summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/cgroup
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /tools/testing/selftests/cgroup
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/testing/selftests/cgroup')
-rw-r--r--tools/testing/selftests/cgroup/.gitignore8
-rw-r--r--tools/testing/selftests/cgroup/Makefile25
-rw-r--r--tools/testing/selftests/cgroup/cgroup_util.c657
-rw-r--r--tools/testing/selftests/cgroup/cgroup_util.h64
-rw-r--r--tools/testing/selftests/cgroup/config7
-rw-r--r--tools/testing/selftests/cgroup/memcg_protection.m89
-rw-r--r--tools/testing/selftests/cgroup/test_core.c888
-rw-r--r--tools/testing/selftests/cgroup/test_cpu.c726
-rwxr-xr-xtools/testing/selftests/cgroup/test_cpuset_prs.sh675
-rw-r--r--tools/testing/selftests/cgroup/test_freezer.c848
-rw-r--r--tools/testing/selftests/cgroup/test_kill.c297
-rw-r--r--tools/testing/selftests/cgroup/test_kmem.c456
-rw-r--r--tools/testing/selftests/cgroup/test_memcontrol.c1335
-rwxr-xr-xtools/testing/selftests/cgroup/test_stress.sh4
-rw-r--r--tools/testing/selftests/cgroup/wait_inotify.c87
-rwxr-xr-xtools/testing/selftests/cgroup/with_stress.sh101
16 files changed, 6267 insertions, 0 deletions
diff --git a/tools/testing/selftests/cgroup/.gitignore b/tools/testing/selftests/cgroup/.gitignore
new file mode 100644
index 000000000..c4a57e69f
--- /dev/null
+++ b/tools/testing/selftests/cgroup/.gitignore
@@ -0,0 +1,8 @@
+# SPDX-License-Identifier: GPL-2.0-only
+test_memcontrol
+test_core
+test_freezer
+test_kmem
+test_kill
+test_cpu
+wait_inotify
diff --git a/tools/testing/selftests/cgroup/Makefile b/tools/testing/selftests/cgroup/Makefile
new file mode 100644
index 000000000..3d263747d
--- /dev/null
+++ b/tools/testing/selftests/cgroup/Makefile
@@ -0,0 +1,25 @@
+# SPDX-License-Identifier: GPL-2.0
+CFLAGS += -Wall -pthread
+
+all: ${HELPER_PROGS}
+
+TEST_FILES := with_stress.sh
+TEST_PROGS := test_stress.sh test_cpuset_prs.sh
+TEST_GEN_FILES := wait_inotify
+TEST_GEN_PROGS = test_memcontrol
+TEST_GEN_PROGS += test_kmem
+TEST_GEN_PROGS += test_core
+TEST_GEN_PROGS += test_freezer
+TEST_GEN_PROGS += test_kill
+TEST_GEN_PROGS += test_cpu
+
+LOCAL_HDRS += $(selfdir)/clone3/clone3_selftests.h $(selfdir)/pidfd/pidfd.h
+
+include ../lib.mk
+
+$(OUTPUT)/test_memcontrol: cgroup_util.c
+$(OUTPUT)/test_kmem: cgroup_util.c
+$(OUTPUT)/test_core: cgroup_util.c
+$(OUTPUT)/test_freezer: cgroup_util.c
+$(OUTPUT)/test_kill: cgroup_util.c
+$(OUTPUT)/test_cpu: cgroup_util.c
diff --git a/tools/testing/selftests/cgroup/cgroup_util.c b/tools/testing/selftests/cgroup/cgroup_util.c
new file mode 100644
index 000000000..e8bbbdb77
--- /dev/null
+++ b/tools/testing/selftests/cgroup/cgroup_util.c
@@ -0,0 +1,657 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#define _GNU_SOURCE
+
+#include <errno.h>
+#include <fcntl.h>
+#include <linux/limits.h>
+#include <poll.h>
+#include <signal.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/inotify.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <sys/wait.h>
+#include <unistd.h>
+
+#include "cgroup_util.h"
+#include "../clone3/clone3_selftests.h"
+
+/* Returns read len on success, or -errno on failure. */
+static ssize_t read_text(const char *path, char *buf, size_t max_len)
+{
+ ssize_t len;
+ int fd;
+
+ fd = open(path, O_RDONLY);
+ if (fd < 0)
+ return -errno;
+
+ len = read(fd, buf, max_len - 1);
+
+ if (len >= 0)
+ buf[len] = 0;
+
+ close(fd);
+ return len < 0 ? -errno : len;
+}
+
+/* Returns written len on success, or -errno on failure. */
+static ssize_t write_text(const char *path, char *buf, ssize_t len)
+{
+ int fd;
+
+ fd = open(path, O_WRONLY | O_APPEND);
+ if (fd < 0)
+ return -errno;
+
+ len = write(fd, buf, len);
+ close(fd);
+ return len < 0 ? -errno : len;
+}
+
+char *cg_name(const char *root, const char *name)
+{
+ size_t len = strlen(root) + strlen(name) + 2;
+ char *ret = malloc(len);
+
+ snprintf(ret, len, "%s/%s", root, name);
+
+ return ret;
+}
+
+char *cg_name_indexed(const char *root, const char *name, int index)
+{
+ size_t len = strlen(root) + strlen(name) + 10;
+ char *ret = malloc(len);
+
+ snprintf(ret, len, "%s/%s_%d", root, name, index);
+
+ return ret;
+}
+
+char *cg_control(const char *cgroup, const char *control)
+{
+ size_t len = strlen(cgroup) + strlen(control) + 2;
+ char *ret = malloc(len);
+
+ snprintf(ret, len, "%s/%s", cgroup, control);
+
+ return ret;
+}
+
+/* Returns 0 on success, or -errno on failure. */
+int cg_read(const char *cgroup, const char *control, char *buf, size_t len)
+{
+ char path[PATH_MAX];
+ ssize_t ret;
+
+ snprintf(path, sizeof(path), "%s/%s", cgroup, control);
+
+ ret = read_text(path, buf, len);
+ return ret >= 0 ? 0 : ret;
+}
+
+int cg_read_strcmp(const char *cgroup, const char *control,
+ const char *expected)
+{
+ size_t size;
+ char *buf;
+ int ret;
+
+ /* Handle the case of comparing against empty string */
+ if (!expected)
+ return -1;
+ else
+ size = strlen(expected) + 1;
+
+ buf = malloc(size);
+ if (!buf)
+ return -1;
+
+ if (cg_read(cgroup, control, buf, size)) {
+ free(buf);
+ return -1;
+ }
+
+ ret = strcmp(expected, buf);
+ free(buf);
+ return ret;
+}
+
+int cg_read_strstr(const char *cgroup, const char *control, const char *needle)
+{
+ char buf[PAGE_SIZE];
+
+ if (cg_read(cgroup, control, buf, sizeof(buf)))
+ return -1;
+
+ return strstr(buf, needle) ? 0 : -1;
+}
+
+long cg_read_long(const char *cgroup, const char *control)
+{
+ char buf[128];
+
+ if (cg_read(cgroup, control, buf, sizeof(buf)))
+ return -1;
+
+ return atol(buf);
+}
+
+long cg_read_key_long(const char *cgroup, const char *control, const char *key)
+{
+ char buf[PAGE_SIZE];
+ char *ptr;
+
+ if (cg_read(cgroup, control, buf, sizeof(buf)))
+ return -1;
+
+ ptr = strstr(buf, key);
+ if (!ptr)
+ return -1;
+
+ return atol(ptr + strlen(key));
+}
+
+long cg_read_lc(const char *cgroup, const char *control)
+{
+ char buf[PAGE_SIZE];
+ const char delim[] = "\n";
+ char *line;
+ long cnt = 0;
+
+ if (cg_read(cgroup, control, buf, sizeof(buf)))
+ return -1;
+
+ for (line = strtok(buf, delim); line; line = strtok(NULL, delim))
+ cnt++;
+
+ return cnt;
+}
+
+/* Returns 0 on success, or -errno on failure. */
+int cg_write(const char *cgroup, const char *control, char *buf)
+{
+ char path[PATH_MAX];
+ ssize_t len = strlen(buf), ret;
+
+ snprintf(path, sizeof(path), "%s/%s", cgroup, control);
+ ret = write_text(path, buf, len);
+ return ret == len ? 0 : ret;
+}
+
+int cg_write_numeric(const char *cgroup, const char *control, long value)
+{
+ char buf[64];
+ int ret;
+
+ ret = sprintf(buf, "%lu", value);
+ if (ret < 0)
+ return ret;
+
+ return cg_write(cgroup, control, buf);
+}
+
+int cg_find_unified_root(char *root, size_t len)
+{
+ char buf[10 * PAGE_SIZE];
+ char *fs, *mount, *type;
+ const char delim[] = "\n\t ";
+
+ if (read_text("/proc/self/mounts", buf, sizeof(buf)) <= 0)
+ return -1;
+
+ /*
+ * Example:
+ * cgroup /sys/fs/cgroup cgroup2 rw,seclabel,noexec,relatime 0 0
+ */
+ for (fs = strtok(buf, delim); fs; fs = strtok(NULL, delim)) {
+ mount = strtok(NULL, delim);
+ type = strtok(NULL, delim);
+ strtok(NULL, delim);
+ strtok(NULL, delim);
+ strtok(NULL, delim);
+
+ if (strcmp(type, "cgroup2") == 0) {
+ strncpy(root, mount, len);
+ return 0;
+ }
+ }
+
+ return -1;
+}
+
+int cg_create(const char *cgroup)
+{
+ return mkdir(cgroup, 0755);
+}
+
+int cg_wait_for_proc_count(const char *cgroup, int count)
+{
+ char buf[10 * PAGE_SIZE] = {0};
+ int attempts;
+ char *ptr;
+
+ for (attempts = 10; attempts >= 0; attempts--) {
+ int nr = 0;
+
+ if (cg_read(cgroup, "cgroup.procs", buf, sizeof(buf)))
+ break;
+
+ for (ptr = buf; *ptr; ptr++)
+ if (*ptr == '\n')
+ nr++;
+
+ if (nr >= count)
+ return 0;
+
+ usleep(100000);
+ }
+
+ return -1;
+}
+
+int cg_killall(const char *cgroup)
+{
+ char buf[PAGE_SIZE];
+ char *ptr = buf;
+
+ /* If cgroup.kill exists use it. */
+ if (!cg_write(cgroup, "cgroup.kill", "1"))
+ return 0;
+
+ if (cg_read(cgroup, "cgroup.procs", buf, sizeof(buf)))
+ return -1;
+
+ while (ptr < buf + sizeof(buf)) {
+ int pid = strtol(ptr, &ptr, 10);
+
+ if (pid == 0)
+ break;
+ if (*ptr)
+ ptr++;
+ else
+ break;
+ if (kill(pid, SIGKILL))
+ return -1;
+ }
+
+ return 0;
+}
+
+int cg_destroy(const char *cgroup)
+{
+ int ret;
+
+retry:
+ ret = rmdir(cgroup);
+ if (ret && errno == EBUSY) {
+ cg_killall(cgroup);
+ usleep(100);
+ goto retry;
+ }
+
+ if (ret && errno == ENOENT)
+ ret = 0;
+
+ return ret;
+}
+
+int cg_enter(const char *cgroup, int pid)
+{
+ char pidbuf[64];
+
+ snprintf(pidbuf, sizeof(pidbuf), "%d", pid);
+ return cg_write(cgroup, "cgroup.procs", pidbuf);
+}
+
+int cg_enter_current(const char *cgroup)
+{
+ return cg_write(cgroup, "cgroup.procs", "0");
+}
+
+int cg_enter_current_thread(const char *cgroup)
+{
+ return cg_write(cgroup, "cgroup.threads", "0");
+}
+
+int cg_run(const char *cgroup,
+ int (*fn)(const char *cgroup, void *arg),
+ void *arg)
+{
+ int pid, retcode;
+
+ pid = fork();
+ if (pid < 0) {
+ return pid;
+ } else if (pid == 0) {
+ char buf[64];
+
+ snprintf(buf, sizeof(buf), "%d", getpid());
+ if (cg_write(cgroup, "cgroup.procs", buf))
+ exit(EXIT_FAILURE);
+ exit(fn(cgroup, arg));
+ } else {
+ waitpid(pid, &retcode, 0);
+ if (WIFEXITED(retcode))
+ return WEXITSTATUS(retcode);
+ else
+ return -1;
+ }
+}
+
+pid_t clone_into_cgroup(int cgroup_fd)
+{
+#ifdef CLONE_ARGS_SIZE_VER2
+ pid_t pid;
+
+ struct __clone_args args = {
+ .flags = CLONE_INTO_CGROUP,
+ .exit_signal = SIGCHLD,
+ .cgroup = cgroup_fd,
+ };
+
+ pid = sys_clone3(&args, sizeof(struct __clone_args));
+ /*
+ * Verify that this is a genuine test failure:
+ * ENOSYS -> clone3() not available
+ * E2BIG -> CLONE_INTO_CGROUP not available
+ */
+ if (pid < 0 && (errno == ENOSYS || errno == E2BIG))
+ goto pretend_enosys;
+
+ return pid;
+
+pretend_enosys:
+#endif
+ errno = ENOSYS;
+ return -ENOSYS;
+}
+
+int clone_reap(pid_t pid, int options)
+{
+ int ret;
+ siginfo_t info = {
+ .si_signo = 0,
+ };
+
+again:
+ ret = waitid(P_PID, pid, &info, options | __WALL | __WNOTHREAD);
+ if (ret < 0) {
+ if (errno == EINTR)
+ goto again;
+ return -1;
+ }
+
+ if (options & WEXITED) {
+ if (WIFEXITED(info.si_status))
+ return WEXITSTATUS(info.si_status);
+ }
+
+ if (options & WSTOPPED) {
+ if (WIFSTOPPED(info.si_status))
+ return WSTOPSIG(info.si_status);
+ }
+
+ if (options & WCONTINUED) {
+ if (WIFCONTINUED(info.si_status))
+ return 0;
+ }
+
+ return -1;
+}
+
+int dirfd_open_opath(const char *dir)
+{
+ return open(dir, O_DIRECTORY | O_CLOEXEC | O_NOFOLLOW | O_PATH);
+}
+
+#define close_prot_errno(fd) \
+ if (fd >= 0) { \
+ int _e_ = errno; \
+ close(fd); \
+ errno = _e_; \
+ }
+
+static int clone_into_cgroup_run_nowait(const char *cgroup,
+ int (*fn)(const char *cgroup, void *arg),
+ void *arg)
+{
+ int cgroup_fd;
+ pid_t pid;
+
+ cgroup_fd = dirfd_open_opath(cgroup);
+ if (cgroup_fd < 0)
+ return -1;
+
+ pid = clone_into_cgroup(cgroup_fd);
+ close_prot_errno(cgroup_fd);
+ if (pid == 0)
+ exit(fn(cgroup, arg));
+
+ return pid;
+}
+
+int cg_run_nowait(const char *cgroup,
+ int (*fn)(const char *cgroup, void *arg),
+ void *arg)
+{
+ int pid;
+
+ pid = clone_into_cgroup_run_nowait(cgroup, fn, arg);
+ if (pid > 0)
+ return pid;
+
+ /* Genuine test failure. */
+ if (pid < 0 && errno != ENOSYS)
+ return -1;
+
+ pid = fork();
+ if (pid == 0) {
+ char buf[64];
+
+ snprintf(buf, sizeof(buf), "%d", getpid());
+ if (cg_write(cgroup, "cgroup.procs", buf))
+ exit(EXIT_FAILURE);
+ exit(fn(cgroup, arg));
+ }
+
+ return pid;
+}
+
+int get_temp_fd(void)
+{
+ return open(".", O_TMPFILE | O_RDWR | O_EXCL);
+}
+
+int alloc_pagecache(int fd, size_t size)
+{
+ char buf[PAGE_SIZE];
+ struct stat st;
+ int i;
+
+ if (fstat(fd, &st))
+ goto cleanup;
+
+ size += st.st_size;
+
+ if (ftruncate(fd, size))
+ goto cleanup;
+
+ for (i = 0; i < size; i += sizeof(buf))
+ read(fd, buf, sizeof(buf));
+
+ return 0;
+
+cleanup:
+ return -1;
+}
+
+int alloc_anon(const char *cgroup, void *arg)
+{
+ size_t size = (unsigned long)arg;
+ char *buf, *ptr;
+
+ buf = malloc(size);
+ for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
+ *ptr = 0;
+
+ free(buf);
+ return 0;
+}
+
+int is_swap_enabled(void)
+{
+ char buf[PAGE_SIZE];
+ const char delim[] = "\n";
+ int cnt = 0;
+ char *line;
+
+ if (read_text("/proc/swaps", buf, sizeof(buf)) <= 0)
+ return -1;
+
+ for (line = strtok(buf, delim); line; line = strtok(NULL, delim))
+ cnt++;
+
+ return cnt > 1;
+}
+
+int set_oom_adj_score(int pid, int score)
+{
+ char path[PATH_MAX];
+ int fd, len;
+
+ sprintf(path, "/proc/%d/oom_score_adj", pid);
+
+ fd = open(path, O_WRONLY | O_APPEND);
+ if (fd < 0)
+ return fd;
+
+ len = dprintf(fd, "%d", score);
+ if (len < 0) {
+ close(fd);
+ return len;
+ }
+
+ close(fd);
+ return 0;
+}
+
+int proc_mount_contains(const char *option)
+{
+ char buf[4 * PAGE_SIZE];
+ ssize_t read;
+
+ read = read_text("/proc/mounts", buf, sizeof(buf));
+ if (read < 0)
+ return read;
+
+ return strstr(buf, option) != NULL;
+}
+
+ssize_t proc_read_text(int pid, bool thread, const char *item, char *buf, size_t size)
+{
+ char path[PATH_MAX];
+ ssize_t ret;
+
+ if (!pid)
+ snprintf(path, sizeof(path), "/proc/%s/%s",
+ thread ? "thread-self" : "self", item);
+ else
+ snprintf(path, sizeof(path), "/proc/%d/%s", pid, item);
+
+ ret = read_text(path, buf, size);
+ return ret < 0 ? -1 : ret;
+}
+
+int proc_read_strstr(int pid, bool thread, const char *item, const char *needle)
+{
+ char buf[PAGE_SIZE];
+
+ if (proc_read_text(pid, thread, item, buf, sizeof(buf)) < 0)
+ return -1;
+
+ return strstr(buf, needle) ? 0 : -1;
+}
+
+int clone_into_cgroup_run_wait(const char *cgroup)
+{
+ int cgroup_fd;
+ pid_t pid;
+
+ cgroup_fd = dirfd_open_opath(cgroup);
+ if (cgroup_fd < 0)
+ return -1;
+
+ pid = clone_into_cgroup(cgroup_fd);
+ close_prot_errno(cgroup_fd);
+ if (pid < 0)
+ return -1;
+
+ if (pid == 0)
+ exit(EXIT_SUCCESS);
+
+ /*
+ * We don't care whether this fails. We only care whether the initial
+ * clone succeeded.
+ */
+ (void)clone_reap(pid, WEXITED);
+ return 0;
+}
+
+static int __prepare_for_wait(const char *cgroup, const char *filename)
+{
+ int fd, ret = -1;
+
+ fd = inotify_init1(0);
+ if (fd == -1)
+ return fd;
+
+ ret = inotify_add_watch(fd, cg_control(cgroup, filename), IN_MODIFY);
+ if (ret == -1) {
+ close(fd);
+ fd = -1;
+ }
+
+ return fd;
+}
+
+int cg_prepare_for_wait(const char *cgroup)
+{
+ return __prepare_for_wait(cgroup, "cgroup.events");
+}
+
+int memcg_prepare_for_wait(const char *cgroup)
+{
+ return __prepare_for_wait(cgroup, "memory.events");
+}
+
+int cg_wait_for(int fd)
+{
+ int ret = -1;
+ struct pollfd fds = {
+ .fd = fd,
+ .events = POLLIN,
+ };
+
+ while (true) {
+ ret = poll(&fds, 1, 10000);
+
+ if (ret == -1) {
+ if (errno == EINTR)
+ continue;
+
+ break;
+ }
+
+ if (ret > 0 && fds.revents & POLLIN) {
+ ret = 0;
+ break;
+ }
+ }
+
+ return ret;
+}
diff --git a/tools/testing/selftests/cgroup/cgroup_util.h b/tools/testing/selftests/cgroup/cgroup_util.h
new file mode 100644
index 000000000..c92df4e5d
--- /dev/null
+++ b/tools/testing/selftests/cgroup/cgroup_util.h
@@ -0,0 +1,64 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <stdbool.h>
+#include <stdlib.h>
+
+#include "../kselftest.h"
+
+#define PAGE_SIZE 4096
+
+#define MB(x) (x << 20)
+
+#define USEC_PER_SEC 1000000L
+#define NSEC_PER_SEC 1000000000L
+
+/*
+ * Checks if two given values differ by less than err% of their sum.
+ */
+static inline int values_close(long a, long b, int err)
+{
+ return abs(a - b) <= (a + b) / 100 * err;
+}
+
+extern int cg_find_unified_root(char *root, size_t len);
+extern char *cg_name(const char *root, const char *name);
+extern char *cg_name_indexed(const char *root, const char *name, int index);
+extern char *cg_control(const char *cgroup, const char *control);
+extern int cg_create(const char *cgroup);
+extern int cg_destroy(const char *cgroup);
+extern int cg_read(const char *cgroup, const char *control,
+ char *buf, size_t len);
+extern int cg_read_strcmp(const char *cgroup, const char *control,
+ const char *expected);
+extern int cg_read_strstr(const char *cgroup, const char *control,
+ const char *needle);
+extern long cg_read_long(const char *cgroup, const char *control);
+long cg_read_key_long(const char *cgroup, const char *control, const char *key);
+extern long cg_read_lc(const char *cgroup, const char *control);
+extern int cg_write(const char *cgroup, const char *control, char *buf);
+int cg_write_numeric(const char *cgroup, const char *control, long value);
+extern int cg_run(const char *cgroup,
+ int (*fn)(const char *cgroup, void *arg),
+ void *arg);
+extern int cg_enter(const char *cgroup, int pid);
+extern int cg_enter_current(const char *cgroup);
+extern int cg_enter_current_thread(const char *cgroup);
+extern int cg_run_nowait(const char *cgroup,
+ int (*fn)(const char *cgroup, void *arg),
+ void *arg);
+extern int get_temp_fd(void);
+extern int alloc_pagecache(int fd, size_t size);
+extern int alloc_anon(const char *cgroup, void *arg);
+extern int is_swap_enabled(void);
+extern int set_oom_adj_score(int pid, int score);
+extern int cg_wait_for_proc_count(const char *cgroup, int count);
+extern int cg_killall(const char *cgroup);
+int proc_mount_contains(const char *option);
+extern ssize_t proc_read_text(int pid, bool thread, const char *item, char *buf, size_t size);
+extern int proc_read_strstr(int pid, bool thread, const char *item, const char *needle);
+extern pid_t clone_into_cgroup(int cgroup_fd);
+extern int clone_reap(pid_t pid, int options);
+extern int clone_into_cgroup_run_wait(const char *cgroup);
+extern int dirfd_open_opath(const char *dir);
+extern int cg_prepare_for_wait(const char *cgroup);
+extern int memcg_prepare_for_wait(const char *cgroup);
+extern int cg_wait_for(int fd);
diff --git a/tools/testing/selftests/cgroup/config b/tools/testing/selftests/cgroup/config
new file mode 100644
index 000000000..97d549ee8
--- /dev/null
+++ b/tools/testing/selftests/cgroup/config
@@ -0,0 +1,7 @@
+CONFIG_CGROUPS=y
+CONFIG_CGROUP_CPUACCT=y
+CONFIG_CGROUP_FREEZER=y
+CONFIG_CGROUP_SCHED=y
+CONFIG_MEMCG=y
+CONFIG_MEMCG_KMEM=y
+CONFIG_PAGE_COUNTER=y
diff --git a/tools/testing/selftests/cgroup/memcg_protection.m b/tools/testing/selftests/cgroup/memcg_protection.m
new file mode 100644
index 000000000..051daa347
--- /dev/null
+++ b/tools/testing/selftests/cgroup/memcg_protection.m
@@ -0,0 +1,89 @@
+% SPDX-License-Identifier: GPL-2.0
+%
+% run as: octave-cli memcg_protection.m
+%
+% This script simulates reclaim protection behavior on a single level of memcg
+% hierarchy to illustrate how overcommitted protection spreads among siblings
+% (as it depends also on their current consumption).
+%
+% Simulation assumes siblings consumed the initial amount of memory (w/out
+% reclaim) and then the reclaim starts, all memory is reclaimable, i.e. treated
+% same. It simulates only non-low reclaim and assumes all memory.min = 0.
+%
+% Input configurations
+% --------------------
+% E number parent effective protection
+% n vector nominal protection of siblings set at the given level (memory.low)
+% c vector current consumption -,,- (memory.current)
+
+% example from testcase (values in GB)
+E = 50 / 1024;
+n = [75 25 0 500 ] / 1024;
+c = [50 50 50 0] / 1024;
+
+% Reclaim parameters
+% ------------------
+
+% Minimal reclaim amount (GB)
+cluster = 32*4 / 2**20;
+
+% Reclaim coefficient (think as 0.5^sc->priority)
+alpha = .1
+
+% Simulation parameters
+% ---------------------
+epsilon = 1e-7;
+timeout = 1000;
+
+% Simulation loop
+% ---------------
+
+ch = [];
+eh = [];
+rh = [];
+
+for t = 1:timeout
+ % low_usage
+ u = min(c, n);
+ siblings = sum(u);
+
+ % effective_protection()
+ protected = min(n, c); % start with nominal
+ e = protected * min(1, E / siblings); % normalize overcommit
+
+ % recursive protection
+ unclaimed = max(0, E - siblings);
+ parent_overuse = sum(c) - siblings;
+ if (unclaimed > 0 && parent_overuse > 0)
+ overuse = max(0, c - protected);
+ e += unclaimed * (overuse / parent_overuse);
+ endif
+
+ % get_scan_count()
+ r = alpha * c; % assume all memory is in a single LRU list
+
+ % commit 1bc63fb1272b ("mm, memcg: make scan aggression always exclude protection")
+ sz = max(e, c);
+ r .*= (1 - (e+epsilon) ./ (sz+epsilon));
+
+ % uncomment to debug prints
+ % e, c, r
+
+ % nothing to reclaim, reached equilibrium
+ if max(r) < epsilon
+ break;
+ endif
+
+ % SWAP_CLUSTER_MAX roundup
+ r = max(r, (r > epsilon) .* cluster);
+ % XXX here I do parallel reclaim of all siblings
+ % in reality reclaim is serialized and each sibling recalculates own residual
+ c = max(c - r, 0);
+
+ ch = [ch ; c];
+ eh = [eh ; e];
+ rh = [rh ; r];
+endfor
+
+t
+c, e
diff --git a/tools/testing/selftests/cgroup/test_core.c b/tools/testing/selftests/cgroup/test_core.c
new file mode 100644
index 000000000..600123503
--- /dev/null
+++ b/tools/testing/selftests/cgroup/test_core.c
@@ -0,0 +1,888 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#define _GNU_SOURCE
+#include <linux/limits.h>
+#include <linux/sched.h>
+#include <sys/types.h>
+#include <sys/mman.h>
+#include <sys/wait.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <sched.h>
+#include <stdio.h>
+#include <errno.h>
+#include <signal.h>
+#include <string.h>
+#include <pthread.h>
+
+#include "../kselftest.h"
+#include "cgroup_util.h"
+
+static int touch_anon(char *buf, size_t size)
+{
+ int fd;
+ char *pos = buf;
+
+ fd = open("/dev/urandom", O_RDONLY);
+ if (fd < 0)
+ return -1;
+
+ while (size > 0) {
+ ssize_t ret = read(fd, pos, size);
+
+ if (ret < 0) {
+ if (errno != EINTR) {
+ close(fd);
+ return -1;
+ }
+ } else {
+ pos += ret;
+ size -= ret;
+ }
+ }
+ close(fd);
+
+ return 0;
+}
+
+static int alloc_and_touch_anon_noexit(const char *cgroup, void *arg)
+{
+ int ppid = getppid();
+ size_t size = (size_t)arg;
+ void *buf;
+
+ buf = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ 0, 0);
+ if (buf == MAP_FAILED)
+ return -1;
+
+ if (touch_anon((char *)buf, size)) {
+ munmap(buf, size);
+ return -1;
+ }
+
+ while (getppid() == ppid)
+ sleep(1);
+
+ munmap(buf, size);
+ return 0;
+}
+
+/*
+ * Create a child process that allocates and touches 100MB, then waits to be
+ * killed. Wait until the child is attached to the cgroup, kill all processes
+ * in that cgroup and wait until "cgroup.procs" is empty. At this point try to
+ * destroy the empty cgroup. The test helps detect race conditions between
+ * dying processes leaving the cgroup and cgroup destruction path.
+ */
+static int test_cgcore_destroy(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cg_test = NULL;
+ int child_pid;
+ char buf[PAGE_SIZE];
+
+ cg_test = cg_name(root, "cg_test");
+
+ if (!cg_test)
+ goto cleanup;
+
+ for (int i = 0; i < 10; i++) {
+ if (cg_create(cg_test))
+ goto cleanup;
+
+ child_pid = cg_run_nowait(cg_test, alloc_and_touch_anon_noexit,
+ (void *) MB(100));
+
+ if (child_pid < 0)
+ goto cleanup;
+
+ /* wait for the child to enter cgroup */
+ if (cg_wait_for_proc_count(cg_test, 1))
+ goto cleanup;
+
+ if (cg_killall(cg_test))
+ goto cleanup;
+
+ /* wait for cgroup to be empty */
+ while (1) {
+ if (cg_read(cg_test, "cgroup.procs", buf, sizeof(buf)))
+ goto cleanup;
+ if (buf[0] == '\0')
+ break;
+ usleep(1000);
+ }
+
+ if (rmdir(cg_test))
+ goto cleanup;
+
+ if (waitpid(child_pid, NULL, 0) < 0)
+ goto cleanup;
+ }
+ ret = KSFT_PASS;
+cleanup:
+ if (cg_test)
+ cg_destroy(cg_test);
+ free(cg_test);
+ return ret;
+}
+
+/*
+ * A(0) - B(0) - C(1)
+ * \ D(0)
+ *
+ * A, B and C's "populated" fields would be 1 while D's 0.
+ * test that after the one process in C is moved to root,
+ * A,B and C's "populated" fields would flip to "0" and file
+ * modified events will be generated on the
+ * "cgroup.events" files of both cgroups.
+ */
+static int test_cgcore_populated(const char *root)
+{
+ int ret = KSFT_FAIL;
+ int err;
+ char *cg_test_a = NULL, *cg_test_b = NULL;
+ char *cg_test_c = NULL, *cg_test_d = NULL;
+ int cgroup_fd = -EBADF;
+ pid_t pid;
+
+ cg_test_a = cg_name(root, "cg_test_a");
+ cg_test_b = cg_name(root, "cg_test_a/cg_test_b");
+ cg_test_c = cg_name(root, "cg_test_a/cg_test_b/cg_test_c");
+ cg_test_d = cg_name(root, "cg_test_a/cg_test_b/cg_test_d");
+
+ if (!cg_test_a || !cg_test_b || !cg_test_c || !cg_test_d)
+ goto cleanup;
+
+ if (cg_create(cg_test_a))
+ goto cleanup;
+
+ if (cg_create(cg_test_b))
+ goto cleanup;
+
+ if (cg_create(cg_test_c))
+ goto cleanup;
+
+ if (cg_create(cg_test_d))
+ goto cleanup;
+
+ if (cg_enter_current(cg_test_c))
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_a, "cgroup.events", "populated 1\n"))
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_b, "cgroup.events", "populated 1\n"))
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_c, "cgroup.events", "populated 1\n"))
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_d, "cgroup.events", "populated 0\n"))
+ goto cleanup;
+
+ if (cg_enter_current(root))
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_a, "cgroup.events", "populated 0\n"))
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_b, "cgroup.events", "populated 0\n"))
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_c, "cgroup.events", "populated 0\n"))
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_d, "cgroup.events", "populated 0\n"))
+ goto cleanup;
+
+ /* Test that we can directly clone into a new cgroup. */
+ cgroup_fd = dirfd_open_opath(cg_test_d);
+ if (cgroup_fd < 0)
+ goto cleanup;
+
+ pid = clone_into_cgroup(cgroup_fd);
+ if (pid < 0) {
+ if (errno == ENOSYS)
+ goto cleanup_pass;
+ goto cleanup;
+ }
+
+ if (pid == 0) {
+ if (raise(SIGSTOP))
+ exit(EXIT_FAILURE);
+ exit(EXIT_SUCCESS);
+ }
+
+ err = cg_read_strcmp(cg_test_d, "cgroup.events", "populated 1\n");
+
+ (void)clone_reap(pid, WSTOPPED);
+ (void)kill(pid, SIGCONT);
+ (void)clone_reap(pid, WEXITED);
+
+ if (err)
+ goto cleanup;
+
+ if (cg_read_strcmp(cg_test_d, "cgroup.events", "populated 0\n"))
+ goto cleanup;
+
+ /* Remove cgroup. */
+ if (cg_test_d) {
+ cg_destroy(cg_test_d);
+ free(cg_test_d);
+ cg_test_d = NULL;
+ }
+
+ pid = clone_into_cgroup(cgroup_fd);
+ if (pid < 0)
+ goto cleanup_pass;
+ if (pid == 0)
+ exit(EXIT_SUCCESS);
+ (void)clone_reap(pid, WEXITED);
+ goto cleanup;
+
+cleanup_pass:
+ ret = KSFT_PASS;
+
+cleanup:
+ if (cg_test_d)
+ cg_destroy(cg_test_d);
+ if (cg_test_c)
+ cg_destroy(cg_test_c);
+ if (cg_test_b)
+ cg_destroy(cg_test_b);
+ if (cg_test_a)
+ cg_destroy(cg_test_a);
+ free(cg_test_d);
+ free(cg_test_c);
+ free(cg_test_b);
+ free(cg_test_a);
+ if (cgroup_fd >= 0)
+ close(cgroup_fd);
+ return ret;
+}
+
+/*
+ * A (domain threaded) - B (threaded) - C (domain)
+ *
+ * test that C can't be used until it is turned into a
+ * threaded cgroup. "cgroup.type" file will report "domain (invalid)" in
+ * these cases. Operations which fail due to invalid topology use
+ * EOPNOTSUPP as the errno.
+ */
+static int test_cgcore_invalid_domain(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *grandparent = NULL, *parent = NULL, *child = NULL;
+
+ grandparent = cg_name(root, "cg_test_grandparent");
+ parent = cg_name(root, "cg_test_grandparent/cg_test_parent");
+ child = cg_name(root, "cg_test_grandparent/cg_test_parent/cg_test_child");
+ if (!parent || !child || !grandparent)
+ goto cleanup;
+
+ if (cg_create(grandparent))
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.type", "threaded"))
+ goto cleanup;
+
+ if (cg_read_strcmp(child, "cgroup.type", "domain invalid\n"))
+ goto cleanup;
+
+ if (!cg_enter_current(child))
+ goto cleanup;
+
+ if (errno != EOPNOTSUPP)
+ goto cleanup;
+
+ if (!clone_into_cgroup_run_wait(child))
+ goto cleanup;
+
+ if (errno == ENOSYS)
+ goto cleanup_pass;
+
+ if (errno != EOPNOTSUPP)
+ goto cleanup;
+
+cleanup_pass:
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_enter_current(root);
+ if (child)
+ cg_destroy(child);
+ if (parent)
+ cg_destroy(parent);
+ if (grandparent)
+ cg_destroy(grandparent);
+ free(child);
+ free(parent);
+ free(grandparent);
+ return ret;
+}
+
+/*
+ * Test that when a child becomes threaded
+ * the parent type becomes domain threaded.
+ */
+static int test_cgcore_parent_becomes_threaded(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent = NULL, *child = NULL;
+
+ parent = cg_name(root, "cg_test_parent");
+ child = cg_name(root, "cg_test_parent/cg_test_child");
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_write(child, "cgroup.type", "threaded"))
+ goto cleanup;
+
+ if (cg_read_strcmp(parent, "cgroup.type", "domain threaded\n"))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (child)
+ cg_destroy(child);
+ if (parent)
+ cg_destroy(parent);
+ free(child);
+ free(parent);
+ return ret;
+
+}
+
+/*
+ * Test that there's no internal process constrain on threaded cgroups.
+ * You can add threads/processes on a parent with a controller enabled.
+ */
+static int test_cgcore_no_internal_process_constraint_on_threads(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent = NULL, *child = NULL;
+
+ if (cg_read_strstr(root, "cgroup.controllers", "cpu") ||
+ cg_write(root, "cgroup.subtree_control", "+cpu")) {
+ ret = KSFT_SKIP;
+ goto cleanup;
+ }
+
+ parent = cg_name(root, "cg_test_parent");
+ child = cg_name(root, "cg_test_parent/cg_test_child");
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.type", "threaded"))
+ goto cleanup;
+
+ if (cg_write(child, "cgroup.type", "threaded"))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+cpu"))
+ goto cleanup;
+
+ if (cg_enter_current(parent))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_enter_current(root);
+ cg_enter_current(root);
+ if (child)
+ cg_destroy(child);
+ if (parent)
+ cg_destroy(parent);
+ free(child);
+ free(parent);
+ return ret;
+}
+
+/*
+ * Test that you can't enable a controller on a child if it's not enabled
+ * on the parent.
+ */
+static int test_cgcore_top_down_constraint_enable(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent = NULL, *child = NULL;
+
+ parent = cg_name(root, "cg_test_parent");
+ child = cg_name(root, "cg_test_parent/cg_test_child");
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (!cg_write(child, "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (child)
+ cg_destroy(child);
+ if (parent)
+ cg_destroy(parent);
+ free(child);
+ free(parent);
+ return ret;
+}
+
+/*
+ * Test that you can't disable a controller on a parent
+ * if it's enabled in a child.
+ */
+static int test_cgcore_top_down_constraint_disable(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent = NULL, *child = NULL;
+
+ parent = cg_name(root, "cg_test_parent");
+ child = cg_name(root, "cg_test_parent/cg_test_child");
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ if (cg_write(child, "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ if (!cg_write(parent, "cgroup.subtree_control", "-memory"))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (child)
+ cg_destroy(child);
+ if (parent)
+ cg_destroy(parent);
+ free(child);
+ free(parent);
+ return ret;
+}
+
+/*
+ * Test internal process constraint.
+ * You can't add a pid to a domain parent if a controller is enabled.
+ */
+static int test_cgcore_internal_process_constraint(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent = NULL, *child = NULL;
+
+ parent = cg_name(root, "cg_test_parent");
+ child = cg_name(root, "cg_test_parent/cg_test_child");
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ if (!cg_enter_current(parent))
+ goto cleanup;
+
+ if (!clone_into_cgroup_run_wait(parent))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (child)
+ cg_destroy(child);
+ if (parent)
+ cg_destroy(parent);
+ free(child);
+ free(parent);
+ return ret;
+}
+
+static void *dummy_thread_fn(void *arg)
+{
+ return (void *)(size_t)pause();
+}
+
+/*
+ * Test threadgroup migration.
+ * All threads of a process are migrated together.
+ */
+static int test_cgcore_proc_migration(const char *root)
+{
+ int ret = KSFT_FAIL;
+ int t, c_threads = 0, n_threads = 13;
+ char *src = NULL, *dst = NULL;
+ pthread_t threads[n_threads];
+
+ src = cg_name(root, "cg_src");
+ dst = cg_name(root, "cg_dst");
+ if (!src || !dst)
+ goto cleanup;
+
+ if (cg_create(src))
+ goto cleanup;
+ if (cg_create(dst))
+ goto cleanup;
+
+ if (cg_enter_current(src))
+ goto cleanup;
+
+ for (c_threads = 0; c_threads < n_threads; ++c_threads) {
+ if (pthread_create(&threads[c_threads], NULL, dummy_thread_fn, NULL))
+ goto cleanup;
+ }
+
+ cg_enter_current(dst);
+ if (cg_read_lc(dst, "cgroup.threads") != n_threads + 1)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ for (t = 0; t < c_threads; ++t) {
+ pthread_cancel(threads[t]);
+ }
+
+ for (t = 0; t < c_threads; ++t) {
+ pthread_join(threads[t], NULL);
+ }
+
+ cg_enter_current(root);
+
+ if (dst)
+ cg_destroy(dst);
+ if (src)
+ cg_destroy(src);
+ free(dst);
+ free(src);
+ return ret;
+}
+
+static void *migrating_thread_fn(void *arg)
+{
+ int g, i, n_iterations = 1000;
+ char **grps = arg;
+ char lines[3][PATH_MAX];
+
+ for (g = 1; g < 3; ++g)
+ snprintf(lines[g], sizeof(lines[g]), "0::%s", grps[g] + strlen(grps[0]));
+
+ for (i = 0; i < n_iterations; ++i) {
+ cg_enter_current_thread(grps[(i % 2) + 1]);
+
+ if (proc_read_strstr(0, 1, "cgroup", lines[(i % 2) + 1]))
+ return (void *)-1;
+ }
+ return NULL;
+}
+
+/*
+ * Test single thread migration.
+ * Threaded cgroups allow successful migration of a thread.
+ */
+static int test_cgcore_thread_migration(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *dom = NULL;
+ char line[PATH_MAX];
+ char *grps[3] = { (char *)root, NULL, NULL };
+ pthread_t thr;
+ void *retval;
+
+ dom = cg_name(root, "cg_dom");
+ grps[1] = cg_name(root, "cg_dom/cg_src");
+ grps[2] = cg_name(root, "cg_dom/cg_dst");
+ if (!grps[1] || !grps[2] || !dom)
+ goto cleanup;
+
+ if (cg_create(dom))
+ goto cleanup;
+ if (cg_create(grps[1]))
+ goto cleanup;
+ if (cg_create(grps[2]))
+ goto cleanup;
+
+ if (cg_write(grps[1], "cgroup.type", "threaded"))
+ goto cleanup;
+ if (cg_write(grps[2], "cgroup.type", "threaded"))
+ goto cleanup;
+
+ if (cg_enter_current(grps[1]))
+ goto cleanup;
+
+ if (pthread_create(&thr, NULL, migrating_thread_fn, grps))
+ goto cleanup;
+
+ if (pthread_join(thr, &retval))
+ goto cleanup;
+
+ if (retval)
+ goto cleanup;
+
+ snprintf(line, sizeof(line), "0::%s", grps[1] + strlen(grps[0]));
+ if (proc_read_strstr(0, 1, "cgroup", line))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_enter_current(root);
+ if (grps[2])
+ cg_destroy(grps[2]);
+ if (grps[1])
+ cg_destroy(grps[1]);
+ if (dom)
+ cg_destroy(dom);
+ free(grps[2]);
+ free(grps[1]);
+ free(dom);
+ return ret;
+}
+
+/*
+ * cgroup migration permission check should be performed based on the
+ * credentials at the time of open instead of write.
+ */
+static int test_cgcore_lesser_euid_open(const char *root)
+{
+ const uid_t test_euid = 65534; /* usually nobody, any !root is fine */
+ int ret = KSFT_FAIL;
+ char *cg_test_a = NULL, *cg_test_b = NULL;
+ char *cg_test_a_procs = NULL, *cg_test_b_procs = NULL;
+ int cg_test_b_procs_fd = -1;
+ uid_t saved_uid;
+
+ cg_test_a = cg_name(root, "cg_test_a");
+ cg_test_b = cg_name(root, "cg_test_b");
+
+ if (!cg_test_a || !cg_test_b)
+ goto cleanup;
+
+ cg_test_a_procs = cg_name(cg_test_a, "cgroup.procs");
+ cg_test_b_procs = cg_name(cg_test_b, "cgroup.procs");
+
+ if (!cg_test_a_procs || !cg_test_b_procs)
+ goto cleanup;
+
+ if (cg_create(cg_test_a) || cg_create(cg_test_b))
+ goto cleanup;
+
+ if (cg_enter_current(cg_test_a))
+ goto cleanup;
+
+ if (chown(cg_test_a_procs, test_euid, -1) ||
+ chown(cg_test_b_procs, test_euid, -1))
+ goto cleanup;
+
+ saved_uid = geteuid();
+ if (seteuid(test_euid))
+ goto cleanup;
+
+ cg_test_b_procs_fd = open(cg_test_b_procs, O_RDWR);
+
+ if (seteuid(saved_uid))
+ goto cleanup;
+
+ if (cg_test_b_procs_fd < 0)
+ goto cleanup;
+
+ if (write(cg_test_b_procs_fd, "0", 1) >= 0 || errno != EACCES)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_enter_current(root);
+ if (cg_test_b_procs_fd >= 0)
+ close(cg_test_b_procs_fd);
+ if (cg_test_b)
+ cg_destroy(cg_test_b);
+ if (cg_test_a)
+ cg_destroy(cg_test_a);
+ free(cg_test_b_procs);
+ free(cg_test_a_procs);
+ free(cg_test_b);
+ free(cg_test_a);
+ return ret;
+}
+
+struct lesser_ns_open_thread_arg {
+ const char *path;
+ int fd;
+ int err;
+};
+
+static int lesser_ns_open_thread_fn(void *arg)
+{
+ struct lesser_ns_open_thread_arg *targ = arg;
+
+ targ->fd = open(targ->path, O_RDWR);
+ targ->err = errno;
+ return 0;
+}
+
+/*
+ * cgroup migration permission check should be performed based on the cgroup
+ * namespace at the time of open instead of write.
+ */
+static int test_cgcore_lesser_ns_open(const char *root)
+{
+ static char stack[65536];
+ const uid_t test_euid = 65534; /* usually nobody, any !root is fine */
+ int ret = KSFT_FAIL;
+ char *cg_test_a = NULL, *cg_test_b = NULL;
+ char *cg_test_a_procs = NULL, *cg_test_b_procs = NULL;
+ int cg_test_b_procs_fd = -1;
+ struct lesser_ns_open_thread_arg targ = { .fd = -1 };
+ pid_t pid;
+ int status;
+
+ cg_test_a = cg_name(root, "cg_test_a");
+ cg_test_b = cg_name(root, "cg_test_b");
+
+ if (!cg_test_a || !cg_test_b)
+ goto cleanup;
+
+ cg_test_a_procs = cg_name(cg_test_a, "cgroup.procs");
+ cg_test_b_procs = cg_name(cg_test_b, "cgroup.procs");
+
+ if (!cg_test_a_procs || !cg_test_b_procs)
+ goto cleanup;
+
+ if (cg_create(cg_test_a) || cg_create(cg_test_b))
+ goto cleanup;
+
+ if (cg_enter_current(cg_test_b))
+ goto cleanup;
+
+ if (chown(cg_test_a_procs, test_euid, -1) ||
+ chown(cg_test_b_procs, test_euid, -1))
+ goto cleanup;
+
+ targ.path = cg_test_b_procs;
+ pid = clone(lesser_ns_open_thread_fn, stack + sizeof(stack),
+ CLONE_NEWCGROUP | CLONE_FILES | CLONE_VM | SIGCHLD,
+ &targ);
+ if (pid < 0)
+ goto cleanup;
+
+ if (waitpid(pid, &status, 0) < 0)
+ goto cleanup;
+
+ if (!WIFEXITED(status))
+ goto cleanup;
+
+ cg_test_b_procs_fd = targ.fd;
+ if (cg_test_b_procs_fd < 0)
+ goto cleanup;
+
+ if (cg_enter_current(cg_test_a))
+ goto cleanup;
+
+ if ((status = write(cg_test_b_procs_fd, "0", 1)) >= 0 || errno != ENOENT)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_enter_current(root);
+ if (cg_test_b_procs_fd >= 0)
+ close(cg_test_b_procs_fd);
+ if (cg_test_b)
+ cg_destroy(cg_test_b);
+ if (cg_test_a)
+ cg_destroy(cg_test_a);
+ free(cg_test_b_procs);
+ free(cg_test_a_procs);
+ free(cg_test_b);
+ free(cg_test_a);
+ return ret;
+}
+
+#define T(x) { x, #x }
+struct corecg_test {
+ int (*fn)(const char *root);
+ const char *name;
+} tests[] = {
+ T(test_cgcore_internal_process_constraint),
+ T(test_cgcore_top_down_constraint_enable),
+ T(test_cgcore_top_down_constraint_disable),
+ T(test_cgcore_no_internal_process_constraint_on_threads),
+ T(test_cgcore_parent_becomes_threaded),
+ T(test_cgcore_invalid_domain),
+ T(test_cgcore_populated),
+ T(test_cgcore_proc_migration),
+ T(test_cgcore_thread_migration),
+ T(test_cgcore_destroy),
+ T(test_cgcore_lesser_euid_open),
+ T(test_cgcore_lesser_ns_open),
+};
+#undef T
+
+int main(int argc, char *argv[])
+{
+ char root[PATH_MAX];
+ int i, ret = EXIT_SUCCESS;
+
+ if (cg_find_unified_root(root, sizeof(root)))
+ ksft_exit_skip("cgroup v2 isn't mounted\n");
+
+ if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
+ if (cg_write(root, "cgroup.subtree_control", "+memory"))
+ ksft_exit_skip("Failed to set memory controller\n");
+
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ switch (tests[i].fn(root)) {
+ case KSFT_PASS:
+ ksft_test_result_pass("%s\n", tests[i].name);
+ break;
+ case KSFT_SKIP:
+ ksft_test_result_skip("%s\n", tests[i].name);
+ break;
+ default:
+ ret = EXIT_FAILURE;
+ ksft_test_result_fail("%s\n", tests[i].name);
+ break;
+ }
+ }
+
+ return ret;
+}
diff --git a/tools/testing/selftests/cgroup/test_cpu.c b/tools/testing/selftests/cgroup/test_cpu.c
new file mode 100644
index 000000000..24020a2c6
--- /dev/null
+++ b/tools/testing/selftests/cgroup/test_cpu.c
@@ -0,0 +1,726 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#define _GNU_SOURCE
+#include <linux/limits.h>
+#include <sys/sysinfo.h>
+#include <sys/wait.h>
+#include <errno.h>
+#include <pthread.h>
+#include <stdio.h>
+#include <time.h>
+
+#include "../kselftest.h"
+#include "cgroup_util.h"
+
+enum hog_clock_type {
+ // Count elapsed time using the CLOCK_PROCESS_CPUTIME_ID clock.
+ CPU_HOG_CLOCK_PROCESS,
+ // Count elapsed time using system wallclock time.
+ CPU_HOG_CLOCK_WALL,
+};
+
+struct cpu_hogger {
+ char *cgroup;
+ pid_t pid;
+ long usage;
+};
+
+struct cpu_hog_func_param {
+ int nprocs;
+ struct timespec ts;
+ enum hog_clock_type clock_type;
+};
+
+/*
+ * This test creates two nested cgroups with and without enabling
+ * the cpu controller.
+ */
+static int test_cpucg_subtree_control(const char *root)
+{
+ char *parent = NULL, *child = NULL, *parent2 = NULL, *child2 = NULL;
+ int ret = KSFT_FAIL;
+
+ // Create two nested cgroups with the cpu controller enabled.
+ parent = cg_name(root, "cpucg_test_0");
+ if (!parent)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+cpu"))
+ goto cleanup;
+
+ child = cg_name(parent, "cpucg_test_child");
+ if (!child)
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_read_strstr(child, "cgroup.controllers", "cpu"))
+ goto cleanup;
+
+ // Create two nested cgroups without enabling the cpu controller.
+ parent2 = cg_name(root, "cpucg_test_1");
+ if (!parent2)
+ goto cleanup;
+
+ if (cg_create(parent2))
+ goto cleanup;
+
+ child2 = cg_name(parent2, "cpucg_test_child");
+ if (!child2)
+ goto cleanup;
+
+ if (cg_create(child2))
+ goto cleanup;
+
+ if (!cg_read_strstr(child2, "cgroup.controllers", "cpu"))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(child);
+ free(child);
+ cg_destroy(child2);
+ free(child2);
+ cg_destroy(parent);
+ free(parent);
+ cg_destroy(parent2);
+ free(parent2);
+
+ return ret;
+}
+
+static void *hog_cpu_thread_func(void *arg)
+{
+ while (1)
+ ;
+
+ return NULL;
+}
+
+static struct timespec
+timespec_sub(const struct timespec *lhs, const struct timespec *rhs)
+{
+ struct timespec zero = {
+ .tv_sec = 0,
+ .tv_nsec = 0,
+ };
+ struct timespec ret;
+
+ if (lhs->tv_sec < rhs->tv_sec)
+ return zero;
+
+ ret.tv_sec = lhs->tv_sec - rhs->tv_sec;
+
+ if (lhs->tv_nsec < rhs->tv_nsec) {
+ if (ret.tv_sec == 0)
+ return zero;
+
+ ret.tv_sec--;
+ ret.tv_nsec = NSEC_PER_SEC - rhs->tv_nsec + lhs->tv_nsec;
+ } else
+ ret.tv_nsec = lhs->tv_nsec - rhs->tv_nsec;
+
+ return ret;
+}
+
+static int hog_cpus_timed(const char *cgroup, void *arg)
+{
+ const struct cpu_hog_func_param *param =
+ (struct cpu_hog_func_param *)arg;
+ struct timespec ts_run = param->ts;
+ struct timespec ts_remaining = ts_run;
+ struct timespec ts_start;
+ int i, ret;
+
+ ret = clock_gettime(CLOCK_MONOTONIC, &ts_start);
+ if (ret != 0)
+ return ret;
+
+ for (i = 0; i < param->nprocs; i++) {
+ pthread_t tid;
+
+ ret = pthread_create(&tid, NULL, &hog_cpu_thread_func, NULL);
+ if (ret != 0)
+ return ret;
+ }
+
+ while (ts_remaining.tv_sec > 0 || ts_remaining.tv_nsec > 0) {
+ struct timespec ts_total;
+
+ ret = nanosleep(&ts_remaining, NULL);
+ if (ret && errno != EINTR)
+ return ret;
+
+ if (param->clock_type == CPU_HOG_CLOCK_PROCESS) {
+ ret = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts_total);
+ if (ret != 0)
+ return ret;
+ } else {
+ struct timespec ts_current;
+
+ ret = clock_gettime(CLOCK_MONOTONIC, &ts_current);
+ if (ret != 0)
+ return ret;
+
+ ts_total = timespec_sub(&ts_current, &ts_start);
+ }
+
+ ts_remaining = timespec_sub(&ts_run, &ts_total);
+ }
+
+ return 0;
+}
+
+/*
+ * Creates a cpu cgroup, burns a CPU for a few quanta, and verifies that
+ * cpu.stat shows the expected output.
+ */
+static int test_cpucg_stats(const char *root)
+{
+ int ret = KSFT_FAIL;
+ long usage_usec, user_usec, system_usec;
+ long usage_seconds = 2;
+ long expected_usage_usec = usage_seconds * USEC_PER_SEC;
+ char *cpucg;
+
+ cpucg = cg_name(root, "cpucg_test");
+ if (!cpucg)
+ goto cleanup;
+
+ if (cg_create(cpucg))
+ goto cleanup;
+
+ usage_usec = cg_read_key_long(cpucg, "cpu.stat", "usage_usec");
+ user_usec = cg_read_key_long(cpucg, "cpu.stat", "user_usec");
+ system_usec = cg_read_key_long(cpucg, "cpu.stat", "system_usec");
+ if (usage_usec != 0 || user_usec != 0 || system_usec != 0)
+ goto cleanup;
+
+ struct cpu_hog_func_param param = {
+ .nprocs = 1,
+ .ts = {
+ .tv_sec = usage_seconds,
+ .tv_nsec = 0,
+ },
+ .clock_type = CPU_HOG_CLOCK_PROCESS,
+ };
+ if (cg_run(cpucg, hog_cpus_timed, (void *)&param))
+ goto cleanup;
+
+ usage_usec = cg_read_key_long(cpucg, "cpu.stat", "usage_usec");
+ user_usec = cg_read_key_long(cpucg, "cpu.stat", "user_usec");
+ if (user_usec <= 0)
+ goto cleanup;
+
+ if (!values_close(usage_usec, expected_usage_usec, 1))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(cpucg);
+ free(cpucg);
+
+ return ret;
+}
+
+static int
+run_cpucg_weight_test(
+ const char *root,
+ pid_t (*spawn_child)(const struct cpu_hogger *child),
+ int (*validate)(const struct cpu_hogger *children, int num_children))
+{
+ int ret = KSFT_FAIL, i;
+ char *parent = NULL;
+ struct cpu_hogger children[3] = {NULL};
+
+ parent = cg_name(root, "cpucg_test_0");
+ if (!parent)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+cpu"))
+ goto cleanup;
+
+ for (i = 0; i < ARRAY_SIZE(children); i++) {
+ children[i].cgroup = cg_name_indexed(parent, "cpucg_child", i);
+ if (!children[i].cgroup)
+ goto cleanup;
+
+ if (cg_create(children[i].cgroup))
+ goto cleanup;
+
+ if (cg_write_numeric(children[i].cgroup, "cpu.weight",
+ 50 * (i + 1)))
+ goto cleanup;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(children); i++) {
+ pid_t pid = spawn_child(&children[i]);
+ if (pid <= 0)
+ goto cleanup;
+ children[i].pid = pid;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(children); i++) {
+ int retcode;
+
+ waitpid(children[i].pid, &retcode, 0);
+ if (!WIFEXITED(retcode))
+ goto cleanup;
+ if (WEXITSTATUS(retcode))
+ goto cleanup;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(children); i++)
+ children[i].usage = cg_read_key_long(children[i].cgroup,
+ "cpu.stat", "usage_usec");
+
+ if (validate(children, ARRAY_SIZE(children)))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+cleanup:
+ for (i = 0; i < ARRAY_SIZE(children); i++) {
+ cg_destroy(children[i].cgroup);
+ free(children[i].cgroup);
+ }
+ cg_destroy(parent);
+ free(parent);
+
+ return ret;
+}
+
+static pid_t weight_hog_ncpus(const struct cpu_hogger *child, int ncpus)
+{
+ long usage_seconds = 10;
+ struct cpu_hog_func_param param = {
+ .nprocs = ncpus,
+ .ts = {
+ .tv_sec = usage_seconds,
+ .tv_nsec = 0,
+ },
+ .clock_type = CPU_HOG_CLOCK_WALL,
+ };
+ return cg_run_nowait(child->cgroup, hog_cpus_timed, (void *)&param);
+}
+
+static pid_t weight_hog_all_cpus(const struct cpu_hogger *child)
+{
+ return weight_hog_ncpus(child, get_nprocs());
+}
+
+static int
+overprovision_validate(const struct cpu_hogger *children, int num_children)
+{
+ int ret = KSFT_FAIL, i;
+
+ for (i = 0; i < num_children - 1; i++) {
+ long delta;
+
+ if (children[i + 1].usage <= children[i].usage)
+ goto cleanup;
+
+ delta = children[i + 1].usage - children[i].usage;
+ if (!values_close(delta, children[0].usage, 35))
+ goto cleanup;
+ }
+
+ ret = KSFT_PASS;
+cleanup:
+ return ret;
+}
+
+/*
+ * First, this test creates the following hierarchy:
+ * A
+ * A/B cpu.weight = 50
+ * A/C cpu.weight = 100
+ * A/D cpu.weight = 150
+ *
+ * A separate process is then created for each child cgroup which spawns as
+ * many threads as there are cores, and hogs each CPU as much as possible
+ * for some time interval.
+ *
+ * Once all of the children have exited, we verify that each child cgroup
+ * was given proportional runtime as informed by their cpu.weight.
+ */
+static int test_cpucg_weight_overprovisioned(const char *root)
+{
+ return run_cpucg_weight_test(root, weight_hog_all_cpus,
+ overprovision_validate);
+}
+
+static pid_t weight_hog_one_cpu(const struct cpu_hogger *child)
+{
+ return weight_hog_ncpus(child, 1);
+}
+
+static int
+underprovision_validate(const struct cpu_hogger *children, int num_children)
+{
+ int ret = KSFT_FAIL, i;
+
+ for (i = 0; i < num_children - 1; i++) {
+ if (!values_close(children[i + 1].usage, children[0].usage, 15))
+ goto cleanup;
+ }
+
+ ret = KSFT_PASS;
+cleanup:
+ return ret;
+}
+
+/*
+ * First, this test creates the following hierarchy:
+ * A
+ * A/B cpu.weight = 50
+ * A/C cpu.weight = 100
+ * A/D cpu.weight = 150
+ *
+ * A separate process is then created for each child cgroup which spawns a
+ * single thread that hogs a CPU. The testcase is only run on systems that
+ * have at least one core per-thread in the child processes.
+ *
+ * Once all of the children have exited, we verify that each child cgroup
+ * had roughly the same runtime despite having different cpu.weight.
+ */
+static int test_cpucg_weight_underprovisioned(const char *root)
+{
+ // Only run the test if there are enough cores to avoid overprovisioning
+ // the system.
+ if (get_nprocs() < 4)
+ return KSFT_SKIP;
+
+ return run_cpucg_weight_test(root, weight_hog_one_cpu,
+ underprovision_validate);
+}
+
+static int
+run_cpucg_nested_weight_test(const char *root, bool overprovisioned)
+{
+ int ret = KSFT_FAIL, i;
+ char *parent = NULL, *child = NULL;
+ struct cpu_hogger leaf[3] = {NULL};
+ long nested_leaf_usage, child_usage;
+ int nprocs = get_nprocs();
+
+ if (!overprovisioned) {
+ if (nprocs < 4)
+ /*
+ * Only run the test if there are enough cores to avoid overprovisioning
+ * the system.
+ */
+ return KSFT_SKIP;
+ nprocs /= 4;
+ }
+
+ parent = cg_name(root, "cpucg_test");
+ child = cg_name(parent, "cpucg_child");
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+ if (cg_write(parent, "cgroup.subtree_control", "+cpu"))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+ if (cg_write(child, "cgroup.subtree_control", "+cpu"))
+ goto cleanup;
+ if (cg_write(child, "cpu.weight", "1000"))
+ goto cleanup;
+
+ for (i = 0; i < ARRAY_SIZE(leaf); i++) {
+ const char *ancestor;
+ long weight;
+
+ if (i == 0) {
+ ancestor = parent;
+ weight = 1000;
+ } else {
+ ancestor = child;
+ weight = 5000;
+ }
+ leaf[i].cgroup = cg_name_indexed(ancestor, "cpucg_leaf", i);
+ if (!leaf[i].cgroup)
+ goto cleanup;
+
+ if (cg_create(leaf[i].cgroup))
+ goto cleanup;
+
+ if (cg_write_numeric(leaf[i].cgroup, "cpu.weight", weight))
+ goto cleanup;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(leaf); i++) {
+ pid_t pid;
+ struct cpu_hog_func_param param = {
+ .nprocs = nprocs,
+ .ts = {
+ .tv_sec = 10,
+ .tv_nsec = 0,
+ },
+ .clock_type = CPU_HOG_CLOCK_WALL,
+ };
+
+ pid = cg_run_nowait(leaf[i].cgroup, hog_cpus_timed,
+ (void *)&param);
+ if (pid <= 0)
+ goto cleanup;
+ leaf[i].pid = pid;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(leaf); i++) {
+ int retcode;
+
+ waitpid(leaf[i].pid, &retcode, 0);
+ if (!WIFEXITED(retcode))
+ goto cleanup;
+ if (WEXITSTATUS(retcode))
+ goto cleanup;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(leaf); i++) {
+ leaf[i].usage = cg_read_key_long(leaf[i].cgroup,
+ "cpu.stat", "usage_usec");
+ if (leaf[i].usage <= 0)
+ goto cleanup;
+ }
+
+ nested_leaf_usage = leaf[1].usage + leaf[2].usage;
+ if (overprovisioned) {
+ if (!values_close(leaf[0].usage, nested_leaf_usage, 15))
+ goto cleanup;
+ } else if (!values_close(leaf[0].usage * 2, nested_leaf_usage, 15))
+ goto cleanup;
+
+
+ child_usage = cg_read_key_long(child, "cpu.stat", "usage_usec");
+ if (child_usage <= 0)
+ goto cleanup;
+ if (!values_close(child_usage, nested_leaf_usage, 1))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+cleanup:
+ for (i = 0; i < ARRAY_SIZE(leaf); i++) {
+ cg_destroy(leaf[i].cgroup);
+ free(leaf[i].cgroup);
+ }
+ cg_destroy(child);
+ free(child);
+ cg_destroy(parent);
+ free(parent);
+
+ return ret;
+}
+
+/*
+ * First, this test creates the following hierarchy:
+ * A
+ * A/B cpu.weight = 1000
+ * A/C cpu.weight = 1000
+ * A/C/D cpu.weight = 5000
+ * A/C/E cpu.weight = 5000
+ *
+ * A separate process is then created for each leaf, which spawn nproc threads
+ * that burn a CPU for a few seconds.
+ *
+ * Once all of those processes have exited, we verify that each of the leaf
+ * cgroups have roughly the same usage from cpu.stat.
+ */
+static int
+test_cpucg_nested_weight_overprovisioned(const char *root)
+{
+ return run_cpucg_nested_weight_test(root, true);
+}
+
+/*
+ * First, this test creates the following hierarchy:
+ * A
+ * A/B cpu.weight = 1000
+ * A/C cpu.weight = 1000
+ * A/C/D cpu.weight = 5000
+ * A/C/E cpu.weight = 5000
+ *
+ * A separate process is then created for each leaf, which nproc / 4 threads
+ * that burns a CPU for a few seconds.
+ *
+ * Once all of those processes have exited, we verify that each of the leaf
+ * cgroups have roughly the same usage from cpu.stat.
+ */
+static int
+test_cpucg_nested_weight_underprovisioned(const char *root)
+{
+ return run_cpucg_nested_weight_test(root, false);
+}
+
+/*
+ * This test creates a cgroup with some maximum value within a period, and
+ * verifies that a process in the cgroup is not overscheduled.
+ */
+static int test_cpucg_max(const char *root)
+{
+ int ret = KSFT_FAIL;
+ long usage_usec, user_usec;
+ long usage_seconds = 1;
+ long expected_usage_usec = usage_seconds * USEC_PER_SEC;
+ char *cpucg;
+
+ cpucg = cg_name(root, "cpucg_test");
+ if (!cpucg)
+ goto cleanup;
+
+ if (cg_create(cpucg))
+ goto cleanup;
+
+ if (cg_write(cpucg, "cpu.max", "1000"))
+ goto cleanup;
+
+ struct cpu_hog_func_param param = {
+ .nprocs = 1,
+ .ts = {
+ .tv_sec = usage_seconds,
+ .tv_nsec = 0,
+ },
+ .clock_type = CPU_HOG_CLOCK_WALL,
+ };
+ if (cg_run(cpucg, hog_cpus_timed, (void *)&param))
+ goto cleanup;
+
+ usage_usec = cg_read_key_long(cpucg, "cpu.stat", "usage_usec");
+ user_usec = cg_read_key_long(cpucg, "cpu.stat", "user_usec");
+ if (user_usec <= 0)
+ goto cleanup;
+
+ if (user_usec >= expected_usage_usec)
+ goto cleanup;
+
+ if (values_close(usage_usec, expected_usage_usec, 95))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(cpucg);
+ free(cpucg);
+
+ return ret;
+}
+
+/*
+ * This test verifies that a process inside of a nested cgroup whose parent
+ * group has a cpu.max value set, is properly throttled.
+ */
+static int test_cpucg_max_nested(const char *root)
+{
+ int ret = KSFT_FAIL;
+ long usage_usec, user_usec;
+ long usage_seconds = 1;
+ long expected_usage_usec = usage_seconds * USEC_PER_SEC;
+ char *parent, *child;
+
+ parent = cg_name(root, "cpucg_parent");
+ child = cg_name(parent, "cpucg_child");
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+cpu"))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_write(parent, "cpu.max", "1000"))
+ goto cleanup;
+
+ struct cpu_hog_func_param param = {
+ .nprocs = 1,
+ .ts = {
+ .tv_sec = usage_seconds,
+ .tv_nsec = 0,
+ },
+ .clock_type = CPU_HOG_CLOCK_WALL,
+ };
+ if (cg_run(child, hog_cpus_timed, (void *)&param))
+ goto cleanup;
+
+ usage_usec = cg_read_key_long(child, "cpu.stat", "usage_usec");
+ user_usec = cg_read_key_long(child, "cpu.stat", "user_usec");
+ if (user_usec <= 0)
+ goto cleanup;
+
+ if (user_usec >= expected_usage_usec)
+ goto cleanup;
+
+ if (values_close(usage_usec, expected_usage_usec, 95))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(child);
+ free(child);
+ cg_destroy(parent);
+ free(parent);
+
+ return ret;
+}
+
+#define T(x) { x, #x }
+struct cpucg_test {
+ int (*fn)(const char *root);
+ const char *name;
+} tests[] = {
+ T(test_cpucg_subtree_control),
+ T(test_cpucg_stats),
+ T(test_cpucg_weight_overprovisioned),
+ T(test_cpucg_weight_underprovisioned),
+ T(test_cpucg_nested_weight_overprovisioned),
+ T(test_cpucg_nested_weight_underprovisioned),
+ T(test_cpucg_max),
+ T(test_cpucg_max_nested),
+};
+#undef T
+
+int main(int argc, char *argv[])
+{
+ char root[PATH_MAX];
+ int i, ret = EXIT_SUCCESS;
+
+ if (cg_find_unified_root(root, sizeof(root)))
+ ksft_exit_skip("cgroup v2 isn't mounted\n");
+
+ if (cg_read_strstr(root, "cgroup.subtree_control", "cpu"))
+ if (cg_write(root, "cgroup.subtree_control", "+cpu"))
+ ksft_exit_skip("Failed to set cpu controller\n");
+
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ switch (tests[i].fn(root)) {
+ case KSFT_PASS:
+ ksft_test_result_pass("%s\n", tests[i].name);
+ break;
+ case KSFT_SKIP:
+ ksft_test_result_skip("%s\n", tests[i].name);
+ break;
+ default:
+ ret = EXIT_FAILURE;
+ ksft_test_result_fail("%s\n", tests[i].name);
+ break;
+ }
+ }
+
+ return ret;
+}
diff --git a/tools/testing/selftests/cgroup/test_cpuset_prs.sh b/tools/testing/selftests/cgroup/test_cpuset_prs.sh
new file mode 100755
index 000000000..a50324485
--- /dev/null
+++ b/tools/testing/selftests/cgroup/test_cpuset_prs.sh
@@ -0,0 +1,675 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+#
+# Test for cpuset v2 partition root state (PRS)
+#
+# The sched verbose flag is set, if available, so that the console log
+# can be examined for the correct setting of scheduling domain.
+#
+
+skip_test() {
+ echo "$1"
+ echo "Test SKIPPED"
+ exit 0
+}
+
+[[ $(id -u) -eq 0 ]] || skip_test "Test must be run as root!"
+
+# Set sched verbose flag, if available
+[[ -d /sys/kernel/debug/sched ]] && echo Y > /sys/kernel/debug/sched/verbose
+
+# Get wait_inotify location
+WAIT_INOTIFY=$(cd $(dirname $0); pwd)/wait_inotify
+
+# Find cgroup v2 mount point
+CGROUP2=$(mount -t cgroup2 | head -1 | awk -e '{print $3}')
+[[ -n "$CGROUP2" ]] || skip_test "Cgroup v2 mount point not found!"
+
+CPUS=$(lscpu | grep "^CPU(s)" | sed -e "s/.*:[[:space:]]*//")
+[[ $CPUS -lt 8 ]] && skip_test "Test needs at least 8 cpus available!"
+
+# Set verbose flag and delay factor
+PROG=$1
+VERBOSE=
+DELAY_FACTOR=1
+while [[ "$1" = -* ]]
+do
+ case "$1" in
+ -v) VERBOSE=1
+ break
+ ;;
+ -d) DELAY_FACTOR=$2
+ shift
+ break
+ ;;
+ *) echo "Usage: $PROG [-v] [-d <delay-factor>"
+ exit
+ ;;
+ esac
+ shift
+done
+
+cd $CGROUP2
+echo +cpuset > cgroup.subtree_control
+[[ -d test ]] || mkdir test
+cd test
+
+# Pause in ms
+pause()
+{
+ DELAY=$1
+ LOOP=0
+ while [[ $LOOP -lt $DELAY_FACTOR ]]
+ do
+ sleep $DELAY
+ ((LOOP++))
+ done
+ return 0
+}
+
+console_msg()
+{
+ MSG=$1
+ echo "$MSG"
+ echo "" > /dev/console
+ echo "$MSG" > /dev/console
+ pause 0.01
+}
+
+test_partition()
+{
+ EXPECTED_VAL=$1
+ echo $EXPECTED_VAL > cpuset.cpus.partition
+ [[ $? -eq 0 ]] || exit 1
+ ACTUAL_VAL=$(cat cpuset.cpus.partition)
+ [[ $ACTUAL_VAL != $EXPECTED_VAL ]] && {
+ echo "cpuset.cpus.partition: expect $EXPECTED_VAL, found $EXPECTED_VAL"
+ echo "Test FAILED"
+ exit 1
+ }
+}
+
+test_effective_cpus()
+{
+ EXPECTED_VAL=$1
+ ACTUAL_VAL=$(cat cpuset.cpus.effective)
+ [[ "$ACTUAL_VAL" != "$EXPECTED_VAL" ]] && {
+ echo "cpuset.cpus.effective: expect '$EXPECTED_VAL', found '$EXPECTED_VAL'"
+ echo "Test FAILED"
+ exit 1
+ }
+}
+
+# Adding current process to cgroup.procs as a test
+test_add_proc()
+{
+ OUTSTR="$1"
+ ERRMSG=$((echo $$ > cgroup.procs) |& cat)
+ echo $ERRMSG | grep -q "$OUTSTR"
+ [[ $? -ne 0 ]] && {
+ echo "cgroup.procs: expect '$OUTSTR', got '$ERRMSG'"
+ echo "Test FAILED"
+ exit 1
+ }
+ echo $$ > $CGROUP2/cgroup.procs # Move out the task
+}
+
+#
+# Testing the new "isolated" partition root type
+#
+test_isolated()
+{
+ echo 2-3 > cpuset.cpus
+ TYPE=$(cat cpuset.cpus.partition)
+ [[ $TYPE = member ]] || echo member > cpuset.cpus.partition
+
+ console_msg "Change from member to root"
+ test_partition root
+
+ console_msg "Change from root to isolated"
+ test_partition isolated
+
+ console_msg "Change from isolated to member"
+ test_partition member
+
+ console_msg "Change from member to isolated"
+ test_partition isolated
+
+ console_msg "Change from isolated to root"
+ test_partition root
+
+ console_msg "Change from root to member"
+ test_partition member
+
+ #
+ # Testing partition root with no cpu
+ #
+ console_msg "Distribute all cpus to child partition"
+ echo +cpuset > cgroup.subtree_control
+ test_partition root
+
+ mkdir A1
+ cd A1
+ echo 2-3 > cpuset.cpus
+ test_partition root
+ test_effective_cpus 2-3
+ cd ..
+ test_effective_cpus ""
+
+ console_msg "Moving task to partition test"
+ test_add_proc "No space left"
+ cd A1
+ test_add_proc ""
+ cd ..
+
+ console_msg "Shrink and expand child partition"
+ cd A1
+ echo 2 > cpuset.cpus
+ cd ..
+ test_effective_cpus 3
+ cd A1
+ echo 2-3 > cpuset.cpus
+ cd ..
+ test_effective_cpus ""
+
+ # Cleaning up
+ console_msg "Cleaning up"
+ echo $$ > $CGROUP2/cgroup.procs
+ [[ -d A1 ]] && rmdir A1
+}
+
+#
+# Cpuset controller state transition test matrix.
+#
+# Cgroup test hierarchy
+#
+# test -- A1 -- A2 -- A3
+# \- B1
+#
+# P<v> = set cpus.partition (0:member, 1:root, 2:isolated, -1:root invalid)
+# C<l> = add cpu-list
+# S<p> = use prefix in subtree_control
+# T = put a task into cgroup
+# O<c>-<v> = Write <v> to CPU online file of <c>
+#
+SETUP_A123_PARTITIONS="C1-3:P1:S+ C2-3:P1:S+ C3:P1"
+TEST_MATRIX=(
+ # test old-A1 old-A2 old-A3 old-B1 new-A1 new-A2 new-A3 new-B1 fail ECPUs Pstate
+ # ---- ------ ------ ------ ------ ------ ------ ------ ------ ---- ----- ------
+ " S+ C0-1 . . C2-3 S+ C4-5 . . 0 A2:0-1"
+ " S+ C0-1 . . C2-3 P1 . . . 0 "
+ " S+ C0-1 . . C2-3 P1:S+ C0-1:P1 . . 0 "
+ " S+ C0-1 . . C2-3 P1:S+ C1:P1 . . 0 "
+ " S+ C0-1:S+ . . C2-3 . . . P1 0 "
+ " S+ C0-1:P1 . . C2-3 S+ C1 . . 0 "
+ " S+ C0-1:P1 . . C2-3 S+ C1:P1 . . 0 "
+ " S+ C0-1:P1 . . C2-3 S+ C1:P1 . P1 0 "
+ " S+ C0-1:P1 . . C2-3 C4-5 . . . 0 A1:4-5"
+ " S+ C0-1:P1 . . C2-3 S+:C4-5 . . . 0 A1:4-5"
+ " S+ C0-1 . . C2-3:P1 . . . C2 0 "
+ " S+ C0-1 . . C2-3:P1 . . . C4-5 0 B1:4-5"
+ " S+ C0-3:P1:S+ C2-3:P1 . . . . . . 0 A1:0-1,A2:2-3"
+ " S+ C0-3:P1:S+ C2-3:P1 . . C1-3 . . . 0 A1:1,A2:2-3"
+ " S+ C2-3:P1:S+ C3:P1 . . C3 . . . 0 A1:,A2:3 A1:P1,A2:P1"
+ " S+ C2-3:P1:S+ C3:P1 . . C3 P0 . . 0 A1:3,A2:3 A1:P1,A2:P0"
+ " S+ C2-3:P1:S+ C2:P1 . . C2-4 . . . 0 A1:3-4,A2:2"
+ " S+ C2-3:P1:S+ C3:P1 . . C3 . . C0-2 0 A1:,B1:0-2 A1:P1,A2:P1"
+ " S+ $SETUP_A123_PARTITIONS . C2-3 . . . 0 A1:,A2:2,A3:3 A1:P1,A2:P1,A3:P1"
+
+ # CPU offlining cases:
+ " S+ C0-1 . . C2-3 S+ C4-5 . O2-0 0 A1:0-1,B1:3"
+ " S+ C0-3:P1:S+ C2-3:P1 . . O2-0 . . . 0 A1:0-1,A2:3"
+ " S+ C0-3:P1:S+ C2-3:P1 . . O2-0 O2-1 . . 0 A1:0-1,A2:2-3"
+ " S+ C0-3:P1:S+ C2-3:P1 . . O1-0 . . . 0 A1:0,A2:2-3"
+ " S+ C0-3:P1:S+ C2-3:P1 . . O1-0 O1-1 . . 0 A1:0-1,A2:2-3"
+ " S+ C2-3:P1:S+ C3:P1 . . O3-0 O3-1 . . 0 A1:2,A2:3 A1:P1,A2:P1"
+ " S+ C2-3:P1:S+ C3:P2 . . O3-0 O3-1 . . 0 A1:2,A2:3 A1:P1,A2:P2"
+ " S+ C2-3:P1:S+ C3:P1 . . O2-0 O2-1 . . 0 A1:2,A2:3 A1:P1,A2:P1"
+ " S+ C2-3:P1:S+ C3:P2 . . O2-0 O2-1 . . 0 A1:2,A2:3 A1:P1,A2:P2"
+ " S+ C2-3:P1:S+ C3:P1 . . O2-0 . . . 0 A1:,A2:3 A1:P1,A2:P1"
+ " S+ C2-3:P1:S+ C3:P1 . . O3-0 . . . 0 A1:2,A2: A1:P1,A2:P1"
+ " S+ C2-3:P1:S+ C3:P1 . . T:O2-0 . . . 0 A1:3,A2:3 A1:P1,A2:P-1"
+ " S+ C2-3:P1:S+ C3:P1 . . . T:O3-0 . . 0 A1:2,A2:2 A1:P1,A2:P-1"
+ " S+ $SETUP_A123_PARTITIONS . O1-0 . . . 0 A1:,A2:2,A3:3 A1:P1,A2:P1,A3:P1"
+ " S+ $SETUP_A123_PARTITIONS . O2-0 . . . 0 A1:1,A2:,A3:3 A1:P1,A2:P1,A3:P1"
+ " S+ $SETUP_A123_PARTITIONS . O3-0 . . . 0 A1:1,A2:2,A3: A1:P1,A2:P1,A3:P1"
+ " S+ $SETUP_A123_PARTITIONS . T:O1-0 . . . 0 A1:2-3,A2:2-3,A3:3 A1:P1,A2:P-1,A3:P-1"
+ " S+ $SETUP_A123_PARTITIONS . . T:O2-0 . . 0 A1:1,A2:3,A3:3 A1:P1,A2:P1,A3:P-1"
+ " S+ $SETUP_A123_PARTITIONS . . . T:O3-0 . 0 A1:1,A2:2,A3:2 A1:P1,A2:P1,A3:P-1"
+ " S+ $SETUP_A123_PARTITIONS . T:O1-0 O1-1 . . 0 A1:1,A2:2,A3:3 A1:P1,A2:P1,A3:P1"
+ " S+ $SETUP_A123_PARTITIONS . . T:O2-0 O2-1 . 0 A1:1,A2:2,A3:3 A1:P1,A2:P1,A3:P1"
+ " S+ $SETUP_A123_PARTITIONS . . . T:O3-0 O3-1 0 A1:1,A2:2,A3:3 A1:P1,A2:P1,A3:P1"
+ " S+ $SETUP_A123_PARTITIONS . T:O1-0 O2-0 O1-1 . 0 A1:1,A2:,A3:3 A1:P1,A2:P1,A3:P1"
+ " S+ $SETUP_A123_PARTITIONS . T:O1-0 O2-0 O2-1 . 0 A1:2-3,A2:2-3,A3:3 A1:P1,A2:P-1,A3:P-1"
+
+ # test old-A1 old-A2 old-A3 old-B1 new-A1 new-A2 new-A3 new-B1 fail ECPUs Pstate
+ # ---- ------ ------ ------ ------ ------ ------ ------ ------ ---- ----- ------
+ #
+ # Incorrect change to cpuset.cpus invalidates partition root
+ #
+ # Adding CPUs to partition root that are not in parent's
+ # cpuset.cpus is allowed, but those extra CPUs are ignored.
+ " S+ C2-3:P1:S+ C3:P1 . . . C2-4 . . 0 A1:,A2:2-3 A1:P1,A2:P1"
+
+ # Taking away all CPUs from parent or itself if there are tasks
+ # will make the partition invalid.
+ " S+ C2-3:P1:S+ C3:P1 . . T C2-3 . . 0 A1:2-3,A2:2-3 A1:P1,A2:P-1"
+ " S+ C3:P1:S+ C3 . . T P1 . . 0 A1:3,A2:3 A1:P1,A2:P-1"
+ " S+ $SETUP_A123_PARTITIONS . T:C2-3 . . . 0 A1:2-3,A2:2-3,A3:3 A1:P1,A2:P-1,A3:P-1"
+ " S+ $SETUP_A123_PARTITIONS . T:C2-3:C1-3 . . . 0 A1:1,A2:2,A3:3 A1:P1,A2:P1,A3:P1"
+
+ # Changing a partition root to member makes child partitions invalid
+ " S+ C2-3:P1:S+ C3:P1 . . P0 . . . 0 A1:2-3,A2:3 A1:P0,A2:P-1"
+ " S+ $SETUP_A123_PARTITIONS . C2-3 P0 . . 0 A1:2-3,A2:2-3,A3:3 A1:P1,A2:P0,A3:P-1"
+
+ # cpuset.cpus can contains cpus not in parent's cpuset.cpus as long
+ # as they overlap.
+ " S+ C2-3:P1:S+ . . . . C3-4:P1 . . 0 A1:2,A2:3 A1:P1,A2:P1"
+
+ # Deletion of CPUs distributed to child cgroup is allowed.
+ " S+ C0-1:P1:S+ C1 . C2-3 C4-5 . . . 0 A1:4-5,A2:4-5"
+
+ # To become a valid partition root, cpuset.cpus must overlap parent's
+ # cpuset.cpus.
+ " S+ C0-1:P1 . . C2-3 S+ C4-5:P1 . . 0 A1:0-1,A2:0-1 A1:P1,A2:P-1"
+
+ # Enabling partition with child cpusets is allowed
+ " S+ C0-1:S+ C1 . C2-3 P1 . . . 0 A1:0-1,A2:1 A1:P1"
+
+ # A partition root with non-partition root parent is invalid, but it
+ # can be made valid if its parent becomes a partition root too.
+ " S+ C0-1:S+ C1 . C2-3 . P2 . . 0 A1:0-1,A2:1 A1:P0,A2:P-2"
+ " S+ C0-1:S+ C1:P2 . C2-3 P1 . . . 0 A1:0,A2:1 A1:P1,A2:P2"
+
+ # A non-exclusive cpuset.cpus change will invalidate partition and its siblings
+ " S+ C0-1:P1 . . C2-3 C0-2 . . . 0 A1:0-2,B1:2-3 A1:P-1,B1:P0"
+ " S+ C0-1:P1 . . P1:C2-3 C0-2 . . . 0 A1:0-2,B1:2-3 A1:P-1,B1:P-1"
+ " S+ C0-1 . . P1:C2-3 C0-2 . . . 0 A1:0-2,B1:2-3 A1:P0,B1:P-1"
+
+ # test old-A1 old-A2 old-A3 old-B1 new-A1 new-A2 new-A3 new-B1 fail ECPUs Pstate
+ # ---- ------ ------ ------ ------ ------ ------ ------ ------ ---- ----- ------
+ # Failure cases:
+
+ # A task cannot be added to a partition with no cpu
+ " S+ C2-3:P1:S+ C3:P1 . . O2-0:T . . . 1 A1:,A2:3 A1:P1,A2:P1"
+)
+
+#
+# Write to the cpu online file
+# $1 - <c>-<v> where <c> = cpu number, <v> value to be written
+#
+write_cpu_online()
+{
+ CPU=${1%-*}
+ VAL=${1#*-}
+ CPUFILE=//sys/devices/system/cpu/cpu${CPU}/online
+ if [[ $VAL -eq 0 ]]
+ then
+ OFFLINE_CPUS="$OFFLINE_CPUS $CPU"
+ else
+ [[ -n "$OFFLINE_CPUS" ]] && {
+ OFFLINE_CPUS=$(echo $CPU $CPU $OFFLINE_CPUS | fmt -1 |\
+ sort | uniq -u)
+ }
+ fi
+ echo $VAL > $CPUFILE
+ pause 0.01
+}
+
+#
+# Set controller state
+# $1 - cgroup directory
+# $2 - state
+# $3 - showerr
+#
+# The presence of ":" in state means transition from one to the next.
+#
+set_ctrl_state()
+{
+ TMPMSG=/tmp/.msg_$$
+ CGRP=$1
+ STATE=$2
+ SHOWERR=${3}${VERBOSE}
+ CTRL=${CTRL:=$CONTROLLER}
+ HASERR=0
+ REDIRECT="2> $TMPMSG"
+ [[ -z "$STATE" || "$STATE" = '.' ]] && return 0
+
+ rm -f $TMPMSG
+ for CMD in $(echo $STATE | sed -e "s/:/ /g")
+ do
+ TFILE=$CGRP/cgroup.procs
+ SFILE=$CGRP/cgroup.subtree_control
+ PFILE=$CGRP/cpuset.cpus.partition
+ CFILE=$CGRP/cpuset.cpus
+ S=$(expr substr $CMD 1 1)
+ if [[ $S = S ]]
+ then
+ PREFIX=${CMD#?}
+ COMM="echo ${PREFIX}${CTRL} > $SFILE"
+ eval $COMM $REDIRECT
+ elif [[ $S = C ]]
+ then
+ CPUS=${CMD#?}
+ COMM="echo $CPUS > $CFILE"
+ eval $COMM $REDIRECT
+ elif [[ $S = P ]]
+ then
+ VAL=${CMD#?}
+ case $VAL in
+ 0) VAL=member
+ ;;
+ 1) VAL=root
+ ;;
+ 2) VAL=isolated
+ ;;
+ *)
+ echo "Invalid partition state - $VAL"
+ exit 1
+ ;;
+ esac
+ COMM="echo $VAL > $PFILE"
+ eval $COMM $REDIRECT
+ elif [[ $S = O ]]
+ then
+ VAL=${CMD#?}
+ write_cpu_online $VAL
+ elif [[ $S = T ]]
+ then
+ COMM="echo 0 > $TFILE"
+ eval $COMM $REDIRECT
+ fi
+ RET=$?
+ [[ $RET -ne 0 ]] && {
+ [[ -n "$SHOWERR" ]] && {
+ echo "$COMM"
+ cat $TMPMSG
+ }
+ HASERR=1
+ }
+ pause 0.01
+ rm -f $TMPMSG
+ done
+ return $HASERR
+}
+
+set_ctrl_state_noerr()
+{
+ CGRP=$1
+ STATE=$2
+ [[ -d $CGRP ]] || mkdir $CGRP
+ set_ctrl_state $CGRP $STATE 1
+ [[ $? -ne 0 ]] && {
+ echo "ERROR: Failed to set $2 to cgroup $1!"
+ exit 1
+ }
+}
+
+online_cpus()
+{
+ [[ -n "OFFLINE_CPUS" ]] && {
+ for C in $OFFLINE_CPUS
+ do
+ write_cpu_online ${C}-1
+ done
+ }
+}
+
+#
+# Return 1 if the list of effective cpus isn't the same as the initial list.
+#
+reset_cgroup_states()
+{
+ echo 0 > $CGROUP2/cgroup.procs
+ online_cpus
+ rmdir A1/A2/A3 A1/A2 A1 B1 > /dev/null 2>&1
+ set_ctrl_state . S-
+ pause 0.01
+}
+
+dump_states()
+{
+ for DIR in A1 A1/A2 A1/A2/A3 B1
+ do
+ ECPUS=$DIR/cpuset.cpus.effective
+ PRS=$DIR/cpuset.cpus.partition
+ [[ -e $ECPUS ]] && echo "$ECPUS: $(cat $ECPUS)"
+ [[ -e $PRS ]] && echo "$PRS: $(cat $PRS)"
+ done
+}
+
+#
+# Check effective cpus
+# $1 - check string, format: <cgroup>:<cpu-list>[,<cgroup>:<cpu-list>]*
+#
+check_effective_cpus()
+{
+ CHK_STR=$1
+ for CHK in $(echo $CHK_STR | sed -e "s/,/ /g")
+ do
+ set -- $(echo $CHK | sed -e "s/:/ /g")
+ CGRP=$1
+ CPUS=$2
+ [[ $CGRP = A2 ]] && CGRP=A1/A2
+ [[ $CGRP = A3 ]] && CGRP=A1/A2/A3
+ FILE=$CGRP/cpuset.cpus.effective
+ [[ -e $FILE ]] || return 1
+ [[ $CPUS = $(cat $FILE) ]] || return 1
+ done
+}
+
+#
+# Check cgroup states
+# $1 - check string, format: <cgroup>:<state>[,<cgroup>:<state>]*
+#
+check_cgroup_states()
+{
+ CHK_STR=$1
+ for CHK in $(echo $CHK_STR | sed -e "s/,/ /g")
+ do
+ set -- $(echo $CHK | sed -e "s/:/ /g")
+ CGRP=$1
+ STATE=$2
+ FILE=
+ EVAL=$(expr substr $STATE 2 2)
+ [[ $CGRP = A2 ]] && CGRP=A1/A2
+ [[ $CGRP = A3 ]] && CGRP=A1/A2/A3
+
+ case $STATE in
+ P*) FILE=$CGRP/cpuset.cpus.partition
+ ;;
+ *) echo "Unknown state: $STATE!"
+ exit 1
+ ;;
+ esac
+ VAL=$(cat $FILE)
+
+ case "$VAL" in
+ member) VAL=0
+ ;;
+ root) VAL=1
+ ;;
+ isolated)
+ VAL=2
+ ;;
+ "root invalid"*)
+ VAL=-1
+ ;;
+ "isolated invalid"*)
+ VAL=-2
+ ;;
+ esac
+ [[ $EVAL != $VAL ]] && return 1
+ done
+ return 0
+}
+
+#
+# Run cpuset state transition test
+# $1 - test matrix name
+#
+# This test is somewhat fragile as delays (sleep x) are added in various
+# places to make sure state changes are fully propagated before the next
+# action. These delays may need to be adjusted if running in a slower machine.
+#
+run_state_test()
+{
+ TEST=$1
+ CONTROLLER=cpuset
+ CPULIST=0-6
+ I=0
+ eval CNT="\${#$TEST[@]}"
+
+ reset_cgroup_states
+ echo $CPULIST > cpuset.cpus
+ echo root > cpuset.cpus.partition
+ console_msg "Running state transition test ..."
+
+ while [[ $I -lt $CNT ]]
+ do
+ echo "Running test $I ..." > /dev/console
+ eval set -- "\${$TEST[$I]}"
+ ROOT=$1
+ OLD_A1=$2
+ OLD_A2=$3
+ OLD_A3=$4
+ OLD_B1=$5
+ NEW_A1=$6
+ NEW_A2=$7
+ NEW_A3=$8
+ NEW_B1=$9
+ RESULT=${10}
+ ECPUS=${11}
+ STATES=${12}
+
+ set_ctrl_state_noerr . $ROOT
+ set_ctrl_state_noerr A1 $OLD_A1
+ set_ctrl_state_noerr A1/A2 $OLD_A2
+ set_ctrl_state_noerr A1/A2/A3 $OLD_A3
+ set_ctrl_state_noerr B1 $OLD_B1
+ RETVAL=0
+ set_ctrl_state A1 $NEW_A1; ((RETVAL += $?))
+ set_ctrl_state A1/A2 $NEW_A2; ((RETVAL += $?))
+ set_ctrl_state A1/A2/A3 $NEW_A3; ((RETVAL += $?))
+ set_ctrl_state B1 $NEW_B1; ((RETVAL += $?))
+
+ [[ $RETVAL -ne $RESULT ]] && {
+ echo "Test $TEST[$I] failed result check!"
+ eval echo \"\${$TEST[$I]}\"
+ dump_states
+ online_cpus
+ exit 1
+ }
+
+ [[ -n "$ECPUS" && "$ECPUS" != . ]] && {
+ check_effective_cpus $ECPUS
+ [[ $? -ne 0 ]] && {
+ echo "Test $TEST[$I] failed effective CPU check!"
+ eval echo \"\${$TEST[$I]}\"
+ echo
+ dump_states
+ online_cpus
+ exit 1
+ }
+ }
+
+ [[ -n "$STATES" ]] && {
+ check_cgroup_states $STATES
+ [[ $? -ne 0 ]] && {
+ echo "FAILED: Test $TEST[$I] failed states check!"
+ eval echo \"\${$TEST[$I]}\"
+ echo
+ dump_states
+ online_cpus
+ exit 1
+ }
+ }
+
+ reset_cgroup_states
+ #
+ # Check to see if effective cpu list changes
+ #
+ pause 0.05
+ NEWLIST=$(cat cpuset.cpus.effective)
+ [[ $NEWLIST != $CPULIST ]] && {
+ echo "Effective cpus changed to $NEWLIST after test $I!"
+ exit 1
+ }
+ [[ -n "$VERBOSE" ]] && echo "Test $I done."
+ ((I++))
+ done
+ echo "All $I tests of $TEST PASSED."
+
+ echo member > cpuset.cpus.partition
+}
+
+#
+# Wait for inotify event for the given file and read it
+# $1: cgroup file to wait for
+# $2: file to store the read result
+#
+wait_inotify()
+{
+ CGROUP_FILE=$1
+ OUTPUT_FILE=$2
+
+ $WAIT_INOTIFY $CGROUP_FILE
+ cat $CGROUP_FILE > $OUTPUT_FILE
+}
+
+#
+# Test if inotify events are properly generated when going into and out of
+# invalid partition state.
+#
+test_inotify()
+{
+ ERR=0
+ PRS=/tmp/.prs_$$
+ [[ -f $WAIT_INOTIFY ]] || {
+ echo "wait_inotify not found, inotify test SKIPPED."
+ return
+ }
+
+ pause 0.01
+ echo 1 > cpuset.cpus
+ echo 0 > cgroup.procs
+ echo root > cpuset.cpus.partition
+ pause 0.01
+ rm -f $PRS
+ wait_inotify $PWD/cpuset.cpus.partition $PRS &
+ pause 0.01
+ set_ctrl_state . "O1-0"
+ pause 0.01
+ check_cgroup_states ".:P-1"
+ if [[ $? -ne 0 ]]
+ then
+ echo "FAILED: Inotify test - partition not invalid"
+ ERR=1
+ elif [[ ! -f $PRS ]]
+ then
+ echo "FAILED: Inotify test - event not generated"
+ ERR=1
+ kill %1
+ elif [[ $(cat $PRS) != "root invalid"* ]]
+ then
+ echo "FAILED: Inotify test - incorrect state"
+ cat $PRS
+ ERR=1
+ fi
+ online_cpus
+ echo member > cpuset.cpus.partition
+ echo 0 > ../cgroup.procs
+ if [[ $ERR -ne 0 ]]
+ then
+ exit 1
+ else
+ echo "Inotify test PASSED"
+ fi
+}
+
+run_state_test TEST_MATRIX
+test_isolated
+test_inotify
+echo "All tests PASSED."
+cd ..
+rmdir test
diff --git a/tools/testing/selftests/cgroup/test_freezer.c b/tools/testing/selftests/cgroup/test_freezer.c
new file mode 100644
index 000000000..ff519029f
--- /dev/null
+++ b/tools/testing/selftests/cgroup/test_freezer.c
@@ -0,0 +1,848 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <stdbool.h>
+#include <linux/limits.h>
+#include <sys/ptrace.h>
+#include <sys/types.h>
+#include <sys/mman.h>
+#include <unistd.h>
+#include <stdio.h>
+#include <errno.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/wait.h>
+
+#include "../kselftest.h"
+#include "cgroup_util.h"
+
+#define DEBUG
+#ifdef DEBUG
+#define debug(args...) fprintf(stderr, args)
+#else
+#define debug(args...)
+#endif
+
+/*
+ * Check if the cgroup is frozen by looking at the cgroup.events::frozen value.
+ */
+static int cg_check_frozen(const char *cgroup, bool frozen)
+{
+ if (frozen) {
+ if (cg_read_strstr(cgroup, "cgroup.events", "frozen 1") != 0) {
+ debug("Cgroup %s isn't frozen\n", cgroup);
+ return -1;
+ }
+ } else {
+ /*
+ * Check the cgroup.events::frozen value.
+ */
+ if (cg_read_strstr(cgroup, "cgroup.events", "frozen 0") != 0) {
+ debug("Cgroup %s is frozen\n", cgroup);
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Freeze the given cgroup.
+ */
+static int cg_freeze_nowait(const char *cgroup, bool freeze)
+{
+ return cg_write(cgroup, "cgroup.freeze", freeze ? "1" : "0");
+}
+
+/*
+ * Attach a task to the given cgroup and wait for a cgroup frozen event.
+ * All transient events (e.g. populated) are ignored.
+ */
+static int cg_enter_and_wait_for_frozen(const char *cgroup, int pid,
+ bool frozen)
+{
+ int fd, ret = -1;
+ int attempts;
+
+ fd = cg_prepare_for_wait(cgroup);
+ if (fd < 0)
+ return fd;
+
+ ret = cg_enter(cgroup, pid);
+ if (ret)
+ goto out;
+
+ for (attempts = 0; attempts < 10; attempts++) {
+ ret = cg_wait_for(fd);
+ if (ret)
+ break;
+
+ ret = cg_check_frozen(cgroup, frozen);
+ if (ret)
+ continue;
+ }
+
+out:
+ close(fd);
+ return ret;
+}
+
+/*
+ * Freeze the given cgroup and wait for the inotify signal.
+ * If there are no events in 10 seconds, treat this as an error.
+ * Then check that the cgroup is in the desired state.
+ */
+static int cg_freeze_wait(const char *cgroup, bool freeze)
+{
+ int fd, ret = -1;
+
+ fd = cg_prepare_for_wait(cgroup);
+ if (fd < 0)
+ return fd;
+
+ ret = cg_freeze_nowait(cgroup, freeze);
+ if (ret) {
+ debug("Error: cg_freeze_nowait() failed\n");
+ goto out;
+ }
+
+ ret = cg_wait_for(fd);
+ if (ret)
+ goto out;
+
+ ret = cg_check_frozen(cgroup, freeze);
+out:
+ close(fd);
+ return ret;
+}
+
+/*
+ * A simple process running in a sleep loop until being
+ * re-parented.
+ */
+static int child_fn(const char *cgroup, void *arg)
+{
+ int ppid = getppid();
+
+ while (getppid() == ppid)
+ usleep(1000);
+
+ return getppid() == ppid;
+}
+
+/*
+ * A simple test for the cgroup freezer: populated the cgroup with 100
+ * running processes and freeze it. Then unfreeze it. Then it kills all
+ * processes and destroys the cgroup.
+ */
+static int test_cgfreezer_simple(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cgroup = NULL;
+ int i;
+
+ cgroup = cg_name(root, "cg_test_simple");
+ if (!cgroup)
+ goto cleanup;
+
+ if (cg_create(cgroup))
+ goto cleanup;
+
+ for (i = 0; i < 100; i++)
+ cg_run_nowait(cgroup, child_fn, NULL);
+
+ if (cg_wait_for_proc_count(cgroup, 100))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup, false))
+ goto cleanup;
+
+ if (cg_freeze_wait(cgroup, true))
+ goto cleanup;
+
+ if (cg_freeze_wait(cgroup, false))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (cgroup)
+ cg_destroy(cgroup);
+ free(cgroup);
+ return ret;
+}
+
+/*
+ * The test creates the following hierarchy:
+ * A
+ * / / \ \
+ * B E I K
+ * /\ |
+ * C D F
+ * |
+ * G
+ * |
+ * H
+ *
+ * with a process in C, H and 3 processes in K.
+ * Then it tries to freeze and unfreeze the whole tree.
+ */
+static int test_cgfreezer_tree(const char *root)
+{
+ char *cgroup[10] = {0};
+ int ret = KSFT_FAIL;
+ int i;
+
+ cgroup[0] = cg_name(root, "cg_test_tree_A");
+ if (!cgroup[0])
+ goto cleanup;
+
+ cgroup[1] = cg_name(cgroup[0], "B");
+ if (!cgroup[1])
+ goto cleanup;
+
+ cgroup[2] = cg_name(cgroup[1], "C");
+ if (!cgroup[2])
+ goto cleanup;
+
+ cgroup[3] = cg_name(cgroup[1], "D");
+ if (!cgroup[3])
+ goto cleanup;
+
+ cgroup[4] = cg_name(cgroup[0], "E");
+ if (!cgroup[4])
+ goto cleanup;
+
+ cgroup[5] = cg_name(cgroup[4], "F");
+ if (!cgroup[5])
+ goto cleanup;
+
+ cgroup[6] = cg_name(cgroup[5], "G");
+ if (!cgroup[6])
+ goto cleanup;
+
+ cgroup[7] = cg_name(cgroup[6], "H");
+ if (!cgroup[7])
+ goto cleanup;
+
+ cgroup[8] = cg_name(cgroup[0], "I");
+ if (!cgroup[8])
+ goto cleanup;
+
+ cgroup[9] = cg_name(cgroup[0], "K");
+ if (!cgroup[9])
+ goto cleanup;
+
+ for (i = 0; i < 10; i++)
+ if (cg_create(cgroup[i]))
+ goto cleanup;
+
+ cg_run_nowait(cgroup[2], child_fn, NULL);
+ cg_run_nowait(cgroup[7], child_fn, NULL);
+ cg_run_nowait(cgroup[9], child_fn, NULL);
+ cg_run_nowait(cgroup[9], child_fn, NULL);
+ cg_run_nowait(cgroup[9], child_fn, NULL);
+
+ /*
+ * Wait until all child processes will enter
+ * corresponding cgroups.
+ */
+
+ if (cg_wait_for_proc_count(cgroup[2], 1) ||
+ cg_wait_for_proc_count(cgroup[7], 1) ||
+ cg_wait_for_proc_count(cgroup[9], 3))
+ goto cleanup;
+
+ /*
+ * Freeze B.
+ */
+ if (cg_freeze_wait(cgroup[1], true))
+ goto cleanup;
+
+ /*
+ * Freeze F.
+ */
+ if (cg_freeze_wait(cgroup[5], true))
+ goto cleanup;
+
+ /*
+ * Freeze G.
+ */
+ if (cg_freeze_wait(cgroup[6], true))
+ goto cleanup;
+
+ /*
+ * Check that A and E are not frozen.
+ */
+ if (cg_check_frozen(cgroup[0], false))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[4], false))
+ goto cleanup;
+
+ /*
+ * Freeze A. Check that A, B and E are frozen.
+ */
+ if (cg_freeze_wait(cgroup[0], true))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[1], true))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[4], true))
+ goto cleanup;
+
+ /*
+ * Unfreeze B, F and G
+ */
+ if (cg_freeze_nowait(cgroup[1], false))
+ goto cleanup;
+
+ if (cg_freeze_nowait(cgroup[5], false))
+ goto cleanup;
+
+ if (cg_freeze_nowait(cgroup[6], false))
+ goto cleanup;
+
+ /*
+ * Check that C and H are still frozen.
+ */
+ if (cg_check_frozen(cgroup[2], true))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[7], true))
+ goto cleanup;
+
+ /*
+ * Unfreeze A. Check that A, C and K are not frozen.
+ */
+ if (cg_freeze_wait(cgroup[0], false))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[2], false))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[9], false))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ for (i = 9; i >= 0 && cgroup[i]; i--) {
+ cg_destroy(cgroup[i]);
+ free(cgroup[i]);
+ }
+
+ return ret;
+}
+
+/*
+ * A fork bomb emulator.
+ */
+static int forkbomb_fn(const char *cgroup, void *arg)
+{
+ int ppid;
+
+ fork();
+ fork();
+
+ ppid = getppid();
+
+ while (getppid() == ppid)
+ usleep(1000);
+
+ return getppid() == ppid;
+}
+
+/*
+ * The test runs a fork bomb in a cgroup and tries to freeze it.
+ * Then it kills all processes and checks that cgroup isn't populated
+ * anymore.
+ */
+static int test_cgfreezer_forkbomb(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cgroup = NULL;
+
+ cgroup = cg_name(root, "cg_forkbomb_test");
+ if (!cgroup)
+ goto cleanup;
+
+ if (cg_create(cgroup))
+ goto cleanup;
+
+ cg_run_nowait(cgroup, forkbomb_fn, NULL);
+
+ usleep(100000);
+
+ if (cg_freeze_wait(cgroup, true))
+ goto cleanup;
+
+ if (cg_killall(cgroup))
+ goto cleanup;
+
+ if (cg_wait_for_proc_count(cgroup, 0))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (cgroup)
+ cg_destroy(cgroup);
+ free(cgroup);
+ return ret;
+}
+
+/*
+ * The test creates a cgroups and freezes it. Then it creates a child cgroup
+ * and populates it with a task. After that it checks that the child cgroup
+ * is frozen and the parent cgroup remains frozen too.
+ */
+static int test_cgfreezer_mkdir(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent, *child = NULL;
+ int pid;
+
+ parent = cg_name(root, "cg_test_mkdir_A");
+ if (!parent)
+ goto cleanup;
+
+ child = cg_name(parent, "cg_test_mkdir_B");
+ if (!child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_freeze_wait(parent, true))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ pid = cg_run_nowait(child, child_fn, NULL);
+ if (pid < 0)
+ goto cleanup;
+
+ if (cg_wait_for_proc_count(child, 1))
+ goto cleanup;
+
+ if (cg_check_frozen(child, true))
+ goto cleanup;
+
+ if (cg_check_frozen(parent, true))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (child)
+ cg_destroy(child);
+ free(child);
+ if (parent)
+ cg_destroy(parent);
+ free(parent);
+ return ret;
+}
+
+/*
+ * The test creates two nested cgroups, freezes the parent
+ * and removes the child. Then it checks that the parent cgroup
+ * remains frozen and it's possible to create a new child
+ * without unfreezing. The new child is frozen too.
+ */
+static int test_cgfreezer_rmdir(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent, *child = NULL;
+
+ parent = cg_name(root, "cg_test_rmdir_A");
+ if (!parent)
+ goto cleanup;
+
+ child = cg_name(parent, "cg_test_rmdir_B");
+ if (!child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_freeze_wait(parent, true))
+ goto cleanup;
+
+ if (cg_destroy(child))
+ goto cleanup;
+
+ if (cg_check_frozen(parent, true))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_check_frozen(child, true))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (child)
+ cg_destroy(child);
+ free(child);
+ if (parent)
+ cg_destroy(parent);
+ free(parent);
+ return ret;
+}
+
+/*
+ * The test creates two cgroups: A and B, runs a process in A
+ * and performs several migrations:
+ * 1) A (running) -> B (frozen)
+ * 2) B (frozen) -> A (running)
+ * 3) A (frozen) -> B (frozen)
+ *
+ * On each step it checks the actual state of both cgroups.
+ */
+static int test_cgfreezer_migrate(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cgroup[2] = {0};
+ int pid;
+
+ cgroup[0] = cg_name(root, "cg_test_migrate_A");
+ if (!cgroup[0])
+ goto cleanup;
+
+ cgroup[1] = cg_name(root, "cg_test_migrate_B");
+ if (!cgroup[1])
+ goto cleanup;
+
+ if (cg_create(cgroup[0]))
+ goto cleanup;
+
+ if (cg_create(cgroup[1]))
+ goto cleanup;
+
+ pid = cg_run_nowait(cgroup[0], child_fn, NULL);
+ if (pid < 0)
+ goto cleanup;
+
+ if (cg_wait_for_proc_count(cgroup[0], 1))
+ goto cleanup;
+
+ /*
+ * Migrate from A (running) to B (frozen)
+ */
+ if (cg_freeze_wait(cgroup[1], true))
+ goto cleanup;
+
+ if (cg_enter_and_wait_for_frozen(cgroup[1], pid, true))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[0], false))
+ goto cleanup;
+
+ /*
+ * Migrate from B (frozen) to A (running)
+ */
+ if (cg_enter_and_wait_for_frozen(cgroup[0], pid, false))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[1], true))
+ goto cleanup;
+
+ /*
+ * Migrate from A (frozen) to B (frozen)
+ */
+ if (cg_freeze_wait(cgroup[0], true))
+ goto cleanup;
+
+ if (cg_enter_and_wait_for_frozen(cgroup[1], pid, true))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup[0], true))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (cgroup[0])
+ cg_destroy(cgroup[0]);
+ free(cgroup[0]);
+ if (cgroup[1])
+ cg_destroy(cgroup[1]);
+ free(cgroup[1]);
+ return ret;
+}
+
+/*
+ * The test checks that ptrace works with a tracing process in a frozen cgroup.
+ */
+static int test_cgfreezer_ptrace(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cgroup = NULL;
+ siginfo_t siginfo;
+ int pid;
+
+ cgroup = cg_name(root, "cg_test_ptrace");
+ if (!cgroup)
+ goto cleanup;
+
+ if (cg_create(cgroup))
+ goto cleanup;
+
+ pid = cg_run_nowait(cgroup, child_fn, NULL);
+ if (pid < 0)
+ goto cleanup;
+
+ if (cg_wait_for_proc_count(cgroup, 1))
+ goto cleanup;
+
+ if (cg_freeze_wait(cgroup, true))
+ goto cleanup;
+
+ if (ptrace(PTRACE_SEIZE, pid, NULL, NULL))
+ goto cleanup;
+
+ if (ptrace(PTRACE_INTERRUPT, pid, NULL, NULL))
+ goto cleanup;
+
+ waitpid(pid, NULL, 0);
+
+ /*
+ * Cgroup has to remain frozen, however the test task
+ * is in traced state.
+ */
+ if (cg_check_frozen(cgroup, true))
+ goto cleanup;
+
+ if (ptrace(PTRACE_GETSIGINFO, pid, NULL, &siginfo))
+ goto cleanup;
+
+ if (ptrace(PTRACE_DETACH, pid, NULL, NULL))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup, true))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (cgroup)
+ cg_destroy(cgroup);
+ free(cgroup);
+ return ret;
+}
+
+/*
+ * Check if the process is stopped.
+ */
+static int proc_check_stopped(int pid)
+{
+ char buf[PAGE_SIZE];
+ int len;
+
+ len = proc_read_text(pid, 0, "stat", buf, sizeof(buf));
+ if (len == -1) {
+ debug("Can't get %d stat\n", pid);
+ return -1;
+ }
+
+ if (strstr(buf, "(test_freezer) T ") == NULL) {
+ debug("Process %d in the unexpected state: %s\n", pid, buf);
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * Test that it's possible to freeze a cgroup with a stopped process.
+ */
+static int test_cgfreezer_stopped(const char *root)
+{
+ int pid, ret = KSFT_FAIL;
+ char *cgroup = NULL;
+
+ cgroup = cg_name(root, "cg_test_stopped");
+ if (!cgroup)
+ goto cleanup;
+
+ if (cg_create(cgroup))
+ goto cleanup;
+
+ pid = cg_run_nowait(cgroup, child_fn, NULL);
+
+ if (cg_wait_for_proc_count(cgroup, 1))
+ goto cleanup;
+
+ if (kill(pid, SIGSTOP))
+ goto cleanup;
+
+ if (cg_check_frozen(cgroup, false))
+ goto cleanup;
+
+ if (cg_freeze_wait(cgroup, true))
+ goto cleanup;
+
+ if (cg_freeze_wait(cgroup, false))
+ goto cleanup;
+
+ if (proc_check_stopped(pid))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (cgroup)
+ cg_destroy(cgroup);
+ free(cgroup);
+ return ret;
+}
+
+/*
+ * Test that it's possible to freeze a cgroup with a ptraced process.
+ */
+static int test_cgfreezer_ptraced(const char *root)
+{
+ int pid, ret = KSFT_FAIL;
+ char *cgroup = NULL;
+ siginfo_t siginfo;
+
+ cgroup = cg_name(root, "cg_test_ptraced");
+ if (!cgroup)
+ goto cleanup;
+
+ if (cg_create(cgroup))
+ goto cleanup;
+
+ pid = cg_run_nowait(cgroup, child_fn, NULL);
+
+ if (cg_wait_for_proc_count(cgroup, 1))
+ goto cleanup;
+
+ if (ptrace(PTRACE_SEIZE, pid, NULL, NULL))
+ goto cleanup;
+
+ if (ptrace(PTRACE_INTERRUPT, pid, NULL, NULL))
+ goto cleanup;
+
+ waitpid(pid, NULL, 0);
+
+ if (cg_check_frozen(cgroup, false))
+ goto cleanup;
+
+ if (cg_freeze_wait(cgroup, true))
+ goto cleanup;
+
+ /*
+ * cg_check_frozen(cgroup, true) will fail here,
+ * because the task in in the TRACEd state.
+ */
+ if (cg_freeze_wait(cgroup, false))
+ goto cleanup;
+
+ if (ptrace(PTRACE_GETSIGINFO, pid, NULL, &siginfo))
+ goto cleanup;
+
+ if (ptrace(PTRACE_DETACH, pid, NULL, NULL))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (cgroup)
+ cg_destroy(cgroup);
+ free(cgroup);
+ return ret;
+}
+
+static int vfork_fn(const char *cgroup, void *arg)
+{
+ int pid = vfork();
+
+ if (pid == 0)
+ while (true)
+ sleep(1);
+
+ return pid;
+}
+
+/*
+ * Test that it's possible to freeze a cgroup with a process,
+ * which called vfork() and is waiting for a child.
+ */
+static int test_cgfreezer_vfork(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cgroup = NULL;
+
+ cgroup = cg_name(root, "cg_test_vfork");
+ if (!cgroup)
+ goto cleanup;
+
+ if (cg_create(cgroup))
+ goto cleanup;
+
+ cg_run_nowait(cgroup, vfork_fn, NULL);
+
+ if (cg_wait_for_proc_count(cgroup, 2))
+ goto cleanup;
+
+ if (cg_freeze_wait(cgroup, true))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (cgroup)
+ cg_destroy(cgroup);
+ free(cgroup);
+ return ret;
+}
+
+#define T(x) { x, #x }
+struct cgfreezer_test {
+ int (*fn)(const char *root);
+ const char *name;
+} tests[] = {
+ T(test_cgfreezer_simple),
+ T(test_cgfreezer_tree),
+ T(test_cgfreezer_forkbomb),
+ T(test_cgfreezer_mkdir),
+ T(test_cgfreezer_rmdir),
+ T(test_cgfreezer_migrate),
+ T(test_cgfreezer_ptrace),
+ T(test_cgfreezer_stopped),
+ T(test_cgfreezer_ptraced),
+ T(test_cgfreezer_vfork),
+};
+#undef T
+
+int main(int argc, char *argv[])
+{
+ char root[PATH_MAX];
+ int i, ret = EXIT_SUCCESS;
+
+ if (cg_find_unified_root(root, sizeof(root)))
+ ksft_exit_skip("cgroup v2 isn't mounted\n");
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ switch (tests[i].fn(root)) {
+ case KSFT_PASS:
+ ksft_test_result_pass("%s\n", tests[i].name);
+ break;
+ case KSFT_SKIP:
+ ksft_test_result_skip("%s\n", tests[i].name);
+ break;
+ default:
+ ret = EXIT_FAILURE;
+ ksft_test_result_fail("%s\n", tests[i].name);
+ break;
+ }
+ }
+
+ return ret;
+}
diff --git a/tools/testing/selftests/cgroup/test_kill.c b/tools/testing/selftests/cgroup/test_kill.c
new file mode 100644
index 000000000..615369031
--- /dev/null
+++ b/tools/testing/selftests/cgroup/test_kill.c
@@ -0,0 +1,297 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#include <errno.h>
+#include <linux/limits.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/types.h>
+#include <unistd.h>
+
+#include "../kselftest.h"
+#include "../pidfd/pidfd.h"
+#include "cgroup_util.h"
+
+/*
+ * Kill the given cgroup and wait for the inotify signal.
+ * If there are no events in 10 seconds, treat this as an error.
+ * Then check that the cgroup is in the desired state.
+ */
+static int cg_kill_wait(const char *cgroup)
+{
+ int fd, ret = -1;
+
+ fd = cg_prepare_for_wait(cgroup);
+ if (fd < 0)
+ return fd;
+
+ ret = cg_write(cgroup, "cgroup.kill", "1");
+ if (ret)
+ goto out;
+
+ ret = cg_wait_for(fd);
+ if (ret)
+ goto out;
+
+out:
+ close(fd);
+ return ret;
+}
+
+/*
+ * A simple process running in a sleep loop until being
+ * re-parented.
+ */
+static int child_fn(const char *cgroup, void *arg)
+{
+ int ppid = getppid();
+
+ while (getppid() == ppid)
+ usleep(1000);
+
+ return getppid() == ppid;
+}
+
+static int test_cgkill_simple(const char *root)
+{
+ pid_t pids[100];
+ int ret = KSFT_FAIL;
+ char *cgroup = NULL;
+ int i;
+
+ cgroup = cg_name(root, "cg_test_simple");
+ if (!cgroup)
+ goto cleanup;
+
+ if (cg_create(cgroup))
+ goto cleanup;
+
+ for (i = 0; i < 100; i++)
+ pids[i] = cg_run_nowait(cgroup, child_fn, NULL);
+
+ if (cg_wait_for_proc_count(cgroup, 100))
+ goto cleanup;
+
+ if (cg_read_strcmp(cgroup, "cgroup.events", "populated 1\n"))
+ goto cleanup;
+
+ if (cg_kill_wait(cgroup))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ for (i = 0; i < 100; i++)
+ wait_for_pid(pids[i]);
+
+ if (ret == KSFT_PASS &&
+ cg_read_strcmp(cgroup, "cgroup.events", "populated 0\n"))
+ ret = KSFT_FAIL;
+
+ if (cgroup)
+ cg_destroy(cgroup);
+ free(cgroup);
+ return ret;
+}
+
+/*
+ * The test creates the following hierarchy:
+ * A
+ * / / \ \
+ * B E I K
+ * /\ |
+ * C D F
+ * |
+ * G
+ * |
+ * H
+ *
+ * with a process in C, H and 3 processes in K.
+ * Then it tries to kill the whole tree.
+ */
+static int test_cgkill_tree(const char *root)
+{
+ pid_t pids[5];
+ char *cgroup[10] = {0};
+ int ret = KSFT_FAIL;
+ int i;
+
+ cgroup[0] = cg_name(root, "cg_test_tree_A");
+ if (!cgroup[0])
+ goto cleanup;
+
+ cgroup[1] = cg_name(cgroup[0], "B");
+ if (!cgroup[1])
+ goto cleanup;
+
+ cgroup[2] = cg_name(cgroup[1], "C");
+ if (!cgroup[2])
+ goto cleanup;
+
+ cgroup[3] = cg_name(cgroup[1], "D");
+ if (!cgroup[3])
+ goto cleanup;
+
+ cgroup[4] = cg_name(cgroup[0], "E");
+ if (!cgroup[4])
+ goto cleanup;
+
+ cgroup[5] = cg_name(cgroup[4], "F");
+ if (!cgroup[5])
+ goto cleanup;
+
+ cgroup[6] = cg_name(cgroup[5], "G");
+ if (!cgroup[6])
+ goto cleanup;
+
+ cgroup[7] = cg_name(cgroup[6], "H");
+ if (!cgroup[7])
+ goto cleanup;
+
+ cgroup[8] = cg_name(cgroup[0], "I");
+ if (!cgroup[8])
+ goto cleanup;
+
+ cgroup[9] = cg_name(cgroup[0], "K");
+ if (!cgroup[9])
+ goto cleanup;
+
+ for (i = 0; i < 10; i++)
+ if (cg_create(cgroup[i]))
+ goto cleanup;
+
+ pids[0] = cg_run_nowait(cgroup[2], child_fn, NULL);
+ pids[1] = cg_run_nowait(cgroup[7], child_fn, NULL);
+ pids[2] = cg_run_nowait(cgroup[9], child_fn, NULL);
+ pids[3] = cg_run_nowait(cgroup[9], child_fn, NULL);
+ pids[4] = cg_run_nowait(cgroup[9], child_fn, NULL);
+
+ /*
+ * Wait until all child processes will enter
+ * corresponding cgroups.
+ */
+
+ if (cg_wait_for_proc_count(cgroup[2], 1) ||
+ cg_wait_for_proc_count(cgroup[7], 1) ||
+ cg_wait_for_proc_count(cgroup[9], 3))
+ goto cleanup;
+
+ /*
+ * Kill A and check that we get an empty notification.
+ */
+ if (cg_kill_wait(cgroup[0]))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ for (i = 0; i < 5; i++)
+ wait_for_pid(pids[i]);
+
+ if (ret == KSFT_PASS &&
+ cg_read_strcmp(cgroup[0], "cgroup.events", "populated 0\n"))
+ ret = KSFT_FAIL;
+
+ for (i = 9; i >= 0 && cgroup[i]; i--) {
+ cg_destroy(cgroup[i]);
+ free(cgroup[i]);
+ }
+
+ return ret;
+}
+
+static int forkbomb_fn(const char *cgroup, void *arg)
+{
+ int ppid;
+
+ fork();
+ fork();
+
+ ppid = getppid();
+
+ while (getppid() == ppid)
+ usleep(1000);
+
+ return getppid() == ppid;
+}
+
+/*
+ * The test runs a fork bomb in a cgroup and tries to kill it.
+ */
+static int test_cgkill_forkbomb(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cgroup = NULL;
+ pid_t pid = -ESRCH;
+
+ cgroup = cg_name(root, "cg_forkbomb_test");
+ if (!cgroup)
+ goto cleanup;
+
+ if (cg_create(cgroup))
+ goto cleanup;
+
+ pid = cg_run_nowait(cgroup, forkbomb_fn, NULL);
+ if (pid < 0)
+ goto cleanup;
+
+ usleep(100000);
+
+ if (cg_kill_wait(cgroup))
+ goto cleanup;
+
+ if (cg_wait_for_proc_count(cgroup, 0))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (pid > 0)
+ wait_for_pid(pid);
+
+ if (ret == KSFT_PASS &&
+ cg_read_strcmp(cgroup, "cgroup.events", "populated 0\n"))
+ ret = KSFT_FAIL;
+
+ if (cgroup)
+ cg_destroy(cgroup);
+ free(cgroup);
+ return ret;
+}
+
+#define T(x) { x, #x }
+struct cgkill_test {
+ int (*fn)(const char *root);
+ const char *name;
+} tests[] = {
+ T(test_cgkill_simple),
+ T(test_cgkill_tree),
+ T(test_cgkill_forkbomb),
+};
+#undef T
+
+int main(int argc, char *argv[])
+{
+ char root[PATH_MAX];
+ int i, ret = EXIT_SUCCESS;
+
+ if (cg_find_unified_root(root, sizeof(root)))
+ ksft_exit_skip("cgroup v2 isn't mounted\n");
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ switch (tests[i].fn(root)) {
+ case KSFT_PASS:
+ ksft_test_result_pass("%s\n", tests[i].name);
+ break;
+ case KSFT_SKIP:
+ ksft_test_result_skip("%s\n", tests[i].name);
+ break;
+ default:
+ ret = EXIT_FAILURE;
+ ksft_test_result_fail("%s\n", tests[i].name);
+ break;
+ }
+ }
+
+ return ret;
+}
diff --git a/tools/testing/selftests/cgroup/test_kmem.c b/tools/testing/selftests/cgroup/test_kmem.c
new file mode 100644
index 000000000..258ddc565
--- /dev/null
+++ b/tools/testing/selftests/cgroup/test_kmem.c
@@ -0,0 +1,456 @@
+// SPDX-License-Identifier: GPL-2.0
+#define _GNU_SOURCE
+
+#include <linux/limits.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <unistd.h>
+#include <sys/wait.h>
+#include <errno.h>
+#include <sys/sysinfo.h>
+#include <pthread.h>
+
+#include "../kselftest.h"
+#include "cgroup_util.h"
+
+
+/*
+ * Memory cgroup charging is performed using percpu batches 64 pages
+ * big (look at MEMCG_CHARGE_BATCH), whereas memory.stat is exact. So
+ * the maximum discrepancy between charge and vmstat entries is number
+ * of cpus multiplied by 64 pages.
+ */
+#define MAX_VMSTAT_ERROR (4096 * 64 * get_nprocs())
+
+
+static int alloc_dcache(const char *cgroup, void *arg)
+{
+ unsigned long i;
+ struct stat st;
+ char buf[128];
+
+ for (i = 0; i < (unsigned long)arg; i++) {
+ snprintf(buf, sizeof(buf),
+ "/something-non-existent-with-a-long-name-%64lu-%d",
+ i, getpid());
+ stat(buf, &st);
+ }
+
+ return 0;
+}
+
+/*
+ * This test allocates 100000 of negative dentries with long names.
+ * Then it checks that "slab" in memory.stat is larger than 1M.
+ * Then it sets memory.high to 1M and checks that at least 1/2
+ * of slab memory has been reclaimed.
+ */
+static int test_kmem_basic(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cg = NULL;
+ long slab0, slab1, current;
+
+ cg = cg_name(root, "kmem_basic_test");
+ if (!cg)
+ goto cleanup;
+
+ if (cg_create(cg))
+ goto cleanup;
+
+ if (cg_run(cg, alloc_dcache, (void *)100000))
+ goto cleanup;
+
+ slab0 = cg_read_key_long(cg, "memory.stat", "slab ");
+ if (slab0 < (1 << 20))
+ goto cleanup;
+
+ cg_write(cg, "memory.high", "1M");
+ slab1 = cg_read_key_long(cg, "memory.stat", "slab ");
+ if (slab1 <= 0)
+ goto cleanup;
+
+ current = cg_read_long(cg, "memory.current");
+ if (current <= 0)
+ goto cleanup;
+
+ if (slab1 < slab0 / 2 && current < slab0 / 2)
+ ret = KSFT_PASS;
+cleanup:
+ cg_destroy(cg);
+ free(cg);
+
+ return ret;
+}
+
+static void *alloc_kmem_fn(void *arg)
+{
+ alloc_dcache(NULL, (void *)100);
+ return NULL;
+}
+
+static int alloc_kmem_smp(const char *cgroup, void *arg)
+{
+ int nr_threads = 2 * get_nprocs();
+ pthread_t *tinfo;
+ unsigned long i;
+ int ret = -1;
+
+ tinfo = calloc(nr_threads, sizeof(pthread_t));
+ if (tinfo == NULL)
+ return -1;
+
+ for (i = 0; i < nr_threads; i++) {
+ if (pthread_create(&tinfo[i], NULL, &alloc_kmem_fn,
+ (void *)i)) {
+ free(tinfo);
+ return -1;
+ }
+ }
+
+ for (i = 0; i < nr_threads; i++) {
+ ret = pthread_join(tinfo[i], NULL);
+ if (ret)
+ break;
+ }
+
+ free(tinfo);
+ return ret;
+}
+
+static int cg_run_in_subcgroups(const char *parent,
+ int (*fn)(const char *cgroup, void *arg),
+ void *arg, int times)
+{
+ char *child;
+ int i;
+
+ for (i = 0; i < times; i++) {
+ child = cg_name_indexed(parent, "child", i);
+ if (!child)
+ return -1;
+
+ if (cg_create(child)) {
+ cg_destroy(child);
+ free(child);
+ return -1;
+ }
+
+ if (cg_run(child, fn, NULL)) {
+ cg_destroy(child);
+ free(child);
+ return -1;
+ }
+
+ cg_destroy(child);
+ free(child);
+ }
+
+ return 0;
+}
+
+/*
+ * The test creates and destroys a large number of cgroups. In each cgroup it
+ * allocates some slab memory (mostly negative dentries) using 2 * NR_CPUS
+ * threads. Then it checks the sanity of numbers on the parent level:
+ * the total size of the cgroups should be roughly equal to
+ * anon + file + slab + kernel_stack.
+ */
+static int test_kmem_memcg_deletion(const char *root)
+{
+ long current, slab, anon, file, kernel_stack, pagetables, percpu, sock, sum;
+ int ret = KSFT_FAIL;
+ char *parent;
+
+ parent = cg_name(root, "kmem_memcg_deletion_test");
+ if (!parent)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ if (cg_run_in_subcgroups(parent, alloc_kmem_smp, NULL, 100))
+ goto cleanup;
+
+ current = cg_read_long(parent, "memory.current");
+ slab = cg_read_key_long(parent, "memory.stat", "slab ");
+ anon = cg_read_key_long(parent, "memory.stat", "anon ");
+ file = cg_read_key_long(parent, "memory.stat", "file ");
+ kernel_stack = cg_read_key_long(parent, "memory.stat", "kernel_stack ");
+ pagetables = cg_read_key_long(parent, "memory.stat", "pagetables ");
+ percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
+ sock = cg_read_key_long(parent, "memory.stat", "sock ");
+ if (current < 0 || slab < 0 || anon < 0 || file < 0 ||
+ kernel_stack < 0 || pagetables < 0 || percpu < 0 || sock < 0)
+ goto cleanup;
+
+ sum = slab + anon + file + kernel_stack + pagetables + percpu + sock;
+ if (abs(sum - current) < MAX_VMSTAT_ERROR) {
+ ret = KSFT_PASS;
+ } else {
+ printf("memory.current = %ld\n", current);
+ printf("slab + anon + file + kernel_stack = %ld\n", sum);
+ printf("slab = %ld\n", slab);
+ printf("anon = %ld\n", anon);
+ printf("file = %ld\n", file);
+ printf("kernel_stack = %ld\n", kernel_stack);
+ printf("pagetables = %ld\n", pagetables);
+ printf("percpu = %ld\n", percpu);
+ printf("sock = %ld\n", sock);
+ }
+
+cleanup:
+ cg_destroy(parent);
+ free(parent);
+
+ return ret;
+}
+
+/*
+ * The test reads the entire /proc/kpagecgroup. If the operation went
+ * successfully (and the kernel didn't panic), the test is treated as passed.
+ */
+static int test_kmem_proc_kpagecgroup(const char *root)
+{
+ unsigned long buf[128];
+ int ret = KSFT_FAIL;
+ ssize_t len;
+ int fd;
+
+ fd = open("/proc/kpagecgroup", O_RDONLY);
+ if (fd < 0)
+ return ret;
+
+ do {
+ len = read(fd, buf, sizeof(buf));
+ } while (len > 0);
+
+ if (len == 0)
+ ret = KSFT_PASS;
+
+ close(fd);
+ return ret;
+}
+
+static void *pthread_wait_fn(void *arg)
+{
+ sleep(100);
+ return NULL;
+}
+
+static int spawn_1000_threads(const char *cgroup, void *arg)
+{
+ int nr_threads = 1000;
+ pthread_t *tinfo;
+ unsigned long i;
+ long stack;
+ int ret = -1;
+
+ tinfo = calloc(nr_threads, sizeof(pthread_t));
+ if (tinfo == NULL)
+ return -1;
+
+ for (i = 0; i < nr_threads; i++) {
+ if (pthread_create(&tinfo[i], NULL, &pthread_wait_fn,
+ (void *)i)) {
+ free(tinfo);
+ return(-1);
+ }
+ }
+
+ stack = cg_read_key_long(cgroup, "memory.stat", "kernel_stack ");
+ if (stack >= 4096 * 1000)
+ ret = 0;
+
+ free(tinfo);
+ return ret;
+}
+
+/*
+ * The test spawns a process, which spawns 1000 threads. Then it checks
+ * that memory.stat's kernel_stack is at least 1000 pages large.
+ */
+static int test_kmem_kernel_stacks(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *cg = NULL;
+
+ cg = cg_name(root, "kmem_kernel_stacks_test");
+ if (!cg)
+ goto cleanup;
+
+ if (cg_create(cg))
+ goto cleanup;
+
+ if (cg_run(cg, spawn_1000_threads, NULL))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+cleanup:
+ cg_destroy(cg);
+ free(cg);
+
+ return ret;
+}
+
+/*
+ * This test sequentionally creates 30 child cgroups, allocates some
+ * kernel memory in each of them, and deletes them. Then it checks
+ * that the number of dying cgroups on the parent level is 0.
+ */
+static int test_kmem_dead_cgroups(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent;
+ long dead;
+ int i;
+
+ parent = cg_name(root, "kmem_dead_cgroups_test");
+ if (!parent)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ if (cg_run_in_subcgroups(parent, alloc_dcache, (void *)100, 30))
+ goto cleanup;
+
+ for (i = 0; i < 5; i++) {
+ dead = cg_read_key_long(parent, "cgroup.stat",
+ "nr_dying_descendants ");
+ if (dead == 0) {
+ ret = KSFT_PASS;
+ break;
+ }
+ /*
+ * Reclaiming cgroups might take some time,
+ * let's wait a bit and repeat.
+ */
+ sleep(1);
+ }
+
+cleanup:
+ cg_destroy(parent);
+ free(parent);
+
+ return ret;
+}
+
+/*
+ * This test creates a sub-tree with 1000 memory cgroups.
+ * Then it checks that the memory.current on the parent level
+ * is greater than 0 and approximates matches the percpu value
+ * from memory.stat.
+ */
+static int test_percpu_basic(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent, *child;
+ long current, percpu;
+ int i;
+
+ parent = cg_name(root, "percpu_basic_test");
+ if (!parent)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ for (i = 0; i < 1000; i++) {
+ child = cg_name_indexed(parent, "child", i);
+ if (!child)
+ return -1;
+
+ if (cg_create(child))
+ goto cleanup_children;
+
+ free(child);
+ }
+
+ current = cg_read_long(parent, "memory.current");
+ percpu = cg_read_key_long(parent, "memory.stat", "percpu ");
+
+ if (current > 0 && percpu > 0 && abs(current - percpu) <
+ MAX_VMSTAT_ERROR)
+ ret = KSFT_PASS;
+ else
+ printf("memory.current %ld\npercpu %ld\n",
+ current, percpu);
+
+cleanup_children:
+ for (i = 0; i < 1000; i++) {
+ child = cg_name_indexed(parent, "child", i);
+ cg_destroy(child);
+ free(child);
+ }
+
+cleanup:
+ cg_destroy(parent);
+ free(parent);
+
+ return ret;
+}
+
+#define T(x) { x, #x }
+struct kmem_test {
+ int (*fn)(const char *root);
+ const char *name;
+} tests[] = {
+ T(test_kmem_basic),
+ T(test_kmem_memcg_deletion),
+ T(test_kmem_proc_kpagecgroup),
+ T(test_kmem_kernel_stacks),
+ T(test_kmem_dead_cgroups),
+ T(test_percpu_basic),
+};
+#undef T
+
+int main(int argc, char **argv)
+{
+ char root[PATH_MAX];
+ int i, ret = EXIT_SUCCESS;
+
+ if (cg_find_unified_root(root, sizeof(root)))
+ ksft_exit_skip("cgroup v2 isn't mounted\n");
+
+ /*
+ * Check that memory controller is available:
+ * memory is listed in cgroup.controllers
+ */
+ if (cg_read_strstr(root, "cgroup.controllers", "memory"))
+ ksft_exit_skip("memory controller isn't available\n");
+
+ if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
+ if (cg_write(root, "cgroup.subtree_control", "+memory"))
+ ksft_exit_skip("Failed to set memory controller\n");
+
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ switch (tests[i].fn(root)) {
+ case KSFT_PASS:
+ ksft_test_result_pass("%s\n", tests[i].name);
+ break;
+ case KSFT_SKIP:
+ ksft_test_result_skip("%s\n", tests[i].name);
+ break;
+ default:
+ ret = EXIT_FAILURE;
+ ksft_test_result_fail("%s\n", tests[i].name);
+ break;
+ }
+ }
+
+ return ret;
+}
diff --git a/tools/testing/selftests/cgroup/test_memcontrol.c b/tools/testing/selftests/cgroup/test_memcontrol.c
new file mode 100644
index 000000000..5a526a8e7
--- /dev/null
+++ b/tools/testing/selftests/cgroup/test_memcontrol.c
@@ -0,0 +1,1335 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#define _GNU_SOURCE
+
+#include <linux/limits.h>
+#include <linux/oom.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <unistd.h>
+#include <sys/socket.h>
+#include <sys/wait.h>
+#include <arpa/inet.h>
+#include <netinet/in.h>
+#include <netdb.h>
+#include <errno.h>
+#include <sys/mman.h>
+
+#include "../kselftest.h"
+#include "cgroup_util.h"
+
+static bool has_localevents;
+static bool has_recursiveprot;
+
+/*
+ * This test creates two nested cgroups with and without enabling
+ * the memory controller.
+ */
+static int test_memcg_subtree_control(const char *root)
+{
+ char *parent, *child, *parent2 = NULL, *child2 = NULL;
+ int ret = KSFT_FAIL;
+ char buf[PAGE_SIZE];
+
+ /* Create two nested cgroups with the memory controller enabled */
+ parent = cg_name(root, "memcg_test_0");
+ child = cg_name(root, "memcg_test_0/memcg_test_1");
+ if (!parent || !child)
+ goto cleanup_free;
+
+ if (cg_create(parent))
+ goto cleanup_free;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+memory"))
+ goto cleanup_parent;
+
+ if (cg_create(child))
+ goto cleanup_parent;
+
+ if (cg_read_strstr(child, "cgroup.controllers", "memory"))
+ goto cleanup_child;
+
+ /* Create two nested cgroups without enabling memory controller */
+ parent2 = cg_name(root, "memcg_test_1");
+ child2 = cg_name(root, "memcg_test_1/memcg_test_1");
+ if (!parent2 || !child2)
+ goto cleanup_free2;
+
+ if (cg_create(parent2))
+ goto cleanup_free2;
+
+ if (cg_create(child2))
+ goto cleanup_parent2;
+
+ if (cg_read(child2, "cgroup.controllers", buf, sizeof(buf)))
+ goto cleanup_all;
+
+ if (!cg_read_strstr(child2, "cgroup.controllers", "memory"))
+ goto cleanup_all;
+
+ ret = KSFT_PASS;
+
+cleanup_all:
+ cg_destroy(child2);
+cleanup_parent2:
+ cg_destroy(parent2);
+cleanup_free2:
+ free(parent2);
+ free(child2);
+cleanup_child:
+ cg_destroy(child);
+cleanup_parent:
+ cg_destroy(parent);
+cleanup_free:
+ free(parent);
+ free(child);
+
+ return ret;
+}
+
+static int alloc_anon_50M_check(const char *cgroup, void *arg)
+{
+ size_t size = MB(50);
+ char *buf, *ptr;
+ long anon, current;
+ int ret = -1;
+
+ buf = malloc(size);
+ if (buf == NULL) {
+ fprintf(stderr, "malloc() failed\n");
+ return -1;
+ }
+
+ for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
+ *ptr = 0;
+
+ current = cg_read_long(cgroup, "memory.current");
+ if (current < size)
+ goto cleanup;
+
+ if (!values_close(size, current, 3))
+ goto cleanup;
+
+ anon = cg_read_key_long(cgroup, "memory.stat", "anon ");
+ if (anon < 0)
+ goto cleanup;
+
+ if (!values_close(anon, current, 3))
+ goto cleanup;
+
+ ret = 0;
+cleanup:
+ free(buf);
+ return ret;
+}
+
+static int alloc_pagecache_50M_check(const char *cgroup, void *arg)
+{
+ size_t size = MB(50);
+ int ret = -1;
+ long current, file;
+ int fd;
+
+ fd = get_temp_fd();
+ if (fd < 0)
+ return -1;
+
+ if (alloc_pagecache(fd, size))
+ goto cleanup;
+
+ current = cg_read_long(cgroup, "memory.current");
+ if (current < size)
+ goto cleanup;
+
+ file = cg_read_key_long(cgroup, "memory.stat", "file ");
+ if (file < 0)
+ goto cleanup;
+
+ if (!values_close(file, current, 10))
+ goto cleanup;
+
+ ret = 0;
+
+cleanup:
+ close(fd);
+ return ret;
+}
+
+/*
+ * This test create a memory cgroup, allocates
+ * some anonymous memory and some pagecache
+ * and check memory.current and some memory.stat values.
+ */
+static int test_memcg_current(const char *root)
+{
+ int ret = KSFT_FAIL;
+ long current;
+ char *memcg;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ current = cg_read_long(memcg, "memory.current");
+ if (current != 0)
+ goto cleanup;
+
+ if (cg_run(memcg, alloc_anon_50M_check, NULL))
+ goto cleanup;
+
+ if (cg_run(memcg, alloc_pagecache_50M_check, NULL))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
+static int alloc_pagecache_50M_noexit(const char *cgroup, void *arg)
+{
+ int fd = (long)arg;
+ int ppid = getppid();
+
+ if (alloc_pagecache(fd, MB(50)))
+ return -1;
+
+ while (getppid() == ppid)
+ sleep(1);
+
+ return 0;
+}
+
+static int alloc_anon_noexit(const char *cgroup, void *arg)
+{
+ int ppid = getppid();
+ size_t size = (unsigned long)arg;
+ char *buf, *ptr;
+
+ buf = malloc(size);
+ if (buf == NULL) {
+ fprintf(stderr, "malloc() failed\n");
+ return -1;
+ }
+
+ for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
+ *ptr = 0;
+
+ while (getppid() == ppid)
+ sleep(1);
+
+ free(buf);
+ return 0;
+}
+
+/*
+ * Wait until processes are killed asynchronously by the OOM killer
+ * If we exceed a timeout, fail.
+ */
+static int cg_test_proc_killed(const char *cgroup)
+{
+ int limit;
+
+ for (limit = 10; limit > 0; limit--) {
+ if (cg_read_strcmp(cgroup, "cgroup.procs", "") == 0)
+ return 0;
+
+ usleep(100000);
+ }
+ return -1;
+}
+
+/*
+ * First, this test creates the following hierarchy:
+ * A memory.min = 0, memory.max = 200M
+ * A/B memory.min = 50M
+ * A/B/C memory.min = 75M, memory.current = 50M
+ * A/B/D memory.min = 25M, memory.current = 50M
+ * A/B/E memory.min = 0, memory.current = 50M
+ * A/B/F memory.min = 500M, memory.current = 0
+ *
+ * (or memory.low if we test soft protection)
+ *
+ * Usages are pagecache and the test keeps a running
+ * process in every leaf cgroup.
+ * Then it creates A/G and creates a significant
+ * memory pressure in A.
+ *
+ * Then it checks actual memory usages and expects that:
+ * A/B memory.current ~= 50M
+ * A/B/C memory.current ~= 29M
+ * A/B/D memory.current ~= 21M
+ * A/B/E memory.current ~= 0
+ * A/B/F memory.current = 0
+ * (for origin of the numbers, see model in memcg_protection.m.)
+ *
+ * After that it tries to allocate more than there is
+ * unprotected memory in A available, and checks that:
+ * a) memory.min protects pagecache even in this case,
+ * b) memory.low allows reclaiming page cache with low events.
+ */
+static int test_memcg_protection(const char *root, bool min)
+{
+ int ret = KSFT_FAIL, rc;
+ char *parent[3] = {NULL};
+ char *children[4] = {NULL};
+ const char *attribute = min ? "memory.min" : "memory.low";
+ long c[4];
+ long current;
+ int i, attempts;
+ int fd;
+
+ fd = get_temp_fd();
+ if (fd < 0)
+ goto cleanup;
+
+ parent[0] = cg_name(root, "memcg_test_0");
+ if (!parent[0])
+ goto cleanup;
+
+ parent[1] = cg_name(parent[0], "memcg_test_1");
+ if (!parent[1])
+ goto cleanup;
+
+ parent[2] = cg_name(parent[0], "memcg_test_2");
+ if (!parent[2])
+ goto cleanup;
+
+ if (cg_create(parent[0]))
+ goto cleanup;
+
+ if (cg_read_long(parent[0], attribute)) {
+ /* No memory.min on older kernels is fine */
+ if (min)
+ ret = KSFT_SKIP;
+ goto cleanup;
+ }
+
+ if (cg_write(parent[0], "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ if (cg_write(parent[0], "memory.max", "200M"))
+ goto cleanup;
+
+ if (cg_write(parent[0], "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (cg_create(parent[1]))
+ goto cleanup;
+
+ if (cg_write(parent[1], "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ if (cg_create(parent[2]))
+ goto cleanup;
+
+ for (i = 0; i < ARRAY_SIZE(children); i++) {
+ children[i] = cg_name_indexed(parent[1], "child_memcg", i);
+ if (!children[i])
+ goto cleanup;
+
+ if (cg_create(children[i]))
+ goto cleanup;
+
+ if (i > 2)
+ continue;
+
+ cg_run_nowait(children[i], alloc_pagecache_50M_noexit,
+ (void *)(long)fd);
+ }
+
+ if (cg_write(parent[1], attribute, "50M"))
+ goto cleanup;
+ if (cg_write(children[0], attribute, "75M"))
+ goto cleanup;
+ if (cg_write(children[1], attribute, "25M"))
+ goto cleanup;
+ if (cg_write(children[2], attribute, "0"))
+ goto cleanup;
+ if (cg_write(children[3], attribute, "500M"))
+ goto cleanup;
+
+ attempts = 0;
+ while (!values_close(cg_read_long(parent[1], "memory.current"),
+ MB(150), 3)) {
+ if (attempts++ > 5)
+ break;
+ sleep(1);
+ }
+
+ if (cg_run(parent[2], alloc_anon, (void *)MB(148)))
+ goto cleanup;
+
+ if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
+ goto cleanup;
+
+ for (i = 0; i < ARRAY_SIZE(children); i++)
+ c[i] = cg_read_long(children[i], "memory.current");
+
+ if (!values_close(c[0], MB(29), 10))
+ goto cleanup;
+
+ if (!values_close(c[1], MB(21), 10))
+ goto cleanup;
+
+ if (c[3] != 0)
+ goto cleanup;
+
+ rc = cg_run(parent[2], alloc_anon, (void *)MB(170));
+ if (min && !rc)
+ goto cleanup;
+ else if (!min && rc) {
+ fprintf(stderr,
+ "memory.low prevents from allocating anon memory\n");
+ goto cleanup;
+ }
+
+ current = min ? MB(50) : MB(30);
+ if (!values_close(cg_read_long(parent[1], "memory.current"), current, 3))
+ goto cleanup;
+
+ if (min) {
+ ret = KSFT_PASS;
+ goto cleanup;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(children); i++) {
+ int no_low_events_index = 1;
+ long low, oom;
+
+ oom = cg_read_key_long(children[i], "memory.events", "oom ");
+ low = cg_read_key_long(children[i], "memory.events", "low ");
+
+ if (oom)
+ goto cleanup;
+ if (i <= no_low_events_index && low <= 0)
+ goto cleanup;
+ if (i > no_low_events_index && low)
+ goto cleanup;
+
+ }
+
+ ret = KSFT_PASS;
+
+cleanup:
+ for (i = ARRAY_SIZE(children) - 1; i >= 0; i--) {
+ if (!children[i])
+ continue;
+
+ cg_destroy(children[i]);
+ free(children[i]);
+ }
+
+ for (i = ARRAY_SIZE(parent) - 1; i >= 0; i--) {
+ if (!parent[i])
+ continue;
+
+ cg_destroy(parent[i]);
+ free(parent[i]);
+ }
+ close(fd);
+ return ret;
+}
+
+static int test_memcg_min(const char *root)
+{
+ return test_memcg_protection(root, true);
+}
+
+static int test_memcg_low(const char *root)
+{
+ return test_memcg_protection(root, false);
+}
+
+static int alloc_pagecache_max_30M(const char *cgroup, void *arg)
+{
+ size_t size = MB(50);
+ int ret = -1;
+ long current, high, max;
+ int fd;
+
+ high = cg_read_long(cgroup, "memory.high");
+ max = cg_read_long(cgroup, "memory.max");
+ if (high != MB(30) && max != MB(30))
+ return -1;
+
+ fd = get_temp_fd();
+ if (fd < 0)
+ return -1;
+
+ if (alloc_pagecache(fd, size))
+ goto cleanup;
+
+ current = cg_read_long(cgroup, "memory.current");
+ if (!values_close(current, MB(30), 5))
+ goto cleanup;
+
+ ret = 0;
+
+cleanup:
+ close(fd);
+ return ret;
+
+}
+
+/*
+ * This test checks that memory.high limits the amount of
+ * memory which can be consumed by either anonymous memory
+ * or pagecache.
+ */
+static int test_memcg_high(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *memcg;
+ long high;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ if (cg_read_strcmp(memcg, "memory.high", "max\n"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.high", "30M"))
+ goto cleanup;
+
+ if (cg_run(memcg, alloc_anon, (void *)MB(31)))
+ goto cleanup;
+
+ if (!cg_run(memcg, alloc_pagecache_50M_check, NULL))
+ goto cleanup;
+
+ if (cg_run(memcg, alloc_pagecache_max_30M, NULL))
+ goto cleanup;
+
+ high = cg_read_key_long(memcg, "memory.events", "high ");
+ if (high <= 0)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
+static int alloc_anon_mlock(const char *cgroup, void *arg)
+{
+ size_t size = (size_t)arg;
+ void *buf;
+
+ buf = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ 0, 0);
+ if (buf == MAP_FAILED)
+ return -1;
+
+ mlock(buf, size);
+ munmap(buf, size);
+ return 0;
+}
+
+/*
+ * This test checks that memory.high is able to throttle big single shot
+ * allocation i.e. large allocation within one kernel entry.
+ */
+static int test_memcg_high_sync(const char *root)
+{
+ int ret = KSFT_FAIL, pid, fd = -1;
+ char *memcg;
+ long pre_high, pre_max;
+ long post_high, post_max;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ pre_high = cg_read_key_long(memcg, "memory.events", "high ");
+ pre_max = cg_read_key_long(memcg, "memory.events", "max ");
+ if (pre_high < 0 || pre_max < 0)
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.high", "30M"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.max", "140M"))
+ goto cleanup;
+
+ fd = memcg_prepare_for_wait(memcg);
+ if (fd < 0)
+ goto cleanup;
+
+ pid = cg_run_nowait(memcg, alloc_anon_mlock, (void *)MB(200));
+ if (pid < 0)
+ goto cleanup;
+
+ cg_wait_for(fd);
+
+ post_high = cg_read_key_long(memcg, "memory.events", "high ");
+ post_max = cg_read_key_long(memcg, "memory.events", "max ");
+ if (post_high < 0 || post_max < 0)
+ goto cleanup;
+
+ if (pre_high == post_high || pre_max != post_max)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (fd >= 0)
+ close(fd);
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
+/*
+ * This test checks that memory.max limits the amount of
+ * memory which can be consumed by either anonymous memory
+ * or pagecache.
+ */
+static int test_memcg_max(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *memcg;
+ long current, max;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ if (cg_read_strcmp(memcg, "memory.max", "max\n"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.max", "30M"))
+ goto cleanup;
+
+ /* Should be killed by OOM killer */
+ if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
+ goto cleanup;
+
+ if (cg_run(memcg, alloc_pagecache_max_30M, NULL))
+ goto cleanup;
+
+ current = cg_read_long(memcg, "memory.current");
+ if (current > MB(30) || !current)
+ goto cleanup;
+
+ max = cg_read_key_long(memcg, "memory.events", "max ");
+ if (max <= 0)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
+/*
+ * This test checks that memory.reclaim reclaims the given
+ * amount of memory (from both anon and file, if possible).
+ */
+static int test_memcg_reclaim(const char *root)
+{
+ int ret = KSFT_FAIL, fd, retries;
+ char *memcg;
+ long current, expected_usage, to_reclaim;
+ char buf[64];
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ current = cg_read_long(memcg, "memory.current");
+ if (current != 0)
+ goto cleanup;
+
+ fd = get_temp_fd();
+ if (fd < 0)
+ goto cleanup;
+
+ cg_run_nowait(memcg, alloc_pagecache_50M_noexit, (void *)(long)fd);
+
+ /*
+ * If swap is enabled, try to reclaim from both anon and file, else try
+ * to reclaim from file only.
+ */
+ if (is_swap_enabled()) {
+ cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(50));
+ expected_usage = MB(100);
+ } else
+ expected_usage = MB(50);
+
+ /*
+ * Wait until current usage reaches the expected usage (or we run out of
+ * retries).
+ */
+ retries = 5;
+ while (!values_close(cg_read_long(memcg, "memory.current"),
+ expected_usage, 10)) {
+ if (retries--) {
+ sleep(1);
+ continue;
+ } else {
+ fprintf(stderr,
+ "failed to allocate %ld for memcg reclaim test\n",
+ expected_usage);
+ goto cleanup;
+ }
+ }
+
+ /*
+ * Reclaim until current reaches 30M, this makes sure we hit both anon
+ * and file if swap is enabled.
+ */
+ retries = 5;
+ while (true) {
+ int err;
+
+ current = cg_read_long(memcg, "memory.current");
+ to_reclaim = current - MB(30);
+
+ /*
+ * We only keep looping if we get EAGAIN, which means we could
+ * not reclaim the full amount.
+ */
+ if (to_reclaim <= 0)
+ goto cleanup;
+
+
+ snprintf(buf, sizeof(buf), "%ld", to_reclaim);
+ err = cg_write(memcg, "memory.reclaim", buf);
+ if (!err) {
+ /*
+ * If writing succeeds, then the written amount should have been
+ * fully reclaimed (and maybe more).
+ */
+ current = cg_read_long(memcg, "memory.current");
+ if (!values_close(current, MB(30), 3) && current > MB(30))
+ goto cleanup;
+ break;
+ }
+
+ /* The kernel could not reclaim the full amount, try again. */
+ if (err == -EAGAIN && retries--)
+ continue;
+
+ /* We got an unexpected error or ran out of retries. */
+ goto cleanup;
+ }
+
+ ret = KSFT_PASS;
+cleanup:
+ cg_destroy(memcg);
+ free(memcg);
+ close(fd);
+
+ return ret;
+}
+
+static int alloc_anon_50M_check_swap(const char *cgroup, void *arg)
+{
+ long mem_max = (long)arg;
+ size_t size = MB(50);
+ char *buf, *ptr;
+ long mem_current, swap_current;
+ int ret = -1;
+
+ buf = malloc(size);
+ if (buf == NULL) {
+ fprintf(stderr, "malloc() failed\n");
+ return -1;
+ }
+
+ for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
+ *ptr = 0;
+
+ mem_current = cg_read_long(cgroup, "memory.current");
+ if (!mem_current || !values_close(mem_current, mem_max, 3))
+ goto cleanup;
+
+ swap_current = cg_read_long(cgroup, "memory.swap.current");
+ if (!swap_current ||
+ !values_close(mem_current + swap_current, size, 3))
+ goto cleanup;
+
+ ret = 0;
+cleanup:
+ free(buf);
+ return ret;
+}
+
+/*
+ * This test checks that memory.swap.max limits the amount of
+ * anonymous memory which can be swapped out.
+ */
+static int test_memcg_swap_max(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *memcg;
+ long max;
+
+ if (!is_swap_enabled())
+ return KSFT_SKIP;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ if (cg_read_long(memcg, "memory.swap.current")) {
+ ret = KSFT_SKIP;
+ goto cleanup;
+ }
+
+ if (cg_read_strcmp(memcg, "memory.max", "max\n"))
+ goto cleanup;
+
+ if (cg_read_strcmp(memcg, "memory.swap.max", "max\n"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.swap.max", "30M"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.max", "30M"))
+ goto cleanup;
+
+ /* Should be killed by OOM killer */
+ if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
+ goto cleanup;
+
+ if (cg_read_key_long(memcg, "memory.events", "oom ") != 1)
+ goto cleanup;
+
+ if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
+ goto cleanup;
+
+ if (cg_run(memcg, alloc_anon_50M_check_swap, (void *)MB(30)))
+ goto cleanup;
+
+ max = cg_read_key_long(memcg, "memory.events", "max ");
+ if (max <= 0)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
+/*
+ * This test disables swapping and tries to allocate anonymous memory
+ * up to OOM. Then it checks for oom and oom_kill events in
+ * memory.events.
+ */
+static int test_memcg_oom_events(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *memcg;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.max", "30M"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
+ goto cleanup;
+
+ if (cg_read_strcmp(memcg, "cgroup.procs", ""))
+ goto cleanup;
+
+ if (cg_read_key_long(memcg, "memory.events", "oom ") != 1)
+ goto cleanup;
+
+ if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
+struct tcp_server_args {
+ unsigned short port;
+ int ctl[2];
+};
+
+static int tcp_server(const char *cgroup, void *arg)
+{
+ struct tcp_server_args *srv_args = arg;
+ struct sockaddr_in6 saddr = { 0 };
+ socklen_t slen = sizeof(saddr);
+ int sk, client_sk, ctl_fd, yes = 1, ret = -1;
+
+ close(srv_args->ctl[0]);
+ ctl_fd = srv_args->ctl[1];
+
+ saddr.sin6_family = AF_INET6;
+ saddr.sin6_addr = in6addr_any;
+ saddr.sin6_port = htons(srv_args->port);
+
+ sk = socket(AF_INET6, SOCK_STREAM, 0);
+ if (sk < 0)
+ return ret;
+
+ if (setsockopt(sk, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes)) < 0)
+ goto cleanup;
+
+ if (bind(sk, (struct sockaddr *)&saddr, slen)) {
+ write(ctl_fd, &errno, sizeof(errno));
+ goto cleanup;
+ }
+
+ if (listen(sk, 1))
+ goto cleanup;
+
+ ret = 0;
+ if (write(ctl_fd, &ret, sizeof(ret)) != sizeof(ret)) {
+ ret = -1;
+ goto cleanup;
+ }
+
+ client_sk = accept(sk, NULL, NULL);
+ if (client_sk < 0)
+ goto cleanup;
+
+ ret = -1;
+ for (;;) {
+ uint8_t buf[0x100000];
+
+ if (write(client_sk, buf, sizeof(buf)) <= 0) {
+ if (errno == ECONNRESET)
+ ret = 0;
+ break;
+ }
+ }
+
+ close(client_sk);
+
+cleanup:
+ close(sk);
+ return ret;
+}
+
+static int tcp_client(const char *cgroup, unsigned short port)
+{
+ const char server[] = "localhost";
+ struct addrinfo *ai;
+ char servport[6];
+ int retries = 0x10; /* nice round number */
+ int sk, ret;
+
+ snprintf(servport, sizeof(servport), "%hd", port);
+ ret = getaddrinfo(server, servport, NULL, &ai);
+ if (ret)
+ return ret;
+
+ sk = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
+ if (sk < 0)
+ goto free_ainfo;
+
+ ret = connect(sk, ai->ai_addr, ai->ai_addrlen);
+ if (ret < 0)
+ goto close_sk;
+
+ ret = KSFT_FAIL;
+ while (retries--) {
+ uint8_t buf[0x100000];
+ long current, sock;
+
+ if (read(sk, buf, sizeof(buf)) <= 0)
+ goto close_sk;
+
+ current = cg_read_long(cgroup, "memory.current");
+ sock = cg_read_key_long(cgroup, "memory.stat", "sock ");
+
+ if (current < 0 || sock < 0)
+ goto close_sk;
+
+ if (values_close(current, sock, 10)) {
+ ret = KSFT_PASS;
+ break;
+ }
+ }
+
+close_sk:
+ close(sk);
+free_ainfo:
+ freeaddrinfo(ai);
+ return ret;
+}
+
+/*
+ * This test checks socket memory accounting.
+ * The test forks a TCP server listens on a random port between 1000
+ * and 61000. Once it gets a client connection, it starts writing to
+ * its socket.
+ * The TCP client interleaves reads from the socket with check whether
+ * memory.current and memory.stat.sock are similar.
+ */
+static int test_memcg_sock(const char *root)
+{
+ int bind_retries = 5, ret = KSFT_FAIL, pid, err;
+ unsigned short port;
+ char *memcg;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ while (bind_retries--) {
+ struct tcp_server_args args;
+
+ if (pipe(args.ctl))
+ goto cleanup;
+
+ port = args.port = 1000 + rand() % 60000;
+
+ pid = cg_run_nowait(memcg, tcp_server, &args);
+ if (pid < 0)
+ goto cleanup;
+
+ close(args.ctl[1]);
+ if (read(args.ctl[0], &err, sizeof(err)) != sizeof(err))
+ goto cleanup;
+ close(args.ctl[0]);
+
+ if (!err)
+ break;
+ if (err != EADDRINUSE)
+ goto cleanup;
+
+ waitpid(pid, NULL, 0);
+ }
+
+ if (err == EADDRINUSE) {
+ ret = KSFT_SKIP;
+ goto cleanup;
+ }
+
+ if (tcp_client(memcg, port) != KSFT_PASS)
+ goto cleanup;
+
+ waitpid(pid, &err, 0);
+ if (WEXITSTATUS(err))
+ goto cleanup;
+
+ if (cg_read_long(memcg, "memory.current") < 0)
+ goto cleanup;
+
+ if (cg_read_key_long(memcg, "memory.stat", "sock "))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
+/*
+ * This test disables swapping and tries to allocate anonymous memory
+ * up to OOM with memory.group.oom set. Then it checks that all
+ * processes in the leaf were killed. It also checks that oom_events
+ * were propagated to the parent level.
+ */
+static int test_memcg_oom_group_leaf_events(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent, *child;
+ long parent_oom_events;
+
+ parent = cg_name(root, "memcg_test_0");
+ child = cg_name(root, "memcg_test_0/memcg_test_1");
+
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_write(parent, "cgroup.subtree_control", "+memory"))
+ goto cleanup;
+
+ if (cg_write(child, "memory.max", "50M"))
+ goto cleanup;
+
+ if (cg_write(child, "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (cg_write(child, "memory.oom.group", "1"))
+ goto cleanup;
+
+ cg_run_nowait(parent, alloc_anon_noexit, (void *) MB(60));
+ cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
+ cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
+ if (!cg_run(child, alloc_anon, (void *)MB(100)))
+ goto cleanup;
+
+ if (cg_test_proc_killed(child))
+ goto cleanup;
+
+ if (cg_read_key_long(child, "memory.events", "oom_kill ") <= 0)
+ goto cleanup;
+
+ parent_oom_events = cg_read_key_long(
+ parent, "memory.events", "oom_kill ");
+ /*
+ * If memory_localevents is not enabled (the default), the parent should
+ * count OOM events in its children groups. Otherwise, it should not
+ * have observed any events.
+ */
+ if (has_localevents && parent_oom_events != 0)
+ goto cleanup;
+ else if (!has_localevents && parent_oom_events <= 0)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (child)
+ cg_destroy(child);
+ if (parent)
+ cg_destroy(parent);
+ free(child);
+ free(parent);
+
+ return ret;
+}
+
+/*
+ * This test disables swapping and tries to allocate anonymous memory
+ * up to OOM with memory.group.oom set. Then it checks that all
+ * processes in the parent and leaf were killed.
+ */
+static int test_memcg_oom_group_parent_events(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *parent, *child;
+
+ parent = cg_name(root, "memcg_test_0");
+ child = cg_name(root, "memcg_test_0/memcg_test_1");
+
+ if (!parent || !child)
+ goto cleanup;
+
+ if (cg_create(parent))
+ goto cleanup;
+
+ if (cg_create(child))
+ goto cleanup;
+
+ if (cg_write(parent, "memory.max", "80M"))
+ goto cleanup;
+
+ if (cg_write(parent, "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (cg_write(parent, "memory.oom.group", "1"))
+ goto cleanup;
+
+ cg_run_nowait(parent, alloc_anon_noexit, (void *) MB(60));
+ cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
+ cg_run_nowait(child, alloc_anon_noexit, (void *) MB(1));
+
+ if (!cg_run(child, alloc_anon, (void *)MB(100)))
+ goto cleanup;
+
+ if (cg_test_proc_killed(child))
+ goto cleanup;
+ if (cg_test_proc_killed(parent))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (child)
+ cg_destroy(child);
+ if (parent)
+ cg_destroy(parent);
+ free(child);
+ free(parent);
+
+ return ret;
+}
+
+/*
+ * This test disables swapping and tries to allocate anonymous memory
+ * up to OOM with memory.group.oom set. Then it checks that all
+ * processes were killed except those set with OOM_SCORE_ADJ_MIN
+ */
+static int test_memcg_oom_group_score_events(const char *root)
+{
+ int ret = KSFT_FAIL;
+ char *memcg;
+ int safe_pid;
+
+ memcg = cg_name(root, "memcg_test_0");
+
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.max", "50M"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.oom.group", "1"))
+ goto cleanup;
+
+ safe_pid = cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(1));
+ if (set_oom_adj_score(safe_pid, OOM_SCORE_ADJ_MIN))
+ goto cleanup;
+
+ cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(1));
+ if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
+ goto cleanup;
+
+ if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 3)
+ goto cleanup;
+
+ if (kill(safe_pid, SIGKILL))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (memcg)
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
+#define T(x) { x, #x }
+struct memcg_test {
+ int (*fn)(const char *root);
+ const char *name;
+} tests[] = {
+ T(test_memcg_subtree_control),
+ T(test_memcg_current),
+ T(test_memcg_min),
+ T(test_memcg_low),
+ T(test_memcg_high),
+ T(test_memcg_high_sync),
+ T(test_memcg_max),
+ T(test_memcg_reclaim),
+ T(test_memcg_oom_events),
+ T(test_memcg_swap_max),
+ T(test_memcg_sock),
+ T(test_memcg_oom_group_leaf_events),
+ T(test_memcg_oom_group_parent_events),
+ T(test_memcg_oom_group_score_events),
+};
+#undef T
+
+int main(int argc, char **argv)
+{
+ char root[PATH_MAX];
+ int i, proc_status, ret = EXIT_SUCCESS;
+
+ if (cg_find_unified_root(root, sizeof(root)))
+ ksft_exit_skip("cgroup v2 isn't mounted\n");
+
+ /*
+ * Check that memory controller is available:
+ * memory is listed in cgroup.controllers
+ */
+ if (cg_read_strstr(root, "cgroup.controllers", "memory"))
+ ksft_exit_skip("memory controller isn't available\n");
+
+ if (cg_read_strstr(root, "cgroup.subtree_control", "memory"))
+ if (cg_write(root, "cgroup.subtree_control", "+memory"))
+ ksft_exit_skip("Failed to set memory controller\n");
+
+ proc_status = proc_mount_contains("memory_recursiveprot");
+ if (proc_status < 0)
+ ksft_exit_skip("Failed to query cgroup mount option\n");
+ has_recursiveprot = proc_status;
+
+ proc_status = proc_mount_contains("memory_localevents");
+ if (proc_status < 0)
+ ksft_exit_skip("Failed to query cgroup mount option\n");
+ has_localevents = proc_status;
+
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ switch (tests[i].fn(root)) {
+ case KSFT_PASS:
+ ksft_test_result_pass("%s\n", tests[i].name);
+ break;
+ case KSFT_SKIP:
+ ksft_test_result_skip("%s\n", tests[i].name);
+ break;
+ default:
+ ret = EXIT_FAILURE;
+ ksft_test_result_fail("%s\n", tests[i].name);
+ break;
+ }
+ }
+
+ return ret;
+}
diff --git a/tools/testing/selftests/cgroup/test_stress.sh b/tools/testing/selftests/cgroup/test_stress.sh
new file mode 100755
index 000000000..3c9c4554d
--- /dev/null
+++ b/tools/testing/selftests/cgroup/test_stress.sh
@@ -0,0 +1,4 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+
+./with_stress.sh -s subsys -s fork ${OUTPUT:-.}/test_core
diff --git a/tools/testing/selftests/cgroup/wait_inotify.c b/tools/testing/selftests/cgroup/wait_inotify.c
new file mode 100644
index 000000000..e11b431e1
--- /dev/null
+++ b/tools/testing/selftests/cgroup/wait_inotify.c
@@ -0,0 +1,87 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Wait until an inotify event on the given cgroup file.
+ */
+#include <linux/limits.h>
+#include <sys/inotify.h>
+#include <sys/mman.h>
+#include <sys/ptrace.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <errno.h>
+#include <fcntl.h>
+#include <poll.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+
+static const char usage[] = "Usage: %s [-v] <cgroup_file>\n";
+static char *file;
+static int verbose;
+
+static inline void fail_message(char *msg)
+{
+ fprintf(stderr, msg, file);
+ exit(1);
+}
+
+int main(int argc, char *argv[])
+{
+ char *cmd = argv[0];
+ int c, fd;
+ struct pollfd fds = { .events = POLLIN, };
+
+ while ((c = getopt(argc, argv, "v")) != -1) {
+ switch (c) {
+ case 'v':
+ verbose++;
+ break;
+ }
+ argv++, argc--;
+ }
+
+ if (argc != 2) {
+ fprintf(stderr, usage, cmd);
+ return -1;
+ }
+ file = argv[1];
+ fd = open(file, O_RDONLY);
+ if (fd < 0)
+ fail_message("Cgroup file %s not found!\n");
+ close(fd);
+
+ fd = inotify_init();
+ if (fd < 0)
+ fail_message("inotify_init() fails on %s!\n");
+ if (inotify_add_watch(fd, file, IN_MODIFY) < 0)
+ fail_message("inotify_add_watch() fails on %s!\n");
+ fds.fd = fd;
+
+ /*
+ * poll waiting loop
+ */
+ for (;;) {
+ int ret = poll(&fds, 1, 10000);
+
+ if (ret < 0) {
+ if (errno == EINTR)
+ continue;
+ perror("poll");
+ exit(1);
+ }
+ if ((ret > 0) && (fds.revents & POLLIN))
+ break;
+ }
+ if (verbose) {
+ struct inotify_event events[10];
+ long len;
+
+ usleep(1000);
+ len = read(fd, events, sizeof(events));
+ printf("Number of events read = %ld\n",
+ len/sizeof(struct inotify_event));
+ }
+ close(fd);
+ return 0;
+}
diff --git a/tools/testing/selftests/cgroup/with_stress.sh b/tools/testing/selftests/cgroup/with_stress.sh
new file mode 100755
index 000000000..e28c35008
--- /dev/null
+++ b/tools/testing/selftests/cgroup/with_stress.sh
@@ -0,0 +1,101 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+
+# Kselftest framework requirement - SKIP code is 4.
+ksft_skip=4
+
+stress_fork()
+{
+ while true ; do
+ /usr/bin/true
+ sleep 0.01
+ done
+}
+
+stress_subsys()
+{
+ local verb=+
+ while true ; do
+ echo $verb$subsys_ctrl >$sysfs/cgroup.subtree_control
+ [ $verb = "+" ] && verb=- || verb=+
+ # incommensurable period with other stresses
+ sleep 0.011
+ done
+}
+
+init_and_check()
+{
+ sysfs=`mount -t cgroup2 | head -1 | awk '{ print $3 }'`
+ if [ ! -d "$sysfs" ]; then
+ echo "Skipping: cgroup2 is not mounted" >&2
+ exit $ksft_skip
+ fi
+
+ if ! echo +$subsys_ctrl >$sysfs/cgroup.subtree_control ; then
+ echo "Skipping: cannot enable $subsys_ctrl in $sysfs" >&2
+ exit $ksft_skip
+ fi
+
+ if ! echo -$subsys_ctrl >$sysfs/cgroup.subtree_control ; then
+ echo "Skipping: cannot disable $subsys_ctrl in $sysfs" >&2
+ exit $ksft_skip
+ fi
+}
+
+declare -a stresses
+declare -a stress_pids
+duration=5
+rc=0
+subsys_ctrl=cpuset
+sysfs=
+
+while getopts c:d:hs: opt; do
+ case $opt in
+ c)
+ subsys_ctrl=$OPTARG
+ ;;
+ d)
+ duration=$OPTARG
+ ;;
+ h)
+ echo "Usage $0 [ -s stress ] ... [ -d duration ] [-c controller] cmd args .."
+ echo -e "\t default duration $duration seconds"
+ echo -e "\t default controller $subsys_ctrl"
+ exit
+ ;;
+ s)
+ func=stress_$OPTARG
+ if [ "x$(type -t $func)" != "xfunction" ] ; then
+ echo "Unknown stress $OPTARG"
+ exit 1
+ fi
+ stresses+=($func)
+ ;;
+ esac
+done
+shift $((OPTIND - 1))
+
+init_and_check
+
+for s in ${stresses[*]} ; do
+ $s &
+ stress_pids+=($!)
+done
+
+
+time=0
+start=$(date +%s)
+
+while [ $time -lt $duration ] ; do
+ $*
+ rc=$?
+ [ $rc -eq 0 ] || break
+ time=$(($(date +%s) - $start))
+done
+
+for pid in ${stress_pids[*]} ; do
+ kill -SIGTERM $pid
+ wait $pid
+done
+
+exit $rc