summaryrefslogtreecommitdiffstats
path: root/kernel/sched/cpupri.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /kernel/sched/cpupri.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/sched/cpupri.c')
-rw-r--r--kernel/sched/cpupri.c316
1 files changed, 316 insertions, 0 deletions
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c
new file mode 100644
index 000000000..42c40cfdf
--- /dev/null
+++ b/kernel/sched/cpupri.c
@@ -0,0 +1,316 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * kernel/sched/cpupri.c
+ *
+ * CPU priority management
+ *
+ * Copyright (C) 2007-2008 Novell
+ *
+ * Author: Gregory Haskins <ghaskins@novell.com>
+ *
+ * This code tracks the priority of each CPU so that global migration
+ * decisions are easy to calculate. Each CPU can be in a state as follows:
+ *
+ * (INVALID), NORMAL, RT1, ... RT99, HIGHER
+ *
+ * going from the lowest priority to the highest. CPUs in the INVALID state
+ * are not eligible for routing. The system maintains this state with
+ * a 2 dimensional bitmap (the first for priority class, the second for CPUs
+ * in that class). Therefore a typical application without affinity
+ * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
+ * searches). For tasks with affinity restrictions, the algorithm has a
+ * worst case complexity of O(min(101, nr_domcpus)), though the scenario that
+ * yields the worst case search is fairly contrived.
+ */
+
+/*
+ * p->rt_priority p->prio newpri cpupri
+ *
+ * -1 -1 (CPUPRI_INVALID)
+ *
+ * 99 0 (CPUPRI_NORMAL)
+ *
+ * 1 98 98 1
+ * ...
+ * 49 50 50 49
+ * 50 49 49 50
+ * ...
+ * 99 0 0 99
+ *
+ * 100 100 (CPUPRI_HIGHER)
+ */
+static int convert_prio(int prio)
+{
+ int cpupri;
+
+ switch (prio) {
+ case CPUPRI_INVALID:
+ cpupri = CPUPRI_INVALID; /* -1 */
+ break;
+
+ case 0 ... 98:
+ cpupri = MAX_RT_PRIO-1 - prio; /* 1 ... 99 */
+ break;
+
+ case MAX_RT_PRIO-1:
+ cpupri = CPUPRI_NORMAL; /* 0 */
+ break;
+
+ case MAX_RT_PRIO:
+ cpupri = CPUPRI_HIGHER; /* 100 */
+ break;
+ }
+
+ return cpupri;
+}
+
+static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
+ struct cpumask *lowest_mask, int idx)
+{
+ struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
+ int skip = 0;
+
+ if (!atomic_read(&(vec)->count))
+ skip = 1;
+ /*
+ * When looking at the vector, we need to read the counter,
+ * do a memory barrier, then read the mask.
+ *
+ * Note: This is still all racy, but we can deal with it.
+ * Ideally, we only want to look at masks that are set.
+ *
+ * If a mask is not set, then the only thing wrong is that we
+ * did a little more work than necessary.
+ *
+ * If we read a zero count but the mask is set, because of the
+ * memory barriers, that can only happen when the highest prio
+ * task for a run queue has left the run queue, in which case,
+ * it will be followed by a pull. If the task we are processing
+ * fails to find a proper place to go, that pull request will
+ * pull this task if the run queue is running at a lower
+ * priority.
+ */
+ smp_rmb();
+
+ /* Need to do the rmb for every iteration */
+ if (skip)
+ return 0;
+
+ if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids)
+ return 0;
+
+ if (lowest_mask) {
+ cpumask_and(lowest_mask, &p->cpus_mask, vec->mask);
+ cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
+
+ /*
+ * We have to ensure that we have at least one bit
+ * still set in the array, since the map could have
+ * been concurrently emptied between the first and
+ * second reads of vec->mask. If we hit this
+ * condition, simply act as though we never hit this
+ * priority level and continue on.
+ */
+ if (cpumask_empty(lowest_mask))
+ return 0;
+ }
+
+ return 1;
+}
+
+int cpupri_find(struct cpupri *cp, struct task_struct *p,
+ struct cpumask *lowest_mask)
+{
+ return cpupri_find_fitness(cp, p, lowest_mask, NULL);
+}
+
+/**
+ * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
+ * @cp: The cpupri context
+ * @p: The task
+ * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
+ * @fitness_fn: A pointer to a function to do custom checks whether the CPU
+ * fits a specific criteria so that we only return those CPUs.
+ *
+ * Note: This function returns the recommended CPUs as calculated during the
+ * current invocation. By the time the call returns, the CPUs may have in
+ * fact changed priorities any number of times. While not ideal, it is not
+ * an issue of correctness since the normal rebalancer logic will correct
+ * any discrepancies created by racing against the uncertainty of the current
+ * priority configuration.
+ *
+ * Return: (int)bool - CPUs were found
+ */
+int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
+ struct cpumask *lowest_mask,
+ bool (*fitness_fn)(struct task_struct *p, int cpu))
+{
+ int task_pri = convert_prio(p->prio);
+ int idx, cpu;
+
+ WARN_ON_ONCE(task_pri >= CPUPRI_NR_PRIORITIES);
+
+ for (idx = 0; idx < task_pri; idx++) {
+
+ if (!__cpupri_find(cp, p, lowest_mask, idx))
+ continue;
+
+ if (!lowest_mask || !fitness_fn)
+ return 1;
+
+ /* Ensure the capacity of the CPUs fit the task */
+ for_each_cpu(cpu, lowest_mask) {
+ if (!fitness_fn(p, cpu))
+ cpumask_clear_cpu(cpu, lowest_mask);
+ }
+
+ /*
+ * If no CPU at the current priority can fit the task
+ * continue looking
+ */
+ if (cpumask_empty(lowest_mask))
+ continue;
+
+ return 1;
+ }
+
+ /*
+ * If we failed to find a fitting lowest_mask, kick off a new search
+ * but without taking into account any fitness criteria this time.
+ *
+ * This rule favours honouring priority over fitting the task in the
+ * correct CPU (Capacity Awareness being the only user now).
+ * The idea is that if a higher priority task can run, then it should
+ * run even if this ends up being on unfitting CPU.
+ *
+ * The cost of this trade-off is not entirely clear and will probably
+ * be good for some workloads and bad for others.
+ *
+ * The main idea here is that if some CPUs were over-committed, we try
+ * to spread which is what the scheduler traditionally did. Sys admins
+ * must do proper RT planning to avoid overloading the system if they
+ * really care.
+ */
+ if (fitness_fn)
+ return cpupri_find(cp, p, lowest_mask);
+
+ return 0;
+}
+
+/**
+ * cpupri_set - update the CPU priority setting
+ * @cp: The cpupri context
+ * @cpu: The target CPU
+ * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU
+ *
+ * Note: Assumes cpu_rq(cpu)->lock is locked
+ *
+ * Returns: (void)
+ */
+void cpupri_set(struct cpupri *cp, int cpu, int newpri)
+{
+ int *currpri = &cp->cpu_to_pri[cpu];
+ int oldpri = *currpri;
+ int do_mb = 0;
+
+ newpri = convert_prio(newpri);
+
+ BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
+
+ if (newpri == oldpri)
+ return;
+
+ /*
+ * If the CPU was currently mapped to a different value, we
+ * need to map it to the new value then remove the old value.
+ * Note, we must add the new value first, otherwise we risk the
+ * cpu being missed by the priority loop in cpupri_find.
+ */
+ if (likely(newpri != CPUPRI_INVALID)) {
+ struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
+
+ cpumask_set_cpu(cpu, vec->mask);
+ /*
+ * When adding a new vector, we update the mask first,
+ * do a write memory barrier, and then update the count, to
+ * make sure the vector is visible when count is set.
+ */
+ smp_mb__before_atomic();
+ atomic_inc(&(vec)->count);
+ do_mb = 1;
+ }
+ if (likely(oldpri != CPUPRI_INVALID)) {
+ struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
+
+ /*
+ * Because the order of modification of the vec->count
+ * is important, we must make sure that the update
+ * of the new prio is seen before we decrement the
+ * old prio. This makes sure that the loop sees
+ * one or the other when we raise the priority of
+ * the run queue. We don't care about when we lower the
+ * priority, as that will trigger an rt pull anyway.
+ *
+ * We only need to do a memory barrier if we updated
+ * the new priority vec.
+ */
+ if (do_mb)
+ smp_mb__after_atomic();
+
+ /*
+ * When removing from the vector, we decrement the counter first
+ * do a memory barrier and then clear the mask.
+ */
+ atomic_dec(&(vec)->count);
+ smp_mb__after_atomic();
+ cpumask_clear_cpu(cpu, vec->mask);
+ }
+
+ *currpri = newpri;
+}
+
+/**
+ * cpupri_init - initialize the cpupri structure
+ * @cp: The cpupri context
+ *
+ * Return: -ENOMEM on memory allocation failure.
+ */
+int cpupri_init(struct cpupri *cp)
+{
+ int i;
+
+ for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
+ struct cpupri_vec *vec = &cp->pri_to_cpu[i];
+
+ atomic_set(&vec->count, 0);
+ if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
+ goto cleanup;
+ }
+
+ cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
+ if (!cp->cpu_to_pri)
+ goto cleanup;
+
+ for_each_possible_cpu(i)
+ cp->cpu_to_pri[i] = CPUPRI_INVALID;
+
+ return 0;
+
+cleanup:
+ for (i--; i >= 0; i--)
+ free_cpumask_var(cp->pri_to_cpu[i].mask);
+ return -ENOMEM;
+}
+
+/**
+ * cpupri_cleanup - clean up the cpupri structure
+ * @cp: The cpupri context
+ */
+void cpupri_cleanup(struct cpupri *cp)
+{
+ int i;
+
+ kfree(cp->cpu_to_pri);
+ for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
+ free_cpumask_var(cp->pri_to_cpu[i].mask);
+}