diff options
Diffstat (limited to 'drivers/net/ethernet/intel/ice/ice_xsk.c')
-rw-r--r-- | drivers/net/ethernet/intel/ice/ice_xsk.c | 1073 |
1 files changed, 1073 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/ice/ice_xsk.c b/drivers/net/ethernet/intel/ice/ice_xsk.c new file mode 100644 index 000000000..41ee081eb --- /dev/null +++ b/drivers/net/ethernet/intel/ice/ice_xsk.c @@ -0,0 +1,1073 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2019, Intel Corporation. */ + +#include <linux/bpf_trace.h> +#include <net/xdp_sock_drv.h> +#include <net/xdp.h> +#include "ice.h" +#include "ice_base.h" +#include "ice_type.h" +#include "ice_xsk.h" +#include "ice_txrx.h" +#include "ice_txrx_lib.h" +#include "ice_lib.h" + +static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) +{ + return &rx_ring->xdp_buf[idx]; +} + +/** + * ice_qp_reset_stats - Resets all stats for rings of given index + * @vsi: VSI that contains rings of interest + * @q_idx: ring index in array + */ +static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) +{ + memset(&vsi->rx_rings[q_idx]->rx_stats, 0, + sizeof(vsi->rx_rings[q_idx]->rx_stats)); + memset(&vsi->tx_rings[q_idx]->stats, 0, + sizeof(vsi->tx_rings[q_idx]->stats)); + if (ice_is_xdp_ena_vsi(vsi)) + memset(&vsi->xdp_rings[q_idx]->stats, 0, + sizeof(vsi->xdp_rings[q_idx]->stats)); +} + +/** + * ice_qp_clean_rings - Cleans all the rings of a given index + * @vsi: VSI that contains rings of interest + * @q_idx: ring index in array + */ +static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) +{ + ice_clean_tx_ring(vsi->tx_rings[q_idx]); + if (ice_is_xdp_ena_vsi(vsi)) { + synchronize_rcu(); + ice_clean_tx_ring(vsi->xdp_rings[q_idx]); + } + ice_clean_rx_ring(vsi->rx_rings[q_idx]); +} + +/** + * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector + * @vsi: VSI that has netdev + * @q_vector: q_vector that has NAPI context + * @enable: true for enable, false for disable + */ +static void +ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, + bool enable) +{ + if (!vsi->netdev || !q_vector) + return; + + if (enable) + napi_enable(&q_vector->napi); + else + napi_disable(&q_vector->napi); +} + +/** + * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring + * @vsi: the VSI that contains queue vector being un-configured + * @rx_ring: Rx ring that will have its IRQ disabled + * @q_vector: queue vector + */ +static void +ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, + struct ice_q_vector *q_vector) +{ + struct ice_pf *pf = vsi->back; + struct ice_hw *hw = &pf->hw; + int base = vsi->base_vector; + u16 reg; + u32 val; + + /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle + * here only QINT_RQCTL + */ + reg = rx_ring->reg_idx; + val = rd32(hw, QINT_RQCTL(reg)); + val &= ~QINT_RQCTL_CAUSE_ENA_M; + wr32(hw, QINT_RQCTL(reg), val); + + if (q_vector) { + u16 v_idx = q_vector->v_idx; + + wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); + ice_flush(hw); + synchronize_irq(pf->msix_entries[v_idx + base].vector); + } +} + +/** + * ice_qvec_cfg_msix - Enable IRQ for given queue vector + * @vsi: the VSI that contains queue vector + * @q_vector: queue vector + */ +static void +ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) +{ + u16 reg_idx = q_vector->reg_idx; + struct ice_pf *pf = vsi->back; + struct ice_hw *hw = &pf->hw; + struct ice_tx_ring *tx_ring; + struct ice_rx_ring *rx_ring; + + ice_cfg_itr(hw, q_vector); + + ice_for_each_tx_ring(tx_ring, q_vector->tx) + ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, + q_vector->tx.itr_idx); + + ice_for_each_rx_ring(rx_ring, q_vector->rx) + ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, + q_vector->rx.itr_idx); + + ice_flush(hw); +} + +/** + * ice_qvec_ena_irq - Enable IRQ for given queue vector + * @vsi: the VSI that contains queue vector + * @q_vector: queue vector + */ +static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) +{ + struct ice_pf *pf = vsi->back; + struct ice_hw *hw = &pf->hw; + + ice_irq_dynamic_ena(hw, vsi, q_vector); + + ice_flush(hw); +} + +/** + * ice_qp_dis - Disables a queue pair + * @vsi: VSI of interest + * @q_idx: ring index in array + * + * Returns 0 on success, negative on failure. + */ +static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) +{ + struct ice_txq_meta txq_meta = { }; + struct ice_q_vector *q_vector; + struct ice_tx_ring *tx_ring; + struct ice_rx_ring *rx_ring; + int timeout = 50; + int err; + + if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) + return -EINVAL; + + tx_ring = vsi->tx_rings[q_idx]; + rx_ring = vsi->rx_rings[q_idx]; + q_vector = rx_ring->q_vector; + + while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { + timeout--; + if (!timeout) + return -EBUSY; + usleep_range(1000, 2000); + } + netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); + + ice_fill_txq_meta(vsi, tx_ring, &txq_meta); + err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); + if (err) + return err; + if (ice_is_xdp_ena_vsi(vsi)) { + struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; + + memset(&txq_meta, 0, sizeof(txq_meta)); + ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); + err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, + &txq_meta); + if (err) + return err; + } + ice_qvec_dis_irq(vsi, rx_ring, q_vector); + + err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); + if (err) + return err; + + ice_qvec_toggle_napi(vsi, q_vector, false); + ice_qp_clean_rings(vsi, q_idx); + ice_qp_reset_stats(vsi, q_idx); + + return 0; +} + +/** + * ice_qp_ena - Enables a queue pair + * @vsi: VSI of interest + * @q_idx: ring index in array + * + * Returns 0 on success, negative on failure. + */ +static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) +{ + struct ice_aqc_add_tx_qgrp *qg_buf; + struct ice_q_vector *q_vector; + struct ice_tx_ring *tx_ring; + struct ice_rx_ring *rx_ring; + u16 size; + int err; + + if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) + return -EINVAL; + + size = struct_size(qg_buf, txqs, 1); + qg_buf = kzalloc(size, GFP_KERNEL); + if (!qg_buf) + return -ENOMEM; + + qg_buf->num_txqs = 1; + + tx_ring = vsi->tx_rings[q_idx]; + rx_ring = vsi->rx_rings[q_idx]; + q_vector = rx_ring->q_vector; + + err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); + if (err) + goto free_buf; + + if (ice_is_xdp_ena_vsi(vsi)) { + struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; + + memset(qg_buf, 0, size); + qg_buf->num_txqs = 1; + err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); + if (err) + goto free_buf; + ice_set_ring_xdp(xdp_ring); + ice_tx_xsk_pool(vsi, q_idx); + } + + err = ice_vsi_cfg_rxq(rx_ring); + if (err) + goto free_buf; + + ice_qvec_cfg_msix(vsi, q_vector); + + err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); + if (err) + goto free_buf; + + clear_bit(ICE_CFG_BUSY, vsi->state); + ice_qvec_toggle_napi(vsi, q_vector, true); + ice_qvec_ena_irq(vsi, q_vector); + + netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); +free_buf: + kfree(qg_buf); + return err; +} + +/** + * ice_xsk_pool_disable - disable a buffer pool region + * @vsi: Current VSI + * @qid: queue ID + * + * Returns 0 on success, negative on failure + */ +static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) +{ + struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); + + if (!pool) + return -EINVAL; + + clear_bit(qid, vsi->af_xdp_zc_qps); + xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); + + return 0; +} + +/** + * ice_xsk_pool_enable - enable a buffer pool region + * @vsi: Current VSI + * @pool: pointer to a requested buffer pool region + * @qid: queue ID + * + * Returns 0 on success, negative on failure + */ +static int +ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) +{ + int err; + + if (vsi->type != ICE_VSI_PF) + return -EINVAL; + + if (qid >= vsi->netdev->real_num_rx_queues || + qid >= vsi->netdev->real_num_tx_queues) + return -EINVAL; + + err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), + ICE_RX_DMA_ATTR); + if (err) + return err; + + set_bit(qid, vsi->af_xdp_zc_qps); + + return 0; +} + +/** + * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer + * @rx_ring: Rx ring + * @pool_present: is pool for XSK present + * + * Try allocating memory and return ENOMEM, if failed to allocate. + * If allocation was successful, substitute buffer with allocated one. + * Returns 0 on success, negative on failure + */ +static int +ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) +{ + size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : + sizeof(*rx_ring->rx_buf); + void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); + + if (!sw_ring) + return -ENOMEM; + + if (pool_present) { + kfree(rx_ring->rx_buf); + rx_ring->rx_buf = NULL; + rx_ring->xdp_buf = sw_ring; + } else { + kfree(rx_ring->xdp_buf); + rx_ring->xdp_buf = NULL; + rx_ring->rx_buf = sw_ring; + } + + return 0; +} + +/** + * ice_realloc_zc_buf - reallocate XDP ZC queue pairs + * @vsi: Current VSI + * @zc: is zero copy set + * + * Reallocate buffer for rx_rings that might be used by XSK. + * XDP requires more memory, than rx_buf provides. + * Returns 0 on success, negative on failure + */ +int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) +{ + struct ice_rx_ring *rx_ring; + unsigned long q; + + for_each_set_bit(q, vsi->af_xdp_zc_qps, + max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { + rx_ring = vsi->rx_rings[q]; + if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) + return -ENOMEM; + } + + return 0; +} + +/** + * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state + * @vsi: Current VSI + * @pool: buffer pool to enable/associate to a ring, NULL to disable + * @qid: queue ID + * + * Returns 0 on success, negative on failure + */ +int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) +{ + bool if_running, pool_present = !!pool; + int ret = 0, pool_failure = 0; + + if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { + netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); + pool_failure = -EINVAL; + goto failure; + } + + if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); + + if (if_running) { + struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; + + ret = ice_qp_dis(vsi, qid); + if (ret) { + netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); + goto xsk_pool_if_up; + } + + ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); + if (ret) + goto xsk_pool_if_up; + } + + pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : + ice_xsk_pool_disable(vsi, qid); + +xsk_pool_if_up: + if (if_running) { + ret = ice_qp_ena(vsi, qid); + if (!ret && pool_present) + napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); + else if (ret) + netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); + } + +failure: + if (pool_failure) { + netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", + pool_present ? "en" : "dis", pool_failure); + return pool_failure; + } + + return ret; +} + +/** + * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it + * @pool: XSK Buffer pool to pull the buffers from + * @xdp: SW ring of xdp_buff that will hold the buffers + * @rx_desc: Pointer to Rx descriptors that will be filled + * @count: The number of buffers to allocate + * + * This function allocates a number of Rx buffers from the fill ring + * or the internal recycle mechanism and places them on the Rx ring. + * + * Note that ring wrap should be handled by caller of this function. + * + * Returns the amount of allocated Rx descriptors + */ +static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, + union ice_32b_rx_flex_desc *rx_desc, u16 count) +{ + dma_addr_t dma; + u16 buffs; + int i; + + buffs = xsk_buff_alloc_batch(pool, xdp, count); + for (i = 0; i < buffs; i++) { + dma = xsk_buff_xdp_get_dma(*xdp); + rx_desc->read.pkt_addr = cpu_to_le64(dma); + rx_desc->wb.status_error0 = 0; + + rx_desc++; + xdp++; + } + + return buffs; +} + +/** + * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers + * @rx_ring: Rx ring + * @count: The number of buffers to allocate + * + * Place the @count of descriptors onto Rx ring. Handle the ring wrap + * for case where space from next_to_use up to the end of ring is less + * than @count. Finally do a tail bump. + * + * Returns true if all allocations were successful, false if any fail. + */ +static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) +{ + u32 nb_buffs_extra = 0, nb_buffs = 0; + union ice_32b_rx_flex_desc *rx_desc; + u16 ntu = rx_ring->next_to_use; + u16 total_count = count; + struct xdp_buff **xdp; + + rx_desc = ICE_RX_DESC(rx_ring, ntu); + xdp = ice_xdp_buf(rx_ring, ntu); + + if (ntu + count >= rx_ring->count) { + nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, + rx_desc, + rx_ring->count - ntu); + if (nb_buffs_extra != rx_ring->count - ntu) { + ntu += nb_buffs_extra; + goto exit; + } + rx_desc = ICE_RX_DESC(rx_ring, 0); + xdp = ice_xdp_buf(rx_ring, 0); + ntu = 0; + count -= nb_buffs_extra; + ice_release_rx_desc(rx_ring, 0); + } + + nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); + + ntu += nb_buffs; + if (ntu == rx_ring->count) + ntu = 0; + +exit: + if (rx_ring->next_to_use != ntu) + ice_release_rx_desc(rx_ring, ntu); + + return total_count == (nb_buffs_extra + nb_buffs); +} + +/** + * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers + * @rx_ring: Rx ring + * @count: The number of buffers to allocate + * + * Wrapper for internal allocation routine; figure out how many tail + * bumps should take place based on the given threshold + * + * Returns true if all calls to internal alloc routine succeeded + */ +bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) +{ + u16 rx_thresh = ICE_RING_QUARTER(rx_ring); + u16 leftover, i, tail_bumps; + + tail_bumps = count / rx_thresh; + leftover = count - (tail_bumps * rx_thresh); + + for (i = 0; i < tail_bumps; i++) + if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) + return false; + return __ice_alloc_rx_bufs_zc(rx_ring, leftover); +} + +/** + * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring + * @rx_ring: Rx ring + */ +static void ice_bump_ntc(struct ice_rx_ring *rx_ring) +{ + int ntc = rx_ring->next_to_clean + 1; + + ntc = (ntc < rx_ring->count) ? ntc : 0; + rx_ring->next_to_clean = ntc; + prefetch(ICE_RX_DESC(rx_ring, ntc)); +} + +/** + * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer + * @rx_ring: Rx ring + * @xdp: Pointer to XDP buffer + * + * This function allocates a new skb from a zero-copy Rx buffer. + * + * Returns the skb on success, NULL on failure. + */ +static struct sk_buff * +ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) +{ + unsigned int totalsize = xdp->data_end - xdp->data_meta; + unsigned int metasize = xdp->data - xdp->data_meta; + struct sk_buff *skb; + + net_prefetch(xdp->data_meta); + + skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, + GFP_ATOMIC | __GFP_NOWARN); + if (unlikely(!skb)) + return NULL; + + memcpy(__skb_put(skb, totalsize), xdp->data_meta, + ALIGN(totalsize, sizeof(long))); + + if (metasize) { + skb_metadata_set(skb, metasize); + __skb_pull(skb, metasize); + } + + xsk_buff_free(xdp); + return skb; +} + +/** + * ice_run_xdp_zc - Executes an XDP program in zero-copy path + * @rx_ring: Rx ring + * @xdp: xdp_buff used as input to the XDP program + * @xdp_prog: XDP program to run + * @xdp_ring: ring to be used for XDP_TX action + * + * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} + */ +static int +ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, + struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) +{ + int err, result = ICE_XDP_PASS; + u32 act; + + act = bpf_prog_run_xdp(xdp_prog, xdp); + + if (likely(act == XDP_REDIRECT)) { + err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); + if (!err) + return ICE_XDP_REDIR; + if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) + result = ICE_XDP_EXIT; + else + result = ICE_XDP_CONSUMED; + goto out_failure; + } + + switch (act) { + case XDP_PASS: + break; + case XDP_TX: + result = ice_xmit_xdp_buff(xdp, xdp_ring); + if (result == ICE_XDP_CONSUMED) + goto out_failure; + break; + case XDP_DROP: + result = ICE_XDP_CONSUMED; + break; + default: + bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); + fallthrough; + case XDP_ABORTED: + result = ICE_XDP_CONSUMED; +out_failure: + trace_xdp_exception(rx_ring->netdev, xdp_prog, act); + break; + } + + return result; +} + +/** + * ice_clean_rx_irq_zc - consumes packets from the hardware ring + * @rx_ring: AF_XDP Rx ring + * @budget: NAPI budget + * + * Returns number of processed packets on success, remaining budget on failure. + */ +int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) +{ + unsigned int total_rx_bytes = 0, total_rx_packets = 0; + struct ice_tx_ring *xdp_ring; + unsigned int xdp_xmit = 0; + struct bpf_prog *xdp_prog; + bool failure = false; + int entries_to_alloc; + + /* ZC patch is enabled only when XDP program is set, + * so here it can not be NULL + */ + xdp_prog = READ_ONCE(rx_ring->xdp_prog); + xdp_ring = rx_ring->xdp_ring; + + while (likely(total_rx_packets < (unsigned int)budget)) { + union ice_32b_rx_flex_desc *rx_desc; + unsigned int size, xdp_res = 0; + struct xdp_buff *xdp; + struct sk_buff *skb; + u16 stat_err_bits; + u16 vlan_tag = 0; + u16 rx_ptype; + + rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); + + stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); + if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) + break; + + /* This memory barrier is needed to keep us from reading + * any other fields out of the rx_desc until we have + * verified the descriptor has been written back. + */ + dma_rmb(); + + if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) + break; + + xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); + + size = le16_to_cpu(rx_desc->wb.pkt_len) & + ICE_RX_FLX_DESC_PKT_LEN_M; + if (!size) { + xdp->data = NULL; + xdp->data_end = NULL; + xdp->data_hard_start = NULL; + xdp->data_meta = NULL; + goto construct_skb; + } + + xsk_buff_set_size(xdp, size); + xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); + + xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); + if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { + xdp_xmit |= xdp_res; + } else if (xdp_res == ICE_XDP_EXIT) { + failure = true; + break; + } else if (xdp_res == ICE_XDP_CONSUMED) { + xsk_buff_free(xdp); + } else if (xdp_res == ICE_XDP_PASS) { + goto construct_skb; + } + + total_rx_bytes += size; + total_rx_packets++; + + ice_bump_ntc(rx_ring); + continue; + +construct_skb: + /* XDP_PASS path */ + skb = ice_construct_skb_zc(rx_ring, xdp); + if (!skb) { + rx_ring->rx_stats.alloc_buf_failed++; + break; + } + + ice_bump_ntc(rx_ring); + + if (eth_skb_pad(skb)) { + skb = NULL; + continue; + } + + total_rx_bytes += skb->len; + total_rx_packets++; + + vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); + + rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & + ICE_RX_FLEX_DESC_PTYPE_M; + + ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); + ice_receive_skb(rx_ring, skb, vlan_tag); + } + + entries_to_alloc = ICE_DESC_UNUSED(rx_ring); + if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) + failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); + + ice_finalize_xdp_rx(xdp_ring, xdp_xmit); + ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); + + if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { + if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) + xsk_set_rx_need_wakeup(rx_ring->xsk_pool); + else + xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); + + return (int)total_rx_packets; + } + + return failure ? budget : (int)total_rx_packets; +} + +/** + * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer + * @xdp_ring: XDP Tx ring + * @tx_buf: Tx buffer to clean + */ +static void +ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) +{ + page_frag_free(tx_buf->raw_buf); + xdp_ring->xdp_tx_active--; + dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), + dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); + dma_unmap_len_set(tx_buf, len, 0); +} + +/** + * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ + * @xdp_ring: XDP Tx ring + */ +static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) +{ + u16 ntc = xdp_ring->next_to_clean; + struct ice_tx_desc *tx_desc; + u16 cnt = xdp_ring->count; + struct ice_tx_buf *tx_buf; + u16 completed_frames = 0; + u16 xsk_frames = 0; + u16 last_rs; + int i; + + last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; + tx_desc = ICE_TX_DESC(xdp_ring, last_rs); + if ((tx_desc->cmd_type_offset_bsz & + cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) { + if (last_rs >= ntc) + completed_frames = last_rs - ntc + 1; + else + completed_frames = last_rs + cnt - ntc + 1; + } + + if (!completed_frames) + return; + + if (likely(!xdp_ring->xdp_tx_active)) { + xsk_frames = completed_frames; + goto skip; + } + + ntc = xdp_ring->next_to_clean; + for (i = 0; i < completed_frames; i++) { + tx_buf = &xdp_ring->tx_buf[ntc]; + + if (tx_buf->raw_buf) { + ice_clean_xdp_tx_buf(xdp_ring, tx_buf); + tx_buf->raw_buf = NULL; + } else { + xsk_frames++; + } + + ntc++; + if (ntc >= xdp_ring->count) + ntc = 0; + } +skip: + tx_desc->cmd_type_offset_bsz = 0; + xdp_ring->next_to_clean += completed_frames; + if (xdp_ring->next_to_clean >= cnt) + xdp_ring->next_to_clean -= cnt; + if (xsk_frames) + xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); +} + +/** + * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor + * @xdp_ring: XDP ring to produce the HW Tx descriptor on + * @desc: AF_XDP descriptor to pull the DMA address and length from + * @total_bytes: bytes accumulator that will be used for stats update + */ +static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, + unsigned int *total_bytes) +{ + struct ice_tx_desc *tx_desc; + dma_addr_t dma; + + dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); + xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); + + tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); + tx_desc->buf_addr = cpu_to_le64(dma); + tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, + 0, desc->len, 0); + + *total_bytes += desc->len; +} + +/** + * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors + * @xdp_ring: XDP ring to produce the HW Tx descriptors on + * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from + * @total_bytes: bytes accumulator that will be used for stats update + */ +static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, + unsigned int *total_bytes) +{ + u16 ntu = xdp_ring->next_to_use; + struct ice_tx_desc *tx_desc; + u32 i; + + loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { + dma_addr_t dma; + + dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); + xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); + + tx_desc = ICE_TX_DESC(xdp_ring, ntu++); + tx_desc->buf_addr = cpu_to_le64(dma); + tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, + 0, descs[i].len, 0); + + *total_bytes += descs[i].len; + } + + xdp_ring->next_to_use = ntu; +} + +/** + * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring + * @xdp_ring: XDP ring to produce the HW Tx descriptors on + * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from + * @nb_pkts: count of packets to be send + * @total_bytes: bytes accumulator that will be used for stats update + */ +static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, + u32 nb_pkts, unsigned int *total_bytes) +{ + u32 batched, leftover, i; + + batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); + leftover = nb_pkts & (PKTS_PER_BATCH - 1); + for (i = 0; i < batched; i += PKTS_PER_BATCH) + ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); + for (; i < batched + leftover; i++) + ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); +} + +/** + * ice_set_rs_bit - set RS bit on last produced descriptor (one behind current NTU) + * @xdp_ring: XDP ring to produce the HW Tx descriptors on + */ +static void ice_set_rs_bit(struct ice_tx_ring *xdp_ring) +{ + u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1; + struct ice_tx_desc *tx_desc; + + tx_desc = ICE_TX_DESC(xdp_ring, ntu); + tx_desc->cmd_type_offset_bsz |= + cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); +} + +/** + * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring + * @xdp_ring: XDP ring to produce the HW Tx descriptors on + * + * Returns true if there is no more work that needs to be done, false otherwise + */ +bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) +{ + struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; + u32 nb_pkts, nb_processed = 0; + unsigned int total_bytes = 0; + int budget; + + ice_clean_xdp_irq_zc(xdp_ring); + + budget = ICE_DESC_UNUSED(xdp_ring); + budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); + + nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); + if (!nb_pkts) + return true; + + if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { + nb_processed = xdp_ring->count - xdp_ring->next_to_use; + ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); + xdp_ring->next_to_use = 0; + } + + ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, + &total_bytes); + + ice_set_rs_bit(xdp_ring); + ice_xdp_ring_update_tail(xdp_ring); + ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); + + if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) + xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); + + return nb_pkts < budget; +} + +/** + * ice_xsk_wakeup - Implements ndo_xsk_wakeup + * @netdev: net_device + * @queue_id: queue to wake up + * @flags: ignored in our case, since we have Rx and Tx in the same NAPI + * + * Returns negative on error, zero otherwise. + */ +int +ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, + u32 __always_unused flags) +{ + struct ice_netdev_priv *np = netdev_priv(netdev); + struct ice_q_vector *q_vector; + struct ice_vsi *vsi = np->vsi; + struct ice_tx_ring *ring; + + if (test_bit(ICE_VSI_DOWN, vsi->state)) + return -ENETDOWN; + + if (!ice_is_xdp_ena_vsi(vsi)) + return -EINVAL; + + if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) + return -EINVAL; + + ring = vsi->rx_rings[queue_id]->xdp_ring; + + if (!ring->xsk_pool) + return -EINVAL; + + /* The idea here is that if NAPI is running, mark a miss, so + * it will run again. If not, trigger an interrupt and + * schedule the NAPI from interrupt context. If NAPI would be + * scheduled here, the interrupt affinity would not be + * honored. + */ + q_vector = ring->q_vector; + if (!napi_if_scheduled_mark_missed(&q_vector->napi)) + ice_trigger_sw_intr(&vsi->back->hw, q_vector); + + return 0; +} + +/** + * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached + * @vsi: VSI to be checked + * + * Returns true if any of the Rx rings has an AF_XDP buff pool attached + */ +bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) +{ + int i; + + ice_for_each_rxq(vsi, i) { + if (xsk_get_pool_from_qid(vsi->netdev, i)) + return true; + } + + return false; +} + +/** + * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring + * @rx_ring: ring to be cleaned + */ +void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) +{ + u16 ntc = rx_ring->next_to_clean; + u16 ntu = rx_ring->next_to_use; + + while (ntc != ntu) { + struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); + + xsk_buff_free(xdp); + ntc++; + if (ntc >= rx_ring->count) + ntc = 0; + } +} + +/** + * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues + * @xdp_ring: XDP_Tx ring + */ +void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) +{ + u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; + u32 xsk_frames = 0; + + while (ntc != ntu) { + struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; + + if (tx_buf->raw_buf) + ice_clean_xdp_tx_buf(xdp_ring, tx_buf); + else + xsk_frames++; + + tx_buf->raw_buf = NULL; + + ntc++; + if (ntc >= xdp_ring->count) + ntc = 0; + } + + if (xsk_frames) + xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); +} |