diff options
Diffstat (limited to 'drivers/gpu/drm/i915/gem/i915_gem_pages.c')
-rw-r--r-- | drivers/gpu/drm/i915/gem/i915_gem_pages.c | 674 |
1 files changed, 674 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gem/i915_gem_pages.c b/drivers/gpu/drm/i915/gem/i915_gem_pages.c new file mode 100644 index 000000000..4df50b049 --- /dev/null +++ b/drivers/gpu/drm/i915/gem/i915_gem_pages.c @@ -0,0 +1,674 @@ +/* + * SPDX-License-Identifier: MIT + * + * Copyright © 2014-2016 Intel Corporation + */ + +#include <drm/drm_cache.h> + +#include "gt/intel_gt.h" +#include "gt/intel_gt_pm.h" + +#include "i915_drv.h" +#include "i915_gem_object.h" +#include "i915_scatterlist.h" +#include "i915_gem_lmem.h" +#include "i915_gem_mman.h" + +void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, + struct sg_table *pages, + unsigned int sg_page_sizes) +{ + struct drm_i915_private *i915 = to_i915(obj->base.dev); + unsigned long supported = RUNTIME_INFO(i915)->page_sizes; + bool shrinkable; + int i; + + assert_object_held_shared(obj); + + if (i915_gem_object_is_volatile(obj)) + obj->mm.madv = I915_MADV_DONTNEED; + + /* Make the pages coherent with the GPU (flushing any swapin). */ + if (obj->cache_dirty) { + WARN_ON_ONCE(IS_DGFX(i915)); + obj->write_domain = 0; + if (i915_gem_object_has_struct_page(obj)) + drm_clflush_sg(pages); + obj->cache_dirty = false; + } + + obj->mm.get_page.sg_pos = pages->sgl; + obj->mm.get_page.sg_idx = 0; + obj->mm.get_dma_page.sg_pos = pages->sgl; + obj->mm.get_dma_page.sg_idx = 0; + + obj->mm.pages = pages; + + GEM_BUG_ON(!sg_page_sizes); + obj->mm.page_sizes.phys = sg_page_sizes; + + /* + * Calculate the supported page-sizes which fit into the given + * sg_page_sizes. This will give us the page-sizes which we may be able + * to use opportunistically when later inserting into the GTT. For + * example if phys=2G, then in theory we should be able to use 1G, 2M, + * 64K or 4K pages, although in practice this will depend on a number of + * other factors. + */ + obj->mm.page_sizes.sg = 0; + for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { + if (obj->mm.page_sizes.phys & ~0u << i) + obj->mm.page_sizes.sg |= BIT(i); + } + GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); + + shrinkable = i915_gem_object_is_shrinkable(obj); + + if (i915_gem_object_is_tiled(obj) && + i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) { + GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); + i915_gem_object_set_tiling_quirk(obj); + GEM_BUG_ON(!list_empty(&obj->mm.link)); + atomic_inc(&obj->mm.shrink_pin); + shrinkable = false; + } + + if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) { + struct list_head *list; + unsigned long flags; + + assert_object_held(obj); + spin_lock_irqsave(&i915->mm.obj_lock, flags); + + i915->mm.shrink_count++; + i915->mm.shrink_memory += obj->base.size; + + if (obj->mm.madv != I915_MADV_WILLNEED) + list = &i915->mm.purge_list; + else + list = &i915->mm.shrink_list; + list_add_tail(&obj->mm.link, list); + + atomic_set(&obj->mm.shrink_pin, 0); + spin_unlock_irqrestore(&i915->mm.obj_lock, flags); + } +} + +int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) +{ + struct drm_i915_private *i915 = to_i915(obj->base.dev); + int err; + + assert_object_held_shared(obj); + + if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { + drm_dbg(&i915->drm, + "Attempting to obtain a purgeable object\n"); + return -EFAULT; + } + + err = obj->ops->get_pages(obj); + GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); + + return err; +} + +/* Ensure that the associated pages are gathered from the backing storage + * and pinned into our object. i915_gem_object_pin_pages() may be called + * multiple times before they are released by a single call to + * i915_gem_object_unpin_pages() - once the pages are no longer referenced + * either as a result of memory pressure (reaping pages under the shrinker) + * or as the object is itself released. + */ +int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) +{ + int err; + + assert_object_held(obj); + + assert_object_held_shared(obj); + + if (unlikely(!i915_gem_object_has_pages(obj))) { + GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); + + err = ____i915_gem_object_get_pages(obj); + if (err) + return err; + + smp_mb__before_atomic(); + } + atomic_inc(&obj->mm.pages_pin_count); + + return 0; +} + +int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj) +{ + struct i915_gem_ww_ctx ww; + int err; + + i915_gem_ww_ctx_init(&ww, true); +retry: + err = i915_gem_object_lock(obj, &ww); + if (!err) + err = i915_gem_object_pin_pages(obj); + + if (err == -EDEADLK) { + err = i915_gem_ww_ctx_backoff(&ww); + if (!err) + goto retry; + } + i915_gem_ww_ctx_fini(&ww); + return err; +} + +/* Immediately discard the backing storage */ +int i915_gem_object_truncate(struct drm_i915_gem_object *obj) +{ + if (obj->ops->truncate) + return obj->ops->truncate(obj); + + return 0; +} + +static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) +{ + struct radix_tree_iter iter; + void __rcu **slot; + + rcu_read_lock(); + radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) + radix_tree_delete(&obj->mm.get_page.radix, iter.index); + radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0) + radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index); + rcu_read_unlock(); +} + +static void unmap_object(struct drm_i915_gem_object *obj, void *ptr) +{ + if (is_vmalloc_addr(ptr)) + vunmap(ptr); +} + +static void flush_tlb_invalidate(struct drm_i915_gem_object *obj) +{ + struct drm_i915_private *i915 = to_i915(obj->base.dev); + struct intel_gt *gt = to_gt(i915); + + if (!obj->mm.tlb) + return; + + intel_gt_invalidate_tlb(gt, obj->mm.tlb); + obj->mm.tlb = 0; +} + +struct sg_table * +__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj) +{ + struct sg_table *pages; + + assert_object_held_shared(obj); + + pages = fetch_and_zero(&obj->mm.pages); + if (IS_ERR_OR_NULL(pages)) + return pages; + + if (i915_gem_object_is_volatile(obj)) + obj->mm.madv = I915_MADV_WILLNEED; + + if (!i915_gem_object_has_self_managed_shrink_list(obj)) + i915_gem_object_make_unshrinkable(obj); + + if (obj->mm.mapping) { + unmap_object(obj, page_mask_bits(obj->mm.mapping)); + obj->mm.mapping = NULL; + } + + __i915_gem_object_reset_page_iter(obj); + obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; + + flush_tlb_invalidate(obj); + + return pages; +} + +int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj) +{ + struct sg_table *pages; + + if (i915_gem_object_has_pinned_pages(obj)) + return -EBUSY; + + /* May be called by shrinker from within get_pages() (on another bo) */ + assert_object_held_shared(obj); + + i915_gem_object_release_mmap_offset(obj); + + /* + * ->put_pages might need to allocate memory for the bit17 swizzle + * array, hence protect them from being reaped by removing them from gtt + * lists early. + */ + pages = __i915_gem_object_unset_pages(obj); + + /* + * XXX Temporary hijinx to avoid updating all backends to handle + * NULL pages. In the future, when we have more asynchronous + * get_pages backends we should be better able to handle the + * cancellation of the async task in a more uniform manner. + */ + if (!IS_ERR_OR_NULL(pages)) + obj->ops->put_pages(obj, pages); + + return 0; +} + +/* The 'mapping' part of i915_gem_object_pin_map() below */ +static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj, + enum i915_map_type type) +{ + unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i; + struct page *stack[32], **pages = stack, *page; + struct sgt_iter iter; + pgprot_t pgprot; + void *vaddr; + + switch (type) { + default: + MISSING_CASE(type); + fallthrough; /* to use PAGE_KERNEL anyway */ + case I915_MAP_WB: + /* + * On 32b, highmem using a finite set of indirect PTE (i.e. + * vmap) to provide virtual mappings of the high pages. + * As these are finite, map_new_virtual() must wait for some + * other kmap() to finish when it runs out. If we map a large + * number of objects, there is no method for it to tell us + * to release the mappings, and we deadlock. + * + * However, if we make an explicit vmap of the page, that + * uses a larger vmalloc arena, and also has the ability + * to tell us to release unwanted mappings. Most importantly, + * it will fail and propagate an error instead of waiting + * forever. + * + * So if the page is beyond the 32b boundary, make an explicit + * vmap. + */ + if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl))) + return page_address(sg_page(obj->mm.pages->sgl)); + pgprot = PAGE_KERNEL; + break; + case I915_MAP_WC: + pgprot = pgprot_writecombine(PAGE_KERNEL_IO); + break; + } + + if (n_pages > ARRAY_SIZE(stack)) { + /* Too big for stack -- allocate temporary array instead */ + pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL); + if (!pages) + return ERR_PTR(-ENOMEM); + } + + i = 0; + for_each_sgt_page(page, iter, obj->mm.pages) + pages[i++] = page; + vaddr = vmap(pages, n_pages, 0, pgprot); + if (pages != stack) + kvfree(pages); + + return vaddr ?: ERR_PTR(-ENOMEM); +} + +static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj, + enum i915_map_type type) +{ + resource_size_t iomap = obj->mm.region->iomap.base - + obj->mm.region->region.start; + unsigned long n_pfn = obj->base.size >> PAGE_SHIFT; + unsigned long stack[32], *pfns = stack, i; + struct sgt_iter iter; + dma_addr_t addr; + void *vaddr; + + GEM_BUG_ON(type != I915_MAP_WC); + + if (n_pfn > ARRAY_SIZE(stack)) { + /* Too big for stack -- allocate temporary array instead */ + pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL); + if (!pfns) + return ERR_PTR(-ENOMEM); + } + + i = 0; + for_each_sgt_daddr(addr, iter, obj->mm.pages) + pfns[i++] = (iomap + addr) >> PAGE_SHIFT; + vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO)); + if (pfns != stack) + kvfree(pfns); + + return vaddr ?: ERR_PTR(-ENOMEM); +} + +/* get, pin, and map the pages of the object into kernel space */ +void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, + enum i915_map_type type) +{ + enum i915_map_type has_type; + bool pinned; + void *ptr; + int err; + + if (!i915_gem_object_has_struct_page(obj) && + !i915_gem_object_has_iomem(obj)) + return ERR_PTR(-ENXIO); + + if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY)) + return ERR_PTR(-EINVAL); + + assert_object_held(obj); + + pinned = !(type & I915_MAP_OVERRIDE); + type &= ~I915_MAP_OVERRIDE; + + if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { + if (unlikely(!i915_gem_object_has_pages(obj))) { + GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); + + err = ____i915_gem_object_get_pages(obj); + if (err) + return ERR_PTR(err); + + smp_mb__before_atomic(); + } + atomic_inc(&obj->mm.pages_pin_count); + pinned = false; + } + GEM_BUG_ON(!i915_gem_object_has_pages(obj)); + + /* + * For discrete our CPU mappings needs to be consistent in order to + * function correctly on !x86. When mapping things through TTM, we use + * the same rules to determine the caching type. + * + * The caching rules, starting from DG1: + * + * - If the object can be placed in device local-memory, then the + * pages should be allocated and mapped as write-combined only. + * + * - Everything else is always allocated and mapped as write-back, + * with the guarantee that everything is also coherent with the + * GPU. + * + * Internal users of lmem are already expected to get this right, so no + * fudging needed there. + */ + if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) { + if (type != I915_MAP_WC && !obj->mm.n_placements) { + ptr = ERR_PTR(-ENODEV); + goto err_unpin; + } + + type = I915_MAP_WC; + } else if (IS_DGFX(to_i915(obj->base.dev))) { + type = I915_MAP_WB; + } + + ptr = page_unpack_bits(obj->mm.mapping, &has_type); + if (ptr && has_type != type) { + if (pinned) { + ptr = ERR_PTR(-EBUSY); + goto err_unpin; + } + + unmap_object(obj, ptr); + + ptr = obj->mm.mapping = NULL; + } + + if (!ptr) { + err = i915_gem_object_wait_moving_fence(obj, true); + if (err) { + ptr = ERR_PTR(err); + goto err_unpin; + } + + if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled())) + ptr = ERR_PTR(-ENODEV); + else if (i915_gem_object_has_struct_page(obj)) + ptr = i915_gem_object_map_page(obj, type); + else + ptr = i915_gem_object_map_pfn(obj, type); + if (IS_ERR(ptr)) + goto err_unpin; + + obj->mm.mapping = page_pack_bits(ptr, type); + } + + return ptr; + +err_unpin: + atomic_dec(&obj->mm.pages_pin_count); + return ptr; +} + +void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj, + enum i915_map_type type) +{ + void *ret; + + i915_gem_object_lock(obj, NULL); + ret = i915_gem_object_pin_map(obj, type); + i915_gem_object_unlock(obj); + + return ret; +} + +void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, + unsigned long offset, + unsigned long size) +{ + enum i915_map_type has_type; + void *ptr; + + GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); + GEM_BUG_ON(range_overflows_t(typeof(obj->base.size), + offset, size, obj->base.size)); + + wmb(); /* let all previous writes be visible to coherent partners */ + obj->mm.dirty = true; + + if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) + return; + + ptr = page_unpack_bits(obj->mm.mapping, &has_type); + if (has_type == I915_MAP_WC) + return; + + drm_clflush_virt_range(ptr + offset, size); + if (size == obj->base.size) { + obj->write_domain &= ~I915_GEM_DOMAIN_CPU; + obj->cache_dirty = false; + } +} + +void __i915_gem_object_release_map(struct drm_i915_gem_object *obj) +{ + GEM_BUG_ON(!obj->mm.mapping); + + /* + * We allow removing the mapping from underneath pinned pages! + * + * Furthermore, since this is an unsafe operation reserved only + * for construction time manipulation, we ignore locking prudence. + */ + unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping))); + + i915_gem_object_unpin_map(obj); +} + +struct scatterlist * +__i915_gem_object_get_sg(struct drm_i915_gem_object *obj, + struct i915_gem_object_page_iter *iter, + unsigned int n, + unsigned int *offset, + bool dma) +{ + struct scatterlist *sg; + unsigned int idx, count; + + might_sleep(); + GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); + if (!i915_gem_object_has_pinned_pages(obj)) + assert_object_held(obj); + + /* As we iterate forward through the sg, we record each entry in a + * radixtree for quick repeated (backwards) lookups. If we have seen + * this index previously, we will have an entry for it. + * + * Initial lookup is O(N), but this is amortized to O(1) for + * sequential page access (where each new request is consecutive + * to the previous one). Repeated lookups are O(lg(obj->base.size)), + * i.e. O(1) with a large constant! + */ + if (n < READ_ONCE(iter->sg_idx)) + goto lookup; + + mutex_lock(&iter->lock); + + /* We prefer to reuse the last sg so that repeated lookup of this + * (or the subsequent) sg are fast - comparing against the last + * sg is faster than going through the radixtree. + */ + + sg = iter->sg_pos; + idx = iter->sg_idx; + count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); + + while (idx + count <= n) { + void *entry; + unsigned long i; + int ret; + + /* If we cannot allocate and insert this entry, or the + * individual pages from this range, cancel updating the + * sg_idx so that on this lookup we are forced to linearly + * scan onwards, but on future lookups we will try the + * insertion again (in which case we need to be careful of + * the error return reporting that we have already inserted + * this index). + */ + ret = radix_tree_insert(&iter->radix, idx, sg); + if (ret && ret != -EEXIST) + goto scan; + + entry = xa_mk_value(idx); + for (i = 1; i < count; i++) { + ret = radix_tree_insert(&iter->radix, idx + i, entry); + if (ret && ret != -EEXIST) + goto scan; + } + + idx += count; + sg = ____sg_next(sg); + count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); + } + +scan: + iter->sg_pos = sg; + iter->sg_idx = idx; + + mutex_unlock(&iter->lock); + + if (unlikely(n < idx)) /* insertion completed by another thread */ + goto lookup; + + /* In case we failed to insert the entry into the radixtree, we need + * to look beyond the current sg. + */ + while (idx + count <= n) { + idx += count; + sg = ____sg_next(sg); + count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg); + } + + *offset = n - idx; + return sg; + +lookup: + rcu_read_lock(); + + sg = radix_tree_lookup(&iter->radix, n); + GEM_BUG_ON(!sg); + + /* If this index is in the middle of multi-page sg entry, + * the radix tree will contain a value entry that points + * to the start of that range. We will return the pointer to + * the base page and the offset of this page within the + * sg entry's range. + */ + *offset = 0; + if (unlikely(xa_is_value(sg))) { + unsigned long base = xa_to_value(sg); + + sg = radix_tree_lookup(&iter->radix, base); + GEM_BUG_ON(!sg); + + *offset = n - base; + } + + rcu_read_unlock(); + + return sg; +} + +struct page * +i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) +{ + struct scatterlist *sg; + unsigned int offset; + + GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); + + sg = i915_gem_object_get_sg(obj, n, &offset); + return nth_page(sg_page(sg), offset); +} + +/* Like i915_gem_object_get_page(), but mark the returned page dirty */ +struct page * +i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, + unsigned int n) +{ + struct page *page; + + page = i915_gem_object_get_page(obj, n); + if (!obj->mm.dirty) + set_page_dirty(page); + + return page; +} + +dma_addr_t +i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj, + unsigned long n, + unsigned int *len) +{ + struct scatterlist *sg; + unsigned int offset; + + sg = i915_gem_object_get_sg_dma(obj, n, &offset); + + if (len) + *len = sg_dma_len(sg) - (offset << PAGE_SHIFT); + + return sg_dma_address(sg) + (offset << PAGE_SHIFT); +} + +dma_addr_t +i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, + unsigned long n) +{ + return i915_gem_object_get_dma_address_len(obj, n, NULL); +} |