diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /mm/sparse-vmemmap.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/sparse-vmemmap.c')
-rw-r--r-- | mm/sparse-vmemmap.c | 398 |
1 files changed, 398 insertions, 0 deletions
diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c new file mode 100644 index 000000000..46ae54211 --- /dev/null +++ b/mm/sparse-vmemmap.c @@ -0,0 +1,398 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Virtual Memory Map support + * + * (C) 2007 sgi. Christoph Lameter. + * + * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, + * virt_to_page, page_address() to be implemented as a base offset + * calculation without memory access. + * + * However, virtual mappings need a page table and TLBs. Many Linux + * architectures already map their physical space using 1-1 mappings + * via TLBs. For those arches the virtual memory map is essentially + * for free if we use the same page size as the 1-1 mappings. In that + * case the overhead consists of a few additional pages that are + * allocated to create a view of memory for vmemmap. + * + * The architecture is expected to provide a vmemmap_populate() function + * to instantiate the mapping. + */ +#include <linux/mm.h> +#include <linux/mmzone.h> +#include <linux/memblock.h> +#include <linux/memremap.h> +#include <linux/highmem.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/vmalloc.h> +#include <linux/sched.h> + +#include <asm/dma.h> +#include <asm/pgalloc.h> + +/* + * Allocate a block of memory to be used to back the virtual memory map + * or to back the page tables that are used to create the mapping. + * Uses the main allocators if they are available, else bootmem. + */ + +static void * __ref __earlyonly_bootmem_alloc(int node, + unsigned long size, + unsigned long align, + unsigned long goal) +{ + return memblock_alloc_try_nid_raw(size, align, goal, + MEMBLOCK_ALLOC_ACCESSIBLE, node); +} + +void * __meminit vmemmap_alloc_block(unsigned long size, int node) +{ + /* If the main allocator is up use that, fallback to bootmem. */ + if (slab_is_available()) { + gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; + int order = get_order(size); + static bool warned; + struct page *page; + + page = alloc_pages_node(node, gfp_mask, order); + if (page) + return page_address(page); + + if (!warned) { + warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, + "vmemmap alloc failure: order:%u", order); + warned = true; + } + return NULL; + } else + return __earlyonly_bootmem_alloc(node, size, size, + __pa(MAX_DMA_ADDRESS)); +} + +static void * __meminit altmap_alloc_block_buf(unsigned long size, + struct vmem_altmap *altmap); + +/* need to make sure size is all the same during early stage */ +void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, + struct vmem_altmap *altmap) +{ + void *ptr; + + if (altmap) + return altmap_alloc_block_buf(size, altmap); + + ptr = sparse_buffer_alloc(size); + if (!ptr) + ptr = vmemmap_alloc_block(size, node); + return ptr; +} + +static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) +{ + return altmap->base_pfn + altmap->reserve + altmap->alloc + + altmap->align; +} + +static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) +{ + unsigned long allocated = altmap->alloc + altmap->align; + + if (altmap->free > allocated) + return altmap->free - allocated; + return 0; +} + +static void * __meminit altmap_alloc_block_buf(unsigned long size, + struct vmem_altmap *altmap) +{ + unsigned long pfn, nr_pfns, nr_align; + + if (size & ~PAGE_MASK) { + pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", + __func__, size); + return NULL; + } + + pfn = vmem_altmap_next_pfn(altmap); + nr_pfns = size >> PAGE_SHIFT; + nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); + nr_align = ALIGN(pfn, nr_align) - pfn; + if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) + return NULL; + + altmap->alloc += nr_pfns; + altmap->align += nr_align; + pfn += nr_align; + + pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", + __func__, pfn, altmap->alloc, altmap->align, nr_pfns); + return __va(__pfn_to_phys(pfn)); +} + +void __meminit vmemmap_verify(pte_t *pte, int node, + unsigned long start, unsigned long end) +{ + unsigned long pfn = pte_pfn(*pte); + int actual_node = early_pfn_to_nid(pfn); + + if (node_distance(actual_node, node) > LOCAL_DISTANCE) + pr_warn_once("[%lx-%lx] potential offnode page_structs\n", + start, end - 1); +} + +pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, + struct vmem_altmap *altmap, + struct page *reuse) +{ + pte_t *pte = pte_offset_kernel(pmd, addr); + if (pte_none(*pte)) { + pte_t entry; + void *p; + + if (!reuse) { + p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); + if (!p) + return NULL; + } else { + /* + * When a PTE/PMD entry is freed from the init_mm + * there's a free_pages() call to this page allocated + * above. Thus this get_page() is paired with the + * put_page_testzero() on the freeing path. + * This can only called by certain ZONE_DEVICE path, + * and through vmemmap_populate_compound_pages() when + * slab is available. + */ + get_page(reuse); + p = page_to_virt(reuse); + } + entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); + set_pte_at(&init_mm, addr, pte, entry); + } + return pte; +} + +static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) +{ + void *p = vmemmap_alloc_block(size, node); + + if (!p) + return NULL; + memset(p, 0, size); + + return p; +} + +pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) +{ + pmd_t *pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) { + void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); + if (!p) + return NULL; + pmd_populate_kernel(&init_mm, pmd, p); + } + return pmd; +} + +pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) +{ + pud_t *pud = pud_offset(p4d, addr); + if (pud_none(*pud)) { + void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); + if (!p) + return NULL; + pud_populate(&init_mm, pud, p); + } + return pud; +} + +p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) +{ + p4d_t *p4d = p4d_offset(pgd, addr); + if (p4d_none(*p4d)) { + void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); + if (!p) + return NULL; + p4d_populate(&init_mm, p4d, p); + } + return p4d; +} + +pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) +{ + pgd_t *pgd = pgd_offset_k(addr); + if (pgd_none(*pgd)) { + void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); + if (!p) + return NULL; + pgd_populate(&init_mm, pgd, p); + } + return pgd; +} + +static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, + struct vmem_altmap *altmap, + struct page *reuse) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + pgd = vmemmap_pgd_populate(addr, node); + if (!pgd) + return NULL; + p4d = vmemmap_p4d_populate(pgd, addr, node); + if (!p4d) + return NULL; + pud = vmemmap_pud_populate(p4d, addr, node); + if (!pud) + return NULL; + pmd = vmemmap_pmd_populate(pud, addr, node); + if (!pmd) + return NULL; + pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse); + if (!pte) + return NULL; + vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); + + return pte; +} + +static int __meminit vmemmap_populate_range(unsigned long start, + unsigned long end, int node, + struct vmem_altmap *altmap, + struct page *reuse) +{ + unsigned long addr = start; + pte_t *pte; + + for (; addr < end; addr += PAGE_SIZE) { + pte = vmemmap_populate_address(addr, node, altmap, reuse); + if (!pte) + return -ENOMEM; + } + + return 0; +} + +int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, + int node, struct vmem_altmap *altmap) +{ + return vmemmap_populate_range(start, end, node, altmap, NULL); +} + +/* + * For compound pages bigger than section size (e.g. x86 1G compound + * pages with 2M subsection size) fill the rest of sections as tail + * pages. + * + * Note that memremap_pages() resets @nr_range value and will increment + * it after each range successful onlining. Thus the value or @nr_range + * at section memmap populate corresponds to the in-progress range + * being onlined here. + */ +static bool __meminit reuse_compound_section(unsigned long start_pfn, + struct dev_pagemap *pgmap) +{ + unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); + unsigned long offset = start_pfn - + PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); + + return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; +} + +static pte_t * __meminit compound_section_tail_page(unsigned long addr) +{ + pte_t *pte; + + addr -= PAGE_SIZE; + + /* + * Assuming sections are populated sequentially, the previous section's + * page data can be reused. + */ + pte = pte_offset_kernel(pmd_off_k(addr), addr); + if (!pte) + return NULL; + + return pte; +} + +static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, + unsigned long start, + unsigned long end, int node, + struct dev_pagemap *pgmap) +{ + unsigned long size, addr; + pte_t *pte; + int rc; + + if (reuse_compound_section(start_pfn, pgmap)) { + pte = compound_section_tail_page(start); + if (!pte) + return -ENOMEM; + + /* + * Reuse the page that was populated in the prior iteration + * with just tail struct pages. + */ + return vmemmap_populate_range(start, end, node, NULL, + pte_page(*pte)); + } + + size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); + for (addr = start; addr < end; addr += size) { + unsigned long next, last = addr + size; + + /* Populate the head page vmemmap page */ + pte = vmemmap_populate_address(addr, node, NULL, NULL); + if (!pte) + return -ENOMEM; + + /* Populate the tail pages vmemmap page */ + next = addr + PAGE_SIZE; + pte = vmemmap_populate_address(next, node, NULL, NULL); + if (!pte) + return -ENOMEM; + + /* + * Reuse the previous page for the rest of tail pages + * See layout diagram in Documentation/mm/vmemmap_dedup.rst + */ + next += PAGE_SIZE; + rc = vmemmap_populate_range(next, last, node, NULL, + pte_page(*pte)); + if (rc) + return -ENOMEM; + } + + return 0; +} + +struct page * __meminit __populate_section_memmap(unsigned long pfn, + unsigned long nr_pages, int nid, struct vmem_altmap *altmap, + struct dev_pagemap *pgmap) +{ + unsigned long start = (unsigned long) pfn_to_page(pfn); + unsigned long end = start + nr_pages * sizeof(struct page); + int r; + + if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || + !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) + return NULL; + + if (is_power_of_2(sizeof(struct page)) && + pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap) + r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); + else + r = vmemmap_populate(start, end, nid, altmap); + + if (r < 0) + return NULL; + + return pfn_to_page(pfn); +} |