summaryrefslogtreecommitdiffstats
path: root/arch/mips/math-emu/sp_maddf.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/mips/math-emu/sp_maddf.c')
-rw-r--r--arch/mips/math-emu/sp_maddf.c278
1 files changed, 278 insertions, 0 deletions
diff --git a/arch/mips/math-emu/sp_maddf.c b/arch/mips/math-emu/sp_maddf.c
new file mode 100644
index 000000000..473ee222d
--- /dev/null
+++ b/arch/mips/math-emu/sp_maddf.c
@@ -0,0 +1,278 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * IEEE754 floating point arithmetic
+ * single precision: MADDF.f (Fused Multiply Add)
+ * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
+ *
+ * MIPS floating point support
+ * Copyright (C) 2015 Imagination Technologies, Ltd.
+ * Author: Markos Chandras <markos.chandras@imgtec.com>
+ */
+
+#include "ieee754sp.h"
+
+
+static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x,
+ union ieee754sp y, enum maddf_flags flags)
+{
+ int re;
+ int rs;
+ unsigned int rm;
+ u64 rm64;
+ u64 zm64;
+ int s;
+
+ COMPXSP;
+ COMPYSP;
+ COMPZSP;
+
+ EXPLODEXSP;
+ EXPLODEYSP;
+ EXPLODEZSP;
+
+ FLUSHXSP;
+ FLUSHYSP;
+ FLUSHZSP;
+
+ ieee754_clearcx();
+
+ rs = xs ^ ys;
+ if (flags & MADDF_NEGATE_PRODUCT)
+ rs ^= 1;
+ if (flags & MADDF_NEGATE_ADDITION)
+ zs ^= 1;
+
+ /*
+ * Handle the cases when at least one of x, y or z is a NaN.
+ * Order of precedence is sNaN, qNaN and z, x, y.
+ */
+ if (zc == IEEE754_CLASS_SNAN)
+ return ieee754sp_nanxcpt(z);
+ if (xc == IEEE754_CLASS_SNAN)
+ return ieee754sp_nanxcpt(x);
+ if (yc == IEEE754_CLASS_SNAN)
+ return ieee754sp_nanxcpt(y);
+ if (zc == IEEE754_CLASS_QNAN)
+ return z;
+ if (xc == IEEE754_CLASS_QNAN)
+ return x;
+ if (yc == IEEE754_CLASS_QNAN)
+ return y;
+
+ if (zc == IEEE754_CLASS_DNORM)
+ SPDNORMZ;
+ /* ZERO z cases are handled separately below */
+
+ switch (CLPAIR(xc, yc)) {
+
+
+ /*
+ * Infinity handling
+ */
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
+ ieee754_setcx(IEEE754_INVALID_OPERATION);
+ return ieee754sp_indef();
+
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
+ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
+ if ((zc == IEEE754_CLASS_INF) && (zs != rs)) {
+ /*
+ * Cases of addition of infinities with opposite signs
+ * or subtraction of infinities with same signs.
+ */
+ ieee754_setcx(IEEE754_INVALID_OPERATION);
+ return ieee754sp_indef();
+ }
+ /*
+ * z is here either not an infinity, or an infinity having the
+ * same sign as product (x*y). The result must be an infinity,
+ * and its sign is determined only by the sign of product (x*y).
+ */
+ return ieee754sp_inf(rs);
+
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
+ case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754sp_inf(zs);
+ if (zc == IEEE754_CLASS_ZERO) {
+ /* Handle cases +0 + (-0) and similar ones. */
+ if (zs == rs)
+ /*
+ * Cases of addition of zeros of equal signs
+ * or subtraction of zeroes of opposite signs.
+ * The sign of the resulting zero is in any
+ * such case determined only by the sign of z.
+ */
+ return z;
+
+ return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
+ }
+ /* x*y is here 0, and z is not 0, so just return z */
+ return z;
+
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
+ SPDNORMX;
+ fallthrough;
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754sp_inf(zs);
+ SPDNORMY;
+ break;
+
+ case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754sp_inf(zs);
+ SPDNORMX;
+ break;
+
+ case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
+ if (zc == IEEE754_CLASS_INF)
+ return ieee754sp_inf(zs);
+ /* continue to real computations */
+ }
+
+ /* Finally get to do some computation */
+
+ /*
+ * Do the multiplication bit first
+ *
+ * rm = xm * ym, re = xe + ye basically
+ *
+ * At this point xm and ym should have been normalized.
+ */
+
+ /* rm = xm * ym, re = xe+ye basically */
+ assert(xm & SP_HIDDEN_BIT);
+ assert(ym & SP_HIDDEN_BIT);
+
+ re = xe + ye;
+
+ /* Multiple 24 bit xm and ym to give 48 bit results */
+ rm64 = (uint64_t)xm * ym;
+
+ /* Shunt to top of word */
+ rm64 = rm64 << 16;
+
+ /* Put explicit bit at bit 62 if necessary */
+ if ((int64_t) rm64 < 0) {
+ rm64 = rm64 >> 1;
+ re++;
+ }
+
+ assert(rm64 & (1 << 62));
+
+ if (zc == IEEE754_CLASS_ZERO) {
+ /*
+ * Move explicit bit from bit 62 to bit 26 since the
+ * ieee754sp_format code expects the mantissa to be
+ * 27 bits wide (24 + 3 rounding bits).
+ */
+ rm = XSPSRS64(rm64, (62 - 26));
+ return ieee754sp_format(rs, re, rm);
+ }
+
+ /* Move explicit bit from bit 23 to bit 62 */
+ zm64 = (uint64_t)zm << (62 - 23);
+ assert(zm64 & (1 << 62));
+
+ /* Make the exponents the same */
+ if (ze > re) {
+ /*
+ * Have to shift r fraction right to align.
+ */
+ s = ze - re;
+ rm64 = XSPSRS64(rm64, s);
+ re += s;
+ } else if (re > ze) {
+ /*
+ * Have to shift z fraction right to align.
+ */
+ s = re - ze;
+ zm64 = XSPSRS64(zm64, s);
+ ze += s;
+ }
+ assert(ze == re);
+ assert(ze <= SP_EMAX);
+
+ /* Do the addition */
+ if (zs == rs) {
+ /*
+ * Generate 64 bit result by adding two 63 bit numbers
+ * leaving result in zm64, zs and ze.
+ */
+ zm64 = zm64 + rm64;
+ if ((int64_t)zm64 < 0) { /* carry out */
+ zm64 = XSPSRS1(zm64);
+ ze++;
+ }
+ } else {
+ if (zm64 >= rm64) {
+ zm64 = zm64 - rm64;
+ } else {
+ zm64 = rm64 - zm64;
+ zs = rs;
+ }
+ if (zm64 == 0)
+ return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
+
+ /*
+ * Put explicit bit at bit 62 if necessary.
+ */
+ while ((zm64 >> 62) == 0) {
+ zm64 <<= 1;
+ ze--;
+ }
+ }
+
+ /*
+ * Move explicit bit from bit 62 to bit 26 since the
+ * ieee754sp_format code expects the mantissa to be
+ * 27 bits wide (24 + 3 rounding bits).
+ */
+ zm = XSPSRS64(zm64, (62 - 26));
+
+ return ieee754sp_format(zs, ze, zm);
+}
+
+union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
+ union ieee754sp y)
+{
+ return _sp_maddf(z, x, y, 0);
+}
+
+union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
+ union ieee754sp y)
+{
+ return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
+}
+
+union ieee754sp ieee754sp_madd(union ieee754sp z, union ieee754sp x,
+ union ieee754sp y)
+{
+ return _sp_maddf(z, x, y, 0);
+}
+
+union ieee754sp ieee754sp_msub(union ieee754sp z, union ieee754sp x,
+ union ieee754sp y)
+{
+ return _sp_maddf(z, x, y, MADDF_NEGATE_ADDITION);
+}
+
+union ieee754sp ieee754sp_nmadd(union ieee754sp z, union ieee754sp x,
+ union ieee754sp y)
+{
+ return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION);
+}
+
+union ieee754sp ieee754sp_nmsub(union ieee754sp z, union ieee754sp x,
+ union ieee754sp y)
+{
+ return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
+}