summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gem/i915_gem_busy.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/gem/i915_gem_busy.c')
-rw-r--r--drivers/gpu/drm/i915/gem/i915_gem_busy.c164
1 files changed, 164 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gem/i915_gem_busy.c b/drivers/gpu/drm/i915/gem/i915_gem_busy.c
new file mode 100644
index 000000000..ddda46824
--- /dev/null
+++ b/drivers/gpu/drm/i915/gem/i915_gem_busy.c
@@ -0,0 +1,164 @@
+/*
+ * SPDX-License-Identifier: MIT
+ *
+ * Copyright © 2014-2016 Intel Corporation
+ */
+
+#include <linux/dma-fence-array.h>
+
+#include "gt/intel_engine.h"
+
+#include "i915_gem_ioctls.h"
+#include "i915_gem_object.h"
+
+static __always_inline u32 __busy_read_flag(u16 id)
+{
+ if (id == (u16)I915_ENGINE_CLASS_INVALID)
+ return 0xffff0000u;
+
+ GEM_BUG_ON(id >= 16);
+ return 0x10000u << id;
+}
+
+static __always_inline u32 __busy_write_id(u16 id)
+{
+ /*
+ * The uABI guarantees an active writer is also amongst the read
+ * engines. This would be true if we accessed the activity tracking
+ * under the lock, but as we perform the lookup of the object and
+ * its activity locklessly we can not guarantee that the last_write
+ * being active implies that we have set the same engine flag from
+ * last_read - hence we always set both read and write busy for
+ * last_write.
+ */
+ if (id == (u16)I915_ENGINE_CLASS_INVALID)
+ return 0xffffffffu;
+
+ return (id + 1) | __busy_read_flag(id);
+}
+
+static __always_inline unsigned int
+__busy_set_if_active(struct dma_fence *fence, u32 (*flag)(u16 id))
+{
+ const struct i915_request *rq;
+
+ /*
+ * We have to check the current hw status of the fence as the uABI
+ * guarantees forward progress. We could rely on the idle worker
+ * to eventually flush us, but to minimise latency just ask the
+ * hardware.
+ *
+ * Note we only report on the status of native fences and we currently
+ * have two native fences:
+ *
+ * 1. A composite fence (dma_fence_array) constructed of i915 requests
+ * created during a parallel submission. In this case we deconstruct the
+ * composite fence into individual i915 requests and check the status of
+ * each request.
+ *
+ * 2. A single i915 request.
+ */
+ if (dma_fence_is_array(fence)) {
+ struct dma_fence_array *array = to_dma_fence_array(fence);
+ struct dma_fence **child = array->fences;
+ unsigned int nchild = array->num_fences;
+
+ do {
+ struct dma_fence *current_fence = *child++;
+
+ /* Not an i915 fence, can't be busy per above */
+ if (!dma_fence_is_i915(current_fence) ||
+ !test_bit(I915_FENCE_FLAG_COMPOSITE,
+ &current_fence->flags)) {
+ return 0;
+ }
+
+ rq = to_request(current_fence);
+ if (!i915_request_completed(rq))
+ return flag(rq->engine->uabi_class);
+ } while (--nchild);
+
+ /* All requests in array complete, not busy */
+ return 0;
+ } else {
+ if (!dma_fence_is_i915(fence))
+ return 0;
+
+ rq = to_request(fence);
+ if (i915_request_completed(rq))
+ return 0;
+
+ /* Beware type-expansion follies! */
+ BUILD_BUG_ON(!typecheck(u16, rq->engine->uabi_class));
+ return flag(rq->engine->uabi_class);
+ }
+}
+
+static __always_inline unsigned int
+busy_check_reader(struct dma_fence *fence)
+{
+ return __busy_set_if_active(fence, __busy_read_flag);
+}
+
+static __always_inline unsigned int
+busy_check_writer(struct dma_fence *fence)
+{
+ if (!fence)
+ return 0;
+
+ return __busy_set_if_active(fence, __busy_write_id);
+}
+
+int
+i915_gem_busy_ioctl(struct drm_device *dev, void *data,
+ struct drm_file *file)
+{
+ struct drm_i915_gem_busy *args = data;
+ struct drm_i915_gem_object *obj;
+ struct dma_resv_iter cursor;
+ struct dma_fence *fence;
+ int err;
+
+ err = -ENOENT;
+ rcu_read_lock();
+ obj = i915_gem_object_lookup_rcu(file, args->handle);
+ if (!obj)
+ goto out;
+
+ /*
+ * A discrepancy here is that we do not report the status of
+ * non-i915 fences, i.e. even though we may report the object as idle,
+ * a call to set-domain may still stall waiting for foreign rendering.
+ * This also means that wait-ioctl may report an object as busy,
+ * where busy-ioctl considers it idle.
+ *
+ * We trade the ability to warn of foreign fences to report on which
+ * i915 engines are active for the object.
+ *
+ * Alternatively, we can trade that extra information on read/write
+ * activity with
+ * args->busy =
+ * !dma_resv_test_signaled(obj->resv, DMA_RESV_USAGE_READ);
+ * to report the overall busyness. This is what the wait-ioctl does.
+ *
+ */
+ args->busy = 0;
+ dma_resv_iter_begin(&cursor, obj->base.resv, DMA_RESV_USAGE_READ);
+ dma_resv_for_each_fence_unlocked(&cursor, fence) {
+ if (dma_resv_iter_is_restarted(&cursor))
+ args->busy = 0;
+
+ if (dma_resv_iter_usage(&cursor) <= DMA_RESV_USAGE_WRITE)
+ /* Translate the write fences to the READ *and* WRITE engine */
+ args->busy |= busy_check_writer(fence);
+ else
+ /* Translate read fences to READ set of engines */
+ args->busy |= busy_check_reader(fence);
+ }
+ dma_resv_iter_end(&cursor);
+
+ err = 0;
+out:
+ rcu_read_unlock();
+ return err;
+}