summaryrefslogtreecommitdiffstats
path: root/tools/lib/bpf/relo_core.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /tools/lib/bpf/relo_core.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/lib/bpf/relo_core.c')
-rw-r--r--tools/lib/bpf/relo_core.c1690
1 files changed, 1690 insertions, 0 deletions
diff --git a/tools/lib/bpf/relo_core.c b/tools/lib/bpf/relo_core.c
new file mode 100644
index 000000000..c4b0e81ae
--- /dev/null
+++ b/tools/lib/bpf/relo_core.c
@@ -0,0 +1,1690 @@
+// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
+/* Copyright (c) 2019 Facebook */
+
+#ifdef __KERNEL__
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/string.h>
+#include <linux/bpf_verifier.h>
+#include "relo_core.h"
+
+static const char *btf_kind_str(const struct btf_type *t)
+{
+ return btf_type_str(t);
+}
+
+static bool is_ldimm64_insn(struct bpf_insn *insn)
+{
+ return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
+}
+
+static const struct btf_type *
+skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
+{
+ return btf_type_skip_modifiers(btf, id, res_id);
+}
+
+static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
+{
+ return btf_name_by_offset(btf, offset);
+}
+
+static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
+{
+ const struct btf_type *t;
+ int size;
+
+ t = btf_type_by_id(btf, type_id);
+ t = btf_resolve_size(btf, t, &size);
+ if (IS_ERR(t))
+ return PTR_ERR(t);
+ return size;
+}
+
+enum libbpf_print_level {
+ LIBBPF_WARN,
+ LIBBPF_INFO,
+ LIBBPF_DEBUG,
+};
+
+#undef pr_warn
+#undef pr_info
+#undef pr_debug
+#define pr_warn(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
+#define pr_info(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
+#define pr_debug(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
+#define libbpf_print(level, fmt, ...) bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
+#else
+#include <stdio.h>
+#include <string.h>
+#include <errno.h>
+#include <ctype.h>
+#include <linux/err.h>
+
+#include "libbpf.h"
+#include "bpf.h"
+#include "btf.h"
+#include "str_error.h"
+#include "libbpf_internal.h"
+#endif
+
+static bool is_flex_arr(const struct btf *btf,
+ const struct bpf_core_accessor *acc,
+ const struct btf_array *arr)
+{
+ const struct btf_type *t;
+
+ /* not a flexible array, if not inside a struct or has non-zero size */
+ if (!acc->name || arr->nelems > 0)
+ return false;
+
+ /* has to be the last member of enclosing struct */
+ t = btf_type_by_id(btf, acc->type_id);
+ return acc->idx == btf_vlen(t) - 1;
+}
+
+static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
+{
+ switch (kind) {
+ case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
+ case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
+ case BPF_CORE_FIELD_EXISTS: return "field_exists";
+ case BPF_CORE_FIELD_SIGNED: return "signed";
+ case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
+ case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
+ case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
+ case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
+ case BPF_CORE_TYPE_EXISTS: return "type_exists";
+ case BPF_CORE_TYPE_MATCHES: return "type_matches";
+ case BPF_CORE_TYPE_SIZE: return "type_size";
+ case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
+ case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
+ default: return "unknown";
+ }
+}
+
+static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
+{
+ switch (kind) {
+ case BPF_CORE_FIELD_BYTE_OFFSET:
+ case BPF_CORE_FIELD_BYTE_SIZE:
+ case BPF_CORE_FIELD_EXISTS:
+ case BPF_CORE_FIELD_SIGNED:
+ case BPF_CORE_FIELD_LSHIFT_U64:
+ case BPF_CORE_FIELD_RSHIFT_U64:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
+{
+ switch (kind) {
+ case BPF_CORE_TYPE_ID_LOCAL:
+ case BPF_CORE_TYPE_ID_TARGET:
+ case BPF_CORE_TYPE_EXISTS:
+ case BPF_CORE_TYPE_MATCHES:
+ case BPF_CORE_TYPE_SIZE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
+{
+ switch (kind) {
+ case BPF_CORE_ENUMVAL_EXISTS:
+ case BPF_CORE_ENUMVAL_VALUE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
+ const struct btf *targ_btf, __u32 targ_id, int level)
+{
+ const struct btf_type *local_type, *targ_type;
+ int depth = 32; /* max recursion depth */
+
+ /* caller made sure that names match (ignoring flavor suffix) */
+ local_type = btf_type_by_id(local_btf, local_id);
+ targ_type = btf_type_by_id(targ_btf, targ_id);
+ if (!btf_kind_core_compat(local_type, targ_type))
+ return 0;
+
+recur:
+ depth--;
+ if (depth < 0)
+ return -EINVAL;
+
+ local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
+ targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
+ if (!local_type || !targ_type)
+ return -EINVAL;
+
+ if (!btf_kind_core_compat(local_type, targ_type))
+ return 0;
+
+ switch (btf_kind(local_type)) {
+ case BTF_KIND_UNKN:
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ case BTF_KIND_ENUM:
+ case BTF_KIND_FWD:
+ case BTF_KIND_ENUM64:
+ return 1;
+ case BTF_KIND_INT:
+ /* just reject deprecated bitfield-like integers; all other
+ * integers are by default compatible between each other
+ */
+ return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
+ case BTF_KIND_PTR:
+ local_id = local_type->type;
+ targ_id = targ_type->type;
+ goto recur;
+ case BTF_KIND_ARRAY:
+ local_id = btf_array(local_type)->type;
+ targ_id = btf_array(targ_type)->type;
+ goto recur;
+ case BTF_KIND_FUNC_PROTO: {
+ struct btf_param *local_p = btf_params(local_type);
+ struct btf_param *targ_p = btf_params(targ_type);
+ __u16 local_vlen = btf_vlen(local_type);
+ __u16 targ_vlen = btf_vlen(targ_type);
+ int i, err;
+
+ if (local_vlen != targ_vlen)
+ return 0;
+
+ for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
+ if (level <= 0)
+ return -EINVAL;
+
+ skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
+ skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
+ err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
+ level - 1);
+ if (err <= 0)
+ return err;
+ }
+
+ /* tail recurse for return type check */
+ skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
+ skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
+ goto recur;
+ }
+ default:
+ pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
+ btf_kind_str(local_type), local_id, targ_id);
+ return 0;
+ }
+}
+
+/*
+ * Turn bpf_core_relo into a low- and high-level spec representation,
+ * validating correctness along the way, as well as calculating resulting
+ * field bit offset, specified by accessor string. Low-level spec captures
+ * every single level of nestedness, including traversing anonymous
+ * struct/union members. High-level one only captures semantically meaningful
+ * "turning points": named fields and array indicies.
+ * E.g., for this case:
+ *
+ * struct sample {
+ * int __unimportant;
+ * struct {
+ * int __1;
+ * int __2;
+ * int a[7];
+ * };
+ * };
+ *
+ * struct sample *s = ...;
+ *
+ * int x = &s->a[3]; // access string = '0:1:2:3'
+ *
+ * Low-level spec has 1:1 mapping with each element of access string (it's
+ * just a parsed access string representation): [0, 1, 2, 3].
+ *
+ * High-level spec will capture only 3 points:
+ * - initial zero-index access by pointer (&s->... is the same as &s[0]...);
+ * - field 'a' access (corresponds to '2' in low-level spec);
+ * - array element #3 access (corresponds to '3' in low-level spec).
+ *
+ * Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE,
+ * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
+ * spec and raw_spec are kept empty.
+ *
+ * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
+ * string to specify enumerator's value index that need to be relocated.
+ */
+int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
+ const struct bpf_core_relo *relo,
+ struct bpf_core_spec *spec)
+{
+ int access_idx, parsed_len, i;
+ struct bpf_core_accessor *acc;
+ const struct btf_type *t;
+ const char *name, *spec_str;
+ __u32 id, name_off;
+ __s64 sz;
+
+ spec_str = btf__name_by_offset(btf, relo->access_str_off);
+ if (str_is_empty(spec_str) || *spec_str == ':')
+ return -EINVAL;
+
+ memset(spec, 0, sizeof(*spec));
+ spec->btf = btf;
+ spec->root_type_id = relo->type_id;
+ spec->relo_kind = relo->kind;
+
+ /* type-based relocations don't have a field access string */
+ if (core_relo_is_type_based(relo->kind)) {
+ if (strcmp(spec_str, "0"))
+ return -EINVAL;
+ return 0;
+ }
+
+ /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
+ while (*spec_str) {
+ if (*spec_str == ':')
+ ++spec_str;
+ if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
+ return -EINVAL;
+ if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
+ return -E2BIG;
+ spec_str += parsed_len;
+ spec->raw_spec[spec->raw_len++] = access_idx;
+ }
+
+ if (spec->raw_len == 0)
+ return -EINVAL;
+
+ t = skip_mods_and_typedefs(btf, relo->type_id, &id);
+ if (!t)
+ return -EINVAL;
+
+ access_idx = spec->raw_spec[0];
+ acc = &spec->spec[0];
+ acc->type_id = id;
+ acc->idx = access_idx;
+ spec->len++;
+
+ if (core_relo_is_enumval_based(relo->kind)) {
+ if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
+ return -EINVAL;
+
+ /* record enumerator name in a first accessor */
+ name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off
+ : btf_enum64(t)[access_idx].name_off;
+ acc->name = btf__name_by_offset(btf, name_off);
+ return 0;
+ }
+
+ if (!core_relo_is_field_based(relo->kind))
+ return -EINVAL;
+
+ sz = btf__resolve_size(btf, id);
+ if (sz < 0)
+ return sz;
+ spec->bit_offset = access_idx * sz * 8;
+
+ for (i = 1; i < spec->raw_len; i++) {
+ t = skip_mods_and_typedefs(btf, id, &id);
+ if (!t)
+ return -EINVAL;
+
+ access_idx = spec->raw_spec[i];
+ acc = &spec->spec[spec->len];
+
+ if (btf_is_composite(t)) {
+ const struct btf_member *m;
+ __u32 bit_offset;
+
+ if (access_idx >= btf_vlen(t))
+ return -EINVAL;
+
+ bit_offset = btf_member_bit_offset(t, access_idx);
+ spec->bit_offset += bit_offset;
+
+ m = btf_members(t) + access_idx;
+ if (m->name_off) {
+ name = btf__name_by_offset(btf, m->name_off);
+ if (str_is_empty(name))
+ return -EINVAL;
+
+ acc->type_id = id;
+ acc->idx = access_idx;
+ acc->name = name;
+ spec->len++;
+ }
+
+ id = m->type;
+ } else if (btf_is_array(t)) {
+ const struct btf_array *a = btf_array(t);
+ bool flex;
+
+ t = skip_mods_and_typedefs(btf, a->type, &id);
+ if (!t)
+ return -EINVAL;
+
+ flex = is_flex_arr(btf, acc - 1, a);
+ if (!flex && access_idx >= a->nelems)
+ return -EINVAL;
+
+ spec->spec[spec->len].type_id = id;
+ spec->spec[spec->len].idx = access_idx;
+ spec->len++;
+
+ sz = btf__resolve_size(btf, id);
+ if (sz < 0)
+ return sz;
+ spec->bit_offset += access_idx * sz * 8;
+ } else {
+ pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
+ prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+/* Check two types for compatibility for the purpose of field access
+ * relocation. const/volatile/restrict and typedefs are skipped to ensure we
+ * are relocating semantically compatible entities:
+ * - any two STRUCTs/UNIONs are compatible and can be mixed;
+ * - any two FWDs are compatible, if their names match (modulo flavor suffix);
+ * - any two PTRs are always compatible;
+ * - for ENUMs, names should be the same (ignoring flavor suffix) or at
+ * least one of enums should be anonymous;
+ * - for ENUMs, check sizes, names are ignored;
+ * - for INT, size and signedness are ignored;
+ * - any two FLOATs are always compatible;
+ * - for ARRAY, dimensionality is ignored, element types are checked for
+ * compatibility recursively;
+ * - everything else shouldn't be ever a target of relocation.
+ * These rules are not set in stone and probably will be adjusted as we get
+ * more experience with using BPF CO-RE relocations.
+ */
+static int bpf_core_fields_are_compat(const struct btf *local_btf,
+ __u32 local_id,
+ const struct btf *targ_btf,
+ __u32 targ_id)
+{
+ const struct btf_type *local_type, *targ_type;
+
+recur:
+ local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
+ targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
+ if (!local_type || !targ_type)
+ return -EINVAL;
+
+ if (btf_is_composite(local_type) && btf_is_composite(targ_type))
+ return 1;
+ if (!btf_kind_core_compat(local_type, targ_type))
+ return 0;
+
+ switch (btf_kind(local_type)) {
+ case BTF_KIND_PTR:
+ case BTF_KIND_FLOAT:
+ return 1;
+ case BTF_KIND_FWD:
+ case BTF_KIND_ENUM64:
+ case BTF_KIND_ENUM: {
+ const char *local_name, *targ_name;
+ size_t local_len, targ_len;
+
+ local_name = btf__name_by_offset(local_btf,
+ local_type->name_off);
+ targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
+ local_len = bpf_core_essential_name_len(local_name);
+ targ_len = bpf_core_essential_name_len(targ_name);
+ /* one of them is anonymous or both w/ same flavor-less names */
+ return local_len == 0 || targ_len == 0 ||
+ (local_len == targ_len &&
+ strncmp(local_name, targ_name, local_len) == 0);
+ }
+ case BTF_KIND_INT:
+ /* just reject deprecated bitfield-like integers; all other
+ * integers are by default compatible between each other
+ */
+ return btf_int_offset(local_type) == 0 &&
+ btf_int_offset(targ_type) == 0;
+ case BTF_KIND_ARRAY:
+ local_id = btf_array(local_type)->type;
+ targ_id = btf_array(targ_type)->type;
+ goto recur;
+ default:
+ return 0;
+ }
+}
+
+/*
+ * Given single high-level named field accessor in local type, find
+ * corresponding high-level accessor for a target type. Along the way,
+ * maintain low-level spec for target as well. Also keep updating target
+ * bit offset.
+ *
+ * Searching is performed through recursive exhaustive enumeration of all
+ * fields of a struct/union. If there are any anonymous (embedded)
+ * structs/unions, they are recursively searched as well. If field with
+ * desired name is found, check compatibility between local and target types,
+ * before returning result.
+ *
+ * 1 is returned, if field is found.
+ * 0 is returned if no compatible field is found.
+ * <0 is returned on error.
+ */
+static int bpf_core_match_member(const struct btf *local_btf,
+ const struct bpf_core_accessor *local_acc,
+ const struct btf *targ_btf,
+ __u32 targ_id,
+ struct bpf_core_spec *spec,
+ __u32 *next_targ_id)
+{
+ const struct btf_type *local_type, *targ_type;
+ const struct btf_member *local_member, *m;
+ const char *local_name, *targ_name;
+ __u32 local_id;
+ int i, n, found;
+
+ targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
+ if (!targ_type)
+ return -EINVAL;
+ if (!btf_is_composite(targ_type))
+ return 0;
+
+ local_id = local_acc->type_id;
+ local_type = btf_type_by_id(local_btf, local_id);
+ local_member = btf_members(local_type) + local_acc->idx;
+ local_name = btf__name_by_offset(local_btf, local_member->name_off);
+
+ n = btf_vlen(targ_type);
+ m = btf_members(targ_type);
+ for (i = 0; i < n; i++, m++) {
+ __u32 bit_offset;
+
+ bit_offset = btf_member_bit_offset(targ_type, i);
+
+ /* too deep struct/union/array nesting */
+ if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
+ return -E2BIG;
+
+ /* speculate this member will be the good one */
+ spec->bit_offset += bit_offset;
+ spec->raw_spec[spec->raw_len++] = i;
+
+ targ_name = btf__name_by_offset(targ_btf, m->name_off);
+ if (str_is_empty(targ_name)) {
+ /* embedded struct/union, we need to go deeper */
+ found = bpf_core_match_member(local_btf, local_acc,
+ targ_btf, m->type,
+ spec, next_targ_id);
+ if (found) /* either found or error */
+ return found;
+ } else if (strcmp(local_name, targ_name) == 0) {
+ /* matching named field */
+ struct bpf_core_accessor *targ_acc;
+
+ targ_acc = &spec->spec[spec->len++];
+ targ_acc->type_id = targ_id;
+ targ_acc->idx = i;
+ targ_acc->name = targ_name;
+
+ *next_targ_id = m->type;
+ found = bpf_core_fields_are_compat(local_btf,
+ local_member->type,
+ targ_btf, m->type);
+ if (!found)
+ spec->len--; /* pop accessor */
+ return found;
+ }
+ /* member turned out not to be what we looked for */
+ spec->bit_offset -= bit_offset;
+ spec->raw_len--;
+ }
+
+ return 0;
+}
+
+/*
+ * Try to match local spec to a target type and, if successful, produce full
+ * target spec (high-level, low-level + bit offset).
+ */
+static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
+ const struct btf *targ_btf, __u32 targ_id,
+ struct bpf_core_spec *targ_spec)
+{
+ const struct btf_type *targ_type;
+ const struct bpf_core_accessor *local_acc;
+ struct bpf_core_accessor *targ_acc;
+ int i, sz, matched;
+ __u32 name_off;
+
+ memset(targ_spec, 0, sizeof(*targ_spec));
+ targ_spec->btf = targ_btf;
+ targ_spec->root_type_id = targ_id;
+ targ_spec->relo_kind = local_spec->relo_kind;
+
+ if (core_relo_is_type_based(local_spec->relo_kind)) {
+ if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES)
+ return bpf_core_types_match(local_spec->btf,
+ local_spec->root_type_id,
+ targ_btf, targ_id);
+ else
+ return bpf_core_types_are_compat(local_spec->btf,
+ local_spec->root_type_id,
+ targ_btf, targ_id);
+ }
+
+ local_acc = &local_spec->spec[0];
+ targ_acc = &targ_spec->spec[0];
+
+ if (core_relo_is_enumval_based(local_spec->relo_kind)) {
+ size_t local_essent_len, targ_essent_len;
+ const char *targ_name;
+
+ /* has to resolve to an enum */
+ targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
+ if (!btf_is_any_enum(targ_type))
+ return 0;
+
+ local_essent_len = bpf_core_essential_name_len(local_acc->name);
+
+ for (i = 0; i < btf_vlen(targ_type); i++) {
+ if (btf_is_enum(targ_type))
+ name_off = btf_enum(targ_type)[i].name_off;
+ else
+ name_off = btf_enum64(targ_type)[i].name_off;
+
+ targ_name = btf__name_by_offset(targ_spec->btf, name_off);
+ targ_essent_len = bpf_core_essential_name_len(targ_name);
+ if (targ_essent_len != local_essent_len)
+ continue;
+ if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
+ targ_acc->type_id = targ_id;
+ targ_acc->idx = i;
+ targ_acc->name = targ_name;
+ targ_spec->len++;
+ targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
+ targ_spec->raw_len++;
+ return 1;
+ }
+ }
+ return 0;
+ }
+
+ if (!core_relo_is_field_based(local_spec->relo_kind))
+ return -EINVAL;
+
+ for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
+ targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
+ &targ_id);
+ if (!targ_type)
+ return -EINVAL;
+
+ if (local_acc->name) {
+ matched = bpf_core_match_member(local_spec->btf,
+ local_acc,
+ targ_btf, targ_id,
+ targ_spec, &targ_id);
+ if (matched <= 0)
+ return matched;
+ } else {
+ /* for i=0, targ_id is already treated as array element
+ * type (because it's the original struct), for others
+ * we should find array element type first
+ */
+ if (i > 0) {
+ const struct btf_array *a;
+ bool flex;
+
+ if (!btf_is_array(targ_type))
+ return 0;
+
+ a = btf_array(targ_type);
+ flex = is_flex_arr(targ_btf, targ_acc - 1, a);
+ if (!flex && local_acc->idx >= a->nelems)
+ return 0;
+ if (!skip_mods_and_typedefs(targ_btf, a->type,
+ &targ_id))
+ return -EINVAL;
+ }
+
+ /* too deep struct/union/array nesting */
+ if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
+ return -E2BIG;
+
+ targ_acc->type_id = targ_id;
+ targ_acc->idx = local_acc->idx;
+ targ_acc->name = NULL;
+ targ_spec->len++;
+ targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
+ targ_spec->raw_len++;
+
+ sz = btf__resolve_size(targ_btf, targ_id);
+ if (sz < 0)
+ return sz;
+ targ_spec->bit_offset += local_acc->idx * sz * 8;
+ }
+ }
+
+ return 1;
+}
+
+static int bpf_core_calc_field_relo(const char *prog_name,
+ const struct bpf_core_relo *relo,
+ const struct bpf_core_spec *spec,
+ __u64 *val, __u32 *field_sz, __u32 *type_id,
+ bool *validate)
+{
+ const struct bpf_core_accessor *acc;
+ const struct btf_type *t;
+ __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
+ const struct btf_member *m;
+ const struct btf_type *mt;
+ bool bitfield;
+ __s64 sz;
+
+ *field_sz = 0;
+
+ if (relo->kind == BPF_CORE_FIELD_EXISTS) {
+ *val = spec ? 1 : 0;
+ return 0;
+ }
+
+ if (!spec)
+ return -EUCLEAN; /* request instruction poisoning */
+
+ acc = &spec->spec[spec->len - 1];
+ t = btf_type_by_id(spec->btf, acc->type_id);
+
+ /* a[n] accessor needs special handling */
+ if (!acc->name) {
+ if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
+ *val = spec->bit_offset / 8;
+ /* remember field size for load/store mem size */
+ sz = btf__resolve_size(spec->btf, acc->type_id);
+ if (sz < 0)
+ return -EINVAL;
+ *field_sz = sz;
+ *type_id = acc->type_id;
+ } else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
+ sz = btf__resolve_size(spec->btf, acc->type_id);
+ if (sz < 0)
+ return -EINVAL;
+ *val = sz;
+ } else {
+ pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
+ prog_name, relo->kind, relo->insn_off / 8);
+ return -EINVAL;
+ }
+ if (validate)
+ *validate = true;
+ return 0;
+ }
+
+ m = btf_members(t) + acc->idx;
+ mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
+ bit_off = spec->bit_offset;
+ bit_sz = btf_member_bitfield_size(t, acc->idx);
+
+ bitfield = bit_sz > 0;
+ if (bitfield) {
+ byte_sz = mt->size;
+ byte_off = bit_off / 8 / byte_sz * byte_sz;
+ /* figure out smallest int size necessary for bitfield load */
+ while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
+ if (byte_sz >= 8) {
+ /* bitfield can't be read with 64-bit read */
+ pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
+ prog_name, relo->kind, relo->insn_off / 8);
+ return -E2BIG;
+ }
+ byte_sz *= 2;
+ byte_off = bit_off / 8 / byte_sz * byte_sz;
+ }
+ } else {
+ sz = btf__resolve_size(spec->btf, field_type_id);
+ if (sz < 0)
+ return -EINVAL;
+ byte_sz = sz;
+ byte_off = spec->bit_offset / 8;
+ bit_sz = byte_sz * 8;
+ }
+
+ /* for bitfields, all the relocatable aspects are ambiguous and we
+ * might disagree with compiler, so turn off validation of expected
+ * value, except for signedness
+ */
+ if (validate)
+ *validate = !bitfield;
+
+ switch (relo->kind) {
+ case BPF_CORE_FIELD_BYTE_OFFSET:
+ *val = byte_off;
+ if (!bitfield) {
+ *field_sz = byte_sz;
+ *type_id = field_type_id;
+ }
+ break;
+ case BPF_CORE_FIELD_BYTE_SIZE:
+ *val = byte_sz;
+ break;
+ case BPF_CORE_FIELD_SIGNED:
+ *val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) ||
+ (btf_int_encoding(mt) & BTF_INT_SIGNED);
+ if (validate)
+ *validate = true; /* signedness is never ambiguous */
+ break;
+ case BPF_CORE_FIELD_LSHIFT_U64:
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+ *val = 64 - (bit_off + bit_sz - byte_off * 8);
+#else
+ *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
+#endif
+ break;
+ case BPF_CORE_FIELD_RSHIFT_U64:
+ *val = 64 - bit_sz;
+ if (validate)
+ *validate = true; /* right shift is never ambiguous */
+ break;
+ case BPF_CORE_FIELD_EXISTS:
+ default:
+ return -EOPNOTSUPP;
+ }
+
+ return 0;
+}
+
+static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
+ const struct bpf_core_spec *spec,
+ __u64 *val, bool *validate)
+{
+ __s64 sz;
+
+ /* by default, always check expected value in bpf_insn */
+ if (validate)
+ *validate = true;
+
+ /* type-based relos return zero when target type is not found */
+ if (!spec) {
+ *val = 0;
+ return 0;
+ }
+
+ switch (relo->kind) {
+ case BPF_CORE_TYPE_ID_TARGET:
+ *val = spec->root_type_id;
+ /* type ID, embedded in bpf_insn, might change during linking,
+ * so enforcing it is pointless
+ */
+ if (validate)
+ *validate = false;
+ break;
+ case BPF_CORE_TYPE_EXISTS:
+ case BPF_CORE_TYPE_MATCHES:
+ *val = 1;
+ break;
+ case BPF_CORE_TYPE_SIZE:
+ sz = btf__resolve_size(spec->btf, spec->root_type_id);
+ if (sz < 0)
+ return -EINVAL;
+ *val = sz;
+ break;
+ case BPF_CORE_TYPE_ID_LOCAL:
+ /* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
+ default:
+ return -EOPNOTSUPP;
+ }
+
+ return 0;
+}
+
+static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
+ const struct bpf_core_spec *spec,
+ __u64 *val)
+{
+ const struct btf_type *t;
+
+ switch (relo->kind) {
+ case BPF_CORE_ENUMVAL_EXISTS:
+ *val = spec ? 1 : 0;
+ break;
+ case BPF_CORE_ENUMVAL_VALUE:
+ if (!spec)
+ return -EUCLEAN; /* request instruction poisoning */
+ t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
+ if (btf_is_enum(t))
+ *val = btf_enum(t)[spec->spec[0].idx].val;
+ else
+ *val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx);
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
+
+ return 0;
+}
+
+/* Calculate original and target relocation values, given local and target
+ * specs and relocation kind. These values are calculated for each candidate.
+ * If there are multiple candidates, resulting values should all be consistent
+ * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
+ * If instruction has to be poisoned, *poison will be set to true.
+ */
+static int bpf_core_calc_relo(const char *prog_name,
+ const struct bpf_core_relo *relo,
+ int relo_idx,
+ const struct bpf_core_spec *local_spec,
+ const struct bpf_core_spec *targ_spec,
+ struct bpf_core_relo_res *res)
+{
+ int err = -EOPNOTSUPP;
+
+ res->orig_val = 0;
+ res->new_val = 0;
+ res->poison = false;
+ res->validate = true;
+ res->fail_memsz_adjust = false;
+ res->orig_sz = res->new_sz = 0;
+ res->orig_type_id = res->new_type_id = 0;
+
+ if (core_relo_is_field_based(relo->kind)) {
+ err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
+ &res->orig_val, &res->orig_sz,
+ &res->orig_type_id, &res->validate);
+ err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
+ &res->new_val, &res->new_sz,
+ &res->new_type_id, NULL);
+ if (err)
+ goto done;
+ /* Validate if it's safe to adjust load/store memory size.
+ * Adjustments are performed only if original and new memory
+ * sizes differ.
+ */
+ res->fail_memsz_adjust = false;
+ if (res->orig_sz != res->new_sz) {
+ const struct btf_type *orig_t, *new_t;
+
+ orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
+ new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
+
+ /* There are two use cases in which it's safe to
+ * adjust load/store's mem size:
+ * - reading a 32-bit kernel pointer, while on BPF
+ * size pointers are always 64-bit; in this case
+ * it's safe to "downsize" instruction size due to
+ * pointer being treated as unsigned integer with
+ * zero-extended upper 32-bits;
+ * - reading unsigned integers, again due to
+ * zero-extension is preserving the value correctly.
+ *
+ * In all other cases it's incorrect to attempt to
+ * load/store field because read value will be
+ * incorrect, so we poison relocated instruction.
+ */
+ if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
+ goto done;
+ if (btf_is_int(orig_t) && btf_is_int(new_t) &&
+ btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
+ btf_int_encoding(new_t) != BTF_INT_SIGNED)
+ goto done;
+
+ /* mark as invalid mem size adjustment, but this will
+ * only be checked for LDX/STX/ST insns
+ */
+ res->fail_memsz_adjust = true;
+ }
+ } else if (core_relo_is_type_based(relo->kind)) {
+ err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
+ err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
+ } else if (core_relo_is_enumval_based(relo->kind)) {
+ err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
+ err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
+ }
+
+done:
+ if (err == -EUCLEAN) {
+ /* EUCLEAN is used to signal instruction poisoning request */
+ res->poison = true;
+ err = 0;
+ } else if (err == -EOPNOTSUPP) {
+ /* EOPNOTSUPP means unknown/unsupported relocation */
+ pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
+ prog_name, relo_idx, core_relo_kind_str(relo->kind),
+ relo->kind, relo->insn_off / 8);
+ }
+
+ return err;
+}
+
+/*
+ * Turn instruction for which CO_RE relocation failed into invalid one with
+ * distinct signature.
+ */
+static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
+ int insn_idx, struct bpf_insn *insn)
+{
+ pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
+ prog_name, relo_idx, insn_idx);
+ insn->code = BPF_JMP | BPF_CALL;
+ insn->dst_reg = 0;
+ insn->src_reg = 0;
+ insn->off = 0;
+ /* if this instruction is reachable (not a dead code),
+ * verifier will complain with the following message:
+ * invalid func unknown#195896080
+ */
+ insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
+}
+
+static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
+{
+ switch (BPF_SIZE(insn->code)) {
+ case BPF_DW: return 8;
+ case BPF_W: return 4;
+ case BPF_H: return 2;
+ case BPF_B: return 1;
+ default: return -1;
+ }
+}
+
+static int insn_bytes_to_bpf_size(__u32 sz)
+{
+ switch (sz) {
+ case 8: return BPF_DW;
+ case 4: return BPF_W;
+ case 2: return BPF_H;
+ case 1: return BPF_B;
+ default: return -1;
+ }
+}
+
+/*
+ * Patch relocatable BPF instruction.
+ *
+ * Patched value is determined by relocation kind and target specification.
+ * For existence relocations target spec will be NULL if field/type is not found.
+ * Expected insn->imm value is determined using relocation kind and local
+ * spec, and is checked before patching instruction. If actual insn->imm value
+ * is wrong, bail out with error.
+ *
+ * Currently supported classes of BPF instruction are:
+ * 1. rX = <imm> (assignment with immediate operand);
+ * 2. rX += <imm> (arithmetic operations with immediate operand);
+ * 3. rX = <imm64> (load with 64-bit immediate value);
+ * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
+ * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
+ * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
+ */
+int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
+ int insn_idx, const struct bpf_core_relo *relo,
+ int relo_idx, const struct bpf_core_relo_res *res)
+{
+ __u64 orig_val, new_val;
+ __u8 class;
+
+ class = BPF_CLASS(insn->code);
+
+ if (res->poison) {
+poison:
+ /* poison second part of ldimm64 to avoid confusing error from
+ * verifier about "unknown opcode 00"
+ */
+ if (is_ldimm64_insn(insn))
+ bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
+ bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
+ return 0;
+ }
+
+ orig_val = res->orig_val;
+ new_val = res->new_val;
+
+ switch (class) {
+ case BPF_ALU:
+ case BPF_ALU64:
+ if (BPF_SRC(insn->code) != BPF_K)
+ return -EINVAL;
+ if (res->validate && insn->imm != orig_val) {
+ pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n",
+ prog_name, relo_idx,
+ insn_idx, insn->imm, (unsigned long long)orig_val,
+ (unsigned long long)new_val);
+ return -EINVAL;
+ }
+ orig_val = insn->imm;
+ insn->imm = new_val;
+ pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n",
+ prog_name, relo_idx, insn_idx,
+ (unsigned long long)orig_val, (unsigned long long)new_val);
+ break;
+ case BPF_LDX:
+ case BPF_ST:
+ case BPF_STX:
+ if (res->validate && insn->off != orig_val) {
+ pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n",
+ prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val,
+ (unsigned long long)new_val);
+ return -EINVAL;
+ }
+ if (new_val > SHRT_MAX) {
+ pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n",
+ prog_name, relo_idx, insn_idx, (unsigned long long)new_val);
+ return -ERANGE;
+ }
+ if (res->fail_memsz_adjust) {
+ pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
+ "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
+ prog_name, relo_idx, insn_idx);
+ goto poison;
+ }
+
+ orig_val = insn->off;
+ insn->off = new_val;
+ pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n",
+ prog_name, relo_idx, insn_idx, (unsigned long long)orig_val,
+ (unsigned long long)new_val);
+
+ if (res->new_sz != res->orig_sz) {
+ int insn_bytes_sz, insn_bpf_sz;
+
+ insn_bytes_sz = insn_bpf_size_to_bytes(insn);
+ if (insn_bytes_sz != res->orig_sz) {
+ pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
+ prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
+ return -EINVAL;
+ }
+
+ insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
+ if (insn_bpf_sz < 0) {
+ pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
+ prog_name, relo_idx, insn_idx, res->new_sz);
+ return -EINVAL;
+ }
+
+ insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
+ pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
+ prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
+ }
+ break;
+ case BPF_LD: {
+ __u64 imm;
+
+ if (!is_ldimm64_insn(insn) ||
+ insn[0].src_reg != 0 || insn[0].off != 0 ||
+ insn[1].code != 0 || insn[1].dst_reg != 0 ||
+ insn[1].src_reg != 0 || insn[1].off != 0) {
+ pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
+ prog_name, relo_idx, insn_idx);
+ return -EINVAL;
+ }
+
+ imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32);
+ if (res->validate && imm != orig_val) {
+ pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n",
+ prog_name, relo_idx,
+ insn_idx, (unsigned long long)imm,
+ (unsigned long long)orig_val, (unsigned long long)new_val);
+ return -EINVAL;
+ }
+
+ insn[0].imm = new_val;
+ insn[1].imm = new_val >> 32;
+ pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n",
+ prog_name, relo_idx, insn_idx,
+ (unsigned long long)imm, (unsigned long long)new_val);
+ break;
+ }
+ default:
+ pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
+ prog_name, relo_idx, insn_idx, insn->code,
+ insn->src_reg, insn->dst_reg, insn->off, insn->imm);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/* Output spec definition in the format:
+ * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
+ * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
+ */
+int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
+{
+ const struct btf_type *t;
+ const char *s;
+ __u32 type_id;
+ int i, len = 0;
+
+#define append_buf(fmt, args...) \
+ ({ \
+ int r; \
+ r = snprintf(buf, buf_sz, fmt, ##args); \
+ len += r; \
+ if (r >= buf_sz) \
+ r = buf_sz; \
+ buf += r; \
+ buf_sz -= r; \
+ })
+
+ type_id = spec->root_type_id;
+ t = btf_type_by_id(spec->btf, type_id);
+ s = btf__name_by_offset(spec->btf, t->name_off);
+
+ append_buf("<%s> [%u] %s %s",
+ core_relo_kind_str(spec->relo_kind),
+ type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
+
+ if (core_relo_is_type_based(spec->relo_kind))
+ return len;
+
+ if (core_relo_is_enumval_based(spec->relo_kind)) {
+ t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
+ if (btf_is_enum(t)) {
+ const struct btf_enum *e;
+ const char *fmt_str;
+
+ e = btf_enum(t) + spec->raw_spec[0];
+ s = btf__name_by_offset(spec->btf, e->name_off);
+ fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u";
+ append_buf(fmt_str, s, e->val);
+ } else {
+ const struct btf_enum64 *e;
+ const char *fmt_str;
+
+ e = btf_enum64(t) + spec->raw_spec[0];
+ s = btf__name_by_offset(spec->btf, e->name_off);
+ fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu";
+ append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e));
+ }
+ return len;
+ }
+
+ if (core_relo_is_field_based(spec->relo_kind)) {
+ for (i = 0; i < spec->len; i++) {
+ if (spec->spec[i].name)
+ append_buf(".%s", spec->spec[i].name);
+ else if (i > 0 || spec->spec[i].idx > 0)
+ append_buf("[%u]", spec->spec[i].idx);
+ }
+
+ append_buf(" (");
+ for (i = 0; i < spec->raw_len; i++)
+ append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
+
+ if (spec->bit_offset % 8)
+ append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
+ else
+ append_buf(" @ offset %u)", spec->bit_offset / 8);
+ return len;
+ }
+
+ return len;
+#undef append_buf
+}
+
+/*
+ * Calculate CO-RE relocation target result.
+ *
+ * The outline and important points of the algorithm:
+ * 1. For given local type, find corresponding candidate target types.
+ * Candidate type is a type with the same "essential" name, ignoring
+ * everything after last triple underscore (___). E.g., `sample`,
+ * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
+ * for each other. Names with triple underscore are referred to as
+ * "flavors" and are useful, among other things, to allow to
+ * specify/support incompatible variations of the same kernel struct, which
+ * might differ between different kernel versions and/or build
+ * configurations.
+ *
+ * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
+ * converter, when deduplicated BTF of a kernel still contains more than
+ * one different types with the same name. In that case, ___2, ___3, etc
+ * are appended starting from second name conflict. But start flavors are
+ * also useful to be defined "locally", in BPF program, to extract same
+ * data from incompatible changes between different kernel
+ * versions/configurations. For instance, to handle field renames between
+ * kernel versions, one can use two flavors of the struct name with the
+ * same common name and use conditional relocations to extract that field,
+ * depending on target kernel version.
+ * 2. For each candidate type, try to match local specification to this
+ * candidate target type. Matching involves finding corresponding
+ * high-level spec accessors, meaning that all named fields should match,
+ * as well as all array accesses should be within the actual bounds. Also,
+ * types should be compatible (see bpf_core_fields_are_compat for details).
+ * 3. It is supported and expected that there might be multiple flavors
+ * matching the spec. As long as all the specs resolve to the same set of
+ * offsets across all candidates, there is no error. If there is any
+ * ambiguity, CO-RE relocation will fail. This is necessary to accommodate
+ * imperfection of BTF deduplication, which can cause slight duplication of
+ * the same BTF type, if some directly or indirectly referenced (by
+ * pointer) type gets resolved to different actual types in different
+ * object files. If such a situation occurs, deduplicated BTF will end up
+ * with two (or more) structurally identical types, which differ only in
+ * types they refer to through pointer. This should be OK in most cases and
+ * is not an error.
+ * 4. Candidate types search is performed by linearly scanning through all
+ * types in target BTF. It is anticipated that this is overall more
+ * efficient memory-wise and not significantly worse (if not better)
+ * CPU-wise compared to prebuilding a map from all local type names to
+ * a list of candidate type names. It's also sped up by caching resolved
+ * list of matching candidates per each local "root" type ID, that has at
+ * least one bpf_core_relo associated with it. This list is shared
+ * between multiple relocations for the same type ID and is updated as some
+ * of the candidates are pruned due to structural incompatibility.
+ */
+int bpf_core_calc_relo_insn(const char *prog_name,
+ const struct bpf_core_relo *relo,
+ int relo_idx,
+ const struct btf *local_btf,
+ struct bpf_core_cand_list *cands,
+ struct bpf_core_spec *specs_scratch,
+ struct bpf_core_relo_res *targ_res)
+{
+ struct bpf_core_spec *local_spec = &specs_scratch[0];
+ struct bpf_core_spec *cand_spec = &specs_scratch[1];
+ struct bpf_core_spec *targ_spec = &specs_scratch[2];
+ struct bpf_core_relo_res cand_res;
+ const struct btf_type *local_type;
+ const char *local_name;
+ __u32 local_id;
+ char spec_buf[256];
+ int i, j, err;
+
+ local_id = relo->type_id;
+ local_type = btf_type_by_id(local_btf, local_id);
+ local_name = btf__name_by_offset(local_btf, local_type->name_off);
+ if (!local_name)
+ return -EINVAL;
+
+ err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
+ if (err) {
+ const char *spec_str;
+
+ spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
+ pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
+ prog_name, relo_idx, local_id, btf_kind_str(local_type),
+ str_is_empty(local_name) ? "<anon>" : local_name,
+ spec_str ?: "<?>", err);
+ return -EINVAL;
+ }
+
+ bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
+ pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
+
+ /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
+ if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
+ /* bpf_insn's imm value could get out of sync during linking */
+ memset(targ_res, 0, sizeof(*targ_res));
+ targ_res->validate = false;
+ targ_res->poison = false;
+ targ_res->orig_val = local_spec->root_type_id;
+ targ_res->new_val = local_spec->root_type_id;
+ return 0;
+ }
+
+ /* libbpf doesn't support candidate search for anonymous types */
+ if (str_is_empty(local_name)) {
+ pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
+ prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
+ return -EOPNOTSUPP;
+ }
+
+ for (i = 0, j = 0; i < cands->len; i++) {
+ err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
+ cands->cands[i].id, cand_spec);
+ if (err < 0) {
+ bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
+ pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n ",
+ prog_name, relo_idx, i, spec_buf, err);
+ return err;
+ }
+
+ bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
+ pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
+ relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
+
+ if (err == 0)
+ continue;
+
+ err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
+ if (err)
+ return err;
+
+ if (j == 0) {
+ *targ_res = cand_res;
+ *targ_spec = *cand_spec;
+ } else if (cand_spec->bit_offset != targ_spec->bit_offset) {
+ /* if there are many field relo candidates, they
+ * should all resolve to the same bit offset
+ */
+ pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
+ prog_name, relo_idx, cand_spec->bit_offset,
+ targ_spec->bit_offset);
+ return -EINVAL;
+ } else if (cand_res.poison != targ_res->poison ||
+ cand_res.new_val != targ_res->new_val) {
+ /* all candidates should result in the same relocation
+ * decision and value, otherwise it's dangerous to
+ * proceed due to ambiguity
+ */
+ pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n",
+ prog_name, relo_idx,
+ cand_res.poison ? "failure" : "success",
+ (unsigned long long)cand_res.new_val,
+ targ_res->poison ? "failure" : "success",
+ (unsigned long long)targ_res->new_val);
+ return -EINVAL;
+ }
+
+ cands->cands[j++] = cands->cands[i];
+ }
+
+ /*
+ * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
+ * existence checks or kernel version/config checks, it's expected
+ * that we might not find any candidates. In this case, if field
+ * wasn't found in any candidate, the list of candidates shouldn't
+ * change at all, we'll just handle relocating appropriately,
+ * depending on relo's kind.
+ */
+ if (j > 0)
+ cands->len = j;
+
+ /*
+ * If no candidates were found, it might be both a programmer error,
+ * as well as expected case, depending whether instruction w/
+ * relocation is guarded in some way that makes it unreachable (dead
+ * code) if relocation can't be resolved. This is handled in
+ * bpf_core_patch_insn() uniformly by replacing that instruction with
+ * BPF helper call insn (using invalid helper ID). If that instruction
+ * is indeed unreachable, then it will be ignored and eliminated by
+ * verifier. If it was an error, then verifier will complain and point
+ * to a specific instruction number in its log.
+ */
+ if (j == 0) {
+ pr_debug("prog '%s': relo #%d: no matching targets found\n",
+ prog_name, relo_idx);
+
+ /* calculate single target relo result explicitly */
+ err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off,
+ const struct btf *targ_btf, size_t targ_name_off)
+{
+ const char *local_n, *targ_n;
+ size_t local_len, targ_len;
+
+ local_n = btf__name_by_offset(local_btf, local_name_off);
+ targ_n = btf__name_by_offset(targ_btf, targ_name_off);
+
+ if (str_is_empty(targ_n))
+ return str_is_empty(local_n);
+
+ targ_len = bpf_core_essential_name_len(targ_n);
+ local_len = bpf_core_essential_name_len(local_n);
+
+ return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0;
+}
+
+static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t,
+ const struct btf *targ_btf, const struct btf_type *targ_t)
+{
+ __u16 local_vlen = btf_vlen(local_t);
+ __u16 targ_vlen = btf_vlen(targ_t);
+ int i, j;
+
+ if (local_t->size != targ_t->size)
+ return 0;
+
+ if (local_vlen > targ_vlen)
+ return 0;
+
+ /* iterate over the local enum's variants and make sure each has
+ * a symbolic name correspondent in the target
+ */
+ for (i = 0; i < local_vlen; i++) {
+ bool matched = false;
+ __u32 local_n_off, targ_n_off;
+
+ local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off :
+ btf_enum64(local_t)[i].name_off;
+
+ for (j = 0; j < targ_vlen; j++) {
+ targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off :
+ btf_enum64(targ_t)[j].name_off;
+
+ if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) {
+ matched = true;
+ break;
+ }
+ }
+
+ if (!matched)
+ return 0;
+ }
+ return 1;
+}
+
+static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t,
+ const struct btf *targ_btf, const struct btf_type *targ_t,
+ bool behind_ptr, int level)
+{
+ const struct btf_member *local_m = btf_members(local_t);
+ __u16 local_vlen = btf_vlen(local_t);
+ __u16 targ_vlen = btf_vlen(targ_t);
+ int i, j, err;
+
+ if (local_vlen > targ_vlen)
+ return 0;
+
+ /* check that all local members have a match in the target */
+ for (i = 0; i < local_vlen; i++, local_m++) {
+ const struct btf_member *targ_m = btf_members(targ_t);
+ bool matched = false;
+
+ for (j = 0; j < targ_vlen; j++, targ_m++) {
+ if (!bpf_core_names_match(local_btf, local_m->name_off,
+ targ_btf, targ_m->name_off))
+ continue;
+
+ err = __bpf_core_types_match(local_btf, local_m->type, targ_btf,
+ targ_m->type, behind_ptr, level - 1);
+ if (err < 0)
+ return err;
+ if (err > 0) {
+ matched = true;
+ break;
+ }
+ }
+
+ if (!matched)
+ return 0;
+ }
+ return 1;
+}
+
+/* Check that two types "match". This function assumes that root types were
+ * already checked for name match.
+ *
+ * The matching relation is defined as follows:
+ * - modifiers and typedefs are stripped (and, hence, effectively ignored)
+ * - generally speaking types need to be of same kind (struct vs. struct, union
+ * vs. union, etc.)
+ * - exceptions are struct/union behind a pointer which could also match a
+ * forward declaration of a struct or union, respectively, and enum vs.
+ * enum64 (see below)
+ * Then, depending on type:
+ * - integers:
+ * - match if size and signedness match
+ * - arrays & pointers:
+ * - target types are recursively matched
+ * - structs & unions:
+ * - local members need to exist in target with the same name
+ * - for each member we recursively check match unless it is already behind a
+ * pointer, in which case we only check matching names and compatible kind
+ * - enums:
+ * - local variants have to have a match in target by symbolic name (but not
+ * numeric value)
+ * - size has to match (but enum may match enum64 and vice versa)
+ * - function pointers:
+ * - number and position of arguments in local type has to match target
+ * - for each argument and the return value we recursively check match
+ */
+int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf,
+ __u32 targ_id, bool behind_ptr, int level)
+{
+ const struct btf_type *local_t, *targ_t;
+ int depth = 32; /* max recursion depth */
+ __u16 local_k, targ_k;
+
+ if (level <= 0)
+ return -EINVAL;
+
+ local_t = btf_type_by_id(local_btf, local_id);
+ targ_t = btf_type_by_id(targ_btf, targ_id);
+
+recur:
+ depth--;
+ if (depth < 0)
+ return -EINVAL;
+
+ local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id);
+ targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
+ if (!local_t || !targ_t)
+ return -EINVAL;
+
+ /* While the name check happens after typedefs are skipped, root-level
+ * typedefs would still be name-matched as that's the contract with
+ * callers.
+ */
+ if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off))
+ return 0;
+
+ local_k = btf_kind(local_t);
+ targ_k = btf_kind(targ_t);
+
+ switch (local_k) {
+ case BTF_KIND_UNKN:
+ return local_k == targ_k;
+ case BTF_KIND_FWD: {
+ bool local_f = BTF_INFO_KFLAG(local_t->info);
+
+ if (behind_ptr) {
+ if (local_k == targ_k)
+ return local_f == BTF_INFO_KFLAG(targ_t->info);
+
+ /* for forward declarations kflag dictates whether the
+ * target is a struct (0) or union (1)
+ */
+ return (targ_k == BTF_KIND_STRUCT && !local_f) ||
+ (targ_k == BTF_KIND_UNION && local_f);
+ } else {
+ if (local_k != targ_k)
+ return 0;
+
+ /* match if the forward declaration is for the same kind */
+ return local_f == BTF_INFO_KFLAG(targ_t->info);
+ }
+ }
+ case BTF_KIND_ENUM:
+ case BTF_KIND_ENUM64:
+ if (!btf_is_any_enum(targ_t))
+ return 0;
+
+ return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t);
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ if (behind_ptr) {
+ bool targ_f = BTF_INFO_KFLAG(targ_t->info);
+
+ if (local_k == targ_k)
+ return 1;
+
+ if (targ_k != BTF_KIND_FWD)
+ return 0;
+
+ return (local_k == BTF_KIND_UNION) == targ_f;
+ } else {
+ if (local_k != targ_k)
+ return 0;
+
+ return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t,
+ behind_ptr, level);
+ }
+ case BTF_KIND_INT: {
+ __u8 local_sgn;
+ __u8 targ_sgn;
+
+ if (local_k != targ_k)
+ return 0;
+
+ local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED;
+ targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED;
+
+ return local_t->size == targ_t->size && local_sgn == targ_sgn;
+ }
+ case BTF_KIND_PTR:
+ if (local_k != targ_k)
+ return 0;
+
+ behind_ptr = true;
+
+ local_id = local_t->type;
+ targ_id = targ_t->type;
+ goto recur;
+ case BTF_KIND_ARRAY: {
+ const struct btf_array *local_array = btf_array(local_t);
+ const struct btf_array *targ_array = btf_array(targ_t);
+
+ if (local_k != targ_k)
+ return 0;
+
+ if (local_array->nelems != targ_array->nelems)
+ return 0;
+
+ local_id = local_array->type;
+ targ_id = targ_array->type;
+ goto recur;
+ }
+ case BTF_KIND_FUNC_PROTO: {
+ struct btf_param *local_p = btf_params(local_t);
+ struct btf_param *targ_p = btf_params(targ_t);
+ __u16 local_vlen = btf_vlen(local_t);
+ __u16 targ_vlen = btf_vlen(targ_t);
+ int i, err;
+
+ if (local_k != targ_k)
+ return 0;
+
+ if (local_vlen != targ_vlen)
+ return 0;
+
+ for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
+ err = __bpf_core_types_match(local_btf, local_p->type, targ_btf,
+ targ_p->type, behind_ptr, level - 1);
+ if (err <= 0)
+ return err;
+ }
+
+ /* tail recurse for return type check */
+ local_id = local_t->type;
+ targ_id = targ_t->type;
+ goto recur;
+ }
+ default:
+ pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
+ btf_kind_str(local_t), local_id, targ_id);
+ return 0;
+ }
+}