!ctx))
+ return 0;
+ n = ctx->major;
+
+ switch (audit_classify_syscall(ctx->arch, n)) {
+ case AUDITSC_NATIVE:
+ if ((mask & AUDIT_PERM_WRITE) &&
+ audit_match_class(AUDIT_CLASS_WRITE, n))
+ return 1;
+ if ((mask & AUDIT_PERM_READ) &&
+ audit_match_class(AUDIT_CLASS_READ, n))
+ return 1;
+ if ((mask & AUDIT_PERM_ATTR) &&
+ audit_match_class(AUDIT_CLASS_CHATTR, n))
+ return 1;
+ return 0;
+ case AUDITSC_COMPAT: /* 32bit on biarch */
+ if ((mask & AUDIT_PERM_WRITE) &&
+ audit_match_class(AUDIT_CLASS_WRITE_32, n))
+ return 1;
+ if ((mask & AUDIT_PERM_READ) &&
+ audit_match_class(AUDIT_CLASS_READ_32, n))
+ return 1;
+ if ((mask & AUDIT_PERM_ATTR) &&
+ audit_match_class(AUDIT_CLASS_CHATTR_32, n))
+ return 1;
+ return 0;
+ case AUDITSC_OPEN:
+ return mask & ACC_MODE(ctx->argv[1]);
+ case AUDITSC_OPENAT:
+ return mask & ACC_MODE(ctx->argv[2]);
+ case AUDITSC_SOCKETCALL:
+ return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
+ case AUDITSC_EXECVE:
+ return mask & AUDIT_PERM_EXEC;
+ case AUDITSC_OPENAT2:
+ return mask & ACC_MODE((u32)ctx->openat2.flags);
+ default:
+ return 0;
+ }
+}
+
+static int audit_match_filetype(struct audit_context *ctx, int val)
+{
+ struct audit_names *n;
+ umode_t mode = (umode_t)val;
+
+ if (unlikely(!ctx))
+ return 0;
+
+ list_for_each_entry(n, &ctx->names_list, list) {
+ if ((n->ino != AUDIT_INO_UNSET) &&
+ ((n->mode & S_IFMT) == mode))
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
+ * ->first_trees points to its beginning, ->trees - to the current end of data.
+ * ->tree_count is the number of free entries in array pointed to by ->trees.
+ * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
+ * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
+ * it's going to remain 1-element for almost any setup) until we free context itself.
+ * References in it _are_ dropped - at the same time we free/drop aux stuff.
+ */
+
+static void audit_set_auditable(struct audit_context *ctx)
+{
+ if (!ctx->prio) {
+ ctx->prio = 1;
+ ctx->current_state = AUDIT_STATE_RECORD;
+ }
+}
+
+static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
+{
+ struct audit_tree_refs *p = ctx->trees;
+ int left = ctx->tree_count;
+
+ if (likely(left)) {
+ p->c[--left] = chunk;
+ ctx->tree_count = left;
+ return 1;
+ }
+ if (!p)
+ return 0;
+ p = p->next;
+ if (p) {
+ p->c[30] = chunk;
+ ctx->trees = p;
+ ctx->tree_count = 30;
+ return 1;
+ }
+ return 0;
+}
+
+static int grow_tree_refs(struct audit_context *ctx)
+{
+ struct audit_tree_refs *p = ctx->trees;
+
+ ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
+ if (!ctx->trees) {
+ ctx->trees = p;
+ return 0;
+ }
+ if (p)
+ p->next = ctx->trees;
+ else
+ ctx->first_trees = ctx->trees;
+ ctx->tree_count = 31;
+ return 1;
+}
+
+static void unroll_tree_refs(struct audit_context *ctx,
+ struct audit_tree_refs *p, int count)
+{
+ struct audit_tree_refs *q;
+ int n;
+
+ if (!p) {
+ /* we started with empty chain */
+ p = ctx->first_trees;
+ count = 31;
+ /* if the very first allocation has failed, nothing to do */
+ if (!p)
+ return;
+ }
+ n = count;
+ for (q = p; q != ctx->trees; q = q->next, n = 31) {
+ while (n--) {
+ audit_put_chunk(q->c[n]);
+ q->c[n] = NULL;
+ }
+ }
+ while (n-- > ctx->tree_count) {
+ audit_put_chunk(q->c[n]);
+ q->c[n] = NULL;
+ }
+ ctx->trees = p;
+ ctx->tree_count = count;
+}
+
+static void free_tree_refs(struct audit_context *ctx)
+{
+ struct audit_tree_refs *p, *q;
+
+ for (p = ctx->first_trees; p; p = q) {
+ q = p->next;
+ kfree(p);
+ }
+}
+
+static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
+{
+ struct audit_tree_refs *p;
+ int n;
+
+ if (!tree)
+ return 0;
+ /* full ones */
+ for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
+ for (n = 0; n < 31; n++)
+ if (audit_tree_match(p->c[n], tree))
+ return 1;
+ }
+ /* partial */
+ if (p) {
+ for (n = ctx->tree_count; n < 31; n++)
+ if (audit_tree_match(p->c[n], tree))
+ return 1;
+ }
+ return 0;
+}
+
+static int audit_compare_uid(kuid_t uid,
+ struct audit_names *name,
+ struct audit_field *f,
+ struct audit_context *ctx)
+{
+ struct audit_names *n;
+ int rc;
+
+ if (name) {
+ rc = audit_uid_comparator(uid, f->op, name->uid);
+ if (rc)
+ return rc;
+ }
+
+ if (ctx) {
+ list_for_each_entry(n, &ctx->names_list, list) {
+ rc = audit_uid_comparator(uid, f->op, n->uid);
+ if (rc)
+ return rc;
+ }
+ }
+ return 0;
+}
+
+static int audit_compare_gid(kgid_t gid,
+ struct audit_names *name,
+ struct audit_field *f,
+ struct audit_context *ctx)
+{
+ struct audit_names *n;
+ int rc;
+
+ if (name) {
+ rc = audit_gid_comparator(gid, f->op, name->gid);
+ if (rc)
+ return rc;
+ }
+
+ if (ctx) {
+ list_for_each_entry(n, &ctx->names_list, list) {
+ rc = audit_gid_comparator(gid, f->op, n->gid);
+ if (rc)
+ return rc;
+ }
+ }
+ return 0;
+}
+
+static int audit_field_compare(struct task_struct *tsk,
+ const struct cred *cred,
+ struct audit_field *f,
+ struct audit_context *ctx,
+ struct audit_names *name)
+{
+ switch (f->val) {
+ /* process to file object comparisons */
+ case AUDIT_COMPARE_UID_TO_OBJ_UID:
+ return audit_compare_uid(cred->uid, name, f, ctx);
+ case AUDIT_COMPARE_GID_TO_OBJ_GID:
+ return audit_compare_gid(cred->gid, name, f, ctx);
+ case AUDIT_COMPARE_EUID_TO_OBJ_UID:
+ return audit_compare_uid(cred->euid, name, f, ctx);
+ case AUDIT_COMPARE_EGID_TO_OBJ_GID:
+ return audit_compare_gid(cred->egid, name, f, ctx);
+ case AUDIT_COMPARE_AUID_TO_OBJ_UID:
+ return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
+ case AUDIT_COMPARE_SUID_TO_OBJ_UID:
+ return audit_compare_uid(cred->suid, name, f, ctx);
+ case AUDIT_COMPARE_SGID_TO_OBJ_GID:
+ return audit_compare_gid(cred->sgid, name, f, ctx);
+ case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
+ return audit_compare_uid(cred->fsuid, name, f, ctx);
+ case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
+ return audit_compare_gid(cred->fsgid, name, f, ctx);
+ /* uid comparisons */
+ case AUDIT_COMPARE_UID_TO_AUID:
+ return audit_uid_comparator(cred->uid, f->op,
+ audit_get_loginuid(tsk));
+ case AUDIT_COMPARE_UID_TO_EUID:
+ return audit_uid_comparator(cred->uid, f->op, cred->euid);
+ case AUDIT_COMPARE_UID_TO_SUID:
+ return audit_uid_comparator(cred->uid, f->op, cred->suid);
+ case AUDIT_COMPARE_UID_TO_FSUID:
+ return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
+ /* auid comparisons */
+ case AUDIT_COMPARE_AUID_TO_EUID:
+ return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
+ cred->euid);
+ case AUDIT_COMPARE_AUID_TO_SUID:
+ return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
+ cred->suid);
+ case AUDIT_COMPARE_AUID_TO_FSUID:
+ return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
+ cred->fsuid);
+ /* euid comparisons */
+ case AUDIT_COMPARE_EUID_TO_SUID:
+ return audit_uid_comparator(cred->euid, f->op, cred->suid);
+ case AUDIT_COMPARE_EUID_TO_FSUID:
+ return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
+ /* suid comparisons */
+ case AUDIT_COMPARE_SUID_TO_FSUID:
+ return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
+ /* gid comparisons */
+ case AUDIT_COMPARE_GID_TO_EGID:
+ return audit_gid_comparator(cred->gid, f->op, cred->egid);
+ case AUDIT_COMPARE_GID_TO_SGID:
+ return audit_gid_comparator(cred->gid, f->op, cred->sgid);
+ case AUDIT_COMPARE_GID_TO_FSGID:
+ return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
+ /* egid comparisons */
+ case AUDIT_COMPARE_EGID_TO_SGID:
+ return audit_gid_comparator(cred->egid, f->op, cred->sgid);
+ case AUDIT_COMPARE_EGID_TO_FSGID:
+ return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
+ /* sgid comparison */
+ case AUDIT_COMPARE_SGID_TO_FSGID:
+ return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
+ default:
+ WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
+ return 0;
+ }
+ return 0;
+}
+
+/* Determine if any context name data matches a rule's watch data */
+/* Compare a task_struct with an audit_rule. Return 1 on match, 0
+ * otherwise.
+ *
+ * If task_creation is true, this is an explicit indication that we are
+ * filtering a task rule at task creation time. This and tsk == current are
+ * the only situations where tsk->cred may be accessed without an rcu read lock.
+ */
+static int audit_filter_rules(struct task_struct *tsk,
+ struct audit_krule *rule,
+ struct audit_context *ctx,
+ struct audit_names *name,
+ enum audit_state *state,
+ bool task_creation)
+{
+ const struct cred *cred;
+ int i, need_sid = 1;
+ u32 sid;
+ unsigned int sessionid;
+
+ if (ctx && rule->prio <= ctx->prio)
+ return 0;
+
+ cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
+
+ for (i = 0; i < rule->field_count; i++) {
+ struct audit_field *f = &rule->fields[i];
+ struct audit_names *n;
+ int result = 0;
+ pid_t pid;
+
+ switch (f->type) {
+ case AUDIT_PID:
+ pid = task_tgid_nr(tsk);
+ result = audit_comparator(pid, f->op, f->val);
+ break;
+ case AUDIT_PPID:
+ if (ctx) {
+ if (!ctx->ppid)
+ ctx->ppid = task_ppid_nr(tsk);
+ result = audit_comparator(ctx->ppid, f->op, f->val);
+ }
+ break;
+ case AUDIT_EXE:
+ result = audit_exe_compare(tsk, rule->exe);
+ if (f->op == Audit_not_equal)
+ result = !result;
+ break;
+ case AUDIT_UID:
+ result = audit_uid_comparator(cred->uid, f->op, f->uid);
+ break;
+ case AUDIT_EUID:
+ result = audit_uid_comparator(cred->euid, f->op, f->uid);
+ break;
+ case AUDIT_SUID:
+ result = audit_uid_comparator(cred->suid, f->op, f->uid);
+ break;
+ case AUDIT_FSUID:
+ result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
+ break;
+ case AUDIT_GID:
+ result = audit_gid_comparator(cred->gid, f->op, f->gid);
+ if (f->op == Audit_equal) {
+ if (!result)
+ result = groups_search(cred->group_info, f->gid);
+ } else if (f->op == Audit_not_equal) {
+ if (result)
+ result = !groups_search(cred->group_info, f->gid);
+ }
+ break;
+ case AUDIT_EGID:
+ result = audit_gid_comparator(cred->egid, f->op, f->gid);
+ if (f->op == Audit_equal) {
+ if (!result)
+ result = groups_search(cred->group_info, f->gid);
+ } else if (f->op == Audit_not_equal) {
+ if (result)
+ result = !groups_search(cred->group_info, f->gid);
+ }
+ break;
+ case AUDIT_SGID:
+ result = audit_gid_comparator(cred->sgid, f->op, f->gid);
+ break;
+ case AUDIT_FSGID:
+ result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
+ break;
+ case AUDIT_SESSIONID:
+ sessionid = audit_get_sessionid(tsk);
+ result = audit_comparator(sessionid, f->op, f->val);
+ break;
+ case AUDIT_PERS:
+ result = audit_comparator(tsk->personality, f->op, f->val);
+ break;
+ case AUDIT_ARCH:
+ if (ctx)
+ result = audit_comparator(ctx->arch, f->op, f->val);
+ break;
+
+ case AUDIT_EXIT:
+ if (ctx && ctx->return_valid != AUDITSC_INVALID)
+ result = audit_comparator(ctx->return_code, f->op, f->val);
+ break;
+ case AUDIT_SUCCESS:
+ if (ctx && ctx->return_valid != AUDITSC_INVALID) {
+ if (f->val)
+ result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
+ else
+ result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
+ }
+ break;
+ case AUDIT_DEVMAJOR:
+ if (name) {
+ if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
+ audit_comparator(MAJOR(name->rdev), f->op, f->val))
+ ++result;
+ } else if (ctx) {
+ list_for_each_entry(n, &ctx->names_list, list) {
+ if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
+ audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
+ ++result;
+ break;
+ }
+ }
+ }
+ break;
+ case AUDIT_DEVMINOR:
+ if (name) {
+ if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
+ audit_comparator(MINOR(name->rdev), f->op, f->val))
+ ++result;
+ } else if (ctx) {
+ list_for_each_entry(n, &ctx->names_list, list) {
+ if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
+ audit_comparator(MINOR(n->rdev), f->op, f->val)) {
+ ++result;
+ break;
+ }
+ }
+ }
+ break;
+ case AUDIT_INODE:
+ if (name)
+ result = audit_comparator(name->ino, f->op, f->val);
+ else if (ctx) {
+ list_for_each_entry(n, &ctx->names_list, list) {
+ if (audit_comparator(n->ino, f->op, f->val)) {
+ ++result;
+ break;
+ }
+ }
+ }
+ break;
+ case AUDIT_OBJ_UID:
+ if (name) {
+ result = audit_uid_comparator(name->uid, f->op, f->uid);
+ } else if (ctx) {
+ list_for_each_entry(n, &ctx->names_list, list) {
+ if (audit_uid_comparator(n->uid, f->op, f->uid)) {
+ ++result;
+ break;
+ }
+ }
+ }
+ break;
+ case AUDIT_OBJ_GID:
+ if (name) {
+ result = audit_gid_comparator(name->gid, f->op, f->gid);
+ } else if (ctx) {
+ list_for_each_entry(n, &ctx->names_list, list) {
+ if (audit_gid_comparator(n->gid, f->op, f->gid)) {
+ ++result;
+ break;
+ }
+ }
+ }
+ break;
+ case AUDIT_WATCH:
+ if (name) {
+ result = audit_watch_compare(rule->watch,
+ name->ino,
+ name->dev);
+ if (f->op == Audit_not_equal)
+ result = !result;
+ }
+ break;
+ case AUDIT_DIR:
+ if (ctx) {
+ result = match_tree_refs(ctx, rule->tree);
+ if (f->op == Audit_not_equal)
+ result = !result;
+ }
+ break;
+ case AUDIT_LOGINUID:
+ result = audit_uid_comparator(audit_get_loginuid(tsk),
+ f->op, f->uid);
+ break;
+ case AUDIT_LOGINUID_SET:
+ result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
+ break;
+ case AUDIT_SADDR_FAM:
+ if (ctx && ctx->sockaddr)
+ result = audit_comparator(ctx->sockaddr->ss_family,
+ f->op, f->val);
+ break;
+ case AUDIT_SUBJ_USER:
+ case AUDIT_SUBJ_ROLE:
+ case AUDIT_SUBJ_TYPE:
+ case AUDIT_SUBJ_SEN:
+ case AUDIT_SUBJ_CLR:
+ /* NOTE: this may return negative values indicating
+ a temporary error. We simply treat this as a
+ match for now to avoid losing information that
+ may be wanted. An error message will also be
+ logged upon error */
+ if (f->lsm_rule) {
+ if (need_sid) {
+ /* @tsk should always be equal to
+ * @current with the exception of
+ * fork()/copy_process() in which case
+ * the new @tsk creds are still a dup
+ * of @current's creds so we can still
+ * use security_current_getsecid_subj()
+ * here even though it always refs
+ * @current's creds
+ */
+ security_current_getsecid_subj(&sid);
+ need_sid = 0;
+ }
+ result = security_audit_rule_match(sid, f->type,
+ f->op,
+ f->lsm_rule);
+ }
+ break;
+ case AUDIT_OBJ_USER:
+ case AUDIT_OBJ_ROLE:
+ case AUDIT_OBJ_TYPE:
+ case AUDIT_OBJ_LEV_LOW:
+ case AUDIT_OBJ_LEV_HIGH:
+ /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
+ also applies here */
+ if (f->lsm_rule) {
+ /* Find files that match */
+ if (name) {
+ result = security_audit_rule_match(
+ name->osid,
+ f->type,
+ f->op,
+ f->lsm_rule);
+ } else if (ctx) {
+ list_for_each_entry(n, &ctx->names_list, list) {
+ if (security_audit_rule_match(
+ n->osid,
+ f->type,
+ f->op,
+ f->lsm_rule)) {
+ ++result;
+ break;
+ }
+ }
+ }
+ /* Find ipc objects that match */
+ if (!ctx || ctx->type != AUDIT_IPC)
+ break;
+ if (security_audit_rule_match(ctx->ipc.osid,
+ f->type, f->op,
+ f->lsm_rule))
+ ++result;
+ }
+ break;
+ case AUDIT_ARG0:
+ case AUDIT_ARG1:
+ case AUDIT_ARG2:
+ case AUDIT_ARG3:
+ if (ctx)
+ result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
+ break;
+ case AUDIT_FILTERKEY:
+ /* ignore this field for filtering */
+ result = 1;
+ break;
+ case AUDIT_PERM:
+ result = audit_match_perm(ctx, f->val);
+ if (f->op == Audit_not_equal)
+ result = !result;
+ break;
+ case AUDIT_FILETYPE:
+ result = audit_match_filetype(ctx, f->val);
+ if (f->op == Audit_not_equal)
+ result = !result;
+ break;
+ case AUDIT_FIELD_COMPARE:
+ result = audit_field_compare(tsk, cred, f, ctx, name);
+ break;
+ }
+ if (!result)
+ return 0;
+ }
+
+ if (ctx) {
+ if (rule->filterkey) {
+ kfree(ctx->filterkey);
+ ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
+ }
+ ctx->prio = rule->prio;
+ }
+ switch (rule->action) {
+ case AUDIT_NEVER:
+ *state = AUDIT_STATE_DISABLED;
+ break;
+ case AUDIT_ALWAYS:
+ *state = AUDIT_STATE_RECORD;
+ break;
+ }
+ return 1;
+}
+
+/* At process creation time, we can determine if system-call auditing is
+ * completely disabled for this task. Since we only have the task
+ * structure at this point, we can only check uid and gid.
+ */
+static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
+{
+ struct audit_entry *e;
+ enum audit_state state;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
+ if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
+ &state, true)) {
+ if (state == AUDIT_STATE_RECORD)
+ *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
+ rcu_read_unlock();
+ return state;
+ }
+ }
+ rcu_read_unlock();
+ return AUDIT_STATE_BUILD;
+}
+
+static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
+{
+ int word, bit;
+
+ if (val > 0xffffffff)
+ return false;
+
+ word = AUDIT_WORD(val);
+ if (word >= AUDIT_BITMASK_SIZE)
+ return false;
+
+ bit = AUDIT_BIT(val);
+
+ return rule->mask[word] & bit;
+}
+
+/**
+ * audit_filter_uring - apply filters to an io_uring operation
+ * @tsk: associated task
+ * @ctx: audit context
+ */
+static void audit_filter_uring(struct task_struct *tsk,
+ struct audit_context *ctx)
+{
+ struct audit_entry *e;
+ enum audit_state state;
+
+ if (auditd_test_task(tsk))
+ return;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
+ list) {
+ if (audit_in_mask(&e->rule, ctx->uring_op) &&
+ audit_filter_rules(tsk, &e->rule, ctx, NULL, &state,
+ false)) {
+ rcu_read_unlock();
+ ctx->current_state = state;
+ return;
+ }
+ }
+ rcu_read_unlock();
+}
+
+/* At syscall exit time, this filter is called if the audit_state is
+ * not low enough that auditing cannot take place, but is also not
+ * high enough that we already know we have to write an audit record
+ * (i.e., the state is AUDIT_STATE_BUILD).
+ */
+static void audit_filter_syscall(struct task_struct *tsk,
+ struct audit_context *ctx)
+{
+ struct audit_entry *e;
+ enum audit_state state;
+
+ if (auditd_test_task(tsk))
+ return;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
+ if (audit_in_mask(&e->rule, ctx->major) &&
+ audit_filter_rules(tsk, &e->rule, ctx, NULL,
+ &state, false)) {
+ rcu_read_unlock();
+ ctx->current_state = state;
+ return;
+ }
+ }
+ rcu_read_unlock();
+ return;
+}
+
+/*
+ * Given an audit_name check the inode hash table to see if they match.
+ * Called holding the rcu read lock to protect the use of audit_inode_hash
+ */
+static int audit_filter_inode_name(struct task_struct *tsk,
+ struct audit_names *n,
+ struct audit_context *ctx) {
+ int h = audit_hash_ino((u32)n->ino);
+ struct list_head *list = &audit_inode_hash[h];
+ struct audit_entry *e;
+ enum audit_state state;
+
+ list_for_each_entry_rcu(e, list, list) {
+ if (audit_in_mask(&e->rule, ctx->major) &&
+ audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
+ ctx->current_state = state;
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/* At syscall exit time, this filter is called if any audit_names have been
+ * collected during syscall processing. We only check rules in sublists at hash
+ * buckets applicable to the inode numbers in audit_names.
+ * Regarding audit_state, same rules apply as for audit_filter_syscall().
+ */
+void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
+{
+ struct audit_names *n;
+
+ if (auditd_test_task(tsk))
+ return;
+
+ rcu_read_lock();
+
+ list_for_each_entry(n, &ctx->names_list, list) {
+ if (audit_filter_inode_name(tsk, n, ctx))
+ break;
+ }
+ rcu_read_unlock();
+}
+
+static inline void audit_proctitle_free(struct audit_context *context)
+{
+ kfree(context->proctitle.value);
+ context->proctitle.value = NULL;
+ context->proctitle.len = 0;
+}
+
+static inline void audit_free_module(struct audit_context *context)
+{
+ if (context->type == AUDIT_KERN_MODULE) {
+ kfree(context->module.name);
+ context->module.name = NULL;
+ }
+}
+static inline void audit_free_names(struct audit_context *context)
+{
+ struct audit_names *n, *next;
+
+ list_for_each_entry_safe(n, next, &context->names_list, list) {
+ list_del(&n->list);
+ if (n->name)
+ putname(n->name);
+ if (n->should_free)
+ kfree(n);
+ }
+ context->name_count = 0;
+ path_put(&context->pwd);
+ context->pwd.dentry = NULL;
+ context->pwd.mnt = NULL;
+}
+
+static inline void audit_free_aux(struct audit_context *context)
+{
+ struct audit_aux_data *aux;
+
+ while ((aux = context->aux)) {
+ context->aux = aux->next;
+ kfree(aux);
+ }
+ context->aux = NULL;
+ while ((aux = context->aux_pids)) {
+ context->aux_pids = aux->next;
+ kfree(aux);
+ }
+ context->aux_pids = NULL;
+}
+
+/**
+ * audit_reset_context - reset a audit_context structure
+ * @ctx: the audit_context to reset
+ *
+ * All fields in the audit_context will be reset to an initial state, all
+ * references held by fields will be dropped, and private memory will be
+ * released. When this function returns the audit_context will be suitable
+ * for reuse, so long as the passed context is not NULL or a dummy context.
+ */
+static void audit_reset_context(struct audit_context *ctx)
+{
+ if (!ctx)
+ return;
+
+ /* if ctx is non-null, reset the "ctx->context" regardless */
+ ctx->context = AUDIT_CTX_UNUSED;
+ if (ctx->dummy)
+ return;
+
+ /*
+ * NOTE: It shouldn't matter in what order we release the fields, so
+ * release them in the order in which they appear in the struct;
+ * this gives us some hope of quickly making sure we are
+ * resetting the audit_context properly.
+ *
+ * Other things worth mentioning:
+ * - we don't reset "dummy"
+ * - we don't reset "state", we do reset "current_state"
+ * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
+ * - much of this is likely overkill, but play it safe for now
+ * - we really need to work on improving the audit_context struct
+ */
+
+ ctx->current_state = ctx->state;
+ ctx->serial = 0;
+ ctx->major = 0;
+ ctx->uring_op = 0;
+ ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
+ memset(ctx->argv, 0, sizeof(ctx->argv));
+ ctx->return_code = 0;
+ ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
+ ctx->return_valid = AUDITSC_INVALID;
+ audit_free_names(ctx);
+ if (ctx->state != AUDIT_STATE_RECORD) {
+ kfree(ctx->filterkey);
+ ctx->filterkey = NULL;
+ }
+ audit_free_aux(ctx);
+ kfree(ctx->sockaddr);
+ ctx->sockaddr = NULL;
+ ctx->sockaddr_len = 0;
+ ctx->ppid = 0;
+ ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
+ ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
+ ctx->personality = 0;
+ ctx->arch = 0;
+ ctx->target_pid = 0;
+ ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
+ ctx->target_sessionid = 0;
+ ctx->target_sid = 0;
+ ctx->target_comm[0] = '\0';
+ unroll_tree_refs(ctx, NULL, 0);
+ WARN_ON(!list_empty(&ctx->killed_trees));
+ audit_free_module(ctx);
+ ctx->fds[0] = -1;
+ ctx->type = 0; /* reset last for audit_free_*() */
+}
+
+static inline struct audit_context *audit_alloc_context(enum audit_state state)
+{
+ struct audit_context *context;
+
+ context = kzalloc(sizeof(*context), GFP_KERNEL);
+ if (!context)
+ return NULL;
+ context->context = AUDIT_CTX_UNUSED;
+ context->state = state;
+ context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
+ INIT_LIST_HEAD(&context->killed_trees);
+ INIT_LIST_HEAD(&context->names_list);
+ context->fds[0] = -1;
+ context->return_valid = AUDITSC_INVALID;
+ return context;
+}
+
+/**
+ * audit_alloc - allocate an audit context block for a task
+ * @tsk: task
+ *
+ * Filter on the task information and allocate a per-task audit context
+ * if necessary. Doing so turns on system call auditing for the
+ * specified task. This is called from copy_process, so no lock is
+ * needed.
+ */
+int audit_alloc(struct task_struct *tsk)
+{
+ struct audit_context *context;
+ enum audit_state state;
+ char *key = NULL;
+
+ if (likely(!audit_ever_enabled))
+ return 0;
+
+ state = audit_filter_task(tsk, &key);
+ if (state == AUDIT_STATE_DISABLED) {
+ clear_task_syscall_work(tsk, SYSCALL_AUDIT);
+ return 0;
+ }
+
+ if (!(context = audit_alloc_context(state))) {
+ kfree(key);
+ audit_log_lost("out of memory in audit_alloc");
+ return -ENOMEM;
+ }
+ context->filterkey = key;
+
+ audit_set_context(tsk, context);
+ set_task_syscall_work(tsk, SYSCALL_AUDIT);
+ return 0;
+}
+
+static inline void audit_free_context(struct audit_context *context)
+{
+ /* resetting is extra work, but it is likely just noise */
+ audit_reset_context(context);
+ audit_proctitle_free(context);
+ free_tree_refs(context);
+ kfree(context->filterkey);
+ kfree(context);
+}
+
+static int audit_log_pid_context(struct audit_context *context, pid_t pid,
+ kuid_t auid, kuid_t uid, unsigned int sessionid,
+ u32 sid, char *comm)
+{
+ struct audit_buffer *ab;
+ char *ctx = NULL;
+ u32 len;
+ int rc = 0;
+
+ ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
+ if (!ab)
+ return rc;
+
+ audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
+ from_kuid(&init_user_ns, auid),
+ from_kuid(&init_user_ns, uid), sessionid);
+ if (sid) {
+ if (security_secid_to_secctx(sid, &ctx, &len)) {
+ audit_log_format(ab, " obj=(none)");
+ rc = 1;
+ } else {
+ audit_log_format(ab, " obj=%s", ctx);
+ security_release_secctx(ctx, len);
+ }
+ }
+ audit_log_format(ab, " ocomm=");
+ audit_log_untrustedstring(ab, comm);
+ audit_log_end(ab);
+
+ return rc;
+}
+
+static void audit_log_execve_info(struct audit_context *context,
+ struct audit_buffer **ab)
+{
+ long len_max;
+ long len_rem;
+ long len_full;
+ long len_buf;
+ long len_abuf = 0;
+ long len_tmp;
+ bool require_data;
+ bool encode;
+ unsigned int iter;
+ unsigned int arg;
+ char *buf_head;
+ char *buf;
+ const char __user *p = (const char __user *)current->mm->arg_start;
+
+ /* NOTE: this buffer needs to be large enough to hold all the non-arg
+ * data we put in the audit record for this argument (see the
+ * code below) ... at this point in time 96 is plenty */
+ char abuf[96];
+
+ /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
+ * current value of 7500 is not as important as the fact that it
+ * is less than 8k, a setting of 7500 gives us plenty of wiggle
+ * room if we go over a little bit in the logging below */
+ WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
+ len_max = MAX_EXECVE_AUDIT_LEN;
+
+ /* scratch buffer to hold the userspace args */
+ buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
+ if (!buf_head) {
+ audit_panic("out of memory for argv string");
+ return;
+ }
+ buf = buf_head;
+
+ audit_log_format(*ab, "argc=%d", context->execve.argc);
+
+ len_rem = len_max;
+ len_buf = 0;
+ len_full = 0;
+ require_data = true;
+ encode = false;
+ iter = 0;
+ arg = 0;
+ do {
+ /* NOTE: we don't ever want to trust this value for anything
+ * serious, but the audit record format insists we
+ * provide an argument length for really long arguments,
+ * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
+ * to use strncpy_from_user() to obtain this value for
+ * recording in the log, although we don't use it
+ * anywhere here to avoid a double-fetch problem */
+ if (len_full == 0)
+ len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
+
+ /* read more data from userspace */
+ if (require_data) {
+ /* can we make more room in the buffer? */
+ if (buf != buf_head) {
+ memmove(buf_head, buf, len_buf);
+ buf = buf_head;
+ }
+
+ /* fetch as much as we can of the argument */
+ len_tmp = strncpy_from_user(&buf_head[len_buf], p,
+ len_max - len_buf);
+ if (len_tmp == -EFAULT) {
+ /* unable to copy from userspace */
+ send_sig(SIGKILL, current, 0);
+ goto out;
+ } else if (len_tmp == (len_max - len_buf)) {
+ /* buffer is not large enough */
+ require_data = true;
+ /* NOTE: if we are going to span multiple
+ * buffers force the encoding so we stand
+ * a chance at a sane len_full value and
+ * consistent record encoding */
+ encode = true;
+ len_full = len_full * 2;
+ p += len_tmp;
+ } else {
+ require_data = false;
+ if (!encode)
+ encode = audit_string_contains_control(
+ buf, len_tmp);
+ /* try to use a trusted value for len_full */
+ if (len_full < len_max)
+ len_full = (encode ?
+ len_tmp * 2 : len_tmp);
+ p += len_tmp + 1;
+ }
+ len_buf += len_tmp;
+ buf_head[len_buf] = '\0';
+
+ /* length of the buffer in the audit record? */
+ len_abuf = (encode ? len_buf * 2 : len_buf + 2);
+ }
+
+ /* write as much as we can to the audit log */
+ if (len_buf >= 0) {
+ /* NOTE: some magic numbers here - basically if we
+ * can't fit a reasonable amount of data into the
+ * existing audit buffer, flush it and start with
+ * a new buffer */
+ if ((sizeof(abuf) + 8) > len_rem) {
+ len_rem = len_max;
+ audit_log_end(*ab);
+ *ab = audit_log_start(context,
+ GFP_KERNEL, AUDIT_EXECVE);
+ if (!*ab)
+ goto out;
+ }
+
+ /* create the non-arg portion of the arg record */
+ len_tmp = 0;
+ if (require_data || (iter > 0) ||
+ ((len_abuf + sizeof(abuf)) > len_rem)) {
+ if (iter == 0) {
+ len_tmp += snprintf(&abuf[len_tmp],
+ sizeof(abuf) - len_tmp,
+ " a%d_len=%lu",
+ arg, len_full);
+ }
+ len_tmp += snprintf(&abuf[len_tmp],
+ sizeof(abuf) - len_tmp,
+ " a%d[%d]=", arg, iter++);
+ } else
+ len_tmp += snprintf(&abuf[len_tmp],
+ sizeof(abuf) - len_tmp,
+ " a%d=", arg);
+ WARN_ON(len_tmp >= sizeof(abuf));
+ abuf[sizeof(abuf) - 1] = '\0';
+
+ /* log the arg in the audit record */
+ audit_log_format(*ab, "%s", abuf);
+ len_rem -= len_tmp;
+ len_tmp = len_buf;
+ if (encode) {
+ if (len_abuf > len_rem)
+ len_tmp = len_rem / 2; /* encoding */
+ audit_log_n_hex(*ab, buf, len_tmp);
+ len_rem -= len_tmp * 2;
+ len_abuf -= len_tmp * 2;
+ } else {
+ if (len_abuf > len_rem)
+ len_tmp = len_rem - 2; /* quotes */
+ audit_log_n_string(*ab, buf, len_tmp);
+ len_rem -= len_tmp + 2;
+ /* don't subtract the "2" because we still need
+ * to add quotes to the remaining string */
+ len_abuf -= len_tmp;
+ }
+ len_buf -= len_tmp;
+ buf += len_tmp;
+ }
+
+ /* ready to move to the next argument? */
+ if ((len_buf == 0) && !require_data) {
+ arg++;
+ iter = 0;
+ len_full = 0;
+ require_data = true;
+ encode = false;
+ }
+ } while (arg < context->execve.argc);
+
+ /* NOTE: the caller handles the final audit_log_end() call */
+
+out:
+ kfree(buf_head);
+}
+
+static void audit_log_cap(struct audit_buffer *ab, char *prefix,
+ kernel_cap_t *cap)
+{
+ int i;
+
+ if (cap_isclear(*cap)) {
+ audit_log_format(ab, " %s=0", prefix);
+ return;
+ }
+ audit_log_format(ab, " %s=", prefix);
+ CAP_FOR_EACH_U32(i)
+ audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
+}
+
+static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
+{
+ if (name->fcap_ver == -1) {
+ audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
+ return;
+ }
+ audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
+ audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
+ audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
+ name->fcap.fE, name->fcap_ver,
+ from_kuid(&init_user_ns, name->fcap.rootid));
+}
+
+static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
+{
+ const struct audit_ntp_data *ntp = &context->time.ntp_data;
+ const struct timespec64 *tk = &context->time.tk_injoffset;
+ static const char * const ntp_name[] = {
+ "offset",
+ "freq",
+ "status",
+ "tai",
+ "tick",
+ "adjust",
+ };
+ int type;
+
+ if (context->type == AUDIT_TIME_ADJNTPVAL) {
+ for (type = 0; type < AUDIT_NTP_NVALS; type++) {
+ if (ntp->vals[type].newval != ntp->vals[type].oldval) {
+ if (!*ab) {
+ *ab = audit_log_start(context,
+ GFP_KERNEL,
+ AUDIT_TIME_ADJNTPVAL);
+ if (!*ab)
+ return;
+ }
+ audit_log_format(*ab, "op=%s old=%lli new=%lli",
+ ntp_name[type],
+ ntp->vals[type].oldval,
+ ntp->vals[type].newval);
+ audit_log_end(*ab);
+ *ab = NULL;
+ }
+ }
+ }
+ if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
+ if (!*ab) {
+ *ab = audit_log_start(context, GFP_KERNEL,
+ AUDIT_TIME_INJOFFSET);
+ if (!*ab)
+ return;
+ }
+ audit_log_format(*ab, "sec=%lli nsec=%li",
+ (long long)tk->tv_sec, tk->tv_nsec);
+ audit_log_end(*ab);
+ *ab = NULL;
+ }
+}
+
+static void show_special(struct audit_context *context, int *call_panic)
+{
+ struct audit_buffer *ab;
+ int i;
+
+ ab = audit_log_start(context, GFP_KERNEL, context->type);
+ if (!ab)
+ return;
+
+ switch (context->type) {
+ case AUDIT_SOCKETCALL: {
+ int nargs = context->socketcall.nargs;
+
+ audit_log_format(ab, "nargs=%d", nargs);
+ for (i = 0; i < nargs; i++)
+ audit_log_format(ab, " a%d=%lx", i,
+ context->socketcall.args[i]);
+ break; }
+ case AUDIT_IPC: {
+ u32 osid = context->ipc.osid;
+
+ audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
+ from_kuid(&init_user_ns, context->ipc.uid),
+ from_kgid(&init_user_ns, context->ipc.gid),
+ context->ipc.mode);
+ if (osid) {
+ char *ctx = NULL;
+ u32 len;
+
+ if (security_secid_to_secctx(osid, &ctx, &len)) {
+ audit_log_format(ab, " osid=%u", osid);
+ *call_panic = 1;
+ } else {
+ audit_log_format(ab, " obj=%s", ctx);
+ security_release_secctx(ctx, len);
+ }
+ }
+ if (context->ipc.has_perm) {
+ audit_log_end(ab);
+ ab = audit_log_start(context, GFP_KERNEL,
+ AUDIT_IPC_SET_PERM);
+ if (unlikely(!ab))
+ return;
+ audit_log_format(ab,
+ "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
+ context->ipc.qbytes,
+ context->ipc.perm_uid,
+ context->ipc.perm_gid,
+ context->ipc.perm_mode);
+ }
+ break; }
+ case AUDIT_MQ_OPEN:
+ audit_log_format(ab,
+ "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
+ "mq_msgsize=%ld mq_curmsgs=%ld",
+ context->mq_open.oflag, context->mq_open.mode,
+ context->mq_open.attr.mq_flags,
+ context->mq_open.attr.mq_maxmsg,
+ context->mq_open.attr.mq_msgsize,
+ context->mq_open.attr.mq_curmsgs);
+ break;
+ case AUDIT_MQ_SENDRECV:
+ audit_log_format(ab,
+ "mqdes=%d msg_len=%zd msg_prio=%u "
+ "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
+ context->mq_sendrecv.mqdes,
+ context->mq_sendrecv.msg_len,
+ context->mq_sendrecv.msg_prio,
+ (long long) context->mq_sendrecv.abs_timeout.tv_sec,
+ context->mq_sendrecv.abs_timeout.tv_nsec);
+ break;
+ case AUDIT_MQ_NOTIFY:
+ audit_log_format(ab, "mqdes=%d sigev_signo=%d",
+ context->mq_notify.mqdes,
+ context->mq_notify.sigev_signo);
+ break;
+ case AUDIT_MQ_GETSETATTR: {
+ struct mq_attr *attr = &context->mq_getsetattr.mqstat;
+
+ audit_log_format(ab,
+ "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
+ "mq_curmsgs=%ld ",
+ context->mq_getsetattr.mqdes,
+ attr->mq_flags, attr->mq_maxmsg,
+ attr->mq_msgsize, attr->mq_curmsgs);
+ break; }
+ case AUDIT_CAPSET:
+ audit_log_format(ab, "pid=%d", context->capset.pid);
+ audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
+ audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
+ audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
+ audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
+ break;
+ case AUDIT_MMAP:
+ audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
+ context->mmap.flags);
+ break;
+ case AUDIT_OPENAT2:
+ audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
+ context->openat2.flags,
+ context->openat2.mode,
+ context->openat2.resolve);
+ break;
+ case AUDIT_EXECVE:
+ audit_log_execve_info(context, &ab);
+ break;
+ case AUDIT_KERN_MODULE:
+ audit_log_format(ab, "name=");
+ if (context->module.name) {
+ audit_log_untrustedstring(ab, context->module.name);
+ } else
+ audit_log_format(ab, "(null)");
+
+ break;
+ case AUDIT_TIME_ADJNTPVAL:
+ case AUDIT_TIME_INJOFFSET:
+ /* this call deviates from the rest, eating the buffer */
+ audit_log_time(context, &ab);
+ break;
+ }
+ audit_log_end(ab);
+}
+
+static inline int audit_proctitle_rtrim(char *proctitle, int len)
+{
+ char *end = proctitle + len - 1;
+
+ while (end > proctitle && !isprint(*end))
+ end--;
+
+ /* catch the case where proctitle is only 1 non-print character */
+ len = end - proctitle + 1;
+ len -= isprint(proctitle[len-1]) == 0;
+ return len;
+}
+
+/*
+ * audit_log_name - produce AUDIT_PATH record from struct audit_names
+ * @context: audit_context for the task
+ * @n: audit_names structure with reportable details
+ * @path: optional path to report instead of audit_names->name
+ * @record_num: record number to report when handling a list of names
+ * @call_panic: optional pointer to int that will be updated if secid fails
+ */
+static void audit_log_name(struct audit_context *context, struct audit_names *n,
+ const struct path *path, int record_num, int *call_panic)
+{
+ struct audit_buffer *ab;
+
+ ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
+ if (!ab)
+ return;
+
+ audit_log_format(ab, "item=%d", record_num);
+
+ if (path)
+ audit_log_d_path(ab, " name=", path);
+ else if (n->name) {
+ switch (n->name_len) {
+ case AUDIT_NAME_FULL:
+ /* log the full path */
+ audit_log_format(ab, " name=");
+ audit_log_untrustedstring(ab, n->name->name);
+ break;
+ case 0:
+ /* name was specified as a relative path and the
+ * directory component is the cwd
+ */
+ if (context->pwd.dentry && context->pwd.mnt)
+ audit_log_d_path(ab, " name=", &context->pwd);
+ else
+ audit_log_format(ab, " name=(null)");
+ break;
+ default:
+ /* log the name's directory component */
+ audit_log_format(ab, " name=");
+ audit_log_n_untrustedstring(ab, n->name->name,
+ n->name_len);
+ }
+ } else
+ audit_log_format(ab, " name=(null)");
+
+ if (n->ino != AUDIT_INO_UNSET)
+ audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
+ n->ino,
+ MAJOR(n->dev),
+ MINOR(n->dev),
+ n->mode,
+ from_kuid(&init_user_ns, n->uid),
+ from_kgid(&init_user_ns, n->gid),
+ MAJOR(n->rdev),
+ MINOR(n->rdev));
+ if (n->osid != 0) {
+ char *ctx = NULL;
+ u32 len;
+
+ if (security_secid_to_secctx(
+ n->osid, &ctx, &len)) {
+ audit_log_format(ab, " osid=%u", n->osid);
+ if (call_panic)
+ *call_panic = 2;
+ } else {
+ audit_log_format(ab, " obj=%s", ctx);
+ security_release_secctx(ctx, len);
+ }
+ }
+
+ /* log the audit_names record type */
+ switch (n->type) {
+ case AUDIT_TYPE_NORMAL:
+ audit_log_format(ab, " nametype=NORMAL");
+ break;
+ case AUDIT_TYPE_PARENT:
+ audit_log_format(ab, " nametype=PARENT");
+ break;
+ case AUDIT_TYPE_CHILD_DELETE:
+ audit_log_format(ab, " nametype=DELETE");
+ break;
+ case AUDIT_TYPE_CHILD_CREATE:
+ audit_log_format(ab, " nametype=CREATE");
+ break;
+ default:
+ audit_log_format(ab, " nametype=UNKNOWN");
+ break;
+ }
+
+ audit_log_fcaps(ab, n);
+ audit_log_end(ab);
+}
+
+static void audit_log_proctitle(void)
+{
+ int res;
+ char *buf;
+ char *msg = "(null)";
+ int len = strlen(msg);
+ struct audit_context *context = audit_context();
+ struct audit_buffer *ab;
+
+ ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
+ if (!ab)
+ return; /* audit_panic or being filtered */
+
+ audit_log_format(ab, "proctitle=");
+
+ /* Not cached */
+ if (!context->proctitle.value) {
+ buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
+ if (!buf)
+ goto out;
+ /* Historically called this from procfs naming */
+ res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
+ if (res == 0) {
+ kfree(buf);
+ goto out;
+ }
+ res = audit_proctitle_rtrim(buf, res);
+ if (res == 0) {
+ kfree(buf);
+ goto out;
+ }
+ context->proctitle.value = buf;
+ context->proctitle.len = res;
+ }
+ msg = context->proctitle.value;
+ len = context->proctitle.len;
+out:
+ audit_log_n_untrustedstring(ab, msg, len);
+ audit_log_end(ab);
+}
+
+/**
+ * audit_log_uring - generate a AUDIT_URINGOP record
+ * @ctx: the audit context
+ */
+static void audit_log_uring(struct audit_context *ctx)
+{
+ struct audit_buffer *ab;
+ const struct cred *cred;
+
+ ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
+ if (!ab)
+ return;
+ cred = current_cred();
+ audit_log_format(ab, "uring_op=%d", ctx->uring_op);
+ if (ctx->return_valid != AUDITSC_INVALID)
+ audit_log_format(ab, " success=%s exit=%ld",
+ (ctx->return_valid == AUDITSC_SUCCESS ?
+ "yes" : "no"),
+ ctx->return_code);
+ audit_log_format(ab,
+ " items=%d"
+ " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
+ " fsuid=%u egid=%u sgid=%u fsgid=%u",
+ ctx->name_count,
+ task_ppid_nr(current), task_tgid_nr(current),
+ from_kuid(&init_user_ns, cred->uid),
+ from_kgid(&init_user_ns, cred->gid),
+ from_kuid(&init_user_ns, cred->euid),
+ from_kuid(&init_user_ns, cred->suid),
+ from_kuid(&init_user_ns, cred->fsuid),
+ from_kgid(&init_user_ns, cred->egid),
+ from_kgid(&init_user_ns, cred->sgid),
+ from_kgid(&init_user_ns, cred->fsgid));
+ audit_log_task_context(ab);
+ audit_log_key(ab, ctx->filterkey);
+ audit_log_end(ab);
+}
+
+static void audit_log_exit(void)
+{
+ int i, call_panic = 0;
+ struct audit_context *context = audit_context();
+ struct audit_buffer *ab;
+ struct audit_aux_data *aux;
+ struct audit_names *n;
+
+ context->personality = current->personality;
+
+ switch (context->context) {
+ case AUDIT_CTX_SYSCALL:
+ ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
+ if (!ab)
+ return;
+ audit_log_format(ab, "arch=%x syscall=%d",
+ context->arch, context->major);
+ if (context->personality != PER_LINUX)
+ audit_log_format(ab, " per=%lx", context->personality);
+ if (context->return_valid != AUDITSC_INVALID)
+ audit_log_format(ab, " success=%s exit=%ld",
+ (context->return_valid == AUDITSC_SUCCESS ?
+ "yes" : "no"),
+ context->return_code);
+ audit_log_format(ab,
+ " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
+ context->argv[0],
+ context->argv[1],
+ context->argv[2],
+ context->argv[3],
+ context->name_count);
+ audit_log_task_info(ab);
+ audit_log_key(ab, context->filterkey);
+ audit_log_end(ab);
+ break;
+ case AUDIT_CTX_URING:
+ audit_log_uring(context);
+ break;
+ default:
+ BUG();
+ break;
+ }
+
+ for (aux = context->aux; aux; aux = aux->next) {
+
+ ab = audit_log_start(context, GFP_KERNEL, aux->type);
+ if (!ab)
+ continue; /* audit_panic has been called */
+
+ switch (aux->type) {
+
+ case AUDIT_BPRM_FCAPS: {
+ struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
+
+ audit_log_format(ab, "fver=%x", axs->fcap_ver);
+ audit_log_cap(ab, "fp", &axs->fcap.permitted);
+ audit_log_cap(ab, "fi", &axs->fcap.inheritable);
+ audit_log_format(ab, " fe=%d", axs->fcap.fE);
+ audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
+ audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
+ audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
+ audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
+ audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
+ audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
+ audit_log_cap(ab, "pe", &axs->new_pcap.effective);
+ audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
+ audit_log_format(ab, " frootid=%d",
+ from_kuid(&init_user_ns,
+ axs->fcap.rootid));
+ break; }
+
+ }
+ audit_log_end(ab);
+ }
+
+ if (context->type)
+ show_special(context, &call_panic);
+
+ if (context->fds[0] >= 0) {
+ ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
+ if (ab) {
+ audit_log_format(ab, "fd0=%d fd1=%d",
+ context->fds[0], context->fds[1]);
+ audit_log_end(ab);
+ }
+ }
+
+ if (context->sockaddr_len) {
+ ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
+ if (ab) {
+ audit_log_format(ab, "saddr=");
+ audit_log_n_hex(ab, (void *)context->sockaddr,
+ context->sockaddr_len);
+ audit_log_end(ab);
+ }
+ }
+
+ for (aux = context->aux_pids; aux; aux = aux->next) {
+ struct audit_aux_data_pids *axs = (void *)aux;
+
+ for (i = 0; i < axs->pid_count; i++)
+ if (audit_log_pid_context(context, axs->target_pid[i],
+ axs->target_auid[i],
+ axs->target_uid[i],
+ axs->target_sessionid[i],
+ axs->target_sid[i],
+ axs->target_comm[i]))
+ call_panic = 1;
+ }
+
+ if (context->target_pid &&
+ audit_log_pid_context(context, context->target_pid,
+ context->target_auid, context->target_uid,
+ context->target_sessionid,
+ context->target_sid, context->target_comm))
+ call_panic = 1;
+
+ if (context->pwd.dentry && context->pwd.mnt) {
+ ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
+ if (ab) {
+ audit_log_d_path(ab, "cwd=", &context->pwd);
+ audit_log_end(ab);
+ }
+ }
+
+ i = 0;
+ list_for_each_entry(n, &context->names_list, list) {
+ if (n->hidden)
+ continue;
+ audit_log_name(context, n, NULL, i++, &call_panic);
+ }
+
+ if (context->context == AUDIT_CTX_SYSCALL)
+ audit_log_proctitle();
+
+ /* Send end of event record to help user space know we are finished */
+ ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
+ if (ab)
+ audit_log_end(ab);
+ if (call_panic)
+ audit_panic("error in audit_log_exit()");
+}
+
+/**
+ * __audit_free - free a per-task audit context
+ * @tsk: task whose audit context block to free
+ *
+ * Called from copy_process, do_exit, and the io_uring code
+ */
+void __audit_free(struct task_struct *tsk)
+{
+ struct audit_context *context = tsk->audit_context;
+
+ if (!context)
+ return;
+
+ /* this may generate CONFIG_CHANGE records */
+ if (!list_empty(&context->killed_trees))
+ audit_kill_trees(context);
+
+ /* We are called either by do_exit() or the fork() error handling code;
+ * in the former case tsk == current and in the latter tsk is a
+ * random task_struct that doesn't have any meaningful data we
+ * need to log via audit_log_exit().
+ */
+ if (tsk == current && !context->dummy) {
+ context->return_valid = AUDITSC_INVALID;
+ context->return_code = 0;
+ if (context->context == AUDIT_CTX_SYSCALL) {
+ audit_filter_syscall(tsk, context);
+ audit_filter_inodes(tsk, context);
+ if (context->current_state == AUDIT_STATE_RECORD)
+ audit_log_exit();
+ } else if (context->context == AUDIT_CTX_URING) {
+ /* TODO: verify this case is real and valid */
+ audit_filter_uring(tsk, context);
+ audit_filter_inodes(tsk, context);
+ if (context->current_state == AUDIT_STATE_RECORD)
+ audit_log_uring(context);
+ }
+ }
+
+ audit_set_context(tsk, NULL);
+ audit_free_context(context);
+}
+
+/**
+ * audit_return_fixup - fixup the return codes in the audit_context
+ * @ctx: the audit_context
+ * @success: true/false value to indicate if the operation succeeded or not
+ * @code: operation return code
+ *
+ * We need to fixup the return code in the audit logs if the actual return
+ * codes are later going to be fixed by the arch specific signal handlers.
+ */
+static void audit_return_fixup(struct audit_context *ctx,
+ int success, long code)
+{
+ /*
+ * This is actually a test for:
+ * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
+ * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
+ *
+ * but is faster than a bunch of ||
+ */
+ if (unlikely(code <= -ERESTARTSYS) &&
+ (code >= -ERESTART_RESTARTBLOCK) &&
+ (code != -ENOIOCTLCMD))
+ ctx->return_code = -EINTR;
+ else
+ ctx->return_code = code;
+ ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
+}
+
+/**
+ * __audit_uring_entry - prepare the kernel task's audit context for io_uring
+ * @op: the io_uring opcode
+ *
+ * This is similar to audit_syscall_entry() but is intended for use by io_uring
+ * operations. This function should only ever be called from
+ * audit_uring_entry() as we rely on the audit context checking present in that
+ * function.
+ */
+void __audit_uring_entry(u8 op)
+{
+ struct audit_context *ctx = audit_context();
+
+ if (ctx->state == AUDIT_STATE_DISABLED)
+ return;
+
+ /*
+ * NOTE: It's possible that we can be called from the process' context
+ * before it returns to userspace, and before audit_syscall_exit()
+ * is called. In this case there is not much to do, just record
+ * the io_uring details and return.
+ */
+ ctx->uring_op = op;
+ if (ctx->context == AUDIT_CTX_SYSCALL)
+ return;
+
+ ctx->dummy = !audit_n_rules;
+ if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
+ ctx->prio = 0;
+
+ ctx->context = AUDIT_CTX_URING;
+ ctx->current_state = ctx->state;
+ ktime_get_coarse_real_ts64(&ctx->ctime);
+}
+
+/**
+ * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
+ * @success: true/false value to indicate if the operation succeeded or not
+ * @code: operation return code
+ *
+ * This is similar to audit_syscall_exit() but is intended for use by io_uring
+ * operations. This function should only ever be called from
+ * audit_uring_exit() as we rely on the audit context checking present in that
+ * function.
+ */
+void __audit_uring_exit(int success, long code)
+{
+ struct audit_context *ctx = audit_context();
+
+ if (ctx->dummy) {
+ if (ctx->context != AUDIT_CTX_URING)
+ return;
+ goto out;
+ }
+
+ audit_return_fixup(ctx, success, code);
+ if (ctx->context == AUDIT_CTX_SYSCALL) {
+ /*
+ * NOTE: See the note in __audit_uring_entry() about the case
+ * where we may be called from process context before we
+ * return to userspace via audit_syscall_exit(). In this
+ * case we simply emit a URINGOP record and bail, the
+ * normal syscall exit handling will take care of
+ * everything else.
+ * It is also worth mentioning that when we are called,
+ * the current process creds may differ from the creds
+ * used during the normal syscall processing; keep that
+ * in mind if/when we move the record generation code.
+ */
+
+ /*
+ * We need to filter on the syscall info here to decide if we
+ * should emit a URINGOP record. I know it seems odd but this
+ * solves the problem where users have a filter to block *all*
+ * syscall records in the "exit" filter; we want to preserve
+ * the behavior here.
+ */
+ audit_filter_syscall(current, ctx);
+ if (ctx->current_state != AUDIT_STATE_RECORD)
+ audit_filter_uring(current, ctx);
+ audit_filter_inodes(current, ctx);
+ if (ctx->current_state != AUDIT_STATE_RECORD)
+ return;
+
+ audit_log_uring(ctx);
+ return;
+ }
+
+ /* this may generate CONFIG_CHANGE records */
+ if (!list_empty(&ctx->killed_trees))
+ audit_kill_trees(ctx);
+
+ /* run through both filters to ensure we set the filterkey properly */
+ audit_filter_uring(current, ctx);
+ audit_filter_inodes(current, ctx);
+ if (ctx->current_state != AUDIT_STATE_RECORD)
+ goto out;
+ audit_log_exit();
+
+out:
+ audit_reset_context(ctx);
+}
+
+/**
+ * __audit_syscall_entry - fill in an audit record at syscall entry
+ * @major: major syscall type (function)
+ * @a1: additional syscall register 1
+ * @a2: additional syscall register 2
+ * @a3: additional syscall register 3
+ * @a4: additional syscall register 4
+ *
+ * Fill in audit context at syscall entry. This only happens if the
+ * audit context was created when the task was created and the state or
+ * filters demand the audit context be built. If the state from the
+ * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
+ * then the record will be written at syscall exit time (otherwise, it
+ * will only be written if another part of the kernel requests that it
+ * be written).
+ */
+void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
+ unsigned long a3, unsigned long a4)
+{
+ struct audit_context *context = audit_context();
+ enum audit_state state;
+
+ if (!audit_enabled || !context)
+ return;
+
+ WARN_ON(context->context != AUDIT_CTX_UNUSED);
+ WARN_ON(context->name_count);
+ if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
+ audit_panic("unrecoverable error in audit_syscall_entry()");
+ return;
+ }
+
+ state = context->state;
+ if (state == AUDIT_STATE_DISABLED)
+ return;
+
+ context->dummy = !audit_n_rules;
+ if (!context->dummy && state == AUDIT_STATE_BUILD) {
+ context->prio = 0;
+ if (auditd_test_task(current))
+ return;
+ }
+
+ context->arch = syscall_get_arch(current);
+ context->major = major;
+ context->argv[0] = a1;
+ context->argv[1] = a2;
+ context->argv[2] = a3;
+ context->argv[3] = a4;
+ context->context = AUDIT_CTX_SYSCALL;
+ context->current_state = state;
+ ktime_get_coarse_real_ts64(&context->ctime);
+}
+
+/**
+ * __audit_syscall_exit - deallocate audit context after a system call
+ * @success: success value of the syscall
+ * @return_code: return value of the syscall
+ *
+ * Tear down after system call. If the audit context has been marked as
+ * auditable (either because of the AUDIT_STATE_RECORD state from
+ * filtering, or because some other part of the kernel wrote an audit
+ * message), then write out the syscall information. In call cases,
+ * free the names stored from getname().
+ */
+void __audit_syscall_exit(int success, long return_code)
+{
+ struct audit_context *context = audit_context();
+
+ if (!context || context->dummy ||
+ context->context != AUDIT_CTX_SYSCALL)
+ goto out;
+
+ /* this may generate CONFIG_CHANGE records */
+ if (!list_empty(&context->killed_trees))
+ audit_kill_trees(context);
+
+ audit_return_fixup(context, success, return_code);
+ /* run through both filters to ensure we set the filterkey properly */
+ audit_filter_syscall(current, context);
+ audit_filter_inodes(current, context);
+ if (context->current_state != AUDIT_STATE_RECORD)
+ goto out;
+
+ audit_log_exit();
+
+out:
+ audit_reset_context(context);
+}
+
+static inline void handle_one(const struct inode *inode)
+{
+ struct audit_context *context;
+ struct audit_tree_refs *p;
+ struct audit_chunk *chunk;
+ int count;
+
+ if (likely(!inode->i_fsnotify_marks))
+ return;
+ context = audit_context();
+ p = context->trees;
+ count = context->tree_count;
+ rcu_read_lock();
+ chunk = audit_tree_lookup(inode);
+ rcu_read_unlock();
+ if (!chunk)
+ return;
+ if (likely(put_tree_ref(context, chunk)))
+ return;
+ if (unlikely(!grow_tree_refs(context))) {
+ pr_warn("out of memory, audit has lost a tree reference\n");
+ audit_set_auditable(context);
+ audit_put_chunk(chunk);
+ unroll_tree_refs(context, p, count);
+ return;
+ }
+ put_tree_ref(context, chunk);
+}
+
+static void handle_path(const struct dentry *dentry)
+{
+ struct audit_context *context;
+ struct audit_tree_refs *p;
+ const struct dentry *d, *parent;
+ struct audit_chunk *drop;
+ unsigned long seq;
+ int count;
+
+ context = audit_context();
+ p = context->trees;
+ count = context->tree_count;
+retry:
+ drop = NULL;
+ d = dentry;
+ rcu_read_lock();
+ seq = read_seqbegin(&rename_lock);
+ for(;;) {
+ struct inode *inode = d_backing_inode(d);
+
+ if (inode && unlikely(inode->i_fsnotify_marks)) {
+ struct audit_chunk *chunk;
+
+ chunk = audit_tree_lookup(inode);
+ if (chunk) {
+ if (unlikely(!put_tree_ref(context, chunk))) {
+ drop = chunk;
+ break;
+ }
+ }
+ }
+ parent = d->d_parent;
+ if (parent == d)
+ break;
+ d = parent;
+ }
+ if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
+ rcu_read_unlock();
+ if (!drop) {
+ /* just a race with rename */
+ unroll_tree_refs(context, p, count);
+ goto retry;
+ }
+ audit_put_chunk(drop);
+ if (grow_tree_refs(context)) {
+ /* OK, got more space */
+ unroll_tree_refs(context, p, count);
+ goto retry;
+ }
+ /* too bad */
+ pr_warn("out of memory, audit has lost a tree reference\n");
+ unroll_tree_refs(context, p, count);
+ audit_set_auditable(context);
+ return;
+ }
+ rcu_read_unlock();
+}
+
+static struct audit_names *audit_alloc_name(struct audit_context *context,
+ unsigned char type)
+{
+ struct audit_names *aname;
+
+ if (context->name_count < AUDIT_NAMES) {
+ aname = &context->preallocated_names[context->name_count];
+ memset(aname, 0, sizeof(*aname));
+ } else {
+ aname = kzalloc(sizeof(*aname), GFP_NOFS);
+ if (!aname)
+ return NULL;
+ aname->should_free = true;
+ }
+
+ aname->ino = AUDIT_INO_UNSET;
+ aname->type = type;
+ list_add_tail(&aname->list, &context->names_list);
+
+ context->name_count++;
+ if (!context->pwd.dentry)
+ get_fs_pwd(current->fs, &context->pwd);
+ return aname;
+}
+
+/**
+ * __audit_reusename - fill out filename with info from existing entry
+ * @uptr: userland ptr to pathname
+ *
+ * Search the audit_names list for the current audit context. If there is an
+ * existing entry with a matching "uptr" then return the filename
+ * associated with that audit_name. If not, return NULL.
+ */
+struct filename *
+__audit_reusename(const __user char *uptr)
+{
+ struct audit_context *context = audit_context();
+ struct audit_names *n;
+
+ list_for_each_entry(n, &context->names_list, list) {
+ if (!n->name)
+ continue;
+ if (n->name->uptr == uptr) {
+ atomic_inc(&n->name->refcnt);
+ return n->name;
+ }
+ }
+ return NULL;
+}
+
+/**
+ * __audit_getname - add a name to the list
+ * @name: name to add
+ *
+ * Add a name to the list of audit names for this context.
+ * Called from fs/namei.c:getname().
+ */
+void __audit_getname(struct filename *name)
+{
+ struct audit_context *context = audit_context();
+ struct audit_names *n;
+
+ if (context->context == AUDIT_CTX_UNUSED)
+ return;
+
+ n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
+ if (!n)
+ return;
+
+ n->name = name;
+ n->name_len = AUDIT_NAME_FULL;
+ name->aname = n;
+ atomic_inc(&name->refcnt);
+}
+
+static inline int audit_copy_fcaps(struct audit_names *name,
+ const struct dentry *dentry)
+{
+ struct cpu_vfs_cap_data caps;
+ int rc;
+
+ if (!dentry)
+ return 0;
+
+ rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
+ if (rc)
+ return rc;
+
+ name->fcap.permitted = caps.permitted;
+ name->fcap.inheritable = caps.inheritable;
+ name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
+ name->fcap.rootid = caps.rootid;
+ name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
+ VFS_CAP_REVISION_SHIFT;
+
+ return 0;
+}
+
+/* Copy inode data into an audit_names. */
+static void audit_copy_inode(struct audit_names *name,
+ const struct dentry *dentry,
+ struct inode *inode, unsigned int flags)
+{
+ name->ino = inode->i_ino;
+ name->dev = inode->i_sb->s_dev;
+ name->mode = inode->i_mode;
+ name->uid = inode->i_uid;
+ name->gid = inode->i_gid;
+ name->rdev = inode->i_rdev;
+ security_inode_getsecid(inode, &name->osid);
+ if (flags & AUDIT_INODE_NOEVAL) {
+ name->fcap_ver = -1;
+ return;
+ }
+ audit_copy_fcaps(name, dentry);
+}
+
+/**
+ * __audit_inode - store the inode and device from a lookup
+ * @name: name being audited
+ * @dentry: dentry being audited
+ * @flags: attributes for this particular entry
+ */
+void __audit_inode(struct filename *name, const struct dentry *dentry,
+ unsigned int flags)
+{
+ struct audit_context *context = audit_context();
+ struct inode *inode = d_backing_inode(dentry);
+ struct audit_names *n;
+ bool parent = flags & AUDIT_INODE_PARENT;
+ struct audit_entry *e;
+ struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
+ int i;
+
+ if (context->context == AUDIT_CTX_UNUSED)
+ return;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(e, list, list) {
+ for (i = 0; i < e->rule.field_count; i++) {
+ struct audit_field *f = &e->rule.fields[i];
+
+ if (f->type == AUDIT_FSTYPE
+ && audit_comparator(inode->i_sb->s_magic,
+ f->op, f->val)
+ && e->rule.action == AUDIT_NEVER) {
+ rcu_read_unlock();
+ return;
+ }
+ }
+ }
+ rcu_read_unlock();
+
+ if (!name)
+ goto out_alloc;
+
+ /*
+ * If we have a pointer to an audit_names entry already, then we can
+ * just use it directly if the type is correct.
+ */
+ n = name->aname;
+ if (n) {
+ if (parent) {
+ if (n->type == AUDIT_TYPE_PARENT ||
+ n->type == AUDIT_TYPE_UNKNOWN)
+ goto out;
+ } else {
+ if (n->type != AUDIT_TYPE_PARENT)
+ goto out;
+ }
+ }
+
+ list_for_each_entry_reverse(n, &context->names_list, list) {
+ if (n->ino) {
+ /* valid inode number, use that for the comparison */
+ if (n->ino != inode->i_ino ||
+ n->dev != inode->i_sb->s_dev)
+ continue;
+ } else if (n->name) {
+ /* inode number has not been set, check the name */
+ if (strcmp(n->name->name, name->name))
+ continue;
+ } else
+ /* no inode and no name (?!) ... this is odd ... */
+ continue;
+
+ /* match the correct record type */
+ if (parent) {
+ if (n->type == AUDIT_TYPE_PARENT ||
+ n->type == AUDIT_TYPE_UNKNOWN)
+ goto out;
+ } else {
+ if (n->type != AUDIT_TYPE_PARENT)
+ goto out;
+ }
+ }
+
+out_alloc:
+ /* unable to find an entry with both a matching name and type */
+ n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
+ if (!n)
+ return;
+ if (name) {
+ n->name = name;
+ atomic_inc(&name->refcnt);
+ }
+
+out:
+ if (parent) {
+ n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
+ n->type = AUDIT_TYPE_PARENT;
+ if (flags & AUDIT_INODE_HIDDEN)
+ n->hidden = true;
+ } else {
+ n->name_len = AUDIT_NAME_FULL;
+ n->type = AUDIT_TYPE_NORMAL;
+ }
+ handle_path(dentry);
+ audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
+}
+
+void __audit_file(const struct file *file)
+{
+ __audit_inode(NULL, file->f_path.dentry, 0);
+}
+
+/**
+ * __audit_inode_child - collect inode info for created/removed objects
+ * @parent: inode of dentry parent
+ * @dentry: dentry being audited
+ * @type: AUDIT_TYPE_* value that we're looking for
+ *
+ * For syscalls that create or remove filesystem objects, audit_inode
+ * can only collect information for the filesystem object's parent.
+ * This call updates the audit context with the child's information.
+ * Syscalls that create a new filesystem object must be hooked after
+ * the object is created. Syscalls that remove a filesystem object
+ * must be hooked prior, in order to capture the target inode during
+ * unsuccessful attempts.
+ */
+void __audit_inode_child(struct inode *parent,
+ const struct dentry *dentry,
+ const unsigned char type)
+{
+ struct audit_context *context = audit_context();
+ struct inode *inode = d_backing_inode(dentry);
+ const struct qstr *dname = &dentry->d_name;
+ struct audit_names *n, *found_parent = NULL, *found_child = NULL;
+ struct audit_entry *e;
+ struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
+ int i;
+
+ if (context->context == AUDIT_CTX_UNUSED)
+ return;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(e, list, list) {
+ for (i = 0; i < e->rule.field_count; i++) {
+ struct audit_field *f = &e->rule.fields[i];
+
+ if (f->type == AUDIT_FSTYPE
+ && audit_comparator(parent->i_sb->s_magic,
+ f->op, f->val)
+ && e->rule.action == AUDIT_NEVER) {
+ rcu_read_unlock();
+ return;
+ }
+ }
+ }
+ rcu_read_unlock();
+
+ if (inode)
+ handle_one(inode);
+
+ /* look for a parent entry first */
+ list_for_each_entry(n, &context->names_list, list) {
+ if (!n->name ||
+ (n->type != AUDIT_TYPE_PARENT &&
+ n->type != AUDIT_TYPE_UNKNOWN))
+ continue;
+
+ if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
+ !audit_compare_dname_path(dname,
+ n->name->name, n->name_len)) {
+ if (n->type == AUDIT_TYPE_UNKNOWN)
+ n->type = AUDIT_TYPE_PARENT;
+ found_parent = n;
+ break;
+ }
+ }
+
+ cond_resched();
+
+ /* is there a matching child entry? */
+ list_for_each_entry(n, &context->names_list, list) {
+ /* can only match entries that have a name */
+ if (!n->name ||
+ (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
+ continue;
+
+ if (!strcmp(dname->name, n->name->name) ||
+ !audit_compare_dname_path(dname, n->name->name,
+ found_parent ?
+ found_parent->name_len :
+ AUDIT_NAME_FULL)) {
+ if (n->type == AUDIT_TYPE_UNKNOWN)
+ n->type = type;
+ found_child = n;
+ break;
+ }
+ }
+
+ if (!found_parent) {
+ /* create a new, "anonymous" parent record */
+ n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
+ if (!n)
+ return;
+ audit_copy_inode(n, NULL, parent, 0);
+ }
+
+ if (!found_child) {
+ found_child = audit_alloc_name(context, type);
+ if (!found_child)
+ return;
+
+ /* Re-use the name belonging to the slot for a matching parent
+ * directory. All names for this context are relinquished in
+ * audit_free_names() */
+ if (found_parent) {
+ found_child->name = found_parent->name;
+ found_child->name_len = AUDIT_NAME_FULL;
+ atomic_inc(&found_child->name->refcnt);
+ }
+ }
+
+ if (inode)
+ audit_copy_inode(found_child, dentry, inode, 0);
+ else
+ found_child->ino = AUDIT_INO_UNSET;
+}
+EXPORT_SYMBOL_GPL(__audit_inode_child);
+
+/**
+ * auditsc_get_stamp - get local copies of audit_context values
+ * @ctx: audit_context for the task
+ * @t: timespec64 to store time recorded in the audit_context
+ * @serial: serial value that is recorded in the audit_context
+ *
+ * Also sets the context as auditable.
+ */
+int auditsc_get_stamp(struct audit_context *ctx,
+ struct timespec64 *t, unsigned int *serial)
+{
+ if (ctx->context == AUDIT_CTX_UNUSED)
+ return 0;
+ if (!ctx->serial)
+ ctx->serial = audit_serial();
+ t->tv_sec = ctx->ctime.tv_sec;
+ t->tv_nsec = ctx->ctime.tv_nsec;
+ *serial = ctx->serial;
+ if (!ctx->prio) {
+ ctx->prio = 1;
+ ctx->current_state = AUDIT_STATE_RECORD;
+ }
+ return 1;
+}
+
+/**
+ * __audit_mq_open - record audit data for a POSIX MQ open
+ * @oflag: open flag
+ * @mode: mode bits
+ * @attr: queue attributes
+ *
+ */
+void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
+{
+ struct audit_context *context = audit_context();
+
+ if (attr)
+ memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
+ else
+ memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
+
+ context->mq_open.oflag = oflag;
+ context->mq_open.mode = mode;
+
+ context->type = AUDIT_MQ_OPEN;
+}
+
+/**
+ * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
+ * @mqdes: MQ descriptor
+ * @msg_len: Message length
+ * @msg_prio: Message priority
+ * @abs_timeout: Message timeout in absolute time
+ *
+ */
+void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
+ const struct timespec64 *abs_timeout)
+{
+ struct audit_context *context = audit_context();
+ struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
+
+ if (abs_timeout)
+ memcpy(p, abs_timeout, sizeof(*p));
+ else
+ memset(p, 0, sizeof(*p));
+
+ context->mq_sendrecv.mqdes = mqdes;
+ context->mq_sendrecv.msg_len = msg_len;
+ context->mq_sendrecv.msg_prio = msg_prio;
+
+ context->type = AUDIT_MQ_SENDRECV;
+}
+
+/**
+ * __audit_mq_notify - record audit data for a POSIX MQ notify
+ * @mqdes: MQ descriptor
+ * @notification: Notification event
+ *
+ */
+
+void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
+{
+ struct audit_context *context = audit_context();
+
+ if (notification)
+ context->mq_notify.sigev_signo = notification->sigev_signo;
+ else
+ context->mq_notify.sigev_signo = 0;
+
+ context->mq_notify.mqdes = mqdes;
+ context->type = AUDIT_MQ_NOTIFY;
+}
+
+/**
+ * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
+ * @mqdes: MQ descriptor
+ * @mqstat: MQ flags
+ *
+ */
+void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
+{
+ struct audit_context *context = audit_context();
+
+ context->mq_getsetattr.mqdes = mqdes;
+ context->mq_getsetattr.mqstat = *mqstat;
+ context->type = AUDIT_MQ_GETSETATTR;
+}
+
+/**
+ * __audit_ipc_obj - record audit data for ipc object
+ * @ipcp: ipc permissions
+ *
+ */
+void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
+{
+ struct audit_context *context = audit_context();
+
+ context->ipc.uid = ipcp->uid;
+ context->ipc.gid = ipcp->gid;
+ context->ipc.mode = ipcp->mode;
+ context->ipc.has_perm = 0;
+ security_ipc_getsecid(ipcp, &context->ipc.osid);
+ context->type = AUDIT_IPC;
+}
+
+/**
+ * __audit_ipc_set_perm - record audit data for new ipc permissions
+ * @qbytes: msgq bytes
+ * @uid: msgq user id
+ * @gid: msgq group id
+ * @mode: msgq mode (permissions)
+ *
+ * Called only after audit_ipc_obj().
+ */
+void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
+{
+ struct audit_context *context = audit_context();
+
+ context->ipc.qbytes = qbytes;
+ context->ipc.perm_uid = uid;
+ context->ipc.perm_gid = gid;
+ context->ipc.perm_mode = mode;
+ context->ipc.has_perm = 1;
+}
+
+void __audit_bprm(struct linux_binprm *bprm)
+{
+ struct audit_context *context = audit_context();
+
+ context->type = AUDIT_EXECVE;
+ context->execve.argc = bprm->argc;
+}
+
+
+/**
+ * __audit_socketcall - record audit data for sys_socketcall
+ * @nargs: number of args, which should not be more than AUDITSC_ARGS.
+ * @args: args array
+ *
+ */
+int __audit_socketcall(int nargs, unsigned long *args)
+{
+ struct audit_context *context = audit_context();
+
+ if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
+ return -EINVAL;
+ context->type = AUDIT_SOCKETCALL;
+ context->socketcall.nargs = nargs;
+ memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
+ return 0;
+}
+
+/**
+ * __audit_fd_pair - record audit data for pipe and socketpair
+ * @fd1: the first file descriptor
+ * @fd2: the second file descriptor
+ *
+ */
+void __audit_fd_pair(int fd1, int fd2)
+{
+ struct audit_context *context = audit_context();
+
+ context->fds[0] = fd1;
+ context->fds[1] = fd2;
+}
+
+/**
+ * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
+ * @len: data length in user space
+ * @a: data address in kernel space
+ *
+ * Returns 0 for success or NULL context or < 0 on error.
+ */
+int __audit_sockaddr(int len, void *a)
+{
+ struct audit_context *context = audit_context();
+
+ if (!context->sockaddr) {
+ void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
+
+ if (!p)
+ return -ENOMEM;
+ context->sockaddr = p;
+ }
+
+ context->sockaddr_len = len;
+ memcpy(context->sockaddr, a, len);
+ return 0;
+}
+
+void __audit_ptrace(struct task_struct *t)
+{
+ struct audit_context *context = audit_context();
+
+ context->target_pid = task_tgid_nr(t);
+ context->target_auid = audit_get_loginuid(t);
+ context->target_uid = task_uid(t);
+ context->target_sessionid = audit_get_sessionid(t);
+ security_task_getsecid_obj(t, &context->target_sid);
+ memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
+}
+
+/**
+ * audit_signal_info_syscall - record signal info for syscalls
+ * @t: task being signaled
+ *
+ * If the audit subsystem is being terminated, record the task (pid)
+ * and uid that is doing that.
+ */
+int audit_signal_info_syscall(struct task_struct *t)
+{
+ struct audit_aux_data_pids *axp;
+ struct audit_context *ctx = audit_context();
+ kuid_t t_uid = task_uid(t);
+
+ if (!audit_signals || audit_dummy_context())
+ return 0;
+
+ /* optimize the common case by putting first signal recipient directly
+ * in audit_context */
+ if (!ctx->target_pid) {
+ ctx->target_pid = task_tgid_nr(t);
+ ctx->target_auid = audit_get_loginuid(t);
+ ctx->target_uid = t_uid;
+ ctx->target_sessionid = audit_get_sessionid(t);
+ security_task_getsecid_obj(t, &ctx->target_sid);
+ memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
+ return 0;
+ }
+
+ axp = (void *)ctx->aux_pids;
+ if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
+ axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
+ if (!axp)
+ return -ENOMEM;
+
+ axp->d.type = AUDIT_OBJ_PID;
+ axp->d.next = ctx->aux_pids;
+ ctx->aux_pids = (void *)axp;
+ }
+ BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
+
+ axp->target_pid[axp->pid_count] = task_tgid_nr(t);
+ axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
+ axp->target_uid[axp->pid_count] = t_uid;
+ axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
+ security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
+ memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
+ axp->pid_count++;
+
+ return 0;
+}
+
+/**
+ * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
+ * @bprm: pointer to the bprm being processed
+ * @new: the proposed new credentials
+ * @old: the old credentials
+ *
+ * Simply check if the proc already has the caps given by the file and if not
+ * store the priv escalation info for later auditing at the end of the syscall
+ *
+ * -Eric
+ */
+int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
+ const struct cred *new, const struct cred *old)
+{
+ struct audit_aux_data_bprm_fcaps *ax;
+ struct audit_context *context = audit_context();
+ struct cpu_vfs_cap_data vcaps;
+
+ ax = kmalloc(sizeof(*ax), GFP_KERNEL);
+ if (!ax)
+ return -ENOMEM;
+
+ ax->d.type = AUDIT_BPRM_FCAPS;
+ ax->d.next = context->aux;
+ context->aux = (void *)ax;
+
+ get_vfs_caps_from_disk(&init_user_ns,
+ bprm->file->f_path.dentry, &vcaps);
+
+ ax->fcap.permitted = vcaps.permitted;
+ ax->fcap.inheritable = vcaps.inheritable;
+ ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
+ ax->fcap.rootid = vcaps.rootid;
+ ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
+
+ ax->old_pcap.permitted = old->cap_permitted;
+ ax->old_pcap.inheritable = old->cap_inheritable;
+ ax->old_pcap.effective = old->cap_effective;
+ ax->old_pcap.ambient = old->cap_ambient;
+
+ ax->new_pcap.permitted = new->cap_permitted;
+ ax->new_pcap.inheritable = new->cap_inheritable;
+ ax->new_pcap.effective = new->cap_effective;
+ ax->new_pcap.ambient = new->cap_ambient;
+ return 0;
+}
+
+/**
+ * __audit_log_capset - store information about the arguments to the capset syscall
+ * @new: the new credentials
+ * @old: the old (current) credentials
+ *
+ * Record the arguments userspace sent to sys_capset for later printing by the
+ * audit system if applicable
+ */
+void __audit_log_capset(const struct cred *new, const struct cred *old)
+{
+ struct audit_context *context = audit_context();
+
+ context->capset.pid = task_tgid_nr(current);
+ context->capset.cap.effective = new->cap_effective;
+ context->capset.cap.inheritable = new->cap_effective;
+ context->capset.cap.permitted = new->cap_permitted;
+ context->capset.cap.ambient = new->cap_ambient;
+ context->type = AUDIT_CAPSET;
+}
+
+void __audit_mmap_fd(int fd, int flags)
+{
+ struct audit_context *context = audit_context();
+
+ context->mmap.fd = fd;
+ context->mmap.flags = flags;
+ context->type = AUDIT_MMAP;
+}
+
+void __audit_openat2_how(struct open_how *how)
+{
+ struct audit_context *context = audit_context();
+
+ context->openat2.flags = how->flags;
+ context->openat2.mode = how->mode;
+ context->openat2.resolve = how->resolve;
+ context->type = AUDIT_OPENAT2;
+}
+
+void __audit_log_kern_module(char *name)
+{
+ struct audit_context *context = audit_context();
+
+ context->module.name = kstrdup(name, GFP_KERNEL);
+ if (!context->module.name)
+ audit_log_lost("out of memory in __audit_log_kern_module");
+ context->type = AUDIT_KERN_MODULE;
+}
+
+void __audit_fanotify(unsigned int response)
+{
+ audit_log(audit_context(), GFP_KERNEL,
+ AUDIT_FANOTIFY, "resp=%u", response);
+}
+
+void __audit_tk_injoffset(struct timespec64 offset)
+{
+ struct audit_context *context = audit_context();
+
+ /* only set type if not already set by NTP */
+ if (!context->type)
+ context->type = AUDIT_TIME_INJOFFSET;
+ memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
+}
+
+void __audit_ntp_log(const struct audit_ntp_data *ad)
+{
+ struct audit_context *context = audit_context();
+ int type;
+
+ for (type = 0; type < AUDIT_NTP_NVALS; type++)
+ if (ad->vals[type].newval != ad->vals[type].oldval) {
+ /* unconditionally set type, overwriting TK */
+ context->type = AUDIT_TIME_ADJNTPVAL;
+ memcpy(&context->time.ntp_data, ad, sizeof(*ad));
+ break;
+ }
+}
+
+void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
+ enum audit_nfcfgop op, gfp_t gfp)
+{
+ struct audit_buffer *ab;
+ char comm[sizeof(current->comm)];
+
+ ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
+ if (!ab)
+ return;
+ audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
+ name, af, nentries, audit_nfcfgs[op].s);
+
+ audit_log_format(ab, " pid=%u", task_pid_nr(current));
+ audit_log_task_context(ab); /* subj= */
+ audit_log_format(ab, " comm=");
+ audit_log_untrustedstring(ab, get_task_comm(comm, current));
+ audit_log_end(ab);
+}
+EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
+
+static void audit_log_task(struct audit_buffer *ab)
+{
+ kuid_t auid, uid;
+ kgid_t gid;
+ unsigned int sessionid;
+ char comm[sizeof(current->comm)];
+
+ auid = audit_get_loginuid(current);
+ sessionid = audit_get_sessionid(current);
+ current_uid_gid(&uid, &gid);
+
+ audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
+ from_kuid(&init_user_ns, auid),
+ from_kuid(&init_user_ns, uid),
+ from_kgid(&init_user_ns, gid),
+ sessionid);
+ audit_log_task_context(ab);
+ audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
+ audit_log_untrustedstring(ab, get_task_comm(comm, current));
+ audit_log_d_path_exe(ab, current->mm);
+}
+
+/**
+ * audit_core_dumps - record information about processes that end abnormally
+ * @signr: signal value
+ *
+ * If a process ends with a core dump, something fishy is going on and we
+ * should record the event for investigation.
+ */
+void audit_core_dumps(long signr)
+{
+ struct audit_buffer *ab;
+
+ if (!audit_enabled)
+ return;
+
+ if (signr == SIGQUIT) /* don't care for those */
+ return;
+
+ ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
+ if (unlikely(!ab))
+ return;
+ audit_log_task(ab);
+ audit_log_format(ab, " sig=%ld res=1", signr);
+ audit_log_end(ab);
+}
+
+/**
+ * audit_seccomp - record information about a seccomp action
+ * @syscall: syscall number
+ * @signr: signal value
+ * @code: the seccomp action
+ *
+ * Record the information associated with a seccomp action. Event filtering for
+ * seccomp actions that are not to be logged is done in seccomp_log().
+ * Therefore, this function forces auditing independent of the audit_enabled
+ * and dummy context state because seccomp actions should be logged even when
+ * audit is not in use.
+ */
+void audit_seccomp(unsigned long syscall, long signr, int code)
+{
+ struct audit_buffer *ab;
+
+ ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
+ if (unlikely(!ab))
+ return;
+ audit_log_task(ab);
+ audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
+ signr, syscall_get_arch(current), syscall,
+ in_compat_syscall(), KSTK_EIP(current), code);
+ audit_log_end(ab);
+}
+
+void audit_seccomp_actions_logged(const char *names, const char *old_names,
+ int res)
+{
+ struct audit_buffer *ab;
+
+ if (!audit_enabled)
+ return;
+
+ ab = audit_log_start(audit_context(), GFP_KERNEL,
+ AUDIT_CONFIG_CHANGE);
+ if (unlikely(!ab))
+ return;
+
+ audit_log_format(ab,
+ "op=seccomp-logging actions=%s old-actions=%s res=%d",
+ names, old_names, res);
+ audit_log_end(ab);
+}
+
+struct list_head *audit_killed_trees(void)
+{
+ struct audit_context *ctx = audit_context();
+ if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
+ return NULL;
+ return &ctx->killed_trees;
+}