diff options
Diffstat (limited to 'arch/x86/crypto/crct10dif-pcl-asm_64.S')
-rw-r--r-- | arch/x86/crypto/crct10dif-pcl-asm_64.S | 333 |
1 files changed, 333 insertions, 0 deletions
diff --git a/arch/x86/crypto/crct10dif-pcl-asm_64.S b/arch/x86/crypto/crct10dif-pcl-asm_64.S new file mode 100644 index 000000000..721474abf --- /dev/null +++ b/arch/x86/crypto/crct10dif-pcl-asm_64.S @@ -0,0 +1,333 @@ +######################################################################## +# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions +# +# Copyright (c) 2013, Intel Corporation +# +# Authors: +# Erdinc Ozturk <erdinc.ozturk@intel.com> +# Vinodh Gopal <vinodh.gopal@intel.com> +# James Guilford <james.guilford@intel.com> +# Tim Chen <tim.c.chen@linux.intel.com> +# +# This software is available to you under a choice of one of two +# licenses. You may choose to be licensed under the terms of the GNU +# General Public License (GPL) Version 2, available from the file +# COPYING in the main directory of this source tree, or the +# OpenIB.org BSD license below: +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are +# met: +# +# * Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the +# distribution. +# +# * Neither the name of the Intel Corporation nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# +# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY +# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR +# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +# +# Reference paper titled "Fast CRC Computation for Generic +# Polynomials Using PCLMULQDQ Instruction" +# URL: http://www.intel.com/content/dam/www/public/us/en/documents +# /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf +# + +#include <linux/linkage.h> + +.text + +#define init_crc %edi +#define buf %rsi +#define len %rdx + +#define FOLD_CONSTS %xmm10 +#define BSWAP_MASK %xmm11 + +# Fold reg1, reg2 into the next 32 data bytes, storing the result back into +# reg1, reg2. +.macro fold_32_bytes offset, reg1, reg2 + movdqu \offset(buf), %xmm9 + movdqu \offset+16(buf), %xmm12 + pshufb BSWAP_MASK, %xmm9 + pshufb BSWAP_MASK, %xmm12 + movdqa \reg1, %xmm8 + movdqa \reg2, %xmm13 + pclmulqdq $0x00, FOLD_CONSTS, \reg1 + pclmulqdq $0x11, FOLD_CONSTS, %xmm8 + pclmulqdq $0x00, FOLD_CONSTS, \reg2 + pclmulqdq $0x11, FOLD_CONSTS, %xmm13 + pxor %xmm9 , \reg1 + xorps %xmm8 , \reg1 + pxor %xmm12, \reg2 + xorps %xmm13, \reg2 +.endm + +# Fold src_reg into dst_reg. +.macro fold_16_bytes src_reg, dst_reg + movdqa \src_reg, %xmm8 + pclmulqdq $0x11, FOLD_CONSTS, \src_reg + pclmulqdq $0x00, FOLD_CONSTS, %xmm8 + pxor %xmm8, \dst_reg + xorps \src_reg, \dst_reg +.endm + +# +# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len); +# +# Assumes len >= 16. +# +.align 16 +SYM_FUNC_START(crc_t10dif_pcl) + + movdqa .Lbswap_mask(%rip), BSWAP_MASK + + # For sizes less than 256 bytes, we can't fold 128 bytes at a time. + cmp $256, len + jl .Lless_than_256_bytes + + # Load the first 128 data bytes. Byte swapping is necessary to make the + # bit order match the polynomial coefficient order. + movdqu 16*0(buf), %xmm0 + movdqu 16*1(buf), %xmm1 + movdqu 16*2(buf), %xmm2 + movdqu 16*3(buf), %xmm3 + movdqu 16*4(buf), %xmm4 + movdqu 16*5(buf), %xmm5 + movdqu 16*6(buf), %xmm6 + movdqu 16*7(buf), %xmm7 + add $128, buf + pshufb BSWAP_MASK, %xmm0 + pshufb BSWAP_MASK, %xmm1 + pshufb BSWAP_MASK, %xmm2 + pshufb BSWAP_MASK, %xmm3 + pshufb BSWAP_MASK, %xmm4 + pshufb BSWAP_MASK, %xmm5 + pshufb BSWAP_MASK, %xmm6 + pshufb BSWAP_MASK, %xmm7 + + # XOR the first 16 data *bits* with the initial CRC value. + pxor %xmm8, %xmm8 + pinsrw $7, init_crc, %xmm8 + pxor %xmm8, %xmm0 + + movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS + + # Subtract 128 for the 128 data bytes just consumed. Subtract another + # 128 to simplify the termination condition of the following loop. + sub $256, len + + # While >= 128 data bytes remain (not counting xmm0-7), fold the 128 + # bytes xmm0-7 into them, storing the result back into xmm0-7. +.Lfold_128_bytes_loop: + fold_32_bytes 0, %xmm0, %xmm1 + fold_32_bytes 32, %xmm2, %xmm3 + fold_32_bytes 64, %xmm4, %xmm5 + fold_32_bytes 96, %xmm6, %xmm7 + add $128, buf + sub $128, len + jge .Lfold_128_bytes_loop + + # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7. + + # Fold across 64 bytes. + movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS + fold_16_bytes %xmm0, %xmm4 + fold_16_bytes %xmm1, %xmm5 + fold_16_bytes %xmm2, %xmm6 + fold_16_bytes %xmm3, %xmm7 + # Fold across 32 bytes. + movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS + fold_16_bytes %xmm4, %xmm6 + fold_16_bytes %xmm5, %xmm7 + # Fold across 16 bytes. + movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS + fold_16_bytes %xmm6, %xmm7 + + # Add 128 to get the correct number of data bytes remaining in 0...127 + # (not counting xmm7), following the previous extra subtraction by 128. + # Then subtract 16 to simplify the termination condition of the + # following loop. + add $128-16, len + + # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes + # xmm7 into them, storing the result back into xmm7. + jl .Lfold_16_bytes_loop_done +.Lfold_16_bytes_loop: + movdqa %xmm7, %xmm8 + pclmulqdq $0x11, FOLD_CONSTS, %xmm7 + pclmulqdq $0x00, FOLD_CONSTS, %xmm8 + pxor %xmm8, %xmm7 + movdqu (buf), %xmm0 + pshufb BSWAP_MASK, %xmm0 + pxor %xmm0 , %xmm7 + add $16, buf + sub $16, len + jge .Lfold_16_bytes_loop + +.Lfold_16_bytes_loop_done: + # Add 16 to get the correct number of data bytes remaining in 0...15 + # (not counting xmm7), following the previous extra subtraction by 16. + add $16, len + je .Lreduce_final_16_bytes + +.Lhandle_partial_segment: + # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16 + # bytes are in xmm7 and the rest are the remaining data in 'buf'. To do + # this without needing a fold constant for each possible 'len', redivide + # the bytes into a first chunk of 'len' bytes and a second chunk of 16 + # bytes, then fold the first chunk into the second. + + movdqa %xmm7, %xmm2 + + # xmm1 = last 16 original data bytes + movdqu -16(buf, len), %xmm1 + pshufb BSWAP_MASK, %xmm1 + + # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes. + lea .Lbyteshift_table+16(%rip), %rax + sub len, %rax + movdqu (%rax), %xmm0 + pshufb %xmm0, %xmm2 + + # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes. + pxor .Lmask1(%rip), %xmm0 + pshufb %xmm0, %xmm7 + + # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes), + # then '16-len' bytes from xmm2 (high-order bytes). + pblendvb %xmm2, %xmm1 #xmm0 is implicit + + # Fold the first chunk into the second chunk, storing the result in xmm7. + movdqa %xmm7, %xmm8 + pclmulqdq $0x11, FOLD_CONSTS, %xmm7 + pclmulqdq $0x00, FOLD_CONSTS, %xmm8 + pxor %xmm8, %xmm7 + pxor %xmm1, %xmm7 + +.Lreduce_final_16_bytes: + # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC + + # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. + movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS + + # Fold the high 64 bits into the low 64 bits, while also multiplying by + # x^64. This produces a 128-bit value congruent to x^64 * M(x) and + # whose low 48 bits are 0. + movdqa %xmm7, %xmm0 + pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x)) + pslldq $8, %xmm0 + pxor %xmm0, %xmm7 # + low bits * x^64 + + # Fold the high 32 bits into the low 96 bits. This produces a 96-bit + # value congruent to x^64 * M(x) and whose low 48 bits are 0. + movdqa %xmm7, %xmm0 + pand .Lmask2(%rip), %xmm0 # zero high 32 bits + psrldq $12, %xmm7 # extract high 32 bits + pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x)) + pxor %xmm0, %xmm7 # + low bits + + # Load G(x) and floor(x^48 / G(x)). + movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS + + # Use Barrett reduction to compute the final CRC value. + movdqa %xmm7, %xmm0 + pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x)) + psrlq $32, %xmm7 # /= x^32 + pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x) + psrlq $48, %xmm0 + pxor %xmm7, %xmm0 # + low 16 nonzero bits + # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0. + + pextrw $0, %xmm0, %eax + RET + +.align 16 +.Lless_than_256_bytes: + # Checksumming a buffer of length 16...255 bytes + + # Load the first 16 data bytes. + movdqu (buf), %xmm7 + pshufb BSWAP_MASK, %xmm7 + add $16, buf + + # XOR the first 16 data *bits* with the initial CRC value. + pxor %xmm0, %xmm0 + pinsrw $7, init_crc, %xmm0 + pxor %xmm0, %xmm7 + + movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS + cmp $16, len + je .Lreduce_final_16_bytes # len == 16 + sub $32, len + jge .Lfold_16_bytes_loop # 32 <= len <= 255 + add $16, len + jmp .Lhandle_partial_segment # 17 <= len <= 31 +SYM_FUNC_END(crc_t10dif_pcl) + +.section .rodata, "a", @progbits +.align 16 + +# Fold constants precomputed from the polynomial 0x18bb7 +# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 +.Lfold_across_128_bytes_consts: + .quad 0x0000000000006123 # x^(8*128) mod G(x) + .quad 0x0000000000002295 # x^(8*128+64) mod G(x) +.Lfold_across_64_bytes_consts: + .quad 0x0000000000001069 # x^(4*128) mod G(x) + .quad 0x000000000000dd31 # x^(4*128+64) mod G(x) +.Lfold_across_32_bytes_consts: + .quad 0x000000000000857d # x^(2*128) mod G(x) + .quad 0x0000000000007acc # x^(2*128+64) mod G(x) +.Lfold_across_16_bytes_consts: + .quad 0x000000000000a010 # x^(1*128) mod G(x) + .quad 0x0000000000001faa # x^(1*128+64) mod G(x) +.Lfinal_fold_consts: + .quad 0x1368000000000000 # x^48 * (x^48 mod G(x)) + .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x)) +.Lbarrett_reduction_consts: + .quad 0x0000000000018bb7 # G(x) + .quad 0x00000001f65a57f8 # floor(x^48 / G(x)) + +.section .rodata.cst16.mask1, "aM", @progbits, 16 +.align 16 +.Lmask1: + .octa 0x80808080808080808080808080808080 + +.section .rodata.cst16.mask2, "aM", @progbits, 16 +.align 16 +.Lmask2: + .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF + +.section .rodata.cst16.bswap_mask, "aM", @progbits, 16 +.align 16 +.Lbswap_mask: + .octa 0x000102030405060708090A0B0C0D0E0F + +.section .rodata.cst32.byteshift_table, "aM", @progbits, 32 +.align 16 +# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len] +# is the index vector to shift left by 'len' bytes, and is also {0x80, ..., +# 0x80} XOR the index vector to shift right by '16 - len' bytes. +.Lbyteshift_table: + .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 + .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f + .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 + .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0 |