diff options
Diffstat (limited to 'drivers/mtd/chips/cfi_cmdset_0002.c')
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0002.c | 3116 |
1 files changed, 3116 insertions, 0 deletions
diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c new file mode 100644 index 000000000..67453f59c --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0002.c @@ -0,0 +1,3116 @@ +/* + * Common Flash Interface support: + * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) + * + * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> + * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com> + * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com> + * + * 2_by_8 routines added by Simon Munton + * + * 4_by_16 work by Carolyn J. Smith + * + * XIP support hooks by Vitaly Wool (based on code for Intel flash + * by Nicolas Pitre) + * + * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0 + * + * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com + * + * This code is GPL + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/reboot.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/xip.h> + +#define AMD_BOOTLOC_BUG +#define FORCE_WORD_WRITE 0 + +#define MAX_RETRIES 3 + +#define SST49LF004B 0x0060 +#define SST49LF040B 0x0050 +#define SST49LF008A 0x005a +#define AT49BV6416 0x00d6 +#define S29GL064N_MN12 0x0c01 + +/* + * Status Register bit description. Used by flash devices that don't + * support DQ polling (e.g. HyperFlash) + */ +#define CFI_SR_DRB BIT(7) +#define CFI_SR_ESB BIT(5) +#define CFI_SR_PSB BIT(4) +#define CFI_SR_WBASB BIT(3) +#define CFI_SR_SLSB BIT(1) + +enum cfi_quirks { + CFI_QUIRK_DQ_TRUE_DATA = BIT(0), +}; + +static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +#if !FORCE_WORD_WRITE +static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +#endif +static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); +static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); +static void cfi_amdstd_sync (struct mtd_info *); +static int cfi_amdstd_suspend (struct mtd_info *); +static void cfi_amdstd_resume (struct mtd_info *); +static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *); +static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); +static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t, + size_t *, struct otp_info *); +static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t, + size_t *, u_char *); +static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t, + size_t *, u_char *); +static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t, + size_t *, const u_char *); +static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t); + +static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf); + +static void cfi_amdstd_destroy(struct mtd_info *); + +struct mtd_info *cfi_cmdset_0002(struct map_info *, int); +static struct mtd_info *cfi_amdstd_setup (struct mtd_info *); + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); +#include "fwh_lock.h" + +static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); + +static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); +static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); + +static struct mtd_chip_driver cfi_amdstd_chipdrv = { + .probe = NULL, /* Not usable directly */ + .destroy = cfi_amdstd_destroy, + .name = "cfi_cmdset_0002", + .module = THIS_MODULE +}; + +/* + * Use status register to poll for Erase/write completion when DQ is not + * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in + * CFI Primary Vendor-Specific Extended Query table 1.5 + */ +static int cfi_use_status_reg(struct cfi_private *cfi) +{ + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ; + + return extp && extp->MinorVersion >= '5' && + (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG; +} + +static int cfi_check_err_status(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status; + + if (!cfi_use_status_reg(cfi)) + return 0; + + cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + status = map_read(map, adr); + + /* The error bits are invalid while the chip's busy */ + if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB))) + return 0; + + if (map_word_bitsset(map, status, CMD(0x3a))) { + unsigned long chipstatus = MERGESTATUS(status); + + if (chipstatus & CFI_SR_ESB) + pr_err("%s erase operation failed, status %lx\n", + map->name, chipstatus); + if (chipstatus & CFI_SR_PSB) + pr_err("%s program operation failed, status %lx\n", + map->name, chipstatus); + if (chipstatus & CFI_SR_WBASB) + pr_err("%s buffer program command aborted, status %lx\n", + map->name, chipstatus); + if (chipstatus & CFI_SR_SLSB) + pr_err("%s sector write protected, status %lx\n", + map->name, chipstatus); + + /* Erase/Program status bits are set on the operation failure */ + if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB)) + return 1; + } + return 0; +} + +/* #define DEBUG_CFI_FEATURES */ + + +#ifdef DEBUG_CFI_FEATURES +static void cfi_tell_features(struct cfi_pri_amdstd *extp) +{ + const char* erase_suspend[3] = { + "Not supported", "Read only", "Read/write" + }; + const char* top_bottom[6] = { + "No WP", "8x8KiB sectors at top & bottom, no WP", + "Bottom boot", "Top boot", + "Uniform, Bottom WP", "Uniform, Top WP" + }; + + printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1); + printk(" Address sensitive unlock: %s\n", + (extp->SiliconRevision & 1) ? "Not required" : "Required"); + + if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend)) + printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]); + else + printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend); + + if (extp->BlkProt == 0) + printk(" Block protection: Not supported\n"); + else + printk(" Block protection: %d sectors per group\n", extp->BlkProt); + + + printk(" Temporary block unprotect: %s\n", + extp->TmpBlkUnprotect ? "Supported" : "Not supported"); + printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot); + printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps); + printk(" Burst mode: %s\n", + extp->BurstMode ? "Supported" : "Not supported"); + if (extp->PageMode == 0) + printk(" Page mode: Not supported\n"); + else + printk(" Page mode: %d word page\n", extp->PageMode << 2); + + printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n", + extp->VppMin >> 4, extp->VppMin & 0xf); + printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n", + extp->VppMax >> 4, extp->VppMax & 0xf); + + if (extp->TopBottom < ARRAY_SIZE(top_bottom)) + printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]); + else + printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom); +} +#endif + +#ifdef AMD_BOOTLOC_BUG +/* Wheee. Bring me the head of someone at AMD. */ +static void fixup_amd_bootblock(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + __u8 major = extp->MajorVersion; + __u8 minor = extp->MinorVersion; + + if (((major << 8) | minor) < 0x3131) { + /* CFI version 1.0 => don't trust bootloc */ + + pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", + map->name, cfi->mfr, cfi->id); + + /* AFAICS all 29LV400 with a bottom boot block have a device ID + * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode. + * These were badly detected as they have the 0x80 bit set + * so treat them as a special case. + */ + if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) && + + /* Macronix added CFI to their 2nd generation + * MX29LV400C B/T but AFAICS no other 29LV400 (AMD, + * Fujitsu, Spansion, EON, ESI and older Macronix) + * has CFI. + * + * Therefore also check the manufacturer. + * This reduces the risk of false detection due to + * the 8-bit device ID. + */ + (cfi->mfr == CFI_MFR_MACRONIX)) { + pr_debug("%s: Macronix MX29LV400C with bottom boot block" + " detected\n", map->name); + extp->TopBottom = 2; /* bottom boot */ + } else + if (cfi->id & 0x80) { + printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); + extp->TopBottom = 3; /* top boot */ + } else { + extp->TopBottom = 2; /* bottom boot */ + } + + pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;" + " deduced %s from Device ID\n", map->name, major, minor, + extp->TopBottom == 2 ? "bottom" : "top"); + } +} +#endif + +#if !FORCE_WORD_WRITE +static void fixup_use_write_buffers(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if (cfi->mfr == CFI_MFR_AMD && cfi->id == 0x2201) + return; + + if (cfi->cfiq->BufWriteTimeoutTyp) { + pr_debug("Using buffer write method\n"); + mtd->_write = cfi_amdstd_write_buffers; + } +} +#endif /* !FORCE_WORD_WRITE */ + +/* Atmel chips don't use the same PRI format as AMD chips */ +static void fixup_convert_atmel_pri(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + struct cfi_pri_atmel atmel_pri; + + memcpy(&atmel_pri, extp, sizeof(atmel_pri)); + memset((char *)extp + 5, 0, sizeof(*extp) - 5); + + if (atmel_pri.Features & 0x02) + extp->EraseSuspend = 2; + + /* Some chips got it backwards... */ + if (cfi->id == AT49BV6416) { + if (atmel_pri.BottomBoot) + extp->TopBottom = 3; + else + extp->TopBottom = 2; + } else { + if (atmel_pri.BottomBoot) + extp->TopBottom = 2; + else + extp->TopBottom = 3; + } + + /* burst write mode not supported */ + cfi->cfiq->BufWriteTimeoutTyp = 0; + cfi->cfiq->BufWriteTimeoutMax = 0; +} + +static void fixup_use_secsi(struct mtd_info *mtd) +{ + /* Setup for chips with a secsi area */ + mtd->_read_user_prot_reg = cfi_amdstd_secsi_read; + mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read; +} + +static void fixup_use_erase_chip(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + if ((cfi->cfiq->NumEraseRegions == 1) && + ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { + mtd->_erase = cfi_amdstd_erase_chip; + } + +} + +/* + * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors + * locked by default. + */ +static void fixup_use_atmel_lock(struct mtd_info *mtd) +{ + mtd->_lock = cfi_atmel_lock; + mtd->_unlock = cfi_atmel_unlock; + mtd->flags |= MTD_POWERUP_LOCK; +} + +static void fixup_old_sst_eraseregion(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* + * These flashes report two separate eraseblock regions based on the + * sector_erase-size and block_erase-size, although they both operate on the + * same memory. This is not allowed according to CFI, so we just pick the + * sector_erase-size. + */ + cfi->cfiq->NumEraseRegions = 1; +} + +static void fixup_sst39vf(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + fixup_old_sst_eraseregion(mtd); + + cfi->addr_unlock1 = 0x5555; + cfi->addr_unlock2 = 0x2AAA; +} + +static void fixup_sst39vf_rev_b(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + fixup_old_sst_eraseregion(mtd); + + cfi->addr_unlock1 = 0x555; + cfi->addr_unlock2 = 0x2AA; + + cfi->sector_erase_cmd = CMD(0x50); +} + +static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + fixup_sst39vf_rev_b(mtd); + + /* + * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where + * it should report a size of 8KBytes (0x0020*256). + */ + cfi->cfiq->EraseRegionInfo[0] = 0x002003ff; + pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", + mtd->name); +} + +static void fixup_s29gl064n_sectors(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) { + cfi->cfiq->EraseRegionInfo[0] |= 0x0040; + pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", + mtd->name); + } +} + +static void fixup_s29gl032n_sectors(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) { + cfi->cfiq->EraseRegionInfo[1] &= ~0x0040; + pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", + mtd->name); + } +} + +static void fixup_s29ns512p_sectors(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* + * S29NS512P flash uses more than 8bits to report number of sectors, + * which is not permitted by CFI. + */ + cfi->cfiq->EraseRegionInfo[0] = 0x020001ff; + pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", + mtd->name); +} + +static void fixup_quirks(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if (cfi->mfr == CFI_MFR_AMD && cfi->id == S29GL064N_MN12) + cfi->quirks |= CFI_QUIRK_DQ_TRUE_DATA; +} + +/* Used to fix CFI-Tables of chips without Extended Query Tables */ +static struct cfi_fixup cfi_nopri_fixup_table[] = { + { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */ + { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */ + { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */ + { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */ + { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */ + { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */ + { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */ + { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */ + { 0, 0, NULL } +}; + +static struct cfi_fixup cfi_fixup_table[] = { + { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, +#ifdef AMD_BOOTLOC_BUG + { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock }, + { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock }, + { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock }, +#endif + { CFI_MFR_AMD, 0x0050, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0053, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0055, fixup_use_secsi }, + { CFI_MFR_AMD, 0x0056, fixup_use_secsi }, + { CFI_MFR_AMD, 0x005C, fixup_use_secsi }, + { CFI_MFR_AMD, 0x005F, fixup_use_secsi }, + { CFI_MFR_AMD, S29GL064N_MN12, fixup_s29gl064n_sectors }, + { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors }, + { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors }, + { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors }, + { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors }, + { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */ + { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */ + { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */ + { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */ +#if !FORCE_WORD_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, +#endif + { CFI_MFR_ANY, CFI_ID_ANY, fixup_quirks }, + { 0, 0, NULL } +}; +static struct cfi_fixup jedec_fixup_table[] = { + { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock }, + { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock }, + { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock }, + { 0, 0, NULL } +}; + +static struct cfi_fixup fixup_table[] = { + /* The CFI vendor ids and the JEDEC vendor IDs appear + * to be common. It is like the devices id's are as + * well. This table is to pick all cases where + * we know that is the case. + */ + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip }, + { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock }, + { 0, 0, NULL } +}; + + +static void cfi_fixup_major_minor(struct cfi_private *cfi, + struct cfi_pri_amdstd *extp) +{ + if (cfi->mfr == CFI_MFR_SAMSUNG) { + if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') || + (extp->MajorVersion == '3' && extp->MinorVersion == '3')) { + /* + * Samsung K8P2815UQB and K8D6x16UxM chips + * report major=0 / minor=0. + * K8D3x16UxC chips report major=3 / minor=3. + */ + printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu" + " Extended Query version to 1.%c\n", + extp->MinorVersion); + extp->MajorVersion = '1'; + } + } + + /* + * SST 38VF640x chips report major=0xFF / minor=0xFF. + */ + if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) { + extp->MajorVersion = '1'; + extp->MinorVersion = '0'; + } +} + +static int is_m29ew(struct cfi_private *cfi) +{ + if (cfi->mfr == CFI_MFR_INTEL && + ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || + (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) + return 1; + return 0; +} + +/* + * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: + * Some revisions of the M29EW suffer from erase suspend hang ups. In + * particular, it can occur when the sequence + * Erase Confirm -> Suspend -> Program -> Resume + * causes a lockup due to internal timing issues. The consequence is that the + * erase cannot be resumed without inserting a dummy command after programming + * and prior to resuming. [...] The work-around is to issue a dummy write cycle + * that writes an F0 command code before the RESUME command. + */ +static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ + if (is_m29ew(cfi)) + map_write(map, CMD(0xF0), adr); +} + +/* + * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: + * + * Some revisions of the M29EW (for example, A1 and A2 step revisions) + * are affected by a problem that could cause a hang up when an ERASE SUSPEND + * command is issued after an ERASE RESUME operation without waiting for a + * minimum delay. The result is that once the ERASE seems to be completed + * (no bits are toggling), the contents of the Flash memory block on which + * the erase was ongoing could be inconsistent with the expected values + * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 + * values), causing a consequent failure of the ERASE operation. + * The occurrence of this issue could be high, especially when file system + * operations on the Flash are intensive. As a result, it is recommended + * that a patch be applied. Intensive file system operations can cause many + * calls to the garbage routine to free Flash space (also by erasing physical + * Flash blocks) and as a result, many consecutive SUSPEND and RESUME + * commands can occur. The problem disappears when a delay is inserted after + * the RESUME command by using the udelay() function available in Linux. + * The DELAY value must be tuned based on the customer's platform. + * The maximum value that fixes the problem in all cases is 500us. + * But, in our experience, a delay of 30 µs to 50 µs is sufficient + * in most cases. + * We have chosen 500µs because this latency is acceptable. + */ +static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) +{ + /* + * Resolving the Delay After Resume Issue see Micron TN-13-07 + * Worst case delay must be 500µs but 30-50µs should be ok as well + */ + if (is_m29ew(cfi)) + cfi_udelay(500); +} + +struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct device_node __maybe_unused *np = map->device_node; + struct mtd_info *mtd; + int i; + + mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return NULL; + mtd->priv = map; + mtd->type = MTD_NORFLASH; + + /* Fill in the default mtd operations */ + mtd->_erase = cfi_amdstd_erase_varsize; + mtd->_write = cfi_amdstd_write_words; + mtd->_read = cfi_amdstd_read; + mtd->_sync = cfi_amdstd_sync; + mtd->_suspend = cfi_amdstd_suspend; + mtd->_resume = cfi_amdstd_resume; + mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg; + mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg; + mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info; + mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info; + mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg; + mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg; + mtd->flags = MTD_CAP_NORFLASH; + mtd->name = map->name; + mtd->writesize = 1; + mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + + pr_debug("MTD %s(): write buffer size %d\n", __func__, + mtd->writebufsize); + + mtd->_panic_write = cfi_amdstd_panic_write; + mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot; + + if (cfi->cfi_mode==CFI_MODE_CFI){ + unsigned char bootloc; + __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; + struct cfi_pri_amdstd *extp; + + extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu"); + if (extp) { + /* + * It's a real CFI chip, not one for which the probe + * routine faked a CFI structure. + */ + cfi_fixup_major_minor(cfi, extp); + + /* + * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 + * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 + * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf + * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf + * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf + */ + if (extp->MajorVersion != '1' || + (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) { + printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query " + "version %c.%c (%#02x/%#02x).\n", + extp->MajorVersion, extp->MinorVersion, + extp->MajorVersion, extp->MinorVersion); + kfree(extp); + kfree(mtd); + return NULL; + } + + printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n", + extp->MajorVersion, extp->MinorVersion); + + /* Install our own private info structure */ + cfi->cmdset_priv = extp; + + /* Apply cfi device specific fixups */ + cfi_fixup(mtd, cfi_fixup_table); + +#ifdef DEBUG_CFI_FEATURES + /* Tell the user about it in lots of lovely detail */ + cfi_tell_features(extp); +#endif + +#ifdef CONFIG_OF + if (np && of_property_read_bool( + np, "use-advanced-sector-protection") + && extp->BlkProtUnprot == 8) { + printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n"); + mtd->_lock = cfi_ppb_lock; + mtd->_unlock = cfi_ppb_unlock; + mtd->_is_locked = cfi_ppb_is_locked; + } +#endif + + bootloc = extp->TopBottom; + if ((bootloc < 2) || (bootloc > 5)) { + printk(KERN_WARNING "%s: CFI contains unrecognised boot " + "bank location (%d). Assuming bottom.\n", + map->name, bootloc); + bootloc = 2; + } + + if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { + printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name); + + for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { + int j = (cfi->cfiq->NumEraseRegions-1)-i; + + swap(cfi->cfiq->EraseRegionInfo[i], + cfi->cfiq->EraseRegionInfo[j]); + } + } + /* Set the default CFI lock/unlock addresses */ + cfi->addr_unlock1 = 0x555; + cfi->addr_unlock2 = 0x2aa; + } + cfi_fixup(mtd, cfi_nopri_fixup_table); + + if (!cfi->addr_unlock1 || !cfi->addr_unlock2) { + kfree(mtd); + return NULL; + } + + } /* CFI mode */ + else if (cfi->cfi_mode == CFI_MODE_JEDEC) { + /* Apply jedec specific fixups */ + cfi_fixup(mtd, jedec_fixup_table); + } + /* Apply generic fixups */ + cfi_fixup(mtd, fixup_table); + + for (i=0; i< cfi->numchips; i++) { + cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; + cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; + cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; + /* + * First calculate the timeout max according to timeout field + * of struct cfi_ident that probed from chip's CFI aera, if + * available. Specify a minimum of 2000us, in case the CFI data + * is wrong. + */ + if (cfi->cfiq->BufWriteTimeoutTyp && + cfi->cfiq->BufWriteTimeoutMax) + cfi->chips[i].buffer_write_time_max = + 1 << (cfi->cfiq->BufWriteTimeoutTyp + + cfi->cfiq->BufWriteTimeoutMax); + else + cfi->chips[i].buffer_write_time_max = 0; + + cfi->chips[i].buffer_write_time_max = + max(cfi->chips[i].buffer_write_time_max, 2000); + + cfi->chips[i].ref_point_counter = 0; + init_waitqueue_head(&(cfi->chips[i].wq)); + } + + map->fldrv = &cfi_amdstd_chipdrv; + + return cfi_amdstd_setup(mtd); +} +struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); +struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); +EXPORT_SYMBOL_GPL(cfi_cmdset_0002); +EXPORT_SYMBOL_GPL(cfi_cmdset_0006); +EXPORT_SYMBOL_GPL(cfi_cmdset_0701); + +static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; + unsigned long offset = 0; + int i,j; + + printk(KERN_NOTICE "number of %s chips: %d\n", + (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); + /* Select the correct geometry setup */ + mtd->size = devsize * cfi->numchips; + + mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; + mtd->eraseregions = kmalloc_array(mtd->numeraseregions, + sizeof(struct mtd_erase_region_info), + GFP_KERNEL); + if (!mtd->eraseregions) + goto setup_err; + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + unsigned long ernum, ersize; + ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; + ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; + + if (mtd->erasesize < ersize) { + mtd->erasesize = ersize; + } + for (j=0; j<cfi->numchips; j++) { + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; + } + offset += (ersize * ernum); + } + if (offset != devsize) { + /* Argh */ + printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); + goto setup_err; + } + + __module_get(THIS_MODULE); + register_reboot_notifier(&mtd->reboot_notifier); + return mtd; + + setup_err: + kfree(mtd->eraseregions); + kfree(mtd); + kfree(cfi->cmdset_priv); + return NULL; +} + +/* + * Return true if the chip is ready and has the correct value. + * + * Ready is one of: read mode, query mode, erase-suspend-read mode (in any + * non-suspended sector) and is indicated by no toggle bits toggling. + * + * Error are indicated by toggling bits or bits held with the wrong value, + * or with bits toggling. + * + * Note that anything more complicated than checking if no bits are toggling + * (including checking DQ5 for an error status) is tricky to get working + * correctly and is therefore not done (particularly with interleaved chips + * as each chip must be checked independently of the others). + */ +static int __xipram chip_ready(struct map_info *map, struct flchip *chip, + unsigned long addr, map_word *expected) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word oldd, curd; + int ret; + + if (cfi_use_status_reg(cfi)) { + map_word ready = CMD(CFI_SR_DRB); + /* + * For chips that support status register, check device + * ready bit + */ + cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + curd = map_read(map, addr); + + return map_word_andequal(map, curd, ready, ready); + } + + oldd = map_read(map, addr); + curd = map_read(map, addr); + + ret = map_word_equal(map, oldd, curd); + + if (!ret || !expected) + return ret; + + return map_word_equal(map, curd, *expected); +} + +static int __xipram chip_good(struct map_info *map, struct flchip *chip, + unsigned long addr, map_word *expected) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word *datum = expected; + + if (cfi->quirks & CFI_QUIRK_DQ_TRUE_DATA) + datum = NULL; + + return chip_ready(map, chip, addr, datum); +} + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) +{ + DECLARE_WAITQUEUE(wait, current); + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo; + struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv; + + resettime: + timeo = jiffies + HZ; + retry: + switch (chip->state) { + + case FL_STATUS: + for (;;) { + if (chip_ready(map, chip, adr, NULL)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); + return -EIO; + } + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + /* Someone else might have been playing with it. */ + goto retry; + } + return 0; + + case FL_READY: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + return 0; + + case FL_ERASING: + if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) || + !(mode == FL_READY || mode == FL_POINT || + (mode == FL_WRITING && (cfip->EraseSuspend & 0x2)))) + goto sleep; + + /* Do not allow suspend iff read/write to EB address */ + if ((adr & chip->in_progress_block_mask) == + chip->in_progress_block_addr) + goto sleep; + + /* Erase suspend */ + /* It's harmless to issue the Erase-Suspend and Erase-Resume + * commands when the erase algorithm isn't in progress. */ + map_write(map, CMD(0xB0), chip->in_progress_block_addr); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + chip->erase_suspended = 1; + for (;;) { + if (chip_ready(map, chip, adr, NULL)) + break; + + if (time_after(jiffies, timeo)) { + /* Should have suspended the erase by now. + * Send an Erase-Resume command as either + * there was an error (so leave the erase + * routine to recover from it) or we trying to + * use the erase-in-progress sector. */ + put_chip(map, chip, adr); + printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); + return -EIO; + } + + mutex_unlock(&chip->mutex); + cfi_udelay(1); + mutex_lock(&chip->mutex); + /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. + So we can just loop here. */ + } + chip->state = FL_READY; + return 0; + + case FL_XIP_WHILE_ERASING: + if (mode != FL_READY && mode != FL_POINT && + (!cfip || !(cfip->EraseSuspend&2))) + goto sleep; + chip->oldstate = chip->state; + chip->state = FL_READY; + return 0; + + case FL_SHUTDOWN: + /* The machine is rebooting */ + return -EIO; + + case FL_POINT: + /* Only if there's no operation suspended... */ + if (mode == FL_READY && chip->oldstate == FL_READY) + return 0; + fallthrough; + default: + sleep: + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + goto resettime; + } +} + + +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + + switch(chip->oldstate) { + case FL_ERASING: + cfi_fixup_m29ew_erase_suspend(map, + chip->in_progress_block_addr); + map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); + cfi_fixup_m29ew_delay_after_resume(cfi); + chip->oldstate = FL_READY; + chip->state = FL_ERASING; + break; + + case FL_XIP_WHILE_ERASING: + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + break; + + case FL_READY: + case FL_STATUS: + break; + default: + printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); + } + wake_up(&chip->wq); +} + +#ifdef CONFIG_MTD_XIP + +/* + * No interrupt what so ever can be serviced while the flash isn't in array + * mode. This is ensured by the xip_disable() and xip_enable() functions + * enclosing any code path where the flash is known not to be in array mode. + * And within a XIP disabled code path, only functions marked with __xipram + * may be called and nothing else (it's a good thing to inspect generated + * assembly to make sure inline functions were actually inlined and that gcc + * didn't emit calls to its own support functions). Also configuring MTD CFI + * support to a single buswidth and a single interleave is also recommended. + */ + +static void xip_disable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + /* TODO: chips with no XIP use should ignore and return */ + (void) map_read(map, adr); /* ensure mmu mapping is up to date */ + local_irq_disable(); +} + +static void __xipram xip_enable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xf0), adr); + chip->state = FL_READY; + } + (void) map_read(map, adr); + xip_iprefetch(); + local_irq_enable(); +} + +/* + * When a delay is required for the flash operation to complete, the + * xip_udelay() function is polling for both the given timeout and pending + * (but still masked) hardware interrupts. Whenever there is an interrupt + * pending then the flash erase operation is suspended, array mode restored + * and interrupts unmasked. Task scheduling might also happen at that + * point. The CPU eventually returns from the interrupt or the call to + * schedule() and the suspended flash operation is resumed for the remaining + * of the delay period. + * + * Warning: this function _will_ fool interrupt latency tracing tools. + */ + +static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, + unsigned long adr, int usec) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + map_word status, OK = CMD(0x80); + unsigned long suspended, start = xip_currtime(); + flstate_t oldstate; + + do { + cpu_relax(); + if (xip_irqpending() && extp && + ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) && + (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { + /* + * Let's suspend the erase operation when supported. + * Note that we currently don't try to suspend + * interleaved chips if there is already another + * operation suspended (imagine what happens + * when one chip was already done with the current + * operation while another chip suspended it, then + * we resume the whole thing at once). Yes, it + * can happen! + */ + map_write(map, CMD(0xb0), adr); + usec -= xip_elapsed_since(start); + suspended = xip_currtime(); + do { + if (xip_elapsed_since(suspended) > 100000) { + /* + * The chip doesn't want to suspend + * after waiting for 100 msecs. + * This is a critical error but there + * is not much we can do here. + */ + return; + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK)); + + /* Suspend succeeded */ + oldstate = chip->state; + if (!map_word_bitsset(map, status, CMD(0x40))) + break; + chip->state = FL_XIP_WHILE_ERASING; + chip->erase_suspended = 1; + map_write(map, CMD(0xf0), adr); + (void) map_read(map, adr); + xip_iprefetch(); + local_irq_enable(); + mutex_unlock(&chip->mutex); + xip_iprefetch(); + cond_resched(); + + /* + * We're back. However someone else might have + * decided to go write to the chip if we are in + * a suspended erase state. If so let's wait + * until it's done. + */ + mutex_lock(&chip->mutex); + while (chip->state != FL_XIP_WHILE_ERASING) { + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + } + /* Disallow XIP again */ + local_irq_disable(); + + /* Correct Erase Suspend Hangups for M29EW */ + cfi_fixup_m29ew_erase_suspend(map, adr); + /* Resume the write or erase operation */ + map_write(map, cfi->sector_erase_cmd, adr); + chip->state = oldstate; + start = xip_currtime(); + } else if (usec >= 1000000/HZ) { + /* + * Try to save on CPU power when waiting delay + * is at least a system timer tick period. + * No need to be extremely accurate here. + */ + xip_cpu_idle(); + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK) + && xip_elapsed_since(start) < usec); +} + +#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) + +/* + * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while + * the flash is actively programming or erasing since we have to poll for + * the operation to complete anyway. We can't do that in a generic way with + * a XIP setup so do it before the actual flash operation in this case + * and stub it out from INVALIDATE_CACHE_UDELAY. + */ +#define XIP_INVAL_CACHED_RANGE(map, from, size) \ + INVALIDATE_CACHED_RANGE(map, from, size) + +#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ + UDELAY(map, chip, adr, usec) + +/* + * Extra notes: + * + * Activating this XIP support changes the way the code works a bit. For + * example the code to suspend the current process when concurrent access + * happens is never executed because xip_udelay() will always return with the + * same chip state as it was entered with. This is why there is no care for + * the presence of add_wait_queue() or schedule() calls from within a couple + * xip_disable()'d areas of code, like in do_erase_oneblock for example. + * The queueing and scheduling are always happening within xip_udelay(). + * + * Similarly, get_chip() and put_chip() just happen to always be executed + * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state + * is in array mode, therefore never executing many cases therein and not + * causing any problem with XIP. + */ + +#else + +#define xip_disable(map, chip, adr) +#define xip_enable(map, chip, adr) +#define XIP_INVAL_CACHED_RANGE(x...) + +#define UDELAY(map, chip, adr, usec) \ +do { \ + mutex_unlock(&chip->mutex); \ + cfi_udelay(usec); \ + mutex_lock(&chip->mutex); \ +} while (0) + +#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ +do { \ + mutex_unlock(&chip->mutex); \ + INVALIDATE_CACHED_RANGE(map, adr, len); \ + cfi_udelay(usec); \ + mutex_lock(&chip->mutex); \ +} while (0) + +#endif + +static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, cmd_addr, FL_READY); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xf0), cmd_addr); + chip->state = FL_READY; + } + + map_copy_from(map, buf, adr, len); + + put_chip(map, chip, cmd_addr); + + mutex_unlock(&chip->mutex); + return 0; +} + + +static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, + loff_t adr, size_t len, u_char *buf, size_t grouplen); + +static inline void otp_enter(struct map_info *map, struct flchip *chip, + loff_t adr, size_t len) +{ + struct cfi_private *cfi = map->fldrv_priv; + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + INVALIDATE_CACHED_RANGE(map, chip->start + adr, len); +} + +static inline void otp_exit(struct map_info *map, struct flchip *chip, + loff_t adr, size_t len) +{ + struct cfi_private *cfi = map->fldrv_priv; + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + INVALIDATE_CACHED_RANGE(map, chip->start + adr, len); +} + +static inline int do_read_secsi_onechip(struct map_info *map, + struct flchip *chip, loff_t adr, + size_t len, u_char *buf, + size_t grouplen) +{ + DECLARE_WAITQUEUE(wait, current); + + retry: + mutex_lock(&chip->mutex); + + if (chip->state != FL_READY){ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + mutex_unlock(&chip->mutex); + + schedule(); + remove_wait_queue(&chip->wq, &wait); + + goto retry; + } + + adr += chip->start; + + chip->state = FL_READY; + + otp_enter(map, chip, adr, len); + map_copy_from(map, buf, adr, len); + otp_exit(map, chip, adr, len); + + wake_up(&chip->wq); + mutex_unlock(&chip->mutex); + + return 0; +} + +static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + /* 8 secsi bytes per chip */ + chipnum=from>>3; + ofs=from & 7; + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> 3) + thislen = (1<<3) - ofs; + else + thislen = len; + + ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, + thislen, buf, 0); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum, + int mode); + +static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr, + size_t len, u_char *buf, size_t grouplen) +{ + int ret; + while (len) { + unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1); + int gap = adr - bus_ofs; + int n = min_t(int, len, map_bankwidth(map) - gap); + map_word datum = map_word_ff(map); + + if (n != map_bankwidth(map)) { + /* partial write of a word, load old contents */ + otp_enter(map, chip, bus_ofs, map_bankwidth(map)); + datum = map_read(map, bus_ofs); + otp_exit(map, chip, bus_ofs, map_bankwidth(map)); + } + + datum = map_word_load_partial(map, datum, buf, gap, n); + ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); + if (ret) + return ret; + + adr += n; + buf += n; + len -= n; + } + + return 0; +} + +static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr, + size_t len, u_char *buf, size_t grouplen) +{ + struct cfi_private *cfi = map->fldrv_priv; + uint8_t lockreg; + unsigned long timeo; + int ret; + + /* make sure area matches group boundaries */ + if ((adr != 0) || (len != grouplen)) + return -EINVAL; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, chip->start, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + chip->state = FL_LOCKING; + + /* Enter lock register command */ + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + /* read lock register */ + lockreg = cfi_read_query(map, 0); + + /* set bit 0 to protect extended memory block */ + lockreg &= ~0x01; + + /* set bit 0 to protect extended memory block */ + /* write lock register */ + map_write(map, CMD(0xA0), chip->start); + map_write(map, CMD(lockreg), chip->start); + + /* wait for chip to become ready */ + timeo = jiffies + msecs_to_jiffies(2); + for (;;) { + if (chip_ready(map, chip, adr, NULL)) + break; + + if (time_after(jiffies, timeo)) { + pr_err("Waiting for chip to be ready timed out.\n"); + ret = -EIO; + break; + } + UDELAY(map, chip, 0, 1); + } + + /* exit protection commands */ + map_write(map, CMD(0x90), chip->start); + map_write(map, CMD(0x00), chip->start); + + chip->state = FL_READY; + put_chip(map, chip, chip->start); + mutex_unlock(&chip->mutex); + + return ret; +} + +static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf, + otp_op_t action, int user_regs) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ofs_factor = cfi->interleave * cfi->device_type; + unsigned long base; + int chipnum; + struct flchip *chip; + uint8_t otp, lockreg; + int ret; + + size_t user_size, factory_size, otpsize; + loff_t user_offset, factory_offset, otpoffset; + int user_locked = 0, otplocked; + + *retlen = 0; + + for (chipnum = 0; chipnum < cfi->numchips; chipnum++) { + chip = &cfi->chips[chipnum]; + factory_size = 0; + user_size = 0; + + /* Micron M29EW family */ + if (is_m29ew(cfi)) { + base = chip->start; + + /* check whether secsi area is factory locked + or user lockable */ + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, base, FL_CFI_QUERY); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + cfi_qry_mode_on(base, map, cfi); + otp = cfi_read_query(map, base + 0x3 * ofs_factor); + cfi_qry_mode_off(base, map, cfi); + put_chip(map, chip, base); + mutex_unlock(&chip->mutex); + + if (otp & 0x80) { + /* factory locked */ + factory_offset = 0; + factory_size = 0x100; + } else { + /* customer lockable */ + user_offset = 0; + user_size = 0x100; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, base, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + /* Enter lock register command */ + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, + chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, + chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x40, cfi->addr_unlock1, + chip->start, map, cfi, + cfi->device_type, NULL); + /* read lock register */ + lockreg = cfi_read_query(map, 0); + /* exit protection commands */ + map_write(map, CMD(0x90), chip->start); + map_write(map, CMD(0x00), chip->start); + put_chip(map, chip, chip->start); + mutex_unlock(&chip->mutex); + + user_locked = ((lockreg & 0x01) == 0x00); + } + } + + otpsize = user_regs ? user_size : factory_size; + if (!otpsize) + continue; + otpoffset = user_regs ? user_offset : factory_offset; + otplocked = user_regs ? user_locked : 1; + + if (!action) { + /* return otpinfo */ + struct otp_info *otpinfo; + len -= sizeof(*otpinfo); + if (len <= 0) + return -ENOSPC; + otpinfo = (struct otp_info *)buf; + otpinfo->start = from; + otpinfo->length = otpsize; + otpinfo->locked = otplocked; + buf += sizeof(*otpinfo); + *retlen += sizeof(*otpinfo); + from += otpsize; + } else if ((from < otpsize) && (len > 0)) { + size_t size; + size = (len < otpsize - from) ? len : otpsize - from; + ret = action(map, chip, otpoffset + from, size, buf, + otpsize); + if (ret < 0) + return ret; + + buf += size; + len -= size; + *retlen += size; + from = 0; + } else { + from -= otpsize; + } + } + return 0; +} + +static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 0); +} + +static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf, + NULL, 1); +} + +static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + u_char *buf) +{ + return cfi_amdstd_otp_walk(mtd, from, len, retlen, + buf, do_read_secsi_onechip, 0); +} + +static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + u_char *buf) +{ + return cfi_amdstd_otp_walk(mtd, from, len, retlen, + buf, do_read_secsi_onechip, 1); +} + +static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, + const u_char *buf) +{ + return cfi_amdstd_otp_walk(mtd, from, len, retlen, (u_char *)buf, + do_otp_write, 1); +} + +static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len) +{ + size_t retlen; + return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL, + do_otp_lock, 1); +} + +static int __xipram do_write_oneword_once(struct map_info *map, + struct flchip *chip, + unsigned long adr, map_word datum, + int mode, struct cfi_private *cfi) +{ + unsigned long timeo; + /* + * We use a 1ms + 1 jiffies generic timeout for writes (most devices + * have a max write time of a few hundreds usec). However, we should + * use the maximum timeout value given by the chip at probe time + * instead. Unfortunately, struct flchip does have a field for + * maximum timeout, only for typical which can be far too short + * depending of the conditions. The ' + 1' is to avoid having a + * timeout of 0 jiffies if HZ is smaller than 1000. + */ + unsigned long uWriteTimeout = (HZ / 1000) + 1; + int ret = 0; + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, datum, adr); + chip->state = mode; + + INVALIDATE_CACHE_UDELAY(map, chip, + adr, map_bankwidth(map), + chip->word_write_time); + + /* See comment above for timeout value. */ + timeo = jiffies + uWriteTimeout; + for (;;) { + if (chip->state != mode) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + mutex_lock(&chip->mutex); + continue; + } + + /* + * We check "time_after" and "!chip_good" before checking + * "chip_good" to avoid the failure due to scheduling. + */ + if (time_after(jiffies, timeo) && + !chip_good(map, chip, adr, &datum)) { + xip_enable(map, chip, adr); + printk(KERN_WARNING "MTD %s(): software timeout\n", __func__); + xip_disable(map, chip, adr); + ret = -EIO; + break; + } + + if (chip_good(map, chip, adr, &datum)) { + if (cfi_check_err_status(map, chip, adr)) + ret = -EIO; + break; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + UDELAY(map, chip, adr, 1); + } + + return ret; +} + +static int __xipram do_write_oneword_start(struct map_info *map, + struct flchip *chip, + unsigned long adr, int mode) +{ + int ret; + + mutex_lock(&chip->mutex); + + ret = get_chip(map, chip, adr, mode); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + if (mode == FL_OTP_WRITE) + otp_enter(map, chip, adr, map_bankwidth(map)); + + return ret; +} + +static void __xipram do_write_oneword_done(struct map_info *map, + struct flchip *chip, + unsigned long adr, int mode) +{ + if (mode == FL_OTP_WRITE) + otp_exit(map, chip, adr, map_bankwidth(map)); + + chip->state = FL_READY; + DISABLE_VPP(map); + put_chip(map, chip, adr); + + mutex_unlock(&chip->mutex); +} + +static int __xipram do_write_oneword_retry(struct map_info *map, + struct flchip *chip, + unsigned long adr, map_word datum, + int mode) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret = 0; + map_word oldd; + int retry_cnt = 0; + + /* + * Check for a NOP for the case when the datum to write is already + * present - it saves time and works around buggy chips that corrupt + * data at other locations when 0xff is written to a location that + * already contains 0xff. + */ + oldd = map_read(map, adr); + if (map_word_equal(map, oldd, datum)) { + pr_debug("MTD %s(): NOP\n", __func__); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + retry: + ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi); + if (ret) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_RETRIES) { + ret = 0; + goto retry; + } + } + xip_enable(map, chip, adr); + + return ret; +} + +static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum, + int mode) +{ + int ret; + + adr += chip->start; + + pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr, + datum.x[0]); + + ret = do_write_oneword_start(map, chip, adr, mode); + if (ret) + return ret; + + ret = do_write_oneword_retry(map, chip, adr, datum, mode); + + do_write_oneword_done(map, chip, adr, mode); + + return ret; +} + + +static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + int chipnum; + unsigned long ofs, chipstart; + DECLARE_WAITQUEUE(wait, current); + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + chipstart = cfi->chips[chipnum].start; + + /* If it's not bus-aligned, do the first byte write */ + if (ofs & (map_bankwidth(map)-1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); + int i = ofs - bus_ofs; + int n = 0; + map_word tmp_buf; + + retry: + mutex_lock(&cfi->chips[chipnum].mutex); + + if (cfi->chips[chipnum].state != FL_READY) { + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&cfi->chips[chipnum].wq, &wait); + + mutex_unlock(&cfi->chips[chipnum].mutex); + + schedule(); + remove_wait_queue(&cfi->chips[chipnum].wq, &wait); + goto retry; + } + + /* Load 'tmp_buf' with old contents of flash */ + tmp_buf = map_read(map, bus_ofs+chipstart); + + mutex_unlock(&cfi->chips[chipnum].mutex); + + /* Number of bytes to copy from buffer */ + n = min_t(int, len, map_bankwidth(map)-i); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, tmp_buf, FL_WRITING); + if (ret) + return ret; + + ofs += n; + buf += n; + (*retlen) += n; + len -= n; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* We are now aligned, write as much as possible */ + while(len >= map_bankwidth(map)) { + map_word datum; + + datum = map_word_load(map, buf); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum, FL_WRITING); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + chipstart = cfi->chips[chipnum].start; + } + } + + /* Write the trailing bytes if any */ + if (len & (map_bankwidth(map)-1)) { + map_word tmp_buf; + + retry1: + mutex_lock(&cfi->chips[chipnum].mutex); + + if (cfi->chips[chipnum].state != FL_READY) { + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&cfi->chips[chipnum].wq, &wait); + + mutex_unlock(&cfi->chips[chipnum].mutex); + + schedule(); + remove_wait_queue(&cfi->chips[chipnum].wq, &wait); + goto retry1; + } + + tmp_buf = map_read(map, ofs + chipstart); + + mutex_unlock(&cfi->chips[chipnum].mutex); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, tmp_buf, FL_WRITING); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + +#if !FORCE_WORD_WRITE +static int __xipram do_write_buffer_wait(struct map_info *map, + struct flchip *chip, unsigned long adr, + map_word datum) +{ + unsigned long timeo; + unsigned long u_write_timeout; + int ret = 0; + + /* + * Timeout is calculated according to CFI data, if available. + * See more comments in cfi_cmdset_0002(). + */ + u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max); + timeo = jiffies + u_write_timeout; + + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + mutex_lock(&chip->mutex); + continue; + } + + /* + * We check "time_after" and "!chip_good" before checking + * "chip_good" to avoid the failure due to scheduling. + */ + if (time_after(jiffies, timeo) && + !chip_good(map, chip, adr, &datum)) { + pr_err("MTD %s(): software timeout, address:0x%.8lx.\n", + __func__, adr); + ret = -EIO; + break; + } + + if (chip_good(map, chip, adr, &datum)) { + if (cfi_check_err_status(map, chip, adr)) + ret = -EIO; + break; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + UDELAY(map, chip, adr, 1); + } + + return ret; +} + +static void __xipram do_write_buffer_reset(struct map_info *map, + struct flchip *chip, + struct cfi_private *cfi) +{ + /* + * Recovery from write-buffer programming failures requires + * the write-to-buffer-reset sequence. Since the last part + * of the sequence also works as a normal reset, we can run + * the same commands regardless of why we are here. + * See e.g. + * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf + */ + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + /* FIXME - should have reset delay before continuing */ +} + +/* + * FIXME: interleaved mode not tested, and probably not supported! + */ +static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const u_char *buf, + int len) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret; + unsigned long cmd_adr; + int z, words; + map_word datum; + + adr += chip->start; + cmd_adr = adr; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_WRITING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + datum = map_word_load(map, buf); + + pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", + __func__, adr, datum.x[0]); + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, cmd_adr); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + + /* Write Buffer Load */ + map_write(map, CMD(0x25), cmd_adr); + + chip->state = FL_WRITING_TO_BUFFER; + + /* Write length of data to come */ + words = len / map_bankwidth(map); + map_write(map, CMD(words - 1), cmd_adr); + /* Write data */ + z = 0; + while(z < words * map_bankwidth(map)) { + datum = map_word_load(map, buf); + map_write(map, datum, adr + z); + + z += map_bankwidth(map); + buf += map_bankwidth(map); + } + z -= map_bankwidth(map); + + adr += z; + + /* Write Buffer Program Confirm: GO GO GO */ + map_write(map, CMD(0x29), cmd_adr); + chip->state = FL_WRITING; + + INVALIDATE_CACHE_UDELAY(map, chip, + adr, map_bankwidth(map), + chip->word_write_time); + + ret = do_write_buffer_wait(map, chip, adr, datum); + if (ret) + do_write_buffer_reset(map, chip, cfi); + + xip_enable(map, chip, adr); + + chip->state = FL_READY; + DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + + return ret; +} + + +static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + int ret; + int chipnum; + unsigned long ofs; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + + /* If it's not bus-aligned, do the first word write */ + if (ofs & (map_bankwidth(map)-1)) { + size_t local_len = (-ofs)&(map_bankwidth(map)-1); + if (local_len > len) + local_len = len; + ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), + local_len, retlen, buf); + if (ret) + return ret; + ofs += local_len; + buf += local_len; + len -= local_len; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* Write buffer is worth it only if more than one word to write... */ + while (len >= map_bankwidth(map) * 2) { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + if (size % map_bankwidth(map)) + size -= size % map_bankwidth(map); + + ret = do_write_buffer(map, &cfi->chips[chipnum], + ofs, buf, size); + if (ret) + return ret; + + ofs += size; + buf += size; + (*retlen) += size; + len -= size; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + if (len) { + size_t retlen_dregs = 0; + + ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), + len, &retlen_dregs, buf); + + *retlen += retlen_dregs; + return ret; + } + + return 0; +} +#endif /* !FORCE_WORD_WRITE */ + +/* + * Wait for the flash chip to become ready to write data + * + * This is only called during the panic_write() path. When panic_write() + * is called, the kernel is in the process of a panic, and will soon be + * dead. Therefore we don't take any locks, and attempt to get access + * to the chip as soon as possible. + */ +static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + int retries = 10; + int i; + + /* + * If the driver thinks the chip is idle, and no toggle bits + * are changing, then the chip is actually idle for sure. + */ + if (chip->state == FL_READY && chip_ready(map, chip, adr, NULL)) + return 0; + + /* + * Try several times to reset the chip and then wait for it + * to become idle. The upper limit of a few milliseconds of + * delay isn't a big problem: the kernel is dying anyway. It + * is more important to save the messages. + */ + while (retries > 0) { + const unsigned long timeo = (HZ / 1000) + 1; + + /* send the reset command */ + map_write(map, CMD(0xF0), chip->start); + + /* wait for the chip to become ready */ + for (i = 0; i < jiffies_to_usecs(timeo); i++) { + if (chip_ready(map, chip, adr, NULL)) + return 0; + + udelay(1); + } + + retries--; + } + + /* the chip never became ready */ + return -EBUSY; +} + +/* + * Write out one word of data to a single flash chip during a kernel panic + * + * This is only called during the panic_write() path. When panic_write() + * is called, the kernel is in the process of a panic, and will soon be + * dead. Therefore we don't take any locks, and attempt to get access + * to the chip as soon as possible. + * + * The implementation of this routine is intentionally similar to + * do_write_oneword(), in order to ease code maintenance. + */ +static int do_panic_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum) +{ + const unsigned long uWriteTimeout = (HZ / 1000) + 1; + struct cfi_private *cfi = map->fldrv_priv; + int retry_cnt = 0; + map_word oldd; + int ret; + int i; + + adr += chip->start; + + ret = cfi_amdstd_panic_wait(map, chip, adr); + if (ret) + return ret; + + pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n", + __func__, adr, datum.x[0]); + + /* + * Check for a NOP for the case when the datum to write is already + * present - it saves time and works around buggy chips that corrupt + * data at other locations when 0xff is written to a location that + * already contains 0xff. + */ + oldd = map_read(map, adr); + if (map_word_equal(map, oldd, datum)) { + pr_debug("MTD %s(): NOP\n", __func__); + goto op_done; + } + + ENABLE_VPP(map); + +retry: + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, datum, adr); + + for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) { + if (chip_ready(map, chip, adr, NULL)) + break; + + udelay(1); + } + + if (!chip_ready(map, chip, adr, &datum) || + cfi_check_err_status(map, chip, adr)) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_RETRIES) + goto retry; + + ret = -EIO; + } + +op_done: + DISABLE_VPP(map); + return ret; +} + +/* + * Write out some data during a kernel panic + * + * This is used by the mtdoops driver to save the dying messages from a + * kernel which has panic'd. + * + * This routine ignores all of the locking used throughout the rest of the + * driver, in order to ensure that the data gets written out no matter what + * state this driver (and the flash chip itself) was in when the kernel crashed. + * + * The implementation of this routine is intentionally similar to + * cfi_amdstd_write_words(), in order to ease code maintenance. + */ +static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs, chipstart; + int ret; + int chipnum; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + chipstart = cfi->chips[chipnum].start; + + /* If it's not bus aligned, do the first byte write */ + if (ofs & (map_bankwidth(map) - 1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1); + int i = ofs - bus_ofs; + int n = 0; + map_word tmp_buf; + + ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs); + if (ret) + return ret; + + /* Load 'tmp_buf' with old contents of flash */ + tmp_buf = map_read(map, bus_ofs + chipstart); + + /* Number of bytes to copy from buffer */ + n = min_t(int, len, map_bankwidth(map) - i); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, tmp_buf); + if (ret) + return ret; + + ofs += n; + buf += n; + (*retlen) += n; + len -= n; + + if (ofs >> cfi->chipshift) { + chipnum++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* We are now aligned, write as much as possible */ + while (len >= map_bankwidth(map)) { + map_word datum; + + datum = map_word_load(map, buf); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + ofs, datum); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + + chipstart = cfi->chips[chipnum].start; + } + } + + /* Write the trailing bytes if any */ + if (len & (map_bankwidth(map) - 1)) { + map_word tmp_buf; + + ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs); + if (ret) + return ret; + + tmp_buf = map_read(map, ofs + chipstart); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); + + ret = do_panic_write_oneword(map, &cfi->chips[chipnum], + ofs, tmp_buf); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + + +/* + * Handle devices with one erase region, that only implement + * the chip erase command. + */ +static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo = jiffies + HZ; + unsigned long int adr; + DECLARE_WAITQUEUE(wait, current); + int ret; + int retry_cnt = 0; + map_word datum = map_word_ff(map); + + adr = cfi->addr_unlock1; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_ERASING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + pr_debug("MTD %s(): ERASE 0x%.8lx\n", + __func__, chip->start); + + XIP_INVAL_CACHED_RANGE(map, adr, map->size); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + retry: + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + + chip->state = FL_ERASING; + chip->erase_suspended = 0; + chip->in_progress_block_addr = adr; + chip->in_progress_block_mask = ~(map->size - 1); + + INVALIDATE_CACHE_UDELAY(map, chip, + adr, map->size, + chip->erase_time*500); + + timeo = jiffies + (HZ*20); + + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + continue; + } + if (chip->erase_suspended) { + /* This erase was suspended and resumed. + Adjust the timeout */ + timeo = jiffies + (HZ*20); /* FIXME */ + chip->erase_suspended = 0; + } + + if (chip_ready(map, chip, adr, &datum)) { + if (cfi_check_err_status(map, chip, adr)) + ret = -EIO; + break; + } + + if (time_after(jiffies, timeo)) { + printk(KERN_WARNING "MTD %s(): software timeout\n", + __func__); + ret = -EIO; + break; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + UDELAY(map, chip, adr, 1000000/HZ); + } + /* Did we succeed? */ + if (ret) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_RETRIES) { + ret = 0; + goto retry; + } + } + + chip->state = FL_READY; + xip_enable(map, chip, adr); + DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + + return ret; +} + + +static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo = jiffies + HZ; + DECLARE_WAITQUEUE(wait, current); + int ret; + int retry_cnt = 0; + map_word datum = map_word_ff(map); + + adr += chip->start; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_ERASING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + pr_debug("MTD %s(): ERASE 0x%.8lx\n", + __func__, adr); + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + retry: + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, cfi->sector_erase_cmd, adr); + + chip->state = FL_ERASING; + chip->erase_suspended = 0; + chip->in_progress_block_addr = adr; + chip->in_progress_block_mask = ~(len - 1); + + INVALIDATE_CACHE_UDELAY(map, chip, + adr, len, + chip->erase_time*500); + + timeo = jiffies + (HZ*20); + + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + mutex_unlock(&chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + mutex_lock(&chip->mutex); + continue; + } + if (chip->erase_suspended) { + /* This erase was suspended and resumed. + Adjust the timeout */ + timeo = jiffies + (HZ*20); /* FIXME */ + chip->erase_suspended = 0; + } + + if (chip_ready(map, chip, adr, &datum)) { + if (cfi_check_err_status(map, chip, adr)) + ret = -EIO; + break; + } + + if (time_after(jiffies, timeo)) { + printk(KERN_WARNING "MTD %s(): software timeout\n", + __func__); + ret = -EIO; + break; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + UDELAY(map, chip, adr, 1000000/HZ); + } + /* Did we succeed? */ + if (ret) { + /* reset on all failures. */ + map_write(map, CMD(0xF0), chip->start); + /* FIXME - should have reset delay before continuing */ + + if (++retry_cnt <= MAX_RETRIES) { + ret = 0; + goto retry; + } + } + + chip->state = FL_READY; + xip_enable(map, chip, adr); + DISABLE_VPP(map); + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + return ret; +} + + +static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) +{ + return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr, + instr->len, NULL); +} + + +static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + if (instr->addr != 0) + return -EINVAL; + + if (instr->len != mtd->size) + return -EINVAL; + + return do_erase_chip(map, &cfi->chips[0]); +} + +static int do_atmel_lock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr + chip->start, FL_LOCKING); + if (ret) + goto out_unlock; + chip->state = FL_LOCKING; + + pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + map_write(map, CMD(0x40), chip->start + adr); + + chip->state = FL_READY; + put_chip(map, chip, adr + chip->start); + ret = 0; + +out_unlock: + mutex_unlock(&chip->mutex); + return ret; +} + +static int do_atmel_unlock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING); + if (ret) + goto out_unlock; + chip->state = FL_UNLOCKING; + + pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + map_write(map, CMD(0x70), adr); + + chip->state = FL_READY; + put_chip(map, chip, adr + chip->start); + ret = 0; + +out_unlock: + mutex_unlock(&chip->mutex); + return ret; +} + +static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL); +} + +static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL); +} + +/* + * Advanced Sector Protection - PPB (Persistent Protection Bit) locking + */ + +struct ppb_lock { + struct flchip *chip; + unsigned long adr; + int locked; +}; + +#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1) +#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2) +#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3) + +static int __maybe_unused do_ppb_xxlock(struct map_info *map, + struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo; + int ret; + + adr += chip->start; + mutex_lock(&chip->mutex); + ret = get_chip(map, chip, adr, FL_LOCKING); + if (ret) { + mutex_unlock(&chip->mutex); + return ret; + } + + pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, + cfi->device_type, NULL); + /* PPB entry command */ + cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi, + cfi->device_type, NULL); + + if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { + chip->state = FL_LOCKING; + map_write(map, CMD(0xA0), adr); + map_write(map, CMD(0x00), adr); + } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { + /* + * Unlocking of one specific sector is not supported, so we + * have to unlock all sectors of this device instead + */ + chip->state = FL_UNLOCKING; + map_write(map, CMD(0x80), chip->start); + map_write(map, CMD(0x30), chip->start); + } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) { + chip->state = FL_JEDEC_QUERY; + /* Return locked status: 0->locked, 1->unlocked */ + ret = !cfi_read_query(map, adr); + } else + BUG(); + + /* + * Wait for some time as unlocking of all sectors takes quite long + */ + timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */ + for (;;) { + if (chip_ready(map, chip, adr, NULL)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); + ret = -EIO; + break; + } + + UDELAY(map, chip, adr, 1); + } + + /* Exit BC commands */ + map_write(map, CMD(0x90), chip->start); + map_write(map, CMD(0x00), chip->start); + + chip->state = FL_READY; + put_chip(map, chip, adr); + mutex_unlock(&chip->mutex); + + return ret; +} + +static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_LOCK); +} + +static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + struct mtd_erase_region_info *regions = mtd->eraseregions; + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct ppb_lock *sect; + unsigned long adr; + loff_t offset; + uint64_t length; + int chipnum; + int i; + int sectors; + int ret; + int max_sectors; + + /* + * PPB unlocking always unlocks all sectors of the flash chip. + * We need to re-lock all previously locked sectors. So lets + * first check the locking status of all sectors and save + * it for future use. + */ + max_sectors = 0; + for (i = 0; i < mtd->numeraseregions; i++) + max_sectors += regions[i].numblocks; + + sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL); + if (!sect) + return -ENOMEM; + + /* + * This code to walk all sectors is a slightly modified version + * of the cfi_varsize_frob() code. + */ + i = 0; + chipnum = 0; + adr = 0; + sectors = 0; + offset = 0; + length = mtd->size; + + while (length) { + int size = regions[i].erasesize; + + /* + * Only test sectors that shall not be unlocked. The other + * sectors shall be unlocked, so lets keep their locking + * status at "unlocked" (locked=0) for the final re-locking. + */ + if ((offset < ofs) || (offset >= (ofs + len))) { + sect[sectors].chip = &cfi->chips[chipnum]; + sect[sectors].adr = adr; + sect[sectors].locked = do_ppb_xxlock( + map, &cfi->chips[chipnum], adr, 0, + DO_XXLOCK_ONEBLOCK_GETLOCK); + } + + adr += size; + offset += size; + length -= size; + + if (offset == regions[i].offset + size * regions[i].numblocks) + i++; + + if (adr >> cfi->chipshift) { + if (offset >= (ofs + len)) + break; + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + + sectors++; + if (sectors >= max_sectors) { + printk(KERN_ERR "Only %d sectors for PPB locking supported!\n", + max_sectors); + kfree(sect); + return -EINVAL; + } + } + + /* Now unlock the whole chip */ + ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_UNLOCK); + if (ret) { + kfree(sect); + return ret; + } + + /* + * PPB unlocking always unlocks all sectors of the flash chip. + * We need to re-lock all previously locked sectors. + */ + for (i = 0; i < sectors; i++) { + if (sect[i].locked) + do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0, + DO_XXLOCK_ONEBLOCK_LOCK); + } + + kfree(sect); + return ret; +} + +static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, + uint64_t len) +{ + return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, + DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0; +} + +static void cfi_amdstd_sync (struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + DECLARE_WAITQUEUE(wait, current); + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + retry: + mutex_lock(&chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + fallthrough; + case FL_SYNCING: + mutex_unlock(&chip->mutex); + break; + + default: + /* Not an idle state */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + mutex_unlock(&chip->mutex); + + schedule(); + + remove_wait_queue(&chip->wq, &wait); + + goto retry; + } + } + + /* Unlock the chips again */ + + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + mutex_unlock(&chip->mutex); + } +} + + +static int cfi_amdstd_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_PM_SUSPENDED; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + break; + case FL_PM_SUSPENDED: + break; + + default: + ret = -EAGAIN; + break; + } + mutex_unlock(&chip->mutex); + } + + /* Unlock the chips again */ + + if (ret) { + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + mutex_unlock(&chip->mutex); + } + } + + return ret; +} + + +static void cfi_amdstd_resume(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + + for (i=0; i<cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + chip->state = FL_READY; + map_write(map, CMD(0xF0), chip->start); + wake_up(&chip->wq); + } + else + printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); + + mutex_unlock(&chip->mutex); + } +} + + +/* + * Ensure that the flash device is put back into read array mode before + * unloading the driver or rebooting. On some systems, rebooting while + * the flash is in query/program/erase mode will prevent the CPU from + * fetching the bootloader code, requiring a hard reset or power cycle. + */ +static int cfi_amdstd_reset(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i, ret; + struct flchip *chip; + + for (i = 0; i < cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + mutex_lock(&chip->mutex); + + ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); + if (!ret) { + map_write(map, CMD(0xF0), chip->start); + chip->state = FL_SHUTDOWN; + put_chip(map, chip, chip->start); + } + + mutex_unlock(&chip->mutex); + } + + return 0; +} + + +static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val, + void *v) +{ + struct mtd_info *mtd; + + mtd = container_of(nb, struct mtd_info, reboot_notifier); + cfi_amdstd_reset(mtd); + return NOTIFY_DONE; +} + + +static void cfi_amdstd_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + cfi_amdstd_reset(mtd); + unregister_reboot_notifier(&mtd->reboot_notifier); + kfree(cfi->cmdset_priv); + kfree(cfi->cfiq); + kfree(cfi); + kfree(mtd->eraseregions); +} + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al."); +MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips"); +MODULE_ALIAS("cfi_cmdset_0006"); +MODULE_ALIAS("cfi_cmdset_0701"); |