summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gem/i915_gem_pages.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/gem/i915_gem_pages.c')
-rw-r--r--drivers/gpu/drm/i915/gem/i915_gem_pages.c674
1 files changed, 674 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gem/i915_gem_pages.c b/drivers/gpu/drm/i915/gem/i915_gem_pages.c
new file mode 100644
index 000000000..4df50b049
--- /dev/null
+++ b/drivers/gpu/drm/i915/gem/i915_gem_pages.c
@@ -0,0 +1,674 @@
+/*
+ * SPDX-License-Identifier: MIT
+ *
+ * Copyright © 2014-2016 Intel Corporation
+ */
+
+#include <drm/drm_cache.h>
+
+#include "gt/intel_gt.h"
+#include "gt/intel_gt_pm.h"
+
+#include "i915_drv.h"
+#include "i915_gem_object.h"
+#include "i915_scatterlist.h"
+#include "i915_gem_lmem.h"
+#include "i915_gem_mman.h"
+
+void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
+ struct sg_table *pages,
+ unsigned int sg_page_sizes)
+{
+ struct drm_i915_private *i915 = to_i915(obj->base.dev);
+ unsigned long supported = RUNTIME_INFO(i915)->page_sizes;
+ bool shrinkable;
+ int i;
+
+ assert_object_held_shared(obj);
+
+ if (i915_gem_object_is_volatile(obj))
+ obj->mm.madv = I915_MADV_DONTNEED;
+
+ /* Make the pages coherent with the GPU (flushing any swapin). */
+ if (obj->cache_dirty) {
+ WARN_ON_ONCE(IS_DGFX(i915));
+ obj->write_domain = 0;
+ if (i915_gem_object_has_struct_page(obj))
+ drm_clflush_sg(pages);
+ obj->cache_dirty = false;
+ }
+
+ obj->mm.get_page.sg_pos = pages->sgl;
+ obj->mm.get_page.sg_idx = 0;
+ obj->mm.get_dma_page.sg_pos = pages->sgl;
+ obj->mm.get_dma_page.sg_idx = 0;
+
+ obj->mm.pages = pages;
+
+ GEM_BUG_ON(!sg_page_sizes);
+ obj->mm.page_sizes.phys = sg_page_sizes;
+
+ /*
+ * Calculate the supported page-sizes which fit into the given
+ * sg_page_sizes. This will give us the page-sizes which we may be able
+ * to use opportunistically when later inserting into the GTT. For
+ * example if phys=2G, then in theory we should be able to use 1G, 2M,
+ * 64K or 4K pages, although in practice this will depend on a number of
+ * other factors.
+ */
+ obj->mm.page_sizes.sg = 0;
+ for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
+ if (obj->mm.page_sizes.phys & ~0u << i)
+ obj->mm.page_sizes.sg |= BIT(i);
+ }
+ GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
+
+ shrinkable = i915_gem_object_is_shrinkable(obj);
+
+ if (i915_gem_object_is_tiled(obj) &&
+ i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
+ GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
+ i915_gem_object_set_tiling_quirk(obj);
+ GEM_BUG_ON(!list_empty(&obj->mm.link));
+ atomic_inc(&obj->mm.shrink_pin);
+ shrinkable = false;
+ }
+
+ if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
+ struct list_head *list;
+ unsigned long flags;
+
+ assert_object_held(obj);
+ spin_lock_irqsave(&i915->mm.obj_lock, flags);
+
+ i915->mm.shrink_count++;
+ i915->mm.shrink_memory += obj->base.size;
+
+ if (obj->mm.madv != I915_MADV_WILLNEED)
+ list = &i915->mm.purge_list;
+ else
+ list = &i915->mm.shrink_list;
+ list_add_tail(&obj->mm.link, list);
+
+ atomic_set(&obj->mm.shrink_pin, 0);
+ spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
+ }
+}
+
+int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
+{
+ struct drm_i915_private *i915 = to_i915(obj->base.dev);
+ int err;
+
+ assert_object_held_shared(obj);
+
+ if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
+ drm_dbg(&i915->drm,
+ "Attempting to obtain a purgeable object\n");
+ return -EFAULT;
+ }
+
+ err = obj->ops->get_pages(obj);
+ GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
+
+ return err;
+}
+
+/* Ensure that the associated pages are gathered from the backing storage
+ * and pinned into our object. i915_gem_object_pin_pages() may be called
+ * multiple times before they are released by a single call to
+ * i915_gem_object_unpin_pages() - once the pages are no longer referenced
+ * either as a result of memory pressure (reaping pages under the shrinker)
+ * or as the object is itself released.
+ */
+int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
+{
+ int err;
+
+ assert_object_held(obj);
+
+ assert_object_held_shared(obj);
+
+ if (unlikely(!i915_gem_object_has_pages(obj))) {
+ GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
+
+ err = ____i915_gem_object_get_pages(obj);
+ if (err)
+ return err;
+
+ smp_mb__before_atomic();
+ }
+ atomic_inc(&obj->mm.pages_pin_count);
+
+ return 0;
+}
+
+int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
+{
+ struct i915_gem_ww_ctx ww;
+ int err;
+
+ i915_gem_ww_ctx_init(&ww, true);
+retry:
+ err = i915_gem_object_lock(obj, &ww);
+ if (!err)
+ err = i915_gem_object_pin_pages(obj);
+
+ if (err == -EDEADLK) {
+ err = i915_gem_ww_ctx_backoff(&ww);
+ if (!err)
+ goto retry;
+ }
+ i915_gem_ww_ctx_fini(&ww);
+ return err;
+}
+
+/* Immediately discard the backing storage */
+int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
+{
+ if (obj->ops->truncate)
+ return obj->ops->truncate(obj);
+
+ return 0;
+}
+
+static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
+{
+ struct radix_tree_iter iter;
+ void __rcu **slot;
+
+ rcu_read_lock();
+ radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
+ radix_tree_delete(&obj->mm.get_page.radix, iter.index);
+ radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
+ radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
+ rcu_read_unlock();
+}
+
+static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
+{
+ if (is_vmalloc_addr(ptr))
+ vunmap(ptr);
+}
+
+static void flush_tlb_invalidate(struct drm_i915_gem_object *obj)
+{
+ struct drm_i915_private *i915 = to_i915(obj->base.dev);
+ struct intel_gt *gt = to_gt(i915);
+
+ if (!obj->mm.tlb)
+ return;
+
+ intel_gt_invalidate_tlb(gt, obj->mm.tlb);
+ obj->mm.tlb = 0;
+}
+
+struct sg_table *
+__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
+{
+ struct sg_table *pages;
+
+ assert_object_held_shared(obj);
+
+ pages = fetch_and_zero(&obj->mm.pages);
+ if (IS_ERR_OR_NULL(pages))
+ return pages;
+
+ if (i915_gem_object_is_volatile(obj))
+ obj->mm.madv = I915_MADV_WILLNEED;
+
+ if (!i915_gem_object_has_self_managed_shrink_list(obj))
+ i915_gem_object_make_unshrinkable(obj);
+
+ if (obj->mm.mapping) {
+ unmap_object(obj, page_mask_bits(obj->mm.mapping));
+ obj->mm.mapping = NULL;
+ }
+
+ __i915_gem_object_reset_page_iter(obj);
+ obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
+
+ flush_tlb_invalidate(obj);
+
+ return pages;
+}
+
+int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
+{
+ struct sg_table *pages;
+
+ if (i915_gem_object_has_pinned_pages(obj))
+ return -EBUSY;
+
+ /* May be called by shrinker from within get_pages() (on another bo) */
+ assert_object_held_shared(obj);
+
+ i915_gem_object_release_mmap_offset(obj);
+
+ /*
+ * ->put_pages might need to allocate memory for the bit17 swizzle
+ * array, hence protect them from being reaped by removing them from gtt
+ * lists early.
+ */
+ pages = __i915_gem_object_unset_pages(obj);
+
+ /*
+ * XXX Temporary hijinx to avoid updating all backends to handle
+ * NULL pages. In the future, when we have more asynchronous
+ * get_pages backends we should be better able to handle the
+ * cancellation of the async task in a more uniform manner.
+ */
+ if (!IS_ERR_OR_NULL(pages))
+ obj->ops->put_pages(obj, pages);
+
+ return 0;
+}
+
+/* The 'mapping' part of i915_gem_object_pin_map() below */
+static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
+ enum i915_map_type type)
+{
+ unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
+ struct page *stack[32], **pages = stack, *page;
+ struct sgt_iter iter;
+ pgprot_t pgprot;
+ void *vaddr;
+
+ switch (type) {
+ default:
+ MISSING_CASE(type);
+ fallthrough; /* to use PAGE_KERNEL anyway */
+ case I915_MAP_WB:
+ /*
+ * On 32b, highmem using a finite set of indirect PTE (i.e.
+ * vmap) to provide virtual mappings of the high pages.
+ * As these are finite, map_new_virtual() must wait for some
+ * other kmap() to finish when it runs out. If we map a large
+ * number of objects, there is no method for it to tell us
+ * to release the mappings, and we deadlock.
+ *
+ * However, if we make an explicit vmap of the page, that
+ * uses a larger vmalloc arena, and also has the ability
+ * to tell us to release unwanted mappings. Most importantly,
+ * it will fail and propagate an error instead of waiting
+ * forever.
+ *
+ * So if the page is beyond the 32b boundary, make an explicit
+ * vmap.
+ */
+ if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
+ return page_address(sg_page(obj->mm.pages->sgl));
+ pgprot = PAGE_KERNEL;
+ break;
+ case I915_MAP_WC:
+ pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
+ break;
+ }
+
+ if (n_pages > ARRAY_SIZE(stack)) {
+ /* Too big for stack -- allocate temporary array instead */
+ pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
+ if (!pages)
+ return ERR_PTR(-ENOMEM);
+ }
+
+ i = 0;
+ for_each_sgt_page(page, iter, obj->mm.pages)
+ pages[i++] = page;
+ vaddr = vmap(pages, n_pages, 0, pgprot);
+ if (pages != stack)
+ kvfree(pages);
+
+ return vaddr ?: ERR_PTR(-ENOMEM);
+}
+
+static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
+ enum i915_map_type type)
+{
+ resource_size_t iomap = obj->mm.region->iomap.base -
+ obj->mm.region->region.start;
+ unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
+ unsigned long stack[32], *pfns = stack, i;
+ struct sgt_iter iter;
+ dma_addr_t addr;
+ void *vaddr;
+
+ GEM_BUG_ON(type != I915_MAP_WC);
+
+ if (n_pfn > ARRAY_SIZE(stack)) {
+ /* Too big for stack -- allocate temporary array instead */
+ pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
+ if (!pfns)
+ return ERR_PTR(-ENOMEM);
+ }
+
+ i = 0;
+ for_each_sgt_daddr(addr, iter, obj->mm.pages)
+ pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
+ vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
+ if (pfns != stack)
+ kvfree(pfns);
+
+ return vaddr ?: ERR_PTR(-ENOMEM);
+}
+
+/* get, pin, and map the pages of the object into kernel space */
+void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
+ enum i915_map_type type)
+{
+ enum i915_map_type has_type;
+ bool pinned;
+ void *ptr;
+ int err;
+
+ if (!i915_gem_object_has_struct_page(obj) &&
+ !i915_gem_object_has_iomem(obj))
+ return ERR_PTR(-ENXIO);
+
+ if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
+ return ERR_PTR(-EINVAL);
+
+ assert_object_held(obj);
+
+ pinned = !(type & I915_MAP_OVERRIDE);
+ type &= ~I915_MAP_OVERRIDE;
+
+ if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
+ if (unlikely(!i915_gem_object_has_pages(obj))) {
+ GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
+
+ err = ____i915_gem_object_get_pages(obj);
+ if (err)
+ return ERR_PTR(err);
+
+ smp_mb__before_atomic();
+ }
+ atomic_inc(&obj->mm.pages_pin_count);
+ pinned = false;
+ }
+ GEM_BUG_ON(!i915_gem_object_has_pages(obj));
+
+ /*
+ * For discrete our CPU mappings needs to be consistent in order to
+ * function correctly on !x86. When mapping things through TTM, we use
+ * the same rules to determine the caching type.
+ *
+ * The caching rules, starting from DG1:
+ *
+ * - If the object can be placed in device local-memory, then the
+ * pages should be allocated and mapped as write-combined only.
+ *
+ * - Everything else is always allocated and mapped as write-back,
+ * with the guarantee that everything is also coherent with the
+ * GPU.
+ *
+ * Internal users of lmem are already expected to get this right, so no
+ * fudging needed there.
+ */
+ if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
+ if (type != I915_MAP_WC && !obj->mm.n_placements) {
+ ptr = ERR_PTR(-ENODEV);
+ goto err_unpin;
+ }
+
+ type = I915_MAP_WC;
+ } else if (IS_DGFX(to_i915(obj->base.dev))) {
+ type = I915_MAP_WB;
+ }
+
+ ptr = page_unpack_bits(obj->mm.mapping, &has_type);
+ if (ptr && has_type != type) {
+ if (pinned) {
+ ptr = ERR_PTR(-EBUSY);
+ goto err_unpin;
+ }
+
+ unmap_object(obj, ptr);
+
+ ptr = obj->mm.mapping = NULL;
+ }
+
+ if (!ptr) {
+ err = i915_gem_object_wait_moving_fence(obj, true);
+ if (err) {
+ ptr = ERR_PTR(err);
+ goto err_unpin;
+ }
+
+ if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
+ ptr = ERR_PTR(-ENODEV);
+ else if (i915_gem_object_has_struct_page(obj))
+ ptr = i915_gem_object_map_page(obj, type);
+ else
+ ptr = i915_gem_object_map_pfn(obj, type);
+ if (IS_ERR(ptr))
+ goto err_unpin;
+
+ obj->mm.mapping = page_pack_bits(ptr, type);
+ }
+
+ return ptr;
+
+err_unpin:
+ atomic_dec(&obj->mm.pages_pin_count);
+ return ptr;
+}
+
+void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
+ enum i915_map_type type)
+{
+ void *ret;
+
+ i915_gem_object_lock(obj, NULL);
+ ret = i915_gem_object_pin_map(obj, type);
+ i915_gem_object_unlock(obj);
+
+ return ret;
+}
+
+void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
+ unsigned long offset,
+ unsigned long size)
+{
+ enum i915_map_type has_type;
+ void *ptr;
+
+ GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
+ GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
+ offset, size, obj->base.size));
+
+ wmb(); /* let all previous writes be visible to coherent partners */
+ obj->mm.dirty = true;
+
+ if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
+ return;
+
+ ptr = page_unpack_bits(obj->mm.mapping, &has_type);
+ if (has_type == I915_MAP_WC)
+ return;
+
+ drm_clflush_virt_range(ptr + offset, size);
+ if (size == obj->base.size) {
+ obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
+ obj->cache_dirty = false;
+ }
+}
+
+void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
+{
+ GEM_BUG_ON(!obj->mm.mapping);
+
+ /*
+ * We allow removing the mapping from underneath pinned pages!
+ *
+ * Furthermore, since this is an unsafe operation reserved only
+ * for construction time manipulation, we ignore locking prudence.
+ */
+ unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
+
+ i915_gem_object_unpin_map(obj);
+}
+
+struct scatterlist *
+__i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
+ struct i915_gem_object_page_iter *iter,
+ unsigned int n,
+ unsigned int *offset,
+ bool dma)
+{
+ struct scatterlist *sg;
+ unsigned int idx, count;
+
+ might_sleep();
+ GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
+ if (!i915_gem_object_has_pinned_pages(obj))
+ assert_object_held(obj);
+
+ /* As we iterate forward through the sg, we record each entry in a
+ * radixtree for quick repeated (backwards) lookups. If we have seen
+ * this index previously, we will have an entry for it.
+ *
+ * Initial lookup is O(N), but this is amortized to O(1) for
+ * sequential page access (where each new request is consecutive
+ * to the previous one). Repeated lookups are O(lg(obj->base.size)),
+ * i.e. O(1) with a large constant!
+ */
+ if (n < READ_ONCE(iter->sg_idx))
+ goto lookup;
+
+ mutex_lock(&iter->lock);
+
+ /* We prefer to reuse the last sg so that repeated lookup of this
+ * (or the subsequent) sg are fast - comparing against the last
+ * sg is faster than going through the radixtree.
+ */
+
+ sg = iter->sg_pos;
+ idx = iter->sg_idx;
+ count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
+
+ while (idx + count <= n) {
+ void *entry;
+ unsigned long i;
+ int ret;
+
+ /* If we cannot allocate and insert this entry, or the
+ * individual pages from this range, cancel updating the
+ * sg_idx so that on this lookup we are forced to linearly
+ * scan onwards, but on future lookups we will try the
+ * insertion again (in which case we need to be careful of
+ * the error return reporting that we have already inserted
+ * this index).
+ */
+ ret = radix_tree_insert(&iter->radix, idx, sg);
+ if (ret && ret != -EEXIST)
+ goto scan;
+
+ entry = xa_mk_value(idx);
+ for (i = 1; i < count; i++) {
+ ret = radix_tree_insert(&iter->radix, idx + i, entry);
+ if (ret && ret != -EEXIST)
+ goto scan;
+ }
+
+ idx += count;
+ sg = ____sg_next(sg);
+ count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
+ }
+
+scan:
+ iter->sg_pos = sg;
+ iter->sg_idx = idx;
+
+ mutex_unlock(&iter->lock);
+
+ if (unlikely(n < idx)) /* insertion completed by another thread */
+ goto lookup;
+
+ /* In case we failed to insert the entry into the radixtree, we need
+ * to look beyond the current sg.
+ */
+ while (idx + count <= n) {
+ idx += count;
+ sg = ____sg_next(sg);
+ count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
+ }
+
+ *offset = n - idx;
+ return sg;
+
+lookup:
+ rcu_read_lock();
+
+ sg = radix_tree_lookup(&iter->radix, n);
+ GEM_BUG_ON(!sg);
+
+ /* If this index is in the middle of multi-page sg entry,
+ * the radix tree will contain a value entry that points
+ * to the start of that range. We will return the pointer to
+ * the base page and the offset of this page within the
+ * sg entry's range.
+ */
+ *offset = 0;
+ if (unlikely(xa_is_value(sg))) {
+ unsigned long base = xa_to_value(sg);
+
+ sg = radix_tree_lookup(&iter->radix, base);
+ GEM_BUG_ON(!sg);
+
+ *offset = n - base;
+ }
+
+ rcu_read_unlock();
+
+ return sg;
+}
+
+struct page *
+i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
+{
+ struct scatterlist *sg;
+ unsigned int offset;
+
+ GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
+
+ sg = i915_gem_object_get_sg(obj, n, &offset);
+ return nth_page(sg_page(sg), offset);
+}
+
+/* Like i915_gem_object_get_page(), but mark the returned page dirty */
+struct page *
+i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
+ unsigned int n)
+{
+ struct page *page;
+
+ page = i915_gem_object_get_page(obj, n);
+ if (!obj->mm.dirty)
+ set_page_dirty(page);
+
+ return page;
+}
+
+dma_addr_t
+i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
+ unsigned long n,
+ unsigned int *len)
+{
+ struct scatterlist *sg;
+ unsigned int offset;
+
+ sg = i915_gem_object_get_sg_dma(obj, n, &offset);
+
+ if (len)
+ *len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
+
+ return sg_dma_address(sg) + (offset << PAGE_SHIFT);
+}
+
+dma_addr_t
+i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
+ unsigned long n)
+{
+ return i915_gem_object_get_dma_address_len(obj, n, NULL);
+}