summaryrefslogtreecommitdiffstats
path: root/kernel/bpf
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/bpf')
-rw-r--r--kernel/bpf/Kconfig102
-rw-r--r--kernel/bpf/Makefile45
-rw-r--r--kernel/bpf/arraymap.c1356
-rw-r--r--kernel/bpf/bloom_filter.c210
-rw-r--r--kernel/bpf/bpf_inode_storage.c284
-rw-r--r--kernel/bpf/bpf_iter.c778
-rw-r--r--kernel/bpf/bpf_local_storage.c666
-rw-r--r--kernel/bpf/bpf_lru_list.c700
-rw-r--r--kernel/bpf/bpf_lru_list.h80
-rw-r--r--kernel/bpf/bpf_lsm.c356
-rw-r--r--kernel/bpf/bpf_struct_ops.c701
-rw-r--r--kernel/bpf/bpf_struct_ops_types.h12
-rw-r--r--kernel/bpf/bpf_task_storage.c343
-rw-r--r--kernel/bpf/btf.c8035
-rw-r--r--kernel/bpf/cgroup.c2561
-rw-r--r--kernel/bpf/cgroup_iter.c296
-rw-r--r--kernel/bpf/core.c2772
-rw-r--r--kernel/bpf/cpumap.c817
-rw-r--r--kernel/bpf/devmap.c1133
-rw-r--r--kernel/bpf/disasm.c304
-rw-r--r--kernel/bpf/disasm.h40
-rw-r--r--kernel/bpf/dispatcher.c168
-rw-r--r--kernel/bpf/hashtab.c2540
-rw-r--r--kernel/bpf/helpers.c1726
-rw-r--r--kernel/bpf/inode.c820
-rw-r--r--kernel/bpf/link_iter.c107
-rw-r--r--kernel/bpf/local_storage.c607
-rw-r--r--kernel/bpf/lpm_trie.c740
-rw-r--r--kernel/bpf/map_in_map.c134
-rw-r--r--kernel/bpf/map_in_map.h19
-rw-r--r--kernel/bpf/map_iter.c195
-rw-r--r--kernel/bpf/memalloc.c649
-rw-r--r--kernel/bpf/mmap_unlock_work.h65
-rw-r--r--kernel/bpf/net_namespace.c567
-rw-r--r--kernel/bpf/offload.c709
-rw-r--r--kernel/bpf/percpu_freelist.c200
-rw-r--r--kernel/bpf/percpu_freelist.h33
-rw-r--r--kernel/bpf/preload/.gitignore2
-rw-r--r--kernel/bpf/preload/Kconfig26
-rw-r--r--kernel/bpf/preload/Makefile7
-rw-r--r--kernel/bpf/preload/bpf_preload.h16
-rw-r--r--kernel/bpf/preload/bpf_preload_kern.c88
-rw-r--r--kernel/bpf/preload/iterators/.gitignore2
-rw-r--r--kernel/bpf/preload/iterators/Makefile65
-rw-r--r--kernel/bpf/preload/iterators/README4
-rw-r--r--kernel/bpf/preload/iterators/iterators.bpf.c113
-rw-r--r--kernel/bpf/preload/iterators/iterators.lskel.h425
-rw-r--r--kernel/bpf/prog_iter.c107
-rw-r--r--kernel/bpf/queue_stack_maps.c293
-rw-r--r--kernel/bpf/reuseport_array.c348
-rw-r--r--kernel/bpf/ringbuf.c776
-rw-r--r--kernel/bpf/stackmap.c677
-rw-r--r--kernel/bpf/syscall.c5356
-rw-r--r--kernel/bpf/sysfs_btf.c45
-rw-r--r--kernel/bpf/task_iter.c864
-rw-r--r--kernel/bpf/tnum.c214
-rw-r--r--kernel/bpf/trampoline.c1080
-rw-r--r--kernel/bpf/verifier.c15761
58 files changed, 57139 insertions, 0 deletions
diff --git a/kernel/bpf/Kconfig b/kernel/bpf/Kconfig
new file mode 100644
index 000000000..2dfe1079f
--- /dev/null
+++ b/kernel/bpf/Kconfig
@@ -0,0 +1,102 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+# BPF interpreter that, for example, classic socket filters depend on.
+config BPF
+ bool
+
+# Used by archs to tell that they support BPF JIT compiler plus which
+# flavour. Only one of the two can be selected for a specific arch since
+# eBPF JIT supersedes the cBPF JIT.
+
+# Classic BPF JIT (cBPF)
+config HAVE_CBPF_JIT
+ bool
+
+# Extended BPF JIT (eBPF)
+config HAVE_EBPF_JIT
+ bool
+
+# Used by archs to tell that they want the BPF JIT compiler enabled by
+# default for kernels that were compiled with BPF JIT support.
+config ARCH_WANT_DEFAULT_BPF_JIT
+ bool
+
+menu "BPF subsystem"
+
+config BPF_SYSCALL
+ bool "Enable bpf() system call"
+ select BPF
+ select IRQ_WORK
+ select TASKS_RCU if PREEMPTION
+ select TASKS_TRACE_RCU
+ select BINARY_PRINTF
+ select NET_SOCK_MSG if NET
+ select PAGE_POOL if NET
+ default n
+ help
+ Enable the bpf() system call that allows to manipulate BPF programs
+ and maps via file descriptors.
+
+config BPF_JIT
+ bool "Enable BPF Just In Time compiler"
+ depends on BPF
+ depends on HAVE_CBPF_JIT || HAVE_EBPF_JIT
+ depends on MODULES
+ help
+ BPF programs are normally handled by a BPF interpreter. This option
+ allows the kernel to generate native code when a program is loaded
+ into the kernel. This will significantly speed-up processing of BPF
+ programs.
+
+ Note, an admin should enable this feature changing:
+ /proc/sys/net/core/bpf_jit_enable
+ /proc/sys/net/core/bpf_jit_harden (optional)
+ /proc/sys/net/core/bpf_jit_kallsyms (optional)
+
+config BPF_JIT_ALWAYS_ON
+ bool "Permanently enable BPF JIT and remove BPF interpreter"
+ depends on BPF_SYSCALL && HAVE_EBPF_JIT && BPF_JIT
+ help
+ Enables BPF JIT and removes BPF interpreter to avoid speculative
+ execution of BPF instructions by the interpreter.
+
+ When CONFIG_BPF_JIT_ALWAYS_ON is enabled, /proc/sys/net/core/bpf_jit_enable
+ is permanently set to 1 and setting any other value than that will
+ return failure.
+
+config BPF_JIT_DEFAULT_ON
+ def_bool ARCH_WANT_DEFAULT_BPF_JIT || BPF_JIT_ALWAYS_ON
+ depends on HAVE_EBPF_JIT && BPF_JIT
+
+config BPF_UNPRIV_DEFAULT_OFF
+ bool "Disable unprivileged BPF by default"
+ default y
+ depends on BPF_SYSCALL
+ help
+ Disables unprivileged BPF by default by setting the corresponding
+ /proc/sys/kernel/unprivileged_bpf_disabled knob to 2. An admin can
+ still reenable it by setting it to 0 later on, or permanently
+ disable it by setting it to 1 (from which no other transition to
+ 0 is possible anymore).
+
+ Unprivileged BPF could be used to exploit certain potential
+ speculative execution side-channel vulnerabilities on unmitigated
+ affected hardware.
+
+ If you are unsure how to answer this question, answer Y.
+
+source "kernel/bpf/preload/Kconfig"
+
+config BPF_LSM
+ bool "Enable BPF LSM Instrumentation"
+ depends on BPF_EVENTS
+ depends on BPF_SYSCALL
+ depends on SECURITY
+ depends on BPF_JIT
+ help
+ Enables instrumentation of the security hooks with BPF programs for
+ implementing dynamic MAC and Audit Policies.
+
+ If you are unsure how to answer this question, answer N.
+
+endmenu # "BPF subsystem"
diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile
new file mode 100644
index 000000000..341c94f20
--- /dev/null
+++ b/kernel/bpf/Makefile
@@ -0,0 +1,45 @@
+# SPDX-License-Identifier: GPL-2.0
+obj-y := core.o
+ifneq ($(CONFIG_BPF_JIT_ALWAYS_ON),y)
+# ___bpf_prog_run() needs GCSE disabled on x86; see 3193c0836f203 for details
+cflags-nogcse-$(CONFIG_X86)$(CONFIG_CC_IS_GCC) := -fno-gcse
+endif
+CFLAGS_core.o += $(call cc-disable-warning, override-init) $(cflags-nogcse-yy)
+
+obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o tnum.o bpf_iter.o map_iter.o task_iter.o prog_iter.o link_iter.o
+obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o map_in_map.o bloom_filter.o
+obj-$(CONFIG_BPF_SYSCALL) += local_storage.o queue_stack_maps.o ringbuf.o
+obj-$(CONFIG_BPF_SYSCALL) += bpf_local_storage.o bpf_task_storage.o
+obj-${CONFIG_BPF_LSM} += bpf_inode_storage.o
+obj-$(CONFIG_BPF_SYSCALL) += disasm.o
+obj-$(CONFIG_BPF_JIT) += trampoline.o
+obj-$(CONFIG_BPF_SYSCALL) += btf.o memalloc.o
+obj-$(CONFIG_BPF_JIT) += dispatcher.o
+ifeq ($(CONFIG_NET),y)
+obj-$(CONFIG_BPF_SYSCALL) += devmap.o
+obj-$(CONFIG_BPF_SYSCALL) += cpumap.o
+obj-$(CONFIG_BPF_SYSCALL) += offload.o
+obj-$(CONFIG_BPF_SYSCALL) += net_namespace.o
+endif
+ifeq ($(CONFIG_PERF_EVENTS),y)
+obj-$(CONFIG_BPF_SYSCALL) += stackmap.o
+endif
+ifeq ($(CONFIG_CGROUPS),y)
+obj-$(CONFIG_BPF_SYSCALL) += cgroup_iter.o
+endif
+obj-$(CONFIG_CGROUP_BPF) += cgroup.o
+ifeq ($(CONFIG_INET),y)
+obj-$(CONFIG_BPF_SYSCALL) += reuseport_array.o
+endif
+ifeq ($(CONFIG_SYSFS),y)
+obj-$(CONFIG_DEBUG_INFO_BTF) += sysfs_btf.o
+endif
+ifeq ($(CONFIG_BPF_JIT),y)
+obj-$(CONFIG_BPF_SYSCALL) += bpf_struct_ops.o
+obj-${CONFIG_BPF_LSM} += bpf_lsm.o
+endif
+obj-$(CONFIG_BPF_PRELOAD) += preload/
+
+obj-$(CONFIG_BPF_SYSCALL) += relo_core.o
+$(obj)/relo_core.o: $(srctree)/tools/lib/bpf/relo_core.c FORCE
+ $(call if_changed_rule,cc_o_c)
diff --git a/kernel/bpf/arraymap.c b/kernel/bpf/arraymap.c
new file mode 100644
index 000000000..c04e69f34
--- /dev/null
+++ b/kernel/bpf/arraymap.c
@@ -0,0 +1,1356 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ * Copyright (c) 2016,2017 Facebook
+ */
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/mm.h>
+#include <linux/filter.h>
+#include <linux/perf_event.h>
+#include <uapi/linux/btf.h>
+#include <linux/rcupdate_trace.h>
+#include <linux/btf_ids.h>
+
+#include "map_in_map.h"
+
+#define ARRAY_CREATE_FLAG_MASK \
+ (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \
+ BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP)
+
+static void bpf_array_free_percpu(struct bpf_array *array)
+{
+ int i;
+
+ for (i = 0; i < array->map.max_entries; i++) {
+ free_percpu(array->pptrs[i]);
+ cond_resched();
+ }
+}
+
+static int bpf_array_alloc_percpu(struct bpf_array *array)
+{
+ void __percpu *ptr;
+ int i;
+
+ for (i = 0; i < array->map.max_entries; i++) {
+ ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8,
+ GFP_USER | __GFP_NOWARN);
+ if (!ptr) {
+ bpf_array_free_percpu(array);
+ return -ENOMEM;
+ }
+ array->pptrs[i] = ptr;
+ cond_resched();
+ }
+
+ return 0;
+}
+
+/* Called from syscall */
+int array_map_alloc_check(union bpf_attr *attr)
+{
+ bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
+ int numa_node = bpf_map_attr_numa_node(attr);
+
+ /* check sanity of attributes */
+ if (attr->max_entries == 0 || attr->key_size != 4 ||
+ attr->value_size == 0 ||
+ attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
+ !bpf_map_flags_access_ok(attr->map_flags) ||
+ (percpu && numa_node != NUMA_NO_NODE))
+ return -EINVAL;
+
+ if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
+ attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP))
+ return -EINVAL;
+
+ if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY &&
+ attr->map_flags & BPF_F_PRESERVE_ELEMS)
+ return -EINVAL;
+
+ /* avoid overflow on round_up(map->value_size) */
+ if (attr->value_size > INT_MAX)
+ return -E2BIG;
+
+ return 0;
+}
+
+static struct bpf_map *array_map_alloc(union bpf_attr *attr)
+{
+ bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
+ int numa_node = bpf_map_attr_numa_node(attr);
+ u32 elem_size, index_mask, max_entries;
+ bool bypass_spec_v1 = bpf_bypass_spec_v1();
+ u64 array_size, mask64;
+ struct bpf_array *array;
+
+ elem_size = round_up(attr->value_size, 8);
+
+ max_entries = attr->max_entries;
+
+ /* On 32 bit archs roundup_pow_of_two() with max_entries that has
+ * upper most bit set in u32 space is undefined behavior due to
+ * resulting 1U << 32, so do it manually here in u64 space.
+ */
+ mask64 = fls_long(max_entries - 1);
+ mask64 = 1ULL << mask64;
+ mask64 -= 1;
+
+ index_mask = mask64;
+ if (!bypass_spec_v1) {
+ /* round up array size to nearest power of 2,
+ * since cpu will speculate within index_mask limits
+ */
+ max_entries = index_mask + 1;
+ /* Check for overflows. */
+ if (max_entries < attr->max_entries)
+ return ERR_PTR(-E2BIG);
+ }
+
+ array_size = sizeof(*array);
+ if (percpu) {
+ array_size += (u64) max_entries * sizeof(void *);
+ } else {
+ /* rely on vmalloc() to return page-aligned memory and
+ * ensure array->value is exactly page-aligned
+ */
+ if (attr->map_flags & BPF_F_MMAPABLE) {
+ array_size = PAGE_ALIGN(array_size);
+ array_size += PAGE_ALIGN((u64) max_entries * elem_size);
+ } else {
+ array_size += (u64) max_entries * elem_size;
+ }
+ }
+
+ /* allocate all map elements and zero-initialize them */
+ if (attr->map_flags & BPF_F_MMAPABLE) {
+ void *data;
+
+ /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
+ data = bpf_map_area_mmapable_alloc(array_size, numa_node);
+ if (!data)
+ return ERR_PTR(-ENOMEM);
+ array = data + PAGE_ALIGN(sizeof(struct bpf_array))
+ - offsetof(struct bpf_array, value);
+ } else {
+ array = bpf_map_area_alloc(array_size, numa_node);
+ }
+ if (!array)
+ return ERR_PTR(-ENOMEM);
+ array->index_mask = index_mask;
+ array->map.bypass_spec_v1 = bypass_spec_v1;
+
+ /* copy mandatory map attributes */
+ bpf_map_init_from_attr(&array->map, attr);
+ array->elem_size = elem_size;
+
+ if (percpu && bpf_array_alloc_percpu(array)) {
+ bpf_map_area_free(array);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ return &array->map;
+}
+
+static void *array_map_elem_ptr(struct bpf_array* array, u32 index)
+{
+ return array->value + (u64)array->elem_size * index;
+}
+
+/* Called from syscall or from eBPF program */
+static void *array_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 index = *(u32 *)key;
+
+ if (unlikely(index >= array->map.max_entries))
+ return NULL;
+
+ return array->value + (u64)array->elem_size * (index & array->index_mask);
+}
+
+static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm,
+ u32 off)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+
+ if (map->max_entries != 1)
+ return -ENOTSUPP;
+ if (off >= map->value_size)
+ return -EINVAL;
+
+ *imm = (unsigned long)array->value;
+ return 0;
+}
+
+static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm,
+ u32 *off)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u64 base = (unsigned long)array->value;
+ u64 range = array->elem_size;
+
+ if (map->max_entries != 1)
+ return -ENOTSUPP;
+ if (imm < base || imm >= base + range)
+ return -ENOENT;
+
+ *off = imm - base;
+ return 0;
+}
+
+/* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
+static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ struct bpf_insn *insn = insn_buf;
+ u32 elem_size = array->elem_size;
+ const int ret = BPF_REG_0;
+ const int map_ptr = BPF_REG_1;
+ const int index = BPF_REG_2;
+
+ if (map->map_flags & BPF_F_INNER_MAP)
+ return -EOPNOTSUPP;
+
+ *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
+ *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
+ if (!map->bypass_spec_v1) {
+ *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
+ *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
+ } else {
+ *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
+ }
+
+ if (is_power_of_2(elem_size)) {
+ *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
+ } else {
+ *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
+ }
+ *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
+ *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *insn++ = BPF_MOV64_IMM(ret, 0);
+ return insn - insn_buf;
+}
+
+/* Called from eBPF program */
+static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 index = *(u32 *)key;
+
+ if (unlikely(index >= array->map.max_entries))
+ return NULL;
+
+ return this_cpu_ptr(array->pptrs[index & array->index_mask]);
+}
+
+static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 index = *(u32 *)key;
+
+ if (cpu >= nr_cpu_ids)
+ return NULL;
+
+ if (unlikely(index >= array->map.max_entries))
+ return NULL;
+
+ return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu);
+}
+
+int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 index = *(u32 *)key;
+ void __percpu *pptr;
+ int cpu, off = 0;
+ u32 size;
+
+ if (unlikely(index >= array->map.max_entries))
+ return -ENOENT;
+
+ /* per_cpu areas are zero-filled and bpf programs can only
+ * access 'value_size' of them, so copying rounded areas
+ * will not leak any kernel data
+ */
+ size = array->elem_size;
+ rcu_read_lock();
+ pptr = array->pptrs[index & array->index_mask];
+ for_each_possible_cpu(cpu) {
+ copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
+ check_and_init_map_value(map, value + off);
+ off += size;
+ }
+ rcu_read_unlock();
+ return 0;
+}
+
+/* Called from syscall */
+static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 index = key ? *(u32 *)key : U32_MAX;
+ u32 *next = (u32 *)next_key;
+
+ if (index >= array->map.max_entries) {
+ *next = 0;
+ return 0;
+ }
+
+ if (index == array->map.max_entries - 1)
+ return -ENOENT;
+
+ *next = index + 1;
+ return 0;
+}
+
+static void check_and_free_fields(struct bpf_array *arr, void *val)
+{
+ if (map_value_has_timer(&arr->map))
+ bpf_timer_cancel_and_free(val + arr->map.timer_off);
+ if (map_value_has_kptrs(&arr->map))
+ bpf_map_free_kptrs(&arr->map, val);
+}
+
+/* Called from syscall or from eBPF program */
+static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 index = *(u32 *)key;
+ char *val;
+
+ if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
+ /* unknown flags */
+ return -EINVAL;
+
+ if (unlikely(index >= array->map.max_entries))
+ /* all elements were pre-allocated, cannot insert a new one */
+ return -E2BIG;
+
+ if (unlikely(map_flags & BPF_NOEXIST))
+ /* all elements already exist */
+ return -EEXIST;
+
+ if (unlikely((map_flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(map)))
+ return -EINVAL;
+
+ if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
+ val = this_cpu_ptr(array->pptrs[index & array->index_mask]);
+ copy_map_value(map, val, value);
+ check_and_free_fields(array, val);
+ } else {
+ val = array->value +
+ (u64)array->elem_size * (index & array->index_mask);
+ if (map_flags & BPF_F_LOCK)
+ copy_map_value_locked(map, val, value, false);
+ else
+ copy_map_value(map, val, value);
+ check_and_free_fields(array, val);
+ }
+ return 0;
+}
+
+int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 index = *(u32 *)key;
+ void __percpu *pptr;
+ int cpu, off = 0;
+ u32 size;
+
+ if (unlikely(map_flags > BPF_EXIST))
+ /* unknown flags */
+ return -EINVAL;
+
+ if (unlikely(index >= array->map.max_entries))
+ /* all elements were pre-allocated, cannot insert a new one */
+ return -E2BIG;
+
+ if (unlikely(map_flags == BPF_NOEXIST))
+ /* all elements already exist */
+ return -EEXIST;
+
+ /* the user space will provide round_up(value_size, 8) bytes that
+ * will be copied into per-cpu area. bpf programs can only access
+ * value_size of it. During lookup the same extra bytes will be
+ * returned or zeros which were zero-filled by percpu_alloc,
+ * so no kernel data leaks possible
+ */
+ size = array->elem_size;
+ rcu_read_lock();
+ pptr = array->pptrs[index & array->index_mask];
+ for_each_possible_cpu(cpu) {
+ copy_map_value_long(map, per_cpu_ptr(pptr, cpu), value + off);
+ check_and_free_fields(array, per_cpu_ptr(pptr, cpu));
+ off += size;
+ }
+ rcu_read_unlock();
+ return 0;
+}
+
+/* Called from syscall or from eBPF program */
+static int array_map_delete_elem(struct bpf_map *map, void *key)
+{
+ return -EINVAL;
+}
+
+static void *array_map_vmalloc_addr(struct bpf_array *array)
+{
+ return (void *)round_down((unsigned long)array, PAGE_SIZE);
+}
+
+static void array_map_free_timers(struct bpf_map *map)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ int i;
+
+ /* We don't reset or free kptr on uref dropping to zero. */
+ if (!map_value_has_timer(map))
+ return;
+
+ for (i = 0; i < array->map.max_entries; i++)
+ bpf_timer_cancel_and_free(array_map_elem_ptr(array, i) + map->timer_off);
+}
+
+/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
+static void array_map_free(struct bpf_map *map)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ int i;
+
+ if (map_value_has_kptrs(map)) {
+ if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
+ for (i = 0; i < array->map.max_entries; i++) {
+ void __percpu *pptr = array->pptrs[i & array->index_mask];
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ bpf_map_free_kptrs(map, per_cpu_ptr(pptr, cpu));
+ cond_resched();
+ }
+ }
+ } else {
+ for (i = 0; i < array->map.max_entries; i++)
+ bpf_map_free_kptrs(map, array_map_elem_ptr(array, i));
+ }
+ bpf_map_free_kptr_off_tab(map);
+ }
+
+ if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
+ bpf_array_free_percpu(array);
+
+ if (array->map.map_flags & BPF_F_MMAPABLE)
+ bpf_map_area_free(array_map_vmalloc_addr(array));
+ else
+ bpf_map_area_free(array);
+}
+
+static void array_map_seq_show_elem(struct bpf_map *map, void *key,
+ struct seq_file *m)
+{
+ void *value;
+
+ rcu_read_lock();
+
+ value = array_map_lookup_elem(map, key);
+ if (!value) {
+ rcu_read_unlock();
+ return;
+ }
+
+ if (map->btf_key_type_id)
+ seq_printf(m, "%u: ", *(u32 *)key);
+ btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
+ seq_puts(m, "\n");
+
+ rcu_read_unlock();
+}
+
+static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key,
+ struct seq_file *m)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 index = *(u32 *)key;
+ void __percpu *pptr;
+ int cpu;
+
+ rcu_read_lock();
+
+ seq_printf(m, "%u: {\n", *(u32 *)key);
+ pptr = array->pptrs[index & array->index_mask];
+ for_each_possible_cpu(cpu) {
+ seq_printf(m, "\tcpu%d: ", cpu);
+ btf_type_seq_show(map->btf, map->btf_value_type_id,
+ per_cpu_ptr(pptr, cpu), m);
+ seq_puts(m, "\n");
+ }
+ seq_puts(m, "}\n");
+
+ rcu_read_unlock();
+}
+
+static int array_map_check_btf(const struct bpf_map *map,
+ const struct btf *btf,
+ const struct btf_type *key_type,
+ const struct btf_type *value_type)
+{
+ u32 int_data;
+
+ /* One exception for keyless BTF: .bss/.data/.rodata map */
+ if (btf_type_is_void(key_type)) {
+ if (map->map_type != BPF_MAP_TYPE_ARRAY ||
+ map->max_entries != 1)
+ return -EINVAL;
+
+ if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC)
+ return -EINVAL;
+
+ return 0;
+ }
+
+ if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
+ return -EINVAL;
+
+ int_data = *(u32 *)(key_type + 1);
+ /* bpf array can only take a u32 key. This check makes sure
+ * that the btf matches the attr used during map_create.
+ */
+ if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
+
+ if (!(map->map_flags & BPF_F_MMAPABLE))
+ return -EINVAL;
+
+ if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) >
+ PAGE_ALIGN((u64)array->map.max_entries * array->elem_size))
+ return -EINVAL;
+
+ return remap_vmalloc_range(vma, array_map_vmalloc_addr(array),
+ vma->vm_pgoff + pgoff);
+}
+
+static bool array_map_meta_equal(const struct bpf_map *meta0,
+ const struct bpf_map *meta1)
+{
+ if (!bpf_map_meta_equal(meta0, meta1))
+ return false;
+ return meta0->map_flags & BPF_F_INNER_MAP ? true :
+ meta0->max_entries == meta1->max_entries;
+}
+
+struct bpf_iter_seq_array_map_info {
+ struct bpf_map *map;
+ void *percpu_value_buf;
+ u32 index;
+};
+
+static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct bpf_iter_seq_array_map_info *info = seq->private;
+ struct bpf_map *map = info->map;
+ struct bpf_array *array;
+ u32 index;
+
+ if (info->index >= map->max_entries)
+ return NULL;
+
+ if (*pos == 0)
+ ++*pos;
+ array = container_of(map, struct bpf_array, map);
+ index = info->index & array->index_mask;
+ if (info->percpu_value_buf)
+ return array->pptrs[index];
+ return array_map_elem_ptr(array, index);
+}
+
+static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct bpf_iter_seq_array_map_info *info = seq->private;
+ struct bpf_map *map = info->map;
+ struct bpf_array *array;
+ u32 index;
+
+ ++*pos;
+ ++info->index;
+ if (info->index >= map->max_entries)
+ return NULL;
+
+ array = container_of(map, struct bpf_array, map);
+ index = info->index & array->index_mask;
+ if (info->percpu_value_buf)
+ return array->pptrs[index];
+ return array_map_elem_ptr(array, index);
+}
+
+static int __bpf_array_map_seq_show(struct seq_file *seq, void *v)
+{
+ struct bpf_iter_seq_array_map_info *info = seq->private;
+ struct bpf_iter__bpf_map_elem ctx = {};
+ struct bpf_map *map = info->map;
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ struct bpf_iter_meta meta;
+ struct bpf_prog *prog;
+ int off = 0, cpu = 0;
+ void __percpu **pptr;
+ u32 size;
+
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, v == NULL);
+ if (!prog)
+ return 0;
+
+ ctx.meta = &meta;
+ ctx.map = info->map;
+ if (v) {
+ ctx.key = &info->index;
+
+ if (!info->percpu_value_buf) {
+ ctx.value = v;
+ } else {
+ pptr = v;
+ size = array->elem_size;
+ for_each_possible_cpu(cpu) {
+ copy_map_value_long(map, info->percpu_value_buf + off,
+ per_cpu_ptr(pptr, cpu));
+ check_and_init_map_value(map, info->percpu_value_buf + off);
+ off += size;
+ }
+ ctx.value = info->percpu_value_buf;
+ }
+ }
+
+ return bpf_iter_run_prog(prog, &ctx);
+}
+
+static int bpf_array_map_seq_show(struct seq_file *seq, void *v)
+{
+ return __bpf_array_map_seq_show(seq, v);
+}
+
+static void bpf_array_map_seq_stop(struct seq_file *seq, void *v)
+{
+ if (!v)
+ (void)__bpf_array_map_seq_show(seq, NULL);
+}
+
+static int bpf_iter_init_array_map(void *priv_data,
+ struct bpf_iter_aux_info *aux)
+{
+ struct bpf_iter_seq_array_map_info *seq_info = priv_data;
+ struct bpf_map *map = aux->map;
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ void *value_buf;
+ u32 buf_size;
+
+ if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
+ buf_size = array->elem_size * num_possible_cpus();
+ value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
+ if (!value_buf)
+ return -ENOMEM;
+
+ seq_info->percpu_value_buf = value_buf;
+ }
+
+ /* bpf_iter_attach_map() acquires a map uref, and the uref may be
+ * released before or in the middle of iterating map elements, so
+ * acquire an extra map uref for iterator.
+ */
+ bpf_map_inc_with_uref(map);
+ seq_info->map = map;
+ return 0;
+}
+
+static void bpf_iter_fini_array_map(void *priv_data)
+{
+ struct bpf_iter_seq_array_map_info *seq_info = priv_data;
+
+ bpf_map_put_with_uref(seq_info->map);
+ kfree(seq_info->percpu_value_buf);
+}
+
+static const struct seq_operations bpf_array_map_seq_ops = {
+ .start = bpf_array_map_seq_start,
+ .next = bpf_array_map_seq_next,
+ .stop = bpf_array_map_seq_stop,
+ .show = bpf_array_map_seq_show,
+};
+
+static const struct bpf_iter_seq_info iter_seq_info = {
+ .seq_ops = &bpf_array_map_seq_ops,
+ .init_seq_private = bpf_iter_init_array_map,
+ .fini_seq_private = bpf_iter_fini_array_map,
+ .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info),
+};
+
+static int bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn,
+ void *callback_ctx, u64 flags)
+{
+ u32 i, key, num_elems = 0;
+ struct bpf_array *array;
+ bool is_percpu;
+ u64 ret = 0;
+ void *val;
+
+ if (flags != 0)
+ return -EINVAL;
+
+ is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
+ array = container_of(map, struct bpf_array, map);
+ if (is_percpu)
+ migrate_disable();
+ for (i = 0; i < map->max_entries; i++) {
+ if (is_percpu)
+ val = this_cpu_ptr(array->pptrs[i]);
+ else
+ val = array_map_elem_ptr(array, i);
+ num_elems++;
+ key = i;
+ ret = callback_fn((u64)(long)map, (u64)(long)&key,
+ (u64)(long)val, (u64)(long)callback_ctx, 0);
+ /* return value: 0 - continue, 1 - stop and return */
+ if (ret)
+ break;
+ }
+
+ if (is_percpu)
+ migrate_enable();
+ return num_elems;
+}
+
+BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array)
+const struct bpf_map_ops array_map_ops = {
+ .map_meta_equal = array_map_meta_equal,
+ .map_alloc_check = array_map_alloc_check,
+ .map_alloc = array_map_alloc,
+ .map_free = array_map_free,
+ .map_get_next_key = array_map_get_next_key,
+ .map_release_uref = array_map_free_timers,
+ .map_lookup_elem = array_map_lookup_elem,
+ .map_update_elem = array_map_update_elem,
+ .map_delete_elem = array_map_delete_elem,
+ .map_gen_lookup = array_map_gen_lookup,
+ .map_direct_value_addr = array_map_direct_value_addr,
+ .map_direct_value_meta = array_map_direct_value_meta,
+ .map_mmap = array_map_mmap,
+ .map_seq_show_elem = array_map_seq_show_elem,
+ .map_check_btf = array_map_check_btf,
+ .map_lookup_batch = generic_map_lookup_batch,
+ .map_update_batch = generic_map_update_batch,
+ .map_set_for_each_callback_args = map_set_for_each_callback_args,
+ .map_for_each_callback = bpf_for_each_array_elem,
+ .map_btf_id = &array_map_btf_ids[0],
+ .iter_seq_info = &iter_seq_info,
+};
+
+const struct bpf_map_ops percpu_array_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = array_map_alloc_check,
+ .map_alloc = array_map_alloc,
+ .map_free = array_map_free,
+ .map_get_next_key = array_map_get_next_key,
+ .map_lookup_elem = percpu_array_map_lookup_elem,
+ .map_update_elem = array_map_update_elem,
+ .map_delete_elem = array_map_delete_elem,
+ .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem,
+ .map_seq_show_elem = percpu_array_map_seq_show_elem,
+ .map_check_btf = array_map_check_btf,
+ .map_lookup_batch = generic_map_lookup_batch,
+ .map_update_batch = generic_map_update_batch,
+ .map_set_for_each_callback_args = map_set_for_each_callback_args,
+ .map_for_each_callback = bpf_for_each_array_elem,
+ .map_btf_id = &array_map_btf_ids[0],
+ .iter_seq_info = &iter_seq_info,
+};
+
+static int fd_array_map_alloc_check(union bpf_attr *attr)
+{
+ /* only file descriptors can be stored in this type of map */
+ if (attr->value_size != sizeof(u32))
+ return -EINVAL;
+ /* Program read-only/write-only not supported for special maps yet. */
+ if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG))
+ return -EINVAL;
+ return array_map_alloc_check(attr);
+}
+
+static void fd_array_map_free(struct bpf_map *map)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ int i;
+
+ /* make sure it's empty */
+ for (i = 0; i < array->map.max_entries; i++)
+ BUG_ON(array->ptrs[i] != NULL);
+
+ bpf_map_area_free(array);
+}
+
+static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ return ERR_PTR(-EOPNOTSUPP);
+}
+
+/* only called from syscall */
+int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
+{
+ void **elem, *ptr;
+ int ret = 0;
+
+ if (!map->ops->map_fd_sys_lookup_elem)
+ return -ENOTSUPP;
+
+ rcu_read_lock();
+ elem = array_map_lookup_elem(map, key);
+ if (elem && (ptr = READ_ONCE(*elem)))
+ *value = map->ops->map_fd_sys_lookup_elem(ptr);
+ else
+ ret = -ENOENT;
+ rcu_read_unlock();
+
+ return ret;
+}
+
+/* only called from syscall */
+int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
+ void *key, void *value, u64 map_flags)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ void *new_ptr, *old_ptr;
+ u32 index = *(u32 *)key, ufd;
+
+ if (map_flags != BPF_ANY)
+ return -EINVAL;
+
+ if (index >= array->map.max_entries)
+ return -E2BIG;
+
+ ufd = *(u32 *)value;
+ new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
+ if (IS_ERR(new_ptr))
+ return PTR_ERR(new_ptr);
+
+ if (map->ops->map_poke_run) {
+ mutex_lock(&array->aux->poke_mutex);
+ old_ptr = xchg(array->ptrs + index, new_ptr);
+ map->ops->map_poke_run(map, index, old_ptr, new_ptr);
+ mutex_unlock(&array->aux->poke_mutex);
+ } else {
+ old_ptr = xchg(array->ptrs + index, new_ptr);
+ }
+
+ if (old_ptr)
+ map->ops->map_fd_put_ptr(map, old_ptr, true);
+ return 0;
+}
+
+static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ void *old_ptr;
+ u32 index = *(u32 *)key;
+
+ if (index >= array->map.max_entries)
+ return -E2BIG;
+
+ if (map->ops->map_poke_run) {
+ mutex_lock(&array->aux->poke_mutex);
+ old_ptr = xchg(array->ptrs + index, NULL);
+ map->ops->map_poke_run(map, index, old_ptr, NULL);
+ mutex_unlock(&array->aux->poke_mutex);
+ } else {
+ old_ptr = xchg(array->ptrs + index, NULL);
+ }
+
+ if (old_ptr) {
+ map->ops->map_fd_put_ptr(map, old_ptr, true);
+ return 0;
+ } else {
+ return -ENOENT;
+ }
+}
+
+static void *prog_fd_array_get_ptr(struct bpf_map *map,
+ struct file *map_file, int fd)
+{
+ struct bpf_prog *prog = bpf_prog_get(fd);
+
+ if (IS_ERR(prog))
+ return prog;
+
+ if (!bpf_prog_map_compatible(map, prog)) {
+ bpf_prog_put(prog);
+ return ERR_PTR(-EINVAL);
+ }
+
+ return prog;
+}
+
+static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer)
+{
+ /* bpf_prog is freed after one RCU or tasks trace grace period */
+ bpf_prog_put(ptr);
+}
+
+static u32 prog_fd_array_sys_lookup_elem(void *ptr)
+{
+ return ((struct bpf_prog *)ptr)->aux->id;
+}
+
+/* decrement refcnt of all bpf_progs that are stored in this map */
+static void bpf_fd_array_map_clear(struct bpf_map *map)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ int i;
+
+ for (i = 0; i < array->map.max_entries; i++)
+ fd_array_map_delete_elem(map, &i);
+}
+
+static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
+ struct seq_file *m)
+{
+ void **elem, *ptr;
+ u32 prog_id;
+
+ rcu_read_lock();
+
+ elem = array_map_lookup_elem(map, key);
+ if (elem) {
+ ptr = READ_ONCE(*elem);
+ if (ptr) {
+ seq_printf(m, "%u: ", *(u32 *)key);
+ prog_id = prog_fd_array_sys_lookup_elem(ptr);
+ btf_type_seq_show(map->btf, map->btf_value_type_id,
+ &prog_id, m);
+ seq_puts(m, "\n");
+ }
+ }
+
+ rcu_read_unlock();
+}
+
+struct prog_poke_elem {
+ struct list_head list;
+ struct bpf_prog_aux *aux;
+};
+
+static int prog_array_map_poke_track(struct bpf_map *map,
+ struct bpf_prog_aux *prog_aux)
+{
+ struct prog_poke_elem *elem;
+ struct bpf_array_aux *aux;
+ int ret = 0;
+
+ aux = container_of(map, struct bpf_array, map)->aux;
+ mutex_lock(&aux->poke_mutex);
+ list_for_each_entry(elem, &aux->poke_progs, list) {
+ if (elem->aux == prog_aux)
+ goto out;
+ }
+
+ elem = kmalloc(sizeof(*elem), GFP_KERNEL);
+ if (!elem) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ INIT_LIST_HEAD(&elem->list);
+ /* We must track the program's aux info at this point in time
+ * since the program pointer itself may not be stable yet, see
+ * also comment in prog_array_map_poke_run().
+ */
+ elem->aux = prog_aux;
+
+ list_add_tail(&elem->list, &aux->poke_progs);
+out:
+ mutex_unlock(&aux->poke_mutex);
+ return ret;
+}
+
+static void prog_array_map_poke_untrack(struct bpf_map *map,
+ struct bpf_prog_aux *prog_aux)
+{
+ struct prog_poke_elem *elem, *tmp;
+ struct bpf_array_aux *aux;
+
+ aux = container_of(map, struct bpf_array, map)->aux;
+ mutex_lock(&aux->poke_mutex);
+ list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
+ if (elem->aux == prog_aux) {
+ list_del_init(&elem->list);
+ kfree(elem);
+ break;
+ }
+ }
+ mutex_unlock(&aux->poke_mutex);
+}
+
+void __weak bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
+ struct bpf_prog *new, struct bpf_prog *old)
+{
+ WARN_ON_ONCE(1);
+}
+
+static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
+ struct bpf_prog *old,
+ struct bpf_prog *new)
+{
+ struct prog_poke_elem *elem;
+ struct bpf_array_aux *aux;
+
+ aux = container_of(map, struct bpf_array, map)->aux;
+ WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
+
+ list_for_each_entry(elem, &aux->poke_progs, list) {
+ struct bpf_jit_poke_descriptor *poke;
+ int i;
+
+ for (i = 0; i < elem->aux->size_poke_tab; i++) {
+ poke = &elem->aux->poke_tab[i];
+
+ /* Few things to be aware of:
+ *
+ * 1) We can only ever access aux in this context, but
+ * not aux->prog since it might not be stable yet and
+ * there could be danger of use after free otherwise.
+ * 2) Initially when we start tracking aux, the program
+ * is not JITed yet and also does not have a kallsyms
+ * entry. We skip these as poke->tailcall_target_stable
+ * is not active yet. The JIT will do the final fixup
+ * before setting it stable. The various
+ * poke->tailcall_target_stable are successively
+ * activated, so tail call updates can arrive from here
+ * while JIT is still finishing its final fixup for
+ * non-activated poke entries.
+ * 3) Also programs reaching refcount of zero while patching
+ * is in progress is okay since we're protected under
+ * poke_mutex and untrack the programs before the JIT
+ * buffer is freed.
+ */
+ if (!READ_ONCE(poke->tailcall_target_stable))
+ continue;
+ if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
+ continue;
+ if (poke->tail_call.map != map ||
+ poke->tail_call.key != key)
+ continue;
+
+ bpf_arch_poke_desc_update(poke, new, old);
+ }
+ }
+}
+
+static void prog_array_map_clear_deferred(struct work_struct *work)
+{
+ struct bpf_map *map = container_of(work, struct bpf_array_aux,
+ work)->map;
+ bpf_fd_array_map_clear(map);
+ bpf_map_put(map);
+}
+
+static void prog_array_map_clear(struct bpf_map *map)
+{
+ struct bpf_array_aux *aux = container_of(map, struct bpf_array,
+ map)->aux;
+ bpf_map_inc(map);
+ schedule_work(&aux->work);
+}
+
+static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_array_aux *aux;
+ struct bpf_map *map;
+
+ aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT);
+ if (!aux)
+ return ERR_PTR(-ENOMEM);
+
+ INIT_WORK(&aux->work, prog_array_map_clear_deferred);
+ INIT_LIST_HEAD(&aux->poke_progs);
+ mutex_init(&aux->poke_mutex);
+
+ map = array_map_alloc(attr);
+ if (IS_ERR(map)) {
+ kfree(aux);
+ return map;
+ }
+
+ container_of(map, struct bpf_array, map)->aux = aux;
+ aux->map = map;
+
+ return map;
+}
+
+static void prog_array_map_free(struct bpf_map *map)
+{
+ struct prog_poke_elem *elem, *tmp;
+ struct bpf_array_aux *aux;
+
+ aux = container_of(map, struct bpf_array, map)->aux;
+ list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
+ list_del_init(&elem->list);
+ kfree(elem);
+ }
+ kfree(aux);
+ fd_array_map_free(map);
+}
+
+/* prog_array->aux->{type,jited} is a runtime binding.
+ * Doing static check alone in the verifier is not enough.
+ * Thus, prog_array_map cannot be used as an inner_map
+ * and map_meta_equal is not implemented.
+ */
+const struct bpf_map_ops prog_array_map_ops = {
+ .map_alloc_check = fd_array_map_alloc_check,
+ .map_alloc = prog_array_map_alloc,
+ .map_free = prog_array_map_free,
+ .map_poke_track = prog_array_map_poke_track,
+ .map_poke_untrack = prog_array_map_poke_untrack,
+ .map_poke_run = prog_array_map_poke_run,
+ .map_get_next_key = array_map_get_next_key,
+ .map_lookup_elem = fd_array_map_lookup_elem,
+ .map_delete_elem = fd_array_map_delete_elem,
+ .map_fd_get_ptr = prog_fd_array_get_ptr,
+ .map_fd_put_ptr = prog_fd_array_put_ptr,
+ .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
+ .map_release_uref = prog_array_map_clear,
+ .map_seq_show_elem = prog_array_map_seq_show_elem,
+ .map_btf_id = &array_map_btf_ids[0],
+};
+
+static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
+ struct file *map_file)
+{
+ struct bpf_event_entry *ee;
+
+ ee = kzalloc(sizeof(*ee), GFP_ATOMIC);
+ if (ee) {
+ ee->event = perf_file->private_data;
+ ee->perf_file = perf_file;
+ ee->map_file = map_file;
+ }
+
+ return ee;
+}
+
+static void __bpf_event_entry_free(struct rcu_head *rcu)
+{
+ struct bpf_event_entry *ee;
+
+ ee = container_of(rcu, struct bpf_event_entry, rcu);
+ fput(ee->perf_file);
+ kfree(ee);
+}
+
+static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
+{
+ call_rcu(&ee->rcu, __bpf_event_entry_free);
+}
+
+static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
+ struct file *map_file, int fd)
+{
+ struct bpf_event_entry *ee;
+ struct perf_event *event;
+ struct file *perf_file;
+ u64 value;
+
+ perf_file = perf_event_get(fd);
+ if (IS_ERR(perf_file))
+ return perf_file;
+
+ ee = ERR_PTR(-EOPNOTSUPP);
+ event = perf_file->private_data;
+ if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
+ goto err_out;
+
+ ee = bpf_event_entry_gen(perf_file, map_file);
+ if (ee)
+ return ee;
+ ee = ERR_PTR(-ENOMEM);
+err_out:
+ fput(perf_file);
+ return ee;
+}
+
+static void perf_event_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer)
+{
+ /* bpf_perf_event is freed after one RCU grace period */
+ bpf_event_entry_free_rcu(ptr);
+}
+
+static void perf_event_fd_array_release(struct bpf_map *map,
+ struct file *map_file)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ struct bpf_event_entry *ee;
+ int i;
+
+ if (map->map_flags & BPF_F_PRESERVE_ELEMS)
+ return;
+
+ rcu_read_lock();
+ for (i = 0; i < array->map.max_entries; i++) {
+ ee = READ_ONCE(array->ptrs[i]);
+ if (ee && ee->map_file == map_file)
+ fd_array_map_delete_elem(map, &i);
+ }
+ rcu_read_unlock();
+}
+
+static void perf_event_fd_array_map_free(struct bpf_map *map)
+{
+ if (map->map_flags & BPF_F_PRESERVE_ELEMS)
+ bpf_fd_array_map_clear(map);
+ fd_array_map_free(map);
+}
+
+const struct bpf_map_ops perf_event_array_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = fd_array_map_alloc_check,
+ .map_alloc = array_map_alloc,
+ .map_free = perf_event_fd_array_map_free,
+ .map_get_next_key = array_map_get_next_key,
+ .map_lookup_elem = fd_array_map_lookup_elem,
+ .map_delete_elem = fd_array_map_delete_elem,
+ .map_fd_get_ptr = perf_event_fd_array_get_ptr,
+ .map_fd_put_ptr = perf_event_fd_array_put_ptr,
+ .map_release = perf_event_fd_array_release,
+ .map_check_btf = map_check_no_btf,
+ .map_btf_id = &array_map_btf_ids[0],
+};
+
+#ifdef CONFIG_CGROUPS
+static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
+ struct file *map_file /* not used */,
+ int fd)
+{
+ return cgroup_get_from_fd(fd);
+}
+
+static void cgroup_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer)
+{
+ /* cgroup_put free cgrp after a rcu grace period */
+ cgroup_put(ptr);
+}
+
+static void cgroup_fd_array_free(struct bpf_map *map)
+{
+ bpf_fd_array_map_clear(map);
+ fd_array_map_free(map);
+}
+
+const struct bpf_map_ops cgroup_array_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = fd_array_map_alloc_check,
+ .map_alloc = array_map_alloc,
+ .map_free = cgroup_fd_array_free,
+ .map_get_next_key = array_map_get_next_key,
+ .map_lookup_elem = fd_array_map_lookup_elem,
+ .map_delete_elem = fd_array_map_delete_elem,
+ .map_fd_get_ptr = cgroup_fd_array_get_ptr,
+ .map_fd_put_ptr = cgroup_fd_array_put_ptr,
+ .map_check_btf = map_check_no_btf,
+ .map_btf_id = &array_map_btf_ids[0],
+};
+#endif
+
+static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_map *map, *inner_map_meta;
+
+ inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
+ if (IS_ERR(inner_map_meta))
+ return inner_map_meta;
+
+ map = array_map_alloc(attr);
+ if (IS_ERR(map)) {
+ bpf_map_meta_free(inner_map_meta);
+ return map;
+ }
+
+ map->inner_map_meta = inner_map_meta;
+
+ return map;
+}
+
+static void array_of_map_free(struct bpf_map *map)
+{
+ /* map->inner_map_meta is only accessed by syscall which
+ * is protected by fdget/fdput.
+ */
+ bpf_map_meta_free(map->inner_map_meta);
+ bpf_fd_array_map_clear(map);
+ fd_array_map_free(map);
+}
+
+static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_map **inner_map = array_map_lookup_elem(map, key);
+
+ if (!inner_map)
+ return NULL;
+
+ return READ_ONCE(*inner_map);
+}
+
+static int array_of_map_gen_lookup(struct bpf_map *map,
+ struct bpf_insn *insn_buf)
+{
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ u32 elem_size = array->elem_size;
+ struct bpf_insn *insn = insn_buf;
+ const int ret = BPF_REG_0;
+ const int map_ptr = BPF_REG_1;
+ const int index = BPF_REG_2;
+
+ *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
+ *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
+ if (!map->bypass_spec_v1) {
+ *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
+ *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
+ } else {
+ *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
+ }
+ if (is_power_of_2(elem_size))
+ *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
+ else
+ *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
+ *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
+ *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
+ *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
+ *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *insn++ = BPF_MOV64_IMM(ret, 0);
+
+ return insn - insn_buf;
+}
+
+const struct bpf_map_ops array_of_maps_map_ops = {
+ .map_alloc_check = fd_array_map_alloc_check,
+ .map_alloc = array_of_map_alloc,
+ .map_free = array_of_map_free,
+ .map_get_next_key = array_map_get_next_key,
+ .map_lookup_elem = array_of_map_lookup_elem,
+ .map_delete_elem = fd_array_map_delete_elem,
+ .map_fd_get_ptr = bpf_map_fd_get_ptr,
+ .map_fd_put_ptr = bpf_map_fd_put_ptr,
+ .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
+ .map_gen_lookup = array_of_map_gen_lookup,
+ .map_lookup_batch = generic_map_lookup_batch,
+ .map_update_batch = generic_map_update_batch,
+ .map_check_btf = map_check_no_btf,
+ .map_btf_id = &array_map_btf_ids[0],
+};
diff --git a/kernel/bpf/bloom_filter.c b/kernel/bpf/bloom_filter.c
new file mode 100644
index 000000000..48ee75084
--- /dev/null
+++ b/kernel/bpf/bloom_filter.c
@@ -0,0 +1,210 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (c) 2021 Facebook */
+
+#include <linux/bitmap.h>
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/err.h>
+#include <linux/jhash.h>
+#include <linux/random.h>
+#include <linux/btf_ids.h>
+
+#define BLOOM_CREATE_FLAG_MASK \
+ (BPF_F_NUMA_NODE | BPF_F_ZERO_SEED | BPF_F_ACCESS_MASK)
+
+struct bpf_bloom_filter {
+ struct bpf_map map;
+ u32 bitset_mask;
+ u32 hash_seed;
+ /* If the size of the values in the bloom filter is u32 aligned,
+ * then it is more performant to use jhash2 as the underlying hash
+ * function, else we use jhash. This tracks the number of u32s
+ * in an u32-aligned value size. If the value size is not u32 aligned,
+ * this will be 0.
+ */
+ u32 aligned_u32_count;
+ u32 nr_hash_funcs;
+ unsigned long bitset[];
+};
+
+static u32 hash(struct bpf_bloom_filter *bloom, void *value,
+ u32 value_size, u32 index)
+{
+ u32 h;
+
+ if (bloom->aligned_u32_count)
+ h = jhash2(value, bloom->aligned_u32_count,
+ bloom->hash_seed + index);
+ else
+ h = jhash(value, value_size, bloom->hash_seed + index);
+
+ return h & bloom->bitset_mask;
+}
+
+static int bloom_map_peek_elem(struct bpf_map *map, void *value)
+{
+ struct bpf_bloom_filter *bloom =
+ container_of(map, struct bpf_bloom_filter, map);
+ u32 i, h;
+
+ for (i = 0; i < bloom->nr_hash_funcs; i++) {
+ h = hash(bloom, value, map->value_size, i);
+ if (!test_bit(h, bloom->bitset))
+ return -ENOENT;
+ }
+
+ return 0;
+}
+
+static int bloom_map_push_elem(struct bpf_map *map, void *value, u64 flags)
+{
+ struct bpf_bloom_filter *bloom =
+ container_of(map, struct bpf_bloom_filter, map);
+ u32 i, h;
+
+ if (flags != BPF_ANY)
+ return -EINVAL;
+
+ for (i = 0; i < bloom->nr_hash_funcs; i++) {
+ h = hash(bloom, value, map->value_size, i);
+ set_bit(h, bloom->bitset);
+ }
+
+ return 0;
+}
+
+static int bloom_map_pop_elem(struct bpf_map *map, void *value)
+{
+ return -EOPNOTSUPP;
+}
+
+static int bloom_map_delete_elem(struct bpf_map *map, void *value)
+{
+ return -EOPNOTSUPP;
+}
+
+static int bloom_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
+{
+ return -EOPNOTSUPP;
+}
+
+static struct bpf_map *bloom_map_alloc(union bpf_attr *attr)
+{
+ u32 bitset_bytes, bitset_mask, nr_hash_funcs, nr_bits;
+ int numa_node = bpf_map_attr_numa_node(attr);
+ struct bpf_bloom_filter *bloom;
+
+ if (!bpf_capable())
+ return ERR_PTR(-EPERM);
+
+ if (attr->key_size != 0 || attr->value_size == 0 ||
+ attr->max_entries == 0 ||
+ attr->map_flags & ~BLOOM_CREATE_FLAG_MASK ||
+ !bpf_map_flags_access_ok(attr->map_flags) ||
+ /* The lower 4 bits of map_extra (0xF) specify the number
+ * of hash functions
+ */
+ (attr->map_extra & ~0xF))
+ return ERR_PTR(-EINVAL);
+
+ nr_hash_funcs = attr->map_extra;
+ if (nr_hash_funcs == 0)
+ /* Default to using 5 hash functions if unspecified */
+ nr_hash_funcs = 5;
+
+ /* For the bloom filter, the optimal bit array size that minimizes the
+ * false positive probability is n * k / ln(2) where n is the number of
+ * expected entries in the bloom filter and k is the number of hash
+ * functions. We use 7 / 5 to approximate 1 / ln(2).
+ *
+ * We round this up to the nearest power of two to enable more efficient
+ * hashing using bitmasks. The bitmask will be the bit array size - 1.
+ *
+ * If this overflows a u32, the bit array size will have 2^32 (4
+ * GB) bits.
+ */
+ if (check_mul_overflow(attr->max_entries, nr_hash_funcs, &nr_bits) ||
+ check_mul_overflow(nr_bits / 5, (u32)7, &nr_bits) ||
+ nr_bits > (1UL << 31)) {
+ /* The bit array size is 2^32 bits but to avoid overflowing the
+ * u32, we use U32_MAX, which will round up to the equivalent
+ * number of bytes
+ */
+ bitset_bytes = BITS_TO_BYTES(U32_MAX);
+ bitset_mask = U32_MAX;
+ } else {
+ if (nr_bits <= BITS_PER_LONG)
+ nr_bits = BITS_PER_LONG;
+ else
+ nr_bits = roundup_pow_of_two(nr_bits);
+ bitset_bytes = BITS_TO_BYTES(nr_bits);
+ bitset_mask = nr_bits - 1;
+ }
+
+ bitset_bytes = roundup(bitset_bytes, sizeof(unsigned long));
+ bloom = bpf_map_area_alloc(sizeof(*bloom) + bitset_bytes, numa_node);
+
+ if (!bloom)
+ return ERR_PTR(-ENOMEM);
+
+ bpf_map_init_from_attr(&bloom->map, attr);
+
+ bloom->nr_hash_funcs = nr_hash_funcs;
+ bloom->bitset_mask = bitset_mask;
+
+ /* Check whether the value size is u32-aligned */
+ if ((attr->value_size & (sizeof(u32) - 1)) == 0)
+ bloom->aligned_u32_count =
+ attr->value_size / sizeof(u32);
+
+ if (!(attr->map_flags & BPF_F_ZERO_SEED))
+ bloom->hash_seed = get_random_u32();
+
+ return &bloom->map;
+}
+
+static void bloom_map_free(struct bpf_map *map)
+{
+ struct bpf_bloom_filter *bloom =
+ container_of(map, struct bpf_bloom_filter, map);
+
+ bpf_map_area_free(bloom);
+}
+
+static void *bloom_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ /* The eBPF program should use map_peek_elem instead */
+ return ERR_PTR(-EINVAL);
+}
+
+static int bloom_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 flags)
+{
+ /* The eBPF program should use map_push_elem instead */
+ return -EINVAL;
+}
+
+static int bloom_map_check_btf(const struct bpf_map *map,
+ const struct btf *btf,
+ const struct btf_type *key_type,
+ const struct btf_type *value_type)
+{
+ /* Bloom filter maps are keyless */
+ return btf_type_is_void(key_type) ? 0 : -EINVAL;
+}
+
+BTF_ID_LIST_SINGLE(bpf_bloom_map_btf_ids, struct, bpf_bloom_filter)
+const struct bpf_map_ops bloom_filter_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = bloom_map_alloc,
+ .map_free = bloom_map_free,
+ .map_get_next_key = bloom_map_get_next_key,
+ .map_push_elem = bloom_map_push_elem,
+ .map_peek_elem = bloom_map_peek_elem,
+ .map_pop_elem = bloom_map_pop_elem,
+ .map_lookup_elem = bloom_map_lookup_elem,
+ .map_update_elem = bloom_map_update_elem,
+ .map_delete_elem = bloom_map_delete_elem,
+ .map_check_btf = bloom_map_check_btf,
+ .map_btf_id = &bpf_bloom_map_btf_ids[0],
+};
diff --git a/kernel/bpf/bpf_inode_storage.c b/kernel/bpf/bpf_inode_storage.c
new file mode 100644
index 000000000..5f7683b19
--- /dev/null
+++ b/kernel/bpf/bpf_inode_storage.c
@@ -0,0 +1,284 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2019 Facebook
+ * Copyright 2020 Google LLC.
+ */
+
+#include <linux/rculist.h>
+#include <linux/list.h>
+#include <linux/hash.h>
+#include <linux/types.h>
+#include <linux/spinlock.h>
+#include <linux/bpf.h>
+#include <linux/bpf_local_storage.h>
+#include <net/sock.h>
+#include <uapi/linux/sock_diag.h>
+#include <uapi/linux/btf.h>
+#include <linux/bpf_lsm.h>
+#include <linux/btf_ids.h>
+#include <linux/fdtable.h>
+#include <linux/rcupdate_trace.h>
+
+DEFINE_BPF_STORAGE_CACHE(inode_cache);
+
+static struct bpf_local_storage __rcu **
+inode_storage_ptr(void *owner)
+{
+ struct inode *inode = owner;
+ struct bpf_storage_blob *bsb;
+
+ bsb = bpf_inode(inode);
+ if (!bsb)
+ return NULL;
+ return &bsb->storage;
+}
+
+static struct bpf_local_storage_data *inode_storage_lookup(struct inode *inode,
+ struct bpf_map *map,
+ bool cacheit_lockit)
+{
+ struct bpf_local_storage *inode_storage;
+ struct bpf_local_storage_map *smap;
+ struct bpf_storage_blob *bsb;
+
+ bsb = bpf_inode(inode);
+ if (!bsb)
+ return NULL;
+
+ inode_storage =
+ rcu_dereference_check(bsb->storage, bpf_rcu_lock_held());
+ if (!inode_storage)
+ return NULL;
+
+ smap = (struct bpf_local_storage_map *)map;
+ return bpf_local_storage_lookup(inode_storage, smap, cacheit_lockit);
+}
+
+void bpf_inode_storage_free(struct inode *inode)
+{
+ struct bpf_local_storage_elem *selem;
+ struct bpf_local_storage *local_storage;
+ bool free_inode_storage = false;
+ struct bpf_storage_blob *bsb;
+ struct hlist_node *n;
+
+ bsb = bpf_inode(inode);
+ if (!bsb)
+ return;
+
+ rcu_read_lock();
+
+ local_storage = rcu_dereference(bsb->storage);
+ if (!local_storage) {
+ rcu_read_unlock();
+ return;
+ }
+
+ /* Neither the bpf_prog nor the bpf-map's syscall
+ * could be modifying the local_storage->list now.
+ * Thus, no elem can be added-to or deleted-from the
+ * local_storage->list by the bpf_prog or by the bpf-map's syscall.
+ *
+ * It is racing with bpf_local_storage_map_free() alone
+ * when unlinking elem from the local_storage->list and
+ * the map's bucket->list.
+ */
+ raw_spin_lock_bh(&local_storage->lock);
+ hlist_for_each_entry_safe(selem, n, &local_storage->list, snode) {
+ /* Always unlink from map before unlinking from
+ * local_storage.
+ */
+ bpf_selem_unlink_map(selem);
+ free_inode_storage = bpf_selem_unlink_storage_nolock(
+ local_storage, selem, false, false);
+ }
+ raw_spin_unlock_bh(&local_storage->lock);
+ rcu_read_unlock();
+
+ /* free_inoode_storage should always be true as long as
+ * local_storage->list was non-empty.
+ */
+ if (free_inode_storage)
+ kfree_rcu(local_storage, rcu);
+}
+
+static void *bpf_fd_inode_storage_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_local_storage_data *sdata;
+ struct file *f;
+ int fd;
+
+ fd = *(int *)key;
+ f = fget_raw(fd);
+ if (!f)
+ return ERR_PTR(-EBADF);
+
+ sdata = inode_storage_lookup(f->f_inode, map, true);
+ fput(f);
+ return sdata ? sdata->data : NULL;
+}
+
+static int bpf_fd_inode_storage_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags)
+{
+ struct bpf_local_storage_data *sdata;
+ struct file *f;
+ int fd;
+
+ fd = *(int *)key;
+ f = fget_raw(fd);
+ if (!f)
+ return -EBADF;
+ if (!inode_storage_ptr(f->f_inode)) {
+ fput(f);
+ return -EBADF;
+ }
+
+ sdata = bpf_local_storage_update(f->f_inode,
+ (struct bpf_local_storage_map *)map,
+ value, map_flags, GFP_ATOMIC);
+ fput(f);
+ return PTR_ERR_OR_ZERO(sdata);
+}
+
+static int inode_storage_delete(struct inode *inode, struct bpf_map *map)
+{
+ struct bpf_local_storage_data *sdata;
+
+ sdata = inode_storage_lookup(inode, map, false);
+ if (!sdata)
+ return -ENOENT;
+
+ bpf_selem_unlink(SELEM(sdata), true);
+
+ return 0;
+}
+
+static int bpf_fd_inode_storage_delete_elem(struct bpf_map *map, void *key)
+{
+ struct file *f;
+ int fd, err;
+
+ fd = *(int *)key;
+ f = fget_raw(fd);
+ if (!f)
+ return -EBADF;
+
+ err = inode_storage_delete(f->f_inode, map);
+ fput(f);
+ return err;
+}
+
+/* *gfp_flags* is a hidden argument provided by the verifier */
+BPF_CALL_5(bpf_inode_storage_get, struct bpf_map *, map, struct inode *, inode,
+ void *, value, u64, flags, gfp_t, gfp_flags)
+{
+ struct bpf_local_storage_data *sdata;
+
+ WARN_ON_ONCE(!bpf_rcu_lock_held());
+ if (flags & ~(BPF_LOCAL_STORAGE_GET_F_CREATE))
+ return (unsigned long)NULL;
+
+ /* explicitly check that the inode_storage_ptr is not
+ * NULL as inode_storage_lookup returns NULL in this case and
+ * bpf_local_storage_update expects the owner to have a
+ * valid storage pointer.
+ */
+ if (!inode || !inode_storage_ptr(inode))
+ return (unsigned long)NULL;
+
+ sdata = inode_storage_lookup(inode, map, true);
+ if (sdata)
+ return (unsigned long)sdata->data;
+
+ /* This helper must only called from where the inode is guaranteed
+ * to have a refcount and cannot be freed.
+ */
+ if (flags & BPF_LOCAL_STORAGE_GET_F_CREATE) {
+ sdata = bpf_local_storage_update(
+ inode, (struct bpf_local_storage_map *)map, value,
+ BPF_NOEXIST, gfp_flags);
+ return IS_ERR(sdata) ? (unsigned long)NULL :
+ (unsigned long)sdata->data;
+ }
+
+ return (unsigned long)NULL;
+}
+
+BPF_CALL_2(bpf_inode_storage_delete,
+ struct bpf_map *, map, struct inode *, inode)
+{
+ WARN_ON_ONCE(!bpf_rcu_lock_held());
+ if (!inode)
+ return -EINVAL;
+
+ /* This helper must only called from where the inode is guaranteed
+ * to have a refcount and cannot be freed.
+ */
+ return inode_storage_delete(inode, map);
+}
+
+static int notsupp_get_next_key(struct bpf_map *map, void *key,
+ void *next_key)
+{
+ return -ENOTSUPP;
+}
+
+static struct bpf_map *inode_storage_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_local_storage_map *smap;
+
+ smap = bpf_local_storage_map_alloc(attr);
+ if (IS_ERR(smap))
+ return ERR_CAST(smap);
+
+ smap->cache_idx = bpf_local_storage_cache_idx_get(&inode_cache);
+ return &smap->map;
+}
+
+static void inode_storage_map_free(struct bpf_map *map)
+{
+ struct bpf_local_storage_map *smap;
+
+ smap = (struct bpf_local_storage_map *)map;
+ bpf_local_storage_cache_idx_free(&inode_cache, smap->cache_idx);
+ bpf_local_storage_map_free(smap, NULL);
+}
+
+BTF_ID_LIST_SINGLE(inode_storage_map_btf_ids, struct,
+ bpf_local_storage_map)
+const struct bpf_map_ops inode_storage_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = bpf_local_storage_map_alloc_check,
+ .map_alloc = inode_storage_map_alloc,
+ .map_free = inode_storage_map_free,
+ .map_get_next_key = notsupp_get_next_key,
+ .map_lookup_elem = bpf_fd_inode_storage_lookup_elem,
+ .map_update_elem = bpf_fd_inode_storage_update_elem,
+ .map_delete_elem = bpf_fd_inode_storage_delete_elem,
+ .map_check_btf = bpf_local_storage_map_check_btf,
+ .map_btf_id = &inode_storage_map_btf_ids[0],
+ .map_owner_storage_ptr = inode_storage_ptr,
+};
+
+BTF_ID_LIST_SINGLE(bpf_inode_storage_btf_ids, struct, inode)
+
+const struct bpf_func_proto bpf_inode_storage_get_proto = {
+ .func = bpf_inode_storage_get,
+ .gpl_only = false,
+ .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_BTF_ID,
+ .arg2_btf_id = &bpf_inode_storage_btf_ids[0],
+ .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL,
+ .arg4_type = ARG_ANYTHING,
+};
+
+const struct bpf_func_proto bpf_inode_storage_delete_proto = {
+ .func = bpf_inode_storage_delete,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_BTF_ID,
+ .arg2_btf_id = &bpf_inode_storage_btf_ids[0],
+};
diff --git a/kernel/bpf/bpf_iter.c b/kernel/bpf/bpf_iter.c
new file mode 100644
index 000000000..5dc307bde
--- /dev/null
+++ b/kernel/bpf/bpf_iter.c
@@ -0,0 +1,778 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2020 Facebook */
+
+#include <linux/fs.h>
+#include <linux/anon_inodes.h>
+#include <linux/filter.h>
+#include <linux/bpf.h>
+#include <linux/rcupdate_trace.h>
+
+struct bpf_iter_target_info {
+ struct list_head list;
+ const struct bpf_iter_reg *reg_info;
+ u32 btf_id; /* cached value */
+};
+
+struct bpf_iter_link {
+ struct bpf_link link;
+ struct bpf_iter_aux_info aux;
+ struct bpf_iter_target_info *tinfo;
+};
+
+struct bpf_iter_priv_data {
+ struct bpf_iter_target_info *tinfo;
+ const struct bpf_iter_seq_info *seq_info;
+ struct bpf_prog *prog;
+ u64 session_id;
+ u64 seq_num;
+ bool done_stop;
+ u8 target_private[] __aligned(8);
+};
+
+static struct list_head targets = LIST_HEAD_INIT(targets);
+static DEFINE_MUTEX(targets_mutex);
+
+/* protect bpf_iter_link changes */
+static DEFINE_MUTEX(link_mutex);
+
+/* incremented on every opened seq_file */
+static atomic64_t session_id;
+
+static int prepare_seq_file(struct file *file, struct bpf_iter_link *link,
+ const struct bpf_iter_seq_info *seq_info);
+
+static void bpf_iter_inc_seq_num(struct seq_file *seq)
+{
+ struct bpf_iter_priv_data *iter_priv;
+
+ iter_priv = container_of(seq->private, struct bpf_iter_priv_data,
+ target_private);
+ iter_priv->seq_num++;
+}
+
+static void bpf_iter_dec_seq_num(struct seq_file *seq)
+{
+ struct bpf_iter_priv_data *iter_priv;
+
+ iter_priv = container_of(seq->private, struct bpf_iter_priv_data,
+ target_private);
+ iter_priv->seq_num--;
+}
+
+static void bpf_iter_done_stop(struct seq_file *seq)
+{
+ struct bpf_iter_priv_data *iter_priv;
+
+ iter_priv = container_of(seq->private, struct bpf_iter_priv_data,
+ target_private);
+ iter_priv->done_stop = true;
+}
+
+static inline bool bpf_iter_target_support_resched(const struct bpf_iter_target_info *tinfo)
+{
+ return tinfo->reg_info->feature & BPF_ITER_RESCHED;
+}
+
+static bool bpf_iter_support_resched(struct seq_file *seq)
+{
+ struct bpf_iter_priv_data *iter_priv;
+
+ iter_priv = container_of(seq->private, struct bpf_iter_priv_data,
+ target_private);
+ return bpf_iter_target_support_resched(iter_priv->tinfo);
+}
+
+/* maximum visited objects before bailing out */
+#define MAX_ITER_OBJECTS 1000000
+
+/* bpf_seq_read, a customized and simpler version for bpf iterator.
+ * The following are differences from seq_read():
+ * . fixed buffer size (PAGE_SIZE)
+ * . assuming NULL ->llseek()
+ * . stop() may call bpf program, handling potential overflow there
+ */
+static ssize_t bpf_seq_read(struct file *file, char __user *buf, size_t size,
+ loff_t *ppos)
+{
+ struct seq_file *seq = file->private_data;
+ size_t n, offs, copied = 0;
+ int err = 0, num_objs = 0;
+ bool can_resched;
+ void *p;
+
+ mutex_lock(&seq->lock);
+
+ if (!seq->buf) {
+ seq->size = PAGE_SIZE << 3;
+ seq->buf = kvmalloc(seq->size, GFP_KERNEL);
+ if (!seq->buf) {
+ err = -ENOMEM;
+ goto done;
+ }
+ }
+
+ if (seq->count) {
+ n = min(seq->count, size);
+ err = copy_to_user(buf, seq->buf + seq->from, n);
+ if (err) {
+ err = -EFAULT;
+ goto done;
+ }
+ seq->count -= n;
+ seq->from += n;
+ copied = n;
+ goto done;
+ }
+
+ seq->from = 0;
+ p = seq->op->start(seq, &seq->index);
+ if (!p)
+ goto stop;
+ if (IS_ERR(p)) {
+ err = PTR_ERR(p);
+ seq->op->stop(seq, p);
+ seq->count = 0;
+ goto done;
+ }
+
+ err = seq->op->show(seq, p);
+ if (err > 0) {
+ /* object is skipped, decrease seq_num, so next
+ * valid object can reuse the same seq_num.
+ */
+ bpf_iter_dec_seq_num(seq);
+ seq->count = 0;
+ } else if (err < 0 || seq_has_overflowed(seq)) {
+ if (!err)
+ err = -E2BIG;
+ seq->op->stop(seq, p);
+ seq->count = 0;
+ goto done;
+ }
+
+ can_resched = bpf_iter_support_resched(seq);
+ while (1) {
+ loff_t pos = seq->index;
+
+ num_objs++;
+ offs = seq->count;
+ p = seq->op->next(seq, p, &seq->index);
+ if (pos == seq->index) {
+ pr_info_ratelimited("buggy seq_file .next function %ps "
+ "did not updated position index\n",
+ seq->op->next);
+ seq->index++;
+ }
+
+ if (IS_ERR_OR_NULL(p))
+ break;
+
+ /* got a valid next object, increase seq_num */
+ bpf_iter_inc_seq_num(seq);
+
+ if (seq->count >= size)
+ break;
+
+ if (num_objs >= MAX_ITER_OBJECTS) {
+ if (offs == 0) {
+ err = -EAGAIN;
+ seq->op->stop(seq, p);
+ goto done;
+ }
+ break;
+ }
+
+ err = seq->op->show(seq, p);
+ if (err > 0) {
+ bpf_iter_dec_seq_num(seq);
+ seq->count = offs;
+ } else if (err < 0 || seq_has_overflowed(seq)) {
+ seq->count = offs;
+ if (offs == 0) {
+ if (!err)
+ err = -E2BIG;
+ seq->op->stop(seq, p);
+ goto done;
+ }
+ break;
+ }
+
+ if (can_resched)
+ cond_resched();
+ }
+stop:
+ offs = seq->count;
+ if (IS_ERR(p)) {
+ seq->op->stop(seq, NULL);
+ err = PTR_ERR(p);
+ goto done;
+ }
+ /* bpf program called if !p */
+ seq->op->stop(seq, p);
+ if (!p) {
+ if (!seq_has_overflowed(seq)) {
+ bpf_iter_done_stop(seq);
+ } else {
+ seq->count = offs;
+ if (offs == 0) {
+ err = -E2BIG;
+ goto done;
+ }
+ }
+ }
+
+ n = min(seq->count, size);
+ err = copy_to_user(buf, seq->buf, n);
+ if (err) {
+ err = -EFAULT;
+ goto done;
+ }
+ copied = n;
+ seq->count -= n;
+ seq->from = n;
+done:
+ if (!copied)
+ copied = err;
+ else
+ *ppos += copied;
+ mutex_unlock(&seq->lock);
+ return copied;
+}
+
+static const struct bpf_iter_seq_info *
+__get_seq_info(struct bpf_iter_link *link)
+{
+ const struct bpf_iter_seq_info *seq_info;
+
+ if (link->aux.map) {
+ seq_info = link->aux.map->ops->iter_seq_info;
+ if (seq_info)
+ return seq_info;
+ }
+
+ return link->tinfo->reg_info->seq_info;
+}
+
+static int iter_open(struct inode *inode, struct file *file)
+{
+ struct bpf_iter_link *link = inode->i_private;
+
+ return prepare_seq_file(file, link, __get_seq_info(link));
+}
+
+static int iter_release(struct inode *inode, struct file *file)
+{
+ struct bpf_iter_priv_data *iter_priv;
+ struct seq_file *seq;
+
+ seq = file->private_data;
+ if (!seq)
+ return 0;
+
+ iter_priv = container_of(seq->private, struct bpf_iter_priv_data,
+ target_private);
+
+ if (iter_priv->seq_info->fini_seq_private)
+ iter_priv->seq_info->fini_seq_private(seq->private);
+
+ bpf_prog_put(iter_priv->prog);
+ seq->private = iter_priv;
+
+ return seq_release_private(inode, file);
+}
+
+const struct file_operations bpf_iter_fops = {
+ .open = iter_open,
+ .llseek = no_llseek,
+ .read = bpf_seq_read,
+ .release = iter_release,
+};
+
+/* The argument reg_info will be cached in bpf_iter_target_info.
+ * The common practice is to declare target reg_info as
+ * a const static variable and passed as an argument to
+ * bpf_iter_reg_target().
+ */
+int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info)
+{
+ struct bpf_iter_target_info *tinfo;
+
+ tinfo = kzalloc(sizeof(*tinfo), GFP_KERNEL);
+ if (!tinfo)
+ return -ENOMEM;
+
+ tinfo->reg_info = reg_info;
+ INIT_LIST_HEAD(&tinfo->list);
+
+ mutex_lock(&targets_mutex);
+ list_add(&tinfo->list, &targets);
+ mutex_unlock(&targets_mutex);
+
+ return 0;
+}
+
+void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info)
+{
+ struct bpf_iter_target_info *tinfo;
+ bool found = false;
+
+ mutex_lock(&targets_mutex);
+ list_for_each_entry(tinfo, &targets, list) {
+ if (reg_info == tinfo->reg_info) {
+ list_del(&tinfo->list);
+ kfree(tinfo);
+ found = true;
+ break;
+ }
+ }
+ mutex_unlock(&targets_mutex);
+
+ WARN_ON(found == false);
+}
+
+static void cache_btf_id(struct bpf_iter_target_info *tinfo,
+ struct bpf_prog *prog)
+{
+ tinfo->btf_id = prog->aux->attach_btf_id;
+}
+
+bool bpf_iter_prog_supported(struct bpf_prog *prog)
+{
+ const char *attach_fname = prog->aux->attach_func_name;
+ struct bpf_iter_target_info *tinfo = NULL, *iter;
+ u32 prog_btf_id = prog->aux->attach_btf_id;
+ const char *prefix = BPF_ITER_FUNC_PREFIX;
+ int prefix_len = strlen(prefix);
+
+ if (strncmp(attach_fname, prefix, prefix_len))
+ return false;
+
+ mutex_lock(&targets_mutex);
+ list_for_each_entry(iter, &targets, list) {
+ if (iter->btf_id && iter->btf_id == prog_btf_id) {
+ tinfo = iter;
+ break;
+ }
+ if (!strcmp(attach_fname + prefix_len, iter->reg_info->target)) {
+ cache_btf_id(iter, prog);
+ tinfo = iter;
+ break;
+ }
+ }
+ mutex_unlock(&targets_mutex);
+
+ if (tinfo) {
+ prog->aux->ctx_arg_info_size = tinfo->reg_info->ctx_arg_info_size;
+ prog->aux->ctx_arg_info = tinfo->reg_info->ctx_arg_info;
+ }
+
+ return tinfo != NULL;
+}
+
+const struct bpf_func_proto *
+bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ const struct bpf_iter_target_info *tinfo;
+ const struct bpf_func_proto *fn = NULL;
+
+ mutex_lock(&targets_mutex);
+ list_for_each_entry(tinfo, &targets, list) {
+ if (tinfo->btf_id == prog->aux->attach_btf_id) {
+ const struct bpf_iter_reg *reg_info;
+
+ reg_info = tinfo->reg_info;
+ if (reg_info->get_func_proto)
+ fn = reg_info->get_func_proto(func_id, prog);
+ break;
+ }
+ }
+ mutex_unlock(&targets_mutex);
+
+ return fn;
+}
+
+static void bpf_iter_link_release(struct bpf_link *link)
+{
+ struct bpf_iter_link *iter_link =
+ container_of(link, struct bpf_iter_link, link);
+
+ if (iter_link->tinfo->reg_info->detach_target)
+ iter_link->tinfo->reg_info->detach_target(&iter_link->aux);
+}
+
+static void bpf_iter_link_dealloc(struct bpf_link *link)
+{
+ struct bpf_iter_link *iter_link =
+ container_of(link, struct bpf_iter_link, link);
+
+ kfree(iter_link);
+}
+
+static int bpf_iter_link_replace(struct bpf_link *link,
+ struct bpf_prog *new_prog,
+ struct bpf_prog *old_prog)
+{
+ int ret = 0;
+
+ mutex_lock(&link_mutex);
+ if (old_prog && link->prog != old_prog) {
+ ret = -EPERM;
+ goto out_unlock;
+ }
+
+ if (link->prog->type != new_prog->type ||
+ link->prog->expected_attach_type != new_prog->expected_attach_type ||
+ link->prog->aux->attach_btf_id != new_prog->aux->attach_btf_id) {
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ old_prog = xchg(&link->prog, new_prog);
+ bpf_prog_put(old_prog);
+
+out_unlock:
+ mutex_unlock(&link_mutex);
+ return ret;
+}
+
+static void bpf_iter_link_show_fdinfo(const struct bpf_link *link,
+ struct seq_file *seq)
+{
+ struct bpf_iter_link *iter_link =
+ container_of(link, struct bpf_iter_link, link);
+ bpf_iter_show_fdinfo_t show_fdinfo;
+
+ seq_printf(seq,
+ "target_name:\t%s\n",
+ iter_link->tinfo->reg_info->target);
+
+ show_fdinfo = iter_link->tinfo->reg_info->show_fdinfo;
+ if (show_fdinfo)
+ show_fdinfo(&iter_link->aux, seq);
+}
+
+static int bpf_iter_link_fill_link_info(const struct bpf_link *link,
+ struct bpf_link_info *info)
+{
+ struct bpf_iter_link *iter_link =
+ container_of(link, struct bpf_iter_link, link);
+ char __user *ubuf = u64_to_user_ptr(info->iter.target_name);
+ bpf_iter_fill_link_info_t fill_link_info;
+ u32 ulen = info->iter.target_name_len;
+ const char *target_name;
+ u32 target_len;
+
+ if (!ulen ^ !ubuf)
+ return -EINVAL;
+
+ target_name = iter_link->tinfo->reg_info->target;
+ target_len = strlen(target_name);
+ info->iter.target_name_len = target_len + 1;
+
+ if (ubuf) {
+ if (ulen >= target_len + 1) {
+ if (copy_to_user(ubuf, target_name, target_len + 1))
+ return -EFAULT;
+ } else {
+ char zero = '\0';
+
+ if (copy_to_user(ubuf, target_name, ulen - 1))
+ return -EFAULT;
+ if (put_user(zero, ubuf + ulen - 1))
+ return -EFAULT;
+ return -ENOSPC;
+ }
+ }
+
+ fill_link_info = iter_link->tinfo->reg_info->fill_link_info;
+ if (fill_link_info)
+ return fill_link_info(&iter_link->aux, info);
+
+ return 0;
+}
+
+static const struct bpf_link_ops bpf_iter_link_lops = {
+ .release = bpf_iter_link_release,
+ .dealloc = bpf_iter_link_dealloc,
+ .update_prog = bpf_iter_link_replace,
+ .show_fdinfo = bpf_iter_link_show_fdinfo,
+ .fill_link_info = bpf_iter_link_fill_link_info,
+};
+
+bool bpf_link_is_iter(struct bpf_link *link)
+{
+ return link->ops == &bpf_iter_link_lops;
+}
+
+int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr,
+ struct bpf_prog *prog)
+{
+ struct bpf_iter_target_info *tinfo = NULL, *iter;
+ struct bpf_link_primer link_primer;
+ union bpf_iter_link_info linfo;
+ struct bpf_iter_link *link;
+ u32 prog_btf_id, linfo_len;
+ bpfptr_t ulinfo;
+ int err;
+
+ if (attr->link_create.target_fd || attr->link_create.flags)
+ return -EINVAL;
+
+ memset(&linfo, 0, sizeof(union bpf_iter_link_info));
+
+ ulinfo = make_bpfptr(attr->link_create.iter_info, uattr.is_kernel);
+ linfo_len = attr->link_create.iter_info_len;
+ if (bpfptr_is_null(ulinfo) ^ !linfo_len)
+ return -EINVAL;
+
+ if (!bpfptr_is_null(ulinfo)) {
+ err = bpf_check_uarg_tail_zero(ulinfo, sizeof(linfo),
+ linfo_len);
+ if (err)
+ return err;
+ linfo_len = min_t(u32, linfo_len, sizeof(linfo));
+ if (copy_from_bpfptr(&linfo, ulinfo, linfo_len))
+ return -EFAULT;
+ }
+
+ prog_btf_id = prog->aux->attach_btf_id;
+ mutex_lock(&targets_mutex);
+ list_for_each_entry(iter, &targets, list) {
+ if (iter->btf_id == prog_btf_id) {
+ tinfo = iter;
+ break;
+ }
+ }
+ mutex_unlock(&targets_mutex);
+ if (!tinfo)
+ return -ENOENT;
+
+ /* Only allow sleepable program for resched-able iterator */
+ if (prog->aux->sleepable && !bpf_iter_target_support_resched(tinfo))
+ return -EINVAL;
+
+ link = kzalloc(sizeof(*link), GFP_USER | __GFP_NOWARN);
+ if (!link)
+ return -ENOMEM;
+
+ bpf_link_init(&link->link, BPF_LINK_TYPE_ITER, &bpf_iter_link_lops, prog);
+ link->tinfo = tinfo;
+
+ err = bpf_link_prime(&link->link, &link_primer);
+ if (err) {
+ kfree(link);
+ return err;
+ }
+
+ if (tinfo->reg_info->attach_target) {
+ err = tinfo->reg_info->attach_target(prog, &linfo, &link->aux);
+ if (err) {
+ bpf_link_cleanup(&link_primer);
+ return err;
+ }
+ }
+
+ return bpf_link_settle(&link_primer);
+}
+
+static void init_seq_meta(struct bpf_iter_priv_data *priv_data,
+ struct bpf_iter_target_info *tinfo,
+ const struct bpf_iter_seq_info *seq_info,
+ struct bpf_prog *prog)
+{
+ priv_data->tinfo = tinfo;
+ priv_data->seq_info = seq_info;
+ priv_data->prog = prog;
+ priv_data->session_id = atomic64_inc_return(&session_id);
+ priv_data->seq_num = 0;
+ priv_data->done_stop = false;
+}
+
+static int prepare_seq_file(struct file *file, struct bpf_iter_link *link,
+ const struct bpf_iter_seq_info *seq_info)
+{
+ struct bpf_iter_priv_data *priv_data;
+ struct bpf_iter_target_info *tinfo;
+ struct bpf_prog *prog;
+ u32 total_priv_dsize;
+ struct seq_file *seq;
+ int err = 0;
+
+ mutex_lock(&link_mutex);
+ prog = link->link.prog;
+ bpf_prog_inc(prog);
+ mutex_unlock(&link_mutex);
+
+ tinfo = link->tinfo;
+ total_priv_dsize = offsetof(struct bpf_iter_priv_data, target_private) +
+ seq_info->seq_priv_size;
+ priv_data = __seq_open_private(file, seq_info->seq_ops,
+ total_priv_dsize);
+ if (!priv_data) {
+ err = -ENOMEM;
+ goto release_prog;
+ }
+
+ if (seq_info->init_seq_private) {
+ err = seq_info->init_seq_private(priv_data->target_private, &link->aux);
+ if (err)
+ goto release_seq_file;
+ }
+
+ init_seq_meta(priv_data, tinfo, seq_info, prog);
+ seq = file->private_data;
+ seq->private = priv_data->target_private;
+
+ return 0;
+
+release_seq_file:
+ seq_release_private(file->f_inode, file);
+ file->private_data = NULL;
+release_prog:
+ bpf_prog_put(prog);
+ return err;
+}
+
+int bpf_iter_new_fd(struct bpf_link *link)
+{
+ struct bpf_iter_link *iter_link;
+ struct file *file;
+ unsigned int flags;
+ int err, fd;
+
+ if (link->ops != &bpf_iter_link_lops)
+ return -EINVAL;
+
+ flags = O_RDONLY | O_CLOEXEC;
+ fd = get_unused_fd_flags(flags);
+ if (fd < 0)
+ return fd;
+
+ file = anon_inode_getfile("bpf_iter", &bpf_iter_fops, NULL, flags);
+ if (IS_ERR(file)) {
+ err = PTR_ERR(file);
+ goto free_fd;
+ }
+
+ iter_link = container_of(link, struct bpf_iter_link, link);
+ err = prepare_seq_file(file, iter_link, __get_seq_info(iter_link));
+ if (err)
+ goto free_file;
+
+ fd_install(fd, file);
+ return fd;
+
+free_file:
+ fput(file);
+free_fd:
+ put_unused_fd(fd);
+ return err;
+}
+
+struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop)
+{
+ struct bpf_iter_priv_data *iter_priv;
+ struct seq_file *seq;
+ void *seq_priv;
+
+ seq = meta->seq;
+ if (seq->file->f_op != &bpf_iter_fops)
+ return NULL;
+
+ seq_priv = seq->private;
+ iter_priv = container_of(seq_priv, struct bpf_iter_priv_data,
+ target_private);
+
+ if (in_stop && iter_priv->done_stop)
+ return NULL;
+
+ meta->session_id = iter_priv->session_id;
+ meta->seq_num = iter_priv->seq_num;
+
+ return iter_priv->prog;
+}
+
+int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx)
+{
+ struct bpf_run_ctx run_ctx, *old_run_ctx;
+ int ret;
+
+ if (prog->aux->sleepable) {
+ rcu_read_lock_trace();
+ migrate_disable();
+ might_fault();
+ old_run_ctx = bpf_set_run_ctx(&run_ctx);
+ ret = bpf_prog_run(prog, ctx);
+ bpf_reset_run_ctx(old_run_ctx);
+ migrate_enable();
+ rcu_read_unlock_trace();
+ } else {
+ rcu_read_lock();
+ migrate_disable();
+ old_run_ctx = bpf_set_run_ctx(&run_ctx);
+ ret = bpf_prog_run(prog, ctx);
+ bpf_reset_run_ctx(old_run_ctx);
+ migrate_enable();
+ rcu_read_unlock();
+ }
+
+ /* bpf program can only return 0 or 1:
+ * 0 : okay
+ * 1 : retry the same object
+ * The bpf_iter_run_prog() return value
+ * will be seq_ops->show() return value.
+ */
+ return ret == 0 ? 0 : -EAGAIN;
+}
+
+BPF_CALL_4(bpf_for_each_map_elem, struct bpf_map *, map, void *, callback_fn,
+ void *, callback_ctx, u64, flags)
+{
+ return map->ops->map_for_each_callback(map, callback_fn, callback_ctx, flags);
+}
+
+const struct bpf_func_proto bpf_for_each_map_elem_proto = {
+ .func = bpf_for_each_map_elem,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_FUNC,
+ .arg3_type = ARG_PTR_TO_STACK_OR_NULL,
+ .arg4_type = ARG_ANYTHING,
+};
+
+BPF_CALL_4(bpf_loop, u32, nr_loops, void *, callback_fn, void *, callback_ctx,
+ u64, flags)
+{
+ bpf_callback_t callback = (bpf_callback_t)callback_fn;
+ u64 ret;
+ u32 i;
+
+ /* Note: these safety checks are also verified when bpf_loop
+ * is inlined, be careful to modify this code in sync. See
+ * function verifier.c:inline_bpf_loop.
+ */
+ if (flags)
+ return -EINVAL;
+ if (nr_loops > BPF_MAX_LOOPS)
+ return -E2BIG;
+
+ for (i = 0; i < nr_loops; i++) {
+ ret = callback((u64)i, (u64)(long)callback_ctx, 0, 0, 0);
+ /* return value: 0 - continue, 1 - stop and return */
+ if (ret)
+ return i + 1;
+ }
+
+ return i;
+}
+
+const struct bpf_func_proto bpf_loop_proto = {
+ .func = bpf_loop,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_ANYTHING,
+ .arg2_type = ARG_PTR_TO_FUNC,
+ .arg3_type = ARG_PTR_TO_STACK_OR_NULL,
+ .arg4_type = ARG_ANYTHING,
+};
diff --git a/kernel/bpf/bpf_local_storage.c b/kernel/bpf/bpf_local_storage.c
new file mode 100644
index 000000000..d9d88a2cd
--- /dev/null
+++ b/kernel/bpf/bpf_local_storage.c
@@ -0,0 +1,666 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (c) 2019 Facebook */
+#include <linux/rculist.h>
+#include <linux/list.h>
+#include <linux/hash.h>
+#include <linux/types.h>
+#include <linux/spinlock.h>
+#include <linux/bpf.h>
+#include <linux/btf_ids.h>
+#include <linux/bpf_local_storage.h>
+#include <net/sock.h>
+#include <uapi/linux/sock_diag.h>
+#include <uapi/linux/btf.h>
+#include <linux/rcupdate.h>
+#include <linux/rcupdate_trace.h>
+#include <linux/rcupdate_wait.h>
+
+#define BPF_LOCAL_STORAGE_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_CLONE)
+
+static struct bpf_local_storage_map_bucket *
+select_bucket(struct bpf_local_storage_map *smap,
+ struct bpf_local_storage_elem *selem)
+{
+ return &smap->buckets[hash_ptr(selem, smap->bucket_log)];
+}
+
+static int mem_charge(struct bpf_local_storage_map *smap, void *owner, u32 size)
+{
+ struct bpf_map *map = &smap->map;
+
+ if (!map->ops->map_local_storage_charge)
+ return 0;
+
+ return map->ops->map_local_storage_charge(smap, owner, size);
+}
+
+static void mem_uncharge(struct bpf_local_storage_map *smap, void *owner,
+ u32 size)
+{
+ struct bpf_map *map = &smap->map;
+
+ if (map->ops->map_local_storage_uncharge)
+ map->ops->map_local_storage_uncharge(smap, owner, size);
+}
+
+static struct bpf_local_storage __rcu **
+owner_storage(struct bpf_local_storage_map *smap, void *owner)
+{
+ struct bpf_map *map = &smap->map;
+
+ return map->ops->map_owner_storage_ptr(owner);
+}
+
+static bool selem_linked_to_storage_lockless(const struct bpf_local_storage_elem *selem)
+{
+ return !hlist_unhashed_lockless(&selem->snode);
+}
+
+static bool selem_linked_to_storage(const struct bpf_local_storage_elem *selem)
+{
+ return !hlist_unhashed(&selem->snode);
+}
+
+static bool selem_linked_to_map_lockless(const struct bpf_local_storage_elem *selem)
+{
+ return !hlist_unhashed_lockless(&selem->map_node);
+}
+
+static bool selem_linked_to_map(const struct bpf_local_storage_elem *selem)
+{
+ return !hlist_unhashed(&selem->map_node);
+}
+
+struct bpf_local_storage_elem *
+bpf_selem_alloc(struct bpf_local_storage_map *smap, void *owner,
+ void *value, bool charge_mem, gfp_t gfp_flags)
+{
+ struct bpf_local_storage_elem *selem;
+
+ if (charge_mem && mem_charge(smap, owner, smap->elem_size))
+ return NULL;
+
+ selem = bpf_map_kzalloc(&smap->map, smap->elem_size,
+ gfp_flags | __GFP_NOWARN);
+ if (selem) {
+ if (value)
+ copy_map_value(&smap->map, SDATA(selem)->data, value);
+ return selem;
+ }
+
+ if (charge_mem)
+ mem_uncharge(smap, owner, smap->elem_size);
+
+ return NULL;
+}
+
+void bpf_local_storage_free_rcu(struct rcu_head *rcu)
+{
+ struct bpf_local_storage *local_storage;
+
+ local_storage = container_of(rcu, struct bpf_local_storage, rcu);
+ kfree_rcu(local_storage, rcu);
+}
+
+static void bpf_selem_free_rcu(struct rcu_head *rcu)
+{
+ struct bpf_local_storage_elem *selem;
+
+ selem = container_of(rcu, struct bpf_local_storage_elem, rcu);
+ kfree_rcu(selem, rcu);
+}
+
+/* local_storage->lock must be held and selem->local_storage == local_storage.
+ * The caller must ensure selem->smap is still valid to be
+ * dereferenced for its smap->elem_size and smap->cache_idx.
+ */
+bool bpf_selem_unlink_storage_nolock(struct bpf_local_storage *local_storage,
+ struct bpf_local_storage_elem *selem,
+ bool uncharge_mem, bool use_trace_rcu)
+{
+ struct bpf_local_storage_map *smap;
+ bool free_local_storage;
+ void *owner;
+
+ smap = rcu_dereference_check(SDATA(selem)->smap, bpf_rcu_lock_held());
+ owner = local_storage->owner;
+
+ /* All uncharging on the owner must be done first.
+ * The owner may be freed once the last selem is unlinked
+ * from local_storage.
+ */
+ if (uncharge_mem)
+ mem_uncharge(smap, owner, smap->elem_size);
+
+ free_local_storage = hlist_is_singular_node(&selem->snode,
+ &local_storage->list);
+ if (free_local_storage) {
+ mem_uncharge(smap, owner, sizeof(struct bpf_local_storage));
+ local_storage->owner = NULL;
+
+ /* After this RCU_INIT, owner may be freed and cannot be used */
+ RCU_INIT_POINTER(*owner_storage(smap, owner), NULL);
+
+ /* local_storage is not freed now. local_storage->lock is
+ * still held and raw_spin_unlock_bh(&local_storage->lock)
+ * will be done by the caller.
+ *
+ * Although the unlock will be done under
+ * rcu_read_lock(), it is more intuitive to
+ * read if the freeing of the storage is done
+ * after the raw_spin_unlock_bh(&local_storage->lock).
+ *
+ * Hence, a "bool free_local_storage" is returned
+ * to the caller which then calls then frees the storage after
+ * all the RCU grace periods have expired.
+ */
+ }
+ hlist_del_init_rcu(&selem->snode);
+ if (rcu_access_pointer(local_storage->cache[smap->cache_idx]) ==
+ SDATA(selem))
+ RCU_INIT_POINTER(local_storage->cache[smap->cache_idx], NULL);
+
+ if (use_trace_rcu)
+ call_rcu_tasks_trace(&selem->rcu, bpf_selem_free_rcu);
+ else
+ kfree_rcu(selem, rcu);
+
+ return free_local_storage;
+}
+
+static void __bpf_selem_unlink_storage(struct bpf_local_storage_elem *selem,
+ bool use_trace_rcu)
+{
+ struct bpf_local_storage *local_storage;
+ bool free_local_storage = false;
+ unsigned long flags;
+
+ if (unlikely(!selem_linked_to_storage_lockless(selem)))
+ /* selem has already been unlinked from sk */
+ return;
+
+ local_storage = rcu_dereference_check(selem->local_storage,
+ bpf_rcu_lock_held());
+ raw_spin_lock_irqsave(&local_storage->lock, flags);
+ if (likely(selem_linked_to_storage(selem)))
+ free_local_storage = bpf_selem_unlink_storage_nolock(
+ local_storage, selem, true, use_trace_rcu);
+ raw_spin_unlock_irqrestore(&local_storage->lock, flags);
+
+ if (free_local_storage) {
+ if (use_trace_rcu)
+ call_rcu_tasks_trace(&local_storage->rcu,
+ bpf_local_storage_free_rcu);
+ else
+ kfree_rcu(local_storage, rcu);
+ }
+}
+
+void bpf_selem_link_storage_nolock(struct bpf_local_storage *local_storage,
+ struct bpf_local_storage_elem *selem)
+{
+ RCU_INIT_POINTER(selem->local_storage, local_storage);
+ hlist_add_head_rcu(&selem->snode, &local_storage->list);
+}
+
+void bpf_selem_unlink_map(struct bpf_local_storage_elem *selem)
+{
+ struct bpf_local_storage_map *smap;
+ struct bpf_local_storage_map_bucket *b;
+ unsigned long flags;
+
+ if (unlikely(!selem_linked_to_map_lockless(selem)))
+ /* selem has already be unlinked from smap */
+ return;
+
+ smap = rcu_dereference_check(SDATA(selem)->smap, bpf_rcu_lock_held());
+ b = select_bucket(smap, selem);
+ raw_spin_lock_irqsave(&b->lock, flags);
+ if (likely(selem_linked_to_map(selem)))
+ hlist_del_init_rcu(&selem->map_node);
+ raw_spin_unlock_irqrestore(&b->lock, flags);
+}
+
+void bpf_selem_link_map(struct bpf_local_storage_map *smap,
+ struct bpf_local_storage_elem *selem)
+{
+ struct bpf_local_storage_map_bucket *b = select_bucket(smap, selem);
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&b->lock, flags);
+ RCU_INIT_POINTER(SDATA(selem)->smap, smap);
+ hlist_add_head_rcu(&selem->map_node, &b->list);
+ raw_spin_unlock_irqrestore(&b->lock, flags);
+}
+
+void bpf_selem_unlink(struct bpf_local_storage_elem *selem, bool use_trace_rcu)
+{
+ /* Always unlink from map before unlinking from local_storage
+ * because selem will be freed after successfully unlinked from
+ * the local_storage.
+ */
+ bpf_selem_unlink_map(selem);
+ __bpf_selem_unlink_storage(selem, use_trace_rcu);
+}
+
+struct bpf_local_storage_data *
+bpf_local_storage_lookup(struct bpf_local_storage *local_storage,
+ struct bpf_local_storage_map *smap,
+ bool cacheit_lockit)
+{
+ struct bpf_local_storage_data *sdata;
+ struct bpf_local_storage_elem *selem;
+
+ /* Fast path (cache hit) */
+ sdata = rcu_dereference_check(local_storage->cache[smap->cache_idx],
+ bpf_rcu_lock_held());
+ if (sdata && rcu_access_pointer(sdata->smap) == smap)
+ return sdata;
+
+ /* Slow path (cache miss) */
+ hlist_for_each_entry_rcu(selem, &local_storage->list, snode,
+ rcu_read_lock_trace_held())
+ if (rcu_access_pointer(SDATA(selem)->smap) == smap)
+ break;
+
+ if (!selem)
+ return NULL;
+
+ sdata = SDATA(selem);
+ if (cacheit_lockit) {
+ unsigned long flags;
+
+ /* spinlock is needed to avoid racing with the
+ * parallel delete. Otherwise, publishing an already
+ * deleted sdata to the cache will become a use-after-free
+ * problem in the next bpf_local_storage_lookup().
+ */
+ raw_spin_lock_irqsave(&local_storage->lock, flags);
+ if (selem_linked_to_storage(selem))
+ rcu_assign_pointer(local_storage->cache[smap->cache_idx],
+ sdata);
+ raw_spin_unlock_irqrestore(&local_storage->lock, flags);
+ }
+
+ return sdata;
+}
+
+static int check_flags(const struct bpf_local_storage_data *old_sdata,
+ u64 map_flags)
+{
+ if (old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
+ /* elem already exists */
+ return -EEXIST;
+
+ if (!old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
+ /* elem doesn't exist, cannot update it */
+ return -ENOENT;
+
+ return 0;
+}
+
+int bpf_local_storage_alloc(void *owner,
+ struct bpf_local_storage_map *smap,
+ struct bpf_local_storage_elem *first_selem,
+ gfp_t gfp_flags)
+{
+ struct bpf_local_storage *prev_storage, *storage;
+ struct bpf_local_storage **owner_storage_ptr;
+ int err;
+
+ err = mem_charge(smap, owner, sizeof(*storage));
+ if (err)
+ return err;
+
+ storage = bpf_map_kzalloc(&smap->map, sizeof(*storage),
+ gfp_flags | __GFP_NOWARN);
+ if (!storage) {
+ err = -ENOMEM;
+ goto uncharge;
+ }
+
+ INIT_HLIST_HEAD(&storage->list);
+ raw_spin_lock_init(&storage->lock);
+ storage->owner = owner;
+
+ bpf_selem_link_storage_nolock(storage, first_selem);
+ bpf_selem_link_map(smap, first_selem);
+
+ owner_storage_ptr =
+ (struct bpf_local_storage **)owner_storage(smap, owner);
+ /* Publish storage to the owner.
+ * Instead of using any lock of the kernel object (i.e. owner),
+ * cmpxchg will work with any kernel object regardless what
+ * the running context is, bh, irq...etc.
+ *
+ * From now on, the owner->storage pointer (e.g. sk->sk_bpf_storage)
+ * is protected by the storage->lock. Hence, when freeing
+ * the owner->storage, the storage->lock must be held before
+ * setting owner->storage ptr to NULL.
+ */
+ prev_storage = cmpxchg(owner_storage_ptr, NULL, storage);
+ if (unlikely(prev_storage)) {
+ bpf_selem_unlink_map(first_selem);
+ err = -EAGAIN;
+ goto uncharge;
+
+ /* Note that even first_selem was linked to smap's
+ * bucket->list, first_selem can be freed immediately
+ * (instead of kfree_rcu) because
+ * bpf_local_storage_map_free() does a
+ * synchronize_rcu_mult (waiting for both sleepable and
+ * normal programs) before walking the bucket->list.
+ * Hence, no one is accessing selem from the
+ * bucket->list under rcu_read_lock().
+ */
+ }
+
+ return 0;
+
+uncharge:
+ kfree(storage);
+ mem_uncharge(smap, owner, sizeof(*storage));
+ return err;
+}
+
+/* sk cannot be going away because it is linking new elem
+ * to sk->sk_bpf_storage. (i.e. sk->sk_refcnt cannot be 0).
+ * Otherwise, it will become a leak (and other memory issues
+ * during map destruction).
+ */
+struct bpf_local_storage_data *
+bpf_local_storage_update(void *owner, struct bpf_local_storage_map *smap,
+ void *value, u64 map_flags, gfp_t gfp_flags)
+{
+ struct bpf_local_storage_data *old_sdata = NULL;
+ struct bpf_local_storage_elem *selem = NULL;
+ struct bpf_local_storage *local_storage;
+ unsigned long flags;
+ int err;
+
+ /* BPF_EXIST and BPF_NOEXIST cannot be both set */
+ if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST) ||
+ /* BPF_F_LOCK can only be used in a value with spin_lock */
+ unlikely((map_flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(&smap->map)))
+ return ERR_PTR(-EINVAL);
+
+ if (gfp_flags == GFP_KERNEL && (map_flags & ~BPF_F_LOCK) != BPF_NOEXIST)
+ return ERR_PTR(-EINVAL);
+
+ local_storage = rcu_dereference_check(*owner_storage(smap, owner),
+ bpf_rcu_lock_held());
+ if (!local_storage || hlist_empty(&local_storage->list)) {
+ /* Very first elem for the owner */
+ err = check_flags(NULL, map_flags);
+ if (err)
+ return ERR_PTR(err);
+
+ selem = bpf_selem_alloc(smap, owner, value, true, gfp_flags);
+ if (!selem)
+ return ERR_PTR(-ENOMEM);
+
+ err = bpf_local_storage_alloc(owner, smap, selem, gfp_flags);
+ if (err) {
+ kfree(selem);
+ mem_uncharge(smap, owner, smap->elem_size);
+ return ERR_PTR(err);
+ }
+
+ return SDATA(selem);
+ }
+
+ if ((map_flags & BPF_F_LOCK) && !(map_flags & BPF_NOEXIST)) {
+ /* Hoping to find an old_sdata to do inline update
+ * such that it can avoid taking the local_storage->lock
+ * and changing the lists.
+ */
+ old_sdata =
+ bpf_local_storage_lookup(local_storage, smap, false);
+ err = check_flags(old_sdata, map_flags);
+ if (err)
+ return ERR_PTR(err);
+ if (old_sdata && selem_linked_to_storage_lockless(SELEM(old_sdata))) {
+ copy_map_value_locked(&smap->map, old_sdata->data,
+ value, false);
+ return old_sdata;
+ }
+ }
+
+ if (gfp_flags == GFP_KERNEL) {
+ selem = bpf_selem_alloc(smap, owner, value, true, gfp_flags);
+ if (!selem)
+ return ERR_PTR(-ENOMEM);
+ }
+
+ raw_spin_lock_irqsave(&local_storage->lock, flags);
+
+ /* Recheck local_storage->list under local_storage->lock */
+ if (unlikely(hlist_empty(&local_storage->list))) {
+ /* A parallel del is happening and local_storage is going
+ * away. It has just been checked before, so very
+ * unlikely. Return instead of retry to keep things
+ * simple.
+ */
+ err = -EAGAIN;
+ goto unlock_err;
+ }
+
+ old_sdata = bpf_local_storage_lookup(local_storage, smap, false);
+ err = check_flags(old_sdata, map_flags);
+ if (err)
+ goto unlock_err;
+
+ if (old_sdata && (map_flags & BPF_F_LOCK)) {
+ copy_map_value_locked(&smap->map, old_sdata->data, value,
+ false);
+ selem = SELEM(old_sdata);
+ goto unlock;
+ }
+
+ if (gfp_flags != GFP_KERNEL) {
+ /* local_storage->lock is held. Hence, we are sure
+ * we can unlink and uncharge the old_sdata successfully
+ * later. Hence, instead of charging the new selem now
+ * and then uncharge the old selem later (which may cause
+ * a potential but unnecessary charge failure), avoid taking
+ * a charge at all here (the "!old_sdata" check) and the
+ * old_sdata will not be uncharged later during
+ * bpf_selem_unlink_storage_nolock().
+ */
+ selem = bpf_selem_alloc(smap, owner, value, !old_sdata, gfp_flags);
+ if (!selem) {
+ err = -ENOMEM;
+ goto unlock_err;
+ }
+ }
+
+ /* First, link the new selem to the map */
+ bpf_selem_link_map(smap, selem);
+
+ /* Second, link (and publish) the new selem to local_storage */
+ bpf_selem_link_storage_nolock(local_storage, selem);
+
+ /* Third, remove old selem, SELEM(old_sdata) */
+ if (old_sdata) {
+ bpf_selem_unlink_map(SELEM(old_sdata));
+ bpf_selem_unlink_storage_nolock(local_storage, SELEM(old_sdata),
+ false, true);
+ }
+
+unlock:
+ raw_spin_unlock_irqrestore(&local_storage->lock, flags);
+ return SDATA(selem);
+
+unlock_err:
+ raw_spin_unlock_irqrestore(&local_storage->lock, flags);
+ if (selem) {
+ mem_uncharge(smap, owner, smap->elem_size);
+ kfree(selem);
+ }
+ return ERR_PTR(err);
+}
+
+u16 bpf_local_storage_cache_idx_get(struct bpf_local_storage_cache *cache)
+{
+ u64 min_usage = U64_MAX;
+ u16 i, res = 0;
+
+ spin_lock(&cache->idx_lock);
+
+ for (i = 0; i < BPF_LOCAL_STORAGE_CACHE_SIZE; i++) {
+ if (cache->idx_usage_counts[i] < min_usage) {
+ min_usage = cache->idx_usage_counts[i];
+ res = i;
+
+ /* Found a free cache_idx */
+ if (!min_usage)
+ break;
+ }
+ }
+ cache->idx_usage_counts[res]++;
+
+ spin_unlock(&cache->idx_lock);
+
+ return res;
+}
+
+void bpf_local_storage_cache_idx_free(struct bpf_local_storage_cache *cache,
+ u16 idx)
+{
+ spin_lock(&cache->idx_lock);
+ cache->idx_usage_counts[idx]--;
+ spin_unlock(&cache->idx_lock);
+}
+
+void bpf_local_storage_map_free(struct bpf_local_storage_map *smap,
+ int __percpu *busy_counter)
+{
+ struct bpf_local_storage_elem *selem;
+ struct bpf_local_storage_map_bucket *b;
+ unsigned int i;
+
+ /* Note that this map might be concurrently cloned from
+ * bpf_sk_storage_clone. Wait for any existing bpf_sk_storage_clone
+ * RCU read section to finish before proceeding. New RCU
+ * read sections should be prevented via bpf_map_inc_not_zero.
+ */
+ synchronize_rcu();
+
+ /* bpf prog and the userspace can no longer access this map
+ * now. No new selem (of this map) can be added
+ * to the owner->storage or to the map bucket's list.
+ *
+ * The elem of this map can be cleaned up here
+ * or when the storage is freed e.g.
+ * by bpf_sk_storage_free() during __sk_destruct().
+ */
+ for (i = 0; i < (1U << smap->bucket_log); i++) {
+ b = &smap->buckets[i];
+
+ rcu_read_lock();
+ /* No one is adding to b->list now */
+ while ((selem = hlist_entry_safe(
+ rcu_dereference_raw(hlist_first_rcu(&b->list)),
+ struct bpf_local_storage_elem, map_node))) {
+ if (busy_counter) {
+ migrate_disable();
+ this_cpu_inc(*busy_counter);
+ }
+ bpf_selem_unlink(selem, false);
+ if (busy_counter) {
+ this_cpu_dec(*busy_counter);
+ migrate_enable();
+ }
+ cond_resched_rcu();
+ }
+ rcu_read_unlock();
+ }
+
+ /* While freeing the storage we may still need to access the map.
+ *
+ * e.g. when bpf_sk_storage_free() has unlinked selem from the map
+ * which then made the above while((selem = ...)) loop
+ * exit immediately.
+ *
+ * However, while freeing the storage one still needs to access the
+ * smap->elem_size to do the uncharging in
+ * bpf_selem_unlink_storage_nolock().
+ *
+ * Hence, wait another rcu grace period for the storage to be freed.
+ */
+ synchronize_rcu();
+
+ kvfree(smap->buckets);
+ bpf_map_area_free(smap);
+}
+
+int bpf_local_storage_map_alloc_check(union bpf_attr *attr)
+{
+ if (attr->map_flags & ~BPF_LOCAL_STORAGE_CREATE_FLAG_MASK ||
+ !(attr->map_flags & BPF_F_NO_PREALLOC) ||
+ attr->max_entries ||
+ attr->key_size != sizeof(int) || !attr->value_size ||
+ /* Enforce BTF for userspace sk dumping */
+ !attr->btf_key_type_id || !attr->btf_value_type_id)
+ return -EINVAL;
+
+ if (!bpf_capable())
+ return -EPERM;
+
+ if (attr->value_size > BPF_LOCAL_STORAGE_MAX_VALUE_SIZE)
+ return -E2BIG;
+
+ return 0;
+}
+
+struct bpf_local_storage_map *bpf_local_storage_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_local_storage_map *smap;
+ unsigned int i;
+ u32 nbuckets;
+
+ smap = bpf_map_area_alloc(sizeof(*smap), NUMA_NO_NODE);
+ if (!smap)
+ return ERR_PTR(-ENOMEM);
+ bpf_map_init_from_attr(&smap->map, attr);
+
+ nbuckets = roundup_pow_of_two(num_possible_cpus());
+ /* Use at least 2 buckets, select_bucket() is undefined behavior with 1 bucket */
+ nbuckets = max_t(u32, 2, nbuckets);
+ smap->bucket_log = ilog2(nbuckets);
+
+ smap->buckets = kvcalloc(sizeof(*smap->buckets), nbuckets,
+ GFP_USER | __GFP_NOWARN | __GFP_ACCOUNT);
+ if (!smap->buckets) {
+ bpf_map_area_free(smap);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ for (i = 0; i < nbuckets; i++) {
+ INIT_HLIST_HEAD(&smap->buckets[i].list);
+ raw_spin_lock_init(&smap->buckets[i].lock);
+ }
+
+ smap->elem_size =
+ sizeof(struct bpf_local_storage_elem) + attr->value_size;
+
+ return smap;
+}
+
+int bpf_local_storage_map_check_btf(const struct bpf_map *map,
+ const struct btf *btf,
+ const struct btf_type *key_type,
+ const struct btf_type *value_type)
+{
+ u32 int_data;
+
+ if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
+ return -EINVAL;
+
+ int_data = *(u32 *)(key_type + 1);
+ if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
+ return -EINVAL;
+
+ return 0;
+}
diff --git a/kernel/bpf/bpf_lru_list.c b/kernel/bpf/bpf_lru_list.c
new file mode 100644
index 000000000..3dabdd137
--- /dev/null
+++ b/kernel/bpf/bpf_lru_list.c
@@ -0,0 +1,700 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2016 Facebook
+ */
+#include <linux/cpumask.h>
+#include <linux/spinlock.h>
+#include <linux/percpu.h>
+
+#include "bpf_lru_list.h"
+
+#define LOCAL_FREE_TARGET (128)
+#define LOCAL_NR_SCANS LOCAL_FREE_TARGET
+
+#define PERCPU_FREE_TARGET (4)
+#define PERCPU_NR_SCANS PERCPU_FREE_TARGET
+
+/* Helpers to get the local list index */
+#define LOCAL_LIST_IDX(t) ((t) - BPF_LOCAL_LIST_T_OFFSET)
+#define LOCAL_FREE_LIST_IDX LOCAL_LIST_IDX(BPF_LRU_LOCAL_LIST_T_FREE)
+#define LOCAL_PENDING_LIST_IDX LOCAL_LIST_IDX(BPF_LRU_LOCAL_LIST_T_PENDING)
+#define IS_LOCAL_LIST_TYPE(t) ((t) >= BPF_LOCAL_LIST_T_OFFSET)
+
+static int get_next_cpu(int cpu)
+{
+ cpu = cpumask_next(cpu, cpu_possible_mask);
+ if (cpu >= nr_cpu_ids)
+ cpu = cpumask_first(cpu_possible_mask);
+ return cpu;
+}
+
+/* Local list helpers */
+static struct list_head *local_free_list(struct bpf_lru_locallist *loc_l)
+{
+ return &loc_l->lists[LOCAL_FREE_LIST_IDX];
+}
+
+static struct list_head *local_pending_list(struct bpf_lru_locallist *loc_l)
+{
+ return &loc_l->lists[LOCAL_PENDING_LIST_IDX];
+}
+
+/* bpf_lru_node helpers */
+static bool bpf_lru_node_is_ref(const struct bpf_lru_node *node)
+{
+ return READ_ONCE(node->ref);
+}
+
+static void bpf_lru_node_clear_ref(struct bpf_lru_node *node)
+{
+ WRITE_ONCE(node->ref, 0);
+}
+
+static void bpf_lru_list_count_inc(struct bpf_lru_list *l,
+ enum bpf_lru_list_type type)
+{
+ if (type < NR_BPF_LRU_LIST_COUNT)
+ l->counts[type]++;
+}
+
+static void bpf_lru_list_count_dec(struct bpf_lru_list *l,
+ enum bpf_lru_list_type type)
+{
+ if (type < NR_BPF_LRU_LIST_COUNT)
+ l->counts[type]--;
+}
+
+static void __bpf_lru_node_move_to_free(struct bpf_lru_list *l,
+ struct bpf_lru_node *node,
+ struct list_head *free_list,
+ enum bpf_lru_list_type tgt_free_type)
+{
+ if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type)))
+ return;
+
+ /* If the removing node is the next_inactive_rotation candidate,
+ * move the next_inactive_rotation pointer also.
+ */
+ if (&node->list == l->next_inactive_rotation)
+ l->next_inactive_rotation = l->next_inactive_rotation->prev;
+
+ bpf_lru_list_count_dec(l, node->type);
+
+ node->type = tgt_free_type;
+ list_move(&node->list, free_list);
+}
+
+/* Move nodes from local list to the LRU list */
+static void __bpf_lru_node_move_in(struct bpf_lru_list *l,
+ struct bpf_lru_node *node,
+ enum bpf_lru_list_type tgt_type)
+{
+ if (WARN_ON_ONCE(!IS_LOCAL_LIST_TYPE(node->type)) ||
+ WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(tgt_type)))
+ return;
+
+ bpf_lru_list_count_inc(l, tgt_type);
+ node->type = tgt_type;
+ bpf_lru_node_clear_ref(node);
+ list_move(&node->list, &l->lists[tgt_type]);
+}
+
+/* Move nodes between or within active and inactive list (like
+ * active to inactive, inactive to active or tail of active back to
+ * the head of active).
+ */
+static void __bpf_lru_node_move(struct bpf_lru_list *l,
+ struct bpf_lru_node *node,
+ enum bpf_lru_list_type tgt_type)
+{
+ if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type)) ||
+ WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(tgt_type)))
+ return;
+
+ if (node->type != tgt_type) {
+ bpf_lru_list_count_dec(l, node->type);
+ bpf_lru_list_count_inc(l, tgt_type);
+ node->type = tgt_type;
+ }
+ bpf_lru_node_clear_ref(node);
+
+ /* If the moving node is the next_inactive_rotation candidate,
+ * move the next_inactive_rotation pointer also.
+ */
+ if (&node->list == l->next_inactive_rotation)
+ l->next_inactive_rotation = l->next_inactive_rotation->prev;
+
+ list_move(&node->list, &l->lists[tgt_type]);
+}
+
+static bool bpf_lru_list_inactive_low(const struct bpf_lru_list *l)
+{
+ return l->counts[BPF_LRU_LIST_T_INACTIVE] <
+ l->counts[BPF_LRU_LIST_T_ACTIVE];
+}
+
+/* Rotate the active list:
+ * 1. Start from tail
+ * 2. If the node has the ref bit set, it will be rotated
+ * back to the head of active list with the ref bit cleared.
+ * Give this node one more chance to survive in the active list.
+ * 3. If the ref bit is not set, move it to the head of the
+ * inactive list.
+ * 4. It will at most scan nr_scans nodes
+ */
+static void __bpf_lru_list_rotate_active(struct bpf_lru *lru,
+ struct bpf_lru_list *l)
+{
+ struct list_head *active = &l->lists[BPF_LRU_LIST_T_ACTIVE];
+ struct bpf_lru_node *node, *tmp_node, *first_node;
+ unsigned int i = 0;
+
+ first_node = list_first_entry(active, struct bpf_lru_node, list);
+ list_for_each_entry_safe_reverse(node, tmp_node, active, list) {
+ if (bpf_lru_node_is_ref(node))
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE);
+ else
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_INACTIVE);
+
+ if (++i == lru->nr_scans || node == first_node)
+ break;
+ }
+}
+
+/* Rotate the inactive list. It starts from the next_inactive_rotation
+ * 1. If the node has ref bit set, it will be moved to the head
+ * of active list with the ref bit cleared.
+ * 2. If the node does not have ref bit set, it will leave it
+ * at its current location (i.e. do nothing) so that it can
+ * be considered during the next inactive_shrink.
+ * 3. It will at most scan nr_scans nodes
+ */
+static void __bpf_lru_list_rotate_inactive(struct bpf_lru *lru,
+ struct bpf_lru_list *l)
+{
+ struct list_head *inactive = &l->lists[BPF_LRU_LIST_T_INACTIVE];
+ struct list_head *cur, *last, *next = inactive;
+ struct bpf_lru_node *node;
+ unsigned int i = 0;
+
+ if (list_empty(inactive))
+ return;
+
+ last = l->next_inactive_rotation->next;
+ if (last == inactive)
+ last = last->next;
+
+ cur = l->next_inactive_rotation;
+ while (i < lru->nr_scans) {
+ if (cur == inactive) {
+ cur = cur->prev;
+ continue;
+ }
+
+ node = list_entry(cur, struct bpf_lru_node, list);
+ next = cur->prev;
+ if (bpf_lru_node_is_ref(node))
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE);
+ if (cur == last)
+ break;
+ cur = next;
+ i++;
+ }
+
+ l->next_inactive_rotation = next;
+}
+
+/* Shrink the inactive list. It starts from the tail of the
+ * inactive list and only move the nodes without the ref bit
+ * set to the designated free list.
+ */
+static unsigned int
+__bpf_lru_list_shrink_inactive(struct bpf_lru *lru,
+ struct bpf_lru_list *l,
+ unsigned int tgt_nshrink,
+ struct list_head *free_list,
+ enum bpf_lru_list_type tgt_free_type)
+{
+ struct list_head *inactive = &l->lists[BPF_LRU_LIST_T_INACTIVE];
+ struct bpf_lru_node *node, *tmp_node;
+ unsigned int nshrinked = 0;
+ unsigned int i = 0;
+
+ list_for_each_entry_safe_reverse(node, tmp_node, inactive, list) {
+ if (bpf_lru_node_is_ref(node)) {
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE);
+ } else if (lru->del_from_htab(lru->del_arg, node)) {
+ __bpf_lru_node_move_to_free(l, node, free_list,
+ tgt_free_type);
+ if (++nshrinked == tgt_nshrink)
+ break;
+ }
+
+ if (++i == lru->nr_scans)
+ break;
+ }
+
+ return nshrinked;
+}
+
+/* 1. Rotate the active list (if needed)
+ * 2. Always rotate the inactive list
+ */
+static void __bpf_lru_list_rotate(struct bpf_lru *lru, struct bpf_lru_list *l)
+{
+ if (bpf_lru_list_inactive_low(l))
+ __bpf_lru_list_rotate_active(lru, l);
+
+ __bpf_lru_list_rotate_inactive(lru, l);
+}
+
+/* Calls __bpf_lru_list_shrink_inactive() to shrink some
+ * ref-bit-cleared nodes and move them to the designated
+ * free list.
+ *
+ * If it cannot get a free node after calling
+ * __bpf_lru_list_shrink_inactive(). It will just remove
+ * one node from either inactive or active list without
+ * honoring the ref-bit. It prefers inactive list to active
+ * list in this situation.
+ */
+static unsigned int __bpf_lru_list_shrink(struct bpf_lru *lru,
+ struct bpf_lru_list *l,
+ unsigned int tgt_nshrink,
+ struct list_head *free_list,
+ enum bpf_lru_list_type tgt_free_type)
+
+{
+ struct bpf_lru_node *node, *tmp_node;
+ struct list_head *force_shrink_list;
+ unsigned int nshrinked;
+
+ nshrinked = __bpf_lru_list_shrink_inactive(lru, l, tgt_nshrink,
+ free_list, tgt_free_type);
+ if (nshrinked)
+ return nshrinked;
+
+ /* Do a force shrink by ignoring the reference bit */
+ if (!list_empty(&l->lists[BPF_LRU_LIST_T_INACTIVE]))
+ force_shrink_list = &l->lists[BPF_LRU_LIST_T_INACTIVE];
+ else
+ force_shrink_list = &l->lists[BPF_LRU_LIST_T_ACTIVE];
+
+ list_for_each_entry_safe_reverse(node, tmp_node, force_shrink_list,
+ list) {
+ if (lru->del_from_htab(lru->del_arg, node)) {
+ __bpf_lru_node_move_to_free(l, node, free_list,
+ tgt_free_type);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/* Flush the nodes from the local pending list to the LRU list */
+static void __local_list_flush(struct bpf_lru_list *l,
+ struct bpf_lru_locallist *loc_l)
+{
+ struct bpf_lru_node *node, *tmp_node;
+
+ list_for_each_entry_safe_reverse(node, tmp_node,
+ local_pending_list(loc_l), list) {
+ if (bpf_lru_node_is_ref(node))
+ __bpf_lru_node_move_in(l, node, BPF_LRU_LIST_T_ACTIVE);
+ else
+ __bpf_lru_node_move_in(l, node,
+ BPF_LRU_LIST_T_INACTIVE);
+ }
+}
+
+static void bpf_lru_list_push_free(struct bpf_lru_list *l,
+ struct bpf_lru_node *node)
+{
+ unsigned long flags;
+
+ if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type)))
+ return;
+
+ raw_spin_lock_irqsave(&l->lock, flags);
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_FREE);
+ raw_spin_unlock_irqrestore(&l->lock, flags);
+}
+
+static void bpf_lru_list_pop_free_to_local(struct bpf_lru *lru,
+ struct bpf_lru_locallist *loc_l)
+{
+ struct bpf_lru_list *l = &lru->common_lru.lru_list;
+ struct bpf_lru_node *node, *tmp_node;
+ unsigned int nfree = 0;
+
+ raw_spin_lock(&l->lock);
+
+ __local_list_flush(l, loc_l);
+
+ __bpf_lru_list_rotate(lru, l);
+
+ list_for_each_entry_safe(node, tmp_node, &l->lists[BPF_LRU_LIST_T_FREE],
+ list) {
+ __bpf_lru_node_move_to_free(l, node, local_free_list(loc_l),
+ BPF_LRU_LOCAL_LIST_T_FREE);
+ if (++nfree == LOCAL_FREE_TARGET)
+ break;
+ }
+
+ if (nfree < LOCAL_FREE_TARGET)
+ __bpf_lru_list_shrink(lru, l, LOCAL_FREE_TARGET - nfree,
+ local_free_list(loc_l),
+ BPF_LRU_LOCAL_LIST_T_FREE);
+
+ raw_spin_unlock(&l->lock);
+}
+
+static void __local_list_add_pending(struct bpf_lru *lru,
+ struct bpf_lru_locallist *loc_l,
+ int cpu,
+ struct bpf_lru_node *node,
+ u32 hash)
+{
+ *(u32 *)((void *)node + lru->hash_offset) = hash;
+ node->cpu = cpu;
+ node->type = BPF_LRU_LOCAL_LIST_T_PENDING;
+ bpf_lru_node_clear_ref(node);
+ list_add(&node->list, local_pending_list(loc_l));
+}
+
+static struct bpf_lru_node *
+__local_list_pop_free(struct bpf_lru_locallist *loc_l)
+{
+ struct bpf_lru_node *node;
+
+ node = list_first_entry_or_null(local_free_list(loc_l),
+ struct bpf_lru_node,
+ list);
+ if (node)
+ list_del(&node->list);
+
+ return node;
+}
+
+static struct bpf_lru_node *
+__local_list_pop_pending(struct bpf_lru *lru, struct bpf_lru_locallist *loc_l)
+{
+ struct bpf_lru_node *node;
+ bool force = false;
+
+ignore_ref:
+ /* Get from the tail (i.e. older element) of the pending list. */
+ list_for_each_entry_reverse(node, local_pending_list(loc_l),
+ list) {
+ if ((!bpf_lru_node_is_ref(node) || force) &&
+ lru->del_from_htab(lru->del_arg, node)) {
+ list_del(&node->list);
+ return node;
+ }
+ }
+
+ if (!force) {
+ force = true;
+ goto ignore_ref;
+ }
+
+ return NULL;
+}
+
+static struct bpf_lru_node *bpf_percpu_lru_pop_free(struct bpf_lru *lru,
+ u32 hash)
+{
+ struct list_head *free_list;
+ struct bpf_lru_node *node = NULL;
+ struct bpf_lru_list *l;
+ unsigned long flags;
+ int cpu = raw_smp_processor_id();
+
+ l = per_cpu_ptr(lru->percpu_lru, cpu);
+
+ raw_spin_lock_irqsave(&l->lock, flags);
+
+ __bpf_lru_list_rotate(lru, l);
+
+ free_list = &l->lists[BPF_LRU_LIST_T_FREE];
+ if (list_empty(free_list))
+ __bpf_lru_list_shrink(lru, l, PERCPU_FREE_TARGET, free_list,
+ BPF_LRU_LIST_T_FREE);
+
+ if (!list_empty(free_list)) {
+ node = list_first_entry(free_list, struct bpf_lru_node, list);
+ *(u32 *)((void *)node + lru->hash_offset) = hash;
+ bpf_lru_node_clear_ref(node);
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_INACTIVE);
+ }
+
+ raw_spin_unlock_irqrestore(&l->lock, flags);
+
+ return node;
+}
+
+static struct bpf_lru_node *bpf_common_lru_pop_free(struct bpf_lru *lru,
+ u32 hash)
+{
+ struct bpf_lru_locallist *loc_l, *steal_loc_l;
+ struct bpf_common_lru *clru = &lru->common_lru;
+ struct bpf_lru_node *node;
+ int steal, first_steal;
+ unsigned long flags;
+ int cpu = raw_smp_processor_id();
+
+ loc_l = per_cpu_ptr(clru->local_list, cpu);
+
+ raw_spin_lock_irqsave(&loc_l->lock, flags);
+
+ node = __local_list_pop_free(loc_l);
+ if (!node) {
+ bpf_lru_list_pop_free_to_local(lru, loc_l);
+ node = __local_list_pop_free(loc_l);
+ }
+
+ if (node)
+ __local_list_add_pending(lru, loc_l, cpu, node, hash);
+
+ raw_spin_unlock_irqrestore(&loc_l->lock, flags);
+
+ if (node)
+ return node;
+
+ /* No free nodes found from the local free list and
+ * the global LRU list.
+ *
+ * Steal from the local free/pending list of the
+ * current CPU and remote CPU in RR. It starts
+ * with the loc_l->next_steal CPU.
+ */
+
+ first_steal = loc_l->next_steal;
+ steal = first_steal;
+ do {
+ steal_loc_l = per_cpu_ptr(clru->local_list, steal);
+
+ raw_spin_lock_irqsave(&steal_loc_l->lock, flags);
+
+ node = __local_list_pop_free(steal_loc_l);
+ if (!node)
+ node = __local_list_pop_pending(lru, steal_loc_l);
+
+ raw_spin_unlock_irqrestore(&steal_loc_l->lock, flags);
+
+ steal = get_next_cpu(steal);
+ } while (!node && steal != first_steal);
+
+ loc_l->next_steal = steal;
+
+ if (node) {
+ raw_spin_lock_irqsave(&loc_l->lock, flags);
+ __local_list_add_pending(lru, loc_l, cpu, node, hash);
+ raw_spin_unlock_irqrestore(&loc_l->lock, flags);
+ }
+
+ return node;
+}
+
+struct bpf_lru_node *bpf_lru_pop_free(struct bpf_lru *lru, u32 hash)
+{
+ if (lru->percpu)
+ return bpf_percpu_lru_pop_free(lru, hash);
+ else
+ return bpf_common_lru_pop_free(lru, hash);
+}
+
+static void bpf_common_lru_push_free(struct bpf_lru *lru,
+ struct bpf_lru_node *node)
+{
+ u8 node_type = READ_ONCE(node->type);
+ unsigned long flags;
+
+ if (WARN_ON_ONCE(node_type == BPF_LRU_LIST_T_FREE) ||
+ WARN_ON_ONCE(node_type == BPF_LRU_LOCAL_LIST_T_FREE))
+ return;
+
+ if (node_type == BPF_LRU_LOCAL_LIST_T_PENDING) {
+ struct bpf_lru_locallist *loc_l;
+
+ loc_l = per_cpu_ptr(lru->common_lru.local_list, node->cpu);
+
+ raw_spin_lock_irqsave(&loc_l->lock, flags);
+
+ if (unlikely(node->type != BPF_LRU_LOCAL_LIST_T_PENDING)) {
+ raw_spin_unlock_irqrestore(&loc_l->lock, flags);
+ goto check_lru_list;
+ }
+
+ node->type = BPF_LRU_LOCAL_LIST_T_FREE;
+ bpf_lru_node_clear_ref(node);
+ list_move(&node->list, local_free_list(loc_l));
+
+ raw_spin_unlock_irqrestore(&loc_l->lock, flags);
+ return;
+ }
+
+check_lru_list:
+ bpf_lru_list_push_free(&lru->common_lru.lru_list, node);
+}
+
+static void bpf_percpu_lru_push_free(struct bpf_lru *lru,
+ struct bpf_lru_node *node)
+{
+ struct bpf_lru_list *l;
+ unsigned long flags;
+
+ l = per_cpu_ptr(lru->percpu_lru, node->cpu);
+
+ raw_spin_lock_irqsave(&l->lock, flags);
+
+ __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_FREE);
+
+ raw_spin_unlock_irqrestore(&l->lock, flags);
+}
+
+void bpf_lru_push_free(struct bpf_lru *lru, struct bpf_lru_node *node)
+{
+ if (lru->percpu)
+ bpf_percpu_lru_push_free(lru, node);
+ else
+ bpf_common_lru_push_free(lru, node);
+}
+
+static void bpf_common_lru_populate(struct bpf_lru *lru, void *buf,
+ u32 node_offset, u32 elem_size,
+ u32 nr_elems)
+{
+ struct bpf_lru_list *l = &lru->common_lru.lru_list;
+ u32 i;
+
+ for (i = 0; i < nr_elems; i++) {
+ struct bpf_lru_node *node;
+
+ node = (struct bpf_lru_node *)(buf + node_offset);
+ node->type = BPF_LRU_LIST_T_FREE;
+ bpf_lru_node_clear_ref(node);
+ list_add(&node->list, &l->lists[BPF_LRU_LIST_T_FREE]);
+ buf += elem_size;
+ }
+}
+
+static void bpf_percpu_lru_populate(struct bpf_lru *lru, void *buf,
+ u32 node_offset, u32 elem_size,
+ u32 nr_elems)
+{
+ u32 i, pcpu_entries;
+ int cpu;
+ struct bpf_lru_list *l;
+
+ pcpu_entries = nr_elems / num_possible_cpus();
+
+ i = 0;
+
+ for_each_possible_cpu(cpu) {
+ struct bpf_lru_node *node;
+
+ l = per_cpu_ptr(lru->percpu_lru, cpu);
+again:
+ node = (struct bpf_lru_node *)(buf + node_offset);
+ node->cpu = cpu;
+ node->type = BPF_LRU_LIST_T_FREE;
+ bpf_lru_node_clear_ref(node);
+ list_add(&node->list, &l->lists[BPF_LRU_LIST_T_FREE]);
+ i++;
+ buf += elem_size;
+ if (i == nr_elems)
+ break;
+ if (i % pcpu_entries)
+ goto again;
+ }
+}
+
+void bpf_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset,
+ u32 elem_size, u32 nr_elems)
+{
+ if (lru->percpu)
+ bpf_percpu_lru_populate(lru, buf, node_offset, elem_size,
+ nr_elems);
+ else
+ bpf_common_lru_populate(lru, buf, node_offset, elem_size,
+ nr_elems);
+}
+
+static void bpf_lru_locallist_init(struct bpf_lru_locallist *loc_l, int cpu)
+{
+ int i;
+
+ for (i = 0; i < NR_BPF_LRU_LOCAL_LIST_T; i++)
+ INIT_LIST_HEAD(&loc_l->lists[i]);
+
+ loc_l->next_steal = cpu;
+
+ raw_spin_lock_init(&loc_l->lock);
+}
+
+static void bpf_lru_list_init(struct bpf_lru_list *l)
+{
+ int i;
+
+ for (i = 0; i < NR_BPF_LRU_LIST_T; i++)
+ INIT_LIST_HEAD(&l->lists[i]);
+
+ for (i = 0; i < NR_BPF_LRU_LIST_COUNT; i++)
+ l->counts[i] = 0;
+
+ l->next_inactive_rotation = &l->lists[BPF_LRU_LIST_T_INACTIVE];
+
+ raw_spin_lock_init(&l->lock);
+}
+
+int bpf_lru_init(struct bpf_lru *lru, bool percpu, u32 hash_offset,
+ del_from_htab_func del_from_htab, void *del_arg)
+{
+ int cpu;
+
+ if (percpu) {
+ lru->percpu_lru = alloc_percpu(struct bpf_lru_list);
+ if (!lru->percpu_lru)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu) {
+ struct bpf_lru_list *l;
+
+ l = per_cpu_ptr(lru->percpu_lru, cpu);
+ bpf_lru_list_init(l);
+ }
+ lru->nr_scans = PERCPU_NR_SCANS;
+ } else {
+ struct bpf_common_lru *clru = &lru->common_lru;
+
+ clru->local_list = alloc_percpu(struct bpf_lru_locallist);
+ if (!clru->local_list)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu) {
+ struct bpf_lru_locallist *loc_l;
+
+ loc_l = per_cpu_ptr(clru->local_list, cpu);
+ bpf_lru_locallist_init(loc_l, cpu);
+ }
+
+ bpf_lru_list_init(&clru->lru_list);
+ lru->nr_scans = LOCAL_NR_SCANS;
+ }
+
+ lru->percpu = percpu;
+ lru->del_from_htab = del_from_htab;
+ lru->del_arg = del_arg;
+ lru->hash_offset = hash_offset;
+
+ return 0;
+}
+
+void bpf_lru_destroy(struct bpf_lru *lru)
+{
+ if (lru->percpu)
+ free_percpu(lru->percpu_lru);
+ else
+ free_percpu(lru->common_lru.local_list);
+}
diff --git a/kernel/bpf/bpf_lru_list.h b/kernel/bpf/bpf_lru_list.h
new file mode 100644
index 000000000..8f3c8b2b4
--- /dev/null
+++ b/kernel/bpf/bpf_lru_list.h
@@ -0,0 +1,80 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/* Copyright (c) 2016 Facebook
+ */
+#ifndef __BPF_LRU_LIST_H_
+#define __BPF_LRU_LIST_H_
+
+#include <linux/cache.h>
+#include <linux/list.h>
+#include <linux/spinlock_types.h>
+
+#define NR_BPF_LRU_LIST_T (3)
+#define NR_BPF_LRU_LIST_COUNT (2)
+#define NR_BPF_LRU_LOCAL_LIST_T (2)
+#define BPF_LOCAL_LIST_T_OFFSET NR_BPF_LRU_LIST_T
+
+enum bpf_lru_list_type {
+ BPF_LRU_LIST_T_ACTIVE,
+ BPF_LRU_LIST_T_INACTIVE,
+ BPF_LRU_LIST_T_FREE,
+ BPF_LRU_LOCAL_LIST_T_FREE,
+ BPF_LRU_LOCAL_LIST_T_PENDING,
+};
+
+struct bpf_lru_node {
+ struct list_head list;
+ u16 cpu;
+ u8 type;
+ u8 ref;
+};
+
+struct bpf_lru_list {
+ struct list_head lists[NR_BPF_LRU_LIST_T];
+ unsigned int counts[NR_BPF_LRU_LIST_COUNT];
+ /* The next inactive list rotation starts from here */
+ struct list_head *next_inactive_rotation;
+
+ raw_spinlock_t lock ____cacheline_aligned_in_smp;
+};
+
+struct bpf_lru_locallist {
+ struct list_head lists[NR_BPF_LRU_LOCAL_LIST_T];
+ u16 next_steal;
+ raw_spinlock_t lock;
+};
+
+struct bpf_common_lru {
+ struct bpf_lru_list lru_list;
+ struct bpf_lru_locallist __percpu *local_list;
+};
+
+typedef bool (*del_from_htab_func)(void *arg, struct bpf_lru_node *node);
+
+struct bpf_lru {
+ union {
+ struct bpf_common_lru common_lru;
+ struct bpf_lru_list __percpu *percpu_lru;
+ };
+ del_from_htab_func del_from_htab;
+ void *del_arg;
+ unsigned int hash_offset;
+ unsigned int nr_scans;
+ bool percpu;
+};
+
+static inline void bpf_lru_node_set_ref(struct bpf_lru_node *node)
+{
+ if (!READ_ONCE(node->ref))
+ WRITE_ONCE(node->ref, 1);
+}
+
+int bpf_lru_init(struct bpf_lru *lru, bool percpu, u32 hash_offset,
+ del_from_htab_func del_from_htab, void *delete_arg);
+void bpf_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset,
+ u32 elem_size, u32 nr_elems);
+void bpf_lru_destroy(struct bpf_lru *lru);
+struct bpf_lru_node *bpf_lru_pop_free(struct bpf_lru *lru, u32 hash);
+void bpf_lru_push_free(struct bpf_lru *lru, struct bpf_lru_node *node);
+void bpf_lru_promote(struct bpf_lru *lru, struct bpf_lru_node *node);
+
+#endif
diff --git a/kernel/bpf/bpf_lsm.c b/kernel/bpf/bpf_lsm.c
new file mode 100644
index 000000000..e6a76da4b
--- /dev/null
+++ b/kernel/bpf/bpf_lsm.c
@@ -0,0 +1,356 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright (C) 2020 Google LLC.
+ */
+
+#include <linux/filter.h>
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/binfmts.h>
+#include <linux/lsm_hooks.h>
+#include <linux/bpf_lsm.h>
+#include <linux/kallsyms.h>
+#include <linux/bpf_verifier.h>
+#include <net/bpf_sk_storage.h>
+#include <linux/bpf_local_storage.h>
+#include <linux/btf_ids.h>
+#include <linux/ima.h>
+#include <linux/bpf-cgroup.h>
+
+/* For every LSM hook that allows attachment of BPF programs, declare a nop
+ * function where a BPF program can be attached.
+ */
+#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
+noinline RET bpf_lsm_##NAME(__VA_ARGS__) \
+{ \
+ return DEFAULT; \
+}
+
+#include <linux/lsm_hook_defs.h>
+#undef LSM_HOOK
+
+#define LSM_HOOK(RET, DEFAULT, NAME, ...) BTF_ID(func, bpf_lsm_##NAME)
+BTF_SET_START(bpf_lsm_hooks)
+#include <linux/lsm_hook_defs.h>
+#undef LSM_HOOK
+BTF_SET_END(bpf_lsm_hooks)
+
+/* List of LSM hooks that should operate on 'current' cgroup regardless
+ * of function signature.
+ */
+BTF_SET_START(bpf_lsm_current_hooks)
+/* operate on freshly allocated sk without any cgroup association */
+#ifdef CONFIG_SECURITY_NETWORK
+BTF_ID(func, bpf_lsm_sk_alloc_security)
+BTF_ID(func, bpf_lsm_sk_free_security)
+#endif
+BTF_SET_END(bpf_lsm_current_hooks)
+
+/* List of LSM hooks that trigger while the socket is properly locked.
+ */
+BTF_SET_START(bpf_lsm_locked_sockopt_hooks)
+#ifdef CONFIG_SECURITY_NETWORK
+BTF_ID(func, bpf_lsm_sock_graft)
+BTF_ID(func, bpf_lsm_inet_csk_clone)
+BTF_ID(func, bpf_lsm_inet_conn_established)
+#endif
+BTF_SET_END(bpf_lsm_locked_sockopt_hooks)
+
+/* List of LSM hooks that trigger while the socket is _not_ locked,
+ * but it's ok to call bpf_{g,s}etsockopt because the socket is still
+ * in the early init phase.
+ */
+BTF_SET_START(bpf_lsm_unlocked_sockopt_hooks)
+#ifdef CONFIG_SECURITY_NETWORK
+BTF_ID(func, bpf_lsm_socket_post_create)
+BTF_ID(func, bpf_lsm_socket_socketpair)
+#endif
+BTF_SET_END(bpf_lsm_unlocked_sockopt_hooks)
+
+#ifdef CONFIG_CGROUP_BPF
+void bpf_lsm_find_cgroup_shim(const struct bpf_prog *prog,
+ bpf_func_t *bpf_func)
+{
+ const struct btf_param *args __maybe_unused;
+
+ if (btf_type_vlen(prog->aux->attach_func_proto) < 1 ||
+ btf_id_set_contains(&bpf_lsm_current_hooks,
+ prog->aux->attach_btf_id)) {
+ *bpf_func = __cgroup_bpf_run_lsm_current;
+ return;
+ }
+
+#ifdef CONFIG_NET
+ args = btf_params(prog->aux->attach_func_proto);
+
+ if (args[0].type == btf_sock_ids[BTF_SOCK_TYPE_SOCKET])
+ *bpf_func = __cgroup_bpf_run_lsm_socket;
+ else if (args[0].type == btf_sock_ids[BTF_SOCK_TYPE_SOCK])
+ *bpf_func = __cgroup_bpf_run_lsm_sock;
+ else
+#endif
+ *bpf_func = __cgroup_bpf_run_lsm_current;
+}
+#endif
+
+int bpf_lsm_verify_prog(struct bpf_verifier_log *vlog,
+ const struct bpf_prog *prog)
+{
+ if (!prog->gpl_compatible) {
+ bpf_log(vlog,
+ "LSM programs must have a GPL compatible license\n");
+ return -EINVAL;
+ }
+
+ if (!btf_id_set_contains(&bpf_lsm_hooks, prog->aux->attach_btf_id)) {
+ bpf_log(vlog, "attach_btf_id %u points to wrong type name %s\n",
+ prog->aux->attach_btf_id, prog->aux->attach_func_name);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/* Mask for all the currently supported BPRM option flags */
+#define BPF_F_BRPM_OPTS_MASK BPF_F_BPRM_SECUREEXEC
+
+BPF_CALL_2(bpf_bprm_opts_set, struct linux_binprm *, bprm, u64, flags)
+{
+ if (flags & ~BPF_F_BRPM_OPTS_MASK)
+ return -EINVAL;
+
+ bprm->secureexec = (flags & BPF_F_BPRM_SECUREEXEC);
+ return 0;
+}
+
+BTF_ID_LIST_SINGLE(bpf_bprm_opts_set_btf_ids, struct, linux_binprm)
+
+static const struct bpf_func_proto bpf_bprm_opts_set_proto = {
+ .func = bpf_bprm_opts_set,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_BTF_ID,
+ .arg1_btf_id = &bpf_bprm_opts_set_btf_ids[0],
+ .arg2_type = ARG_ANYTHING,
+};
+
+BPF_CALL_3(bpf_ima_inode_hash, struct inode *, inode, void *, dst, u32, size)
+{
+ return ima_inode_hash(inode, dst, size);
+}
+
+static bool bpf_ima_inode_hash_allowed(const struct bpf_prog *prog)
+{
+ return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
+}
+
+BTF_ID_LIST_SINGLE(bpf_ima_inode_hash_btf_ids, struct, inode)
+
+static const struct bpf_func_proto bpf_ima_inode_hash_proto = {
+ .func = bpf_ima_inode_hash,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_BTF_ID,
+ .arg1_btf_id = &bpf_ima_inode_hash_btf_ids[0],
+ .arg2_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg3_type = ARG_CONST_SIZE,
+ .allowed = bpf_ima_inode_hash_allowed,
+};
+
+BPF_CALL_3(bpf_ima_file_hash, struct file *, file, void *, dst, u32, size)
+{
+ return ima_file_hash(file, dst, size);
+}
+
+BTF_ID_LIST_SINGLE(bpf_ima_file_hash_btf_ids, struct, file)
+
+static const struct bpf_func_proto bpf_ima_file_hash_proto = {
+ .func = bpf_ima_file_hash,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_BTF_ID,
+ .arg1_btf_id = &bpf_ima_file_hash_btf_ids[0],
+ .arg2_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg3_type = ARG_CONST_SIZE,
+ .allowed = bpf_ima_inode_hash_allowed,
+};
+
+BPF_CALL_1(bpf_get_attach_cookie, void *, ctx)
+{
+ struct bpf_trace_run_ctx *run_ctx;
+
+ run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
+ return run_ctx->bpf_cookie;
+}
+
+static const struct bpf_func_proto bpf_get_attach_cookie_proto = {
+ .func = bpf_get_attach_cookie,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+};
+
+static const struct bpf_func_proto *
+bpf_lsm_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ const struct bpf_func_proto *func_proto;
+
+ if (prog->expected_attach_type == BPF_LSM_CGROUP) {
+ func_proto = cgroup_common_func_proto(func_id, prog);
+ if (func_proto)
+ return func_proto;
+ }
+
+ switch (func_id) {
+ case BPF_FUNC_inode_storage_get:
+ return &bpf_inode_storage_get_proto;
+ case BPF_FUNC_inode_storage_delete:
+ return &bpf_inode_storage_delete_proto;
+#ifdef CONFIG_NET
+ case BPF_FUNC_sk_storage_get:
+ return &bpf_sk_storage_get_proto;
+ case BPF_FUNC_sk_storage_delete:
+ return &bpf_sk_storage_delete_proto;
+#endif /* CONFIG_NET */
+ case BPF_FUNC_spin_lock:
+ return &bpf_spin_lock_proto;
+ case BPF_FUNC_spin_unlock:
+ return &bpf_spin_unlock_proto;
+ case BPF_FUNC_bprm_opts_set:
+ return &bpf_bprm_opts_set_proto;
+ case BPF_FUNC_ima_inode_hash:
+ return prog->aux->sleepable ? &bpf_ima_inode_hash_proto : NULL;
+ case BPF_FUNC_ima_file_hash:
+ return prog->aux->sleepable ? &bpf_ima_file_hash_proto : NULL;
+ case BPF_FUNC_get_attach_cookie:
+ return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto : NULL;
+#ifdef CONFIG_NET
+ case BPF_FUNC_setsockopt:
+ if (prog->expected_attach_type != BPF_LSM_CGROUP)
+ return NULL;
+ if (btf_id_set_contains(&bpf_lsm_locked_sockopt_hooks,
+ prog->aux->attach_btf_id))
+ return &bpf_sk_setsockopt_proto;
+ if (btf_id_set_contains(&bpf_lsm_unlocked_sockopt_hooks,
+ prog->aux->attach_btf_id))
+ return &bpf_unlocked_sk_setsockopt_proto;
+ return NULL;
+ case BPF_FUNC_getsockopt:
+ if (prog->expected_attach_type != BPF_LSM_CGROUP)
+ return NULL;
+ if (btf_id_set_contains(&bpf_lsm_locked_sockopt_hooks,
+ prog->aux->attach_btf_id))
+ return &bpf_sk_getsockopt_proto;
+ if (btf_id_set_contains(&bpf_lsm_unlocked_sockopt_hooks,
+ prog->aux->attach_btf_id))
+ return &bpf_unlocked_sk_getsockopt_proto;
+ return NULL;
+#endif
+ default:
+ return tracing_prog_func_proto(func_id, prog);
+ }
+}
+
+/* The set of hooks which are called without pagefaults disabled and are allowed
+ * to "sleep" and thus can be used for sleepable BPF programs.
+ */
+BTF_SET_START(sleepable_lsm_hooks)
+BTF_ID(func, bpf_lsm_bpf)
+BTF_ID(func, bpf_lsm_bpf_map)
+BTF_ID(func, bpf_lsm_bpf_map_alloc_security)
+BTF_ID(func, bpf_lsm_bpf_map_free_security)
+BTF_ID(func, bpf_lsm_bpf_prog)
+BTF_ID(func, bpf_lsm_bprm_check_security)
+BTF_ID(func, bpf_lsm_bprm_committed_creds)
+BTF_ID(func, bpf_lsm_bprm_committing_creds)
+BTF_ID(func, bpf_lsm_bprm_creds_for_exec)
+BTF_ID(func, bpf_lsm_bprm_creds_from_file)
+BTF_ID(func, bpf_lsm_capget)
+BTF_ID(func, bpf_lsm_capset)
+BTF_ID(func, bpf_lsm_cred_prepare)
+BTF_ID(func, bpf_lsm_file_ioctl)
+BTF_ID(func, bpf_lsm_file_lock)
+BTF_ID(func, bpf_lsm_file_open)
+BTF_ID(func, bpf_lsm_file_receive)
+
+#ifdef CONFIG_SECURITY_NETWORK
+BTF_ID(func, bpf_lsm_inet_conn_established)
+#endif /* CONFIG_SECURITY_NETWORK */
+
+BTF_ID(func, bpf_lsm_inode_create)
+BTF_ID(func, bpf_lsm_inode_free_security)
+BTF_ID(func, bpf_lsm_inode_getattr)
+BTF_ID(func, bpf_lsm_inode_getxattr)
+BTF_ID(func, bpf_lsm_inode_mknod)
+BTF_ID(func, bpf_lsm_inode_need_killpriv)
+BTF_ID(func, bpf_lsm_inode_post_setxattr)
+BTF_ID(func, bpf_lsm_inode_readlink)
+BTF_ID(func, bpf_lsm_inode_rename)
+BTF_ID(func, bpf_lsm_inode_rmdir)
+BTF_ID(func, bpf_lsm_inode_setattr)
+BTF_ID(func, bpf_lsm_inode_setxattr)
+BTF_ID(func, bpf_lsm_inode_symlink)
+BTF_ID(func, bpf_lsm_inode_unlink)
+BTF_ID(func, bpf_lsm_kernel_module_request)
+BTF_ID(func, bpf_lsm_kernel_read_file)
+BTF_ID(func, bpf_lsm_kernfs_init_security)
+
+#ifdef CONFIG_KEYS
+BTF_ID(func, bpf_lsm_key_free)
+#endif /* CONFIG_KEYS */
+
+BTF_ID(func, bpf_lsm_mmap_file)
+BTF_ID(func, bpf_lsm_netlink_send)
+BTF_ID(func, bpf_lsm_path_notify)
+BTF_ID(func, bpf_lsm_release_secctx)
+BTF_ID(func, bpf_lsm_sb_alloc_security)
+BTF_ID(func, bpf_lsm_sb_eat_lsm_opts)
+BTF_ID(func, bpf_lsm_sb_kern_mount)
+BTF_ID(func, bpf_lsm_sb_mount)
+BTF_ID(func, bpf_lsm_sb_remount)
+BTF_ID(func, bpf_lsm_sb_set_mnt_opts)
+BTF_ID(func, bpf_lsm_sb_show_options)
+BTF_ID(func, bpf_lsm_sb_statfs)
+BTF_ID(func, bpf_lsm_sb_umount)
+BTF_ID(func, bpf_lsm_settime)
+
+#ifdef CONFIG_SECURITY_NETWORK
+BTF_ID(func, bpf_lsm_socket_accept)
+BTF_ID(func, bpf_lsm_socket_bind)
+BTF_ID(func, bpf_lsm_socket_connect)
+BTF_ID(func, bpf_lsm_socket_create)
+BTF_ID(func, bpf_lsm_socket_getpeername)
+BTF_ID(func, bpf_lsm_socket_getpeersec_dgram)
+BTF_ID(func, bpf_lsm_socket_getsockname)
+BTF_ID(func, bpf_lsm_socket_getsockopt)
+BTF_ID(func, bpf_lsm_socket_listen)
+BTF_ID(func, bpf_lsm_socket_post_create)
+BTF_ID(func, bpf_lsm_socket_recvmsg)
+BTF_ID(func, bpf_lsm_socket_sendmsg)
+BTF_ID(func, bpf_lsm_socket_shutdown)
+BTF_ID(func, bpf_lsm_socket_socketpair)
+#endif /* CONFIG_SECURITY_NETWORK */
+
+BTF_ID(func, bpf_lsm_syslog)
+BTF_ID(func, bpf_lsm_task_alloc)
+BTF_ID(func, bpf_lsm_current_getsecid_subj)
+BTF_ID(func, bpf_lsm_task_getsecid_obj)
+BTF_ID(func, bpf_lsm_task_prctl)
+BTF_ID(func, bpf_lsm_task_setscheduler)
+BTF_ID(func, bpf_lsm_task_to_inode)
+BTF_ID(func, bpf_lsm_userns_create)
+BTF_SET_END(sleepable_lsm_hooks)
+
+bool bpf_lsm_is_sleepable_hook(u32 btf_id)
+{
+ return btf_id_set_contains(&sleepable_lsm_hooks, btf_id);
+}
+
+const struct bpf_prog_ops lsm_prog_ops = {
+};
+
+const struct bpf_verifier_ops lsm_verifier_ops = {
+ .get_func_proto = bpf_lsm_func_proto,
+ .is_valid_access = btf_ctx_access,
+};
diff --git a/kernel/bpf/bpf_struct_ops.c b/kernel/bpf/bpf_struct_ops.c
new file mode 100644
index 000000000..84b2d9dba
--- /dev/null
+++ b/kernel/bpf/bpf_struct_ops.c
@@ -0,0 +1,701 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2019 Facebook */
+
+#include <linux/bpf.h>
+#include <linux/bpf_verifier.h>
+#include <linux/btf.h>
+#include <linux/filter.h>
+#include <linux/slab.h>
+#include <linux/numa.h>
+#include <linux/seq_file.h>
+#include <linux/refcount.h>
+#include <linux/mutex.h>
+#include <linux/btf_ids.h>
+
+enum bpf_struct_ops_state {
+ BPF_STRUCT_OPS_STATE_INIT,
+ BPF_STRUCT_OPS_STATE_INUSE,
+ BPF_STRUCT_OPS_STATE_TOBEFREE,
+};
+
+#define BPF_STRUCT_OPS_COMMON_VALUE \
+ refcount_t refcnt; \
+ enum bpf_struct_ops_state state
+
+struct bpf_struct_ops_value {
+ BPF_STRUCT_OPS_COMMON_VALUE;
+ char data[] ____cacheline_aligned_in_smp;
+};
+
+struct bpf_struct_ops_map {
+ struct bpf_map map;
+ struct rcu_head rcu;
+ const struct bpf_struct_ops *st_ops;
+ /* protect map_update */
+ struct mutex lock;
+ /* link has all the bpf_links that is populated
+ * to the func ptr of the kernel's struct
+ * (in kvalue.data).
+ */
+ struct bpf_link **links;
+ /* image is a page that has all the trampolines
+ * that stores the func args before calling the bpf_prog.
+ * A PAGE_SIZE "image" is enough to store all trampoline for
+ * "links[]".
+ */
+ void *image;
+ /* uvalue->data stores the kernel struct
+ * (e.g. tcp_congestion_ops) that is more useful
+ * to userspace than the kvalue. For example,
+ * the bpf_prog's id is stored instead of the kernel
+ * address of a func ptr.
+ */
+ struct bpf_struct_ops_value *uvalue;
+ /* kvalue.data stores the actual kernel's struct
+ * (e.g. tcp_congestion_ops) that will be
+ * registered to the kernel subsystem.
+ */
+ struct bpf_struct_ops_value kvalue;
+};
+
+#define VALUE_PREFIX "bpf_struct_ops_"
+#define VALUE_PREFIX_LEN (sizeof(VALUE_PREFIX) - 1)
+
+/* bpf_struct_ops_##_name (e.g. bpf_struct_ops_tcp_congestion_ops) is
+ * the map's value exposed to the userspace and its btf-type-id is
+ * stored at the map->btf_vmlinux_value_type_id.
+ *
+ */
+#define BPF_STRUCT_OPS_TYPE(_name) \
+extern struct bpf_struct_ops bpf_##_name; \
+ \
+struct bpf_struct_ops_##_name { \
+ BPF_STRUCT_OPS_COMMON_VALUE; \
+ struct _name data ____cacheline_aligned_in_smp; \
+};
+#include "bpf_struct_ops_types.h"
+#undef BPF_STRUCT_OPS_TYPE
+
+enum {
+#define BPF_STRUCT_OPS_TYPE(_name) BPF_STRUCT_OPS_TYPE_##_name,
+#include "bpf_struct_ops_types.h"
+#undef BPF_STRUCT_OPS_TYPE
+ __NR_BPF_STRUCT_OPS_TYPE,
+};
+
+static struct bpf_struct_ops * const bpf_struct_ops[] = {
+#define BPF_STRUCT_OPS_TYPE(_name) \
+ [BPF_STRUCT_OPS_TYPE_##_name] = &bpf_##_name,
+#include "bpf_struct_ops_types.h"
+#undef BPF_STRUCT_OPS_TYPE
+};
+
+const struct bpf_verifier_ops bpf_struct_ops_verifier_ops = {
+};
+
+const struct bpf_prog_ops bpf_struct_ops_prog_ops = {
+#ifdef CONFIG_NET
+ .test_run = bpf_struct_ops_test_run,
+#endif
+};
+
+static const struct btf_type *module_type;
+
+void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log)
+{
+ s32 type_id, value_id, module_id;
+ const struct btf_member *member;
+ struct bpf_struct_ops *st_ops;
+ const struct btf_type *t;
+ char value_name[128];
+ const char *mname;
+ u32 i, j;
+
+ /* Ensure BTF type is emitted for "struct bpf_struct_ops_##_name" */
+#define BPF_STRUCT_OPS_TYPE(_name) BTF_TYPE_EMIT(struct bpf_struct_ops_##_name);
+#include "bpf_struct_ops_types.h"
+#undef BPF_STRUCT_OPS_TYPE
+
+ module_id = btf_find_by_name_kind(btf, "module", BTF_KIND_STRUCT);
+ if (module_id < 0) {
+ pr_warn("Cannot find struct module in btf_vmlinux\n");
+ return;
+ }
+ module_type = btf_type_by_id(btf, module_id);
+
+ for (i = 0; i < ARRAY_SIZE(bpf_struct_ops); i++) {
+ st_ops = bpf_struct_ops[i];
+
+ if (strlen(st_ops->name) + VALUE_PREFIX_LEN >=
+ sizeof(value_name)) {
+ pr_warn("struct_ops name %s is too long\n",
+ st_ops->name);
+ continue;
+ }
+ sprintf(value_name, "%s%s", VALUE_PREFIX, st_ops->name);
+
+ value_id = btf_find_by_name_kind(btf, value_name,
+ BTF_KIND_STRUCT);
+ if (value_id < 0) {
+ pr_warn("Cannot find struct %s in btf_vmlinux\n",
+ value_name);
+ continue;
+ }
+
+ type_id = btf_find_by_name_kind(btf, st_ops->name,
+ BTF_KIND_STRUCT);
+ if (type_id < 0) {
+ pr_warn("Cannot find struct %s in btf_vmlinux\n",
+ st_ops->name);
+ continue;
+ }
+ t = btf_type_by_id(btf, type_id);
+ if (btf_type_vlen(t) > BPF_STRUCT_OPS_MAX_NR_MEMBERS) {
+ pr_warn("Cannot support #%u members in struct %s\n",
+ btf_type_vlen(t), st_ops->name);
+ continue;
+ }
+
+ for_each_member(j, t, member) {
+ const struct btf_type *func_proto;
+
+ mname = btf_name_by_offset(btf, member->name_off);
+ if (!*mname) {
+ pr_warn("anon member in struct %s is not supported\n",
+ st_ops->name);
+ break;
+ }
+
+ if (__btf_member_bitfield_size(t, member)) {
+ pr_warn("bit field member %s in struct %s is not supported\n",
+ mname, st_ops->name);
+ break;
+ }
+
+ func_proto = btf_type_resolve_func_ptr(btf,
+ member->type,
+ NULL);
+ if (func_proto &&
+ btf_distill_func_proto(log, btf,
+ func_proto, mname,
+ &st_ops->func_models[j])) {
+ pr_warn("Error in parsing func ptr %s in struct %s\n",
+ mname, st_ops->name);
+ break;
+ }
+ }
+
+ if (j == btf_type_vlen(t)) {
+ if (st_ops->init(btf)) {
+ pr_warn("Error in init bpf_struct_ops %s\n",
+ st_ops->name);
+ } else {
+ st_ops->type_id = type_id;
+ st_ops->type = t;
+ st_ops->value_id = value_id;
+ st_ops->value_type = btf_type_by_id(btf,
+ value_id);
+ }
+ }
+ }
+}
+
+extern struct btf *btf_vmlinux;
+
+static const struct bpf_struct_ops *
+bpf_struct_ops_find_value(u32 value_id)
+{
+ unsigned int i;
+
+ if (!value_id || !btf_vmlinux)
+ return NULL;
+
+ for (i = 0; i < ARRAY_SIZE(bpf_struct_ops); i++) {
+ if (bpf_struct_ops[i]->value_id == value_id)
+ return bpf_struct_ops[i];
+ }
+
+ return NULL;
+}
+
+const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
+{
+ unsigned int i;
+
+ if (!type_id || !btf_vmlinux)
+ return NULL;
+
+ for (i = 0; i < ARRAY_SIZE(bpf_struct_ops); i++) {
+ if (bpf_struct_ops[i]->type_id == type_id)
+ return bpf_struct_ops[i];
+ }
+
+ return NULL;
+}
+
+static int bpf_struct_ops_map_get_next_key(struct bpf_map *map, void *key,
+ void *next_key)
+{
+ if (key && *(u32 *)key == 0)
+ return -ENOENT;
+
+ *(u32 *)next_key = 0;
+ return 0;
+}
+
+int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
+ void *value)
+{
+ struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map;
+ struct bpf_struct_ops_value *uvalue, *kvalue;
+ enum bpf_struct_ops_state state;
+
+ if (unlikely(*(u32 *)key != 0))
+ return -ENOENT;
+
+ kvalue = &st_map->kvalue;
+ /* Pair with smp_store_release() during map_update */
+ state = smp_load_acquire(&kvalue->state);
+ if (state == BPF_STRUCT_OPS_STATE_INIT) {
+ memset(value, 0, map->value_size);
+ return 0;
+ }
+
+ /* No lock is needed. state and refcnt do not need
+ * to be updated together under atomic context.
+ */
+ uvalue = value;
+ memcpy(uvalue, st_map->uvalue, map->value_size);
+ uvalue->state = state;
+ refcount_set(&uvalue->refcnt, refcount_read(&kvalue->refcnt));
+
+ return 0;
+}
+
+static void *bpf_struct_ops_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ return ERR_PTR(-EINVAL);
+}
+
+static void bpf_struct_ops_map_put_progs(struct bpf_struct_ops_map *st_map)
+{
+ const struct btf_type *t = st_map->st_ops->type;
+ u32 i;
+
+ for (i = 0; i < btf_type_vlen(t); i++) {
+ if (st_map->links[i]) {
+ bpf_link_put(st_map->links[i]);
+ st_map->links[i] = NULL;
+ }
+ }
+}
+
+static int check_zero_holes(const struct btf_type *t, void *data)
+{
+ const struct btf_member *member;
+ u32 i, moff, msize, prev_mend = 0;
+ const struct btf_type *mtype;
+
+ for_each_member(i, t, member) {
+ moff = __btf_member_bit_offset(t, member) / 8;
+ if (moff > prev_mend &&
+ memchr_inv(data + prev_mend, 0, moff - prev_mend))
+ return -EINVAL;
+
+ mtype = btf_type_by_id(btf_vmlinux, member->type);
+ mtype = btf_resolve_size(btf_vmlinux, mtype, &msize);
+ if (IS_ERR(mtype))
+ return PTR_ERR(mtype);
+ prev_mend = moff + msize;
+ }
+
+ if (t->size > prev_mend &&
+ memchr_inv(data + prev_mend, 0, t->size - prev_mend))
+ return -EINVAL;
+
+ return 0;
+}
+
+static void bpf_struct_ops_link_release(struct bpf_link *link)
+{
+}
+
+static void bpf_struct_ops_link_dealloc(struct bpf_link *link)
+{
+ struct bpf_tramp_link *tlink = container_of(link, struct bpf_tramp_link, link);
+
+ kfree(tlink);
+}
+
+const struct bpf_link_ops bpf_struct_ops_link_lops = {
+ .release = bpf_struct_ops_link_release,
+ .dealloc = bpf_struct_ops_link_dealloc,
+};
+
+int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
+ struct bpf_tramp_link *link,
+ const struct btf_func_model *model,
+ void *image, void *image_end)
+{
+ u32 flags;
+
+ tlinks[BPF_TRAMP_FENTRY].links[0] = link;
+ tlinks[BPF_TRAMP_FENTRY].nr_links = 1;
+ /* BPF_TRAMP_F_RET_FENTRY_RET is only used by bpf_struct_ops,
+ * and it must be used alone.
+ */
+ flags = model->ret_size > 0 ? BPF_TRAMP_F_RET_FENTRY_RET : 0;
+ return arch_prepare_bpf_trampoline(NULL, image, image_end,
+ model, flags, tlinks, NULL);
+}
+
+static int bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 flags)
+{
+ struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map;
+ const struct bpf_struct_ops *st_ops = st_map->st_ops;
+ struct bpf_struct_ops_value *uvalue, *kvalue;
+ const struct btf_member *member;
+ const struct btf_type *t = st_ops->type;
+ struct bpf_tramp_links *tlinks = NULL;
+ void *udata, *kdata;
+ int prog_fd, err = 0;
+ void *image, *image_end;
+ u32 i;
+
+ if (flags)
+ return -EINVAL;
+
+ if (*(u32 *)key != 0)
+ return -E2BIG;
+
+ err = check_zero_holes(st_ops->value_type, value);
+ if (err)
+ return err;
+
+ uvalue = value;
+ err = check_zero_holes(t, uvalue->data);
+ if (err)
+ return err;
+
+ if (uvalue->state || refcount_read(&uvalue->refcnt))
+ return -EINVAL;
+
+ tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL);
+ if (!tlinks)
+ return -ENOMEM;
+
+ uvalue = (struct bpf_struct_ops_value *)st_map->uvalue;
+ kvalue = (struct bpf_struct_ops_value *)&st_map->kvalue;
+
+ mutex_lock(&st_map->lock);
+
+ if (kvalue->state != BPF_STRUCT_OPS_STATE_INIT) {
+ err = -EBUSY;
+ goto unlock;
+ }
+
+ memcpy(uvalue, value, map->value_size);
+
+ udata = &uvalue->data;
+ kdata = &kvalue->data;
+ image = st_map->image;
+ image_end = st_map->image + PAGE_SIZE;
+
+ for_each_member(i, t, member) {
+ const struct btf_type *mtype, *ptype;
+ struct bpf_prog *prog;
+ struct bpf_tramp_link *link;
+ u32 moff;
+
+ moff = __btf_member_bit_offset(t, member) / 8;
+ ptype = btf_type_resolve_ptr(btf_vmlinux, member->type, NULL);
+ if (ptype == module_type) {
+ if (*(void **)(udata + moff))
+ goto reset_unlock;
+ *(void **)(kdata + moff) = BPF_MODULE_OWNER;
+ continue;
+ }
+
+ err = st_ops->init_member(t, member, kdata, udata);
+ if (err < 0)
+ goto reset_unlock;
+
+ /* The ->init_member() has handled this member */
+ if (err > 0)
+ continue;
+
+ /* If st_ops->init_member does not handle it,
+ * we will only handle func ptrs and zero-ed members
+ * here. Reject everything else.
+ */
+
+ /* All non func ptr member must be 0 */
+ if (!ptype || !btf_type_is_func_proto(ptype)) {
+ u32 msize;
+
+ mtype = btf_type_by_id(btf_vmlinux, member->type);
+ mtype = btf_resolve_size(btf_vmlinux, mtype, &msize);
+ if (IS_ERR(mtype)) {
+ err = PTR_ERR(mtype);
+ goto reset_unlock;
+ }
+
+ if (memchr_inv(udata + moff, 0, msize)) {
+ err = -EINVAL;
+ goto reset_unlock;
+ }
+
+ continue;
+ }
+
+ prog_fd = (int)(*(unsigned long *)(udata + moff));
+ /* Similar check as the attr->attach_prog_fd */
+ if (!prog_fd)
+ continue;
+
+ prog = bpf_prog_get(prog_fd);
+ if (IS_ERR(prog)) {
+ err = PTR_ERR(prog);
+ goto reset_unlock;
+ }
+
+ if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
+ prog->aux->attach_btf_id != st_ops->type_id ||
+ prog->expected_attach_type != i) {
+ bpf_prog_put(prog);
+ err = -EINVAL;
+ goto reset_unlock;
+ }
+
+ link = kzalloc(sizeof(*link), GFP_USER);
+ if (!link) {
+ bpf_prog_put(prog);
+ err = -ENOMEM;
+ goto reset_unlock;
+ }
+ bpf_link_init(&link->link, BPF_LINK_TYPE_STRUCT_OPS,
+ &bpf_struct_ops_link_lops, prog);
+ st_map->links[i] = &link->link;
+
+ err = bpf_struct_ops_prepare_trampoline(tlinks, link,
+ &st_ops->func_models[i],
+ image, image_end);
+ if (err < 0)
+ goto reset_unlock;
+
+ *(void **)(kdata + moff) = image;
+ image += err;
+
+ /* put prog_id to udata */
+ *(unsigned long *)(udata + moff) = prog->aux->id;
+ }
+
+ refcount_set(&kvalue->refcnt, 1);
+ bpf_map_inc(map);
+
+ set_memory_ro((long)st_map->image, 1);
+ set_memory_x((long)st_map->image, 1);
+ err = st_ops->reg(kdata);
+ if (likely(!err)) {
+ /* Pair with smp_load_acquire() during lookup_elem().
+ * It ensures the above udata updates (e.g. prog->aux->id)
+ * can be seen once BPF_STRUCT_OPS_STATE_INUSE is set.
+ */
+ smp_store_release(&kvalue->state, BPF_STRUCT_OPS_STATE_INUSE);
+ goto unlock;
+ }
+
+ /* Error during st_ops->reg(). Can happen if this struct_ops needs to be
+ * verified as a whole, after all init_member() calls. Can also happen if
+ * there was a race in registering the struct_ops (under the same name) to
+ * a sub-system through different struct_ops's maps.
+ */
+ set_memory_nx((long)st_map->image, 1);
+ set_memory_rw((long)st_map->image, 1);
+ bpf_map_put(map);
+
+reset_unlock:
+ bpf_struct_ops_map_put_progs(st_map);
+ memset(uvalue, 0, map->value_size);
+ memset(kvalue, 0, map->value_size);
+unlock:
+ kfree(tlinks);
+ mutex_unlock(&st_map->lock);
+ return err;
+}
+
+static int bpf_struct_ops_map_delete_elem(struct bpf_map *map, void *key)
+{
+ enum bpf_struct_ops_state prev_state;
+ struct bpf_struct_ops_map *st_map;
+
+ st_map = (struct bpf_struct_ops_map *)map;
+ prev_state = cmpxchg(&st_map->kvalue.state,
+ BPF_STRUCT_OPS_STATE_INUSE,
+ BPF_STRUCT_OPS_STATE_TOBEFREE);
+ switch (prev_state) {
+ case BPF_STRUCT_OPS_STATE_INUSE:
+ st_map->st_ops->unreg(&st_map->kvalue.data);
+ if (refcount_dec_and_test(&st_map->kvalue.refcnt))
+ bpf_map_put(map);
+ return 0;
+ case BPF_STRUCT_OPS_STATE_TOBEFREE:
+ return -EINPROGRESS;
+ case BPF_STRUCT_OPS_STATE_INIT:
+ return -ENOENT;
+ default:
+ WARN_ON_ONCE(1);
+ /* Should never happen. Treat it as not found. */
+ return -ENOENT;
+ }
+}
+
+static void bpf_struct_ops_map_seq_show_elem(struct bpf_map *map, void *key,
+ struct seq_file *m)
+{
+ void *value;
+ int err;
+
+ value = kmalloc(map->value_size, GFP_USER | __GFP_NOWARN);
+ if (!value)
+ return;
+
+ err = bpf_struct_ops_map_sys_lookup_elem(map, key, value);
+ if (!err) {
+ btf_type_seq_show(btf_vmlinux, map->btf_vmlinux_value_type_id,
+ value, m);
+ seq_puts(m, "\n");
+ }
+
+ kfree(value);
+}
+
+static void bpf_struct_ops_map_free(struct bpf_map *map)
+{
+ struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map;
+
+ if (st_map->links)
+ bpf_struct_ops_map_put_progs(st_map);
+ bpf_map_area_free(st_map->links);
+ bpf_jit_free_exec(st_map->image);
+ bpf_map_area_free(st_map->uvalue);
+ bpf_map_area_free(st_map);
+}
+
+static int bpf_struct_ops_map_alloc_check(union bpf_attr *attr)
+{
+ if (attr->key_size != sizeof(unsigned int) || attr->max_entries != 1 ||
+ attr->map_flags || !attr->btf_vmlinux_value_type_id)
+ return -EINVAL;
+ return 0;
+}
+
+static struct bpf_map *bpf_struct_ops_map_alloc(union bpf_attr *attr)
+{
+ const struct bpf_struct_ops *st_ops;
+ size_t st_map_size;
+ struct bpf_struct_ops_map *st_map;
+ const struct btf_type *t, *vt;
+ struct bpf_map *map;
+
+ if (!bpf_capable())
+ return ERR_PTR(-EPERM);
+
+ st_ops = bpf_struct_ops_find_value(attr->btf_vmlinux_value_type_id);
+ if (!st_ops)
+ return ERR_PTR(-ENOTSUPP);
+
+ vt = st_ops->value_type;
+ if (attr->value_size != vt->size)
+ return ERR_PTR(-EINVAL);
+
+ t = st_ops->type;
+
+ st_map_size = sizeof(*st_map) +
+ /* kvalue stores the
+ * struct bpf_struct_ops_tcp_congestions_ops
+ */
+ (vt->size - sizeof(struct bpf_struct_ops_value));
+
+ st_map = bpf_map_area_alloc(st_map_size, NUMA_NO_NODE);
+ if (!st_map)
+ return ERR_PTR(-ENOMEM);
+
+ st_map->st_ops = st_ops;
+ map = &st_map->map;
+
+ st_map->uvalue = bpf_map_area_alloc(vt->size, NUMA_NO_NODE);
+ st_map->links =
+ bpf_map_area_alloc(btf_type_vlen(t) * sizeof(struct bpf_links *),
+ NUMA_NO_NODE);
+ st_map->image = bpf_jit_alloc_exec(PAGE_SIZE);
+ if (!st_map->uvalue || !st_map->links || !st_map->image) {
+ bpf_struct_ops_map_free(map);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ mutex_init(&st_map->lock);
+ set_vm_flush_reset_perms(st_map->image);
+ bpf_map_init_from_attr(map, attr);
+
+ return map;
+}
+
+BTF_ID_LIST_SINGLE(bpf_struct_ops_map_btf_ids, struct, bpf_struct_ops_map)
+const struct bpf_map_ops bpf_struct_ops_map_ops = {
+ .map_alloc_check = bpf_struct_ops_map_alloc_check,
+ .map_alloc = bpf_struct_ops_map_alloc,
+ .map_free = bpf_struct_ops_map_free,
+ .map_get_next_key = bpf_struct_ops_map_get_next_key,
+ .map_lookup_elem = bpf_struct_ops_map_lookup_elem,
+ .map_delete_elem = bpf_struct_ops_map_delete_elem,
+ .map_update_elem = bpf_struct_ops_map_update_elem,
+ .map_seq_show_elem = bpf_struct_ops_map_seq_show_elem,
+ .map_btf_id = &bpf_struct_ops_map_btf_ids[0],
+};
+
+/* "const void *" because some subsystem is
+ * passing a const (e.g. const struct tcp_congestion_ops *)
+ */
+bool bpf_struct_ops_get(const void *kdata)
+{
+ struct bpf_struct_ops_value *kvalue;
+
+ kvalue = container_of(kdata, struct bpf_struct_ops_value, data);
+
+ return refcount_inc_not_zero(&kvalue->refcnt);
+}
+
+static void bpf_struct_ops_put_rcu(struct rcu_head *head)
+{
+ struct bpf_struct_ops_map *st_map;
+
+ st_map = container_of(head, struct bpf_struct_ops_map, rcu);
+ bpf_map_put(&st_map->map);
+}
+
+void bpf_struct_ops_put(const void *kdata)
+{
+ struct bpf_struct_ops_value *kvalue;
+
+ kvalue = container_of(kdata, struct bpf_struct_ops_value, data);
+ if (refcount_dec_and_test(&kvalue->refcnt)) {
+ struct bpf_struct_ops_map *st_map;
+
+ st_map = container_of(kvalue, struct bpf_struct_ops_map,
+ kvalue);
+ /* The struct_ops's function may switch to another struct_ops.
+ *
+ * For example, bpf_tcp_cc_x->init() may switch to
+ * another tcp_cc_y by calling
+ * setsockopt(TCP_CONGESTION, "tcp_cc_y").
+ * During the switch, bpf_struct_ops_put(tcp_cc_x) is called
+ * and its map->refcnt may reach 0 which then free its
+ * trampoline image while tcp_cc_x is still running.
+ *
+ * Thus, a rcu grace period is needed here.
+ */
+ call_rcu(&st_map->rcu, bpf_struct_ops_put_rcu);
+ }
+}
diff --git a/kernel/bpf/bpf_struct_ops_types.h b/kernel/bpf/bpf_struct_ops_types.h
new file mode 100644
index 000000000..5678a9ddf
--- /dev/null
+++ b/kernel/bpf/bpf_struct_ops_types.h
@@ -0,0 +1,12 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/* internal file - do not include directly */
+
+#ifdef CONFIG_BPF_JIT
+#ifdef CONFIG_NET
+BPF_STRUCT_OPS_TYPE(bpf_dummy_ops)
+#endif
+#ifdef CONFIG_INET
+#include <net/tcp.h>
+BPF_STRUCT_OPS_TYPE(tcp_congestion_ops)
+#endif
+#endif
diff --git a/kernel/bpf/bpf_task_storage.c b/kernel/bpf/bpf_task_storage.c
new file mode 100644
index 000000000..6f2906233
--- /dev/null
+++ b/kernel/bpf/bpf_task_storage.c
@@ -0,0 +1,343 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2020 Facebook
+ * Copyright 2020 Google LLC.
+ */
+
+#include <linux/pid.h>
+#include <linux/sched.h>
+#include <linux/rculist.h>
+#include <linux/list.h>
+#include <linux/hash.h>
+#include <linux/types.h>
+#include <linux/spinlock.h>
+#include <linux/bpf.h>
+#include <linux/bpf_local_storage.h>
+#include <linux/filter.h>
+#include <uapi/linux/btf.h>
+#include <linux/btf_ids.h>
+#include <linux/fdtable.h>
+#include <linux/rcupdate_trace.h>
+
+DEFINE_BPF_STORAGE_CACHE(task_cache);
+
+static DEFINE_PER_CPU(int, bpf_task_storage_busy);
+
+static void bpf_task_storage_lock(void)
+{
+ migrate_disable();
+ this_cpu_inc(bpf_task_storage_busy);
+}
+
+static void bpf_task_storage_unlock(void)
+{
+ this_cpu_dec(bpf_task_storage_busy);
+ migrate_enable();
+}
+
+static bool bpf_task_storage_trylock(void)
+{
+ migrate_disable();
+ if (unlikely(this_cpu_inc_return(bpf_task_storage_busy) != 1)) {
+ this_cpu_dec(bpf_task_storage_busy);
+ migrate_enable();
+ return false;
+ }
+ return true;
+}
+
+static struct bpf_local_storage __rcu **task_storage_ptr(void *owner)
+{
+ struct task_struct *task = owner;
+
+ return &task->bpf_storage;
+}
+
+static struct bpf_local_storage_data *
+task_storage_lookup(struct task_struct *task, struct bpf_map *map,
+ bool cacheit_lockit)
+{
+ struct bpf_local_storage *task_storage;
+ struct bpf_local_storage_map *smap;
+
+ task_storage =
+ rcu_dereference_check(task->bpf_storage, bpf_rcu_lock_held());
+ if (!task_storage)
+ return NULL;
+
+ smap = (struct bpf_local_storage_map *)map;
+ return bpf_local_storage_lookup(task_storage, smap, cacheit_lockit);
+}
+
+void bpf_task_storage_free(struct task_struct *task)
+{
+ struct bpf_local_storage_elem *selem;
+ struct bpf_local_storage *local_storage;
+ bool free_task_storage = false;
+ struct hlist_node *n;
+ unsigned long flags;
+
+ rcu_read_lock();
+
+ local_storage = rcu_dereference(task->bpf_storage);
+ if (!local_storage) {
+ rcu_read_unlock();
+ return;
+ }
+
+ /* Neither the bpf_prog nor the bpf-map's syscall
+ * could be modifying the local_storage->list now.
+ * Thus, no elem can be added-to or deleted-from the
+ * local_storage->list by the bpf_prog or by the bpf-map's syscall.
+ *
+ * It is racing with bpf_local_storage_map_free() alone
+ * when unlinking elem from the local_storage->list and
+ * the map's bucket->list.
+ */
+ bpf_task_storage_lock();
+ raw_spin_lock_irqsave(&local_storage->lock, flags);
+ hlist_for_each_entry_safe(selem, n, &local_storage->list, snode) {
+ /* Always unlink from map before unlinking from
+ * local_storage.
+ */
+ bpf_selem_unlink_map(selem);
+ free_task_storage = bpf_selem_unlink_storage_nolock(
+ local_storage, selem, false, false);
+ }
+ raw_spin_unlock_irqrestore(&local_storage->lock, flags);
+ bpf_task_storage_unlock();
+ rcu_read_unlock();
+
+ /* free_task_storage should always be true as long as
+ * local_storage->list was non-empty.
+ */
+ if (free_task_storage)
+ kfree_rcu(local_storage, rcu);
+}
+
+static void *bpf_pid_task_storage_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_local_storage_data *sdata;
+ struct task_struct *task;
+ unsigned int f_flags;
+ struct pid *pid;
+ int fd, err;
+
+ fd = *(int *)key;
+ pid = pidfd_get_pid(fd, &f_flags);
+ if (IS_ERR(pid))
+ return ERR_CAST(pid);
+
+ /* We should be in an RCU read side critical section, it should be safe
+ * to call pid_task.
+ */
+ WARN_ON_ONCE(!rcu_read_lock_held());
+ task = pid_task(pid, PIDTYPE_PID);
+ if (!task) {
+ err = -ENOENT;
+ goto out;
+ }
+
+ bpf_task_storage_lock();
+ sdata = task_storage_lookup(task, map, true);
+ bpf_task_storage_unlock();
+ put_pid(pid);
+ return sdata ? sdata->data : NULL;
+out:
+ put_pid(pid);
+ return ERR_PTR(err);
+}
+
+static int bpf_pid_task_storage_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags)
+{
+ struct bpf_local_storage_data *sdata;
+ struct task_struct *task;
+ unsigned int f_flags;
+ struct pid *pid;
+ int fd, err;
+
+ fd = *(int *)key;
+ pid = pidfd_get_pid(fd, &f_flags);
+ if (IS_ERR(pid))
+ return PTR_ERR(pid);
+
+ /* We should be in an RCU read side critical section, it should be safe
+ * to call pid_task.
+ */
+ WARN_ON_ONCE(!rcu_read_lock_held());
+ task = pid_task(pid, PIDTYPE_PID);
+ if (!task) {
+ err = -ENOENT;
+ goto out;
+ }
+
+ bpf_task_storage_lock();
+ sdata = bpf_local_storage_update(
+ task, (struct bpf_local_storage_map *)map, value, map_flags,
+ GFP_ATOMIC);
+ bpf_task_storage_unlock();
+
+ err = PTR_ERR_OR_ZERO(sdata);
+out:
+ put_pid(pid);
+ return err;
+}
+
+static int task_storage_delete(struct task_struct *task, struct bpf_map *map)
+{
+ struct bpf_local_storage_data *sdata;
+
+ sdata = task_storage_lookup(task, map, false);
+ if (!sdata)
+ return -ENOENT;
+
+ bpf_selem_unlink(SELEM(sdata), true);
+
+ return 0;
+}
+
+static int bpf_pid_task_storage_delete_elem(struct bpf_map *map, void *key)
+{
+ struct task_struct *task;
+ unsigned int f_flags;
+ struct pid *pid;
+ int fd, err;
+
+ fd = *(int *)key;
+ pid = pidfd_get_pid(fd, &f_flags);
+ if (IS_ERR(pid))
+ return PTR_ERR(pid);
+
+ /* We should be in an RCU read side critical section, it should be safe
+ * to call pid_task.
+ */
+ WARN_ON_ONCE(!rcu_read_lock_held());
+ task = pid_task(pid, PIDTYPE_PID);
+ if (!task) {
+ err = -ENOENT;
+ goto out;
+ }
+
+ bpf_task_storage_lock();
+ err = task_storage_delete(task, map);
+ bpf_task_storage_unlock();
+out:
+ put_pid(pid);
+ return err;
+}
+
+/* *gfp_flags* is a hidden argument provided by the verifier */
+BPF_CALL_5(bpf_task_storage_get, struct bpf_map *, map, struct task_struct *,
+ task, void *, value, u64, flags, gfp_t, gfp_flags)
+{
+ struct bpf_local_storage_data *sdata;
+
+ WARN_ON_ONCE(!bpf_rcu_lock_held());
+ if (flags & ~(BPF_LOCAL_STORAGE_GET_F_CREATE))
+ return (unsigned long)NULL;
+
+ if (!task)
+ return (unsigned long)NULL;
+
+ if (!bpf_task_storage_trylock())
+ return (unsigned long)NULL;
+
+ sdata = task_storage_lookup(task, map, true);
+ if (sdata)
+ goto unlock;
+
+ /* only allocate new storage, when the task is refcounted */
+ if (refcount_read(&task->usage) &&
+ (flags & BPF_LOCAL_STORAGE_GET_F_CREATE))
+ sdata = bpf_local_storage_update(
+ task, (struct bpf_local_storage_map *)map, value,
+ BPF_NOEXIST, gfp_flags);
+
+unlock:
+ bpf_task_storage_unlock();
+ return IS_ERR_OR_NULL(sdata) ? (unsigned long)NULL :
+ (unsigned long)sdata->data;
+}
+
+BPF_CALL_2(bpf_task_storage_delete, struct bpf_map *, map, struct task_struct *,
+ task)
+{
+ int ret;
+
+ WARN_ON_ONCE(!bpf_rcu_lock_held());
+ if (!task)
+ return -EINVAL;
+
+ if (!bpf_task_storage_trylock())
+ return -EBUSY;
+
+ /* This helper must only be called from places where the lifetime of the task
+ * is guaranteed. Either by being refcounted or by being protected
+ * by an RCU read-side critical section.
+ */
+ ret = task_storage_delete(task, map);
+ bpf_task_storage_unlock();
+ return ret;
+}
+
+static int notsupp_get_next_key(struct bpf_map *map, void *key, void *next_key)
+{
+ return -ENOTSUPP;
+}
+
+static struct bpf_map *task_storage_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_local_storage_map *smap;
+
+ smap = bpf_local_storage_map_alloc(attr);
+ if (IS_ERR(smap))
+ return ERR_CAST(smap);
+
+ smap->cache_idx = bpf_local_storage_cache_idx_get(&task_cache);
+ return &smap->map;
+}
+
+static void task_storage_map_free(struct bpf_map *map)
+{
+ struct bpf_local_storage_map *smap;
+
+ smap = (struct bpf_local_storage_map *)map;
+ bpf_local_storage_cache_idx_free(&task_cache, smap->cache_idx);
+ bpf_local_storage_map_free(smap, &bpf_task_storage_busy);
+}
+
+BTF_ID_LIST_SINGLE(task_storage_map_btf_ids, struct, bpf_local_storage_map)
+const struct bpf_map_ops task_storage_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = bpf_local_storage_map_alloc_check,
+ .map_alloc = task_storage_map_alloc,
+ .map_free = task_storage_map_free,
+ .map_get_next_key = notsupp_get_next_key,
+ .map_lookup_elem = bpf_pid_task_storage_lookup_elem,
+ .map_update_elem = bpf_pid_task_storage_update_elem,
+ .map_delete_elem = bpf_pid_task_storage_delete_elem,
+ .map_check_btf = bpf_local_storage_map_check_btf,
+ .map_btf_id = &task_storage_map_btf_ids[0],
+ .map_owner_storage_ptr = task_storage_ptr,
+};
+
+const struct bpf_func_proto bpf_task_storage_get_proto = {
+ .func = bpf_task_storage_get,
+ .gpl_only = false,
+ .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_BTF_ID,
+ .arg2_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
+ .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL,
+ .arg4_type = ARG_ANYTHING,
+};
+
+const struct bpf_func_proto bpf_task_storage_delete_proto = {
+ .func = bpf_task_storage_delete,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_BTF_ID,
+ .arg2_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
+};
diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c
new file mode 100644
index 000000000..7582ec4fd
--- /dev/null
+++ b/kernel/bpf/btf.c
@@ -0,0 +1,8035 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (c) 2018 Facebook */
+
+#include <uapi/linux/btf.h>
+#include <uapi/linux/bpf.h>
+#include <uapi/linux/bpf_perf_event.h>
+#include <uapi/linux/types.h>
+#include <linux/seq_file.h>
+#include <linux/compiler.h>
+#include <linux/ctype.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/anon_inodes.h>
+#include <linux/file.h>
+#include <linux/uaccess.h>
+#include <linux/kernel.h>
+#include <linux/idr.h>
+#include <linux/sort.h>
+#include <linux/bpf_verifier.h>
+#include <linux/btf.h>
+#include <linux/btf_ids.h>
+#include <linux/skmsg.h>
+#include <linux/perf_event.h>
+#include <linux/bsearch.h>
+#include <linux/kobject.h>
+#include <linux/sysfs.h>
+#include <net/sock.h>
+#include "../tools/lib/bpf/relo_core.h"
+
+/* BTF (BPF Type Format) is the meta data format which describes
+ * the data types of BPF program/map. Hence, it basically focus
+ * on the C programming language which the modern BPF is primary
+ * using.
+ *
+ * ELF Section:
+ * ~~~~~~~~~~~
+ * The BTF data is stored under the ".BTF" ELF section
+ *
+ * struct btf_type:
+ * ~~~~~~~~~~~~~~~
+ * Each 'struct btf_type' object describes a C data type.
+ * Depending on the type it is describing, a 'struct btf_type'
+ * object may be followed by more data. F.e.
+ * To describe an array, 'struct btf_type' is followed by
+ * 'struct btf_array'.
+ *
+ * 'struct btf_type' and any extra data following it are
+ * 4 bytes aligned.
+ *
+ * Type section:
+ * ~~~~~~~~~~~~~
+ * The BTF type section contains a list of 'struct btf_type' objects.
+ * Each one describes a C type. Recall from the above section
+ * that a 'struct btf_type' object could be immediately followed by extra
+ * data in order to describe some particular C types.
+ *
+ * type_id:
+ * ~~~~~~~
+ * Each btf_type object is identified by a type_id. The type_id
+ * is implicitly implied by the location of the btf_type object in
+ * the BTF type section. The first one has type_id 1. The second
+ * one has type_id 2...etc. Hence, an earlier btf_type has
+ * a smaller type_id.
+ *
+ * A btf_type object may refer to another btf_type object by using
+ * type_id (i.e. the "type" in the "struct btf_type").
+ *
+ * NOTE that we cannot assume any reference-order.
+ * A btf_type object can refer to an earlier btf_type object
+ * but it can also refer to a later btf_type object.
+ *
+ * For example, to describe "const void *". A btf_type
+ * object describing "const" may refer to another btf_type
+ * object describing "void *". This type-reference is done
+ * by specifying type_id:
+ *
+ * [1] CONST (anon) type_id=2
+ * [2] PTR (anon) type_id=0
+ *
+ * The above is the btf_verifier debug log:
+ * - Each line started with "[?]" is a btf_type object
+ * - [?] is the type_id of the btf_type object.
+ * - CONST/PTR is the BTF_KIND_XXX
+ * - "(anon)" is the name of the type. It just
+ * happens that CONST and PTR has no name.
+ * - type_id=XXX is the 'u32 type' in btf_type
+ *
+ * NOTE: "void" has type_id 0
+ *
+ * String section:
+ * ~~~~~~~~~~~~~~
+ * The BTF string section contains the names used by the type section.
+ * Each string is referred by an "offset" from the beginning of the
+ * string section.
+ *
+ * Each string is '\0' terminated.
+ *
+ * The first character in the string section must be '\0'
+ * which is used to mean 'anonymous'. Some btf_type may not
+ * have a name.
+ */
+
+/* BTF verification:
+ *
+ * To verify BTF data, two passes are needed.
+ *
+ * Pass #1
+ * ~~~~~~~
+ * The first pass is to collect all btf_type objects to
+ * an array: "btf->types".
+ *
+ * Depending on the C type that a btf_type is describing,
+ * a btf_type may be followed by extra data. We don't know
+ * how many btf_type is there, and more importantly we don't
+ * know where each btf_type is located in the type section.
+ *
+ * Without knowing the location of each type_id, most verifications
+ * cannot be done. e.g. an earlier btf_type may refer to a later
+ * btf_type (recall the "const void *" above), so we cannot
+ * check this type-reference in the first pass.
+ *
+ * In the first pass, it still does some verifications (e.g.
+ * checking the name is a valid offset to the string section).
+ *
+ * Pass #2
+ * ~~~~~~~
+ * The main focus is to resolve a btf_type that is referring
+ * to another type.
+ *
+ * We have to ensure the referring type:
+ * 1) does exist in the BTF (i.e. in btf->types[])
+ * 2) does not cause a loop:
+ * struct A {
+ * struct B b;
+ * };
+ *
+ * struct B {
+ * struct A a;
+ * };
+ *
+ * btf_type_needs_resolve() decides if a btf_type needs
+ * to be resolved.
+ *
+ * The needs_resolve type implements the "resolve()" ops which
+ * essentially does a DFS and detects backedge.
+ *
+ * During resolve (or DFS), different C types have different
+ * "RESOLVED" conditions.
+ *
+ * When resolving a BTF_KIND_STRUCT, we need to resolve all its
+ * members because a member is always referring to another
+ * type. A struct's member can be treated as "RESOLVED" if
+ * it is referring to a BTF_KIND_PTR. Otherwise, the
+ * following valid C struct would be rejected:
+ *
+ * struct A {
+ * int m;
+ * struct A *a;
+ * };
+ *
+ * When resolving a BTF_KIND_PTR, it needs to keep resolving if
+ * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
+ * detect a pointer loop, e.g.:
+ * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
+ * ^ |
+ * +-----------------------------------------+
+ *
+ */
+
+#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
+#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
+#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
+#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
+#define BITS_ROUNDUP_BYTES(bits) \
+ (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
+
+#define BTF_INFO_MASK 0x9f00ffff
+#define BTF_INT_MASK 0x0fffffff
+#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
+#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
+
+/* 16MB for 64k structs and each has 16 members and
+ * a few MB spaces for the string section.
+ * The hard limit is S32_MAX.
+ */
+#define BTF_MAX_SIZE (16 * 1024 * 1024)
+
+#define for_each_member_from(i, from, struct_type, member) \
+ for (i = from, member = btf_type_member(struct_type) + from; \
+ i < btf_type_vlen(struct_type); \
+ i++, member++)
+
+#define for_each_vsi_from(i, from, struct_type, member) \
+ for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
+ i < btf_type_vlen(struct_type); \
+ i++, member++)
+
+DEFINE_IDR(btf_idr);
+DEFINE_SPINLOCK(btf_idr_lock);
+
+enum btf_kfunc_hook {
+ BTF_KFUNC_HOOK_XDP,
+ BTF_KFUNC_HOOK_TC,
+ BTF_KFUNC_HOOK_STRUCT_OPS,
+ BTF_KFUNC_HOOK_TRACING,
+ BTF_KFUNC_HOOK_SYSCALL,
+ BTF_KFUNC_HOOK_MAX,
+};
+
+enum {
+ BTF_KFUNC_SET_MAX_CNT = 256,
+ BTF_DTOR_KFUNC_MAX_CNT = 256,
+};
+
+struct btf_kfunc_set_tab {
+ struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
+};
+
+struct btf_id_dtor_kfunc_tab {
+ u32 cnt;
+ struct btf_id_dtor_kfunc dtors[];
+};
+
+struct btf {
+ void *data;
+ struct btf_type **types;
+ u32 *resolved_ids;
+ u32 *resolved_sizes;
+ const char *strings;
+ void *nohdr_data;
+ struct btf_header hdr;
+ u32 nr_types; /* includes VOID for base BTF */
+ u32 types_size;
+ u32 data_size;
+ refcount_t refcnt;
+ u32 id;
+ struct rcu_head rcu;
+ struct btf_kfunc_set_tab *kfunc_set_tab;
+ struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
+
+ /* split BTF support */
+ struct btf *base_btf;
+ u32 start_id; /* first type ID in this BTF (0 for base BTF) */
+ u32 start_str_off; /* first string offset (0 for base BTF) */
+ char name[MODULE_NAME_LEN];
+ bool kernel_btf;
+};
+
+enum verifier_phase {
+ CHECK_META,
+ CHECK_TYPE,
+};
+
+struct resolve_vertex {
+ const struct btf_type *t;
+ u32 type_id;
+ u16 next_member;
+};
+
+enum visit_state {
+ NOT_VISITED,
+ VISITED,
+ RESOLVED,
+};
+
+enum resolve_mode {
+ RESOLVE_TBD, /* To Be Determined */
+ RESOLVE_PTR, /* Resolving for Pointer */
+ RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
+ * or array
+ */
+};
+
+#define MAX_RESOLVE_DEPTH 32
+
+struct btf_sec_info {
+ u32 off;
+ u32 len;
+};
+
+struct btf_verifier_env {
+ struct btf *btf;
+ u8 *visit_states;
+ struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
+ struct bpf_verifier_log log;
+ u32 log_type_id;
+ u32 top_stack;
+ enum verifier_phase phase;
+ enum resolve_mode resolve_mode;
+};
+
+static const char * const btf_kind_str[NR_BTF_KINDS] = {
+ [BTF_KIND_UNKN] = "UNKNOWN",
+ [BTF_KIND_INT] = "INT",
+ [BTF_KIND_PTR] = "PTR",
+ [BTF_KIND_ARRAY] = "ARRAY",
+ [BTF_KIND_STRUCT] = "STRUCT",
+ [BTF_KIND_UNION] = "UNION",
+ [BTF_KIND_ENUM] = "ENUM",
+ [BTF_KIND_FWD] = "FWD",
+ [BTF_KIND_TYPEDEF] = "TYPEDEF",
+ [BTF_KIND_VOLATILE] = "VOLATILE",
+ [BTF_KIND_CONST] = "CONST",
+ [BTF_KIND_RESTRICT] = "RESTRICT",
+ [BTF_KIND_FUNC] = "FUNC",
+ [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
+ [BTF_KIND_VAR] = "VAR",
+ [BTF_KIND_DATASEC] = "DATASEC",
+ [BTF_KIND_FLOAT] = "FLOAT",
+ [BTF_KIND_DECL_TAG] = "DECL_TAG",
+ [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
+ [BTF_KIND_ENUM64] = "ENUM64",
+};
+
+const char *btf_type_str(const struct btf_type *t)
+{
+ return btf_kind_str[BTF_INFO_KIND(t->info)];
+}
+
+/* Chunk size we use in safe copy of data to be shown. */
+#define BTF_SHOW_OBJ_SAFE_SIZE 32
+
+/*
+ * This is the maximum size of a base type value (equivalent to a
+ * 128-bit int); if we are at the end of our safe buffer and have
+ * less than 16 bytes space we can't be assured of being able
+ * to copy the next type safely, so in such cases we will initiate
+ * a new copy.
+ */
+#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
+
+/* Type name size */
+#define BTF_SHOW_NAME_SIZE 80
+
+/*
+ * Common data to all BTF show operations. Private show functions can add
+ * their own data to a structure containing a struct btf_show and consult it
+ * in the show callback. See btf_type_show() below.
+ *
+ * One challenge with showing nested data is we want to skip 0-valued
+ * data, but in order to figure out whether a nested object is all zeros
+ * we need to walk through it. As a result, we need to make two passes
+ * when handling structs, unions and arrays; the first path simply looks
+ * for nonzero data, while the second actually does the display. The first
+ * pass is signalled by show->state.depth_check being set, and if we
+ * encounter a non-zero value we set show->state.depth_to_show to
+ * the depth at which we encountered it. When we have completed the
+ * first pass, we will know if anything needs to be displayed if
+ * depth_to_show > depth. See btf_[struct,array]_show() for the
+ * implementation of this.
+ *
+ * Another problem is we want to ensure the data for display is safe to
+ * access. To support this, the anonymous "struct {} obj" tracks the data
+ * object and our safe copy of it. We copy portions of the data needed
+ * to the object "copy" buffer, but because its size is limited to
+ * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
+ * traverse larger objects for display.
+ *
+ * The various data type show functions all start with a call to
+ * btf_show_start_type() which returns a pointer to the safe copy
+ * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
+ * raw data itself). btf_show_obj_safe() is responsible for
+ * using copy_from_kernel_nofault() to update the safe data if necessary
+ * as we traverse the object's data. skbuff-like semantics are
+ * used:
+ *
+ * - obj.head points to the start of the toplevel object for display
+ * - obj.size is the size of the toplevel object
+ * - obj.data points to the current point in the original data at
+ * which our safe data starts. obj.data will advance as we copy
+ * portions of the data.
+ *
+ * In most cases a single copy will suffice, but larger data structures
+ * such as "struct task_struct" will require many copies. The logic in
+ * btf_show_obj_safe() handles the logic that determines if a new
+ * copy_from_kernel_nofault() is needed.
+ */
+struct btf_show {
+ u64 flags;
+ void *target; /* target of show operation (seq file, buffer) */
+ void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
+ const struct btf *btf;
+ /* below are used during iteration */
+ struct {
+ u8 depth;
+ u8 depth_to_show;
+ u8 depth_check;
+ u8 array_member:1,
+ array_terminated:1;
+ u16 array_encoding;
+ u32 type_id;
+ int status; /* non-zero for error */
+ const struct btf_type *type;
+ const struct btf_member *member;
+ char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
+ } state;
+ struct {
+ u32 size;
+ void *head;
+ void *data;
+ u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
+ } obj;
+};
+
+struct btf_kind_operations {
+ s32 (*check_meta)(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left);
+ int (*resolve)(struct btf_verifier_env *env,
+ const struct resolve_vertex *v);
+ int (*check_member)(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type);
+ int (*check_kflag_member)(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type);
+ void (*log_details)(struct btf_verifier_env *env,
+ const struct btf_type *t);
+ void (*show)(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offsets,
+ struct btf_show *show);
+};
+
+static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
+static struct btf_type btf_void;
+
+static int btf_resolve(struct btf_verifier_env *env,
+ const struct btf_type *t, u32 type_id);
+
+static int btf_func_check(struct btf_verifier_env *env,
+ const struct btf_type *t);
+
+static bool btf_type_is_modifier(const struct btf_type *t)
+{
+ /* Some of them is not strictly a C modifier
+ * but they are grouped into the same bucket
+ * for BTF concern:
+ * A type (t) that refers to another
+ * type through t->type AND its size cannot
+ * be determined without following the t->type.
+ *
+ * ptr does not fall into this bucket
+ * because its size is always sizeof(void *).
+ */
+ switch (BTF_INFO_KIND(t->info)) {
+ case BTF_KIND_TYPEDEF:
+ case BTF_KIND_VOLATILE:
+ case BTF_KIND_CONST:
+ case BTF_KIND_RESTRICT:
+ case BTF_KIND_TYPE_TAG:
+ return true;
+ }
+
+ return false;
+}
+
+bool btf_type_is_void(const struct btf_type *t)
+{
+ return t == &btf_void;
+}
+
+static bool btf_type_is_fwd(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
+}
+
+static bool btf_type_nosize(const struct btf_type *t)
+{
+ return btf_type_is_void(t) || btf_type_is_fwd(t) ||
+ btf_type_is_func(t) || btf_type_is_func_proto(t);
+}
+
+static bool btf_type_nosize_or_null(const struct btf_type *t)
+{
+ return !t || btf_type_nosize(t);
+}
+
+static bool __btf_type_is_struct(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
+}
+
+static bool btf_type_is_array(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
+}
+
+static bool btf_type_is_datasec(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
+}
+
+static bool btf_type_is_decl_tag(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
+}
+
+static bool btf_type_is_decl_tag_target(const struct btf_type *t)
+{
+ return btf_type_is_func(t) || btf_type_is_struct(t) ||
+ btf_type_is_var(t) || btf_type_is_typedef(t);
+}
+
+u32 btf_nr_types(const struct btf *btf)
+{
+ u32 total = 0;
+
+ while (btf) {
+ total += btf->nr_types;
+ btf = btf->base_btf;
+ }
+
+ return total;
+}
+
+s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
+{
+ const struct btf_type *t;
+ const char *tname;
+ u32 i, total;
+
+ total = btf_nr_types(btf);
+ for (i = 1; i < total; i++) {
+ t = btf_type_by_id(btf, i);
+ if (BTF_INFO_KIND(t->info) != kind)
+ continue;
+
+ tname = btf_name_by_offset(btf, t->name_off);
+ if (!strcmp(tname, name))
+ return i;
+ }
+
+ return -ENOENT;
+}
+
+static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
+{
+ struct btf *btf;
+ s32 ret;
+ int id;
+
+ btf = bpf_get_btf_vmlinux();
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+ if (!btf)
+ return -EINVAL;
+
+ ret = btf_find_by_name_kind(btf, name, kind);
+ /* ret is never zero, since btf_find_by_name_kind returns
+ * positive btf_id or negative error.
+ */
+ if (ret > 0) {
+ btf_get(btf);
+ *btf_p = btf;
+ return ret;
+ }
+
+ /* If name is not found in vmlinux's BTF then search in module's BTFs */
+ spin_lock_bh(&btf_idr_lock);
+ idr_for_each_entry(&btf_idr, btf, id) {
+ if (!btf_is_module(btf))
+ continue;
+ /* linear search could be slow hence unlock/lock
+ * the IDR to avoiding holding it for too long
+ */
+ btf_get(btf);
+ spin_unlock_bh(&btf_idr_lock);
+ ret = btf_find_by_name_kind(btf, name, kind);
+ if (ret > 0) {
+ *btf_p = btf;
+ return ret;
+ }
+ btf_put(btf);
+ spin_lock_bh(&btf_idr_lock);
+ }
+ spin_unlock_bh(&btf_idr_lock);
+ return ret;
+}
+
+const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
+ u32 id, u32 *res_id)
+{
+ const struct btf_type *t = btf_type_by_id(btf, id);
+
+ while (btf_type_is_modifier(t)) {
+ id = t->type;
+ t = btf_type_by_id(btf, t->type);
+ }
+
+ if (res_id)
+ *res_id = id;
+
+ return t;
+}
+
+const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
+ u32 id, u32 *res_id)
+{
+ const struct btf_type *t;
+
+ t = btf_type_skip_modifiers(btf, id, NULL);
+ if (!btf_type_is_ptr(t))
+ return NULL;
+
+ return btf_type_skip_modifiers(btf, t->type, res_id);
+}
+
+const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
+ u32 id, u32 *res_id)
+{
+ const struct btf_type *ptype;
+
+ ptype = btf_type_resolve_ptr(btf, id, res_id);
+ if (ptype && btf_type_is_func_proto(ptype))
+ return ptype;
+
+ return NULL;
+}
+
+/* Types that act only as a source, not sink or intermediate
+ * type when resolving.
+ */
+static bool btf_type_is_resolve_source_only(const struct btf_type *t)
+{
+ return btf_type_is_var(t) ||
+ btf_type_is_decl_tag(t) ||
+ btf_type_is_datasec(t);
+}
+
+/* What types need to be resolved?
+ *
+ * btf_type_is_modifier() is an obvious one.
+ *
+ * btf_type_is_struct() because its member refers to
+ * another type (through member->type).
+ *
+ * btf_type_is_var() because the variable refers to
+ * another type. btf_type_is_datasec() holds multiple
+ * btf_type_is_var() types that need resolving.
+ *
+ * btf_type_is_array() because its element (array->type)
+ * refers to another type. Array can be thought of a
+ * special case of struct while array just has the same
+ * member-type repeated by array->nelems of times.
+ */
+static bool btf_type_needs_resolve(const struct btf_type *t)
+{
+ return btf_type_is_modifier(t) ||
+ btf_type_is_ptr(t) ||
+ btf_type_is_struct(t) ||
+ btf_type_is_array(t) ||
+ btf_type_is_var(t) ||
+ btf_type_is_func(t) ||
+ btf_type_is_decl_tag(t) ||
+ btf_type_is_datasec(t);
+}
+
+/* t->size can be used */
+static bool btf_type_has_size(const struct btf_type *t)
+{
+ switch (BTF_INFO_KIND(t->info)) {
+ case BTF_KIND_INT:
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ case BTF_KIND_ENUM:
+ case BTF_KIND_DATASEC:
+ case BTF_KIND_FLOAT:
+ case BTF_KIND_ENUM64:
+ return true;
+ }
+
+ return false;
+}
+
+static const char *btf_int_encoding_str(u8 encoding)
+{
+ if (encoding == 0)
+ return "(none)";
+ else if (encoding == BTF_INT_SIGNED)
+ return "SIGNED";
+ else if (encoding == BTF_INT_CHAR)
+ return "CHAR";
+ else if (encoding == BTF_INT_BOOL)
+ return "BOOL";
+ else
+ return "UNKN";
+}
+
+static u32 btf_type_int(const struct btf_type *t)
+{
+ return *(u32 *)(t + 1);
+}
+
+static const struct btf_array *btf_type_array(const struct btf_type *t)
+{
+ return (const struct btf_array *)(t + 1);
+}
+
+static const struct btf_enum *btf_type_enum(const struct btf_type *t)
+{
+ return (const struct btf_enum *)(t + 1);
+}
+
+static const struct btf_var *btf_type_var(const struct btf_type *t)
+{
+ return (const struct btf_var *)(t + 1);
+}
+
+static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
+{
+ return (const struct btf_decl_tag *)(t + 1);
+}
+
+static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
+{
+ return (const struct btf_enum64 *)(t + 1);
+}
+
+static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
+{
+ return kind_ops[BTF_INFO_KIND(t->info)];
+}
+
+static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
+{
+ if (!BTF_STR_OFFSET_VALID(offset))
+ return false;
+
+ while (offset < btf->start_str_off)
+ btf = btf->base_btf;
+
+ offset -= btf->start_str_off;
+ return offset < btf->hdr.str_len;
+}
+
+static bool __btf_name_char_ok(char c, bool first)
+{
+ if ((first ? !isalpha(c) :
+ !isalnum(c)) &&
+ c != '_' &&
+ c != '.')
+ return false;
+ return true;
+}
+
+static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
+{
+ while (offset < btf->start_str_off)
+ btf = btf->base_btf;
+
+ offset -= btf->start_str_off;
+ if (offset < btf->hdr.str_len)
+ return &btf->strings[offset];
+
+ return NULL;
+}
+
+static bool __btf_name_valid(const struct btf *btf, u32 offset)
+{
+ /* offset must be valid */
+ const char *src = btf_str_by_offset(btf, offset);
+ const char *src_limit;
+
+ if (!__btf_name_char_ok(*src, true))
+ return false;
+
+ /* set a limit on identifier length */
+ src_limit = src + KSYM_NAME_LEN;
+ src++;
+ while (*src && src < src_limit) {
+ if (!__btf_name_char_ok(*src, false))
+ return false;
+ src++;
+ }
+
+ return !*src;
+}
+
+static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
+{
+ return __btf_name_valid(btf, offset);
+}
+
+static bool btf_name_valid_section(const struct btf *btf, u32 offset)
+{
+ return __btf_name_valid(btf, offset);
+}
+
+static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
+{
+ const char *name;
+
+ if (!offset)
+ return "(anon)";
+
+ name = btf_str_by_offset(btf, offset);
+ return name ?: "(invalid-name-offset)";
+}
+
+const char *btf_name_by_offset(const struct btf *btf, u32 offset)
+{
+ return btf_str_by_offset(btf, offset);
+}
+
+const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
+{
+ while (type_id < btf->start_id)
+ btf = btf->base_btf;
+
+ type_id -= btf->start_id;
+ if (type_id >= btf->nr_types)
+ return NULL;
+ return btf->types[type_id];
+}
+EXPORT_SYMBOL_GPL(btf_type_by_id);
+
+/*
+ * Regular int is not a bit field and it must be either
+ * u8/u16/u32/u64 or __int128.
+ */
+static bool btf_type_int_is_regular(const struct btf_type *t)
+{
+ u8 nr_bits, nr_bytes;
+ u32 int_data;
+
+ int_data = btf_type_int(t);
+ nr_bits = BTF_INT_BITS(int_data);
+ nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
+ if (BITS_PER_BYTE_MASKED(nr_bits) ||
+ BTF_INT_OFFSET(int_data) ||
+ (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
+ nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
+ nr_bytes != (2 * sizeof(u64)))) {
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * Check that given struct member is a regular int with expected
+ * offset and size.
+ */
+bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
+ const struct btf_member *m,
+ u32 expected_offset, u32 expected_size)
+{
+ const struct btf_type *t;
+ u32 id, int_data;
+ u8 nr_bits;
+
+ id = m->type;
+ t = btf_type_id_size(btf, &id, NULL);
+ if (!t || !btf_type_is_int(t))
+ return false;
+
+ int_data = btf_type_int(t);
+ nr_bits = BTF_INT_BITS(int_data);
+ if (btf_type_kflag(s)) {
+ u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
+ u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
+
+ /* if kflag set, int should be a regular int and
+ * bit offset should be at byte boundary.
+ */
+ return !bitfield_size &&
+ BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
+ BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
+ }
+
+ if (BTF_INT_OFFSET(int_data) ||
+ BITS_PER_BYTE_MASKED(m->offset) ||
+ BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
+ BITS_PER_BYTE_MASKED(nr_bits) ||
+ BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
+ return false;
+
+ return true;
+}
+
+/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
+static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
+ u32 id)
+{
+ const struct btf_type *t = btf_type_by_id(btf, id);
+
+ while (btf_type_is_modifier(t) &&
+ BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
+ t = btf_type_by_id(btf, t->type);
+ }
+
+ return t;
+}
+
+#define BTF_SHOW_MAX_ITER 10
+
+#define BTF_KIND_BIT(kind) (1ULL << kind)
+
+/*
+ * Populate show->state.name with type name information.
+ * Format of type name is
+ *
+ * [.member_name = ] (type_name)
+ */
+static const char *btf_show_name(struct btf_show *show)
+{
+ /* BTF_MAX_ITER array suffixes "[]" */
+ const char *array_suffixes = "[][][][][][][][][][]";
+ const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
+ /* BTF_MAX_ITER pointer suffixes "*" */
+ const char *ptr_suffixes = "**********";
+ const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
+ const char *name = NULL, *prefix = "", *parens = "";
+ const struct btf_member *m = show->state.member;
+ const struct btf_type *t;
+ const struct btf_array *array;
+ u32 id = show->state.type_id;
+ const char *member = NULL;
+ bool show_member = false;
+ u64 kinds = 0;
+ int i;
+
+ show->state.name[0] = '\0';
+
+ /*
+ * Don't show type name if we're showing an array member;
+ * in that case we show the array type so don't need to repeat
+ * ourselves for each member.
+ */
+ if (show->state.array_member)
+ return "";
+
+ /* Retrieve member name, if any. */
+ if (m) {
+ member = btf_name_by_offset(show->btf, m->name_off);
+ show_member = strlen(member) > 0;
+ id = m->type;
+ }
+
+ /*
+ * Start with type_id, as we have resolved the struct btf_type *
+ * via btf_modifier_show() past the parent typedef to the child
+ * struct, int etc it is defined as. In such cases, the type_id
+ * still represents the starting type while the struct btf_type *
+ * in our show->state points at the resolved type of the typedef.
+ */
+ t = btf_type_by_id(show->btf, id);
+ if (!t)
+ return "";
+
+ /*
+ * The goal here is to build up the right number of pointer and
+ * array suffixes while ensuring the type name for a typedef
+ * is represented. Along the way we accumulate a list of
+ * BTF kinds we have encountered, since these will inform later
+ * display; for example, pointer types will not require an
+ * opening "{" for struct, we will just display the pointer value.
+ *
+ * We also want to accumulate the right number of pointer or array
+ * indices in the format string while iterating until we get to
+ * the typedef/pointee/array member target type.
+ *
+ * We start by pointing at the end of pointer and array suffix
+ * strings; as we accumulate pointers and arrays we move the pointer
+ * or array string backwards so it will show the expected number of
+ * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
+ * and/or arrays and typedefs are supported as a precaution.
+ *
+ * We also want to get typedef name while proceeding to resolve
+ * type it points to so that we can add parentheses if it is a
+ * "typedef struct" etc.
+ */
+ for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
+
+ switch (BTF_INFO_KIND(t->info)) {
+ case BTF_KIND_TYPEDEF:
+ if (!name)
+ name = btf_name_by_offset(show->btf,
+ t->name_off);
+ kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
+ id = t->type;
+ break;
+ case BTF_KIND_ARRAY:
+ kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
+ parens = "[";
+ if (!t)
+ return "";
+ array = btf_type_array(t);
+ if (array_suffix > array_suffixes)
+ array_suffix -= 2;
+ id = array->type;
+ break;
+ case BTF_KIND_PTR:
+ kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
+ if (ptr_suffix > ptr_suffixes)
+ ptr_suffix -= 1;
+ id = t->type;
+ break;
+ default:
+ id = 0;
+ break;
+ }
+ if (!id)
+ break;
+ t = btf_type_skip_qualifiers(show->btf, id);
+ }
+ /* We may not be able to represent this type; bail to be safe */
+ if (i == BTF_SHOW_MAX_ITER)
+ return "";
+
+ if (!name)
+ name = btf_name_by_offset(show->btf, t->name_off);
+
+ switch (BTF_INFO_KIND(t->info)) {
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
+ "struct" : "union";
+ /* if it's an array of struct/union, parens is already set */
+ if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
+ parens = "{";
+ break;
+ case BTF_KIND_ENUM:
+ case BTF_KIND_ENUM64:
+ prefix = "enum";
+ break;
+ default:
+ break;
+ }
+
+ /* pointer does not require parens */
+ if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
+ parens = "";
+ /* typedef does not require struct/union/enum prefix */
+ if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
+ prefix = "";
+
+ if (!name)
+ name = "";
+
+ /* Even if we don't want type name info, we want parentheses etc */
+ if (show->flags & BTF_SHOW_NONAME)
+ snprintf(show->state.name, sizeof(show->state.name), "%s",
+ parens);
+ else
+ snprintf(show->state.name, sizeof(show->state.name),
+ "%s%s%s(%s%s%s%s%s%s)%s",
+ /* first 3 strings comprise ".member = " */
+ show_member ? "." : "",
+ show_member ? member : "",
+ show_member ? " = " : "",
+ /* ...next is our prefix (struct, enum, etc) */
+ prefix,
+ strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
+ /* ...this is the type name itself */
+ name,
+ /* ...suffixed by the appropriate '*', '[]' suffixes */
+ strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
+ array_suffix, parens);
+
+ return show->state.name;
+}
+
+static const char *__btf_show_indent(struct btf_show *show)
+{
+ const char *indents = " ";
+ const char *indent = &indents[strlen(indents)];
+
+ if ((indent - show->state.depth) >= indents)
+ return indent - show->state.depth;
+ return indents;
+}
+
+static const char *btf_show_indent(struct btf_show *show)
+{
+ return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
+}
+
+static const char *btf_show_newline(struct btf_show *show)
+{
+ return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
+}
+
+static const char *btf_show_delim(struct btf_show *show)
+{
+ if (show->state.depth == 0)
+ return "";
+
+ if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
+ BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
+ return "|";
+
+ return ",";
+}
+
+__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
+{
+ va_list args;
+
+ if (!show->state.depth_check) {
+ va_start(args, fmt);
+ show->showfn(show, fmt, args);
+ va_end(args);
+ }
+}
+
+/* Macros are used here as btf_show_type_value[s]() prepends and appends
+ * format specifiers to the format specifier passed in; these do the work of
+ * adding indentation, delimiters etc while the caller simply has to specify
+ * the type value(s) in the format specifier + value(s).
+ */
+#define btf_show_type_value(show, fmt, value) \
+ do { \
+ if ((value) != (__typeof__(value))0 || \
+ (show->flags & BTF_SHOW_ZERO) || \
+ show->state.depth == 0) { \
+ btf_show(show, "%s%s" fmt "%s%s", \
+ btf_show_indent(show), \
+ btf_show_name(show), \
+ value, btf_show_delim(show), \
+ btf_show_newline(show)); \
+ if (show->state.depth > show->state.depth_to_show) \
+ show->state.depth_to_show = show->state.depth; \
+ } \
+ } while (0)
+
+#define btf_show_type_values(show, fmt, ...) \
+ do { \
+ btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
+ btf_show_name(show), \
+ __VA_ARGS__, btf_show_delim(show), \
+ btf_show_newline(show)); \
+ if (show->state.depth > show->state.depth_to_show) \
+ show->state.depth_to_show = show->state.depth; \
+ } while (0)
+
+/* How much is left to copy to safe buffer after @data? */
+static int btf_show_obj_size_left(struct btf_show *show, void *data)
+{
+ return show->obj.head + show->obj.size - data;
+}
+
+/* Is object pointed to by @data of @size already copied to our safe buffer? */
+static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
+{
+ return data >= show->obj.data &&
+ (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
+}
+
+/*
+ * If object pointed to by @data of @size falls within our safe buffer, return
+ * the equivalent pointer to the same safe data. Assumes
+ * copy_from_kernel_nofault() has already happened and our safe buffer is
+ * populated.
+ */
+static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
+{
+ if (btf_show_obj_is_safe(show, data, size))
+ return show->obj.safe + (data - show->obj.data);
+ return NULL;
+}
+
+/*
+ * Return a safe-to-access version of data pointed to by @data.
+ * We do this by copying the relevant amount of information
+ * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
+ *
+ * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
+ * safe copy is needed.
+ *
+ * Otherwise we need to determine if we have the required amount
+ * of data (determined by the @data pointer and the size of the
+ * largest base type we can encounter (represented by
+ * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
+ * that we will be able to print some of the current object,
+ * and if more is needed a copy will be triggered.
+ * Some objects such as structs will not fit into the buffer;
+ * in such cases additional copies when we iterate over their
+ * members may be needed.
+ *
+ * btf_show_obj_safe() is used to return a safe buffer for
+ * btf_show_start_type(); this ensures that as we recurse into
+ * nested types we always have safe data for the given type.
+ * This approach is somewhat wasteful; it's possible for example
+ * that when iterating over a large union we'll end up copying the
+ * same data repeatedly, but the goal is safety not performance.
+ * We use stack data as opposed to per-CPU buffers because the
+ * iteration over a type can take some time, and preemption handling
+ * would greatly complicate use of the safe buffer.
+ */
+static void *btf_show_obj_safe(struct btf_show *show,
+ const struct btf_type *t,
+ void *data)
+{
+ const struct btf_type *rt;
+ int size_left, size;
+ void *safe = NULL;
+
+ if (show->flags & BTF_SHOW_UNSAFE)
+ return data;
+
+ rt = btf_resolve_size(show->btf, t, &size);
+ if (IS_ERR(rt)) {
+ show->state.status = PTR_ERR(rt);
+ return NULL;
+ }
+
+ /*
+ * Is this toplevel object? If so, set total object size and
+ * initialize pointers. Otherwise check if we still fall within
+ * our safe object data.
+ */
+ if (show->state.depth == 0) {
+ show->obj.size = size;
+ show->obj.head = data;
+ } else {
+ /*
+ * If the size of the current object is > our remaining
+ * safe buffer we _may_ need to do a new copy. However
+ * consider the case of a nested struct; it's size pushes
+ * us over the safe buffer limit, but showing any individual
+ * struct members does not. In such cases, we don't need
+ * to initiate a fresh copy yet; however we definitely need
+ * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
+ * in our buffer, regardless of the current object size.
+ * The logic here is that as we resolve types we will
+ * hit a base type at some point, and we need to be sure
+ * the next chunk of data is safely available to display
+ * that type info safely. We cannot rely on the size of
+ * the current object here because it may be much larger
+ * than our current buffer (e.g. task_struct is 8k).
+ * All we want to do here is ensure that we can print the
+ * next basic type, which we can if either
+ * - the current type size is within the safe buffer; or
+ * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
+ * the safe buffer.
+ */
+ safe = __btf_show_obj_safe(show, data,
+ min(size,
+ BTF_SHOW_OBJ_BASE_TYPE_SIZE));
+ }
+
+ /*
+ * We need a new copy to our safe object, either because we haven't
+ * yet copied and are initializing safe data, or because the data
+ * we want falls outside the boundaries of the safe object.
+ */
+ if (!safe) {
+ size_left = btf_show_obj_size_left(show, data);
+ if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
+ size_left = BTF_SHOW_OBJ_SAFE_SIZE;
+ show->state.status = copy_from_kernel_nofault(show->obj.safe,
+ data, size_left);
+ if (!show->state.status) {
+ show->obj.data = data;
+ safe = show->obj.safe;
+ }
+ }
+
+ return safe;
+}
+
+/*
+ * Set the type we are starting to show and return a safe data pointer
+ * to be used for showing the associated data.
+ */
+static void *btf_show_start_type(struct btf_show *show,
+ const struct btf_type *t,
+ u32 type_id, void *data)
+{
+ show->state.type = t;
+ show->state.type_id = type_id;
+ show->state.name[0] = '\0';
+
+ return btf_show_obj_safe(show, t, data);
+}
+
+static void btf_show_end_type(struct btf_show *show)
+{
+ show->state.type = NULL;
+ show->state.type_id = 0;
+ show->state.name[0] = '\0';
+}
+
+static void *btf_show_start_aggr_type(struct btf_show *show,
+ const struct btf_type *t,
+ u32 type_id, void *data)
+{
+ void *safe_data = btf_show_start_type(show, t, type_id, data);
+
+ if (!safe_data)
+ return safe_data;
+
+ btf_show(show, "%s%s%s", btf_show_indent(show),
+ btf_show_name(show),
+ btf_show_newline(show));
+ show->state.depth++;
+ return safe_data;
+}
+
+static void btf_show_end_aggr_type(struct btf_show *show,
+ const char *suffix)
+{
+ show->state.depth--;
+ btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
+ btf_show_delim(show), btf_show_newline(show));
+ btf_show_end_type(show);
+}
+
+static void btf_show_start_member(struct btf_show *show,
+ const struct btf_member *m)
+{
+ show->state.member = m;
+}
+
+static void btf_show_start_array_member(struct btf_show *show)
+{
+ show->state.array_member = 1;
+ btf_show_start_member(show, NULL);
+}
+
+static void btf_show_end_member(struct btf_show *show)
+{
+ show->state.member = NULL;
+}
+
+static void btf_show_end_array_member(struct btf_show *show)
+{
+ show->state.array_member = 0;
+ btf_show_end_member(show);
+}
+
+static void *btf_show_start_array_type(struct btf_show *show,
+ const struct btf_type *t,
+ u32 type_id,
+ u16 array_encoding,
+ void *data)
+{
+ show->state.array_encoding = array_encoding;
+ show->state.array_terminated = 0;
+ return btf_show_start_aggr_type(show, t, type_id, data);
+}
+
+static void btf_show_end_array_type(struct btf_show *show)
+{
+ show->state.array_encoding = 0;
+ show->state.array_terminated = 0;
+ btf_show_end_aggr_type(show, "]");
+}
+
+static void *btf_show_start_struct_type(struct btf_show *show,
+ const struct btf_type *t,
+ u32 type_id,
+ void *data)
+{
+ return btf_show_start_aggr_type(show, t, type_id, data);
+}
+
+static void btf_show_end_struct_type(struct btf_show *show)
+{
+ btf_show_end_aggr_type(show, "}");
+}
+
+__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
+ const char *fmt, ...)
+{
+ va_list args;
+
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+}
+
+__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
+ const char *fmt, ...)
+{
+ struct bpf_verifier_log *log = &env->log;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+}
+
+__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ bool log_details,
+ const char *fmt, ...)
+{
+ struct bpf_verifier_log *log = &env->log;
+ struct btf *btf = env->btf;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ /* btf verifier prints all types it is processing via
+ * btf_verifier_log_type(..., fmt = NULL).
+ * Skip those prints for in-kernel BTF verification.
+ */
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
+
+ __btf_verifier_log(log, "[%u] %s %s%s",
+ env->log_type_id,
+ btf_type_str(t),
+ __btf_name_by_offset(btf, t->name_off),
+ log_details ? " " : "");
+
+ if (log_details)
+ btf_type_ops(t)->log_details(env, t);
+
+ if (fmt && *fmt) {
+ __btf_verifier_log(log, " ");
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+ }
+
+ __btf_verifier_log(log, "\n");
+}
+
+#define btf_verifier_log_type(env, t, ...) \
+ __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
+#define btf_verifier_log_basic(env, t, ...) \
+ __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
+
+__printf(4, 5)
+static void btf_verifier_log_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const char *fmt, ...)
+{
+ struct bpf_verifier_log *log = &env->log;
+ struct btf *btf = env->btf;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
+ /* The CHECK_META phase already did a btf dump.
+ *
+ * If member is logged again, it must hit an error in
+ * parsing this member. It is useful to print out which
+ * struct this member belongs to.
+ */
+ if (env->phase != CHECK_META)
+ btf_verifier_log_type(env, struct_type, NULL);
+
+ if (btf_type_kflag(struct_type))
+ __btf_verifier_log(log,
+ "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
+ __btf_name_by_offset(btf, member->name_off),
+ member->type,
+ BTF_MEMBER_BITFIELD_SIZE(member->offset),
+ BTF_MEMBER_BIT_OFFSET(member->offset));
+ else
+ __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
+ __btf_name_by_offset(btf, member->name_off),
+ member->type, member->offset);
+
+ if (fmt && *fmt) {
+ __btf_verifier_log(log, " ");
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+ }
+
+ __btf_verifier_log(log, "\n");
+}
+
+__printf(4, 5)
+static void btf_verifier_log_vsi(struct btf_verifier_env *env,
+ const struct btf_type *datasec_type,
+ const struct btf_var_secinfo *vsi,
+ const char *fmt, ...)
+{
+ struct bpf_verifier_log *log = &env->log;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
+ if (env->phase != CHECK_META)
+ btf_verifier_log_type(env, datasec_type, NULL);
+
+ __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
+ vsi->type, vsi->offset, vsi->size);
+ if (fmt && *fmt) {
+ __btf_verifier_log(log, " ");
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+ }
+
+ __btf_verifier_log(log, "\n");
+}
+
+static void btf_verifier_log_hdr(struct btf_verifier_env *env,
+ u32 btf_data_size)
+{
+ struct bpf_verifier_log *log = &env->log;
+ const struct btf *btf = env->btf;
+ const struct btf_header *hdr;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ if (log->level == BPF_LOG_KERNEL)
+ return;
+ hdr = &btf->hdr;
+ __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
+ __btf_verifier_log(log, "version: %u\n", hdr->version);
+ __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
+ __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
+ __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
+ __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
+ __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
+ __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
+ __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
+}
+
+static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
+{
+ struct btf *btf = env->btf;
+
+ if (btf->types_size == btf->nr_types) {
+ /* Expand 'types' array */
+
+ struct btf_type **new_types;
+ u32 expand_by, new_size;
+
+ if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
+ btf_verifier_log(env, "Exceeded max num of types");
+ return -E2BIG;
+ }
+
+ expand_by = max_t(u32, btf->types_size >> 2, 16);
+ new_size = min_t(u32, BTF_MAX_TYPE,
+ btf->types_size + expand_by);
+
+ new_types = kvcalloc(new_size, sizeof(*new_types),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!new_types)
+ return -ENOMEM;
+
+ if (btf->nr_types == 0) {
+ if (!btf->base_btf) {
+ /* lazily init VOID type */
+ new_types[0] = &btf_void;
+ btf->nr_types++;
+ }
+ } else {
+ memcpy(new_types, btf->types,
+ sizeof(*btf->types) * btf->nr_types);
+ }
+
+ kvfree(btf->types);
+ btf->types = new_types;
+ btf->types_size = new_size;
+ }
+
+ btf->types[btf->nr_types++] = t;
+
+ return 0;
+}
+
+static int btf_alloc_id(struct btf *btf)
+{
+ int id;
+
+ idr_preload(GFP_KERNEL);
+ spin_lock_bh(&btf_idr_lock);
+ id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
+ if (id > 0)
+ btf->id = id;
+ spin_unlock_bh(&btf_idr_lock);
+ idr_preload_end();
+
+ if (WARN_ON_ONCE(!id))
+ return -ENOSPC;
+
+ return id > 0 ? 0 : id;
+}
+
+static void btf_free_id(struct btf *btf)
+{
+ unsigned long flags;
+
+ /*
+ * In map-in-map, calling map_delete_elem() on outer
+ * map will call bpf_map_put on the inner map.
+ * It will then eventually call btf_free_id()
+ * on the inner map. Some of the map_delete_elem()
+ * implementation may have irq disabled, so
+ * we need to use the _irqsave() version instead
+ * of the _bh() version.
+ */
+ spin_lock_irqsave(&btf_idr_lock, flags);
+ idr_remove(&btf_idr, btf->id);
+ spin_unlock_irqrestore(&btf_idr_lock, flags);
+}
+
+static void btf_free_kfunc_set_tab(struct btf *btf)
+{
+ struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
+ int hook;
+
+ if (!tab)
+ return;
+ /* For module BTF, we directly assign the sets being registered, so
+ * there is nothing to free except kfunc_set_tab.
+ */
+ if (btf_is_module(btf))
+ goto free_tab;
+ for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
+ kfree(tab->sets[hook]);
+free_tab:
+ kfree(tab);
+ btf->kfunc_set_tab = NULL;
+}
+
+static void btf_free_dtor_kfunc_tab(struct btf *btf)
+{
+ struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
+
+ if (!tab)
+ return;
+ kfree(tab);
+ btf->dtor_kfunc_tab = NULL;
+}
+
+static void btf_free(struct btf *btf)
+{
+ btf_free_dtor_kfunc_tab(btf);
+ btf_free_kfunc_set_tab(btf);
+ kvfree(btf->types);
+ kvfree(btf->resolved_sizes);
+ kvfree(btf->resolved_ids);
+ kvfree(btf->data);
+ kfree(btf);
+}
+
+static void btf_free_rcu(struct rcu_head *rcu)
+{
+ struct btf *btf = container_of(rcu, struct btf, rcu);
+
+ btf_free(btf);
+}
+
+void btf_get(struct btf *btf)
+{
+ refcount_inc(&btf->refcnt);
+}
+
+void btf_put(struct btf *btf)
+{
+ if (btf && refcount_dec_and_test(&btf->refcnt)) {
+ btf_free_id(btf);
+ call_rcu(&btf->rcu, btf_free_rcu);
+ }
+}
+
+static int env_resolve_init(struct btf_verifier_env *env)
+{
+ struct btf *btf = env->btf;
+ u32 nr_types = btf->nr_types;
+ u32 *resolved_sizes = NULL;
+ u32 *resolved_ids = NULL;
+ u8 *visit_states = NULL;
+
+ resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!resolved_sizes)
+ goto nomem;
+
+ resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!resolved_ids)
+ goto nomem;
+
+ visit_states = kvcalloc(nr_types, sizeof(*visit_states),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!visit_states)
+ goto nomem;
+
+ btf->resolved_sizes = resolved_sizes;
+ btf->resolved_ids = resolved_ids;
+ env->visit_states = visit_states;
+
+ return 0;
+
+nomem:
+ kvfree(resolved_sizes);
+ kvfree(resolved_ids);
+ kvfree(visit_states);
+ return -ENOMEM;
+}
+
+static void btf_verifier_env_free(struct btf_verifier_env *env)
+{
+ kvfree(env->visit_states);
+ kfree(env);
+}
+
+static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
+ const struct btf_type *next_type)
+{
+ switch (env->resolve_mode) {
+ case RESOLVE_TBD:
+ /* int, enum or void is a sink */
+ return !btf_type_needs_resolve(next_type);
+ case RESOLVE_PTR:
+ /* int, enum, void, struct, array, func or func_proto is a sink
+ * for ptr
+ */
+ return !btf_type_is_modifier(next_type) &&
+ !btf_type_is_ptr(next_type);
+ case RESOLVE_STRUCT_OR_ARRAY:
+ /* int, enum, void, ptr, func or func_proto is a sink
+ * for struct and array
+ */
+ return !btf_type_is_modifier(next_type) &&
+ !btf_type_is_array(next_type) &&
+ !btf_type_is_struct(next_type);
+ default:
+ BUG();
+ }
+}
+
+static bool env_type_is_resolved(const struct btf_verifier_env *env,
+ u32 type_id)
+{
+ /* base BTF types should be resolved by now */
+ if (type_id < env->btf->start_id)
+ return true;
+
+ return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
+}
+
+static int env_stack_push(struct btf_verifier_env *env,
+ const struct btf_type *t, u32 type_id)
+{
+ const struct btf *btf = env->btf;
+ struct resolve_vertex *v;
+
+ if (env->top_stack == MAX_RESOLVE_DEPTH)
+ return -E2BIG;
+
+ if (type_id < btf->start_id
+ || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
+ return -EEXIST;
+
+ env->visit_states[type_id - btf->start_id] = VISITED;
+
+ v = &env->stack[env->top_stack++];
+ v->t = t;
+ v->type_id = type_id;
+ v->next_member = 0;
+
+ if (env->resolve_mode == RESOLVE_TBD) {
+ if (btf_type_is_ptr(t))
+ env->resolve_mode = RESOLVE_PTR;
+ else if (btf_type_is_struct(t) || btf_type_is_array(t))
+ env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
+ }
+
+ return 0;
+}
+
+static void env_stack_set_next_member(struct btf_verifier_env *env,
+ u16 next_member)
+{
+ env->stack[env->top_stack - 1].next_member = next_member;
+}
+
+static void env_stack_pop_resolved(struct btf_verifier_env *env,
+ u32 resolved_type_id,
+ u32 resolved_size)
+{
+ u32 type_id = env->stack[--(env->top_stack)].type_id;
+ struct btf *btf = env->btf;
+
+ type_id -= btf->start_id; /* adjust to local type id */
+ btf->resolved_sizes[type_id] = resolved_size;
+ btf->resolved_ids[type_id] = resolved_type_id;
+ env->visit_states[type_id] = RESOLVED;
+}
+
+static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
+{
+ return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
+}
+
+/* Resolve the size of a passed-in "type"
+ *
+ * type: is an array (e.g. u32 array[x][y])
+ * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
+ * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
+ * corresponds to the return type.
+ * *elem_type: u32
+ * *elem_id: id of u32
+ * *total_nelems: (x * y). Hence, individual elem size is
+ * (*type_size / *total_nelems)
+ * *type_id: id of type if it's changed within the function, 0 if not
+ *
+ * type: is not an array (e.g. const struct X)
+ * return type: type "struct X"
+ * *type_size: sizeof(struct X)
+ * *elem_type: same as return type ("struct X")
+ * *elem_id: 0
+ * *total_nelems: 1
+ * *type_id: id of type if it's changed within the function, 0 if not
+ */
+static const struct btf_type *
+__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
+ u32 *type_size, const struct btf_type **elem_type,
+ u32 *elem_id, u32 *total_nelems, u32 *type_id)
+{
+ const struct btf_type *array_type = NULL;
+ const struct btf_array *array = NULL;
+ u32 i, size, nelems = 1, id = 0;
+
+ for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
+ switch (BTF_INFO_KIND(type->info)) {
+ /* type->size can be used */
+ case BTF_KIND_INT:
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ case BTF_KIND_ENUM:
+ case BTF_KIND_FLOAT:
+ case BTF_KIND_ENUM64:
+ size = type->size;
+ goto resolved;
+
+ case BTF_KIND_PTR:
+ size = sizeof(void *);
+ goto resolved;
+
+ /* Modifiers */
+ case BTF_KIND_TYPEDEF:
+ case BTF_KIND_VOLATILE:
+ case BTF_KIND_CONST:
+ case BTF_KIND_RESTRICT:
+ case BTF_KIND_TYPE_TAG:
+ id = type->type;
+ type = btf_type_by_id(btf, type->type);
+ break;
+
+ case BTF_KIND_ARRAY:
+ if (!array_type)
+ array_type = type;
+ array = btf_type_array(type);
+ if (nelems && array->nelems > U32_MAX / nelems)
+ return ERR_PTR(-EINVAL);
+ nelems *= array->nelems;
+ type = btf_type_by_id(btf, array->type);
+ break;
+
+ /* type without size */
+ default:
+ return ERR_PTR(-EINVAL);
+ }
+ }
+
+ return ERR_PTR(-EINVAL);
+
+resolved:
+ if (nelems && size > U32_MAX / nelems)
+ return ERR_PTR(-EINVAL);
+
+ *type_size = nelems * size;
+ if (total_nelems)
+ *total_nelems = nelems;
+ if (elem_type)
+ *elem_type = type;
+ if (elem_id)
+ *elem_id = array ? array->type : 0;
+ if (type_id && id)
+ *type_id = id;
+
+ return array_type ? : type;
+}
+
+const struct btf_type *
+btf_resolve_size(const struct btf *btf, const struct btf_type *type,
+ u32 *type_size)
+{
+ return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
+}
+
+static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
+{
+ while (type_id < btf->start_id)
+ btf = btf->base_btf;
+
+ return btf->resolved_ids[type_id - btf->start_id];
+}
+
+/* The input param "type_id" must point to a needs_resolve type */
+static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
+ u32 *type_id)
+{
+ *type_id = btf_resolved_type_id(btf, *type_id);
+ return btf_type_by_id(btf, *type_id);
+}
+
+static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
+{
+ while (type_id < btf->start_id)
+ btf = btf->base_btf;
+
+ return btf->resolved_sizes[type_id - btf->start_id];
+}
+
+const struct btf_type *btf_type_id_size(const struct btf *btf,
+ u32 *type_id, u32 *ret_size)
+{
+ const struct btf_type *size_type;
+ u32 size_type_id = *type_id;
+ u32 size = 0;
+
+ size_type = btf_type_by_id(btf, size_type_id);
+ if (btf_type_nosize_or_null(size_type))
+ return NULL;
+
+ if (btf_type_has_size(size_type)) {
+ size = size_type->size;
+ } else if (btf_type_is_array(size_type)) {
+ size = btf_resolved_type_size(btf, size_type_id);
+ } else if (btf_type_is_ptr(size_type)) {
+ size = sizeof(void *);
+ } else {
+ if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
+ !btf_type_is_var(size_type)))
+ return NULL;
+
+ size_type_id = btf_resolved_type_id(btf, size_type_id);
+ size_type = btf_type_by_id(btf, size_type_id);
+ if (btf_type_nosize_or_null(size_type))
+ return NULL;
+ else if (btf_type_has_size(size_type))
+ size = size_type->size;
+ else if (btf_type_is_array(size_type))
+ size = btf_resolved_type_size(btf, size_type_id);
+ else if (btf_type_is_ptr(size_type))
+ size = sizeof(void *);
+ else
+ return NULL;
+ }
+
+ *type_id = size_type_id;
+ if (ret_size)
+ *ret_size = size;
+
+ return size_type;
+}
+
+static int btf_df_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ btf_verifier_log_basic(env, struct_type,
+ "Unsupported check_member");
+ return -EINVAL;
+}
+
+static int btf_df_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ btf_verifier_log_basic(env, struct_type,
+ "Unsupported check_kflag_member");
+ return -EINVAL;
+}
+
+/* Used for ptr, array struct/union and float type members.
+ * int, enum and modifier types have their specific callback functions.
+ */
+static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member bitfield_size");
+ return -EINVAL;
+ }
+
+ /* bitfield size is 0, so member->offset represents bit offset only.
+ * It is safe to call non kflag check_member variants.
+ */
+ return btf_type_ops(member_type)->check_member(env, struct_type,
+ member,
+ member_type);
+}
+
+static int btf_df_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ btf_verifier_log_basic(env, v->t, "Unsupported resolve");
+ return -EINVAL;
+}
+
+static void btf_df_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offsets,
+ struct btf_show *show)
+{
+ btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
+}
+
+static int btf_int_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 int_data = btf_type_int(member_type);
+ u32 struct_bits_off = member->offset;
+ u32 struct_size = struct_type->size;
+ u32 nr_copy_bits;
+ u32 bytes_offset;
+
+ if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "bits_offset exceeds U32_MAX");
+ return -EINVAL;
+ }
+
+ struct_bits_off += BTF_INT_OFFSET(int_data);
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ nr_copy_bits = BTF_INT_BITS(int_data) +
+ BITS_PER_BYTE_MASKED(struct_bits_off);
+
+ if (nr_copy_bits > BITS_PER_U128) {
+ btf_verifier_log_member(env, struct_type, member,
+ "nr_copy_bits exceeds 128");
+ return -EINVAL;
+ }
+
+ if (struct_size < bytes_offset ||
+ struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int btf_int_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
+ u32 int_data = btf_type_int(member_type);
+ u32 struct_size = struct_type->size;
+ u32 nr_copy_bits;
+
+ /* a regular int type is required for the kflag int member */
+ if (!btf_type_int_is_regular(member_type)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member base type");
+ return -EINVAL;
+ }
+
+ /* check sanity of bitfield size */
+ nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
+ struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
+ nr_int_data_bits = BTF_INT_BITS(int_data);
+ if (!nr_bits) {
+ /* Not a bitfield member, member offset must be at byte
+ * boundary.
+ */
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member offset");
+ return -EINVAL;
+ }
+
+ nr_bits = nr_int_data_bits;
+ } else if (nr_bits > nr_int_data_bits) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member bitfield_size");
+ return -EINVAL;
+ }
+
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
+ if (nr_copy_bits > BITS_PER_U128) {
+ btf_verifier_log_member(env, struct_type, member,
+ "nr_copy_bits exceeds 128");
+ return -EINVAL;
+ }
+
+ if (struct_size < bytes_offset ||
+ struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static s32 btf_int_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ u32 int_data, nr_bits, meta_needed = sizeof(int_data);
+ u16 encoding;
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ int_data = btf_type_int(t);
+ if (int_data & ~BTF_INT_MASK) {
+ btf_verifier_log_basic(env, t, "Invalid int_data:%x",
+ int_data);
+ return -EINVAL;
+ }
+
+ nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
+
+ if (nr_bits > BITS_PER_U128) {
+ btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
+ BITS_PER_U128);
+ return -EINVAL;
+ }
+
+ if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
+ btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
+ return -EINVAL;
+ }
+
+ /*
+ * Only one of the encoding bits is allowed and it
+ * should be sufficient for the pretty print purpose (i.e. decoding).
+ * Multiple bits can be allowed later if it is found
+ * to be insufficient.
+ */
+ encoding = BTF_INT_ENCODING(int_data);
+ if (encoding &&
+ encoding != BTF_INT_SIGNED &&
+ encoding != BTF_INT_CHAR &&
+ encoding != BTF_INT_BOOL) {
+ btf_verifier_log_type(env, t, "Unsupported encoding");
+ return -ENOTSUPP;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static void btf_int_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ int int_data = btf_type_int(t);
+
+ btf_verifier_log(env,
+ "size=%u bits_offset=%u nr_bits=%u encoding=%s",
+ t->size, BTF_INT_OFFSET(int_data),
+ BTF_INT_BITS(int_data),
+ btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
+}
+
+static void btf_int128_print(struct btf_show *show, void *data)
+{
+ /* data points to a __int128 number.
+ * Suppose
+ * int128_num = *(__int128 *)data;
+ * The below formulas shows what upper_num and lower_num represents:
+ * upper_num = int128_num >> 64;
+ * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
+ */
+ u64 upper_num, lower_num;
+
+#ifdef __BIG_ENDIAN_BITFIELD
+ upper_num = *(u64 *)data;
+ lower_num = *(u64 *)(data + 8);
+#else
+ upper_num = *(u64 *)(data + 8);
+ lower_num = *(u64 *)data;
+#endif
+ if (upper_num == 0)
+ btf_show_type_value(show, "0x%llx", lower_num);
+ else
+ btf_show_type_values(show, "0x%llx%016llx", upper_num,
+ lower_num);
+}
+
+static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
+ u16 right_shift_bits)
+{
+ u64 upper_num, lower_num;
+
+#ifdef __BIG_ENDIAN_BITFIELD
+ upper_num = print_num[0];
+ lower_num = print_num[1];
+#else
+ upper_num = print_num[1];
+ lower_num = print_num[0];
+#endif
+
+ /* shake out un-needed bits by shift/or operations */
+ if (left_shift_bits >= 64) {
+ upper_num = lower_num << (left_shift_bits - 64);
+ lower_num = 0;
+ } else {
+ upper_num = (upper_num << left_shift_bits) |
+ (lower_num >> (64 - left_shift_bits));
+ lower_num = lower_num << left_shift_bits;
+ }
+
+ if (right_shift_bits >= 64) {
+ lower_num = upper_num >> (right_shift_bits - 64);
+ upper_num = 0;
+ } else {
+ lower_num = (lower_num >> right_shift_bits) |
+ (upper_num << (64 - right_shift_bits));
+ upper_num = upper_num >> right_shift_bits;
+ }
+
+#ifdef __BIG_ENDIAN_BITFIELD
+ print_num[0] = upper_num;
+ print_num[1] = lower_num;
+#else
+ print_num[0] = lower_num;
+ print_num[1] = upper_num;
+#endif
+}
+
+static void btf_bitfield_show(void *data, u8 bits_offset,
+ u8 nr_bits, struct btf_show *show)
+{
+ u16 left_shift_bits, right_shift_bits;
+ u8 nr_copy_bytes;
+ u8 nr_copy_bits;
+ u64 print_num[2] = {};
+
+ nr_copy_bits = nr_bits + bits_offset;
+ nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
+
+ memcpy(print_num, data, nr_copy_bytes);
+
+#ifdef __BIG_ENDIAN_BITFIELD
+ left_shift_bits = bits_offset;
+#else
+ left_shift_bits = BITS_PER_U128 - nr_copy_bits;
+#endif
+ right_shift_bits = BITS_PER_U128 - nr_bits;
+
+ btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
+ btf_int128_print(show, print_num);
+}
+
+
+static void btf_int_bits_show(const struct btf *btf,
+ const struct btf_type *t,
+ void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ u32 int_data = btf_type_int(t);
+ u8 nr_bits = BTF_INT_BITS(int_data);
+ u8 total_bits_offset;
+
+ /*
+ * bits_offset is at most 7.
+ * BTF_INT_OFFSET() cannot exceed 128 bits.
+ */
+ total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
+ data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
+ bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
+ btf_bitfield_show(data, bits_offset, nr_bits, show);
+}
+
+static void btf_int_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ u32 int_data = btf_type_int(t);
+ u8 encoding = BTF_INT_ENCODING(int_data);
+ bool sign = encoding & BTF_INT_SIGNED;
+ u8 nr_bits = BTF_INT_BITS(int_data);
+ void *safe_data;
+
+ safe_data = btf_show_start_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ if (bits_offset || BTF_INT_OFFSET(int_data) ||
+ BITS_PER_BYTE_MASKED(nr_bits)) {
+ btf_int_bits_show(btf, t, safe_data, bits_offset, show);
+ goto out;
+ }
+
+ switch (nr_bits) {
+ case 128:
+ btf_int128_print(show, safe_data);
+ break;
+ case 64:
+ if (sign)
+ btf_show_type_value(show, "%lld", *(s64 *)safe_data);
+ else
+ btf_show_type_value(show, "%llu", *(u64 *)safe_data);
+ break;
+ case 32:
+ if (sign)
+ btf_show_type_value(show, "%d", *(s32 *)safe_data);
+ else
+ btf_show_type_value(show, "%u", *(u32 *)safe_data);
+ break;
+ case 16:
+ if (sign)
+ btf_show_type_value(show, "%d", *(s16 *)safe_data);
+ else
+ btf_show_type_value(show, "%u", *(u16 *)safe_data);
+ break;
+ case 8:
+ if (show->state.array_encoding == BTF_INT_CHAR) {
+ /* check for null terminator */
+ if (show->state.array_terminated)
+ break;
+ if (*(char *)data == '\0') {
+ show->state.array_terminated = 1;
+ break;
+ }
+ if (isprint(*(char *)data)) {
+ btf_show_type_value(show, "'%c'",
+ *(char *)safe_data);
+ break;
+ }
+ }
+ if (sign)
+ btf_show_type_value(show, "%d", *(s8 *)safe_data);
+ else
+ btf_show_type_value(show, "%u", *(u8 *)safe_data);
+ break;
+ default:
+ btf_int_bits_show(btf, t, safe_data, bits_offset, show);
+ break;
+ }
+out:
+ btf_show_end_type(show);
+}
+
+static const struct btf_kind_operations int_ops = {
+ .check_meta = btf_int_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_int_check_member,
+ .check_kflag_member = btf_int_check_kflag_member,
+ .log_details = btf_int_log,
+ .show = btf_int_show,
+};
+
+static int btf_modifier_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ const struct btf_type *resolved_type;
+ u32 resolved_type_id = member->type;
+ struct btf_member resolved_member;
+ struct btf *btf = env->btf;
+
+ resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
+ if (!resolved_type) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member");
+ return -EINVAL;
+ }
+
+ resolved_member = *member;
+ resolved_member.type = resolved_type_id;
+
+ return btf_type_ops(resolved_type)->check_member(env, struct_type,
+ &resolved_member,
+ resolved_type);
+}
+
+static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ const struct btf_type *resolved_type;
+ u32 resolved_type_id = member->type;
+ struct btf_member resolved_member;
+ struct btf *btf = env->btf;
+
+ resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
+ if (!resolved_type) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member");
+ return -EINVAL;
+ }
+
+ resolved_member = *member;
+ resolved_member.type = resolved_type_id;
+
+ return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
+ &resolved_member,
+ resolved_type);
+}
+
+static int btf_ptr_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_size, struct_bits_off, bytes_offset;
+
+ struct_size = struct_type->size;
+ struct_bits_off = member->offset;
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ if (struct_size - bytes_offset < sizeof(void *)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int btf_ref_type_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const char *value;
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (!BTF_TYPE_ID_VALID(t->type)) {
+ btf_verifier_log_type(env, t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ /* typedef/type_tag type must have a valid name, and other ref types,
+ * volatile, const, restrict, should have a null name.
+ */
+ if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
+ if (!t->name_off ||
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+ } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
+ value = btf_name_by_offset(env->btf, t->name_off);
+ if (!value || !value[0]) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+ } else {
+ if (t->name_off) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return 0;
+}
+
+static int btf_modifier_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *t = v->t;
+ const struct btf_type *next_type;
+ u32 next_type_id = t->type;
+ struct btf *btf = env->btf;
+
+ next_type = btf_type_by_id(btf, next_type_id);
+ if (!next_type || btf_type_is_resolve_source_only(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, next_type) &&
+ !env_type_is_resolved(env, next_type_id))
+ return env_stack_push(env, next_type, next_type_id);
+
+ /* Figure out the resolved next_type_id with size.
+ * They will be stored in the current modifier's
+ * resolved_ids and resolved_sizes such that it can
+ * save us a few type-following when we use it later (e.g. in
+ * pretty print).
+ */
+ if (!btf_type_id_size(btf, &next_type_id, NULL)) {
+ if (env_type_is_resolved(env, next_type_id))
+ next_type = btf_type_id_resolve(btf, &next_type_id);
+
+ /* "typedef void new_void", "const void"...etc */
+ if (!btf_type_is_void(next_type) &&
+ !btf_type_is_fwd(next_type) &&
+ !btf_type_is_func_proto(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+ }
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+
+ return 0;
+}
+
+static int btf_var_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *next_type;
+ const struct btf_type *t = v->t;
+ u32 next_type_id = t->type;
+ struct btf *btf = env->btf;
+
+ next_type = btf_type_by_id(btf, next_type_id);
+ if (!next_type || btf_type_is_resolve_source_only(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, next_type) &&
+ !env_type_is_resolved(env, next_type_id))
+ return env_stack_push(env, next_type, next_type_id);
+
+ if (btf_type_is_modifier(next_type)) {
+ const struct btf_type *resolved_type;
+ u32 resolved_type_id;
+
+ resolved_type_id = next_type_id;
+ resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
+
+ if (btf_type_is_ptr(resolved_type) &&
+ !env_type_is_resolve_sink(env, resolved_type) &&
+ !env_type_is_resolved(env, resolved_type_id))
+ return env_stack_push(env, resolved_type,
+ resolved_type_id);
+ }
+
+ /* We must resolve to something concrete at this point, no
+ * forward types or similar that would resolve to size of
+ * zero is allowed.
+ */
+ if (!btf_type_id_size(btf, &next_type_id, NULL)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+
+ return 0;
+}
+
+static int btf_ptr_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *next_type;
+ const struct btf_type *t = v->t;
+ u32 next_type_id = t->type;
+ struct btf *btf = env->btf;
+
+ next_type = btf_type_by_id(btf, next_type_id);
+ if (!next_type || btf_type_is_resolve_source_only(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, next_type) &&
+ !env_type_is_resolved(env, next_type_id))
+ return env_stack_push(env, next_type, next_type_id);
+
+ /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
+ * the modifier may have stopped resolving when it was resolved
+ * to a ptr (last-resolved-ptr).
+ *
+ * We now need to continue from the last-resolved-ptr to
+ * ensure the last-resolved-ptr will not referring back to
+ * the current ptr (t).
+ */
+ if (btf_type_is_modifier(next_type)) {
+ const struct btf_type *resolved_type;
+ u32 resolved_type_id;
+
+ resolved_type_id = next_type_id;
+ resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
+
+ if (btf_type_is_ptr(resolved_type) &&
+ !env_type_is_resolve_sink(env, resolved_type) &&
+ !env_type_is_resolved(env, resolved_type_id))
+ return env_stack_push(env, resolved_type,
+ resolved_type_id);
+ }
+
+ if (!btf_type_id_size(btf, &next_type_id, NULL)) {
+ if (env_type_is_resolved(env, next_type_id))
+ next_type = btf_type_id_resolve(btf, &next_type_id);
+
+ if (!btf_type_is_void(next_type) &&
+ !btf_type_is_fwd(next_type) &&
+ !btf_type_is_func_proto(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+ }
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+
+ return 0;
+}
+
+static void btf_modifier_show(const struct btf *btf,
+ const struct btf_type *t,
+ u32 type_id, void *data,
+ u8 bits_offset, struct btf_show *show)
+{
+ if (btf->resolved_ids)
+ t = btf_type_id_resolve(btf, &type_id);
+ else
+ t = btf_type_skip_modifiers(btf, type_id, NULL);
+
+ btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
+}
+
+static void btf_var_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ t = btf_type_id_resolve(btf, &type_id);
+
+ btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
+}
+
+static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ void *safe_data;
+
+ safe_data = btf_show_start_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
+ if (show->flags & BTF_SHOW_PTR_RAW)
+ btf_show_type_value(show, "0x%px", *(void **)safe_data);
+ else
+ btf_show_type_value(show, "0x%p", *(void **)safe_data);
+ btf_show_end_type(show);
+}
+
+static void btf_ref_type_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "type_id=%u", t->type);
+}
+
+static struct btf_kind_operations modifier_ops = {
+ .check_meta = btf_ref_type_check_meta,
+ .resolve = btf_modifier_resolve,
+ .check_member = btf_modifier_check_member,
+ .check_kflag_member = btf_modifier_check_kflag_member,
+ .log_details = btf_ref_type_log,
+ .show = btf_modifier_show,
+};
+
+static struct btf_kind_operations ptr_ops = {
+ .check_meta = btf_ref_type_check_meta,
+ .resolve = btf_ptr_resolve,
+ .check_member = btf_ptr_check_member,
+ .check_kflag_member = btf_generic_check_kflag_member,
+ .log_details = btf_ref_type_log,
+ .show = btf_ptr_show,
+};
+
+static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (t->type) {
+ btf_verifier_log_type(env, t, "type != 0");
+ return -EINVAL;
+ }
+
+ /* fwd type must have a valid name */
+ if (!t->name_off ||
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return 0;
+}
+
+static void btf_fwd_type_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
+}
+
+static struct btf_kind_operations fwd_ops = {
+ .check_meta = btf_fwd_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_fwd_type_log,
+ .show = btf_df_show,
+};
+
+static int btf_array_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off = member->offset;
+ u32 struct_size, bytes_offset;
+ u32 array_type_id, array_size;
+ struct btf *btf = env->btf;
+
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ array_type_id = member->type;
+ btf_type_id_size(btf, &array_type_id, &array_size);
+ struct_size = struct_type->size;
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ if (struct_size - bytes_offset < array_size) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static s32 btf_array_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_array *array = btf_type_array(t);
+ u32 meta_needed = sizeof(*array);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ /* array type should not have a name */
+ if (t->name_off) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (t->size) {
+ btf_verifier_log_type(env, t, "size != 0");
+ return -EINVAL;
+ }
+
+ /* Array elem type and index type cannot be in type void,
+ * so !array->type and !array->index_type are not allowed.
+ */
+ if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
+ btf_verifier_log_type(env, t, "Invalid elem");
+ return -EINVAL;
+ }
+
+ if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
+ btf_verifier_log_type(env, t, "Invalid index");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static int btf_array_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_array *array = btf_type_array(v->t);
+ const struct btf_type *elem_type, *index_type;
+ u32 elem_type_id, index_type_id;
+ struct btf *btf = env->btf;
+ u32 elem_size;
+
+ /* Check array->index_type */
+ index_type_id = array->index_type;
+ index_type = btf_type_by_id(btf, index_type_id);
+ if (btf_type_nosize_or_null(index_type) ||
+ btf_type_is_resolve_source_only(index_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid index");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, index_type) &&
+ !env_type_is_resolved(env, index_type_id))
+ return env_stack_push(env, index_type, index_type_id);
+
+ index_type = btf_type_id_size(btf, &index_type_id, NULL);
+ if (!index_type || !btf_type_is_int(index_type) ||
+ !btf_type_int_is_regular(index_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid index");
+ return -EINVAL;
+ }
+
+ /* Check array->type */
+ elem_type_id = array->type;
+ elem_type = btf_type_by_id(btf, elem_type_id);
+ if (btf_type_nosize_or_null(elem_type) ||
+ btf_type_is_resolve_source_only(elem_type)) {
+ btf_verifier_log_type(env, v->t,
+ "Invalid elem");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, elem_type) &&
+ !env_type_is_resolved(env, elem_type_id))
+ return env_stack_push(env, elem_type, elem_type_id);
+
+ elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
+ if (!elem_type) {
+ btf_verifier_log_type(env, v->t, "Invalid elem");
+ return -EINVAL;
+ }
+
+ if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid array of int");
+ return -EINVAL;
+ }
+
+ if (array->nelems && elem_size > U32_MAX / array->nelems) {
+ btf_verifier_log_type(env, v->t,
+ "Array size overflows U32_MAX");
+ return -EINVAL;
+ }
+
+ env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
+
+ return 0;
+}
+
+static void btf_array_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ const struct btf_array *array = btf_type_array(t);
+
+ btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
+ array->type, array->index_type, array->nelems);
+}
+
+static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_array *array = btf_type_array(t);
+ const struct btf_kind_operations *elem_ops;
+ const struct btf_type *elem_type;
+ u32 i, elem_size = 0, elem_type_id;
+ u16 encoding = 0;
+
+ elem_type_id = array->type;
+ elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
+ if (elem_type && btf_type_has_size(elem_type))
+ elem_size = elem_type->size;
+
+ if (elem_type && btf_type_is_int(elem_type)) {
+ u32 int_type = btf_type_int(elem_type);
+
+ encoding = BTF_INT_ENCODING(int_type);
+
+ /*
+ * BTF_INT_CHAR encoding never seems to be set for
+ * char arrays, so if size is 1 and element is
+ * printable as a char, we'll do that.
+ */
+ if (elem_size == 1)
+ encoding = BTF_INT_CHAR;
+ }
+
+ if (!btf_show_start_array_type(show, t, type_id, encoding, data))
+ return;
+
+ if (!elem_type)
+ goto out;
+ elem_ops = btf_type_ops(elem_type);
+
+ for (i = 0; i < array->nelems; i++) {
+
+ btf_show_start_array_member(show);
+
+ elem_ops->show(btf, elem_type, elem_type_id, data,
+ bits_offset, show);
+ data += elem_size;
+
+ btf_show_end_array_member(show);
+
+ if (show->state.array_terminated)
+ break;
+ }
+out:
+ btf_show_end_array_type(show);
+}
+
+static void btf_array_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_member *m = show->state.member;
+
+ /*
+ * First check if any members would be shown (are non-zero).
+ * See comments above "struct btf_show" definition for more
+ * details on how this works at a high-level.
+ */
+ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
+ if (!show->state.depth_check) {
+ show->state.depth_check = show->state.depth + 1;
+ show->state.depth_to_show = 0;
+ }
+ __btf_array_show(btf, t, type_id, data, bits_offset, show);
+ show->state.member = m;
+
+ if (show->state.depth_check != show->state.depth + 1)
+ return;
+ show->state.depth_check = 0;
+
+ if (show->state.depth_to_show <= show->state.depth)
+ return;
+ /*
+ * Reaching here indicates we have recursed and found
+ * non-zero array member(s).
+ */
+ }
+ __btf_array_show(btf, t, type_id, data, bits_offset, show);
+}
+
+static struct btf_kind_operations array_ops = {
+ .check_meta = btf_array_check_meta,
+ .resolve = btf_array_resolve,
+ .check_member = btf_array_check_member,
+ .check_kflag_member = btf_generic_check_kflag_member,
+ .log_details = btf_array_log,
+ .show = btf_array_show,
+};
+
+static int btf_struct_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off = member->offset;
+ u32 struct_size, bytes_offset;
+
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ struct_size = struct_type->size;
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ if (struct_size - bytes_offset < member_type->size) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static s32 btf_struct_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
+ const struct btf_member *member;
+ u32 meta_needed, last_offset;
+ struct btf *btf = env->btf;
+ u32 struct_size = t->size;
+ u32 offset;
+ u16 i;
+
+ meta_needed = btf_type_vlen(t) * sizeof(*member);
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ /* struct type either no name or a valid one */
+ if (t->name_off &&
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ last_offset = 0;
+ for_each_member(i, t, member) {
+ if (!btf_name_offset_valid(btf, member->name_off)) {
+ btf_verifier_log_member(env, t, member,
+ "Invalid member name_offset:%u",
+ member->name_off);
+ return -EINVAL;
+ }
+
+ /* struct member either no name or a valid one */
+ if (member->name_off &&
+ !btf_name_valid_identifier(btf, member->name_off)) {
+ btf_verifier_log_member(env, t, member, "Invalid name");
+ return -EINVAL;
+ }
+ /* A member cannot be in type void */
+ if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
+ btf_verifier_log_member(env, t, member,
+ "Invalid type_id");
+ return -EINVAL;
+ }
+
+ offset = __btf_member_bit_offset(t, member);
+ if (is_union && offset) {
+ btf_verifier_log_member(env, t, member,
+ "Invalid member bits_offset");
+ return -EINVAL;
+ }
+
+ /*
+ * ">" instead of ">=" because the last member could be
+ * "char a[0];"
+ */
+ if (last_offset > offset) {
+ btf_verifier_log_member(env, t, member,
+ "Invalid member bits_offset");
+ return -EINVAL;
+ }
+
+ if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
+ btf_verifier_log_member(env, t, member,
+ "Member bits_offset exceeds its struct size");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_member(env, t, member, NULL);
+ last_offset = offset;
+ }
+
+ return meta_needed;
+}
+
+static int btf_struct_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_member *member;
+ int err;
+ u16 i;
+
+ /* Before continue resolving the next_member,
+ * ensure the last member is indeed resolved to a
+ * type with size info.
+ */
+ if (v->next_member) {
+ const struct btf_type *last_member_type;
+ const struct btf_member *last_member;
+ u32 last_member_type_id;
+
+ last_member = btf_type_member(v->t) + v->next_member - 1;
+ last_member_type_id = last_member->type;
+ if (WARN_ON_ONCE(!env_type_is_resolved(env,
+ last_member_type_id)))
+ return -EINVAL;
+
+ last_member_type = btf_type_by_id(env->btf,
+ last_member_type_id);
+ if (btf_type_kflag(v->t))
+ err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
+ last_member,
+ last_member_type);
+ else
+ err = btf_type_ops(last_member_type)->check_member(env, v->t,
+ last_member,
+ last_member_type);
+ if (err)
+ return err;
+ }
+
+ for_each_member_from(i, v->next_member, v->t, member) {
+ u32 member_type_id = member->type;
+ const struct btf_type *member_type = btf_type_by_id(env->btf,
+ member_type_id);
+
+ if (btf_type_nosize_or_null(member_type) ||
+ btf_type_is_resolve_source_only(member_type)) {
+ btf_verifier_log_member(env, v->t, member,
+ "Invalid member");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, member_type) &&
+ !env_type_is_resolved(env, member_type_id)) {
+ env_stack_set_next_member(env, i + 1);
+ return env_stack_push(env, member_type, member_type_id);
+ }
+
+ if (btf_type_kflag(v->t))
+ err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
+ member,
+ member_type);
+ else
+ err = btf_type_ops(member_type)->check_member(env, v->t,
+ member,
+ member_type);
+ if (err)
+ return err;
+ }
+
+ env_stack_pop_resolved(env, 0, 0);
+
+ return 0;
+}
+
+static void btf_struct_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
+}
+
+enum btf_field_type {
+ BTF_FIELD_SPIN_LOCK,
+ BTF_FIELD_TIMER,
+ BTF_FIELD_KPTR,
+};
+
+enum {
+ BTF_FIELD_IGNORE = 0,
+ BTF_FIELD_FOUND = 1,
+};
+
+struct btf_field_info {
+ u32 type_id;
+ u32 off;
+ enum bpf_kptr_type type;
+};
+
+static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
+ u32 off, int sz, struct btf_field_info *info)
+{
+ if (!__btf_type_is_struct(t))
+ return BTF_FIELD_IGNORE;
+ if (t->size != sz)
+ return BTF_FIELD_IGNORE;
+ info->off = off;
+ return BTF_FIELD_FOUND;
+}
+
+static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
+ u32 off, int sz, struct btf_field_info *info)
+{
+ enum bpf_kptr_type type;
+ u32 res_id;
+
+ /* For PTR, sz is always == 8 */
+ if (!btf_type_is_ptr(t))
+ return BTF_FIELD_IGNORE;
+ t = btf_type_by_id(btf, t->type);
+
+ if (!btf_type_is_type_tag(t))
+ return BTF_FIELD_IGNORE;
+ /* Reject extra tags */
+ if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
+ return -EINVAL;
+ if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
+ type = BPF_KPTR_UNREF;
+ else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
+ type = BPF_KPTR_REF;
+ else
+ return -EINVAL;
+
+ /* Get the base type */
+ t = btf_type_skip_modifiers(btf, t->type, &res_id);
+ /* Only pointer to struct is allowed */
+ if (!__btf_type_is_struct(t))
+ return -EINVAL;
+
+ info->type_id = res_id;
+ info->off = off;
+ info->type = type;
+ return BTF_FIELD_FOUND;
+}
+
+static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
+ const char *name, int sz, int align,
+ enum btf_field_type field_type,
+ struct btf_field_info *info, int info_cnt)
+{
+ const struct btf_member *member;
+ struct btf_field_info tmp;
+ int ret, idx = 0;
+ u32 i, off;
+
+ for_each_member(i, t, member) {
+ const struct btf_type *member_type = btf_type_by_id(btf,
+ member->type);
+
+ if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
+ continue;
+
+ off = __btf_member_bit_offset(t, member);
+ if (off % 8)
+ /* valid C code cannot generate such BTF */
+ return -EINVAL;
+ off /= 8;
+ if (off % align)
+ return -EINVAL;
+
+ switch (field_type) {
+ case BTF_FIELD_SPIN_LOCK:
+ case BTF_FIELD_TIMER:
+ ret = btf_find_struct(btf, member_type, off, sz,
+ idx < info_cnt ? &info[idx] : &tmp);
+ if (ret < 0)
+ return ret;
+ break;
+ case BTF_FIELD_KPTR:
+ ret = btf_find_kptr(btf, member_type, off, sz,
+ idx < info_cnt ? &info[idx] : &tmp);
+ if (ret < 0)
+ return ret;
+ break;
+ default:
+ return -EFAULT;
+ }
+
+ if (ret == BTF_FIELD_IGNORE)
+ continue;
+ if (idx >= info_cnt)
+ return -E2BIG;
+ ++idx;
+ }
+ return idx;
+}
+
+static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
+ const char *name, int sz, int align,
+ enum btf_field_type field_type,
+ struct btf_field_info *info, int info_cnt)
+{
+ const struct btf_var_secinfo *vsi;
+ struct btf_field_info tmp;
+ int ret, idx = 0;
+ u32 i, off;
+
+ for_each_vsi(i, t, vsi) {
+ const struct btf_type *var = btf_type_by_id(btf, vsi->type);
+ const struct btf_type *var_type = btf_type_by_id(btf, var->type);
+
+ off = vsi->offset;
+
+ if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
+ continue;
+ if (vsi->size != sz)
+ continue;
+ if (off % align)
+ return -EINVAL;
+
+ switch (field_type) {
+ case BTF_FIELD_SPIN_LOCK:
+ case BTF_FIELD_TIMER:
+ ret = btf_find_struct(btf, var_type, off, sz,
+ idx < info_cnt ? &info[idx] : &tmp);
+ if (ret < 0)
+ return ret;
+ break;
+ case BTF_FIELD_KPTR:
+ ret = btf_find_kptr(btf, var_type, off, sz,
+ idx < info_cnt ? &info[idx] : &tmp);
+ if (ret < 0)
+ return ret;
+ break;
+ default:
+ return -EFAULT;
+ }
+
+ if (ret == BTF_FIELD_IGNORE)
+ continue;
+ if (idx >= info_cnt)
+ return -E2BIG;
+ ++idx;
+ }
+ return idx;
+}
+
+static int btf_find_field(const struct btf *btf, const struct btf_type *t,
+ enum btf_field_type field_type,
+ struct btf_field_info *info, int info_cnt)
+{
+ const char *name;
+ int sz, align;
+
+ switch (field_type) {
+ case BTF_FIELD_SPIN_LOCK:
+ name = "bpf_spin_lock";
+ sz = sizeof(struct bpf_spin_lock);
+ align = __alignof__(struct bpf_spin_lock);
+ break;
+ case BTF_FIELD_TIMER:
+ name = "bpf_timer";
+ sz = sizeof(struct bpf_timer);
+ align = __alignof__(struct bpf_timer);
+ break;
+ case BTF_FIELD_KPTR:
+ name = NULL;
+ sz = sizeof(u64);
+ align = 8;
+ break;
+ default:
+ return -EFAULT;
+ }
+
+ if (__btf_type_is_struct(t))
+ return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt);
+ else if (btf_type_is_datasec(t))
+ return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt);
+ return -EINVAL;
+}
+
+/* find 'struct bpf_spin_lock' in map value.
+ * return >= 0 offset if found
+ * and < 0 in case of error
+ */
+int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
+{
+ struct btf_field_info info;
+ int ret;
+
+ ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1);
+ if (ret < 0)
+ return ret;
+ if (!ret)
+ return -ENOENT;
+ return info.off;
+}
+
+int btf_find_timer(const struct btf *btf, const struct btf_type *t)
+{
+ struct btf_field_info info;
+ int ret;
+
+ ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1);
+ if (ret < 0)
+ return ret;
+ if (!ret)
+ return -ENOENT;
+ return info.off;
+}
+
+struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf,
+ const struct btf_type *t)
+{
+ struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX];
+ struct bpf_map_value_off *tab;
+ struct btf *kernel_btf = NULL;
+ struct module *mod = NULL;
+ int ret, i, nr_off;
+
+ ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr));
+ if (ret < 0)
+ return ERR_PTR(ret);
+ if (!ret)
+ return NULL;
+
+ nr_off = ret;
+ tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN);
+ if (!tab)
+ return ERR_PTR(-ENOMEM);
+
+ for (i = 0; i < nr_off; i++) {
+ const struct btf_type *t;
+ s32 id;
+
+ /* Find type in map BTF, and use it to look up the matching type
+ * in vmlinux or module BTFs, by name and kind.
+ */
+ t = btf_type_by_id(btf, info_arr[i].type_id);
+ id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
+ &kernel_btf);
+ if (id < 0) {
+ ret = id;
+ goto end;
+ }
+
+ /* Find and stash the function pointer for the destruction function that
+ * needs to be eventually invoked from the map free path.
+ */
+ if (info_arr[i].type == BPF_KPTR_REF) {
+ const struct btf_type *dtor_func;
+ const char *dtor_func_name;
+ unsigned long addr;
+ s32 dtor_btf_id;
+
+ /* This call also serves as a whitelist of allowed objects that
+ * can be used as a referenced pointer and be stored in a map at
+ * the same time.
+ */
+ dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
+ if (dtor_btf_id < 0) {
+ ret = dtor_btf_id;
+ goto end_btf;
+ }
+
+ dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
+ if (!dtor_func) {
+ ret = -ENOENT;
+ goto end_btf;
+ }
+
+ if (btf_is_module(kernel_btf)) {
+ mod = btf_try_get_module(kernel_btf);
+ if (!mod) {
+ ret = -ENXIO;
+ goto end_btf;
+ }
+ }
+
+ /* We already verified dtor_func to be btf_type_is_func
+ * in register_btf_id_dtor_kfuncs.
+ */
+ dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
+ addr = kallsyms_lookup_name(dtor_func_name);
+ if (!addr) {
+ ret = -EINVAL;
+ goto end_mod;
+ }
+ tab->off[i].kptr.dtor = (void *)addr;
+ }
+
+ tab->off[i].offset = info_arr[i].off;
+ tab->off[i].type = info_arr[i].type;
+ tab->off[i].kptr.btf_id = id;
+ tab->off[i].kptr.btf = kernel_btf;
+ tab->off[i].kptr.module = mod;
+ }
+ tab->nr_off = nr_off;
+ return tab;
+end_mod:
+ module_put(mod);
+end_btf:
+ btf_put(kernel_btf);
+end:
+ while (i--) {
+ btf_put(tab->off[i].kptr.btf);
+ if (tab->off[i].kptr.module)
+ module_put(tab->off[i].kptr.module);
+ }
+ kfree(tab);
+ return ERR_PTR(ret);
+}
+
+static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_member *member;
+ void *safe_data;
+ u32 i;
+
+ safe_data = btf_show_start_struct_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ for_each_member(i, t, member) {
+ const struct btf_type *member_type = btf_type_by_id(btf,
+ member->type);
+ const struct btf_kind_operations *ops;
+ u32 member_offset, bitfield_size;
+ u32 bytes_offset;
+ u8 bits8_offset;
+
+ btf_show_start_member(show, member);
+
+ member_offset = __btf_member_bit_offset(t, member);
+ bitfield_size = __btf_member_bitfield_size(t, member);
+ bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
+ bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
+ if (bitfield_size) {
+ safe_data = btf_show_start_type(show, member_type,
+ member->type,
+ data + bytes_offset);
+ if (safe_data)
+ btf_bitfield_show(safe_data,
+ bits8_offset,
+ bitfield_size, show);
+ btf_show_end_type(show);
+ } else {
+ ops = btf_type_ops(member_type);
+ ops->show(btf, member_type, member->type,
+ data + bytes_offset, bits8_offset, show);
+ }
+
+ btf_show_end_member(show);
+ }
+
+ btf_show_end_struct_type(show);
+}
+
+static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_member *m = show->state.member;
+
+ /*
+ * First check if any members would be shown (are non-zero).
+ * See comments above "struct btf_show" definition for more
+ * details on how this works at a high-level.
+ */
+ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
+ if (!show->state.depth_check) {
+ show->state.depth_check = show->state.depth + 1;
+ show->state.depth_to_show = 0;
+ }
+ __btf_struct_show(btf, t, type_id, data, bits_offset, show);
+ /* Restore saved member data here */
+ show->state.member = m;
+ if (show->state.depth_check != show->state.depth + 1)
+ return;
+ show->state.depth_check = 0;
+
+ if (show->state.depth_to_show <= show->state.depth)
+ return;
+ /*
+ * Reaching here indicates we have recursed and found
+ * non-zero child values.
+ */
+ }
+
+ __btf_struct_show(btf, t, type_id, data, bits_offset, show);
+}
+
+static struct btf_kind_operations struct_ops = {
+ .check_meta = btf_struct_check_meta,
+ .resolve = btf_struct_resolve,
+ .check_member = btf_struct_check_member,
+ .check_kflag_member = btf_generic_check_kflag_member,
+ .log_details = btf_struct_log,
+ .show = btf_struct_show,
+};
+
+static int btf_enum_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off = member->offset;
+ u32 struct_size, bytes_offset;
+
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ struct_size = struct_type->size;
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ if (struct_size - bytes_offset < member_type->size) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off, nr_bits, bytes_end, struct_size;
+ u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
+
+ struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
+ nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
+ if (!nr_bits) {
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ nr_bits = int_bitsize;
+ } else if (nr_bits > int_bitsize) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member bitfield_size");
+ return -EINVAL;
+ }
+
+ struct_size = struct_type->size;
+ bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
+ if (struct_size < bytes_end) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static s32 btf_enum_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_enum *enums = btf_type_enum(t);
+ struct btf *btf = env->btf;
+ const char *fmt_str;
+ u16 i, nr_enums;
+ u32 meta_needed;
+
+ nr_enums = btf_type_vlen(t);
+ meta_needed = nr_enums * sizeof(*enums);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (t->size > 8 || !is_power_of_2(t->size)) {
+ btf_verifier_log_type(env, t, "Unexpected size");
+ return -EINVAL;
+ }
+
+ /* enum type either no name or a valid one */
+ if (t->name_off &&
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ for (i = 0; i < nr_enums; i++) {
+ if (!btf_name_offset_valid(btf, enums[i].name_off)) {
+ btf_verifier_log(env, "\tInvalid name_offset:%u",
+ enums[i].name_off);
+ return -EINVAL;
+ }
+
+ /* enum member must have a valid name */
+ if (!enums[i].name_off ||
+ !btf_name_valid_identifier(btf, enums[i].name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (env->log.level == BPF_LOG_KERNEL)
+ continue;
+ fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
+ btf_verifier_log(env, fmt_str,
+ __btf_name_by_offset(btf, enums[i].name_off),
+ enums[i].val);
+ }
+
+ return meta_needed;
+}
+
+static void btf_enum_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
+}
+
+static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_enum *enums = btf_type_enum(t);
+ u32 i, nr_enums = btf_type_vlen(t);
+ void *safe_data;
+ int v;
+
+ safe_data = btf_show_start_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ v = *(int *)safe_data;
+
+ for (i = 0; i < nr_enums; i++) {
+ if (v != enums[i].val)
+ continue;
+
+ btf_show_type_value(show, "%s",
+ __btf_name_by_offset(btf,
+ enums[i].name_off));
+
+ btf_show_end_type(show);
+ return;
+ }
+
+ if (btf_type_kflag(t))
+ btf_show_type_value(show, "%d", v);
+ else
+ btf_show_type_value(show, "%u", v);
+ btf_show_end_type(show);
+}
+
+static struct btf_kind_operations enum_ops = {
+ .check_meta = btf_enum_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_enum_check_member,
+ .check_kflag_member = btf_enum_check_kflag_member,
+ .log_details = btf_enum_log,
+ .show = btf_enum_show,
+};
+
+static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_enum64 *enums = btf_type_enum64(t);
+ struct btf *btf = env->btf;
+ const char *fmt_str;
+ u16 i, nr_enums;
+ u32 meta_needed;
+
+ nr_enums = btf_type_vlen(t);
+ meta_needed = nr_enums * sizeof(*enums);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (t->size > 8 || !is_power_of_2(t->size)) {
+ btf_verifier_log_type(env, t, "Unexpected size");
+ return -EINVAL;
+ }
+
+ /* enum type either no name or a valid one */
+ if (t->name_off &&
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ for (i = 0; i < nr_enums; i++) {
+ if (!btf_name_offset_valid(btf, enums[i].name_off)) {
+ btf_verifier_log(env, "\tInvalid name_offset:%u",
+ enums[i].name_off);
+ return -EINVAL;
+ }
+
+ /* enum member must have a valid name */
+ if (!enums[i].name_off ||
+ !btf_name_valid_identifier(btf, enums[i].name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (env->log.level == BPF_LOG_KERNEL)
+ continue;
+
+ fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
+ btf_verifier_log(env, fmt_str,
+ __btf_name_by_offset(btf, enums[i].name_off),
+ btf_enum64_value(enums + i));
+ }
+
+ return meta_needed;
+}
+
+static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_enum64 *enums = btf_type_enum64(t);
+ u32 i, nr_enums = btf_type_vlen(t);
+ void *safe_data;
+ s64 v;
+
+ safe_data = btf_show_start_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ v = *(u64 *)safe_data;
+
+ for (i = 0; i < nr_enums; i++) {
+ if (v != btf_enum64_value(enums + i))
+ continue;
+
+ btf_show_type_value(show, "%s",
+ __btf_name_by_offset(btf,
+ enums[i].name_off));
+
+ btf_show_end_type(show);
+ return;
+ }
+
+ if (btf_type_kflag(t))
+ btf_show_type_value(show, "%lld", v);
+ else
+ btf_show_type_value(show, "%llu", v);
+ btf_show_end_type(show);
+}
+
+static struct btf_kind_operations enum64_ops = {
+ .check_meta = btf_enum64_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_enum_check_member,
+ .check_kflag_member = btf_enum_check_kflag_member,
+ .log_details = btf_enum_log,
+ .show = btf_enum64_show,
+};
+
+static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (t->name_off) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static void btf_func_proto_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ const struct btf_param *args = (const struct btf_param *)(t + 1);
+ u16 nr_args = btf_type_vlen(t), i;
+
+ btf_verifier_log(env, "return=%u args=(", t->type);
+ if (!nr_args) {
+ btf_verifier_log(env, "void");
+ goto done;
+ }
+
+ if (nr_args == 1 && !args[0].type) {
+ /* Only one vararg */
+ btf_verifier_log(env, "vararg");
+ goto done;
+ }
+
+ btf_verifier_log(env, "%u %s", args[0].type,
+ __btf_name_by_offset(env->btf,
+ args[0].name_off));
+ for (i = 1; i < nr_args - 1; i++)
+ btf_verifier_log(env, ", %u %s", args[i].type,
+ __btf_name_by_offset(env->btf,
+ args[i].name_off));
+
+ if (nr_args > 1) {
+ const struct btf_param *last_arg = &args[nr_args - 1];
+
+ if (last_arg->type)
+ btf_verifier_log(env, ", %u %s", last_arg->type,
+ __btf_name_by_offset(env->btf,
+ last_arg->name_off));
+ else
+ btf_verifier_log(env, ", vararg");
+ }
+
+done:
+ btf_verifier_log(env, ")");
+}
+
+static struct btf_kind_operations func_proto_ops = {
+ .check_meta = btf_func_proto_check_meta,
+ .resolve = btf_df_resolve,
+ /*
+ * BTF_KIND_FUNC_PROTO cannot be directly referred by
+ * a struct's member.
+ *
+ * It should be a function pointer instead.
+ * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
+ *
+ * Hence, there is no btf_func_check_member().
+ */
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_func_proto_log,
+ .show = btf_df_show,
+};
+
+static s32 btf_func_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ if (!t->name_off ||
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
+ btf_verifier_log_type(env, t, "Invalid func linkage");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return 0;
+}
+
+static int btf_func_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *t = v->t;
+ u32 next_type_id = t->type;
+ int err;
+
+ err = btf_func_check(env, t);
+ if (err)
+ return err;
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+ return 0;
+}
+
+static struct btf_kind_operations func_ops = {
+ .check_meta = btf_func_check_meta,
+ .resolve = btf_func_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_ref_type_log,
+ .show = btf_df_show,
+};
+
+static s32 btf_var_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_var *var;
+ u32 meta_needed = sizeof(*var);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (!t->name_off ||
+ !__btf_name_valid(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ /* A var cannot be in type void */
+ if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
+ btf_verifier_log_type(env, t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ var = btf_type_var(t);
+ if (var->linkage != BTF_VAR_STATIC &&
+ var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
+ btf_verifier_log_type(env, t, "Linkage not supported");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
+{
+ const struct btf_var *var = btf_type_var(t);
+
+ btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
+}
+
+static const struct btf_kind_operations var_ops = {
+ .check_meta = btf_var_check_meta,
+ .resolve = btf_var_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_var_log,
+ .show = btf_var_show,
+};
+
+static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_var_secinfo *vsi;
+ u64 last_vsi_end_off = 0, sum = 0;
+ u32 i, meta_needed;
+
+ meta_needed = btf_type_vlen(t) * sizeof(*vsi);
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (!t->size) {
+ btf_verifier_log_type(env, t, "size == 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (!t->name_off ||
+ !btf_name_valid_section(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ for_each_vsi(i, t, vsi) {
+ /* A var cannot be in type void */
+ if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
+ btf_verifier_log_vsi(env, t, vsi,
+ "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
+ btf_verifier_log_vsi(env, t, vsi,
+ "Invalid offset");
+ return -EINVAL;
+ }
+
+ if (!vsi->size || vsi->size > t->size) {
+ btf_verifier_log_vsi(env, t, vsi,
+ "Invalid size");
+ return -EINVAL;
+ }
+
+ last_vsi_end_off = vsi->offset + vsi->size;
+ if (last_vsi_end_off > t->size) {
+ btf_verifier_log_vsi(env, t, vsi,
+ "Invalid offset+size");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_vsi(env, t, vsi, NULL);
+ sum += vsi->size;
+ }
+
+ if (t->size < sum) {
+ btf_verifier_log_type(env, t, "Invalid btf_info size");
+ return -EINVAL;
+ }
+
+ return meta_needed;
+}
+
+static int btf_datasec_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_var_secinfo *vsi;
+ struct btf *btf = env->btf;
+ u16 i;
+
+ env->resolve_mode = RESOLVE_TBD;
+ for_each_vsi_from(i, v->next_member, v->t, vsi) {
+ u32 var_type_id = vsi->type, type_id, type_size = 0;
+ const struct btf_type *var_type = btf_type_by_id(env->btf,
+ var_type_id);
+ if (!var_type || !btf_type_is_var(var_type)) {
+ btf_verifier_log_vsi(env, v->t, vsi,
+ "Not a VAR kind member");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, var_type) &&
+ !env_type_is_resolved(env, var_type_id)) {
+ env_stack_set_next_member(env, i + 1);
+ return env_stack_push(env, var_type, var_type_id);
+ }
+
+ type_id = var_type->type;
+ if (!btf_type_id_size(btf, &type_id, &type_size)) {
+ btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
+ return -EINVAL;
+ }
+
+ if (vsi->size < type_size) {
+ btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
+ return -EINVAL;
+ }
+ }
+
+ env_stack_pop_resolved(env, 0, 0);
+ return 0;
+}
+
+static void btf_datasec_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
+}
+
+static void btf_datasec_show(const struct btf *btf,
+ const struct btf_type *t, u32 type_id,
+ void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_var_secinfo *vsi;
+ const struct btf_type *var;
+ u32 i;
+
+ if (!btf_show_start_type(show, t, type_id, data))
+ return;
+
+ btf_show_type_value(show, "section (\"%s\") = {",
+ __btf_name_by_offset(btf, t->name_off));
+ for_each_vsi(i, t, vsi) {
+ var = btf_type_by_id(btf, vsi->type);
+ if (i)
+ btf_show(show, ",");
+ btf_type_ops(var)->show(btf, var, vsi->type,
+ data + vsi->offset, bits_offset, show);
+ }
+ btf_show_end_type(show);
+}
+
+static const struct btf_kind_operations datasec_ops = {
+ .check_meta = btf_datasec_check_meta,
+ .resolve = btf_datasec_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_datasec_log,
+ .show = btf_datasec_show,
+};
+
+static s32 btf_float_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
+ t->size != 16) {
+ btf_verifier_log_type(env, t, "Invalid type_size");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return 0;
+}
+
+static int btf_float_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u64 start_offset_bytes;
+ u64 end_offset_bytes;
+ u64 misalign_bits;
+ u64 align_bytes;
+ u64 align_bits;
+
+ /* Different architectures have different alignment requirements, so
+ * here we check only for the reasonable minimum. This way we ensure
+ * that types after CO-RE can pass the kernel BTF verifier.
+ */
+ align_bytes = min_t(u64, sizeof(void *), member_type->size);
+ align_bits = align_bytes * BITS_PER_BYTE;
+ div64_u64_rem(member->offset, align_bits, &misalign_bits);
+ if (misalign_bits) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not properly aligned");
+ return -EINVAL;
+ }
+
+ start_offset_bytes = member->offset / BITS_PER_BYTE;
+ end_offset_bytes = start_offset_bytes + member_type->size;
+ if (end_offset_bytes > struct_type->size) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static void btf_float_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "size=%u", t->size);
+}
+
+static const struct btf_kind_operations float_ops = {
+ .check_meta = btf_float_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_float_check_member,
+ .check_kflag_member = btf_generic_check_kflag_member,
+ .log_details = btf_float_log,
+ .show = btf_df_show,
+};
+
+static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_decl_tag *tag;
+ u32 meta_needed = sizeof(*tag);
+ s32 component_idx;
+ const char *value;
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ value = btf_name_by_offset(env->btf, t->name_off);
+ if (!value || !value[0]) {
+ btf_verifier_log_type(env, t, "Invalid value");
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ component_idx = btf_type_decl_tag(t)->component_idx;
+ if (component_idx < -1) {
+ btf_verifier_log_type(env, t, "Invalid component_idx");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static int btf_decl_tag_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *next_type;
+ const struct btf_type *t = v->t;
+ u32 next_type_id = t->type;
+ struct btf *btf = env->btf;
+ s32 component_idx;
+ u32 vlen;
+
+ next_type = btf_type_by_id(btf, next_type_id);
+ if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, next_type) &&
+ !env_type_is_resolved(env, next_type_id))
+ return env_stack_push(env, next_type, next_type_id);
+
+ component_idx = btf_type_decl_tag(t)->component_idx;
+ if (component_idx != -1) {
+ if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid component_idx");
+ return -EINVAL;
+ }
+
+ if (btf_type_is_struct(next_type)) {
+ vlen = btf_type_vlen(next_type);
+ } else {
+ /* next_type should be a function */
+ next_type = btf_type_by_id(btf, next_type->type);
+ vlen = btf_type_vlen(next_type);
+ }
+
+ if ((u32)component_idx >= vlen) {
+ btf_verifier_log_type(env, v->t, "Invalid component_idx");
+ return -EINVAL;
+ }
+ }
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+
+ return 0;
+}
+
+static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
+{
+ btf_verifier_log(env, "type=%u component_idx=%d", t->type,
+ btf_type_decl_tag(t)->component_idx);
+}
+
+static const struct btf_kind_operations decl_tag_ops = {
+ .check_meta = btf_decl_tag_check_meta,
+ .resolve = btf_decl_tag_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_decl_tag_log,
+ .show = btf_df_show,
+};
+
+static int btf_func_proto_check(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ const struct btf_type *ret_type;
+ const struct btf_param *args;
+ const struct btf *btf;
+ u16 nr_args, i;
+ int err;
+
+ btf = env->btf;
+ args = (const struct btf_param *)(t + 1);
+ nr_args = btf_type_vlen(t);
+
+ /* Check func return type which could be "void" (t->type == 0) */
+ if (t->type) {
+ u32 ret_type_id = t->type;
+
+ ret_type = btf_type_by_id(btf, ret_type_id);
+ if (!ret_type) {
+ btf_verifier_log_type(env, t, "Invalid return type");
+ return -EINVAL;
+ }
+
+ if (btf_type_is_resolve_source_only(ret_type)) {
+ btf_verifier_log_type(env, t, "Invalid return type");
+ return -EINVAL;
+ }
+
+ if (btf_type_needs_resolve(ret_type) &&
+ !env_type_is_resolved(env, ret_type_id)) {
+ err = btf_resolve(env, ret_type, ret_type_id);
+ if (err)
+ return err;
+ }
+
+ /* Ensure the return type is a type that has a size */
+ if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
+ btf_verifier_log_type(env, t, "Invalid return type");
+ return -EINVAL;
+ }
+ }
+
+ if (!nr_args)
+ return 0;
+
+ /* Last func arg type_id could be 0 if it is a vararg */
+ if (!args[nr_args - 1].type) {
+ if (args[nr_args - 1].name_off) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u",
+ nr_args);
+ return -EINVAL;
+ }
+ nr_args--;
+ }
+
+ err = 0;
+ for (i = 0; i < nr_args; i++) {
+ const struct btf_type *arg_type;
+ u32 arg_type_id;
+
+ arg_type_id = args[i].type;
+ arg_type = btf_type_by_id(btf, arg_type_id);
+ if (!arg_type) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
+ err = -EINVAL;
+ break;
+ }
+
+ if (btf_type_is_resolve_source_only(arg_type)) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
+ return -EINVAL;
+ }
+
+ if (args[i].name_off &&
+ (!btf_name_offset_valid(btf, args[i].name_off) ||
+ !btf_name_valid_identifier(btf, args[i].name_off))) {
+ btf_verifier_log_type(env, t,
+ "Invalid arg#%u", i + 1);
+ err = -EINVAL;
+ break;
+ }
+
+ if (btf_type_needs_resolve(arg_type) &&
+ !env_type_is_resolved(env, arg_type_id)) {
+ err = btf_resolve(env, arg_type, arg_type_id);
+ if (err)
+ break;
+ }
+
+ if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
+ err = -EINVAL;
+ break;
+ }
+ }
+
+ return err;
+}
+
+static int btf_func_check(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ const struct btf_type *proto_type;
+ const struct btf_param *args;
+ const struct btf *btf;
+ u16 nr_args, i;
+
+ btf = env->btf;
+ proto_type = btf_type_by_id(btf, t->type);
+
+ if (!proto_type || !btf_type_is_func_proto(proto_type)) {
+ btf_verifier_log_type(env, t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ args = (const struct btf_param *)(proto_type + 1);
+ nr_args = btf_type_vlen(proto_type);
+ for (i = 0; i < nr_args; i++) {
+ if (!args[i].name_off && args[i].type) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
+ [BTF_KIND_INT] = &int_ops,
+ [BTF_KIND_PTR] = &ptr_ops,
+ [BTF_KIND_ARRAY] = &array_ops,
+ [BTF_KIND_STRUCT] = &struct_ops,
+ [BTF_KIND_UNION] = &struct_ops,
+ [BTF_KIND_ENUM] = &enum_ops,
+ [BTF_KIND_FWD] = &fwd_ops,
+ [BTF_KIND_TYPEDEF] = &modifier_ops,
+ [BTF_KIND_VOLATILE] = &modifier_ops,
+ [BTF_KIND_CONST] = &modifier_ops,
+ [BTF_KIND_RESTRICT] = &modifier_ops,
+ [BTF_KIND_FUNC] = &func_ops,
+ [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
+ [BTF_KIND_VAR] = &var_ops,
+ [BTF_KIND_DATASEC] = &datasec_ops,
+ [BTF_KIND_FLOAT] = &float_ops,
+ [BTF_KIND_DECL_TAG] = &decl_tag_ops,
+ [BTF_KIND_TYPE_TAG] = &modifier_ops,
+ [BTF_KIND_ENUM64] = &enum64_ops,
+};
+
+static s32 btf_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ u32 saved_meta_left = meta_left;
+ s32 var_meta_size;
+
+ if (meta_left < sizeof(*t)) {
+ btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
+ env->log_type_id, meta_left, sizeof(*t));
+ return -EINVAL;
+ }
+ meta_left -= sizeof(*t);
+
+ if (t->info & ~BTF_INFO_MASK) {
+ btf_verifier_log(env, "[%u] Invalid btf_info:%x",
+ env->log_type_id, t->info);
+ return -EINVAL;
+ }
+
+ if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
+ BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
+ btf_verifier_log(env, "[%u] Invalid kind:%u",
+ env->log_type_id, BTF_INFO_KIND(t->info));
+ return -EINVAL;
+ }
+
+ if (!btf_name_offset_valid(env->btf, t->name_off)) {
+ btf_verifier_log(env, "[%u] Invalid name_offset:%u",
+ env->log_type_id, t->name_off);
+ return -EINVAL;
+ }
+
+ var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
+ if (var_meta_size < 0)
+ return var_meta_size;
+
+ meta_left -= var_meta_size;
+
+ return saved_meta_left - meta_left;
+}
+
+static int btf_check_all_metas(struct btf_verifier_env *env)
+{
+ struct btf *btf = env->btf;
+ struct btf_header *hdr;
+ void *cur, *end;
+
+ hdr = &btf->hdr;
+ cur = btf->nohdr_data + hdr->type_off;
+ end = cur + hdr->type_len;
+
+ env->log_type_id = btf->base_btf ? btf->start_id : 1;
+ while (cur < end) {
+ struct btf_type *t = cur;
+ s32 meta_size;
+
+ meta_size = btf_check_meta(env, t, end - cur);
+ if (meta_size < 0)
+ return meta_size;
+
+ btf_add_type(env, t);
+ cur += meta_size;
+ env->log_type_id++;
+ }
+
+ return 0;
+}
+
+static bool btf_resolve_valid(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 type_id)
+{
+ struct btf *btf = env->btf;
+
+ if (!env_type_is_resolved(env, type_id))
+ return false;
+
+ if (btf_type_is_struct(t) || btf_type_is_datasec(t))
+ return !btf_resolved_type_id(btf, type_id) &&
+ !btf_resolved_type_size(btf, type_id);
+
+ if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
+ return btf_resolved_type_id(btf, type_id) &&
+ !btf_resolved_type_size(btf, type_id);
+
+ if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
+ btf_type_is_var(t)) {
+ t = btf_type_id_resolve(btf, &type_id);
+ return t &&
+ !btf_type_is_modifier(t) &&
+ !btf_type_is_var(t) &&
+ !btf_type_is_datasec(t);
+ }
+
+ if (btf_type_is_array(t)) {
+ const struct btf_array *array = btf_type_array(t);
+ const struct btf_type *elem_type;
+ u32 elem_type_id = array->type;
+ u32 elem_size;
+
+ elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
+ return elem_type && !btf_type_is_modifier(elem_type) &&
+ (array->nelems * elem_size ==
+ btf_resolved_type_size(btf, type_id));
+ }
+
+ return false;
+}
+
+static int btf_resolve(struct btf_verifier_env *env,
+ const struct btf_type *t, u32 type_id)
+{
+ u32 save_log_type_id = env->log_type_id;
+ const struct resolve_vertex *v;
+ int err = 0;
+
+ env->resolve_mode = RESOLVE_TBD;
+ env_stack_push(env, t, type_id);
+ while (!err && (v = env_stack_peak(env))) {
+ env->log_type_id = v->type_id;
+ err = btf_type_ops(v->t)->resolve(env, v);
+ }
+
+ env->log_type_id = type_id;
+ if (err == -E2BIG) {
+ btf_verifier_log_type(env, t,
+ "Exceeded max resolving depth:%u",
+ MAX_RESOLVE_DEPTH);
+ } else if (err == -EEXIST) {
+ btf_verifier_log_type(env, t, "Loop detected");
+ }
+
+ /* Final sanity check */
+ if (!err && !btf_resolve_valid(env, t, type_id)) {
+ btf_verifier_log_type(env, t, "Invalid resolve state");
+ err = -EINVAL;
+ }
+
+ env->log_type_id = save_log_type_id;
+ return err;
+}
+
+static int btf_check_all_types(struct btf_verifier_env *env)
+{
+ struct btf *btf = env->btf;
+ const struct btf_type *t;
+ u32 type_id, i;
+ int err;
+
+ err = env_resolve_init(env);
+ if (err)
+ return err;
+
+ env->phase++;
+ for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
+ type_id = btf->start_id + i;
+ t = btf_type_by_id(btf, type_id);
+
+ env->log_type_id = type_id;
+ if (btf_type_needs_resolve(t) &&
+ !env_type_is_resolved(env, type_id)) {
+ err = btf_resolve(env, t, type_id);
+ if (err)
+ return err;
+ }
+
+ if (btf_type_is_func_proto(t)) {
+ err = btf_func_proto_check(env, t);
+ if (err)
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+static int btf_parse_type_sec(struct btf_verifier_env *env)
+{
+ const struct btf_header *hdr = &env->btf->hdr;
+ int err;
+
+ /* Type section must align to 4 bytes */
+ if (hdr->type_off & (sizeof(u32) - 1)) {
+ btf_verifier_log(env, "Unaligned type_off");
+ return -EINVAL;
+ }
+
+ if (!env->btf->base_btf && !hdr->type_len) {
+ btf_verifier_log(env, "No type found");
+ return -EINVAL;
+ }
+
+ err = btf_check_all_metas(env);
+ if (err)
+ return err;
+
+ return btf_check_all_types(env);
+}
+
+static int btf_parse_str_sec(struct btf_verifier_env *env)
+{
+ const struct btf_header *hdr;
+ struct btf *btf = env->btf;
+ const char *start, *end;
+
+ hdr = &btf->hdr;
+ start = btf->nohdr_data + hdr->str_off;
+ end = start + hdr->str_len;
+
+ if (end != btf->data + btf->data_size) {
+ btf_verifier_log(env, "String section is not at the end");
+ return -EINVAL;
+ }
+
+ btf->strings = start;
+
+ if (btf->base_btf && !hdr->str_len)
+ return 0;
+ if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
+ btf_verifier_log(env, "Invalid string section");
+ return -EINVAL;
+ }
+ if (!btf->base_btf && start[0]) {
+ btf_verifier_log(env, "Invalid string section");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static const size_t btf_sec_info_offset[] = {
+ offsetof(struct btf_header, type_off),
+ offsetof(struct btf_header, str_off),
+};
+
+static int btf_sec_info_cmp(const void *a, const void *b)
+{
+ const struct btf_sec_info *x = a;
+ const struct btf_sec_info *y = b;
+
+ return (int)(x->off - y->off) ? : (int)(x->len - y->len);
+}
+
+static int btf_check_sec_info(struct btf_verifier_env *env,
+ u32 btf_data_size)
+{
+ struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
+ u32 total, expected_total, i;
+ const struct btf_header *hdr;
+ const struct btf *btf;
+
+ btf = env->btf;
+ hdr = &btf->hdr;
+
+ /* Populate the secs from hdr */
+ for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
+ secs[i] = *(struct btf_sec_info *)((void *)hdr +
+ btf_sec_info_offset[i]);
+
+ sort(secs, ARRAY_SIZE(btf_sec_info_offset),
+ sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
+
+ /* Check for gaps and overlap among sections */
+ total = 0;
+ expected_total = btf_data_size - hdr->hdr_len;
+ for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
+ if (expected_total < secs[i].off) {
+ btf_verifier_log(env, "Invalid section offset");
+ return -EINVAL;
+ }
+ if (total < secs[i].off) {
+ /* gap */
+ btf_verifier_log(env, "Unsupported section found");
+ return -EINVAL;
+ }
+ if (total > secs[i].off) {
+ btf_verifier_log(env, "Section overlap found");
+ return -EINVAL;
+ }
+ if (expected_total - total < secs[i].len) {
+ btf_verifier_log(env,
+ "Total section length too long");
+ return -EINVAL;
+ }
+ total += secs[i].len;
+ }
+
+ /* There is data other than hdr and known sections */
+ if (expected_total != total) {
+ btf_verifier_log(env, "Unsupported section found");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int btf_parse_hdr(struct btf_verifier_env *env)
+{
+ u32 hdr_len, hdr_copy, btf_data_size;
+ const struct btf_header *hdr;
+ struct btf *btf;
+
+ btf = env->btf;
+ btf_data_size = btf->data_size;
+
+ if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
+ btf_verifier_log(env, "hdr_len not found");
+ return -EINVAL;
+ }
+
+ hdr = btf->data;
+ hdr_len = hdr->hdr_len;
+ if (btf_data_size < hdr_len) {
+ btf_verifier_log(env, "btf_header not found");
+ return -EINVAL;
+ }
+
+ /* Ensure the unsupported header fields are zero */
+ if (hdr_len > sizeof(btf->hdr)) {
+ u8 *expected_zero = btf->data + sizeof(btf->hdr);
+ u8 *end = btf->data + hdr_len;
+
+ for (; expected_zero < end; expected_zero++) {
+ if (*expected_zero) {
+ btf_verifier_log(env, "Unsupported btf_header");
+ return -E2BIG;
+ }
+ }
+ }
+
+ hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
+ memcpy(&btf->hdr, btf->data, hdr_copy);
+
+ hdr = &btf->hdr;
+
+ btf_verifier_log_hdr(env, btf_data_size);
+
+ if (hdr->magic != BTF_MAGIC) {
+ btf_verifier_log(env, "Invalid magic");
+ return -EINVAL;
+ }
+
+ if (hdr->version != BTF_VERSION) {
+ btf_verifier_log(env, "Unsupported version");
+ return -ENOTSUPP;
+ }
+
+ if (hdr->flags) {
+ btf_verifier_log(env, "Unsupported flags");
+ return -ENOTSUPP;
+ }
+
+ if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
+ btf_verifier_log(env, "No data");
+ return -EINVAL;
+ }
+
+ return btf_check_sec_info(env, btf_data_size);
+}
+
+static int btf_check_type_tags(struct btf_verifier_env *env,
+ struct btf *btf, int start_id)
+{
+ int i, n, good_id = start_id - 1;
+ bool in_tags;
+
+ n = btf_nr_types(btf);
+ for (i = start_id; i < n; i++) {
+ const struct btf_type *t;
+ int chain_limit = 32;
+ u32 cur_id = i;
+
+ t = btf_type_by_id(btf, i);
+ if (!t)
+ return -EINVAL;
+ if (!btf_type_is_modifier(t))
+ continue;
+
+ cond_resched();
+
+ in_tags = btf_type_is_type_tag(t);
+ while (btf_type_is_modifier(t)) {
+ if (!chain_limit--) {
+ btf_verifier_log(env, "Max chain length or cycle detected");
+ return -ELOOP;
+ }
+ if (btf_type_is_type_tag(t)) {
+ if (!in_tags) {
+ btf_verifier_log(env, "Type tags don't precede modifiers");
+ return -EINVAL;
+ }
+ } else if (in_tags) {
+ in_tags = false;
+ }
+ if (cur_id <= good_id)
+ break;
+ /* Move to next type */
+ cur_id = t->type;
+ t = btf_type_by_id(btf, cur_id);
+ if (!t)
+ return -EINVAL;
+ }
+ good_id = i;
+ }
+ return 0;
+}
+
+static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
+ u32 log_level, char __user *log_ubuf, u32 log_size)
+{
+ struct btf_verifier_env *env = NULL;
+ struct bpf_verifier_log *log;
+ struct btf *btf = NULL;
+ u8 *data;
+ int err;
+
+ if (btf_data_size > BTF_MAX_SIZE)
+ return ERR_PTR(-E2BIG);
+
+ env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
+ if (!env)
+ return ERR_PTR(-ENOMEM);
+
+ log = &env->log;
+ if (log_level || log_ubuf || log_size) {
+ /* user requested verbose verifier output
+ * and supplied buffer to store the verification trace
+ */
+ log->level = log_level;
+ log->ubuf = log_ubuf;
+ log->len_total = log_size;
+
+ /* log attributes have to be sane */
+ if (!bpf_verifier_log_attr_valid(log)) {
+ err = -EINVAL;
+ goto errout;
+ }
+ }
+
+ btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
+ if (!btf) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ env->btf = btf;
+
+ data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
+ if (!data) {
+ err = -ENOMEM;
+ goto errout;
+ }
+
+ btf->data = data;
+ btf->data_size = btf_data_size;
+
+ if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
+ err = -EFAULT;
+ goto errout;
+ }
+
+ err = btf_parse_hdr(env);
+ if (err)
+ goto errout;
+
+ btf->nohdr_data = btf->data + btf->hdr.hdr_len;
+
+ err = btf_parse_str_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_parse_type_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_type_tags(env, btf, 1);
+ if (err)
+ goto errout;
+
+ if (log->level && bpf_verifier_log_full(log)) {
+ err = -ENOSPC;
+ goto errout;
+ }
+
+ btf_verifier_env_free(env);
+ refcount_set(&btf->refcnt, 1);
+ return btf;
+
+errout:
+ btf_verifier_env_free(env);
+ if (btf)
+ btf_free(btf);
+ return ERR_PTR(err);
+}
+
+extern char __weak __start_BTF[];
+extern char __weak __stop_BTF[];
+extern struct btf *btf_vmlinux;
+
+#define BPF_MAP_TYPE(_id, _ops)
+#define BPF_LINK_TYPE(_id, _name)
+static union {
+ struct bpf_ctx_convert {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ prog_ctx_type _id##_prog; \
+ kern_ctx_type _id##_kern;
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+ } *__t;
+ /* 't' is written once under lock. Read many times. */
+ const struct btf_type *t;
+} bpf_ctx_convert;
+enum {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ __ctx_convert##_id,
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+ __ctx_convert_unused, /* to avoid empty enum in extreme .config */
+};
+static u8 bpf_ctx_convert_map[] = {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ [_id] = __ctx_convert##_id,
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+ 0, /* avoid empty array */
+};
+#undef BPF_MAP_TYPE
+#undef BPF_LINK_TYPE
+
+static const struct btf_member *
+btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
+ const struct btf_type *t, enum bpf_prog_type prog_type,
+ int arg)
+{
+ const struct btf_type *conv_struct;
+ const struct btf_type *ctx_struct;
+ const struct btf_member *ctx_type;
+ const char *tname, *ctx_tname;
+
+ conv_struct = bpf_ctx_convert.t;
+ if (!conv_struct) {
+ bpf_log(log, "btf_vmlinux is malformed\n");
+ return NULL;
+ }
+ t = btf_type_by_id(btf, t->type);
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_struct(t)) {
+ /* Only pointer to struct is supported for now.
+ * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
+ * is not supported yet.
+ * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
+ */
+ return NULL;
+ }
+ tname = btf_name_by_offset(btf, t->name_off);
+ if (!tname) {
+ bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
+ return NULL;
+ }
+ /* prog_type is valid bpf program type. No need for bounds check. */
+ ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
+ /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
+ * Like 'struct __sk_buff'
+ */
+ ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
+ if (!ctx_struct)
+ /* should not happen */
+ return NULL;
+again:
+ ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
+ if (!ctx_tname) {
+ /* should not happen */
+ bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
+ return NULL;
+ }
+ /* only compare that prog's ctx type name is the same as
+ * kernel expects. No need to compare field by field.
+ * It's ok for bpf prog to do:
+ * struct __sk_buff {};
+ * int socket_filter_bpf_prog(struct __sk_buff *skb)
+ * { // no fields of skb are ever used }
+ */
+ if (strcmp(ctx_tname, tname)) {
+ /* bpf_user_pt_regs_t is a typedef, so resolve it to
+ * underlying struct and check name again
+ */
+ if (!btf_type_is_modifier(ctx_struct))
+ return NULL;
+ while (btf_type_is_modifier(ctx_struct))
+ ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
+ goto again;
+ }
+ return ctx_type;
+}
+
+static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
+ struct btf *btf,
+ const struct btf_type *t,
+ enum bpf_prog_type prog_type,
+ int arg)
+{
+ const struct btf_member *prog_ctx_type, *kern_ctx_type;
+
+ prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
+ if (!prog_ctx_type)
+ return -ENOENT;
+ kern_ctx_type = prog_ctx_type + 1;
+ return kern_ctx_type->type;
+}
+
+BTF_ID_LIST(bpf_ctx_convert_btf_id)
+BTF_ID(struct, bpf_ctx_convert)
+
+struct btf *btf_parse_vmlinux(void)
+{
+ struct btf_verifier_env *env = NULL;
+ struct bpf_verifier_log *log;
+ struct btf *btf = NULL;
+ int err;
+
+ env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
+ if (!env)
+ return ERR_PTR(-ENOMEM);
+
+ log = &env->log;
+ log->level = BPF_LOG_KERNEL;
+
+ btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
+ if (!btf) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ env->btf = btf;
+
+ btf->data = __start_BTF;
+ btf->data_size = __stop_BTF - __start_BTF;
+ btf->kernel_btf = true;
+ snprintf(btf->name, sizeof(btf->name), "vmlinux");
+
+ err = btf_parse_hdr(env);
+ if (err)
+ goto errout;
+
+ btf->nohdr_data = btf->data + btf->hdr.hdr_len;
+
+ err = btf_parse_str_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_all_metas(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_type_tags(env, btf, 1);
+ if (err)
+ goto errout;
+
+ /* btf_parse_vmlinux() runs under bpf_verifier_lock */
+ bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
+
+ bpf_struct_ops_init(btf, log);
+
+ refcount_set(&btf->refcnt, 1);
+
+ err = btf_alloc_id(btf);
+ if (err)
+ goto errout;
+
+ btf_verifier_env_free(env);
+ return btf;
+
+errout:
+ btf_verifier_env_free(env);
+ if (btf) {
+ kvfree(btf->types);
+ kfree(btf);
+ }
+ return ERR_PTR(err);
+}
+
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+
+static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
+{
+ struct btf_verifier_env *env = NULL;
+ struct bpf_verifier_log *log;
+ struct btf *btf = NULL, *base_btf;
+ int err;
+
+ base_btf = bpf_get_btf_vmlinux();
+ if (IS_ERR(base_btf))
+ return base_btf;
+ if (!base_btf)
+ return ERR_PTR(-EINVAL);
+
+ env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
+ if (!env)
+ return ERR_PTR(-ENOMEM);
+
+ log = &env->log;
+ log->level = BPF_LOG_KERNEL;
+
+ btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
+ if (!btf) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ env->btf = btf;
+
+ btf->base_btf = base_btf;
+ btf->start_id = base_btf->nr_types;
+ btf->start_str_off = base_btf->hdr.str_len;
+ btf->kernel_btf = true;
+ snprintf(btf->name, sizeof(btf->name), "%s", module_name);
+
+ btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
+ if (!btf->data) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ memcpy(btf->data, data, data_size);
+ btf->data_size = data_size;
+
+ err = btf_parse_hdr(env);
+ if (err)
+ goto errout;
+
+ btf->nohdr_data = btf->data + btf->hdr.hdr_len;
+
+ err = btf_parse_str_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_all_metas(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
+ if (err)
+ goto errout;
+
+ btf_verifier_env_free(env);
+ refcount_set(&btf->refcnt, 1);
+ return btf;
+
+errout:
+ btf_verifier_env_free(env);
+ if (btf) {
+ kvfree(btf->data);
+ kvfree(btf->types);
+ kfree(btf);
+ }
+ return ERR_PTR(err);
+}
+
+#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
+
+struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
+{
+ struct bpf_prog *tgt_prog = prog->aux->dst_prog;
+
+ if (tgt_prog)
+ return tgt_prog->aux->btf;
+ else
+ return prog->aux->attach_btf;
+}
+
+static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
+{
+ /* skip modifiers */
+ t = btf_type_skip_modifiers(btf, t->type, NULL);
+
+ return btf_type_is_int(t);
+}
+
+static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
+ int off)
+{
+ const struct btf_param *args;
+ const struct btf_type *t;
+ u32 offset = 0, nr_args;
+ int i;
+
+ if (!func_proto)
+ return off / 8;
+
+ nr_args = btf_type_vlen(func_proto);
+ args = (const struct btf_param *)(func_proto + 1);
+ for (i = 0; i < nr_args; i++) {
+ t = btf_type_skip_modifiers(btf, args[i].type, NULL);
+ offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
+ if (off < offset)
+ return i;
+ }
+
+ t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
+ offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
+ if (off < offset)
+ return nr_args;
+
+ return nr_args + 1;
+}
+
+bool btf_ctx_access(int off, int size, enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ const struct btf_type *t = prog->aux->attach_func_proto;
+ struct bpf_prog *tgt_prog = prog->aux->dst_prog;
+ struct btf *btf = bpf_prog_get_target_btf(prog);
+ const char *tname = prog->aux->attach_func_name;
+ struct bpf_verifier_log *log = info->log;
+ const struct btf_param *args;
+ const char *tag_value;
+ u32 nr_args, arg;
+ int i, ret;
+
+ if (off % 8) {
+ bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
+ tname, off);
+ return false;
+ }
+ arg = get_ctx_arg_idx(btf, t, off);
+ args = (const struct btf_param *)(t + 1);
+ /* if (t == NULL) Fall back to default BPF prog with
+ * MAX_BPF_FUNC_REG_ARGS u64 arguments.
+ */
+ nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
+ if (prog->aux->attach_btf_trace) {
+ /* skip first 'void *__data' argument in btf_trace_##name typedef */
+ args++;
+ nr_args--;
+ }
+
+ if (arg > nr_args) {
+ bpf_log(log, "func '%s' doesn't have %d-th argument\n",
+ tname, arg + 1);
+ return false;
+ }
+
+ if (arg == nr_args) {
+ switch (prog->expected_attach_type) {
+ case BPF_LSM_CGROUP:
+ case BPF_LSM_MAC:
+ case BPF_TRACE_FEXIT:
+ /* When LSM programs are attached to void LSM hooks
+ * they use FEXIT trampolines and when attached to
+ * int LSM hooks, they use MODIFY_RETURN trampolines.
+ *
+ * While the LSM programs are BPF_MODIFY_RETURN-like
+ * the check:
+ *
+ * if (ret_type != 'int')
+ * return -EINVAL;
+ *
+ * is _not_ done here. This is still safe as LSM hooks
+ * have only void and int return types.
+ */
+ if (!t)
+ return true;
+ t = btf_type_by_id(btf, t->type);
+ break;
+ case BPF_MODIFY_RETURN:
+ /* For now the BPF_MODIFY_RETURN can only be attached to
+ * functions that return an int.
+ */
+ if (!t)
+ return false;
+
+ t = btf_type_skip_modifiers(btf, t->type, NULL);
+ if (!btf_type_is_small_int(t)) {
+ bpf_log(log,
+ "ret type %s not allowed for fmod_ret\n",
+ btf_type_str(t));
+ return false;
+ }
+ break;
+ default:
+ bpf_log(log, "func '%s' doesn't have %d-th argument\n",
+ tname, arg + 1);
+ return false;
+ }
+ } else {
+ if (!t)
+ /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
+ return true;
+ t = btf_type_by_id(btf, args[arg].type);
+ }
+
+ /* skip modifiers */
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
+ /* accessing a scalar */
+ return true;
+ if (!btf_type_is_ptr(t)) {
+ bpf_log(log,
+ "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
+ tname, arg,
+ __btf_name_by_offset(btf, t->name_off),
+ btf_type_str(t));
+ return false;
+ }
+
+ /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
+ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
+ const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
+ u32 type, flag;
+
+ type = base_type(ctx_arg_info->reg_type);
+ flag = type_flag(ctx_arg_info->reg_type);
+ if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
+ (flag & PTR_MAYBE_NULL)) {
+ info->reg_type = ctx_arg_info->reg_type;
+ return true;
+ }
+ }
+
+ if (t->type == 0)
+ /* This is a pointer to void.
+ * It is the same as scalar from the verifier safety pov.
+ * No further pointer walking is allowed.
+ */
+ return true;
+
+ if (is_int_ptr(btf, t))
+ return true;
+
+ /* this is a pointer to another type */
+ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
+ const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
+
+ if (ctx_arg_info->offset == off) {
+ if (!ctx_arg_info->btf_id) {
+ bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
+ return false;
+ }
+
+ info->reg_type = ctx_arg_info->reg_type;
+ info->btf = btf_vmlinux;
+ info->btf_id = ctx_arg_info->btf_id;
+ return true;
+ }
+ }
+
+ info->reg_type = PTR_TO_BTF_ID;
+ if (tgt_prog) {
+ enum bpf_prog_type tgt_type;
+
+ if (tgt_prog->type == BPF_PROG_TYPE_EXT)
+ tgt_type = tgt_prog->aux->saved_dst_prog_type;
+ else
+ tgt_type = tgt_prog->type;
+
+ ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
+ if (ret > 0) {
+ info->btf = btf_vmlinux;
+ info->btf_id = ret;
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ info->btf = btf;
+ info->btf_id = t->type;
+ t = btf_type_by_id(btf, t->type);
+
+ if (btf_type_is_type_tag(t)) {
+ tag_value = __btf_name_by_offset(btf, t->name_off);
+ if (strcmp(tag_value, "user") == 0)
+ info->reg_type |= MEM_USER;
+ if (strcmp(tag_value, "percpu") == 0)
+ info->reg_type |= MEM_PERCPU;
+ }
+
+ /* skip modifiers */
+ while (btf_type_is_modifier(t)) {
+ info->btf_id = t->type;
+ t = btf_type_by_id(btf, t->type);
+ }
+ if (!btf_type_is_struct(t)) {
+ bpf_log(log,
+ "func '%s' arg%d type %s is not a struct\n",
+ tname, arg, btf_type_str(t));
+ return false;
+ }
+ bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
+ tname, arg, info->btf_id, btf_type_str(t),
+ __btf_name_by_offset(btf, t->name_off));
+ return true;
+}
+
+enum bpf_struct_walk_result {
+ /* < 0 error */
+ WALK_SCALAR = 0,
+ WALK_PTR,
+ WALK_STRUCT,
+};
+
+static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
+ const struct btf_type *t, int off, int size,
+ u32 *next_btf_id, enum bpf_type_flag *flag)
+{
+ u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
+ const struct btf_type *mtype, *elem_type = NULL;
+ const struct btf_member *member;
+ const char *tname, *mname, *tag_value;
+ u32 vlen, elem_id, mid;
+
+again:
+ tname = __btf_name_by_offset(btf, t->name_off);
+ if (!btf_type_is_struct(t)) {
+ bpf_log(log, "Type '%s' is not a struct\n", tname);
+ return -EINVAL;
+ }
+
+ vlen = btf_type_vlen(t);
+ if (off + size > t->size) {
+ /* If the last element is a variable size array, we may
+ * need to relax the rule.
+ */
+ struct btf_array *array_elem;
+
+ if (vlen == 0)
+ goto error;
+
+ member = btf_type_member(t) + vlen - 1;
+ mtype = btf_type_skip_modifiers(btf, member->type,
+ NULL);
+ if (!btf_type_is_array(mtype))
+ goto error;
+
+ array_elem = (struct btf_array *)(mtype + 1);
+ if (array_elem->nelems != 0)
+ goto error;
+
+ moff = __btf_member_bit_offset(t, member) / 8;
+ if (off < moff)
+ goto error;
+
+ /* Only allow structure for now, can be relaxed for
+ * other types later.
+ */
+ t = btf_type_skip_modifiers(btf, array_elem->type,
+ NULL);
+ if (!btf_type_is_struct(t))
+ goto error;
+
+ off = (off - moff) % t->size;
+ goto again;
+
+error:
+ bpf_log(log, "access beyond struct %s at off %u size %u\n",
+ tname, off, size);
+ return -EACCES;
+ }
+
+ for_each_member(i, t, member) {
+ /* offset of the field in bytes */
+ moff = __btf_member_bit_offset(t, member) / 8;
+ if (off + size <= moff)
+ /* won't find anything, field is already too far */
+ break;
+
+ if (__btf_member_bitfield_size(t, member)) {
+ u32 end_bit = __btf_member_bit_offset(t, member) +
+ __btf_member_bitfield_size(t, member);
+
+ /* off <= moff instead of off == moff because clang
+ * does not generate a BTF member for anonymous
+ * bitfield like the ":16" here:
+ * struct {
+ * int :16;
+ * int x:8;
+ * };
+ */
+ if (off <= moff &&
+ BITS_ROUNDUP_BYTES(end_bit) <= off + size)
+ return WALK_SCALAR;
+
+ /* off may be accessing a following member
+ *
+ * or
+ *
+ * Doing partial access at either end of this
+ * bitfield. Continue on this case also to
+ * treat it as not accessing this bitfield
+ * and eventually error out as field not
+ * found to keep it simple.
+ * It could be relaxed if there was a legit
+ * partial access case later.
+ */
+ continue;
+ }
+
+ /* In case of "off" is pointing to holes of a struct */
+ if (off < moff)
+ break;
+
+ /* type of the field */
+ mid = member->type;
+ mtype = btf_type_by_id(btf, member->type);
+ mname = __btf_name_by_offset(btf, member->name_off);
+
+ mtype = __btf_resolve_size(btf, mtype, &msize,
+ &elem_type, &elem_id, &total_nelems,
+ &mid);
+ if (IS_ERR(mtype)) {
+ bpf_log(log, "field %s doesn't have size\n", mname);
+ return -EFAULT;
+ }
+
+ mtrue_end = moff + msize;
+ if (off >= mtrue_end)
+ /* no overlap with member, keep iterating */
+ continue;
+
+ if (btf_type_is_array(mtype)) {
+ u32 elem_idx;
+
+ /* __btf_resolve_size() above helps to
+ * linearize a multi-dimensional array.
+ *
+ * The logic here is treating an array
+ * in a struct as the following way:
+ *
+ * struct outer {
+ * struct inner array[2][2];
+ * };
+ *
+ * looks like:
+ *
+ * struct outer {
+ * struct inner array_elem0;
+ * struct inner array_elem1;
+ * struct inner array_elem2;
+ * struct inner array_elem3;
+ * };
+ *
+ * When accessing outer->array[1][0], it moves
+ * moff to "array_elem2", set mtype to
+ * "struct inner", and msize also becomes
+ * sizeof(struct inner). Then most of the
+ * remaining logic will fall through without
+ * caring the current member is an array or
+ * not.
+ *
+ * Unlike mtype/msize/moff, mtrue_end does not
+ * change. The naming difference ("_true") tells
+ * that it is not always corresponding to
+ * the current mtype/msize/moff.
+ * It is the true end of the current
+ * member (i.e. array in this case). That
+ * will allow an int array to be accessed like
+ * a scratch space,
+ * i.e. allow access beyond the size of
+ * the array's element as long as it is
+ * within the mtrue_end boundary.
+ */
+
+ /* skip empty array */
+ if (moff == mtrue_end)
+ continue;
+
+ msize /= total_nelems;
+ elem_idx = (off - moff) / msize;
+ moff += elem_idx * msize;
+ mtype = elem_type;
+ mid = elem_id;
+ }
+
+ /* the 'off' we're looking for is either equal to start
+ * of this field or inside of this struct
+ */
+ if (btf_type_is_struct(mtype)) {
+ /* our field must be inside that union or struct */
+ t = mtype;
+
+ /* return if the offset matches the member offset */
+ if (off == moff) {
+ *next_btf_id = mid;
+ return WALK_STRUCT;
+ }
+
+ /* adjust offset we're looking for */
+ off -= moff;
+ goto again;
+ }
+
+ if (btf_type_is_ptr(mtype)) {
+ const struct btf_type *stype, *t;
+ enum bpf_type_flag tmp_flag = 0;
+ u32 id;
+
+ if (msize != size || off != moff) {
+ bpf_log(log,
+ "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
+ mname, moff, tname, off, size);
+ return -EACCES;
+ }
+
+ /* check type tag */
+ t = btf_type_by_id(btf, mtype->type);
+ if (btf_type_is_type_tag(t)) {
+ tag_value = __btf_name_by_offset(btf, t->name_off);
+ /* check __user tag */
+ if (strcmp(tag_value, "user") == 0)
+ tmp_flag = MEM_USER;
+ /* check __percpu tag */
+ if (strcmp(tag_value, "percpu") == 0)
+ tmp_flag = MEM_PERCPU;
+ }
+
+ stype = btf_type_skip_modifiers(btf, mtype->type, &id);
+ if (btf_type_is_struct(stype)) {
+ *next_btf_id = id;
+ *flag = tmp_flag;
+ return WALK_PTR;
+ }
+ }
+
+ /* Allow more flexible access within an int as long as
+ * it is within mtrue_end.
+ * Since mtrue_end could be the end of an array,
+ * that also allows using an array of int as a scratch
+ * space. e.g. skb->cb[].
+ */
+ if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
+ bpf_log(log,
+ "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
+ mname, mtrue_end, tname, off, size);
+ return -EACCES;
+ }
+
+ return WALK_SCALAR;
+ }
+ bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
+ return -EINVAL;
+}
+
+int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
+ const struct btf_type *t, int off, int size,
+ enum bpf_access_type atype __maybe_unused,
+ u32 *next_btf_id, enum bpf_type_flag *flag)
+{
+ enum bpf_type_flag tmp_flag = 0;
+ int err;
+ u32 id;
+
+ do {
+ err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
+
+ switch (err) {
+ case WALK_PTR:
+ /* If we found the pointer or scalar on t+off,
+ * we're done.
+ */
+ *next_btf_id = id;
+ *flag = tmp_flag;
+ return PTR_TO_BTF_ID;
+ case WALK_SCALAR:
+ return SCALAR_VALUE;
+ case WALK_STRUCT:
+ /* We found nested struct, so continue the search
+ * by diving in it. At this point the offset is
+ * aligned with the new type, so set it to 0.
+ */
+ t = btf_type_by_id(btf, id);
+ off = 0;
+ break;
+ default:
+ /* It's either error or unknown return value..
+ * scream and leave.
+ */
+ if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
+ return -EINVAL;
+ return err;
+ }
+ } while (t);
+
+ return -EINVAL;
+}
+
+/* Check that two BTF types, each specified as an BTF object + id, are exactly
+ * the same. Trivial ID check is not enough due to module BTFs, because we can
+ * end up with two different module BTFs, but IDs point to the common type in
+ * vmlinux BTF.
+ */
+static bool btf_types_are_same(const struct btf *btf1, u32 id1,
+ const struct btf *btf2, u32 id2)
+{
+ if (id1 != id2)
+ return false;
+ if (btf1 == btf2)
+ return true;
+ return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
+}
+
+bool btf_struct_ids_match(struct bpf_verifier_log *log,
+ const struct btf *btf, u32 id, int off,
+ const struct btf *need_btf, u32 need_type_id,
+ bool strict)
+{
+ const struct btf_type *type;
+ enum bpf_type_flag flag;
+ int err;
+
+ /* Are we already done? */
+ if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
+ return true;
+ /* In case of strict type match, we do not walk struct, the top level
+ * type match must succeed. When strict is true, off should have already
+ * been 0.
+ */
+ if (strict)
+ return false;
+again:
+ type = btf_type_by_id(btf, id);
+ if (!type)
+ return false;
+ err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
+ if (err != WALK_STRUCT)
+ return false;
+
+ /* We found nested struct object. If it matches
+ * the requested ID, we're done. Otherwise let's
+ * continue the search with offset 0 in the new
+ * type.
+ */
+ if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
+ off = 0;
+ goto again;
+ }
+
+ return true;
+}
+
+static int __get_type_size(struct btf *btf, u32 btf_id,
+ const struct btf_type **ret_type)
+{
+ const struct btf_type *t;
+
+ *ret_type = btf_type_by_id(btf, 0);
+ if (!btf_id)
+ /* void */
+ return 0;
+ t = btf_type_by_id(btf, btf_id);
+ while (t && btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!t)
+ return -EINVAL;
+ *ret_type = t;
+ if (btf_type_is_ptr(t))
+ /* kernel size of pointer. Not BPF's size of pointer*/
+ return sizeof(void *);
+ if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
+ return t->size;
+ return -EINVAL;
+}
+
+int btf_distill_func_proto(struct bpf_verifier_log *log,
+ struct btf *btf,
+ const struct btf_type *func,
+ const char *tname,
+ struct btf_func_model *m)
+{
+ const struct btf_param *args;
+ const struct btf_type *t;
+ u32 i, nargs;
+ int ret;
+
+ if (!func) {
+ /* BTF function prototype doesn't match the verifier types.
+ * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
+ */
+ for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
+ m->arg_size[i] = 8;
+ m->arg_flags[i] = 0;
+ }
+ m->ret_size = 8;
+ m->nr_args = MAX_BPF_FUNC_REG_ARGS;
+ return 0;
+ }
+ args = (const struct btf_param *)(func + 1);
+ nargs = btf_type_vlen(func);
+ if (nargs > MAX_BPF_FUNC_ARGS) {
+ bpf_log(log,
+ "The function %s has %d arguments. Too many.\n",
+ tname, nargs);
+ return -EINVAL;
+ }
+ ret = __get_type_size(btf, func->type, &t);
+ if (ret < 0 || __btf_type_is_struct(t)) {
+ bpf_log(log,
+ "The function %s return type %s is unsupported.\n",
+ tname, btf_type_str(t));
+ return -EINVAL;
+ }
+ m->ret_size = ret;
+
+ for (i = 0; i < nargs; i++) {
+ if (i == nargs - 1 && args[i].type == 0) {
+ bpf_log(log,
+ "The function %s with variable args is unsupported.\n",
+ tname);
+ return -EINVAL;
+ }
+ ret = __get_type_size(btf, args[i].type, &t);
+
+ /* No support of struct argument size greater than 16 bytes */
+ if (ret < 0 || ret > 16) {
+ bpf_log(log,
+ "The function %s arg%d type %s is unsupported.\n",
+ tname, i, btf_type_str(t));
+ return -EINVAL;
+ }
+ if (ret == 0) {
+ bpf_log(log,
+ "The function %s has malformed void argument.\n",
+ tname);
+ return -EINVAL;
+ }
+ m->arg_size[i] = ret;
+ m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
+ }
+ m->nr_args = nargs;
+ return 0;
+}
+
+/* Compare BTFs of two functions assuming only scalars and pointers to context.
+ * t1 points to BTF_KIND_FUNC in btf1
+ * t2 points to BTF_KIND_FUNC in btf2
+ * Returns:
+ * EINVAL - function prototype mismatch
+ * EFAULT - verifier bug
+ * 0 - 99% match. The last 1% is validated by the verifier.
+ */
+static int btf_check_func_type_match(struct bpf_verifier_log *log,
+ struct btf *btf1, const struct btf_type *t1,
+ struct btf *btf2, const struct btf_type *t2)
+{
+ const struct btf_param *args1, *args2;
+ const char *fn1, *fn2, *s1, *s2;
+ u32 nargs1, nargs2, i;
+
+ fn1 = btf_name_by_offset(btf1, t1->name_off);
+ fn2 = btf_name_by_offset(btf2, t2->name_off);
+
+ if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
+ bpf_log(log, "%s() is not a global function\n", fn1);
+ return -EINVAL;
+ }
+ if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
+ bpf_log(log, "%s() is not a global function\n", fn2);
+ return -EINVAL;
+ }
+
+ t1 = btf_type_by_id(btf1, t1->type);
+ if (!t1 || !btf_type_is_func_proto(t1))
+ return -EFAULT;
+ t2 = btf_type_by_id(btf2, t2->type);
+ if (!t2 || !btf_type_is_func_proto(t2))
+ return -EFAULT;
+
+ args1 = (const struct btf_param *)(t1 + 1);
+ nargs1 = btf_type_vlen(t1);
+ args2 = (const struct btf_param *)(t2 + 1);
+ nargs2 = btf_type_vlen(t2);
+
+ if (nargs1 != nargs2) {
+ bpf_log(log, "%s() has %d args while %s() has %d args\n",
+ fn1, nargs1, fn2, nargs2);
+ return -EINVAL;
+ }
+
+ t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
+ t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
+ if (t1->info != t2->info) {
+ bpf_log(log,
+ "Return type %s of %s() doesn't match type %s of %s()\n",
+ btf_type_str(t1), fn1,
+ btf_type_str(t2), fn2);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < nargs1; i++) {
+ t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
+ t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
+
+ if (t1->info != t2->info) {
+ bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
+ i, fn1, btf_type_str(t1),
+ fn2, btf_type_str(t2));
+ return -EINVAL;
+ }
+ if (btf_type_has_size(t1) && t1->size != t2->size) {
+ bpf_log(log,
+ "arg%d in %s() has size %d while %s() has %d\n",
+ i, fn1, t1->size,
+ fn2, t2->size);
+ return -EINVAL;
+ }
+
+ /* global functions are validated with scalars and pointers
+ * to context only. And only global functions can be replaced.
+ * Hence type check only those types.
+ */
+ if (btf_type_is_int(t1) || btf_is_any_enum(t1))
+ continue;
+ if (!btf_type_is_ptr(t1)) {
+ bpf_log(log,
+ "arg%d in %s() has unrecognized type\n",
+ i, fn1);
+ return -EINVAL;
+ }
+ t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
+ t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
+ if (!btf_type_is_struct(t1)) {
+ bpf_log(log,
+ "arg%d in %s() is not a pointer to context\n",
+ i, fn1);
+ return -EINVAL;
+ }
+ if (!btf_type_is_struct(t2)) {
+ bpf_log(log,
+ "arg%d in %s() is not a pointer to context\n",
+ i, fn2);
+ return -EINVAL;
+ }
+ /* This is an optional check to make program writing easier.
+ * Compare names of structs and report an error to the user.
+ * btf_prepare_func_args() already checked that t2 struct
+ * is a context type. btf_prepare_func_args() will check
+ * later that t1 struct is a context type as well.
+ */
+ s1 = btf_name_by_offset(btf1, t1->name_off);
+ s2 = btf_name_by_offset(btf2, t2->name_off);
+ if (strcmp(s1, s2)) {
+ bpf_log(log,
+ "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
+ i, fn1, s1, fn2, s2);
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+/* Compare BTFs of given program with BTF of target program */
+int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
+ struct btf *btf2, const struct btf_type *t2)
+{
+ struct btf *btf1 = prog->aux->btf;
+ const struct btf_type *t1;
+ u32 btf_id = 0;
+
+ if (!prog->aux->func_info) {
+ bpf_log(log, "Program extension requires BTF\n");
+ return -EINVAL;
+ }
+
+ btf_id = prog->aux->func_info[0].type_id;
+ if (!btf_id)
+ return -EFAULT;
+
+ t1 = btf_type_by_id(btf1, btf_id);
+ if (!t1 || !btf_type_is_func(t1))
+ return -EFAULT;
+
+ return btf_check_func_type_match(log, btf1, t1, btf2, t2);
+}
+
+static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
+#ifdef CONFIG_NET
+ [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
+ [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
+ [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
+#endif
+};
+
+/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
+static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
+ const struct btf *btf,
+ const struct btf_type *t, int rec)
+{
+ const struct btf_type *member_type;
+ const struct btf_member *member;
+ u32 i;
+
+ if (!btf_type_is_struct(t))
+ return false;
+
+ for_each_member(i, t, member) {
+ const struct btf_array *array;
+
+ member_type = btf_type_skip_modifiers(btf, member->type, NULL);
+ if (btf_type_is_struct(member_type)) {
+ if (rec >= 3) {
+ bpf_log(log, "max struct nesting depth exceeded\n");
+ return false;
+ }
+ if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
+ return false;
+ continue;
+ }
+ if (btf_type_is_array(member_type)) {
+ array = btf_type_array(member_type);
+ if (!array->nelems)
+ return false;
+ member_type = btf_type_skip_modifiers(btf, array->type, NULL);
+ if (!btf_type_is_scalar(member_type))
+ return false;
+ continue;
+ }
+ if (!btf_type_is_scalar(member_type))
+ return false;
+ }
+ return true;
+}
+
+static bool is_kfunc_arg_mem_size(const struct btf *btf,
+ const struct btf_param *arg,
+ const struct bpf_reg_state *reg)
+{
+ int len, sfx_len = sizeof("__sz") - 1;
+ const struct btf_type *t;
+ const char *param_name;
+
+ t = btf_type_skip_modifiers(btf, arg->type, NULL);
+ if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
+ return false;
+
+ /* In the future, this can be ported to use BTF tagging */
+ param_name = btf_name_by_offset(btf, arg->name_off);
+ if (str_is_empty(param_name))
+ return false;
+ len = strlen(param_name);
+ if (len < sfx_len)
+ return false;
+ param_name += len - sfx_len;
+ if (strncmp(param_name, "__sz", sfx_len))
+ return false;
+
+ return true;
+}
+
+static bool btf_is_kfunc_arg_mem_size(const struct btf *btf,
+ const struct btf_param *arg,
+ const struct bpf_reg_state *reg,
+ const char *name)
+{
+ int len, target_len = strlen(name);
+ const struct btf_type *t;
+ const char *param_name;
+
+ t = btf_type_skip_modifiers(btf, arg->type, NULL);
+ if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
+ return false;
+
+ param_name = btf_name_by_offset(btf, arg->name_off);
+ if (str_is_empty(param_name))
+ return false;
+ len = strlen(param_name);
+ if (len != target_len)
+ return false;
+ if (strcmp(param_name, name))
+ return false;
+
+ return true;
+}
+
+static int btf_check_func_arg_match(struct bpf_verifier_env *env,
+ const struct btf *btf, u32 func_id,
+ struct bpf_reg_state *regs,
+ bool ptr_to_mem_ok,
+ struct bpf_kfunc_arg_meta *kfunc_meta,
+ bool processing_call)
+{
+ enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
+ bool rel = false, kptr_get = false, trusted_args = false;
+ bool sleepable = false;
+ struct bpf_verifier_log *log = &env->log;
+ u32 i, nargs, ref_id, ref_obj_id = 0;
+ bool is_kfunc = btf_is_kernel(btf);
+ const char *func_name, *ref_tname;
+ const struct btf_type *t, *ref_t;
+ const struct btf_param *args;
+ int ref_regno = 0, ret;
+
+ t = btf_type_by_id(btf, func_id);
+ if (!t || !btf_type_is_func(t)) {
+ /* These checks were already done by the verifier while loading
+ * struct bpf_func_info or in add_kfunc_call().
+ */
+ bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
+ func_id);
+ return -EFAULT;
+ }
+ func_name = btf_name_by_offset(btf, t->name_off);
+
+ t = btf_type_by_id(btf, t->type);
+ if (!t || !btf_type_is_func_proto(t)) {
+ bpf_log(log, "Invalid BTF of func %s\n", func_name);
+ return -EFAULT;
+ }
+ args = (const struct btf_param *)(t + 1);
+ nargs = btf_type_vlen(t);
+ if (nargs > MAX_BPF_FUNC_REG_ARGS) {
+ bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
+ MAX_BPF_FUNC_REG_ARGS);
+ return -EINVAL;
+ }
+
+ if (is_kfunc && kfunc_meta) {
+ /* Only kfunc can be release func */
+ rel = kfunc_meta->flags & KF_RELEASE;
+ kptr_get = kfunc_meta->flags & KF_KPTR_GET;
+ trusted_args = kfunc_meta->flags & KF_TRUSTED_ARGS;
+ sleepable = kfunc_meta->flags & KF_SLEEPABLE;
+ }
+
+ /* check that BTF function arguments match actual types that the
+ * verifier sees.
+ */
+ for (i = 0; i < nargs; i++) {
+ enum bpf_arg_type arg_type = ARG_DONTCARE;
+ u32 regno = i + 1;
+ struct bpf_reg_state *reg = &regs[regno];
+ bool obj_ptr = false;
+
+ t = btf_type_skip_modifiers(btf, args[i].type, NULL);
+ if (btf_type_is_scalar(t)) {
+ if (is_kfunc && kfunc_meta) {
+ bool is_buf_size = false;
+
+ /* check for any const scalar parameter of name "rdonly_buf_size"
+ * or "rdwr_buf_size"
+ */
+ if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
+ "rdonly_buf_size")) {
+ kfunc_meta->r0_rdonly = true;
+ is_buf_size = true;
+ } else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
+ "rdwr_buf_size"))
+ is_buf_size = true;
+
+ if (is_buf_size) {
+ if (kfunc_meta->r0_size) {
+ bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
+ return -EINVAL;
+ }
+
+ if (!tnum_is_const(reg->var_off)) {
+ bpf_log(log, "R%d is not a const\n", regno);
+ return -EINVAL;
+ }
+
+ kfunc_meta->r0_size = reg->var_off.value;
+ ret = mark_chain_precision(env, regno);
+ if (ret)
+ return ret;
+ }
+ }
+
+ if (reg->type == SCALAR_VALUE)
+ continue;
+ bpf_log(log, "R%d is not a scalar\n", regno);
+ return -EINVAL;
+ }
+
+ if (!btf_type_is_ptr(t)) {
+ bpf_log(log, "Unrecognized arg#%d type %s\n",
+ i, btf_type_str(t));
+ return -EINVAL;
+ }
+
+ /* These register types have special constraints wrt ref_obj_id
+ * and offset checks. The rest of trusted args don't.
+ */
+ obj_ptr = reg->type == PTR_TO_CTX || reg->type == PTR_TO_BTF_ID ||
+ reg2btf_ids[base_type(reg->type)];
+
+ /* Check if argument must be a referenced pointer, args + i has
+ * been verified to be a pointer (after skipping modifiers).
+ * PTR_TO_CTX is ok without having non-zero ref_obj_id.
+ */
+ if (is_kfunc && trusted_args && (obj_ptr && reg->type != PTR_TO_CTX) && !reg->ref_obj_id) {
+ bpf_log(log, "R%d must be referenced\n", regno);
+ return -EINVAL;
+ }
+
+ ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
+ ref_tname = btf_name_by_offset(btf, ref_t->name_off);
+
+ /* Trusted args have the same offset checks as release arguments */
+ if ((trusted_args && obj_ptr) || (rel && reg->ref_obj_id))
+ arg_type |= OBJ_RELEASE;
+ ret = check_func_arg_reg_off(env, reg, regno, arg_type);
+ if (ret < 0)
+ return ret;
+
+ if (is_kfunc && reg->ref_obj_id) {
+ /* Ensure only one argument is referenced PTR_TO_BTF_ID */
+ if (ref_obj_id) {
+ bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
+ regno, reg->ref_obj_id, ref_obj_id);
+ return -EFAULT;
+ }
+ ref_regno = regno;
+ ref_obj_id = reg->ref_obj_id;
+ }
+
+ /* kptr_get is only true for kfunc */
+ if (i == 0 && kptr_get) {
+ struct bpf_map_value_off_desc *off_desc;
+
+ if (reg->type != PTR_TO_MAP_VALUE) {
+ bpf_log(log, "arg#0 expected pointer to map value\n");
+ return -EINVAL;
+ }
+
+ /* check_func_arg_reg_off allows var_off for
+ * PTR_TO_MAP_VALUE, but we need fixed offset to find
+ * off_desc.
+ */
+ if (!tnum_is_const(reg->var_off)) {
+ bpf_log(log, "arg#0 must have constant offset\n");
+ return -EINVAL;
+ }
+
+ off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value);
+ if (!off_desc || off_desc->type != BPF_KPTR_REF) {
+ bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n",
+ reg->off + reg->var_off.value);
+ return -EINVAL;
+ }
+
+ if (!btf_type_is_ptr(ref_t)) {
+ bpf_log(log, "arg#0 BTF type must be a double pointer\n");
+ return -EINVAL;
+ }
+
+ ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id);
+ ref_tname = btf_name_by_offset(btf, ref_t->name_off);
+
+ if (!btf_type_is_struct(ref_t)) {
+ bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
+ func_name, i, btf_type_str(ref_t), ref_tname);
+ return -EINVAL;
+ }
+ if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf,
+ off_desc->kptr.btf_id, true)) {
+ bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n",
+ func_name, i, btf_type_str(ref_t), ref_tname);
+ return -EINVAL;
+ }
+ /* rest of the arguments can be anything, like normal kfunc */
+ } else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
+ /* If function expects ctx type in BTF check that caller
+ * is passing PTR_TO_CTX.
+ */
+ if (reg->type != PTR_TO_CTX) {
+ bpf_log(log,
+ "arg#%d expected pointer to ctx, but got %s\n",
+ i, btf_type_str(t));
+ return -EINVAL;
+ }
+ } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
+ (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
+ const struct btf_type *reg_ref_t;
+ const struct btf *reg_btf;
+ const char *reg_ref_tname;
+ u32 reg_ref_id;
+
+ if (!btf_type_is_struct(ref_t)) {
+ bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
+ func_name, i, btf_type_str(ref_t),
+ ref_tname);
+ return -EINVAL;
+ }
+
+ if (reg->type == PTR_TO_BTF_ID) {
+ reg_btf = reg->btf;
+ reg_ref_id = reg->btf_id;
+ } else {
+ reg_btf = btf_vmlinux;
+ reg_ref_id = *reg2btf_ids[base_type(reg->type)];
+ }
+
+ reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
+ &reg_ref_id);
+ reg_ref_tname = btf_name_by_offset(reg_btf,
+ reg_ref_t->name_off);
+ if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
+ reg->off, btf, ref_id,
+ trusted_args || (rel && reg->ref_obj_id))) {
+ bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
+ func_name, i,
+ btf_type_str(ref_t), ref_tname,
+ regno, btf_type_str(reg_ref_t),
+ reg_ref_tname);
+ return -EINVAL;
+ }
+ } else if (ptr_to_mem_ok && processing_call) {
+ const struct btf_type *resolve_ret;
+ u32 type_size;
+
+ if (is_kfunc) {
+ bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
+ bool arg_dynptr = btf_type_is_struct(ref_t) &&
+ !strcmp(ref_tname,
+ stringify_struct(bpf_dynptr_kern));
+
+ /* Permit pointer to mem, but only when argument
+ * type is pointer to scalar, or struct composed
+ * (recursively) of scalars.
+ * When arg_mem_size is true, the pointer can be
+ * void *.
+ * Also permit initialized local dynamic pointers.
+ */
+ if (!btf_type_is_scalar(ref_t) &&
+ !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
+ !arg_dynptr &&
+ (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
+ bpf_log(log,
+ "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
+ i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
+ return -EINVAL;
+ }
+
+ if (arg_dynptr) {
+ if (reg->type != PTR_TO_STACK) {
+ bpf_log(log, "arg#%d pointer type %s %s not to stack\n",
+ i, btf_type_str(ref_t),
+ ref_tname);
+ return -EINVAL;
+ }
+
+ if (!is_dynptr_reg_valid_init(env, reg)) {
+ bpf_log(log,
+ "arg#%d pointer type %s %s must be valid and initialized\n",
+ i, btf_type_str(ref_t),
+ ref_tname);
+ return -EINVAL;
+ }
+
+ if (!is_dynptr_type_expected(env, reg,
+ ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
+ bpf_log(log,
+ "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
+ i, btf_type_str(ref_t),
+ ref_tname);
+ return -EINVAL;
+ }
+
+ continue;
+ }
+
+ /* Check for mem, len pair */
+ if (arg_mem_size) {
+ if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
+ bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
+ i, i + 1);
+ return -EINVAL;
+ }
+ i++;
+ continue;
+ }
+ }
+
+ resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
+ if (IS_ERR(resolve_ret)) {
+ bpf_log(log,
+ "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
+ i, btf_type_str(ref_t), ref_tname,
+ PTR_ERR(resolve_ret));
+ return -EINVAL;
+ }
+
+ if (check_mem_reg(env, reg, regno, type_size))
+ return -EINVAL;
+ } else {
+ bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
+ is_kfunc ? "kernel " : "", func_name, func_id);
+ return -EINVAL;
+ }
+ }
+
+ /* Either both are set, or neither */
+ WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
+ /* We already made sure ref_obj_id is set only for one argument. We do
+ * allow (!rel && ref_obj_id), so that passing such referenced
+ * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
+ * is_kfunc is true.
+ */
+ if (rel && !ref_obj_id) {
+ bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
+ func_name);
+ return -EINVAL;
+ }
+
+ if (sleepable && !env->prog->aux->sleepable) {
+ bpf_log(log, "kernel function %s is sleepable but the program is not\n",
+ func_name);
+ return -EINVAL;
+ }
+
+ if (kfunc_meta && ref_obj_id)
+ kfunc_meta->ref_obj_id = ref_obj_id;
+
+ /* returns argument register number > 0 in case of reference release kfunc */
+ return rel ? ref_regno : 0;
+}
+
+/* Compare BTF of a function declaration with given bpf_reg_state.
+ * Returns:
+ * EFAULT - there is a verifier bug. Abort verification.
+ * EINVAL - there is a type mismatch or BTF is not available.
+ * 0 - BTF matches with what bpf_reg_state expects.
+ * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
+ */
+int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
+ struct bpf_reg_state *regs)
+{
+ struct bpf_prog *prog = env->prog;
+ struct btf *btf = prog->aux->btf;
+ bool is_global;
+ u32 btf_id;
+ int err;
+
+ if (!prog->aux->func_info)
+ return -EINVAL;
+
+ btf_id = prog->aux->func_info[subprog].type_id;
+ if (!btf_id)
+ return -EFAULT;
+
+ if (prog->aux->func_info_aux[subprog].unreliable)
+ return -EINVAL;
+
+ is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
+ err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false);
+
+ /* Compiler optimizations can remove arguments from static functions
+ * or mismatched type can be passed into a global function.
+ * In such cases mark the function as unreliable from BTF point of view.
+ */
+ if (err)
+ prog->aux->func_info_aux[subprog].unreliable = true;
+ return err;
+}
+
+/* Compare BTF of a function call with given bpf_reg_state.
+ * Returns:
+ * EFAULT - there is a verifier bug. Abort verification.
+ * EINVAL - there is a type mismatch or BTF is not available.
+ * 0 - BTF matches with what bpf_reg_state expects.
+ * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
+ *
+ * NOTE: the code is duplicated from btf_check_subprog_arg_match()
+ * because btf_check_func_arg_match() is still doing both. Once that
+ * function is split in 2, we can call from here btf_check_subprog_arg_match()
+ * first, and then treat the calling part in a new code path.
+ */
+int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
+ struct bpf_reg_state *regs)
+{
+ struct bpf_prog *prog = env->prog;
+ struct btf *btf = prog->aux->btf;
+ bool is_global;
+ u32 btf_id;
+ int err;
+
+ if (!prog->aux->func_info)
+ return -EINVAL;
+
+ btf_id = prog->aux->func_info[subprog].type_id;
+ if (!btf_id)
+ return -EFAULT;
+
+ if (prog->aux->func_info_aux[subprog].unreliable)
+ return -EINVAL;
+
+ is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
+ err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true);
+
+ /* Compiler optimizations can remove arguments from static functions
+ * or mismatched type can be passed into a global function.
+ * In such cases mark the function as unreliable from BTF point of view.
+ */
+ if (err)
+ prog->aux->func_info_aux[subprog].unreliable = true;
+ return err;
+}
+
+int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
+ const struct btf *btf, u32 func_id,
+ struct bpf_reg_state *regs,
+ struct bpf_kfunc_arg_meta *meta)
+{
+ return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true);
+}
+
+/* Convert BTF of a function into bpf_reg_state if possible
+ * Returns:
+ * EFAULT - there is a verifier bug. Abort verification.
+ * EINVAL - cannot convert BTF.
+ * 0 - Successfully converted BTF into bpf_reg_state
+ * (either PTR_TO_CTX or SCALAR_VALUE).
+ */
+int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
+ struct bpf_reg_state *regs)
+{
+ struct bpf_verifier_log *log = &env->log;
+ struct bpf_prog *prog = env->prog;
+ enum bpf_prog_type prog_type = prog->type;
+ struct btf *btf = prog->aux->btf;
+ const struct btf_param *args;
+ const struct btf_type *t, *ref_t;
+ u32 i, nargs, btf_id;
+ const char *tname;
+
+ if (!prog->aux->func_info ||
+ prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
+ bpf_log(log, "Verifier bug\n");
+ return -EFAULT;
+ }
+
+ btf_id = prog->aux->func_info[subprog].type_id;
+ if (!btf_id) {
+ bpf_log(log, "Global functions need valid BTF\n");
+ return -EFAULT;
+ }
+
+ t = btf_type_by_id(btf, btf_id);
+ if (!t || !btf_type_is_func(t)) {
+ /* These checks were already done by the verifier while loading
+ * struct bpf_func_info
+ */
+ bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
+ subprog);
+ return -EFAULT;
+ }
+ tname = btf_name_by_offset(btf, t->name_off);
+
+ if (log->level & BPF_LOG_LEVEL)
+ bpf_log(log, "Validating %s() func#%d...\n",
+ tname, subprog);
+
+ if (prog->aux->func_info_aux[subprog].unreliable) {
+ bpf_log(log, "Verifier bug in function %s()\n", tname);
+ return -EFAULT;
+ }
+ if (prog_type == BPF_PROG_TYPE_EXT)
+ prog_type = prog->aux->dst_prog->type;
+
+ t = btf_type_by_id(btf, t->type);
+ if (!t || !btf_type_is_func_proto(t)) {
+ bpf_log(log, "Invalid type of function %s()\n", tname);
+ return -EFAULT;
+ }
+ args = (const struct btf_param *)(t + 1);
+ nargs = btf_type_vlen(t);
+ if (nargs > MAX_BPF_FUNC_REG_ARGS) {
+ bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
+ tname, nargs, MAX_BPF_FUNC_REG_ARGS);
+ return -EINVAL;
+ }
+ /* check that function returns int */
+ t = btf_type_by_id(btf, t->type);
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
+ bpf_log(log,
+ "Global function %s() doesn't return scalar. Only those are supported.\n",
+ tname);
+ return -EINVAL;
+ }
+ /* Convert BTF function arguments into verifier types.
+ * Only PTR_TO_CTX and SCALAR are supported atm.
+ */
+ for (i = 0; i < nargs; i++) {
+ struct bpf_reg_state *reg = &regs[i + 1];
+
+ t = btf_type_by_id(btf, args[i].type);
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (btf_type_is_int(t) || btf_is_any_enum(t)) {
+ reg->type = SCALAR_VALUE;
+ continue;
+ }
+ if (btf_type_is_ptr(t)) {
+ if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
+ reg->type = PTR_TO_CTX;
+ continue;
+ }
+
+ t = btf_type_skip_modifiers(btf, t->type, NULL);
+
+ ref_t = btf_resolve_size(btf, t, &reg->mem_size);
+ if (IS_ERR(ref_t)) {
+ bpf_log(log,
+ "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
+ i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
+ PTR_ERR(ref_t));
+ return -EINVAL;
+ }
+
+ reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
+ reg->id = ++env->id_gen;
+
+ continue;
+ }
+ bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
+ i, btf_type_str(t), tname);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
+ struct btf_show *show)
+{
+ const struct btf_type *t = btf_type_by_id(btf, type_id);
+
+ show->btf = btf;
+ memset(&show->state, 0, sizeof(show->state));
+ memset(&show->obj, 0, sizeof(show->obj));
+
+ btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
+}
+
+static void btf_seq_show(struct btf_show *show, const char *fmt,
+ va_list args)
+{
+ seq_vprintf((struct seq_file *)show->target, fmt, args);
+}
+
+int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
+ void *obj, struct seq_file *m, u64 flags)
+{
+ struct btf_show sseq;
+
+ sseq.target = m;
+ sseq.showfn = btf_seq_show;
+ sseq.flags = flags;
+
+ btf_type_show(btf, type_id, obj, &sseq);
+
+ return sseq.state.status;
+}
+
+void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
+ struct seq_file *m)
+{
+ (void) btf_type_seq_show_flags(btf, type_id, obj, m,
+ BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
+ BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
+}
+
+struct btf_show_snprintf {
+ struct btf_show show;
+ int len_left; /* space left in string */
+ int len; /* length we would have written */
+};
+
+static void btf_snprintf_show(struct btf_show *show, const char *fmt,
+ va_list args)
+{
+ struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
+ int len;
+
+ len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
+
+ if (len < 0) {
+ ssnprintf->len_left = 0;
+ ssnprintf->len = len;
+ } else if (len >= ssnprintf->len_left) {
+ /* no space, drive on to get length we would have written */
+ ssnprintf->len_left = 0;
+ ssnprintf->len += len;
+ } else {
+ ssnprintf->len_left -= len;
+ ssnprintf->len += len;
+ show->target += len;
+ }
+}
+
+int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
+ char *buf, int len, u64 flags)
+{
+ struct btf_show_snprintf ssnprintf;
+
+ ssnprintf.show.target = buf;
+ ssnprintf.show.flags = flags;
+ ssnprintf.show.showfn = btf_snprintf_show;
+ ssnprintf.len_left = len;
+ ssnprintf.len = 0;
+
+ btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
+
+ /* If we encountered an error, return it. */
+ if (ssnprintf.show.state.status)
+ return ssnprintf.show.state.status;
+
+ /* Otherwise return length we would have written */
+ return ssnprintf.len;
+}
+
+#ifdef CONFIG_PROC_FS
+static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
+{
+ const struct btf *btf = filp->private_data;
+
+ seq_printf(m, "btf_id:\t%u\n", btf->id);
+}
+#endif
+
+static int btf_release(struct inode *inode, struct file *filp)
+{
+ btf_put(filp->private_data);
+ return 0;
+}
+
+const struct file_operations btf_fops = {
+#ifdef CONFIG_PROC_FS
+ .show_fdinfo = bpf_btf_show_fdinfo,
+#endif
+ .release = btf_release,
+};
+
+static int __btf_new_fd(struct btf *btf)
+{
+ return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
+}
+
+int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
+{
+ struct btf *btf;
+ int ret;
+
+ btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
+ attr->btf_size, attr->btf_log_level,
+ u64_to_user_ptr(attr->btf_log_buf),
+ attr->btf_log_size);
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+
+ ret = btf_alloc_id(btf);
+ if (ret) {
+ btf_free(btf);
+ return ret;
+ }
+
+ /*
+ * The BTF ID is published to the userspace.
+ * All BTF free must go through call_rcu() from
+ * now on (i.e. free by calling btf_put()).
+ */
+
+ ret = __btf_new_fd(btf);
+ if (ret < 0)
+ btf_put(btf);
+
+ return ret;
+}
+
+struct btf *btf_get_by_fd(int fd)
+{
+ struct btf *btf;
+ struct fd f;
+
+ f = fdget(fd);
+
+ if (!f.file)
+ return ERR_PTR(-EBADF);
+
+ if (f.file->f_op != &btf_fops) {
+ fdput(f);
+ return ERR_PTR(-EINVAL);
+ }
+
+ btf = f.file->private_data;
+ refcount_inc(&btf->refcnt);
+ fdput(f);
+
+ return btf;
+}
+
+int btf_get_info_by_fd(const struct btf *btf,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ struct bpf_btf_info __user *uinfo;
+ struct bpf_btf_info info;
+ u32 info_copy, btf_copy;
+ void __user *ubtf;
+ char __user *uname;
+ u32 uinfo_len, uname_len, name_len;
+ int ret = 0;
+
+ uinfo = u64_to_user_ptr(attr->info.info);
+ uinfo_len = attr->info.info_len;
+
+ info_copy = min_t(u32, uinfo_len, sizeof(info));
+ memset(&info, 0, sizeof(info));
+ if (copy_from_user(&info, uinfo, info_copy))
+ return -EFAULT;
+
+ info.id = btf->id;
+ ubtf = u64_to_user_ptr(info.btf);
+ btf_copy = min_t(u32, btf->data_size, info.btf_size);
+ if (copy_to_user(ubtf, btf->data, btf_copy))
+ return -EFAULT;
+ info.btf_size = btf->data_size;
+
+ info.kernel_btf = btf->kernel_btf;
+
+ uname = u64_to_user_ptr(info.name);
+ uname_len = info.name_len;
+ if (!uname ^ !uname_len)
+ return -EINVAL;
+
+ name_len = strlen(btf->name);
+ info.name_len = name_len;
+
+ if (uname) {
+ if (uname_len >= name_len + 1) {
+ if (copy_to_user(uname, btf->name, name_len + 1))
+ return -EFAULT;
+ } else {
+ char zero = '\0';
+
+ if (copy_to_user(uname, btf->name, uname_len - 1))
+ return -EFAULT;
+ if (put_user(zero, uname + uname_len - 1))
+ return -EFAULT;
+ /* let user-space know about too short buffer */
+ ret = -ENOSPC;
+ }
+ }
+
+ if (copy_to_user(uinfo, &info, info_copy) ||
+ put_user(info_copy, &uattr->info.info_len))
+ return -EFAULT;
+
+ return ret;
+}
+
+int btf_get_fd_by_id(u32 id)
+{
+ struct btf *btf;
+ int fd;
+
+ rcu_read_lock();
+ btf = idr_find(&btf_idr, id);
+ if (!btf || !refcount_inc_not_zero(&btf->refcnt))
+ btf = ERR_PTR(-ENOENT);
+ rcu_read_unlock();
+
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+
+ fd = __btf_new_fd(btf);
+ if (fd < 0)
+ btf_put(btf);
+
+ return fd;
+}
+
+u32 btf_obj_id(const struct btf *btf)
+{
+ return btf->id;
+}
+
+bool btf_is_kernel(const struct btf *btf)
+{
+ return btf->kernel_btf;
+}
+
+bool btf_is_module(const struct btf *btf)
+{
+ return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
+}
+
+static int btf_id_cmp_func(const void *a, const void *b)
+{
+ const int *pa = a, *pb = b;
+
+ return *pa - *pb;
+}
+
+bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
+{
+ return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
+}
+
+static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id)
+{
+ return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func);
+}
+
+enum {
+ BTF_MODULE_F_LIVE = (1 << 0),
+};
+
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+struct btf_module {
+ struct list_head list;
+ struct module *module;
+ struct btf *btf;
+ struct bin_attribute *sysfs_attr;
+ int flags;
+};
+
+static LIST_HEAD(btf_modules);
+static DEFINE_MUTEX(btf_module_mutex);
+
+static ssize_t
+btf_module_read(struct file *file, struct kobject *kobj,
+ struct bin_attribute *bin_attr,
+ char *buf, loff_t off, size_t len)
+{
+ const struct btf *btf = bin_attr->private;
+
+ memcpy(buf, btf->data + off, len);
+ return len;
+}
+
+static void purge_cand_cache(struct btf *btf);
+
+static int btf_module_notify(struct notifier_block *nb, unsigned long op,
+ void *module)
+{
+ struct btf_module *btf_mod, *tmp;
+ struct module *mod = module;
+ struct btf *btf;
+ int err = 0;
+
+ if (mod->btf_data_size == 0 ||
+ (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
+ op != MODULE_STATE_GOING))
+ goto out;
+
+ switch (op) {
+ case MODULE_STATE_COMING:
+ btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
+ if (!btf_mod) {
+ err = -ENOMEM;
+ goto out;
+ }
+ btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
+ if (IS_ERR(btf)) {
+ pr_warn("failed to validate module [%s] BTF: %ld\n",
+ mod->name, PTR_ERR(btf));
+ kfree(btf_mod);
+ if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
+ err = PTR_ERR(btf);
+ goto out;
+ }
+ err = btf_alloc_id(btf);
+ if (err) {
+ btf_free(btf);
+ kfree(btf_mod);
+ goto out;
+ }
+
+ purge_cand_cache(NULL);
+ mutex_lock(&btf_module_mutex);
+ btf_mod->module = module;
+ btf_mod->btf = btf;
+ list_add(&btf_mod->list, &btf_modules);
+ mutex_unlock(&btf_module_mutex);
+
+ if (IS_ENABLED(CONFIG_SYSFS)) {
+ struct bin_attribute *attr;
+
+ attr = kzalloc(sizeof(*attr), GFP_KERNEL);
+ if (!attr)
+ goto out;
+
+ sysfs_bin_attr_init(attr);
+ attr->attr.name = btf->name;
+ attr->attr.mode = 0444;
+ attr->size = btf->data_size;
+ attr->private = btf;
+ attr->read = btf_module_read;
+
+ err = sysfs_create_bin_file(btf_kobj, attr);
+ if (err) {
+ pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
+ mod->name, err);
+ kfree(attr);
+ err = 0;
+ goto out;
+ }
+
+ btf_mod->sysfs_attr = attr;
+ }
+
+ break;
+ case MODULE_STATE_LIVE:
+ mutex_lock(&btf_module_mutex);
+ list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
+ if (btf_mod->module != module)
+ continue;
+
+ btf_mod->flags |= BTF_MODULE_F_LIVE;
+ break;
+ }
+ mutex_unlock(&btf_module_mutex);
+ break;
+ case MODULE_STATE_GOING:
+ mutex_lock(&btf_module_mutex);
+ list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
+ if (btf_mod->module != module)
+ continue;
+
+ list_del(&btf_mod->list);
+ if (btf_mod->sysfs_attr)
+ sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
+ purge_cand_cache(btf_mod->btf);
+ btf_put(btf_mod->btf);
+ kfree(btf_mod->sysfs_attr);
+ kfree(btf_mod);
+ break;
+ }
+ mutex_unlock(&btf_module_mutex);
+ break;
+ }
+out:
+ return notifier_from_errno(err);
+}
+
+static struct notifier_block btf_module_nb = {
+ .notifier_call = btf_module_notify,
+};
+
+static int __init btf_module_init(void)
+{
+ register_module_notifier(&btf_module_nb);
+ return 0;
+}
+
+fs_initcall(btf_module_init);
+#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
+
+struct module *btf_try_get_module(const struct btf *btf)
+{
+ struct module *res = NULL;
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+ struct btf_module *btf_mod, *tmp;
+
+ mutex_lock(&btf_module_mutex);
+ list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
+ if (btf_mod->btf != btf)
+ continue;
+
+ /* We must only consider module whose __init routine has
+ * finished, hence we must check for BTF_MODULE_F_LIVE flag,
+ * which is set from the notifier callback for
+ * MODULE_STATE_LIVE.
+ */
+ if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
+ res = btf_mod->module;
+
+ break;
+ }
+ mutex_unlock(&btf_module_mutex);
+#endif
+
+ return res;
+}
+
+/* Returns struct btf corresponding to the struct module.
+ * This function can return NULL or ERR_PTR.
+ */
+static struct btf *btf_get_module_btf(const struct module *module)
+{
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+ struct btf_module *btf_mod, *tmp;
+#endif
+ struct btf *btf = NULL;
+
+ if (!module) {
+ btf = bpf_get_btf_vmlinux();
+ if (!IS_ERR_OR_NULL(btf))
+ btf_get(btf);
+ return btf;
+ }
+
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+ mutex_lock(&btf_module_mutex);
+ list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
+ if (btf_mod->module != module)
+ continue;
+
+ btf_get(btf_mod->btf);
+ btf = btf_mod->btf;
+ break;
+ }
+ mutex_unlock(&btf_module_mutex);
+#endif
+
+ return btf;
+}
+
+BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
+{
+ struct btf *btf = NULL;
+ int btf_obj_fd = 0;
+ long ret;
+
+ if (flags)
+ return -EINVAL;
+
+ if (name_sz <= 1 || name[name_sz - 1])
+ return -EINVAL;
+
+ ret = bpf_find_btf_id(name, kind, &btf);
+ if (ret > 0 && btf_is_module(btf)) {
+ btf_obj_fd = __btf_new_fd(btf);
+ if (btf_obj_fd < 0) {
+ btf_put(btf);
+ return btf_obj_fd;
+ }
+ return ret | (((u64)btf_obj_fd) << 32);
+ }
+ if (ret > 0)
+ btf_put(btf);
+ return ret;
+}
+
+const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
+ .func = bpf_btf_find_by_name_kind,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg2_type = ARG_CONST_SIZE,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_ANYTHING,
+};
+
+BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
+#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
+BTF_TRACING_TYPE_xxx
+#undef BTF_TRACING_TYPE
+
+/* Kernel Function (kfunc) BTF ID set registration API */
+
+static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
+ struct btf_id_set8 *add_set)
+{
+ bool vmlinux_set = !btf_is_module(btf);
+ struct btf_kfunc_set_tab *tab;
+ struct btf_id_set8 *set;
+ u32 set_cnt;
+ int ret;
+
+ if (hook >= BTF_KFUNC_HOOK_MAX) {
+ ret = -EINVAL;
+ goto end;
+ }
+
+ if (!add_set->cnt)
+ return 0;
+
+ tab = btf->kfunc_set_tab;
+ if (!tab) {
+ tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
+ if (!tab)
+ return -ENOMEM;
+ btf->kfunc_set_tab = tab;
+ }
+
+ set = tab->sets[hook];
+ /* Warn when register_btf_kfunc_id_set is called twice for the same hook
+ * for module sets.
+ */
+ if (WARN_ON_ONCE(set && !vmlinux_set)) {
+ ret = -EINVAL;
+ goto end;
+ }
+
+ /* We don't need to allocate, concatenate, and sort module sets, because
+ * only one is allowed per hook. Hence, we can directly assign the
+ * pointer and return.
+ */
+ if (!vmlinux_set) {
+ tab->sets[hook] = add_set;
+ return 0;
+ }
+
+ /* In case of vmlinux sets, there may be more than one set being
+ * registered per hook. To create a unified set, we allocate a new set
+ * and concatenate all individual sets being registered. While each set
+ * is individually sorted, they may become unsorted when concatenated,
+ * hence re-sorting the final set again is required to make binary
+ * searching the set using btf_id_set8_contains function work.
+ */
+ set_cnt = set ? set->cnt : 0;
+
+ if (set_cnt > U32_MAX - add_set->cnt) {
+ ret = -EOVERFLOW;
+ goto end;
+ }
+
+ if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
+ ret = -E2BIG;
+ goto end;
+ }
+
+ /* Grow set */
+ set = krealloc(tab->sets[hook],
+ offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!set) {
+ ret = -ENOMEM;
+ goto end;
+ }
+
+ /* For newly allocated set, initialize set->cnt to 0 */
+ if (!tab->sets[hook])
+ set->cnt = 0;
+ tab->sets[hook] = set;
+
+ /* Concatenate the two sets */
+ memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
+ set->cnt += add_set->cnt;
+
+ sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
+
+ return 0;
+end:
+ btf_free_kfunc_set_tab(btf);
+ return ret;
+}
+
+static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
+ enum btf_kfunc_hook hook,
+ u32 kfunc_btf_id)
+{
+ struct btf_id_set8 *set;
+ u32 *id;
+
+ if (hook >= BTF_KFUNC_HOOK_MAX)
+ return NULL;
+ if (!btf->kfunc_set_tab)
+ return NULL;
+ set = btf->kfunc_set_tab->sets[hook];
+ if (!set)
+ return NULL;
+ id = btf_id_set8_contains(set, kfunc_btf_id);
+ if (!id)
+ return NULL;
+ /* The flags for BTF ID are located next to it */
+ return id + 1;
+}
+
+static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
+{
+ switch (prog_type) {
+ case BPF_PROG_TYPE_XDP:
+ return BTF_KFUNC_HOOK_XDP;
+ case BPF_PROG_TYPE_SCHED_CLS:
+ return BTF_KFUNC_HOOK_TC;
+ case BPF_PROG_TYPE_STRUCT_OPS:
+ return BTF_KFUNC_HOOK_STRUCT_OPS;
+ case BPF_PROG_TYPE_TRACING:
+ case BPF_PROG_TYPE_LSM:
+ return BTF_KFUNC_HOOK_TRACING;
+ case BPF_PROG_TYPE_SYSCALL:
+ return BTF_KFUNC_HOOK_SYSCALL;
+ default:
+ return BTF_KFUNC_HOOK_MAX;
+ }
+}
+
+/* Caution:
+ * Reference to the module (obtained using btf_try_get_module) corresponding to
+ * the struct btf *MUST* be held when calling this function from verifier
+ * context. This is usually true as we stash references in prog's kfunc_btf_tab;
+ * keeping the reference for the duration of the call provides the necessary
+ * protection for looking up a well-formed btf->kfunc_set_tab.
+ */
+u32 *btf_kfunc_id_set_contains(const struct btf *btf,
+ enum bpf_prog_type prog_type,
+ u32 kfunc_btf_id)
+{
+ enum btf_kfunc_hook hook;
+
+ hook = bpf_prog_type_to_kfunc_hook(prog_type);
+ return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
+}
+
+/* This function must be invoked only from initcalls/module init functions */
+int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
+ const struct btf_kfunc_id_set *kset)
+{
+ enum btf_kfunc_hook hook;
+ struct btf *btf;
+ int ret;
+
+ btf = btf_get_module_btf(kset->owner);
+ if (!btf) {
+ if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
+ pr_err("missing vmlinux BTF, cannot register kfuncs\n");
+ return -ENOENT;
+ }
+ if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
+ pr_warn("missing module BTF, cannot register kfuncs\n");
+ return 0;
+ }
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+
+ hook = bpf_prog_type_to_kfunc_hook(prog_type);
+ ret = btf_populate_kfunc_set(btf, hook, kset->set);
+ btf_put(btf);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
+
+s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
+{
+ struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
+ struct btf_id_dtor_kfunc *dtor;
+
+ if (!tab)
+ return -ENOENT;
+ /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
+ * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
+ */
+ BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
+ dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
+ if (!dtor)
+ return -ENOENT;
+ return dtor->kfunc_btf_id;
+}
+
+static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
+{
+ const struct btf_type *dtor_func, *dtor_func_proto, *t;
+ const struct btf_param *args;
+ s32 dtor_btf_id;
+ u32 nr_args, i;
+
+ for (i = 0; i < cnt; i++) {
+ dtor_btf_id = dtors[i].kfunc_btf_id;
+
+ dtor_func = btf_type_by_id(btf, dtor_btf_id);
+ if (!dtor_func || !btf_type_is_func(dtor_func))
+ return -EINVAL;
+
+ dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
+ if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
+ return -EINVAL;
+
+ /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
+ t = btf_type_by_id(btf, dtor_func_proto->type);
+ if (!t || !btf_type_is_void(t))
+ return -EINVAL;
+
+ nr_args = btf_type_vlen(dtor_func_proto);
+ if (nr_args != 1)
+ return -EINVAL;
+ args = btf_params(dtor_func_proto);
+ t = btf_type_by_id(btf, args[0].type);
+ /* Allow any pointer type, as width on targets Linux supports
+ * will be same for all pointer types (i.e. sizeof(void *))
+ */
+ if (!t || !btf_type_is_ptr(t))
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/* This function must be invoked only from initcalls/module init functions */
+int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
+ struct module *owner)
+{
+ struct btf_id_dtor_kfunc_tab *tab;
+ struct btf *btf;
+ u32 tab_cnt;
+ int ret;
+
+ btf = btf_get_module_btf(owner);
+ if (!btf) {
+ if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
+ pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
+ return -ENOENT;
+ }
+ if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
+ pr_err("missing module BTF, cannot register dtor kfuncs\n");
+ return -ENOENT;
+ }
+ return 0;
+ }
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+
+ if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
+ pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
+ ret = -E2BIG;
+ goto end;
+ }
+
+ /* Ensure that the prototype of dtor kfuncs being registered is sane */
+ ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
+ if (ret < 0)
+ goto end;
+
+ tab = btf->dtor_kfunc_tab;
+ /* Only one call allowed for modules */
+ if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
+ ret = -EINVAL;
+ goto end;
+ }
+
+ tab_cnt = tab ? tab->cnt : 0;
+ if (tab_cnt > U32_MAX - add_cnt) {
+ ret = -EOVERFLOW;
+ goto end;
+ }
+ if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
+ pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
+ ret = -E2BIG;
+ goto end;
+ }
+
+ tab = krealloc(btf->dtor_kfunc_tab,
+ offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!tab) {
+ ret = -ENOMEM;
+ goto end;
+ }
+
+ if (!btf->dtor_kfunc_tab)
+ tab->cnt = 0;
+ btf->dtor_kfunc_tab = tab;
+
+ memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
+ tab->cnt += add_cnt;
+
+ sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
+
+end:
+ if (ret)
+ btf_free_dtor_kfunc_tab(btf);
+ btf_put(btf);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
+
+#define MAX_TYPES_ARE_COMPAT_DEPTH 2
+
+/* Check local and target types for compatibility. This check is used for
+ * type-based CO-RE relocations and follow slightly different rules than
+ * field-based relocations. This function assumes that root types were already
+ * checked for name match. Beyond that initial root-level name check, names
+ * are completely ignored. Compatibility rules are as follows:
+ * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
+ * kind should match for local and target types (i.e., STRUCT is not
+ * compatible with UNION);
+ * - for ENUMs/ENUM64s, the size is ignored;
+ * - for INT, size and signedness are ignored;
+ * - for ARRAY, dimensionality is ignored, element types are checked for
+ * compatibility recursively;
+ * - CONST/VOLATILE/RESTRICT modifiers are ignored;
+ * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
+ * - FUNC_PROTOs are compatible if they have compatible signature: same
+ * number of input args and compatible return and argument types.
+ * These rules are not set in stone and probably will be adjusted as we get
+ * more experience with using BPF CO-RE relocations.
+ */
+int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
+ const struct btf *targ_btf, __u32 targ_id)
+{
+ return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
+ MAX_TYPES_ARE_COMPAT_DEPTH);
+}
+
+#define MAX_TYPES_MATCH_DEPTH 2
+
+int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
+ const struct btf *targ_btf, u32 targ_id)
+{
+ return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
+ MAX_TYPES_MATCH_DEPTH);
+}
+
+static bool bpf_core_is_flavor_sep(const char *s)
+{
+ /* check X___Y name pattern, where X and Y are not underscores */
+ return s[0] != '_' && /* X */
+ s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
+ s[4] != '_'; /* Y */
+}
+
+size_t bpf_core_essential_name_len(const char *name)
+{
+ size_t n = strlen(name);
+ int i;
+
+ for (i = n - 5; i >= 0; i--) {
+ if (bpf_core_is_flavor_sep(name + i))
+ return i + 1;
+ }
+ return n;
+}
+
+struct bpf_cand_cache {
+ const char *name;
+ u32 name_len;
+ u16 kind;
+ u16 cnt;
+ struct {
+ const struct btf *btf;
+ u32 id;
+ } cands[];
+};
+
+static void bpf_free_cands(struct bpf_cand_cache *cands)
+{
+ if (!cands->cnt)
+ /* empty candidate array was allocated on stack */
+ return;
+ kfree(cands);
+}
+
+static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
+{
+ kfree(cands->name);
+ kfree(cands);
+}
+
+#define VMLINUX_CAND_CACHE_SIZE 31
+static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
+
+#define MODULE_CAND_CACHE_SIZE 31
+static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
+
+static DEFINE_MUTEX(cand_cache_mutex);
+
+static void __print_cand_cache(struct bpf_verifier_log *log,
+ struct bpf_cand_cache **cache,
+ int cache_size)
+{
+ struct bpf_cand_cache *cc;
+ int i, j;
+
+ for (i = 0; i < cache_size; i++) {
+ cc = cache[i];
+ if (!cc)
+ continue;
+ bpf_log(log, "[%d]%s(", i, cc->name);
+ for (j = 0; j < cc->cnt; j++) {
+ bpf_log(log, "%d", cc->cands[j].id);
+ if (j < cc->cnt - 1)
+ bpf_log(log, " ");
+ }
+ bpf_log(log, "), ");
+ }
+}
+
+static void print_cand_cache(struct bpf_verifier_log *log)
+{
+ mutex_lock(&cand_cache_mutex);
+ bpf_log(log, "vmlinux_cand_cache:");
+ __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
+ bpf_log(log, "\nmodule_cand_cache:");
+ __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
+ bpf_log(log, "\n");
+ mutex_unlock(&cand_cache_mutex);
+}
+
+static u32 hash_cands(struct bpf_cand_cache *cands)
+{
+ return jhash(cands->name, cands->name_len, 0);
+}
+
+static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
+ struct bpf_cand_cache **cache,
+ int cache_size)
+{
+ struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
+
+ if (cc && cc->name_len == cands->name_len &&
+ !strncmp(cc->name, cands->name, cands->name_len))
+ return cc;
+ return NULL;
+}
+
+static size_t sizeof_cands(int cnt)
+{
+ return offsetof(struct bpf_cand_cache, cands[cnt]);
+}
+
+static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
+ struct bpf_cand_cache **cache,
+ int cache_size)
+{
+ struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
+
+ if (*cc) {
+ bpf_free_cands_from_cache(*cc);
+ *cc = NULL;
+ }
+ new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
+ if (!new_cands) {
+ bpf_free_cands(cands);
+ return ERR_PTR(-ENOMEM);
+ }
+ /* strdup the name, since it will stay in cache.
+ * the cands->name points to strings in prog's BTF and the prog can be unloaded.
+ */
+ new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
+ bpf_free_cands(cands);
+ if (!new_cands->name) {
+ kfree(new_cands);
+ return ERR_PTR(-ENOMEM);
+ }
+ *cc = new_cands;
+ return new_cands;
+}
+
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
+ int cache_size)
+{
+ struct bpf_cand_cache *cc;
+ int i, j;
+
+ for (i = 0; i < cache_size; i++) {
+ cc = cache[i];
+ if (!cc)
+ continue;
+ if (!btf) {
+ /* when new module is loaded purge all of module_cand_cache,
+ * since new module might have candidates with the name
+ * that matches cached cands.
+ */
+ bpf_free_cands_from_cache(cc);
+ cache[i] = NULL;
+ continue;
+ }
+ /* when module is unloaded purge cache entries
+ * that match module's btf
+ */
+ for (j = 0; j < cc->cnt; j++)
+ if (cc->cands[j].btf == btf) {
+ bpf_free_cands_from_cache(cc);
+ cache[i] = NULL;
+ break;
+ }
+ }
+
+}
+
+static void purge_cand_cache(struct btf *btf)
+{
+ mutex_lock(&cand_cache_mutex);
+ __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
+ mutex_unlock(&cand_cache_mutex);
+}
+#endif
+
+static struct bpf_cand_cache *
+bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
+ int targ_start_id)
+{
+ struct bpf_cand_cache *new_cands;
+ const struct btf_type *t;
+ const char *targ_name;
+ size_t targ_essent_len;
+ int n, i;
+
+ n = btf_nr_types(targ_btf);
+ for (i = targ_start_id; i < n; i++) {
+ t = btf_type_by_id(targ_btf, i);
+ if (btf_kind(t) != cands->kind)
+ continue;
+
+ targ_name = btf_name_by_offset(targ_btf, t->name_off);
+ if (!targ_name)
+ continue;
+
+ /* the resched point is before strncmp to make sure that search
+ * for non-existing name will have a chance to schedule().
+ */
+ cond_resched();
+
+ if (strncmp(cands->name, targ_name, cands->name_len) != 0)
+ continue;
+
+ targ_essent_len = bpf_core_essential_name_len(targ_name);
+ if (targ_essent_len != cands->name_len)
+ continue;
+
+ /* most of the time there is only one candidate for a given kind+name pair */
+ new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
+ if (!new_cands) {
+ bpf_free_cands(cands);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ memcpy(new_cands, cands, sizeof_cands(cands->cnt));
+ bpf_free_cands(cands);
+ cands = new_cands;
+ cands->cands[cands->cnt].btf = targ_btf;
+ cands->cands[cands->cnt].id = i;
+ cands->cnt++;
+ }
+ return cands;
+}
+
+static struct bpf_cand_cache *
+bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
+{
+ struct bpf_cand_cache *cands, *cc, local_cand = {};
+ const struct btf *local_btf = ctx->btf;
+ const struct btf_type *local_type;
+ const struct btf *main_btf;
+ size_t local_essent_len;
+ struct btf *mod_btf;
+ const char *name;
+ int id;
+
+ main_btf = bpf_get_btf_vmlinux();
+ if (IS_ERR(main_btf))
+ return ERR_CAST(main_btf);
+ if (!main_btf)
+ return ERR_PTR(-EINVAL);
+
+ local_type = btf_type_by_id(local_btf, local_type_id);
+ if (!local_type)
+ return ERR_PTR(-EINVAL);
+
+ name = btf_name_by_offset(local_btf, local_type->name_off);
+ if (str_is_empty(name))
+ return ERR_PTR(-EINVAL);
+ local_essent_len = bpf_core_essential_name_len(name);
+
+ cands = &local_cand;
+ cands->name = name;
+ cands->kind = btf_kind(local_type);
+ cands->name_len = local_essent_len;
+
+ cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
+ /* cands is a pointer to stack here */
+ if (cc) {
+ if (cc->cnt)
+ return cc;
+ goto check_modules;
+ }
+
+ /* Attempt to find target candidates in vmlinux BTF first */
+ cands = bpf_core_add_cands(cands, main_btf, 1);
+ if (IS_ERR(cands))
+ return ERR_CAST(cands);
+
+ /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
+
+ /* populate cache even when cands->cnt == 0 */
+ cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
+ if (IS_ERR(cc))
+ return ERR_CAST(cc);
+
+ /* if vmlinux BTF has any candidate, don't go for module BTFs */
+ if (cc->cnt)
+ return cc;
+
+check_modules:
+ /* cands is a pointer to stack here and cands->cnt == 0 */
+ cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
+ if (cc)
+ /* if cache has it return it even if cc->cnt == 0 */
+ return cc;
+
+ /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
+ spin_lock_bh(&btf_idr_lock);
+ idr_for_each_entry(&btf_idr, mod_btf, id) {
+ if (!btf_is_module(mod_btf))
+ continue;
+ /* linear search could be slow hence unlock/lock
+ * the IDR to avoiding holding it for too long
+ */
+ btf_get(mod_btf);
+ spin_unlock_bh(&btf_idr_lock);
+ cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
+ btf_put(mod_btf);
+ if (IS_ERR(cands))
+ return ERR_CAST(cands);
+ spin_lock_bh(&btf_idr_lock);
+ }
+ spin_unlock_bh(&btf_idr_lock);
+ /* cands is a pointer to kmalloced memory here if cands->cnt > 0
+ * or pointer to stack if cands->cnd == 0.
+ * Copy it into the cache even when cands->cnt == 0 and
+ * return the result.
+ */
+ return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
+}
+
+int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
+ int relo_idx, void *insn)
+{
+ bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
+ struct bpf_core_cand_list cands = {};
+ struct bpf_core_relo_res targ_res;
+ struct bpf_core_spec *specs;
+ int err;
+
+ /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
+ * into arrays of btf_ids of struct fields and array indices.
+ */
+ specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
+ if (!specs)
+ return -ENOMEM;
+
+ if (need_cands) {
+ struct bpf_cand_cache *cc;
+ int i;
+
+ mutex_lock(&cand_cache_mutex);
+ cc = bpf_core_find_cands(ctx, relo->type_id);
+ if (IS_ERR(cc)) {
+ bpf_log(ctx->log, "target candidate search failed for %d\n",
+ relo->type_id);
+ err = PTR_ERR(cc);
+ goto out;
+ }
+ if (cc->cnt) {
+ cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
+ if (!cands.cands) {
+ err = -ENOMEM;
+ goto out;
+ }
+ }
+ for (i = 0; i < cc->cnt; i++) {
+ bpf_log(ctx->log,
+ "CO-RE relocating %s %s: found target candidate [%d]\n",
+ btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
+ cands.cands[i].btf = cc->cands[i].btf;
+ cands.cands[i].id = cc->cands[i].id;
+ }
+ cands.len = cc->cnt;
+ /* cand_cache_mutex needs to span the cache lookup and
+ * copy of btf pointer into bpf_core_cand_list,
+ * since module can be unloaded while bpf_core_calc_relo_insn
+ * is working with module's btf.
+ */
+ }
+
+ err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
+ &targ_res);
+ if (err)
+ goto out;
+
+ err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
+ &targ_res);
+
+out:
+ kfree(specs);
+ if (need_cands) {
+ kfree(cands.cands);
+ mutex_unlock(&cand_cache_mutex);
+ if (ctx->log->level & BPF_LOG_LEVEL2)
+ print_cand_cache(ctx->log);
+ }
+ return err;
+}
diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c
new file mode 100644
index 000000000..bb70f400c
--- /dev/null
+++ b/kernel/bpf/cgroup.c
@@ -0,0 +1,2561 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Functions to manage eBPF programs attached to cgroups
+ *
+ * Copyright (c) 2016 Daniel Mack
+ */
+
+#include <linux/kernel.h>
+#include <linux/atomic.h>
+#include <linux/cgroup.h>
+#include <linux/filter.h>
+#include <linux/slab.h>
+#include <linux/sysctl.h>
+#include <linux/string.h>
+#include <linux/bpf.h>
+#include <linux/bpf-cgroup.h>
+#include <linux/bpf_lsm.h>
+#include <linux/bpf_verifier.h>
+#include <net/sock.h>
+#include <net/bpf_sk_storage.h>
+
+#include "../cgroup/cgroup-internal.h"
+
+DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
+EXPORT_SYMBOL(cgroup_bpf_enabled_key);
+
+/* __always_inline is necessary to prevent indirect call through run_prog
+ * function pointer.
+ */
+static __always_inline int
+bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp,
+ enum cgroup_bpf_attach_type atype,
+ const void *ctx, bpf_prog_run_fn run_prog,
+ int retval, u32 *ret_flags)
+{
+ const struct bpf_prog_array_item *item;
+ const struct bpf_prog *prog;
+ const struct bpf_prog_array *array;
+ struct bpf_run_ctx *old_run_ctx;
+ struct bpf_cg_run_ctx run_ctx;
+ u32 func_ret;
+
+ run_ctx.retval = retval;
+ migrate_disable();
+ rcu_read_lock();
+ array = rcu_dereference(cgrp->effective[atype]);
+ item = &array->items[0];
+ old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
+ while ((prog = READ_ONCE(item->prog))) {
+ run_ctx.prog_item = item;
+ func_ret = run_prog(prog, ctx);
+ if (ret_flags) {
+ *(ret_flags) |= (func_ret >> 1);
+ func_ret &= 1;
+ }
+ if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval))
+ run_ctx.retval = -EPERM;
+ item++;
+ }
+ bpf_reset_run_ctx(old_run_ctx);
+ rcu_read_unlock();
+ migrate_enable();
+ return run_ctx.retval;
+}
+
+unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx,
+ const struct bpf_insn *insn)
+{
+ const struct bpf_prog *shim_prog;
+ struct sock *sk;
+ struct cgroup *cgrp;
+ int ret = 0;
+ u64 *args;
+
+ args = (u64 *)ctx;
+ sk = (void *)(unsigned long)args[0];
+ /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
+ shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
+
+ cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+ if (likely(cgrp))
+ ret = bpf_prog_run_array_cg(&cgrp->bpf,
+ shim_prog->aux->cgroup_atype,
+ ctx, bpf_prog_run, 0, NULL);
+ return ret;
+}
+
+unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx,
+ const struct bpf_insn *insn)
+{
+ const struct bpf_prog *shim_prog;
+ struct socket *sock;
+ struct cgroup *cgrp;
+ int ret = 0;
+ u64 *args;
+
+ args = (u64 *)ctx;
+ sock = (void *)(unsigned long)args[0];
+ /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
+ shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
+
+ cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data);
+ if (likely(cgrp))
+ ret = bpf_prog_run_array_cg(&cgrp->bpf,
+ shim_prog->aux->cgroup_atype,
+ ctx, bpf_prog_run, 0, NULL);
+ return ret;
+}
+
+unsigned int __cgroup_bpf_run_lsm_current(const void *ctx,
+ const struct bpf_insn *insn)
+{
+ const struct bpf_prog *shim_prog;
+ struct cgroup *cgrp;
+ int ret = 0;
+
+ /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
+ shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
+
+ /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */
+ cgrp = task_dfl_cgroup(current);
+ if (likely(cgrp))
+ ret = bpf_prog_run_array_cg(&cgrp->bpf,
+ shim_prog->aux->cgroup_atype,
+ ctx, bpf_prog_run, 0, NULL);
+ return ret;
+}
+
+#ifdef CONFIG_BPF_LSM
+struct cgroup_lsm_atype {
+ u32 attach_btf_id;
+ int refcnt;
+};
+
+static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM];
+
+static enum cgroup_bpf_attach_type
+bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id)
+{
+ int i;
+
+ lockdep_assert_held(&cgroup_mutex);
+
+ if (attach_type != BPF_LSM_CGROUP)
+ return to_cgroup_bpf_attach_type(attach_type);
+
+ for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++)
+ if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id)
+ return CGROUP_LSM_START + i;
+
+ for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++)
+ if (cgroup_lsm_atype[i].attach_btf_id == 0)
+ return CGROUP_LSM_START + i;
+
+ return -E2BIG;
+
+}
+
+void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype)
+{
+ int i = cgroup_atype - CGROUP_LSM_START;
+
+ lockdep_assert_held(&cgroup_mutex);
+
+ WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id &&
+ cgroup_lsm_atype[i].attach_btf_id != attach_btf_id);
+
+ cgroup_lsm_atype[i].attach_btf_id = attach_btf_id;
+ cgroup_lsm_atype[i].refcnt++;
+}
+
+void bpf_cgroup_atype_put(int cgroup_atype)
+{
+ int i = cgroup_atype - CGROUP_LSM_START;
+
+ cgroup_lock();
+ if (--cgroup_lsm_atype[i].refcnt <= 0)
+ cgroup_lsm_atype[i].attach_btf_id = 0;
+ WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0);
+ cgroup_unlock();
+}
+#else
+static enum cgroup_bpf_attach_type
+bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id)
+{
+ if (attach_type != BPF_LSM_CGROUP)
+ return to_cgroup_bpf_attach_type(attach_type);
+ return -EOPNOTSUPP;
+}
+#endif /* CONFIG_BPF_LSM */
+
+void cgroup_bpf_offline(struct cgroup *cgrp)
+{
+ cgroup_get(cgrp);
+ percpu_ref_kill(&cgrp->bpf.refcnt);
+}
+
+static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
+{
+ enum bpf_cgroup_storage_type stype;
+
+ for_each_cgroup_storage_type(stype)
+ bpf_cgroup_storage_free(storages[stype]);
+}
+
+static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
+ struct bpf_cgroup_storage *new_storages[],
+ enum bpf_attach_type type,
+ struct bpf_prog *prog,
+ struct cgroup *cgrp)
+{
+ enum bpf_cgroup_storage_type stype;
+ struct bpf_cgroup_storage_key key;
+ struct bpf_map *map;
+
+ key.cgroup_inode_id = cgroup_id(cgrp);
+ key.attach_type = type;
+
+ for_each_cgroup_storage_type(stype) {
+ map = prog->aux->cgroup_storage[stype];
+ if (!map)
+ continue;
+
+ storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
+ if (storages[stype])
+ continue;
+
+ storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
+ if (IS_ERR(storages[stype])) {
+ bpf_cgroup_storages_free(new_storages);
+ return -ENOMEM;
+ }
+
+ new_storages[stype] = storages[stype];
+ }
+
+ return 0;
+}
+
+static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
+ struct bpf_cgroup_storage *src[])
+{
+ enum bpf_cgroup_storage_type stype;
+
+ for_each_cgroup_storage_type(stype)
+ dst[stype] = src[stype];
+}
+
+static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
+ struct cgroup *cgrp,
+ enum bpf_attach_type attach_type)
+{
+ enum bpf_cgroup_storage_type stype;
+
+ for_each_cgroup_storage_type(stype)
+ bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
+}
+
+/* Called when bpf_cgroup_link is auto-detached from dying cgroup.
+ * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
+ * doesn't free link memory, which will eventually be done by bpf_link's
+ * release() callback, when its last FD is closed.
+ */
+static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
+{
+ cgroup_put(link->cgroup);
+ link->cgroup = NULL;
+}
+
+/**
+ * cgroup_bpf_release() - put references of all bpf programs and
+ * release all cgroup bpf data
+ * @work: work structure embedded into the cgroup to modify
+ */
+static void cgroup_bpf_release(struct work_struct *work)
+{
+ struct cgroup *p, *cgrp = container_of(work, struct cgroup,
+ bpf.release_work);
+ struct bpf_prog_array *old_array;
+ struct list_head *storages = &cgrp->bpf.storages;
+ struct bpf_cgroup_storage *storage, *stmp;
+
+ unsigned int atype;
+
+ cgroup_lock();
+
+ for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
+ struct hlist_head *progs = &cgrp->bpf.progs[atype];
+ struct bpf_prog_list *pl;
+ struct hlist_node *pltmp;
+
+ hlist_for_each_entry_safe(pl, pltmp, progs, node) {
+ hlist_del(&pl->node);
+ if (pl->prog) {
+ if (pl->prog->expected_attach_type == BPF_LSM_CGROUP)
+ bpf_trampoline_unlink_cgroup_shim(pl->prog);
+ bpf_prog_put(pl->prog);
+ }
+ if (pl->link) {
+ if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP)
+ bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog);
+ bpf_cgroup_link_auto_detach(pl->link);
+ }
+ kfree(pl);
+ static_branch_dec(&cgroup_bpf_enabled_key[atype]);
+ }
+ old_array = rcu_dereference_protected(
+ cgrp->bpf.effective[atype],
+ lockdep_is_held(&cgroup_mutex));
+ bpf_prog_array_free(old_array);
+ }
+
+ list_for_each_entry_safe(storage, stmp, storages, list_cg) {
+ bpf_cgroup_storage_unlink(storage);
+ bpf_cgroup_storage_free(storage);
+ }
+
+ cgroup_unlock();
+
+ for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
+ cgroup_bpf_put(p);
+
+ percpu_ref_exit(&cgrp->bpf.refcnt);
+ cgroup_put(cgrp);
+}
+
+/**
+ * cgroup_bpf_release_fn() - callback used to schedule releasing
+ * of bpf cgroup data
+ * @ref: percpu ref counter structure
+ */
+static void cgroup_bpf_release_fn(struct percpu_ref *ref)
+{
+ struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
+
+ INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
+ queue_work(system_wq, &cgrp->bpf.release_work);
+}
+
+/* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
+ * link or direct prog.
+ */
+static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
+{
+ if (pl->prog)
+ return pl->prog;
+ if (pl->link)
+ return pl->link->link.prog;
+ return NULL;
+}
+
+/* count number of elements in the list.
+ * it's slow but the list cannot be long
+ */
+static u32 prog_list_length(struct hlist_head *head)
+{
+ struct bpf_prog_list *pl;
+ u32 cnt = 0;
+
+ hlist_for_each_entry(pl, head, node) {
+ if (!prog_list_prog(pl))
+ continue;
+ cnt++;
+ }
+ return cnt;
+}
+
+/* if parent has non-overridable prog attached,
+ * disallow attaching new programs to the descendent cgroup.
+ * if parent has overridable or multi-prog, allow attaching
+ */
+static bool hierarchy_allows_attach(struct cgroup *cgrp,
+ enum cgroup_bpf_attach_type atype)
+{
+ struct cgroup *p;
+
+ p = cgroup_parent(cgrp);
+ if (!p)
+ return true;
+ do {
+ u32 flags = p->bpf.flags[atype];
+ u32 cnt;
+
+ if (flags & BPF_F_ALLOW_MULTI)
+ return true;
+ cnt = prog_list_length(&p->bpf.progs[atype]);
+ WARN_ON_ONCE(cnt > 1);
+ if (cnt == 1)
+ return !!(flags & BPF_F_ALLOW_OVERRIDE);
+ p = cgroup_parent(p);
+ } while (p);
+ return true;
+}
+
+/* compute a chain of effective programs for a given cgroup:
+ * start from the list of programs in this cgroup and add
+ * all parent programs.
+ * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
+ * to programs in this cgroup
+ */
+static int compute_effective_progs(struct cgroup *cgrp,
+ enum cgroup_bpf_attach_type atype,
+ struct bpf_prog_array **array)
+{
+ struct bpf_prog_array_item *item;
+ struct bpf_prog_array *progs;
+ struct bpf_prog_list *pl;
+ struct cgroup *p = cgrp;
+ int cnt = 0;
+
+ /* count number of effective programs by walking parents */
+ do {
+ if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
+ cnt += prog_list_length(&p->bpf.progs[atype]);
+ p = cgroup_parent(p);
+ } while (p);
+
+ progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
+ if (!progs)
+ return -ENOMEM;
+
+ /* populate the array with effective progs */
+ cnt = 0;
+ p = cgrp;
+ do {
+ if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
+ continue;
+
+ hlist_for_each_entry(pl, &p->bpf.progs[atype], node) {
+ if (!prog_list_prog(pl))
+ continue;
+
+ item = &progs->items[cnt];
+ item->prog = prog_list_prog(pl);
+ bpf_cgroup_storages_assign(item->cgroup_storage,
+ pl->storage);
+ cnt++;
+ }
+ } while ((p = cgroup_parent(p)));
+
+ *array = progs;
+ return 0;
+}
+
+static void activate_effective_progs(struct cgroup *cgrp,
+ enum cgroup_bpf_attach_type atype,
+ struct bpf_prog_array *old_array)
+{
+ old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
+ lockdep_is_held(&cgroup_mutex));
+ /* free prog array after grace period, since __cgroup_bpf_run_*()
+ * might be still walking the array
+ */
+ bpf_prog_array_free(old_array);
+}
+
+/**
+ * cgroup_bpf_inherit() - inherit effective programs from parent
+ * @cgrp: the cgroup to modify
+ */
+int cgroup_bpf_inherit(struct cgroup *cgrp)
+{
+/* has to use marco instead of const int, since compiler thinks
+ * that array below is variable length
+ */
+#define NR ARRAY_SIZE(cgrp->bpf.effective)
+ struct bpf_prog_array *arrays[NR] = {};
+ struct cgroup *p;
+ int ret, i;
+
+ ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
+ GFP_KERNEL);
+ if (ret)
+ return ret;
+
+ for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
+ cgroup_bpf_get(p);
+
+ for (i = 0; i < NR; i++)
+ INIT_HLIST_HEAD(&cgrp->bpf.progs[i]);
+
+ INIT_LIST_HEAD(&cgrp->bpf.storages);
+
+ for (i = 0; i < NR; i++)
+ if (compute_effective_progs(cgrp, i, &arrays[i]))
+ goto cleanup;
+
+ for (i = 0; i < NR; i++)
+ activate_effective_progs(cgrp, i, arrays[i]);
+
+ return 0;
+cleanup:
+ for (i = 0; i < NR; i++)
+ bpf_prog_array_free(arrays[i]);
+
+ for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
+ cgroup_bpf_put(p);
+
+ percpu_ref_exit(&cgrp->bpf.refcnt);
+
+ return -ENOMEM;
+}
+
+static int update_effective_progs(struct cgroup *cgrp,
+ enum cgroup_bpf_attach_type atype)
+{
+ struct cgroup_subsys_state *css;
+ int err;
+
+ /* allocate and recompute effective prog arrays */
+ css_for_each_descendant_pre(css, &cgrp->self) {
+ struct cgroup *desc = container_of(css, struct cgroup, self);
+
+ if (percpu_ref_is_zero(&desc->bpf.refcnt))
+ continue;
+
+ err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
+ if (err)
+ goto cleanup;
+ }
+
+ /* all allocations were successful. Activate all prog arrays */
+ css_for_each_descendant_pre(css, &cgrp->self) {
+ struct cgroup *desc = container_of(css, struct cgroup, self);
+
+ if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
+ if (unlikely(desc->bpf.inactive)) {
+ bpf_prog_array_free(desc->bpf.inactive);
+ desc->bpf.inactive = NULL;
+ }
+ continue;
+ }
+
+ activate_effective_progs(desc, atype, desc->bpf.inactive);
+ desc->bpf.inactive = NULL;
+ }
+
+ return 0;
+
+cleanup:
+ /* oom while computing effective. Free all computed effective arrays
+ * since they were not activated
+ */
+ css_for_each_descendant_pre(css, &cgrp->self) {
+ struct cgroup *desc = container_of(css, struct cgroup, self);
+
+ bpf_prog_array_free(desc->bpf.inactive);
+ desc->bpf.inactive = NULL;
+ }
+
+ return err;
+}
+
+#define BPF_CGROUP_MAX_PROGS 64
+
+static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs,
+ struct bpf_prog *prog,
+ struct bpf_cgroup_link *link,
+ struct bpf_prog *replace_prog,
+ bool allow_multi)
+{
+ struct bpf_prog_list *pl;
+
+ /* single-attach case */
+ if (!allow_multi) {
+ if (hlist_empty(progs))
+ return NULL;
+ return hlist_entry(progs->first, typeof(*pl), node);
+ }
+
+ hlist_for_each_entry(pl, progs, node) {
+ if (prog && pl->prog == prog && prog != replace_prog)
+ /* disallow attaching the same prog twice */
+ return ERR_PTR(-EINVAL);
+ if (link && pl->link == link)
+ /* disallow attaching the same link twice */
+ return ERR_PTR(-EINVAL);
+ }
+
+ /* direct prog multi-attach w/ replacement case */
+ if (replace_prog) {
+ hlist_for_each_entry(pl, progs, node) {
+ if (pl->prog == replace_prog)
+ /* a match found */
+ return pl;
+ }
+ /* prog to replace not found for cgroup */
+ return ERR_PTR(-ENOENT);
+ }
+
+ return NULL;
+}
+
+/**
+ * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
+ * propagate the change to descendants
+ * @cgrp: The cgroup which descendants to traverse
+ * @prog: A program to attach
+ * @link: A link to attach
+ * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
+ * @type: Type of attach operation
+ * @flags: Option flags
+ *
+ * Exactly one of @prog or @link can be non-null.
+ * Must be called with cgroup_mutex held.
+ */
+static int __cgroup_bpf_attach(struct cgroup *cgrp,
+ struct bpf_prog *prog, struct bpf_prog *replace_prog,
+ struct bpf_cgroup_link *link,
+ enum bpf_attach_type type, u32 flags)
+{
+ u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
+ struct bpf_prog *old_prog = NULL;
+ struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
+ struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
+ struct bpf_prog *new_prog = prog ? : link->link.prog;
+ enum cgroup_bpf_attach_type atype;
+ struct bpf_prog_list *pl;
+ struct hlist_head *progs;
+ int err;
+
+ if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
+ ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
+ /* invalid combination */
+ return -EINVAL;
+ if (link && (prog || replace_prog))
+ /* only either link or prog/replace_prog can be specified */
+ return -EINVAL;
+ if (!!replace_prog != !!(flags & BPF_F_REPLACE))
+ /* replace_prog implies BPF_F_REPLACE, and vice versa */
+ return -EINVAL;
+
+ atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id);
+ if (atype < 0)
+ return -EINVAL;
+
+ progs = &cgrp->bpf.progs[atype];
+
+ if (!hierarchy_allows_attach(cgrp, atype))
+ return -EPERM;
+
+ if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
+ /* Disallow attaching non-overridable on top
+ * of existing overridable in this cgroup.
+ * Disallow attaching multi-prog if overridable or none
+ */
+ return -EPERM;
+
+ if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
+ return -E2BIG;
+
+ pl = find_attach_entry(progs, prog, link, replace_prog,
+ flags & BPF_F_ALLOW_MULTI);
+ if (IS_ERR(pl))
+ return PTR_ERR(pl);
+
+ if (bpf_cgroup_storages_alloc(storage, new_storage, type,
+ prog ? : link->link.prog, cgrp))
+ return -ENOMEM;
+
+ if (pl) {
+ old_prog = pl->prog;
+ } else {
+ struct hlist_node *last = NULL;
+
+ pl = kmalloc(sizeof(*pl), GFP_KERNEL);
+ if (!pl) {
+ bpf_cgroup_storages_free(new_storage);
+ return -ENOMEM;
+ }
+ if (hlist_empty(progs))
+ hlist_add_head(&pl->node, progs);
+ else
+ hlist_for_each(last, progs) {
+ if (last->next)
+ continue;
+ hlist_add_behind(&pl->node, last);
+ break;
+ }
+ }
+
+ pl->prog = prog;
+ pl->link = link;
+ bpf_cgroup_storages_assign(pl->storage, storage);
+ cgrp->bpf.flags[atype] = saved_flags;
+
+ if (type == BPF_LSM_CGROUP) {
+ err = bpf_trampoline_link_cgroup_shim(new_prog, atype);
+ if (err)
+ goto cleanup;
+ }
+
+ err = update_effective_progs(cgrp, atype);
+ if (err)
+ goto cleanup_trampoline;
+
+ if (old_prog) {
+ if (type == BPF_LSM_CGROUP)
+ bpf_trampoline_unlink_cgroup_shim(old_prog);
+ bpf_prog_put(old_prog);
+ } else {
+ static_branch_inc(&cgroup_bpf_enabled_key[atype]);
+ }
+ bpf_cgroup_storages_link(new_storage, cgrp, type);
+ return 0;
+
+cleanup_trampoline:
+ if (type == BPF_LSM_CGROUP)
+ bpf_trampoline_unlink_cgroup_shim(new_prog);
+
+cleanup:
+ if (old_prog) {
+ pl->prog = old_prog;
+ pl->link = NULL;
+ }
+ bpf_cgroup_storages_free(new_storage);
+ if (!old_prog) {
+ hlist_del(&pl->node);
+ kfree(pl);
+ }
+ return err;
+}
+
+static int cgroup_bpf_attach(struct cgroup *cgrp,
+ struct bpf_prog *prog, struct bpf_prog *replace_prog,
+ struct bpf_cgroup_link *link,
+ enum bpf_attach_type type,
+ u32 flags)
+{
+ int ret;
+
+ cgroup_lock();
+ ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
+ cgroup_unlock();
+ return ret;
+}
+
+/* Swap updated BPF program for given link in effective program arrays across
+ * all descendant cgroups. This function is guaranteed to succeed.
+ */
+static void replace_effective_prog(struct cgroup *cgrp,
+ enum cgroup_bpf_attach_type atype,
+ struct bpf_cgroup_link *link)
+{
+ struct bpf_prog_array_item *item;
+ struct cgroup_subsys_state *css;
+ struct bpf_prog_array *progs;
+ struct bpf_prog_list *pl;
+ struct hlist_head *head;
+ struct cgroup *cg;
+ int pos;
+
+ css_for_each_descendant_pre(css, &cgrp->self) {
+ struct cgroup *desc = container_of(css, struct cgroup, self);
+
+ if (percpu_ref_is_zero(&desc->bpf.refcnt))
+ continue;
+
+ /* find position of link in effective progs array */
+ for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
+ if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
+ continue;
+
+ head = &cg->bpf.progs[atype];
+ hlist_for_each_entry(pl, head, node) {
+ if (!prog_list_prog(pl))
+ continue;
+ if (pl->link == link)
+ goto found;
+ pos++;
+ }
+ }
+found:
+ BUG_ON(!cg);
+ progs = rcu_dereference_protected(
+ desc->bpf.effective[atype],
+ lockdep_is_held(&cgroup_mutex));
+ item = &progs->items[pos];
+ WRITE_ONCE(item->prog, link->link.prog);
+ }
+}
+
+/**
+ * __cgroup_bpf_replace() - Replace link's program and propagate the change
+ * to descendants
+ * @cgrp: The cgroup which descendants to traverse
+ * @link: A link for which to replace BPF program
+ * @type: Type of attach operation
+ *
+ * Must be called with cgroup_mutex held.
+ */
+static int __cgroup_bpf_replace(struct cgroup *cgrp,
+ struct bpf_cgroup_link *link,
+ struct bpf_prog *new_prog)
+{
+ enum cgroup_bpf_attach_type atype;
+ struct bpf_prog *old_prog;
+ struct bpf_prog_list *pl;
+ struct hlist_head *progs;
+ bool found = false;
+
+ atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id);
+ if (atype < 0)
+ return -EINVAL;
+
+ progs = &cgrp->bpf.progs[atype];
+
+ if (link->link.prog->type != new_prog->type)
+ return -EINVAL;
+
+ hlist_for_each_entry(pl, progs, node) {
+ if (pl->link == link) {
+ found = true;
+ break;
+ }
+ }
+ if (!found)
+ return -ENOENT;
+
+ old_prog = xchg(&link->link.prog, new_prog);
+ replace_effective_prog(cgrp, atype, link);
+ bpf_prog_put(old_prog);
+ return 0;
+}
+
+static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
+ struct bpf_prog *old_prog)
+{
+ struct bpf_cgroup_link *cg_link;
+ int ret;
+
+ cg_link = container_of(link, struct bpf_cgroup_link, link);
+
+ cgroup_lock();
+ /* link might have been auto-released by dying cgroup, so fail */
+ if (!cg_link->cgroup) {
+ ret = -ENOLINK;
+ goto out_unlock;
+ }
+ if (old_prog && link->prog != old_prog) {
+ ret = -EPERM;
+ goto out_unlock;
+ }
+ ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
+out_unlock:
+ cgroup_unlock();
+ return ret;
+}
+
+static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs,
+ struct bpf_prog *prog,
+ struct bpf_cgroup_link *link,
+ bool allow_multi)
+{
+ struct bpf_prog_list *pl;
+
+ if (!allow_multi) {
+ if (hlist_empty(progs))
+ /* report error when trying to detach and nothing is attached */
+ return ERR_PTR(-ENOENT);
+
+ /* to maintain backward compatibility NONE and OVERRIDE cgroups
+ * allow detaching with invalid FD (prog==NULL) in legacy mode
+ */
+ return hlist_entry(progs->first, typeof(*pl), node);
+ }
+
+ if (!prog && !link)
+ /* to detach MULTI prog the user has to specify valid FD
+ * of the program or link to be detached
+ */
+ return ERR_PTR(-EINVAL);
+
+ /* find the prog or link and detach it */
+ hlist_for_each_entry(pl, progs, node) {
+ if (pl->prog == prog && pl->link == link)
+ return pl;
+ }
+ return ERR_PTR(-ENOENT);
+}
+
+/**
+ * purge_effective_progs() - After compute_effective_progs fails to alloc new
+ * cgrp->bpf.inactive table we can recover by
+ * recomputing the array in place.
+ *
+ * @cgrp: The cgroup which descendants to travers
+ * @prog: A program to detach or NULL
+ * @link: A link to detach or NULL
+ * @atype: Type of detach operation
+ */
+static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog,
+ struct bpf_cgroup_link *link,
+ enum cgroup_bpf_attach_type atype)
+{
+ struct cgroup_subsys_state *css;
+ struct bpf_prog_array *progs;
+ struct bpf_prog_list *pl;
+ struct hlist_head *head;
+ struct cgroup *cg;
+ int pos;
+
+ /* recompute effective prog array in place */
+ css_for_each_descendant_pre(css, &cgrp->self) {
+ struct cgroup *desc = container_of(css, struct cgroup, self);
+
+ if (percpu_ref_is_zero(&desc->bpf.refcnt))
+ continue;
+
+ /* find position of link or prog in effective progs array */
+ for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
+ if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
+ continue;
+
+ head = &cg->bpf.progs[atype];
+ hlist_for_each_entry(pl, head, node) {
+ if (!prog_list_prog(pl))
+ continue;
+ if (pl->prog == prog && pl->link == link)
+ goto found;
+ pos++;
+ }
+ }
+
+ /* no link or prog match, skip the cgroup of this layer */
+ continue;
+found:
+ progs = rcu_dereference_protected(
+ desc->bpf.effective[atype],
+ lockdep_is_held(&cgroup_mutex));
+
+ /* Remove the program from the array */
+ WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos),
+ "Failed to purge a prog from array at index %d", pos);
+ }
+}
+
+/**
+ * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
+ * propagate the change to descendants
+ * @cgrp: The cgroup which descendants to traverse
+ * @prog: A program to detach or NULL
+ * @link: A link to detach or NULL
+ * @type: Type of detach operation
+ *
+ * At most one of @prog or @link can be non-NULL.
+ * Must be called with cgroup_mutex held.
+ */
+static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
+ struct bpf_cgroup_link *link, enum bpf_attach_type type)
+{
+ enum cgroup_bpf_attach_type atype;
+ struct bpf_prog *old_prog;
+ struct bpf_prog_list *pl;
+ struct hlist_head *progs;
+ u32 attach_btf_id = 0;
+ u32 flags;
+
+ if (prog)
+ attach_btf_id = prog->aux->attach_btf_id;
+ if (link)
+ attach_btf_id = link->link.prog->aux->attach_btf_id;
+
+ atype = bpf_cgroup_atype_find(type, attach_btf_id);
+ if (atype < 0)
+ return -EINVAL;
+
+ progs = &cgrp->bpf.progs[atype];
+ flags = cgrp->bpf.flags[atype];
+
+ if (prog && link)
+ /* only one of prog or link can be specified */
+ return -EINVAL;
+
+ pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
+ if (IS_ERR(pl))
+ return PTR_ERR(pl);
+
+ /* mark it deleted, so it's ignored while recomputing effective */
+ old_prog = pl->prog;
+ pl->prog = NULL;
+ pl->link = NULL;
+
+ if (update_effective_progs(cgrp, atype)) {
+ /* if update effective array failed replace the prog with a dummy prog*/
+ pl->prog = old_prog;
+ pl->link = link;
+ purge_effective_progs(cgrp, old_prog, link, atype);
+ }
+
+ /* now can actually delete it from this cgroup list */
+ hlist_del(&pl->node);
+
+ kfree(pl);
+ if (hlist_empty(progs))
+ /* last program was detached, reset flags to zero */
+ cgrp->bpf.flags[atype] = 0;
+ if (old_prog) {
+ if (type == BPF_LSM_CGROUP)
+ bpf_trampoline_unlink_cgroup_shim(old_prog);
+ bpf_prog_put(old_prog);
+ }
+ static_branch_dec(&cgroup_bpf_enabled_key[atype]);
+ return 0;
+}
+
+static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
+ enum bpf_attach_type type)
+{
+ int ret;
+
+ cgroup_lock();
+ ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
+ cgroup_unlock();
+ return ret;
+}
+
+/* Must be called with cgroup_mutex held to avoid races. */
+static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags);
+ bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE;
+ __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
+ enum bpf_attach_type type = attr->query.attach_type;
+ enum cgroup_bpf_attach_type from_atype, to_atype;
+ enum cgroup_bpf_attach_type atype;
+ struct bpf_prog_array *effective;
+ int cnt, ret = 0, i;
+ int total_cnt = 0;
+ u32 flags;
+
+ if (effective_query && prog_attach_flags)
+ return -EINVAL;
+
+ if (type == BPF_LSM_CGROUP) {
+ if (!effective_query && attr->query.prog_cnt &&
+ prog_ids && !prog_attach_flags)
+ return -EINVAL;
+
+ from_atype = CGROUP_LSM_START;
+ to_atype = CGROUP_LSM_END;
+ flags = 0;
+ } else {
+ from_atype = to_cgroup_bpf_attach_type(type);
+ if (from_atype < 0)
+ return -EINVAL;
+ to_atype = from_atype;
+ flags = cgrp->bpf.flags[from_atype];
+ }
+
+ for (atype = from_atype; atype <= to_atype; atype++) {
+ if (effective_query) {
+ effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
+ lockdep_is_held(&cgroup_mutex));
+ total_cnt += bpf_prog_array_length(effective);
+ } else {
+ total_cnt += prog_list_length(&cgrp->bpf.progs[atype]);
+ }
+ }
+
+ /* always output uattr->query.attach_flags as 0 during effective query */
+ flags = effective_query ? 0 : flags;
+ if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
+ return -EFAULT;
+ if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt)))
+ return -EFAULT;
+ if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt)
+ /* return early if user requested only program count + flags */
+ return 0;
+
+ if (attr->query.prog_cnt < total_cnt) {
+ total_cnt = attr->query.prog_cnt;
+ ret = -ENOSPC;
+ }
+
+ for (atype = from_atype; atype <= to_atype && total_cnt; atype++) {
+ if (effective_query) {
+ effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
+ lockdep_is_held(&cgroup_mutex));
+ cnt = min_t(int, bpf_prog_array_length(effective), total_cnt);
+ ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
+ } else {
+ struct hlist_head *progs;
+ struct bpf_prog_list *pl;
+ struct bpf_prog *prog;
+ u32 id;
+
+ progs = &cgrp->bpf.progs[atype];
+ cnt = min_t(int, prog_list_length(progs), total_cnt);
+ i = 0;
+ hlist_for_each_entry(pl, progs, node) {
+ prog = prog_list_prog(pl);
+ id = prog->aux->id;
+ if (copy_to_user(prog_ids + i, &id, sizeof(id)))
+ return -EFAULT;
+ if (++i == cnt)
+ break;
+ }
+
+ if (prog_attach_flags) {
+ flags = cgrp->bpf.flags[atype];
+
+ for (i = 0; i < cnt; i++)
+ if (copy_to_user(prog_attach_flags + i,
+ &flags, sizeof(flags)))
+ return -EFAULT;
+ prog_attach_flags += cnt;
+ }
+ }
+
+ prog_ids += cnt;
+ total_cnt -= cnt;
+ }
+ return ret;
+}
+
+static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ int ret;
+
+ cgroup_lock();
+ ret = __cgroup_bpf_query(cgrp, attr, uattr);
+ cgroup_unlock();
+ return ret;
+}
+
+int cgroup_bpf_prog_attach(const union bpf_attr *attr,
+ enum bpf_prog_type ptype, struct bpf_prog *prog)
+{
+ struct bpf_prog *replace_prog = NULL;
+ struct cgroup *cgrp;
+ int ret;
+
+ cgrp = cgroup_get_from_fd(attr->target_fd);
+ if (IS_ERR(cgrp))
+ return PTR_ERR(cgrp);
+
+ if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
+ (attr->attach_flags & BPF_F_REPLACE)) {
+ replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
+ if (IS_ERR(replace_prog)) {
+ cgroup_put(cgrp);
+ return PTR_ERR(replace_prog);
+ }
+ }
+
+ ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
+ attr->attach_type, attr->attach_flags);
+
+ if (replace_prog)
+ bpf_prog_put(replace_prog);
+ cgroup_put(cgrp);
+ return ret;
+}
+
+int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
+{
+ struct bpf_prog *prog;
+ struct cgroup *cgrp;
+ int ret;
+
+ cgrp = cgroup_get_from_fd(attr->target_fd);
+ if (IS_ERR(cgrp))
+ return PTR_ERR(cgrp);
+
+ prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
+ if (IS_ERR(prog))
+ prog = NULL;
+
+ ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
+ if (prog)
+ bpf_prog_put(prog);
+
+ cgroup_put(cgrp);
+ return ret;
+}
+
+static void bpf_cgroup_link_release(struct bpf_link *link)
+{
+ struct bpf_cgroup_link *cg_link =
+ container_of(link, struct bpf_cgroup_link, link);
+ struct cgroup *cg;
+
+ /* link might have been auto-detached by dying cgroup already,
+ * in that case our work is done here
+ */
+ if (!cg_link->cgroup)
+ return;
+
+ cgroup_lock();
+
+ /* re-check cgroup under lock again */
+ if (!cg_link->cgroup) {
+ cgroup_unlock();
+ return;
+ }
+
+ WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
+ cg_link->type));
+ if (cg_link->type == BPF_LSM_CGROUP)
+ bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog);
+
+ cg = cg_link->cgroup;
+ cg_link->cgroup = NULL;
+
+ cgroup_unlock();
+
+ cgroup_put(cg);
+}
+
+static void bpf_cgroup_link_dealloc(struct bpf_link *link)
+{
+ struct bpf_cgroup_link *cg_link =
+ container_of(link, struct bpf_cgroup_link, link);
+
+ kfree(cg_link);
+}
+
+static int bpf_cgroup_link_detach(struct bpf_link *link)
+{
+ bpf_cgroup_link_release(link);
+
+ return 0;
+}
+
+static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
+ struct seq_file *seq)
+{
+ struct bpf_cgroup_link *cg_link =
+ container_of(link, struct bpf_cgroup_link, link);
+ u64 cg_id = 0;
+
+ cgroup_lock();
+ if (cg_link->cgroup)
+ cg_id = cgroup_id(cg_link->cgroup);
+ cgroup_unlock();
+
+ seq_printf(seq,
+ "cgroup_id:\t%llu\n"
+ "attach_type:\t%d\n",
+ cg_id,
+ cg_link->type);
+}
+
+static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
+ struct bpf_link_info *info)
+{
+ struct bpf_cgroup_link *cg_link =
+ container_of(link, struct bpf_cgroup_link, link);
+ u64 cg_id = 0;
+
+ cgroup_lock();
+ if (cg_link->cgroup)
+ cg_id = cgroup_id(cg_link->cgroup);
+ cgroup_unlock();
+
+ info->cgroup.cgroup_id = cg_id;
+ info->cgroup.attach_type = cg_link->type;
+ return 0;
+}
+
+static const struct bpf_link_ops bpf_cgroup_link_lops = {
+ .release = bpf_cgroup_link_release,
+ .dealloc = bpf_cgroup_link_dealloc,
+ .detach = bpf_cgroup_link_detach,
+ .update_prog = cgroup_bpf_replace,
+ .show_fdinfo = bpf_cgroup_link_show_fdinfo,
+ .fill_link_info = bpf_cgroup_link_fill_link_info,
+};
+
+int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
+{
+ struct bpf_link_primer link_primer;
+ struct bpf_cgroup_link *link;
+ struct cgroup *cgrp;
+ int err;
+
+ if (attr->link_create.flags)
+ return -EINVAL;
+
+ cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
+ if (IS_ERR(cgrp))
+ return PTR_ERR(cgrp);
+
+ link = kzalloc(sizeof(*link), GFP_USER);
+ if (!link) {
+ err = -ENOMEM;
+ goto out_put_cgroup;
+ }
+ bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
+ prog);
+ link->cgroup = cgrp;
+ link->type = attr->link_create.attach_type;
+
+ err = bpf_link_prime(&link->link, &link_primer);
+ if (err) {
+ kfree(link);
+ goto out_put_cgroup;
+ }
+
+ err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
+ link->type, BPF_F_ALLOW_MULTI);
+ if (err) {
+ bpf_link_cleanup(&link_primer);
+ goto out_put_cgroup;
+ }
+
+ return bpf_link_settle(&link_primer);
+
+out_put_cgroup:
+ cgroup_put(cgrp);
+ return err;
+}
+
+int cgroup_bpf_prog_query(const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ struct cgroup *cgrp;
+ int ret;
+
+ cgrp = cgroup_get_from_fd(attr->query.target_fd);
+ if (IS_ERR(cgrp))
+ return PTR_ERR(cgrp);
+
+ ret = cgroup_bpf_query(cgrp, attr, uattr);
+
+ cgroup_put(cgrp);
+ return ret;
+}
+
+/**
+ * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
+ * @sk: The socket sending or receiving traffic
+ * @skb: The skb that is being sent or received
+ * @type: The type of program to be executed
+ *
+ * If no socket is passed, or the socket is not of type INET or INET6,
+ * this function does nothing and returns 0.
+ *
+ * The program type passed in via @type must be suitable for network
+ * filtering. No further check is performed to assert that.
+ *
+ * For egress packets, this function can return:
+ * NET_XMIT_SUCCESS (0) - continue with packet output
+ * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr
+ * NET_XMIT_CN (2) - continue with packet output and notify TCP
+ * to call cwr
+ * -err - drop packet
+ *
+ * For ingress packets, this function will return -EPERM if any
+ * attached program was found and if it returned != 1 during execution.
+ * Otherwise 0 is returned.
+ */
+int __cgroup_bpf_run_filter_skb(struct sock *sk,
+ struct sk_buff *skb,
+ enum cgroup_bpf_attach_type atype)
+{
+ unsigned int offset = skb->data - skb_network_header(skb);
+ struct sock *save_sk;
+ void *saved_data_end;
+ struct cgroup *cgrp;
+ int ret;
+
+ if (!sk || !sk_fullsock(sk))
+ return 0;
+
+ if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
+ return 0;
+
+ cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+ save_sk = skb->sk;
+ skb->sk = sk;
+ __skb_push(skb, offset);
+
+ /* compute pointers for the bpf prog */
+ bpf_compute_and_save_data_end(skb, &saved_data_end);
+
+ if (atype == CGROUP_INET_EGRESS) {
+ u32 flags = 0;
+ bool cn;
+
+ ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb,
+ __bpf_prog_run_save_cb, 0, &flags);
+
+ /* Return values of CGROUP EGRESS BPF programs are:
+ * 0: drop packet
+ * 1: keep packet
+ * 2: drop packet and cn
+ * 3: keep packet and cn
+ *
+ * The returned value is then converted to one of the NET_XMIT
+ * or an error code that is then interpreted as drop packet
+ * (and no cn):
+ * 0: NET_XMIT_SUCCESS skb should be transmitted
+ * 1: NET_XMIT_DROP skb should be dropped and cn
+ * 2: NET_XMIT_CN skb should be transmitted and cn
+ * 3: -err skb should be dropped
+ */
+
+ cn = flags & BPF_RET_SET_CN;
+ if (ret && !IS_ERR_VALUE((long)ret))
+ ret = -EFAULT;
+ if (!ret)
+ ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS);
+ else
+ ret = (cn ? NET_XMIT_DROP : ret);
+ } else {
+ ret = bpf_prog_run_array_cg(&cgrp->bpf, atype,
+ skb, __bpf_prog_run_save_cb, 0,
+ NULL);
+ if (ret && !IS_ERR_VALUE((long)ret))
+ ret = -EFAULT;
+ }
+ bpf_restore_data_end(skb, saved_data_end);
+ __skb_pull(skb, offset);
+ skb->sk = save_sk;
+
+ return ret;
+}
+EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
+
+/**
+ * __cgroup_bpf_run_filter_sk() - Run a program on a sock
+ * @sk: sock structure to manipulate
+ * @type: The type of program to be executed
+ *
+ * socket is passed is expected to be of type INET or INET6.
+ *
+ * The program type passed in via @type must be suitable for sock
+ * filtering. No further check is performed to assert that.
+ *
+ * This function will return %-EPERM if any if an attached program was found
+ * and if it returned != 1 during execution. In all other cases, 0 is returned.
+ */
+int __cgroup_bpf_run_filter_sk(struct sock *sk,
+ enum cgroup_bpf_attach_type atype)
+{
+ struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+
+ return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0,
+ NULL);
+}
+EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
+
+/**
+ * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
+ * provided by user sockaddr
+ * @sk: sock struct that will use sockaddr
+ * @uaddr: sockaddr struct provided by user
+ * @type: The type of program to be executed
+ * @t_ctx: Pointer to attach type specific context
+ * @flags: Pointer to u32 which contains higher bits of BPF program
+ * return value (OR'ed together).
+ *
+ * socket is expected to be of type INET or INET6.
+ *
+ * This function will return %-EPERM if an attached program is found and
+ * returned value != 1 during execution. In all other cases, 0 is returned.
+ */
+int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
+ struct sockaddr *uaddr,
+ enum cgroup_bpf_attach_type atype,
+ void *t_ctx,
+ u32 *flags)
+{
+ struct bpf_sock_addr_kern ctx = {
+ .sk = sk,
+ .uaddr = uaddr,
+ .t_ctx = t_ctx,
+ };
+ struct sockaddr_storage unspec;
+ struct cgroup *cgrp;
+
+ /* Check socket family since not all sockets represent network
+ * endpoint (e.g. AF_UNIX).
+ */
+ if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
+ return 0;
+
+ if (!ctx.uaddr) {
+ memset(&unspec, 0, sizeof(unspec));
+ ctx.uaddr = (struct sockaddr *)&unspec;
+ }
+
+ cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+ return bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run,
+ 0, flags);
+}
+EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
+
+/**
+ * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
+ * @sk: socket to get cgroup from
+ * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
+ * sk with connection information (IP addresses, etc.) May not contain
+ * cgroup info if it is a req sock.
+ * @type: The type of program to be executed
+ *
+ * socket passed is expected to be of type INET or INET6.
+ *
+ * The program type passed in via @type must be suitable for sock_ops
+ * filtering. No further check is performed to assert that.
+ *
+ * This function will return %-EPERM if any if an attached program was found
+ * and if it returned != 1 during execution. In all other cases, 0 is returned.
+ */
+int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
+ struct bpf_sock_ops_kern *sock_ops,
+ enum cgroup_bpf_attach_type atype)
+{
+ struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+
+ return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run,
+ 0, NULL);
+}
+EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
+
+int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
+ short access, enum cgroup_bpf_attach_type atype)
+{
+ struct cgroup *cgrp;
+ struct bpf_cgroup_dev_ctx ctx = {
+ .access_type = (access << 16) | dev_type,
+ .major = major,
+ .minor = minor,
+ };
+ int ret;
+
+ rcu_read_lock();
+ cgrp = task_dfl_cgroup(current);
+ ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
+ NULL);
+ rcu_read_unlock();
+
+ return ret;
+}
+
+BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
+{
+ /* flags argument is not used now,
+ * but provides an ability to extend the API.
+ * verifier checks that its value is correct.
+ */
+ enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
+ struct bpf_cgroup_storage *storage;
+ struct bpf_cg_run_ctx *ctx;
+ void *ptr;
+
+ /* get current cgroup storage from BPF run context */
+ ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
+ storage = ctx->prog_item->cgroup_storage[stype];
+
+ if (stype == BPF_CGROUP_STORAGE_SHARED)
+ ptr = &READ_ONCE(storage->buf)->data[0];
+ else
+ ptr = this_cpu_ptr(storage->percpu_buf);
+
+ return (unsigned long)ptr;
+}
+
+const struct bpf_func_proto bpf_get_local_storage_proto = {
+ .func = bpf_get_local_storage,
+ .gpl_only = false,
+ .ret_type = RET_PTR_TO_MAP_VALUE,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_ANYTHING,
+};
+
+BPF_CALL_0(bpf_get_retval)
+{
+ struct bpf_cg_run_ctx *ctx =
+ container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
+
+ return ctx->retval;
+}
+
+const struct bpf_func_proto bpf_get_retval_proto = {
+ .func = bpf_get_retval,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_1(bpf_set_retval, int, retval)
+{
+ struct bpf_cg_run_ctx *ctx =
+ container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
+
+ ctx->retval = retval;
+ return 0;
+}
+
+const struct bpf_func_proto bpf_set_retval_proto = {
+ .func = bpf_set_retval,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_ANYTHING,
+};
+
+static const struct bpf_func_proto *
+cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ const struct bpf_func_proto *func_proto;
+
+ func_proto = cgroup_common_func_proto(func_id, prog);
+ if (func_proto)
+ return func_proto;
+
+ func_proto = cgroup_current_func_proto(func_id, prog);
+ if (func_proto)
+ return func_proto;
+
+ switch (func_id) {
+ case BPF_FUNC_perf_event_output:
+ return &bpf_event_output_data_proto;
+ default:
+ return bpf_base_func_proto(func_id);
+ }
+}
+
+static bool cgroup_dev_is_valid_access(int off, int size,
+ enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ const int size_default = sizeof(__u32);
+
+ if (type == BPF_WRITE)
+ return false;
+
+ if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
+ return false;
+ /* The verifier guarantees that size > 0. */
+ if (off % size != 0)
+ return false;
+
+ switch (off) {
+ case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
+ bpf_ctx_record_field_size(info, size_default);
+ if (!bpf_ctx_narrow_access_ok(off, size, size_default))
+ return false;
+ break;
+ default:
+ if (size != size_default)
+ return false;
+ }
+
+ return true;
+}
+
+const struct bpf_prog_ops cg_dev_prog_ops = {
+};
+
+const struct bpf_verifier_ops cg_dev_verifier_ops = {
+ .get_func_proto = cgroup_dev_func_proto,
+ .is_valid_access = cgroup_dev_is_valid_access,
+};
+
+/**
+ * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
+ *
+ * @head: sysctl table header
+ * @table: sysctl table
+ * @write: sysctl is being read (= 0) or written (= 1)
+ * @buf: pointer to buffer (in and out)
+ * @pcount: value-result argument: value is size of buffer pointed to by @buf,
+ * result is size of @new_buf if program set new value, initial value
+ * otherwise
+ * @ppos: value-result argument: value is position at which read from or write
+ * to sysctl is happening, result is new position if program overrode it,
+ * initial value otherwise
+ * @type: type of program to be executed
+ *
+ * Program is run when sysctl is being accessed, either read or written, and
+ * can allow or deny such access.
+ *
+ * This function will return %-EPERM if an attached program is found and
+ * returned value != 1 during execution. In all other cases 0 is returned.
+ */
+int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
+ struct ctl_table *table, int write,
+ char **buf, size_t *pcount, loff_t *ppos,
+ enum cgroup_bpf_attach_type atype)
+{
+ struct bpf_sysctl_kern ctx = {
+ .head = head,
+ .table = table,
+ .write = write,
+ .ppos = ppos,
+ .cur_val = NULL,
+ .cur_len = PAGE_SIZE,
+ .new_val = NULL,
+ .new_len = 0,
+ .new_updated = 0,
+ };
+ struct cgroup *cgrp;
+ loff_t pos = 0;
+ int ret;
+
+ ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
+ if (!ctx.cur_val ||
+ table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
+ /* Let BPF program decide how to proceed. */
+ ctx.cur_len = 0;
+ }
+
+ if (write && *buf && *pcount) {
+ /* BPF program should be able to override new value with a
+ * buffer bigger than provided by user.
+ */
+ ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
+ ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
+ if (ctx.new_val) {
+ memcpy(ctx.new_val, *buf, ctx.new_len);
+ } else {
+ /* Let BPF program decide how to proceed. */
+ ctx.new_len = 0;
+ }
+ }
+
+ rcu_read_lock();
+ cgrp = task_dfl_cgroup(current);
+ ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
+ NULL);
+ rcu_read_unlock();
+
+ kfree(ctx.cur_val);
+
+ if (ret == 1 && ctx.new_updated) {
+ kfree(*buf);
+ *buf = ctx.new_val;
+ *pcount = ctx.new_len;
+ } else {
+ kfree(ctx.new_val);
+ }
+
+ return ret;
+}
+
+#ifdef CONFIG_NET
+static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
+ struct bpf_sockopt_buf *buf)
+{
+ if (unlikely(max_optlen < 0))
+ return -EINVAL;
+
+ if (unlikely(max_optlen > PAGE_SIZE)) {
+ /* We don't expose optvals that are greater than PAGE_SIZE
+ * to the BPF program.
+ */
+ max_optlen = PAGE_SIZE;
+ }
+
+ if (max_optlen <= sizeof(buf->data)) {
+ /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
+ * bytes avoid the cost of kzalloc.
+ */
+ ctx->optval = buf->data;
+ ctx->optval_end = ctx->optval + max_optlen;
+ return max_optlen;
+ }
+
+ ctx->optval = kzalloc(max_optlen, GFP_USER);
+ if (!ctx->optval)
+ return -ENOMEM;
+
+ ctx->optval_end = ctx->optval + max_optlen;
+
+ return max_optlen;
+}
+
+static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
+ struct bpf_sockopt_buf *buf)
+{
+ if (ctx->optval == buf->data)
+ return;
+ kfree(ctx->optval);
+}
+
+static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
+ struct bpf_sockopt_buf *buf)
+{
+ return ctx->optval != buf->data;
+}
+
+int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
+ int *optname, char __user *optval,
+ int *optlen, char **kernel_optval)
+{
+ struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+ struct bpf_sockopt_buf buf = {};
+ struct bpf_sockopt_kern ctx = {
+ .sk = sk,
+ .level = *level,
+ .optname = *optname,
+ };
+ int ret, max_optlen;
+
+ /* Allocate a bit more than the initial user buffer for
+ * BPF program. The canonical use case is overriding
+ * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
+ */
+ max_optlen = max_t(int, 16, *optlen);
+ max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
+ if (max_optlen < 0)
+ return max_optlen;
+
+ ctx.optlen = *optlen;
+
+ if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
+ ret = -EFAULT;
+ goto out;
+ }
+
+ lock_sock(sk);
+ ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT,
+ &ctx, bpf_prog_run, 0, NULL);
+ release_sock(sk);
+
+ if (ret)
+ goto out;
+
+ if (ctx.optlen == -1) {
+ /* optlen set to -1, bypass kernel */
+ ret = 1;
+ } else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
+ /* optlen is out of bounds */
+ if (*optlen > PAGE_SIZE && ctx.optlen >= 0) {
+ pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n",
+ ctx.optlen, max_optlen);
+ ret = 0;
+ goto out;
+ }
+ ret = -EFAULT;
+ } else {
+ /* optlen within bounds, run kernel handler */
+ ret = 0;
+
+ /* export any potential modifications */
+ *level = ctx.level;
+ *optname = ctx.optname;
+
+ /* optlen == 0 from BPF indicates that we should
+ * use original userspace data.
+ */
+ if (ctx.optlen != 0) {
+ *optlen = ctx.optlen;
+ /* We've used bpf_sockopt_kern->buf as an intermediary
+ * storage, but the BPF program indicates that we need
+ * to pass this data to the kernel setsockopt handler.
+ * No way to export on-stack buf, have to allocate a
+ * new buffer.
+ */
+ if (!sockopt_buf_allocated(&ctx, &buf)) {
+ void *p = kmalloc(ctx.optlen, GFP_USER);
+
+ if (!p) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ memcpy(p, ctx.optval, ctx.optlen);
+ *kernel_optval = p;
+ } else {
+ *kernel_optval = ctx.optval;
+ }
+ /* export and don't free sockopt buf */
+ return 0;
+ }
+ }
+
+out:
+ sockopt_free_buf(&ctx, &buf);
+ return ret;
+}
+
+int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
+ int optname, char __user *optval,
+ int __user *optlen, int max_optlen,
+ int retval)
+{
+ struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+ struct bpf_sockopt_buf buf = {};
+ struct bpf_sockopt_kern ctx = {
+ .sk = sk,
+ .level = level,
+ .optname = optname,
+ .current_task = current,
+ };
+ int orig_optlen;
+ int ret;
+
+ orig_optlen = max_optlen;
+ ctx.optlen = max_optlen;
+ max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
+ if (max_optlen < 0)
+ return max_optlen;
+
+ if (!retval) {
+ /* If kernel getsockopt finished successfully,
+ * copy whatever was returned to the user back
+ * into our temporary buffer. Set optlen to the
+ * one that kernel returned as well to let
+ * BPF programs inspect the value.
+ */
+
+ if (get_user(ctx.optlen, optlen)) {
+ ret = -EFAULT;
+ goto out;
+ }
+
+ if (ctx.optlen < 0) {
+ ret = -EFAULT;
+ goto out;
+ }
+ orig_optlen = ctx.optlen;
+
+ if (copy_from_user(ctx.optval, optval,
+ min(ctx.optlen, max_optlen)) != 0) {
+ ret = -EFAULT;
+ goto out;
+ }
+ }
+
+ lock_sock(sk);
+ ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
+ &ctx, bpf_prog_run, retval, NULL);
+ release_sock(sk);
+
+ if (ret < 0)
+ goto out;
+
+ if (optval && (ctx.optlen > max_optlen || ctx.optlen < 0)) {
+ if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) {
+ pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n",
+ ctx.optlen, max_optlen);
+ ret = retval;
+ goto out;
+ }
+ ret = -EFAULT;
+ goto out;
+ }
+
+ if (ctx.optlen != 0) {
+ if (optval && copy_to_user(optval, ctx.optval, ctx.optlen)) {
+ ret = -EFAULT;
+ goto out;
+ }
+ if (put_user(ctx.optlen, optlen)) {
+ ret = -EFAULT;
+ goto out;
+ }
+ }
+
+out:
+ sockopt_free_buf(&ctx, &buf);
+ return ret;
+}
+
+int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
+ int optname, void *optval,
+ int *optlen, int retval)
+{
+ struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
+ struct bpf_sockopt_kern ctx = {
+ .sk = sk,
+ .level = level,
+ .optname = optname,
+ .optlen = *optlen,
+ .optval = optval,
+ .optval_end = optval + *optlen,
+ .current_task = current,
+ };
+ int ret;
+
+ /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
+ * user data back into BPF buffer when reval != 0. This is
+ * done as an optimization to avoid extra copy, assuming
+ * kernel won't populate the data in case of an error.
+ * Here we always pass the data and memset() should
+ * be called if that data shouldn't be "exported".
+ */
+
+ ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
+ &ctx, bpf_prog_run, retval, NULL);
+ if (ret < 0)
+ return ret;
+
+ if (ctx.optlen > *optlen)
+ return -EFAULT;
+
+ /* BPF programs can shrink the buffer, export the modifications.
+ */
+ if (ctx.optlen != 0)
+ *optlen = ctx.optlen;
+
+ return ret;
+}
+#endif
+
+static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
+ size_t *lenp)
+{
+ ssize_t tmp_ret = 0, ret;
+
+ if (dir->header.parent) {
+ tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
+ if (tmp_ret < 0)
+ return tmp_ret;
+ }
+
+ ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
+ if (ret < 0)
+ return ret;
+ *bufp += ret;
+ *lenp -= ret;
+ ret += tmp_ret;
+
+ /* Avoid leading slash. */
+ if (!ret)
+ return ret;
+
+ tmp_ret = strscpy(*bufp, "/", *lenp);
+ if (tmp_ret < 0)
+ return tmp_ret;
+ *bufp += tmp_ret;
+ *lenp -= tmp_ret;
+
+ return ret + tmp_ret;
+}
+
+BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
+ size_t, buf_len, u64, flags)
+{
+ ssize_t tmp_ret = 0, ret;
+
+ if (!buf)
+ return -EINVAL;
+
+ if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
+ if (!ctx->head)
+ return -EINVAL;
+ tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
+ if (tmp_ret < 0)
+ return tmp_ret;
+ }
+
+ ret = strscpy(buf, ctx->table->procname, buf_len);
+
+ return ret < 0 ? ret : tmp_ret + ret;
+}
+
+static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
+ .func = bpf_sysctl_get_name,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_PTR_TO_MEM,
+ .arg3_type = ARG_CONST_SIZE,
+ .arg4_type = ARG_ANYTHING,
+};
+
+static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
+ size_t src_len)
+{
+ if (!dst)
+ return -EINVAL;
+
+ if (!dst_len)
+ return -E2BIG;
+
+ if (!src || !src_len) {
+ memset(dst, 0, dst_len);
+ return -EINVAL;
+ }
+
+ memcpy(dst, src, min(dst_len, src_len));
+
+ if (dst_len > src_len) {
+ memset(dst + src_len, '\0', dst_len - src_len);
+ return src_len;
+ }
+
+ dst[dst_len - 1] = '\0';
+
+ return -E2BIG;
+}
+
+BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
+ char *, buf, size_t, buf_len)
+{
+ return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
+}
+
+static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
+ .func = bpf_sysctl_get_current_value,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg3_type = ARG_CONST_SIZE,
+};
+
+BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
+ size_t, buf_len)
+{
+ if (!ctx->write) {
+ if (buf && buf_len)
+ memset(buf, '\0', buf_len);
+ return -EINVAL;
+ }
+ return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
+}
+
+static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
+ .func = bpf_sysctl_get_new_value,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg3_type = ARG_CONST_SIZE,
+};
+
+BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
+ const char *, buf, size_t, buf_len)
+{
+ if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
+ return -EINVAL;
+
+ if (buf_len > PAGE_SIZE - 1)
+ return -E2BIG;
+
+ memcpy(ctx->new_val, buf, buf_len);
+ ctx->new_len = buf_len;
+ ctx->new_updated = 1;
+
+ return 0;
+}
+
+static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
+ .func = bpf_sysctl_set_new_value,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg3_type = ARG_CONST_SIZE,
+};
+
+static const struct bpf_func_proto *
+sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ const struct bpf_func_proto *func_proto;
+
+ func_proto = cgroup_common_func_proto(func_id, prog);
+ if (func_proto)
+ return func_proto;
+
+ func_proto = cgroup_current_func_proto(func_id, prog);
+ if (func_proto)
+ return func_proto;
+
+ switch (func_id) {
+ case BPF_FUNC_sysctl_get_name:
+ return &bpf_sysctl_get_name_proto;
+ case BPF_FUNC_sysctl_get_current_value:
+ return &bpf_sysctl_get_current_value_proto;
+ case BPF_FUNC_sysctl_get_new_value:
+ return &bpf_sysctl_get_new_value_proto;
+ case BPF_FUNC_sysctl_set_new_value:
+ return &bpf_sysctl_set_new_value_proto;
+ case BPF_FUNC_ktime_get_coarse_ns:
+ return &bpf_ktime_get_coarse_ns_proto;
+ case BPF_FUNC_perf_event_output:
+ return &bpf_event_output_data_proto;
+ default:
+ return bpf_base_func_proto(func_id);
+ }
+}
+
+static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ const int size_default = sizeof(__u32);
+
+ if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
+ return false;
+
+ switch (off) {
+ case bpf_ctx_range(struct bpf_sysctl, write):
+ if (type != BPF_READ)
+ return false;
+ bpf_ctx_record_field_size(info, size_default);
+ return bpf_ctx_narrow_access_ok(off, size, size_default);
+ case bpf_ctx_range(struct bpf_sysctl, file_pos):
+ if (type == BPF_READ) {
+ bpf_ctx_record_field_size(info, size_default);
+ return bpf_ctx_narrow_access_ok(off, size, size_default);
+ } else {
+ return size == size_default;
+ }
+ default:
+ return false;
+ }
+}
+
+static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
+ const struct bpf_insn *si,
+ struct bpf_insn *insn_buf,
+ struct bpf_prog *prog, u32 *target_size)
+{
+ struct bpf_insn *insn = insn_buf;
+ u32 read_size;
+
+ switch (si->off) {
+ case offsetof(struct bpf_sysctl, write):
+ *insn++ = BPF_LDX_MEM(
+ BPF_SIZE(si->code), si->dst_reg, si->src_reg,
+ bpf_target_off(struct bpf_sysctl_kern, write,
+ sizeof_field(struct bpf_sysctl_kern,
+ write),
+ target_size));
+ break;
+ case offsetof(struct bpf_sysctl, file_pos):
+ /* ppos is a pointer so it should be accessed via indirect
+ * loads and stores. Also for stores additional temporary
+ * register is used since neither src_reg nor dst_reg can be
+ * overridden.
+ */
+ if (type == BPF_WRITE) {
+ int treg = BPF_REG_9;
+
+ if (si->src_reg == treg || si->dst_reg == treg)
+ --treg;
+ if (si->src_reg == treg || si->dst_reg == treg)
+ --treg;
+ *insn++ = BPF_STX_MEM(
+ BPF_DW, si->dst_reg, treg,
+ offsetof(struct bpf_sysctl_kern, tmp_reg));
+ *insn++ = BPF_LDX_MEM(
+ BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
+ treg, si->dst_reg,
+ offsetof(struct bpf_sysctl_kern, ppos));
+ *insn++ = BPF_STX_MEM(
+ BPF_SIZEOF(u32), treg, si->src_reg,
+ bpf_ctx_narrow_access_offset(
+ 0, sizeof(u32), sizeof(loff_t)));
+ *insn++ = BPF_LDX_MEM(
+ BPF_DW, treg, si->dst_reg,
+ offsetof(struct bpf_sysctl_kern, tmp_reg));
+ } else {
+ *insn++ = BPF_LDX_MEM(
+ BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
+ si->dst_reg, si->src_reg,
+ offsetof(struct bpf_sysctl_kern, ppos));
+ read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
+ *insn++ = BPF_LDX_MEM(
+ BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
+ bpf_ctx_narrow_access_offset(
+ 0, read_size, sizeof(loff_t)));
+ }
+ *target_size = sizeof(u32);
+ break;
+ }
+
+ return insn - insn_buf;
+}
+
+const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
+ .get_func_proto = sysctl_func_proto,
+ .is_valid_access = sysctl_is_valid_access,
+ .convert_ctx_access = sysctl_convert_ctx_access,
+};
+
+const struct bpf_prog_ops cg_sysctl_prog_ops = {
+};
+
+#ifdef CONFIG_NET
+BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
+{
+ const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
+
+ return net->net_cookie;
+}
+
+static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
+ .func = bpf_get_netns_cookie_sockopt,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
+};
+#endif
+
+static const struct bpf_func_proto *
+cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ const struct bpf_func_proto *func_proto;
+
+ func_proto = cgroup_common_func_proto(func_id, prog);
+ if (func_proto)
+ return func_proto;
+
+ func_proto = cgroup_current_func_proto(func_id, prog);
+ if (func_proto)
+ return func_proto;
+
+ switch (func_id) {
+#ifdef CONFIG_NET
+ case BPF_FUNC_get_netns_cookie:
+ return &bpf_get_netns_cookie_sockopt_proto;
+ case BPF_FUNC_sk_storage_get:
+ return &bpf_sk_storage_get_proto;
+ case BPF_FUNC_sk_storage_delete:
+ return &bpf_sk_storage_delete_proto;
+ case BPF_FUNC_setsockopt:
+ if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
+ return &bpf_sk_setsockopt_proto;
+ return NULL;
+ case BPF_FUNC_getsockopt:
+ if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
+ return &bpf_sk_getsockopt_proto;
+ return NULL;
+#endif
+#ifdef CONFIG_INET
+ case BPF_FUNC_tcp_sock:
+ return &bpf_tcp_sock_proto;
+#endif
+ case BPF_FUNC_perf_event_output:
+ return &bpf_event_output_data_proto;
+ default:
+ return bpf_base_func_proto(func_id);
+ }
+}
+
+static bool cg_sockopt_is_valid_access(int off, int size,
+ enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ const int size_default = sizeof(__u32);
+
+ if (off < 0 || off >= sizeof(struct bpf_sockopt))
+ return false;
+
+ if (off % size != 0)
+ return false;
+
+ if (type == BPF_WRITE) {
+ switch (off) {
+ case offsetof(struct bpf_sockopt, retval):
+ if (size != size_default)
+ return false;
+ return prog->expected_attach_type ==
+ BPF_CGROUP_GETSOCKOPT;
+ case offsetof(struct bpf_sockopt, optname):
+ fallthrough;
+ case offsetof(struct bpf_sockopt, level):
+ if (size != size_default)
+ return false;
+ return prog->expected_attach_type ==
+ BPF_CGROUP_SETSOCKOPT;
+ case offsetof(struct bpf_sockopt, optlen):
+ return size == size_default;
+ default:
+ return false;
+ }
+ }
+
+ switch (off) {
+ case offsetof(struct bpf_sockopt, sk):
+ if (size != sizeof(__u64))
+ return false;
+ info->reg_type = PTR_TO_SOCKET;
+ break;
+ case offsetof(struct bpf_sockopt, optval):
+ if (size != sizeof(__u64))
+ return false;
+ info->reg_type = PTR_TO_PACKET;
+ break;
+ case offsetof(struct bpf_sockopt, optval_end):
+ if (size != sizeof(__u64))
+ return false;
+ info->reg_type = PTR_TO_PACKET_END;
+ break;
+ case offsetof(struct bpf_sockopt, retval):
+ if (size != size_default)
+ return false;
+ return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
+ default:
+ if (size != size_default)
+ return false;
+ break;
+ }
+ return true;
+}
+
+#define CG_SOCKOPT_ACCESS_FIELD(T, F) \
+ T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \
+ si->dst_reg, si->src_reg, \
+ offsetof(struct bpf_sockopt_kern, F))
+
+static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
+ const struct bpf_insn *si,
+ struct bpf_insn *insn_buf,
+ struct bpf_prog *prog,
+ u32 *target_size)
+{
+ struct bpf_insn *insn = insn_buf;
+
+ switch (si->off) {
+ case offsetof(struct bpf_sockopt, sk):
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
+ break;
+ case offsetof(struct bpf_sockopt, level):
+ if (type == BPF_WRITE)
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
+ else
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
+ break;
+ case offsetof(struct bpf_sockopt, optname):
+ if (type == BPF_WRITE)
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
+ else
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
+ break;
+ case offsetof(struct bpf_sockopt, optlen):
+ if (type == BPF_WRITE)
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
+ else
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
+ break;
+ case offsetof(struct bpf_sockopt, retval):
+ BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0);
+
+ if (type == BPF_WRITE) {
+ int treg = BPF_REG_9;
+
+ if (si->src_reg == treg || si->dst_reg == treg)
+ --treg;
+ if (si->src_reg == treg || si->dst_reg == treg)
+ --treg;
+ *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg,
+ offsetof(struct bpf_sockopt_kern, tmp_reg));
+ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
+ treg, si->dst_reg,
+ offsetof(struct bpf_sockopt_kern, current_task));
+ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
+ treg, treg,
+ offsetof(struct task_struct, bpf_ctx));
+ *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
+ treg, si->src_reg,
+ offsetof(struct bpf_cg_run_ctx, retval));
+ *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg,
+ offsetof(struct bpf_sockopt_kern, tmp_reg));
+ } else {
+ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
+ si->dst_reg, si->src_reg,
+ offsetof(struct bpf_sockopt_kern, current_task));
+ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
+ si->dst_reg, si->dst_reg,
+ offsetof(struct task_struct, bpf_ctx));
+ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
+ si->dst_reg, si->dst_reg,
+ offsetof(struct bpf_cg_run_ctx, retval));
+ }
+ break;
+ case offsetof(struct bpf_sockopt, optval):
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
+ break;
+ case offsetof(struct bpf_sockopt, optval_end):
+ *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
+ break;
+ }
+
+ return insn - insn_buf;
+}
+
+static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
+ bool direct_write,
+ const struct bpf_prog *prog)
+{
+ /* Nothing to do for sockopt argument. The data is kzalloc'ated.
+ */
+ return 0;
+}
+
+const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
+ .get_func_proto = cg_sockopt_func_proto,
+ .is_valid_access = cg_sockopt_is_valid_access,
+ .convert_ctx_access = cg_sockopt_convert_ctx_access,
+ .gen_prologue = cg_sockopt_get_prologue,
+};
+
+const struct bpf_prog_ops cg_sockopt_prog_ops = {
+};
+
+/* Common helpers for cgroup hooks. */
+const struct bpf_func_proto *
+cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ switch (func_id) {
+ case BPF_FUNC_get_local_storage:
+ return &bpf_get_local_storage_proto;
+ case BPF_FUNC_get_retval:
+ switch (prog->expected_attach_type) {
+ case BPF_CGROUP_INET_INGRESS:
+ case BPF_CGROUP_INET_EGRESS:
+ case BPF_CGROUP_SOCK_OPS:
+ case BPF_CGROUP_UDP4_RECVMSG:
+ case BPF_CGROUP_UDP6_RECVMSG:
+ case BPF_CGROUP_INET4_GETPEERNAME:
+ case BPF_CGROUP_INET6_GETPEERNAME:
+ case BPF_CGROUP_INET4_GETSOCKNAME:
+ case BPF_CGROUP_INET6_GETSOCKNAME:
+ return NULL;
+ default:
+ return &bpf_get_retval_proto;
+ }
+ case BPF_FUNC_set_retval:
+ switch (prog->expected_attach_type) {
+ case BPF_CGROUP_INET_INGRESS:
+ case BPF_CGROUP_INET_EGRESS:
+ case BPF_CGROUP_SOCK_OPS:
+ case BPF_CGROUP_UDP4_RECVMSG:
+ case BPF_CGROUP_UDP6_RECVMSG:
+ case BPF_CGROUP_INET4_GETPEERNAME:
+ case BPF_CGROUP_INET6_GETPEERNAME:
+ case BPF_CGROUP_INET4_GETSOCKNAME:
+ case BPF_CGROUP_INET6_GETSOCKNAME:
+ return NULL;
+ default:
+ return &bpf_set_retval_proto;
+ }
+ default:
+ return NULL;
+ }
+}
+
+/* Common helpers for cgroup hooks with valid process context. */
+const struct bpf_func_proto *
+cgroup_current_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ switch (func_id) {
+ case BPF_FUNC_get_current_uid_gid:
+ return &bpf_get_current_uid_gid_proto;
+ case BPF_FUNC_get_current_pid_tgid:
+ return &bpf_get_current_pid_tgid_proto;
+ case BPF_FUNC_get_current_comm:
+ return &bpf_get_current_comm_proto;
+ case BPF_FUNC_get_current_cgroup_id:
+ return &bpf_get_current_cgroup_id_proto;
+ case BPF_FUNC_get_current_ancestor_cgroup_id:
+ return &bpf_get_current_ancestor_cgroup_id_proto;
+#ifdef CONFIG_CGROUP_NET_CLASSID
+ case BPF_FUNC_get_cgroup_classid:
+ return &bpf_get_cgroup_classid_curr_proto;
+#endif
+ default:
+ return NULL;
+ }
+}
diff --git a/kernel/bpf/cgroup_iter.c b/kernel/bpf/cgroup_iter.c
new file mode 100644
index 000000000..d57ccb024
--- /dev/null
+++ b/kernel/bpf/cgroup_iter.c
@@ -0,0 +1,296 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2022 Google */
+#include <linux/bpf.h>
+#include <linux/btf_ids.h>
+#include <linux/cgroup.h>
+#include <linux/kernel.h>
+#include <linux/seq_file.h>
+
+#include "../cgroup/cgroup-internal.h" /* cgroup_mutex and cgroup_is_dead */
+
+/* cgroup_iter provides four modes of traversal to the cgroup hierarchy.
+ *
+ * 1. Walk the descendants of a cgroup in pre-order.
+ * 2. Walk the descendants of a cgroup in post-order.
+ * 3. Walk the ancestors of a cgroup.
+ * 4. Show the given cgroup only.
+ *
+ * For walking descendants, cgroup_iter can walk in either pre-order or
+ * post-order. For walking ancestors, the iter walks up from a cgroup to
+ * the root.
+ *
+ * The iter program can terminate the walk early by returning 1. Walk
+ * continues if prog returns 0.
+ *
+ * The prog can check (seq->num == 0) to determine whether this is
+ * the first element. The prog may also be passed a NULL cgroup,
+ * which means the walk has completed and the prog has a chance to
+ * do post-processing, such as outputting an epilogue.
+ *
+ * Note: the iter_prog is called with cgroup_mutex held.
+ *
+ * Currently only one session is supported, which means, depending on the
+ * volume of data bpf program intends to send to user space, the number
+ * of cgroups that can be walked is limited. For example, given the current
+ * buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each
+ * cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can
+ * be walked is 512. This is a limitation of cgroup_iter. If the output data
+ * is larger than the kernel buffer size, after all data in the kernel buffer
+ * is consumed by user space, the subsequent read() syscall will signal
+ * EOPNOTSUPP. In order to work around, the user may have to update their
+ * program to reduce the volume of data sent to output. For example, skip
+ * some uninteresting cgroups.
+ */
+
+struct bpf_iter__cgroup {
+ __bpf_md_ptr(struct bpf_iter_meta *, meta);
+ __bpf_md_ptr(struct cgroup *, cgroup);
+};
+
+struct cgroup_iter_priv {
+ struct cgroup_subsys_state *start_css;
+ bool visited_all;
+ bool terminate;
+ int order;
+};
+
+static void *cgroup_iter_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct cgroup_iter_priv *p = seq->private;
+
+ cgroup_lock();
+
+ /* cgroup_iter doesn't support read across multiple sessions. */
+ if (*pos > 0) {
+ if (p->visited_all)
+ return NULL;
+
+ /* Haven't visited all, but because cgroup_mutex has dropped,
+ * return -EOPNOTSUPP to indicate incomplete iteration.
+ */
+ return ERR_PTR(-EOPNOTSUPP);
+ }
+
+ ++*pos;
+ p->terminate = false;
+ p->visited_all = false;
+ if (p->order == BPF_CGROUP_ITER_DESCENDANTS_PRE)
+ return css_next_descendant_pre(NULL, p->start_css);
+ else if (p->order == BPF_CGROUP_ITER_DESCENDANTS_POST)
+ return css_next_descendant_post(NULL, p->start_css);
+ else /* BPF_CGROUP_ITER_SELF_ONLY and BPF_CGROUP_ITER_ANCESTORS_UP */
+ return p->start_css;
+}
+
+static int __cgroup_iter_seq_show(struct seq_file *seq,
+ struct cgroup_subsys_state *css, int in_stop);
+
+static void cgroup_iter_seq_stop(struct seq_file *seq, void *v)
+{
+ struct cgroup_iter_priv *p = seq->private;
+
+ cgroup_unlock();
+
+ /* pass NULL to the prog for post-processing */
+ if (!v) {
+ __cgroup_iter_seq_show(seq, NULL, true);
+ p->visited_all = true;
+ }
+}
+
+static void *cgroup_iter_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct cgroup_subsys_state *curr = (struct cgroup_subsys_state *)v;
+ struct cgroup_iter_priv *p = seq->private;
+
+ ++*pos;
+ if (p->terminate)
+ return NULL;
+
+ if (p->order == BPF_CGROUP_ITER_DESCENDANTS_PRE)
+ return css_next_descendant_pre(curr, p->start_css);
+ else if (p->order == BPF_CGROUP_ITER_DESCENDANTS_POST)
+ return css_next_descendant_post(curr, p->start_css);
+ else if (p->order == BPF_CGROUP_ITER_ANCESTORS_UP)
+ return curr->parent;
+ else /* BPF_CGROUP_ITER_SELF_ONLY */
+ return NULL;
+}
+
+static int __cgroup_iter_seq_show(struct seq_file *seq,
+ struct cgroup_subsys_state *css, int in_stop)
+{
+ struct cgroup_iter_priv *p = seq->private;
+ struct bpf_iter__cgroup ctx;
+ struct bpf_iter_meta meta;
+ struct bpf_prog *prog;
+ int ret = 0;
+
+ /* cgroup is dead, skip this element */
+ if (css && cgroup_is_dead(css->cgroup))
+ return 0;
+
+ ctx.meta = &meta;
+ ctx.cgroup = css ? css->cgroup : NULL;
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, in_stop);
+ if (prog)
+ ret = bpf_iter_run_prog(prog, &ctx);
+
+ /* if prog returns > 0, terminate after this element. */
+ if (ret != 0)
+ p->terminate = true;
+
+ return 0;
+}
+
+static int cgroup_iter_seq_show(struct seq_file *seq, void *v)
+{
+ return __cgroup_iter_seq_show(seq, (struct cgroup_subsys_state *)v,
+ false);
+}
+
+static const struct seq_operations cgroup_iter_seq_ops = {
+ .start = cgroup_iter_seq_start,
+ .next = cgroup_iter_seq_next,
+ .stop = cgroup_iter_seq_stop,
+ .show = cgroup_iter_seq_show,
+};
+
+BTF_ID_LIST_SINGLE(bpf_cgroup_btf_id, struct, cgroup)
+
+static int cgroup_iter_seq_init(void *priv, struct bpf_iter_aux_info *aux)
+{
+ struct cgroup_iter_priv *p = (struct cgroup_iter_priv *)priv;
+ struct cgroup *cgrp = aux->cgroup.start;
+
+ /* bpf_iter_attach_cgroup() has already acquired an extra reference
+ * for the start cgroup, but the reference may be released after
+ * cgroup_iter_seq_init(), so acquire another reference for the
+ * start cgroup.
+ */
+ p->start_css = &cgrp->self;
+ css_get(p->start_css);
+ p->terminate = false;
+ p->visited_all = false;
+ p->order = aux->cgroup.order;
+ return 0;
+}
+
+static void cgroup_iter_seq_fini(void *priv)
+{
+ struct cgroup_iter_priv *p = (struct cgroup_iter_priv *)priv;
+
+ css_put(p->start_css);
+}
+
+static const struct bpf_iter_seq_info cgroup_iter_seq_info = {
+ .seq_ops = &cgroup_iter_seq_ops,
+ .init_seq_private = cgroup_iter_seq_init,
+ .fini_seq_private = cgroup_iter_seq_fini,
+ .seq_priv_size = sizeof(struct cgroup_iter_priv),
+};
+
+static int bpf_iter_attach_cgroup(struct bpf_prog *prog,
+ union bpf_iter_link_info *linfo,
+ struct bpf_iter_aux_info *aux)
+{
+ int fd = linfo->cgroup.cgroup_fd;
+ u64 id = linfo->cgroup.cgroup_id;
+ int order = linfo->cgroup.order;
+ struct cgroup *cgrp;
+
+ if (order != BPF_CGROUP_ITER_DESCENDANTS_PRE &&
+ order != BPF_CGROUP_ITER_DESCENDANTS_POST &&
+ order != BPF_CGROUP_ITER_ANCESTORS_UP &&
+ order != BPF_CGROUP_ITER_SELF_ONLY)
+ return -EINVAL;
+
+ if (fd && id)
+ return -EINVAL;
+
+ if (fd)
+ cgrp = cgroup_v1v2_get_from_fd(fd);
+ else if (id)
+ cgrp = cgroup_get_from_id(id);
+ else /* walk the entire hierarchy by default. */
+ cgrp = cgroup_get_from_path("/");
+
+ if (IS_ERR(cgrp))
+ return PTR_ERR(cgrp);
+
+ aux->cgroup.start = cgrp;
+ aux->cgroup.order = order;
+ return 0;
+}
+
+static void bpf_iter_detach_cgroup(struct bpf_iter_aux_info *aux)
+{
+ cgroup_put(aux->cgroup.start);
+}
+
+static void bpf_iter_cgroup_show_fdinfo(const struct bpf_iter_aux_info *aux,
+ struct seq_file *seq)
+{
+ char *buf;
+
+ buf = kzalloc(PATH_MAX, GFP_KERNEL);
+ if (!buf) {
+ seq_puts(seq, "cgroup_path:\t<unknown>\n");
+ goto show_order;
+ }
+
+ /* If cgroup_path_ns() fails, buf will be an empty string, cgroup_path
+ * will print nothing.
+ *
+ * Path is in the calling process's cgroup namespace.
+ */
+ cgroup_path_ns(aux->cgroup.start, buf, PATH_MAX,
+ current->nsproxy->cgroup_ns);
+ seq_printf(seq, "cgroup_path:\t%s\n", buf);
+ kfree(buf);
+
+show_order:
+ if (aux->cgroup.order == BPF_CGROUP_ITER_DESCENDANTS_PRE)
+ seq_puts(seq, "order: descendants_pre\n");
+ else if (aux->cgroup.order == BPF_CGROUP_ITER_DESCENDANTS_POST)
+ seq_puts(seq, "order: descendants_post\n");
+ else if (aux->cgroup.order == BPF_CGROUP_ITER_ANCESTORS_UP)
+ seq_puts(seq, "order: ancestors_up\n");
+ else /* BPF_CGROUP_ITER_SELF_ONLY */
+ seq_puts(seq, "order: self_only\n");
+}
+
+static int bpf_iter_cgroup_fill_link_info(const struct bpf_iter_aux_info *aux,
+ struct bpf_link_info *info)
+{
+ info->iter.cgroup.order = aux->cgroup.order;
+ info->iter.cgroup.cgroup_id = cgroup_id(aux->cgroup.start);
+ return 0;
+}
+
+DEFINE_BPF_ITER_FUNC(cgroup, struct bpf_iter_meta *meta,
+ struct cgroup *cgroup)
+
+static struct bpf_iter_reg bpf_cgroup_reg_info = {
+ .target = "cgroup",
+ .feature = BPF_ITER_RESCHED,
+ .attach_target = bpf_iter_attach_cgroup,
+ .detach_target = bpf_iter_detach_cgroup,
+ .show_fdinfo = bpf_iter_cgroup_show_fdinfo,
+ .fill_link_info = bpf_iter_cgroup_fill_link_info,
+ .ctx_arg_info_size = 1,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__cgroup, cgroup),
+ PTR_TO_BTF_ID_OR_NULL },
+ },
+ .seq_info = &cgroup_iter_seq_info,
+};
+
+static int __init bpf_cgroup_iter_init(void)
+{
+ bpf_cgroup_reg_info.ctx_arg_info[0].btf_id = bpf_cgroup_btf_id[0];
+ return bpf_iter_reg_target(&bpf_cgroup_reg_info);
+}
+
+late_initcall(bpf_cgroup_iter_init);
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c
new file mode 100644
index 000000000..76bf1de26
--- /dev/null
+++ b/kernel/bpf/core.c
@@ -0,0 +1,2772 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Linux Socket Filter - Kernel level socket filtering
+ *
+ * Based on the design of the Berkeley Packet Filter. The new
+ * internal format has been designed by PLUMgrid:
+ *
+ * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
+ *
+ * Authors:
+ *
+ * Jay Schulist <jschlst@samba.org>
+ * Alexei Starovoitov <ast@plumgrid.com>
+ * Daniel Borkmann <dborkman@redhat.com>
+ *
+ * Andi Kleen - Fix a few bad bugs and races.
+ * Kris Katterjohn - Added many additional checks in bpf_check_classic()
+ */
+
+#include <uapi/linux/btf.h>
+#include <linux/filter.h>
+#include <linux/skbuff.h>
+#include <linux/vmalloc.h>
+#include <linux/random.h>
+#include <linux/moduleloader.h>
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/objtool.h>
+#include <linux/rbtree_latch.h>
+#include <linux/kallsyms.h>
+#include <linux/rcupdate.h>
+#include <linux/perf_event.h>
+#include <linux/extable.h>
+#include <linux/log2.h>
+#include <linux/bpf_verifier.h>
+#include <linux/nodemask.h>
+#include <linux/nospec.h>
+
+#include <asm/barrier.h>
+#include <asm/unaligned.h>
+
+/* Registers */
+#define BPF_R0 regs[BPF_REG_0]
+#define BPF_R1 regs[BPF_REG_1]
+#define BPF_R2 regs[BPF_REG_2]
+#define BPF_R3 regs[BPF_REG_3]
+#define BPF_R4 regs[BPF_REG_4]
+#define BPF_R5 regs[BPF_REG_5]
+#define BPF_R6 regs[BPF_REG_6]
+#define BPF_R7 regs[BPF_REG_7]
+#define BPF_R8 regs[BPF_REG_8]
+#define BPF_R9 regs[BPF_REG_9]
+#define BPF_R10 regs[BPF_REG_10]
+
+/* Named registers */
+#define DST regs[insn->dst_reg]
+#define SRC regs[insn->src_reg]
+#define FP regs[BPF_REG_FP]
+#define AX regs[BPF_REG_AX]
+#define ARG1 regs[BPF_REG_ARG1]
+#define CTX regs[BPF_REG_CTX]
+#define IMM insn->imm
+
+/* No hurry in this branch
+ *
+ * Exported for the bpf jit load helper.
+ */
+void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
+{
+ u8 *ptr = NULL;
+
+ if (k >= SKF_NET_OFF) {
+ ptr = skb_network_header(skb) + k - SKF_NET_OFF;
+ } else if (k >= SKF_LL_OFF) {
+ if (unlikely(!skb_mac_header_was_set(skb)))
+ return NULL;
+ ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
+ }
+ if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
+ return ptr;
+
+ return NULL;
+}
+
+struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
+{
+ gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
+ struct bpf_prog_aux *aux;
+ struct bpf_prog *fp;
+
+ size = round_up(size, PAGE_SIZE);
+ fp = __vmalloc(size, gfp_flags);
+ if (fp == NULL)
+ return NULL;
+
+ aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
+ if (aux == NULL) {
+ vfree(fp);
+ return NULL;
+ }
+ fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
+ if (!fp->active) {
+ vfree(fp);
+ kfree(aux);
+ return NULL;
+ }
+
+ fp->pages = size / PAGE_SIZE;
+ fp->aux = aux;
+ fp->aux->prog = fp;
+ fp->jit_requested = ebpf_jit_enabled();
+ fp->blinding_requested = bpf_jit_blinding_enabled(fp);
+#ifdef CONFIG_CGROUP_BPF
+ aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
+#endif
+
+ INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
+ mutex_init(&fp->aux->used_maps_mutex);
+ mutex_init(&fp->aux->dst_mutex);
+
+ return fp;
+}
+
+struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
+{
+ gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
+ struct bpf_prog *prog;
+ int cpu;
+
+ prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
+ if (!prog)
+ return NULL;
+
+ prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
+ if (!prog->stats) {
+ free_percpu(prog->active);
+ kfree(prog->aux);
+ vfree(prog);
+ return NULL;
+ }
+
+ for_each_possible_cpu(cpu) {
+ struct bpf_prog_stats *pstats;
+
+ pstats = per_cpu_ptr(prog->stats, cpu);
+ u64_stats_init(&pstats->syncp);
+ }
+ return prog;
+}
+EXPORT_SYMBOL_GPL(bpf_prog_alloc);
+
+int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
+{
+ if (!prog->aux->nr_linfo || !prog->jit_requested)
+ return 0;
+
+ prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
+ sizeof(*prog->aux->jited_linfo),
+ GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
+ if (!prog->aux->jited_linfo)
+ return -ENOMEM;
+
+ return 0;
+}
+
+void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
+{
+ if (prog->aux->jited_linfo &&
+ (!prog->jited || !prog->aux->jited_linfo[0])) {
+ kvfree(prog->aux->jited_linfo);
+ prog->aux->jited_linfo = NULL;
+ }
+
+ kfree(prog->aux->kfunc_tab);
+ prog->aux->kfunc_tab = NULL;
+}
+
+/* The jit engine is responsible to provide an array
+ * for insn_off to the jited_off mapping (insn_to_jit_off).
+ *
+ * The idx to this array is the insn_off. Hence, the insn_off
+ * here is relative to the prog itself instead of the main prog.
+ * This array has one entry for each xlated bpf insn.
+ *
+ * jited_off is the byte off to the end of the jited insn.
+ *
+ * Hence, with
+ * insn_start:
+ * The first bpf insn off of the prog. The insn off
+ * here is relative to the main prog.
+ * e.g. if prog is a subprog, insn_start > 0
+ * linfo_idx:
+ * The prog's idx to prog->aux->linfo and jited_linfo
+ *
+ * jited_linfo[linfo_idx] = prog->bpf_func
+ *
+ * For i > linfo_idx,
+ *
+ * jited_linfo[i] = prog->bpf_func +
+ * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
+ */
+void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
+ const u32 *insn_to_jit_off)
+{
+ u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
+ const struct bpf_line_info *linfo;
+ void **jited_linfo;
+
+ if (!prog->aux->jited_linfo)
+ /* Userspace did not provide linfo */
+ return;
+
+ linfo_idx = prog->aux->linfo_idx;
+ linfo = &prog->aux->linfo[linfo_idx];
+ insn_start = linfo[0].insn_off;
+ insn_end = insn_start + prog->len;
+
+ jited_linfo = &prog->aux->jited_linfo[linfo_idx];
+ jited_linfo[0] = prog->bpf_func;
+
+ nr_linfo = prog->aux->nr_linfo - linfo_idx;
+
+ for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
+ /* The verifier ensures that linfo[i].insn_off is
+ * strictly increasing
+ */
+ jited_linfo[i] = prog->bpf_func +
+ insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
+}
+
+struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
+ gfp_t gfp_extra_flags)
+{
+ gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
+ struct bpf_prog *fp;
+ u32 pages;
+
+ size = round_up(size, PAGE_SIZE);
+ pages = size / PAGE_SIZE;
+ if (pages <= fp_old->pages)
+ return fp_old;
+
+ fp = __vmalloc(size, gfp_flags);
+ if (fp) {
+ memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
+ fp->pages = pages;
+ fp->aux->prog = fp;
+
+ /* We keep fp->aux from fp_old around in the new
+ * reallocated structure.
+ */
+ fp_old->aux = NULL;
+ fp_old->stats = NULL;
+ fp_old->active = NULL;
+ __bpf_prog_free(fp_old);
+ }
+
+ return fp;
+}
+
+void __bpf_prog_free(struct bpf_prog *fp)
+{
+ if (fp->aux) {
+ mutex_destroy(&fp->aux->used_maps_mutex);
+ mutex_destroy(&fp->aux->dst_mutex);
+ kfree(fp->aux->poke_tab);
+ kfree(fp->aux);
+ }
+ free_percpu(fp->stats);
+ free_percpu(fp->active);
+ vfree(fp);
+}
+
+int bpf_prog_calc_tag(struct bpf_prog *fp)
+{
+ const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
+ u32 raw_size = bpf_prog_tag_scratch_size(fp);
+ u32 digest[SHA1_DIGEST_WORDS];
+ u32 ws[SHA1_WORKSPACE_WORDS];
+ u32 i, bsize, psize, blocks;
+ struct bpf_insn *dst;
+ bool was_ld_map;
+ u8 *raw, *todo;
+ __be32 *result;
+ __be64 *bits;
+
+ raw = vmalloc(raw_size);
+ if (!raw)
+ return -ENOMEM;
+
+ sha1_init(digest);
+ memset(ws, 0, sizeof(ws));
+
+ /* We need to take out the map fd for the digest calculation
+ * since they are unstable from user space side.
+ */
+ dst = (void *)raw;
+ for (i = 0, was_ld_map = false; i < fp->len; i++) {
+ dst[i] = fp->insnsi[i];
+ if (!was_ld_map &&
+ dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
+ (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
+ dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
+ was_ld_map = true;
+ dst[i].imm = 0;
+ } else if (was_ld_map &&
+ dst[i].code == 0 &&
+ dst[i].dst_reg == 0 &&
+ dst[i].src_reg == 0 &&
+ dst[i].off == 0) {
+ was_ld_map = false;
+ dst[i].imm = 0;
+ } else {
+ was_ld_map = false;
+ }
+ }
+
+ psize = bpf_prog_insn_size(fp);
+ memset(&raw[psize], 0, raw_size - psize);
+ raw[psize++] = 0x80;
+
+ bsize = round_up(psize, SHA1_BLOCK_SIZE);
+ blocks = bsize / SHA1_BLOCK_SIZE;
+ todo = raw;
+ if (bsize - psize >= sizeof(__be64)) {
+ bits = (__be64 *)(todo + bsize - sizeof(__be64));
+ } else {
+ bits = (__be64 *)(todo + bsize + bits_offset);
+ blocks++;
+ }
+ *bits = cpu_to_be64((psize - 1) << 3);
+
+ while (blocks--) {
+ sha1_transform(digest, todo, ws);
+ todo += SHA1_BLOCK_SIZE;
+ }
+
+ result = (__force __be32 *)digest;
+ for (i = 0; i < SHA1_DIGEST_WORDS; i++)
+ result[i] = cpu_to_be32(digest[i]);
+ memcpy(fp->tag, result, sizeof(fp->tag));
+
+ vfree(raw);
+ return 0;
+}
+
+static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
+ s32 end_new, s32 curr, const bool probe_pass)
+{
+ const s64 imm_min = S32_MIN, imm_max = S32_MAX;
+ s32 delta = end_new - end_old;
+ s64 imm = insn->imm;
+
+ if (curr < pos && curr + imm + 1 >= end_old)
+ imm += delta;
+ else if (curr >= end_new && curr + imm + 1 < end_new)
+ imm -= delta;
+ if (imm < imm_min || imm > imm_max)
+ return -ERANGE;
+ if (!probe_pass)
+ insn->imm = imm;
+ return 0;
+}
+
+static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
+ s32 end_new, s32 curr, const bool probe_pass)
+{
+ s64 off_min, off_max, off;
+ s32 delta = end_new - end_old;
+
+ if (insn->code == (BPF_JMP32 | BPF_JA)) {
+ off = insn->imm;
+ off_min = S32_MIN;
+ off_max = S32_MAX;
+ } else {
+ off = insn->off;
+ off_min = S16_MIN;
+ off_max = S16_MAX;
+ }
+
+ if (curr < pos && curr + off + 1 >= end_old)
+ off += delta;
+ else if (curr >= end_new && curr + off + 1 < end_new)
+ off -= delta;
+ if (off < off_min || off > off_max)
+ return -ERANGE;
+ if (!probe_pass) {
+ if (insn->code == (BPF_JMP32 | BPF_JA))
+ insn->imm = off;
+ else
+ insn->off = off;
+ }
+ return 0;
+}
+
+static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
+ s32 end_new, const bool probe_pass)
+{
+ u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
+ struct bpf_insn *insn = prog->insnsi;
+ int ret = 0;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ u8 code;
+
+ /* In the probing pass we still operate on the original,
+ * unpatched image in order to check overflows before we
+ * do any other adjustments. Therefore skip the patchlet.
+ */
+ if (probe_pass && i == pos) {
+ i = end_new;
+ insn = prog->insnsi + end_old;
+ }
+ if (bpf_pseudo_func(insn)) {
+ ret = bpf_adj_delta_to_imm(insn, pos, end_old,
+ end_new, i, probe_pass);
+ if (ret)
+ return ret;
+ continue;
+ }
+ code = insn->code;
+ if ((BPF_CLASS(code) != BPF_JMP &&
+ BPF_CLASS(code) != BPF_JMP32) ||
+ BPF_OP(code) == BPF_EXIT)
+ continue;
+ /* Adjust offset of jmps if we cross patch boundaries. */
+ if (BPF_OP(code) == BPF_CALL) {
+ if (insn->src_reg != BPF_PSEUDO_CALL)
+ continue;
+ ret = bpf_adj_delta_to_imm(insn, pos, end_old,
+ end_new, i, probe_pass);
+ } else {
+ ret = bpf_adj_delta_to_off(insn, pos, end_old,
+ end_new, i, probe_pass);
+ }
+ if (ret)
+ break;
+ }
+
+ return ret;
+}
+
+static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
+{
+ struct bpf_line_info *linfo;
+ u32 i, nr_linfo;
+
+ nr_linfo = prog->aux->nr_linfo;
+ if (!nr_linfo || !delta)
+ return;
+
+ linfo = prog->aux->linfo;
+
+ for (i = 0; i < nr_linfo; i++)
+ if (off < linfo[i].insn_off)
+ break;
+
+ /* Push all off < linfo[i].insn_off by delta */
+ for (; i < nr_linfo; i++)
+ linfo[i].insn_off += delta;
+}
+
+struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
+ const struct bpf_insn *patch, u32 len)
+{
+ u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
+ const u32 cnt_max = S16_MAX;
+ struct bpf_prog *prog_adj;
+ int err;
+
+ /* Since our patchlet doesn't expand the image, we're done. */
+ if (insn_delta == 0) {
+ memcpy(prog->insnsi + off, patch, sizeof(*patch));
+ return prog;
+ }
+
+ insn_adj_cnt = prog->len + insn_delta;
+
+ /* Reject anything that would potentially let the insn->off
+ * target overflow when we have excessive program expansions.
+ * We need to probe here before we do any reallocation where
+ * we afterwards may not fail anymore.
+ */
+ if (insn_adj_cnt > cnt_max &&
+ (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
+ return ERR_PTR(err);
+
+ /* Several new instructions need to be inserted. Make room
+ * for them. Likely, there's no need for a new allocation as
+ * last page could have large enough tailroom.
+ */
+ prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
+ GFP_USER);
+ if (!prog_adj)
+ return ERR_PTR(-ENOMEM);
+
+ prog_adj->len = insn_adj_cnt;
+
+ /* Patching happens in 3 steps:
+ *
+ * 1) Move over tail of insnsi from next instruction onwards,
+ * so we can patch the single target insn with one or more
+ * new ones (patching is always from 1 to n insns, n > 0).
+ * 2) Inject new instructions at the target location.
+ * 3) Adjust branch offsets if necessary.
+ */
+ insn_rest = insn_adj_cnt - off - len;
+
+ memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
+ sizeof(*patch) * insn_rest);
+ memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
+
+ /* We are guaranteed to not fail at this point, otherwise
+ * the ship has sailed to reverse to the original state. An
+ * overflow cannot happen at this point.
+ */
+ BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
+
+ bpf_adj_linfo(prog_adj, off, insn_delta);
+
+ return prog_adj;
+}
+
+int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
+{
+ /* Branch offsets can't overflow when program is shrinking, no need
+ * to call bpf_adj_branches(..., true) here
+ */
+ memmove(prog->insnsi + off, prog->insnsi + off + cnt,
+ sizeof(struct bpf_insn) * (prog->len - off - cnt));
+ prog->len -= cnt;
+
+ return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
+}
+
+static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
+{
+ int i;
+
+ for (i = 0; i < fp->aux->func_cnt; i++)
+ bpf_prog_kallsyms_del(fp->aux->func[i]);
+}
+
+void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
+{
+ bpf_prog_kallsyms_del_subprogs(fp);
+ bpf_prog_kallsyms_del(fp);
+}
+
+#ifdef CONFIG_BPF_JIT
+/* All BPF JIT sysctl knobs here. */
+int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
+int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
+int bpf_jit_harden __read_mostly;
+long bpf_jit_limit __read_mostly;
+long bpf_jit_limit_max __read_mostly;
+
+static void
+bpf_prog_ksym_set_addr(struct bpf_prog *prog)
+{
+ WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
+
+ prog->aux->ksym.start = (unsigned long) prog->bpf_func;
+ prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len;
+}
+
+static void
+bpf_prog_ksym_set_name(struct bpf_prog *prog)
+{
+ char *sym = prog->aux->ksym.name;
+ const char *end = sym + KSYM_NAME_LEN;
+ const struct btf_type *type;
+ const char *func_name;
+
+ BUILD_BUG_ON(sizeof("bpf_prog_") +
+ sizeof(prog->tag) * 2 +
+ /* name has been null terminated.
+ * We should need +1 for the '_' preceding
+ * the name. However, the null character
+ * is double counted between the name and the
+ * sizeof("bpf_prog_") above, so we omit
+ * the +1 here.
+ */
+ sizeof(prog->aux->name) > KSYM_NAME_LEN);
+
+ sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
+ sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
+
+ /* prog->aux->name will be ignored if full btf name is available */
+ if (prog->aux->func_info_cnt) {
+ type = btf_type_by_id(prog->aux->btf,
+ prog->aux->func_info[prog->aux->func_idx].type_id);
+ func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
+ snprintf(sym, (size_t)(end - sym), "_%s", func_name);
+ return;
+ }
+
+ if (prog->aux->name[0])
+ snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
+ else
+ *sym = 0;
+}
+
+static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
+{
+ return container_of(n, struct bpf_ksym, tnode)->start;
+}
+
+static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
+ struct latch_tree_node *b)
+{
+ return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
+}
+
+static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
+{
+ unsigned long val = (unsigned long)key;
+ const struct bpf_ksym *ksym;
+
+ ksym = container_of(n, struct bpf_ksym, tnode);
+
+ if (val < ksym->start)
+ return -1;
+ /* Ensure that we detect return addresses as part of the program, when
+ * the final instruction is a call for a program part of the stack
+ * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
+ */
+ if (val > ksym->end)
+ return 1;
+
+ return 0;
+}
+
+static const struct latch_tree_ops bpf_tree_ops = {
+ .less = bpf_tree_less,
+ .comp = bpf_tree_comp,
+};
+
+static DEFINE_SPINLOCK(bpf_lock);
+static LIST_HEAD(bpf_kallsyms);
+static struct latch_tree_root bpf_tree __cacheline_aligned;
+
+void bpf_ksym_add(struct bpf_ksym *ksym)
+{
+ spin_lock_bh(&bpf_lock);
+ WARN_ON_ONCE(!list_empty(&ksym->lnode));
+ list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
+ latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
+ spin_unlock_bh(&bpf_lock);
+}
+
+static void __bpf_ksym_del(struct bpf_ksym *ksym)
+{
+ if (list_empty(&ksym->lnode))
+ return;
+
+ latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
+ list_del_rcu(&ksym->lnode);
+}
+
+void bpf_ksym_del(struct bpf_ksym *ksym)
+{
+ spin_lock_bh(&bpf_lock);
+ __bpf_ksym_del(ksym);
+ spin_unlock_bh(&bpf_lock);
+}
+
+static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
+{
+ return fp->jited && !bpf_prog_was_classic(fp);
+}
+
+void bpf_prog_kallsyms_add(struct bpf_prog *fp)
+{
+ if (!bpf_prog_kallsyms_candidate(fp) ||
+ !bpf_capable())
+ return;
+
+ bpf_prog_ksym_set_addr(fp);
+ bpf_prog_ksym_set_name(fp);
+ fp->aux->ksym.prog = true;
+
+ bpf_ksym_add(&fp->aux->ksym);
+}
+
+void bpf_prog_kallsyms_del(struct bpf_prog *fp)
+{
+ if (!bpf_prog_kallsyms_candidate(fp))
+ return;
+
+ bpf_ksym_del(&fp->aux->ksym);
+}
+
+static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
+{
+ struct latch_tree_node *n;
+
+ n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
+ return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
+}
+
+const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
+ unsigned long *off, char *sym)
+{
+ struct bpf_ksym *ksym;
+ char *ret = NULL;
+
+ rcu_read_lock();
+ ksym = bpf_ksym_find(addr);
+ if (ksym) {
+ unsigned long symbol_start = ksym->start;
+ unsigned long symbol_end = ksym->end;
+
+ strncpy(sym, ksym->name, KSYM_NAME_LEN);
+
+ ret = sym;
+ if (size)
+ *size = symbol_end - symbol_start;
+ if (off)
+ *off = addr - symbol_start;
+ }
+ rcu_read_unlock();
+
+ return ret;
+}
+
+bool is_bpf_text_address(unsigned long addr)
+{
+ bool ret;
+
+ rcu_read_lock();
+ ret = bpf_ksym_find(addr) != NULL;
+ rcu_read_unlock();
+
+ return ret;
+}
+
+static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
+{
+ struct bpf_ksym *ksym = bpf_ksym_find(addr);
+
+ return ksym && ksym->prog ?
+ container_of(ksym, struct bpf_prog_aux, ksym)->prog :
+ NULL;
+}
+
+const struct exception_table_entry *search_bpf_extables(unsigned long addr)
+{
+ const struct exception_table_entry *e = NULL;
+ struct bpf_prog *prog;
+
+ rcu_read_lock();
+ prog = bpf_prog_ksym_find(addr);
+ if (!prog)
+ goto out;
+ if (!prog->aux->num_exentries)
+ goto out;
+
+ e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
+out:
+ rcu_read_unlock();
+ return e;
+}
+
+int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
+ char *sym)
+{
+ struct bpf_ksym *ksym;
+ unsigned int it = 0;
+ int ret = -ERANGE;
+
+ if (!bpf_jit_kallsyms_enabled())
+ return ret;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
+ if (it++ != symnum)
+ continue;
+
+ strncpy(sym, ksym->name, KSYM_NAME_LEN);
+
+ *value = ksym->start;
+ *type = BPF_SYM_ELF_TYPE;
+
+ ret = 0;
+ break;
+ }
+ rcu_read_unlock();
+
+ return ret;
+}
+
+int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
+ struct bpf_jit_poke_descriptor *poke)
+{
+ struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
+ static const u32 poke_tab_max = 1024;
+ u32 slot = prog->aux->size_poke_tab;
+ u32 size = slot + 1;
+
+ if (size > poke_tab_max)
+ return -ENOSPC;
+ if (poke->tailcall_target || poke->tailcall_target_stable ||
+ poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
+ return -EINVAL;
+
+ switch (poke->reason) {
+ case BPF_POKE_REASON_TAIL_CALL:
+ if (!poke->tail_call.map)
+ return -EINVAL;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
+ if (!tab)
+ return -ENOMEM;
+
+ memcpy(&tab[slot], poke, sizeof(*poke));
+ prog->aux->size_poke_tab = size;
+ prog->aux->poke_tab = tab;
+
+ return slot;
+}
+
+/*
+ * BPF program pack allocator.
+ *
+ * Most BPF programs are pretty small. Allocating a hole page for each
+ * program is sometime a waste. Many small bpf program also adds pressure
+ * to instruction TLB. To solve this issue, we introduce a BPF program pack
+ * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
+ * to host BPF programs.
+ */
+#define BPF_PROG_CHUNK_SHIFT 6
+#define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT)
+#define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1))
+
+struct bpf_prog_pack {
+ struct list_head list;
+ void *ptr;
+ unsigned long bitmap[];
+};
+
+void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
+{
+ memset(area, 0, size);
+}
+
+#define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
+
+static DEFINE_MUTEX(pack_mutex);
+static LIST_HEAD(pack_list);
+
+/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
+ * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
+ */
+#ifdef PMD_SIZE
+#define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
+#else
+#define BPF_PROG_PACK_SIZE PAGE_SIZE
+#endif
+
+#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
+
+static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
+{
+ struct bpf_prog_pack *pack;
+
+ pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
+ GFP_KERNEL);
+ if (!pack)
+ return NULL;
+ pack->ptr = module_alloc(BPF_PROG_PACK_SIZE);
+ if (!pack->ptr) {
+ kfree(pack);
+ return NULL;
+ }
+ bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
+ bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
+ list_add_tail(&pack->list, &pack_list);
+
+ set_vm_flush_reset_perms(pack->ptr);
+ set_memory_ro((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
+ set_memory_x((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
+ return pack;
+}
+
+void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
+{
+ unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
+ struct bpf_prog_pack *pack;
+ unsigned long pos;
+ void *ptr = NULL;
+
+ mutex_lock(&pack_mutex);
+ if (size > BPF_PROG_PACK_SIZE) {
+ size = round_up(size, PAGE_SIZE);
+ ptr = module_alloc(size);
+ if (ptr) {
+ bpf_fill_ill_insns(ptr, size);
+ set_vm_flush_reset_perms(ptr);
+ set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
+ set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
+ }
+ goto out;
+ }
+ list_for_each_entry(pack, &pack_list, list) {
+ pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
+ nbits, 0);
+ if (pos < BPF_PROG_CHUNK_COUNT)
+ goto found_free_area;
+ }
+
+ pack = alloc_new_pack(bpf_fill_ill_insns);
+ if (!pack)
+ goto out;
+
+ pos = 0;
+
+found_free_area:
+ bitmap_set(pack->bitmap, pos, nbits);
+ ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
+
+out:
+ mutex_unlock(&pack_mutex);
+ return ptr;
+}
+
+void bpf_prog_pack_free(struct bpf_binary_header *hdr)
+{
+ struct bpf_prog_pack *pack = NULL, *tmp;
+ unsigned int nbits;
+ unsigned long pos;
+
+ mutex_lock(&pack_mutex);
+ if (hdr->size > BPF_PROG_PACK_SIZE) {
+ module_memfree(hdr);
+ goto out;
+ }
+
+ list_for_each_entry(tmp, &pack_list, list) {
+ if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
+ pack = tmp;
+ break;
+ }
+ }
+
+ if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
+ goto out;
+
+ nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
+ pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
+
+ WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
+ "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
+
+ bitmap_clear(pack->bitmap, pos, nbits);
+ if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
+ BPF_PROG_CHUNK_COUNT, 0) == 0) {
+ list_del(&pack->list);
+ module_memfree(pack->ptr);
+ kfree(pack);
+ }
+out:
+ mutex_unlock(&pack_mutex);
+}
+
+static atomic_long_t bpf_jit_current;
+
+/* Can be overridden by an arch's JIT compiler if it has a custom,
+ * dedicated BPF backend memory area, or if neither of the two
+ * below apply.
+ */
+u64 __weak bpf_jit_alloc_exec_limit(void)
+{
+#if defined(MODULES_VADDR)
+ return MODULES_END - MODULES_VADDR;
+#else
+ return VMALLOC_END - VMALLOC_START;
+#endif
+}
+
+static int __init bpf_jit_charge_init(void)
+{
+ /* Only used as heuristic here to derive limit. */
+ bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
+ bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
+ PAGE_SIZE), LONG_MAX);
+ return 0;
+}
+pure_initcall(bpf_jit_charge_init);
+
+int bpf_jit_charge_modmem(u32 size)
+{
+ if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
+ if (!bpf_capable()) {
+ atomic_long_sub(size, &bpf_jit_current);
+ return -EPERM;
+ }
+ }
+
+ return 0;
+}
+
+void bpf_jit_uncharge_modmem(u32 size)
+{
+ atomic_long_sub(size, &bpf_jit_current);
+}
+
+void *__weak bpf_jit_alloc_exec(unsigned long size)
+{
+ return module_alloc(size);
+}
+
+void __weak bpf_jit_free_exec(void *addr)
+{
+ module_memfree(addr);
+}
+
+struct bpf_binary_header *
+bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
+ unsigned int alignment,
+ bpf_jit_fill_hole_t bpf_fill_ill_insns)
+{
+ struct bpf_binary_header *hdr;
+ u32 size, hole, start;
+
+ WARN_ON_ONCE(!is_power_of_2(alignment) ||
+ alignment > BPF_IMAGE_ALIGNMENT);
+
+ /* Most of BPF filters are really small, but if some of them
+ * fill a page, allow at least 128 extra bytes to insert a
+ * random section of illegal instructions.
+ */
+ size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
+
+ if (bpf_jit_charge_modmem(size))
+ return NULL;
+ hdr = bpf_jit_alloc_exec(size);
+ if (!hdr) {
+ bpf_jit_uncharge_modmem(size);
+ return NULL;
+ }
+
+ /* Fill space with illegal/arch-dep instructions. */
+ bpf_fill_ill_insns(hdr, size);
+
+ hdr->size = size;
+ hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
+ PAGE_SIZE - sizeof(*hdr));
+ start = prandom_u32_max(hole) & ~(alignment - 1);
+
+ /* Leave a random number of instructions before BPF code. */
+ *image_ptr = &hdr->image[start];
+
+ return hdr;
+}
+
+void bpf_jit_binary_free(struct bpf_binary_header *hdr)
+{
+ u32 size = hdr->size;
+
+ bpf_jit_free_exec(hdr);
+ bpf_jit_uncharge_modmem(size);
+}
+
+/* Allocate jit binary from bpf_prog_pack allocator.
+ * Since the allocated memory is RO+X, the JIT engine cannot write directly
+ * to the memory. To solve this problem, a RW buffer is also allocated at
+ * as the same time. The JIT engine should calculate offsets based on the
+ * RO memory address, but write JITed program to the RW buffer. Once the
+ * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
+ * the JITed program to the RO memory.
+ */
+struct bpf_binary_header *
+bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
+ unsigned int alignment,
+ struct bpf_binary_header **rw_header,
+ u8 **rw_image,
+ bpf_jit_fill_hole_t bpf_fill_ill_insns)
+{
+ struct bpf_binary_header *ro_header;
+ u32 size, hole, start;
+
+ WARN_ON_ONCE(!is_power_of_2(alignment) ||
+ alignment > BPF_IMAGE_ALIGNMENT);
+
+ /* add 16 bytes for a random section of illegal instructions */
+ size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
+
+ if (bpf_jit_charge_modmem(size))
+ return NULL;
+ ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
+ if (!ro_header) {
+ bpf_jit_uncharge_modmem(size);
+ return NULL;
+ }
+
+ *rw_header = kvmalloc(size, GFP_KERNEL);
+ if (!*rw_header) {
+ bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
+ bpf_prog_pack_free(ro_header);
+ bpf_jit_uncharge_modmem(size);
+ return NULL;
+ }
+
+ /* Fill space with illegal/arch-dep instructions. */
+ bpf_fill_ill_insns(*rw_header, size);
+ (*rw_header)->size = size;
+
+ hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
+ BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
+ start = prandom_u32_max(hole) & ~(alignment - 1);
+
+ *image_ptr = &ro_header->image[start];
+ *rw_image = &(*rw_header)->image[start];
+
+ return ro_header;
+}
+
+/* Copy JITed text from rw_header to its final location, the ro_header. */
+int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
+ struct bpf_binary_header *ro_header,
+ struct bpf_binary_header *rw_header)
+{
+ void *ptr;
+
+ ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
+
+ kvfree(rw_header);
+
+ if (IS_ERR(ptr)) {
+ bpf_prog_pack_free(ro_header);
+ return PTR_ERR(ptr);
+ }
+ return 0;
+}
+
+/* bpf_jit_binary_pack_free is called in two different scenarios:
+ * 1) when the program is freed after;
+ * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
+ * For case 2), we need to free both the RO memory and the RW buffer.
+ *
+ * bpf_jit_binary_pack_free requires proper ro_header->size. However,
+ * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
+ * must be set with either bpf_jit_binary_pack_finalize (normal path) or
+ * bpf_arch_text_copy (when jit fails).
+ */
+void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
+ struct bpf_binary_header *rw_header)
+{
+ u32 size = ro_header->size;
+
+ bpf_prog_pack_free(ro_header);
+ kvfree(rw_header);
+ bpf_jit_uncharge_modmem(size);
+}
+
+struct bpf_binary_header *
+bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
+{
+ unsigned long real_start = (unsigned long)fp->bpf_func;
+ unsigned long addr;
+
+ addr = real_start & BPF_PROG_CHUNK_MASK;
+ return (void *)addr;
+}
+
+static inline struct bpf_binary_header *
+bpf_jit_binary_hdr(const struct bpf_prog *fp)
+{
+ unsigned long real_start = (unsigned long)fp->bpf_func;
+ unsigned long addr;
+
+ addr = real_start & PAGE_MASK;
+ return (void *)addr;
+}
+
+/* This symbol is only overridden by archs that have different
+ * requirements than the usual eBPF JITs, f.e. when they only
+ * implement cBPF JIT, do not set images read-only, etc.
+ */
+void __weak bpf_jit_free(struct bpf_prog *fp)
+{
+ if (fp->jited) {
+ struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
+
+ bpf_jit_binary_free(hdr);
+ WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
+ }
+
+ bpf_prog_unlock_free(fp);
+}
+
+int bpf_jit_get_func_addr(const struct bpf_prog *prog,
+ const struct bpf_insn *insn, bool extra_pass,
+ u64 *func_addr, bool *func_addr_fixed)
+{
+ s16 off = insn->off;
+ s32 imm = insn->imm;
+ u8 *addr;
+
+ *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
+ if (!*func_addr_fixed) {
+ /* Place-holder address till the last pass has collected
+ * all addresses for JITed subprograms in which case we
+ * can pick them up from prog->aux.
+ */
+ if (!extra_pass)
+ addr = NULL;
+ else if (prog->aux->func &&
+ off >= 0 && off < prog->aux->func_cnt)
+ addr = (u8 *)prog->aux->func[off]->bpf_func;
+ else
+ return -EINVAL;
+ } else {
+ /* Address of a BPF helper call. Since part of the core
+ * kernel, it's always at a fixed location. __bpf_call_base
+ * and the helper with imm relative to it are both in core
+ * kernel.
+ */
+ addr = (u8 *)__bpf_call_base + imm;
+ }
+
+ *func_addr = (unsigned long)addr;
+ return 0;
+}
+
+static int bpf_jit_blind_insn(const struct bpf_insn *from,
+ const struct bpf_insn *aux,
+ struct bpf_insn *to_buff,
+ bool emit_zext)
+{
+ struct bpf_insn *to = to_buff;
+ u32 imm_rnd = get_random_u32();
+ s16 off;
+
+ BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
+ BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
+
+ /* Constraints on AX register:
+ *
+ * AX register is inaccessible from user space. It is mapped in
+ * all JITs, and used here for constant blinding rewrites. It is
+ * typically "stateless" meaning its contents are only valid within
+ * the executed instruction, but not across several instructions.
+ * There are a few exceptions however which are further detailed
+ * below.
+ *
+ * Constant blinding is only used by JITs, not in the interpreter.
+ * The interpreter uses AX in some occasions as a local temporary
+ * register e.g. in DIV or MOD instructions.
+ *
+ * In restricted circumstances, the verifier can also use the AX
+ * register for rewrites as long as they do not interfere with
+ * the above cases!
+ */
+ if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
+ goto out;
+
+ if (from->imm == 0 &&
+ (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
+ from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
+ *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
+ goto out;
+ }
+
+ switch (from->code) {
+ case BPF_ALU | BPF_ADD | BPF_K:
+ case BPF_ALU | BPF_SUB | BPF_K:
+ case BPF_ALU | BPF_AND | BPF_K:
+ case BPF_ALU | BPF_OR | BPF_K:
+ case BPF_ALU | BPF_XOR | BPF_K:
+ case BPF_ALU | BPF_MUL | BPF_K:
+ case BPF_ALU | BPF_MOV | BPF_K:
+ case BPF_ALU | BPF_DIV | BPF_K:
+ case BPF_ALU | BPF_MOD | BPF_K:
+ *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
+ *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
+ *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
+ break;
+
+ case BPF_ALU64 | BPF_ADD | BPF_K:
+ case BPF_ALU64 | BPF_SUB | BPF_K:
+ case BPF_ALU64 | BPF_AND | BPF_K:
+ case BPF_ALU64 | BPF_OR | BPF_K:
+ case BPF_ALU64 | BPF_XOR | BPF_K:
+ case BPF_ALU64 | BPF_MUL | BPF_K:
+ case BPF_ALU64 | BPF_MOV | BPF_K:
+ case BPF_ALU64 | BPF_DIV | BPF_K:
+ case BPF_ALU64 | BPF_MOD | BPF_K:
+ *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
+ *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
+ *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
+ break;
+
+ case BPF_JMP | BPF_JEQ | BPF_K:
+ case BPF_JMP | BPF_JNE | BPF_K:
+ case BPF_JMP | BPF_JGT | BPF_K:
+ case BPF_JMP | BPF_JLT | BPF_K:
+ case BPF_JMP | BPF_JGE | BPF_K:
+ case BPF_JMP | BPF_JLE | BPF_K:
+ case BPF_JMP | BPF_JSGT | BPF_K:
+ case BPF_JMP | BPF_JSLT | BPF_K:
+ case BPF_JMP | BPF_JSGE | BPF_K:
+ case BPF_JMP | BPF_JSLE | BPF_K:
+ case BPF_JMP | BPF_JSET | BPF_K:
+ /* Accommodate for extra offset in case of a backjump. */
+ off = from->off;
+ if (off < 0)
+ off -= 2;
+ *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
+ *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
+ *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
+ break;
+
+ case BPF_JMP32 | BPF_JEQ | BPF_K:
+ case BPF_JMP32 | BPF_JNE | BPF_K:
+ case BPF_JMP32 | BPF_JGT | BPF_K:
+ case BPF_JMP32 | BPF_JLT | BPF_K:
+ case BPF_JMP32 | BPF_JGE | BPF_K:
+ case BPF_JMP32 | BPF_JLE | BPF_K:
+ case BPF_JMP32 | BPF_JSGT | BPF_K:
+ case BPF_JMP32 | BPF_JSLT | BPF_K:
+ case BPF_JMP32 | BPF_JSGE | BPF_K:
+ case BPF_JMP32 | BPF_JSLE | BPF_K:
+ case BPF_JMP32 | BPF_JSET | BPF_K:
+ /* Accommodate for extra offset in case of a backjump. */
+ off = from->off;
+ if (off < 0)
+ off -= 2;
+ *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
+ *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
+ *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
+ off);
+ break;
+
+ case BPF_LD | BPF_IMM | BPF_DW:
+ *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
+ *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
+ *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
+ *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
+ break;
+ case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
+ *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
+ *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
+ if (emit_zext)
+ *to++ = BPF_ZEXT_REG(BPF_REG_AX);
+ *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
+ break;
+
+ case BPF_ST | BPF_MEM | BPF_DW:
+ case BPF_ST | BPF_MEM | BPF_W:
+ case BPF_ST | BPF_MEM | BPF_H:
+ case BPF_ST | BPF_MEM | BPF_B:
+ *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
+ *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
+ *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
+ break;
+ }
+out:
+ return to - to_buff;
+}
+
+static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
+ gfp_t gfp_extra_flags)
+{
+ gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
+ struct bpf_prog *fp;
+
+ fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
+ if (fp != NULL) {
+ /* aux->prog still points to the fp_other one, so
+ * when promoting the clone to the real program,
+ * this still needs to be adapted.
+ */
+ memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
+ }
+
+ return fp;
+}
+
+static void bpf_prog_clone_free(struct bpf_prog *fp)
+{
+ /* aux was stolen by the other clone, so we cannot free
+ * it from this path! It will be freed eventually by the
+ * other program on release.
+ *
+ * At this point, we don't need a deferred release since
+ * clone is guaranteed to not be locked.
+ */
+ fp->aux = NULL;
+ fp->stats = NULL;
+ fp->active = NULL;
+ __bpf_prog_free(fp);
+}
+
+void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
+{
+ /* We have to repoint aux->prog to self, as we don't
+ * know whether fp here is the clone or the original.
+ */
+ fp->aux->prog = fp;
+ bpf_prog_clone_free(fp_other);
+}
+
+struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
+{
+ struct bpf_insn insn_buff[16], aux[2];
+ struct bpf_prog *clone, *tmp;
+ int insn_delta, insn_cnt;
+ struct bpf_insn *insn;
+ int i, rewritten;
+
+ if (!prog->blinding_requested || prog->blinded)
+ return prog;
+
+ clone = bpf_prog_clone_create(prog, GFP_USER);
+ if (!clone)
+ return ERR_PTR(-ENOMEM);
+
+ insn_cnt = clone->len;
+ insn = clone->insnsi;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ if (bpf_pseudo_func(insn)) {
+ /* ld_imm64 with an address of bpf subprog is not
+ * a user controlled constant. Don't randomize it,
+ * since it will conflict with jit_subprogs() logic.
+ */
+ insn++;
+ i++;
+ continue;
+ }
+
+ /* We temporarily need to hold the original ld64 insn
+ * so that we can still access the first part in the
+ * second blinding run.
+ */
+ if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
+ insn[1].code == 0)
+ memcpy(aux, insn, sizeof(aux));
+
+ rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
+ clone->aux->verifier_zext);
+ if (!rewritten)
+ continue;
+
+ tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
+ if (IS_ERR(tmp)) {
+ /* Patching may have repointed aux->prog during
+ * realloc from the original one, so we need to
+ * fix it up here on error.
+ */
+ bpf_jit_prog_release_other(prog, clone);
+ return tmp;
+ }
+
+ clone = tmp;
+ insn_delta = rewritten - 1;
+
+ /* Walk new program and skip insns we just inserted. */
+ insn = clone->insnsi + i + insn_delta;
+ insn_cnt += insn_delta;
+ i += insn_delta;
+ }
+
+ clone->blinded = 1;
+ return clone;
+}
+#endif /* CONFIG_BPF_JIT */
+
+/* Base function for offset calculation. Needs to go into .text section,
+ * therefore keeping it non-static as well; will also be used by JITs
+ * anyway later on, so do not let the compiler omit it. This also needs
+ * to go into kallsyms for correlation from e.g. bpftool, so naming
+ * must not change.
+ */
+noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
+{
+ return 0;
+}
+EXPORT_SYMBOL_GPL(__bpf_call_base);
+
+/* All UAPI available opcodes. */
+#define BPF_INSN_MAP(INSN_2, INSN_3) \
+ /* 32 bit ALU operations. */ \
+ /* Register based. */ \
+ INSN_3(ALU, ADD, X), \
+ INSN_3(ALU, SUB, X), \
+ INSN_3(ALU, AND, X), \
+ INSN_3(ALU, OR, X), \
+ INSN_3(ALU, LSH, X), \
+ INSN_3(ALU, RSH, X), \
+ INSN_3(ALU, XOR, X), \
+ INSN_3(ALU, MUL, X), \
+ INSN_3(ALU, MOV, X), \
+ INSN_3(ALU, ARSH, X), \
+ INSN_3(ALU, DIV, X), \
+ INSN_3(ALU, MOD, X), \
+ INSN_2(ALU, NEG), \
+ INSN_3(ALU, END, TO_BE), \
+ INSN_3(ALU, END, TO_LE), \
+ /* Immediate based. */ \
+ INSN_3(ALU, ADD, K), \
+ INSN_3(ALU, SUB, K), \
+ INSN_3(ALU, AND, K), \
+ INSN_3(ALU, OR, K), \
+ INSN_3(ALU, LSH, K), \
+ INSN_3(ALU, RSH, K), \
+ INSN_3(ALU, XOR, K), \
+ INSN_3(ALU, MUL, K), \
+ INSN_3(ALU, MOV, K), \
+ INSN_3(ALU, ARSH, K), \
+ INSN_3(ALU, DIV, K), \
+ INSN_3(ALU, MOD, K), \
+ /* 64 bit ALU operations. */ \
+ /* Register based. */ \
+ INSN_3(ALU64, ADD, X), \
+ INSN_3(ALU64, SUB, X), \
+ INSN_3(ALU64, AND, X), \
+ INSN_3(ALU64, OR, X), \
+ INSN_3(ALU64, LSH, X), \
+ INSN_3(ALU64, RSH, X), \
+ INSN_3(ALU64, XOR, X), \
+ INSN_3(ALU64, MUL, X), \
+ INSN_3(ALU64, MOV, X), \
+ INSN_3(ALU64, ARSH, X), \
+ INSN_3(ALU64, DIV, X), \
+ INSN_3(ALU64, MOD, X), \
+ INSN_2(ALU64, NEG), \
+ /* Immediate based. */ \
+ INSN_3(ALU64, ADD, K), \
+ INSN_3(ALU64, SUB, K), \
+ INSN_3(ALU64, AND, K), \
+ INSN_3(ALU64, OR, K), \
+ INSN_3(ALU64, LSH, K), \
+ INSN_3(ALU64, RSH, K), \
+ INSN_3(ALU64, XOR, K), \
+ INSN_3(ALU64, MUL, K), \
+ INSN_3(ALU64, MOV, K), \
+ INSN_3(ALU64, ARSH, K), \
+ INSN_3(ALU64, DIV, K), \
+ INSN_3(ALU64, MOD, K), \
+ /* Call instruction. */ \
+ INSN_2(JMP, CALL), \
+ /* Exit instruction. */ \
+ INSN_2(JMP, EXIT), \
+ /* 32-bit Jump instructions. */ \
+ /* Register based. */ \
+ INSN_3(JMP32, JEQ, X), \
+ INSN_3(JMP32, JNE, X), \
+ INSN_3(JMP32, JGT, X), \
+ INSN_3(JMP32, JLT, X), \
+ INSN_3(JMP32, JGE, X), \
+ INSN_3(JMP32, JLE, X), \
+ INSN_3(JMP32, JSGT, X), \
+ INSN_3(JMP32, JSLT, X), \
+ INSN_3(JMP32, JSGE, X), \
+ INSN_3(JMP32, JSLE, X), \
+ INSN_3(JMP32, JSET, X), \
+ /* Immediate based. */ \
+ INSN_3(JMP32, JEQ, K), \
+ INSN_3(JMP32, JNE, K), \
+ INSN_3(JMP32, JGT, K), \
+ INSN_3(JMP32, JLT, K), \
+ INSN_3(JMP32, JGE, K), \
+ INSN_3(JMP32, JLE, K), \
+ INSN_3(JMP32, JSGT, K), \
+ INSN_3(JMP32, JSLT, K), \
+ INSN_3(JMP32, JSGE, K), \
+ INSN_3(JMP32, JSLE, K), \
+ INSN_3(JMP32, JSET, K), \
+ /* Jump instructions. */ \
+ /* Register based. */ \
+ INSN_3(JMP, JEQ, X), \
+ INSN_3(JMP, JNE, X), \
+ INSN_3(JMP, JGT, X), \
+ INSN_3(JMP, JLT, X), \
+ INSN_3(JMP, JGE, X), \
+ INSN_3(JMP, JLE, X), \
+ INSN_3(JMP, JSGT, X), \
+ INSN_3(JMP, JSLT, X), \
+ INSN_3(JMP, JSGE, X), \
+ INSN_3(JMP, JSLE, X), \
+ INSN_3(JMP, JSET, X), \
+ /* Immediate based. */ \
+ INSN_3(JMP, JEQ, K), \
+ INSN_3(JMP, JNE, K), \
+ INSN_3(JMP, JGT, K), \
+ INSN_3(JMP, JLT, K), \
+ INSN_3(JMP, JGE, K), \
+ INSN_3(JMP, JLE, K), \
+ INSN_3(JMP, JSGT, K), \
+ INSN_3(JMP, JSLT, K), \
+ INSN_3(JMP, JSGE, K), \
+ INSN_3(JMP, JSLE, K), \
+ INSN_3(JMP, JSET, K), \
+ INSN_2(JMP, JA), \
+ INSN_2(JMP32, JA), \
+ /* Store instructions. */ \
+ /* Register based. */ \
+ INSN_3(STX, MEM, B), \
+ INSN_3(STX, MEM, H), \
+ INSN_3(STX, MEM, W), \
+ INSN_3(STX, MEM, DW), \
+ INSN_3(STX, ATOMIC, W), \
+ INSN_3(STX, ATOMIC, DW), \
+ /* Immediate based. */ \
+ INSN_3(ST, MEM, B), \
+ INSN_3(ST, MEM, H), \
+ INSN_3(ST, MEM, W), \
+ INSN_3(ST, MEM, DW), \
+ /* Load instructions. */ \
+ /* Register based. */ \
+ INSN_3(LDX, MEM, B), \
+ INSN_3(LDX, MEM, H), \
+ INSN_3(LDX, MEM, W), \
+ INSN_3(LDX, MEM, DW), \
+ /* Immediate based. */ \
+ INSN_3(LD, IMM, DW)
+
+bool bpf_opcode_in_insntable(u8 code)
+{
+#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
+#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
+ static const bool public_insntable[256] = {
+ [0 ... 255] = false,
+ /* Now overwrite non-defaults ... */
+ BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
+ /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
+ [BPF_LD | BPF_ABS | BPF_B] = true,
+ [BPF_LD | BPF_ABS | BPF_H] = true,
+ [BPF_LD | BPF_ABS | BPF_W] = true,
+ [BPF_LD | BPF_IND | BPF_B] = true,
+ [BPF_LD | BPF_IND | BPF_H] = true,
+ [BPF_LD | BPF_IND | BPF_W] = true,
+ };
+#undef BPF_INSN_3_TBL
+#undef BPF_INSN_2_TBL
+ return public_insntable[code];
+}
+
+#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
+{
+ memset(dst, 0, size);
+ return -EFAULT;
+}
+
+/**
+ * ___bpf_prog_run - run eBPF program on a given context
+ * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
+ * @insn: is the array of eBPF instructions
+ *
+ * Decode and execute eBPF instructions.
+ *
+ * Return: whatever value is in %BPF_R0 at program exit
+ */
+static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
+{
+#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
+#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
+ static const void * const jumptable[256] __annotate_jump_table = {
+ [0 ... 255] = &&default_label,
+ /* Now overwrite non-defaults ... */
+ BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
+ /* Non-UAPI available opcodes. */
+ [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
+ [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
+ [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
+ [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
+ [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
+ [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
+ [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
+ };
+#undef BPF_INSN_3_LBL
+#undef BPF_INSN_2_LBL
+ u32 tail_call_cnt = 0;
+
+#define CONT ({ insn++; goto select_insn; })
+#define CONT_JMP ({ insn++; goto select_insn; })
+
+select_insn:
+ goto *jumptable[insn->code];
+
+ /* Explicitly mask the register-based shift amounts with 63 or 31
+ * to avoid undefined behavior. Normally this won't affect the
+ * generated code, for example, in case of native 64 bit archs such
+ * as x86-64 or arm64, the compiler is optimizing the AND away for
+ * the interpreter. In case of JITs, each of the JIT backends compiles
+ * the BPF shift operations to machine instructions which produce
+ * implementation-defined results in such a case; the resulting
+ * contents of the register may be arbitrary, but program behaviour
+ * as a whole remains defined. In other words, in case of JIT backends,
+ * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
+ */
+ /* ALU (shifts) */
+#define SHT(OPCODE, OP) \
+ ALU64_##OPCODE##_X: \
+ DST = DST OP (SRC & 63); \
+ CONT; \
+ ALU_##OPCODE##_X: \
+ DST = (u32) DST OP ((u32) SRC & 31); \
+ CONT; \
+ ALU64_##OPCODE##_K: \
+ DST = DST OP IMM; \
+ CONT; \
+ ALU_##OPCODE##_K: \
+ DST = (u32) DST OP (u32) IMM; \
+ CONT;
+ /* ALU (rest) */
+#define ALU(OPCODE, OP) \
+ ALU64_##OPCODE##_X: \
+ DST = DST OP SRC; \
+ CONT; \
+ ALU_##OPCODE##_X: \
+ DST = (u32) DST OP (u32) SRC; \
+ CONT; \
+ ALU64_##OPCODE##_K: \
+ DST = DST OP IMM; \
+ CONT; \
+ ALU_##OPCODE##_K: \
+ DST = (u32) DST OP (u32) IMM; \
+ CONT;
+ ALU(ADD, +)
+ ALU(SUB, -)
+ ALU(AND, &)
+ ALU(OR, |)
+ ALU(XOR, ^)
+ ALU(MUL, *)
+ SHT(LSH, <<)
+ SHT(RSH, >>)
+#undef SHT
+#undef ALU
+ ALU_NEG:
+ DST = (u32) -DST;
+ CONT;
+ ALU64_NEG:
+ DST = -DST;
+ CONT;
+ ALU_MOV_X:
+ DST = (u32) SRC;
+ CONT;
+ ALU_MOV_K:
+ DST = (u32) IMM;
+ CONT;
+ ALU64_MOV_X:
+ DST = SRC;
+ CONT;
+ ALU64_MOV_K:
+ DST = IMM;
+ CONT;
+ LD_IMM_DW:
+ DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
+ insn++;
+ CONT;
+ ALU_ARSH_X:
+ DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
+ CONT;
+ ALU_ARSH_K:
+ DST = (u64) (u32) (((s32) DST) >> IMM);
+ CONT;
+ ALU64_ARSH_X:
+ (*(s64 *) &DST) >>= (SRC & 63);
+ CONT;
+ ALU64_ARSH_K:
+ (*(s64 *) &DST) >>= IMM;
+ CONT;
+ ALU64_MOD_X:
+ div64_u64_rem(DST, SRC, &AX);
+ DST = AX;
+ CONT;
+ ALU_MOD_X:
+ AX = (u32) DST;
+ DST = do_div(AX, (u32) SRC);
+ CONT;
+ ALU64_MOD_K:
+ div64_u64_rem(DST, IMM, &AX);
+ DST = AX;
+ CONT;
+ ALU_MOD_K:
+ AX = (u32) DST;
+ DST = do_div(AX, (u32) IMM);
+ CONT;
+ ALU64_DIV_X:
+ DST = div64_u64(DST, SRC);
+ CONT;
+ ALU_DIV_X:
+ AX = (u32) DST;
+ do_div(AX, (u32) SRC);
+ DST = (u32) AX;
+ CONT;
+ ALU64_DIV_K:
+ DST = div64_u64(DST, IMM);
+ CONT;
+ ALU_DIV_K:
+ AX = (u32) DST;
+ do_div(AX, (u32) IMM);
+ DST = (u32) AX;
+ CONT;
+ ALU_END_TO_BE:
+ switch (IMM) {
+ case 16:
+ DST = (__force u16) cpu_to_be16(DST);
+ break;
+ case 32:
+ DST = (__force u32) cpu_to_be32(DST);
+ break;
+ case 64:
+ DST = (__force u64) cpu_to_be64(DST);
+ break;
+ }
+ CONT;
+ ALU_END_TO_LE:
+ switch (IMM) {
+ case 16:
+ DST = (__force u16) cpu_to_le16(DST);
+ break;
+ case 32:
+ DST = (__force u32) cpu_to_le32(DST);
+ break;
+ case 64:
+ DST = (__force u64) cpu_to_le64(DST);
+ break;
+ }
+ CONT;
+
+ /* CALL */
+ JMP_CALL:
+ /* Function call scratches BPF_R1-BPF_R5 registers,
+ * preserves BPF_R6-BPF_R9, and stores return value
+ * into BPF_R0.
+ */
+ BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
+ BPF_R4, BPF_R5);
+ CONT;
+
+ JMP_CALL_ARGS:
+ BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
+ BPF_R3, BPF_R4,
+ BPF_R5,
+ insn + insn->off + 1);
+ CONT;
+
+ JMP_TAIL_CALL: {
+ struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+ struct bpf_prog *prog;
+ u32 index = BPF_R3;
+
+ if (unlikely(index >= array->map.max_entries))
+ goto out;
+
+ if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
+ goto out;
+
+ tail_call_cnt++;
+
+ prog = READ_ONCE(array->ptrs[index]);
+ if (!prog)
+ goto out;
+
+ /* ARG1 at this point is guaranteed to point to CTX from
+ * the verifier side due to the fact that the tail call is
+ * handled like a helper, that is, bpf_tail_call_proto,
+ * where arg1_type is ARG_PTR_TO_CTX.
+ */
+ insn = prog->insnsi;
+ goto select_insn;
+out:
+ CONT;
+ }
+ JMP_JA:
+ insn += insn->off;
+ CONT;
+ JMP32_JA:
+ insn += insn->imm;
+ CONT;
+ JMP_EXIT:
+ return BPF_R0;
+ /* JMP */
+#define COND_JMP(SIGN, OPCODE, CMP_OP) \
+ JMP_##OPCODE##_X: \
+ if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
+ insn += insn->off; \
+ CONT_JMP; \
+ } \
+ CONT; \
+ JMP32_##OPCODE##_X: \
+ if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
+ insn += insn->off; \
+ CONT_JMP; \
+ } \
+ CONT; \
+ JMP_##OPCODE##_K: \
+ if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
+ insn += insn->off; \
+ CONT_JMP; \
+ } \
+ CONT; \
+ JMP32_##OPCODE##_K: \
+ if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
+ insn += insn->off; \
+ CONT_JMP; \
+ } \
+ CONT;
+ COND_JMP(u, JEQ, ==)
+ COND_JMP(u, JNE, !=)
+ COND_JMP(u, JGT, >)
+ COND_JMP(u, JLT, <)
+ COND_JMP(u, JGE, >=)
+ COND_JMP(u, JLE, <=)
+ COND_JMP(u, JSET, &)
+ COND_JMP(s, JSGT, >)
+ COND_JMP(s, JSLT, <)
+ COND_JMP(s, JSGE, >=)
+ COND_JMP(s, JSLE, <=)
+#undef COND_JMP
+ /* ST, STX and LDX*/
+ ST_NOSPEC:
+ /* Speculation barrier for mitigating Speculative Store Bypass.
+ * In case of arm64, we rely on the firmware mitigation as
+ * controlled via the ssbd kernel parameter. Whenever the
+ * mitigation is enabled, it works for all of the kernel code
+ * with no need to provide any additional instructions here.
+ * In case of x86, we use 'lfence' insn for mitigation. We
+ * reuse preexisting logic from Spectre v1 mitigation that
+ * happens to produce the required code on x86 for v4 as well.
+ */
+ barrier_nospec();
+ CONT;
+#define LDST(SIZEOP, SIZE) \
+ STX_MEM_##SIZEOP: \
+ *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
+ CONT; \
+ ST_MEM_##SIZEOP: \
+ *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
+ CONT; \
+ LDX_MEM_##SIZEOP: \
+ DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
+ CONT; \
+ LDX_PROBE_MEM_##SIZEOP: \
+ bpf_probe_read_kernel(&DST, sizeof(SIZE), \
+ (const void *)(long) (SRC + insn->off)); \
+ DST = *((SIZE *)&DST); \
+ CONT;
+
+ LDST(B, u8)
+ LDST(H, u16)
+ LDST(W, u32)
+ LDST(DW, u64)
+#undef LDST
+
+#define ATOMIC_ALU_OP(BOP, KOP) \
+ case BOP: \
+ if (BPF_SIZE(insn->code) == BPF_W) \
+ atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
+ (DST + insn->off)); \
+ else \
+ atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
+ (DST + insn->off)); \
+ break; \
+ case BOP | BPF_FETCH: \
+ if (BPF_SIZE(insn->code) == BPF_W) \
+ SRC = (u32) atomic_fetch_##KOP( \
+ (u32) SRC, \
+ (atomic_t *)(unsigned long) (DST + insn->off)); \
+ else \
+ SRC = (u64) atomic64_fetch_##KOP( \
+ (u64) SRC, \
+ (atomic64_t *)(unsigned long) (DST + insn->off)); \
+ break;
+
+ STX_ATOMIC_DW:
+ STX_ATOMIC_W:
+ switch (IMM) {
+ ATOMIC_ALU_OP(BPF_ADD, add)
+ ATOMIC_ALU_OP(BPF_AND, and)
+ ATOMIC_ALU_OP(BPF_OR, or)
+ ATOMIC_ALU_OP(BPF_XOR, xor)
+#undef ATOMIC_ALU_OP
+
+ case BPF_XCHG:
+ if (BPF_SIZE(insn->code) == BPF_W)
+ SRC = (u32) atomic_xchg(
+ (atomic_t *)(unsigned long) (DST + insn->off),
+ (u32) SRC);
+ else
+ SRC = (u64) atomic64_xchg(
+ (atomic64_t *)(unsigned long) (DST + insn->off),
+ (u64) SRC);
+ break;
+ case BPF_CMPXCHG:
+ if (BPF_SIZE(insn->code) == BPF_W)
+ BPF_R0 = (u32) atomic_cmpxchg(
+ (atomic_t *)(unsigned long) (DST + insn->off),
+ (u32) BPF_R0, (u32) SRC);
+ else
+ BPF_R0 = (u64) atomic64_cmpxchg(
+ (atomic64_t *)(unsigned long) (DST + insn->off),
+ (u64) BPF_R0, (u64) SRC);
+ break;
+
+ default:
+ goto default_label;
+ }
+ CONT;
+
+ default_label:
+ /* If we ever reach this, we have a bug somewhere. Die hard here
+ * instead of just returning 0; we could be somewhere in a subprog,
+ * so execution could continue otherwise which we do /not/ want.
+ *
+ * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
+ */
+ pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
+ insn->code, insn->imm);
+ BUG_ON(1);
+ return 0;
+}
+
+#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
+#define DEFINE_BPF_PROG_RUN(stack_size) \
+static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
+{ \
+ u64 stack[stack_size / sizeof(u64)]; \
+ u64 regs[MAX_BPF_EXT_REG] = {}; \
+\
+ FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
+ ARG1 = (u64) (unsigned long) ctx; \
+ return ___bpf_prog_run(regs, insn); \
+}
+
+#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
+#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
+static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
+ const struct bpf_insn *insn) \
+{ \
+ u64 stack[stack_size / sizeof(u64)]; \
+ u64 regs[MAX_BPF_EXT_REG]; \
+\
+ FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
+ BPF_R1 = r1; \
+ BPF_R2 = r2; \
+ BPF_R3 = r3; \
+ BPF_R4 = r4; \
+ BPF_R5 = r5; \
+ return ___bpf_prog_run(regs, insn); \
+}
+
+#define EVAL1(FN, X) FN(X)
+#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
+#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
+#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
+#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
+#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
+
+EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
+EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
+EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
+
+EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
+EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
+EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
+
+#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
+
+static unsigned int (*interpreters[])(const void *ctx,
+ const struct bpf_insn *insn) = {
+EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
+EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
+EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
+};
+#undef PROG_NAME_LIST
+#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
+static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
+ const struct bpf_insn *insn) = {
+EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
+EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
+EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
+};
+#undef PROG_NAME_LIST
+
+void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
+{
+ stack_depth = max_t(u32, stack_depth, 1);
+ insn->off = (s16) insn->imm;
+ insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
+ __bpf_call_base_args;
+ insn->code = BPF_JMP | BPF_CALL_ARGS;
+}
+
+#else
+static unsigned int __bpf_prog_ret0_warn(const void *ctx,
+ const struct bpf_insn *insn)
+{
+ /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
+ * is not working properly, so warn about it!
+ */
+ WARN_ON_ONCE(1);
+ return 0;
+}
+#endif
+
+bool bpf_prog_map_compatible(struct bpf_map *map,
+ const struct bpf_prog *fp)
+{
+ enum bpf_prog_type prog_type = resolve_prog_type(fp);
+ bool ret;
+
+ if (fp->kprobe_override)
+ return false;
+
+ spin_lock(&map->owner.lock);
+ if (!map->owner.type) {
+ /* There's no owner yet where we could check for
+ * compatibility.
+ */
+ map->owner.type = prog_type;
+ map->owner.jited = fp->jited;
+ map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
+ ret = true;
+ } else {
+ ret = map->owner.type == prog_type &&
+ map->owner.jited == fp->jited &&
+ map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
+ }
+ spin_unlock(&map->owner.lock);
+
+ return ret;
+}
+
+static int bpf_check_tail_call(const struct bpf_prog *fp)
+{
+ struct bpf_prog_aux *aux = fp->aux;
+ int i, ret = 0;
+
+ mutex_lock(&aux->used_maps_mutex);
+ for (i = 0; i < aux->used_map_cnt; i++) {
+ struct bpf_map *map = aux->used_maps[i];
+
+ if (!map_type_contains_progs(map))
+ continue;
+
+ if (!bpf_prog_map_compatible(map, fp)) {
+ ret = -EINVAL;
+ goto out;
+ }
+ }
+
+out:
+ mutex_unlock(&aux->used_maps_mutex);
+ return ret;
+}
+
+static void bpf_prog_select_func(struct bpf_prog *fp)
+{
+#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+ u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
+
+ fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
+#else
+ fp->bpf_func = __bpf_prog_ret0_warn;
+#endif
+}
+
+/**
+ * bpf_prog_select_runtime - select exec runtime for BPF program
+ * @fp: bpf_prog populated with BPF program
+ * @err: pointer to error variable
+ *
+ * Try to JIT eBPF program, if JIT is not available, use interpreter.
+ * The BPF program will be executed via bpf_prog_run() function.
+ *
+ * Return: the &fp argument along with &err set to 0 for success or
+ * a negative errno code on failure
+ */
+struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
+{
+ /* In case of BPF to BPF calls, verifier did all the prep
+ * work with regards to JITing, etc.
+ */
+ bool jit_needed = false;
+
+ if (fp->bpf_func)
+ goto finalize;
+
+ if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
+ bpf_prog_has_kfunc_call(fp))
+ jit_needed = true;
+
+ bpf_prog_select_func(fp);
+
+ /* eBPF JITs can rewrite the program in case constant
+ * blinding is active. However, in case of error during
+ * blinding, bpf_int_jit_compile() must always return a
+ * valid program, which in this case would simply not
+ * be JITed, but falls back to the interpreter.
+ */
+ if (!bpf_prog_is_dev_bound(fp->aux)) {
+ *err = bpf_prog_alloc_jited_linfo(fp);
+ if (*err)
+ return fp;
+
+ fp = bpf_int_jit_compile(fp);
+ bpf_prog_jit_attempt_done(fp);
+ if (!fp->jited && jit_needed) {
+ *err = -ENOTSUPP;
+ return fp;
+ }
+ } else {
+ *err = bpf_prog_offload_compile(fp);
+ if (*err)
+ return fp;
+ }
+
+finalize:
+ bpf_prog_lock_ro(fp);
+
+ /* The tail call compatibility check can only be done at
+ * this late stage as we need to determine, if we deal
+ * with JITed or non JITed program concatenations and not
+ * all eBPF JITs might immediately support all features.
+ */
+ *err = bpf_check_tail_call(fp);
+
+ return fp;
+}
+EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
+
+static unsigned int __bpf_prog_ret1(const void *ctx,
+ const struct bpf_insn *insn)
+{
+ return 1;
+}
+
+static struct bpf_prog_dummy {
+ struct bpf_prog prog;
+} dummy_bpf_prog = {
+ .prog = {
+ .bpf_func = __bpf_prog_ret1,
+ },
+};
+
+struct bpf_empty_prog_array bpf_empty_prog_array = {
+ .null_prog = NULL,
+};
+EXPORT_SYMBOL(bpf_empty_prog_array);
+
+struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
+{
+ if (prog_cnt)
+ return kzalloc(sizeof(struct bpf_prog_array) +
+ sizeof(struct bpf_prog_array_item) *
+ (prog_cnt + 1),
+ flags);
+
+ return &bpf_empty_prog_array.hdr;
+}
+
+void bpf_prog_array_free(struct bpf_prog_array *progs)
+{
+ if (!progs || progs == &bpf_empty_prog_array.hdr)
+ return;
+ kfree_rcu(progs, rcu);
+}
+
+static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
+{
+ struct bpf_prog_array *progs;
+
+ progs = container_of(rcu, struct bpf_prog_array, rcu);
+ kfree_rcu(progs, rcu);
+}
+
+void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
+{
+ if (!progs || progs == &bpf_empty_prog_array.hdr)
+ return;
+ call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
+}
+
+int bpf_prog_array_length(struct bpf_prog_array *array)
+{
+ struct bpf_prog_array_item *item;
+ u32 cnt = 0;
+
+ for (item = array->items; item->prog; item++)
+ if (item->prog != &dummy_bpf_prog.prog)
+ cnt++;
+ return cnt;
+}
+
+bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
+{
+ struct bpf_prog_array_item *item;
+
+ for (item = array->items; item->prog; item++)
+ if (item->prog != &dummy_bpf_prog.prog)
+ return false;
+ return true;
+}
+
+static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
+ u32 *prog_ids,
+ u32 request_cnt)
+{
+ struct bpf_prog_array_item *item;
+ int i = 0;
+
+ for (item = array->items; item->prog; item++) {
+ if (item->prog == &dummy_bpf_prog.prog)
+ continue;
+ prog_ids[i] = item->prog->aux->id;
+ if (++i == request_cnt) {
+ item++;
+ break;
+ }
+ }
+
+ return !!(item->prog);
+}
+
+int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
+ __u32 __user *prog_ids, u32 cnt)
+{
+ unsigned long err = 0;
+ bool nospc;
+ u32 *ids;
+
+ /* users of this function are doing:
+ * cnt = bpf_prog_array_length();
+ * if (cnt > 0)
+ * bpf_prog_array_copy_to_user(..., cnt);
+ * so below kcalloc doesn't need extra cnt > 0 check.
+ */
+ ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
+ if (!ids)
+ return -ENOMEM;
+ nospc = bpf_prog_array_copy_core(array, ids, cnt);
+ err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
+ kfree(ids);
+ if (err)
+ return -EFAULT;
+ if (nospc)
+ return -ENOSPC;
+ return 0;
+}
+
+void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
+ struct bpf_prog *old_prog)
+{
+ struct bpf_prog_array_item *item;
+
+ for (item = array->items; item->prog; item++)
+ if (item->prog == old_prog) {
+ WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
+ break;
+ }
+}
+
+/**
+ * bpf_prog_array_delete_safe_at() - Replaces the program at the given
+ * index into the program array with
+ * a dummy no-op program.
+ * @array: a bpf_prog_array
+ * @index: the index of the program to replace
+ *
+ * Skips over dummy programs, by not counting them, when calculating
+ * the position of the program to replace.
+ *
+ * Return:
+ * * 0 - Success
+ * * -EINVAL - Invalid index value. Must be a non-negative integer.
+ * * -ENOENT - Index out of range
+ */
+int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
+{
+ return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
+}
+
+/**
+ * bpf_prog_array_update_at() - Updates the program at the given index
+ * into the program array.
+ * @array: a bpf_prog_array
+ * @index: the index of the program to update
+ * @prog: the program to insert into the array
+ *
+ * Skips over dummy programs, by not counting them, when calculating
+ * the position of the program to update.
+ *
+ * Return:
+ * * 0 - Success
+ * * -EINVAL - Invalid index value. Must be a non-negative integer.
+ * * -ENOENT - Index out of range
+ */
+int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
+ struct bpf_prog *prog)
+{
+ struct bpf_prog_array_item *item;
+
+ if (unlikely(index < 0))
+ return -EINVAL;
+
+ for (item = array->items; item->prog; item++) {
+ if (item->prog == &dummy_bpf_prog.prog)
+ continue;
+ if (!index) {
+ WRITE_ONCE(item->prog, prog);
+ return 0;
+ }
+ index--;
+ }
+ return -ENOENT;
+}
+
+int bpf_prog_array_copy(struct bpf_prog_array *old_array,
+ struct bpf_prog *exclude_prog,
+ struct bpf_prog *include_prog,
+ u64 bpf_cookie,
+ struct bpf_prog_array **new_array)
+{
+ int new_prog_cnt, carry_prog_cnt = 0;
+ struct bpf_prog_array_item *existing, *new;
+ struct bpf_prog_array *array;
+ bool found_exclude = false;
+
+ /* Figure out how many existing progs we need to carry over to
+ * the new array.
+ */
+ if (old_array) {
+ existing = old_array->items;
+ for (; existing->prog; existing++) {
+ if (existing->prog == exclude_prog) {
+ found_exclude = true;
+ continue;
+ }
+ if (existing->prog != &dummy_bpf_prog.prog)
+ carry_prog_cnt++;
+ if (existing->prog == include_prog)
+ return -EEXIST;
+ }
+ }
+
+ if (exclude_prog && !found_exclude)
+ return -ENOENT;
+
+ /* How many progs (not NULL) will be in the new array? */
+ new_prog_cnt = carry_prog_cnt;
+ if (include_prog)
+ new_prog_cnt += 1;
+
+ /* Do we have any prog (not NULL) in the new array? */
+ if (!new_prog_cnt) {
+ *new_array = NULL;
+ return 0;
+ }
+
+ /* +1 as the end of prog_array is marked with NULL */
+ array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
+ if (!array)
+ return -ENOMEM;
+ new = array->items;
+
+ /* Fill in the new prog array */
+ if (carry_prog_cnt) {
+ existing = old_array->items;
+ for (; existing->prog; existing++) {
+ if (existing->prog == exclude_prog ||
+ existing->prog == &dummy_bpf_prog.prog)
+ continue;
+
+ new->prog = existing->prog;
+ new->bpf_cookie = existing->bpf_cookie;
+ new++;
+ }
+ }
+ if (include_prog) {
+ new->prog = include_prog;
+ new->bpf_cookie = bpf_cookie;
+ new++;
+ }
+ new->prog = NULL;
+ *new_array = array;
+ return 0;
+}
+
+int bpf_prog_array_copy_info(struct bpf_prog_array *array,
+ u32 *prog_ids, u32 request_cnt,
+ u32 *prog_cnt)
+{
+ u32 cnt = 0;
+
+ if (array)
+ cnt = bpf_prog_array_length(array);
+
+ *prog_cnt = cnt;
+
+ /* return early if user requested only program count or nothing to copy */
+ if (!request_cnt || !cnt)
+ return 0;
+
+ /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
+ return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
+ : 0;
+}
+
+void __bpf_free_used_maps(struct bpf_prog_aux *aux,
+ struct bpf_map **used_maps, u32 len)
+{
+ struct bpf_map *map;
+ u32 i;
+
+ for (i = 0; i < len; i++) {
+ map = used_maps[i];
+ if (map->ops->map_poke_untrack)
+ map->ops->map_poke_untrack(map, aux);
+ bpf_map_put(map);
+ }
+}
+
+static void bpf_free_used_maps(struct bpf_prog_aux *aux)
+{
+ __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
+ kfree(aux->used_maps);
+}
+
+void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
+ struct btf_mod_pair *used_btfs, u32 len)
+{
+#ifdef CONFIG_BPF_SYSCALL
+ struct btf_mod_pair *btf_mod;
+ u32 i;
+
+ for (i = 0; i < len; i++) {
+ btf_mod = &used_btfs[i];
+ if (btf_mod->module)
+ module_put(btf_mod->module);
+ btf_put(btf_mod->btf);
+ }
+#endif
+}
+
+static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
+{
+ __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
+ kfree(aux->used_btfs);
+}
+
+static void bpf_prog_free_deferred(struct work_struct *work)
+{
+ struct bpf_prog_aux *aux;
+ int i;
+
+ aux = container_of(work, struct bpf_prog_aux, work);
+#ifdef CONFIG_BPF_SYSCALL
+ bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
+#endif
+#ifdef CONFIG_CGROUP_BPF
+ if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
+ bpf_cgroup_atype_put(aux->cgroup_atype);
+#endif
+ bpf_free_used_maps(aux);
+ bpf_free_used_btfs(aux);
+ if (bpf_prog_is_dev_bound(aux))
+ bpf_prog_offload_destroy(aux->prog);
+#ifdef CONFIG_PERF_EVENTS
+ if (aux->prog->has_callchain_buf)
+ put_callchain_buffers();
+#endif
+ if (aux->dst_trampoline)
+ bpf_trampoline_put(aux->dst_trampoline);
+ for (i = 0; i < aux->func_cnt; i++) {
+ /* We can just unlink the subprog poke descriptor table as
+ * it was originally linked to the main program and is also
+ * released along with it.
+ */
+ aux->func[i]->aux->poke_tab = NULL;
+ bpf_jit_free(aux->func[i]);
+ }
+ if (aux->func_cnt) {
+ kfree(aux->func);
+ bpf_prog_unlock_free(aux->prog);
+ } else {
+ bpf_jit_free(aux->prog);
+ }
+}
+
+void bpf_prog_free(struct bpf_prog *fp)
+{
+ struct bpf_prog_aux *aux = fp->aux;
+
+ if (aux->dst_prog)
+ bpf_prog_put(aux->dst_prog);
+ INIT_WORK(&aux->work, bpf_prog_free_deferred);
+ schedule_work(&aux->work);
+}
+EXPORT_SYMBOL_GPL(bpf_prog_free);
+
+/* RNG for unpriviledged user space with separated state from prandom_u32(). */
+static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
+
+void bpf_user_rnd_init_once(void)
+{
+ prandom_init_once(&bpf_user_rnd_state);
+}
+
+BPF_CALL_0(bpf_user_rnd_u32)
+{
+ /* Should someone ever have the rather unwise idea to use some
+ * of the registers passed into this function, then note that
+ * this function is called from native eBPF and classic-to-eBPF
+ * transformations. Register assignments from both sides are
+ * different, f.e. classic always sets fn(ctx, A, X) here.
+ */
+ struct rnd_state *state;
+ u32 res;
+
+ state = &get_cpu_var(bpf_user_rnd_state);
+ res = prandom_u32_state(state);
+ put_cpu_var(bpf_user_rnd_state);
+
+ return res;
+}
+
+BPF_CALL_0(bpf_get_raw_cpu_id)
+{
+ return raw_smp_processor_id();
+}
+
+/* Weak definitions of helper functions in case we don't have bpf syscall. */
+const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
+const struct bpf_func_proto bpf_map_update_elem_proto __weak;
+const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
+const struct bpf_func_proto bpf_map_push_elem_proto __weak;
+const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
+const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
+const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
+const struct bpf_func_proto bpf_spin_lock_proto __weak;
+const struct bpf_func_proto bpf_spin_unlock_proto __weak;
+const struct bpf_func_proto bpf_jiffies64_proto __weak;
+
+const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
+const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
+const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
+const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
+const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
+const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
+const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
+
+const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
+const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
+const struct bpf_func_proto bpf_get_current_comm_proto __weak;
+const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
+const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
+const struct bpf_func_proto bpf_get_local_storage_proto __weak;
+const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
+const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
+const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
+const struct bpf_func_proto bpf_set_retval_proto __weak;
+const struct bpf_func_proto bpf_get_retval_proto __weak;
+
+const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
+{
+ return NULL;
+}
+
+const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
+{
+ return NULL;
+}
+
+u64 __weak
+bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
+ void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
+{
+ return -ENOTSUPP;
+}
+EXPORT_SYMBOL_GPL(bpf_event_output);
+
+/* Always built-in helper functions. */
+const struct bpf_func_proto bpf_tail_call_proto = {
+ .func = NULL,
+ .gpl_only = false,
+ .ret_type = RET_VOID,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_CONST_MAP_PTR,
+ .arg3_type = ARG_ANYTHING,
+};
+
+/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
+ * It is encouraged to implement bpf_int_jit_compile() instead, so that
+ * eBPF and implicitly also cBPF can get JITed!
+ */
+struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
+{
+ return prog;
+}
+
+/* Stub for JITs that support eBPF. All cBPF code gets transformed into
+ * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
+ */
+void __weak bpf_jit_compile(struct bpf_prog *prog)
+{
+}
+
+bool __weak bpf_helper_changes_pkt_data(void *func)
+{
+ return false;
+}
+
+/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
+ * analysis code and wants explicit zero extension inserted by verifier.
+ * Otherwise, return FALSE.
+ *
+ * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
+ * you don't override this. JITs that don't want these extra insns can detect
+ * them using insn_is_zext.
+ */
+bool __weak bpf_jit_needs_zext(void)
+{
+ return false;
+}
+
+/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
+bool __weak bpf_jit_supports_subprog_tailcalls(void)
+{
+ return false;
+}
+
+bool __weak bpf_jit_supports_kfunc_call(void)
+{
+ return false;
+}
+
+/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
+ * skb_copy_bits(), so provide a weak definition of it for NET-less config.
+ */
+int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
+ int len)
+{
+ return -EFAULT;
+}
+
+int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
+ void *addr1, void *addr2)
+{
+ return -ENOTSUPP;
+}
+
+void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
+{
+ return ERR_PTR(-ENOTSUPP);
+}
+
+int __weak bpf_arch_text_invalidate(void *dst, size_t len)
+{
+ return -ENOTSUPP;
+}
+
+DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
+EXPORT_SYMBOL(bpf_stats_enabled_key);
+
+/* All definitions of tracepoints related to BPF. */
+#define CREATE_TRACE_POINTS
+#include <linux/bpf_trace.h>
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
+EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
diff --git a/kernel/bpf/cpumap.c b/kernel/bpf/cpumap.c
new file mode 100644
index 000000000..08a8e8102
--- /dev/null
+++ b/kernel/bpf/cpumap.c
@@ -0,0 +1,817 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* bpf/cpumap.c
+ *
+ * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
+ */
+
+/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
+ * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
+ *
+ * Unlike devmap which redirects XDP frames out another NIC device,
+ * this map type redirects raw XDP frames to another CPU. The remote
+ * CPU will do SKB-allocation and call the normal network stack.
+ *
+ * This is a scalability and isolation mechanism, that allow
+ * separating the early driver network XDP layer, from the rest of the
+ * netstack, and assigning dedicated CPUs for this stage. This
+ * basically allows for 10G wirespeed pre-filtering via bpf.
+ */
+#include <linux/bitops.h>
+#include <linux/bpf.h>
+#include <linux/filter.h>
+#include <linux/ptr_ring.h>
+#include <net/xdp.h>
+
+#include <linux/sched.h>
+#include <linux/workqueue.h>
+#include <linux/kthread.h>
+#include <linux/capability.h>
+#include <linux/completion.h>
+#include <trace/events/xdp.h>
+#include <linux/btf_ids.h>
+
+#include <linux/netdevice.h> /* netif_receive_skb_list */
+#include <linux/etherdevice.h> /* eth_type_trans */
+
+/* General idea: XDP packets getting XDP redirected to another CPU,
+ * will maximum be stored/queued for one driver ->poll() call. It is
+ * guaranteed that queueing the frame and the flush operation happen on
+ * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
+ * which queue in bpf_cpu_map_entry contains packets.
+ */
+
+#define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
+struct bpf_cpu_map_entry;
+struct bpf_cpu_map;
+
+struct xdp_bulk_queue {
+ void *q[CPU_MAP_BULK_SIZE];
+ struct list_head flush_node;
+ struct bpf_cpu_map_entry *obj;
+ unsigned int count;
+};
+
+/* Struct for every remote "destination" CPU in map */
+struct bpf_cpu_map_entry {
+ u32 cpu; /* kthread CPU and map index */
+ int map_id; /* Back reference to map */
+
+ /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
+ struct xdp_bulk_queue __percpu *bulkq;
+
+ struct bpf_cpu_map *cmap;
+
+ /* Queue with potential multi-producers, and single-consumer kthread */
+ struct ptr_ring *queue;
+ struct task_struct *kthread;
+
+ struct bpf_cpumap_val value;
+ struct bpf_prog *prog;
+
+ atomic_t refcnt; /* Control when this struct can be free'ed */
+ struct rcu_head rcu;
+
+ struct work_struct kthread_stop_wq;
+ struct completion kthread_running;
+};
+
+struct bpf_cpu_map {
+ struct bpf_map map;
+ /* Below members specific for map type */
+ struct bpf_cpu_map_entry __rcu **cpu_map;
+};
+
+static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
+
+static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
+{
+ u32 value_size = attr->value_size;
+ struct bpf_cpu_map *cmap;
+ int err = -ENOMEM;
+
+ if (!bpf_capable())
+ return ERR_PTR(-EPERM);
+
+ /* check sanity of attributes */
+ if (attr->max_entries == 0 || attr->key_size != 4 ||
+ (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
+ value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
+ attr->map_flags & ~BPF_F_NUMA_NODE)
+ return ERR_PTR(-EINVAL);
+
+ cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
+ if (!cmap)
+ return ERR_PTR(-ENOMEM);
+
+ bpf_map_init_from_attr(&cmap->map, attr);
+
+ /* Pre-limit array size based on NR_CPUS, not final CPU check */
+ if (cmap->map.max_entries > NR_CPUS) {
+ err = -E2BIG;
+ goto free_cmap;
+ }
+
+ /* Alloc array for possible remote "destination" CPUs */
+ cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
+ sizeof(struct bpf_cpu_map_entry *),
+ cmap->map.numa_node);
+ if (!cmap->cpu_map)
+ goto free_cmap;
+
+ return &cmap->map;
+free_cmap:
+ bpf_map_area_free(cmap);
+ return ERR_PTR(err);
+}
+
+static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
+{
+ atomic_inc(&rcpu->refcnt);
+}
+
+static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
+{
+ /* The tear-down procedure should have made sure that queue is
+ * empty. See __cpu_map_entry_replace() and work-queue
+ * invoked cpu_map_kthread_stop(). Catch any broken behaviour
+ * gracefully and warn once.
+ */
+ void *ptr;
+
+ while ((ptr = ptr_ring_consume(ring))) {
+ WARN_ON_ONCE(1);
+ if (unlikely(__ptr_test_bit(0, &ptr))) {
+ __ptr_clear_bit(0, &ptr);
+ kfree_skb(ptr);
+ continue;
+ }
+ xdp_return_frame(ptr);
+ }
+}
+
+static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
+{
+ if (atomic_dec_and_test(&rcpu->refcnt)) {
+ if (rcpu->prog)
+ bpf_prog_put(rcpu->prog);
+ /* The queue should be empty at this point */
+ __cpu_map_ring_cleanup(rcpu->queue);
+ ptr_ring_cleanup(rcpu->queue, NULL);
+ kfree(rcpu->queue);
+ kfree(rcpu);
+ }
+}
+
+/* called from workqueue, to workaround syscall using preempt_disable */
+static void cpu_map_kthread_stop(struct work_struct *work)
+{
+ struct bpf_cpu_map_entry *rcpu;
+
+ rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
+
+ /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
+ * as it waits until all in-flight call_rcu() callbacks complete.
+ */
+ rcu_barrier();
+
+ /* kthread_stop will wake_up_process and wait for it to complete */
+ kthread_stop(rcpu->kthread);
+}
+
+static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
+ struct list_head *listp,
+ struct xdp_cpumap_stats *stats)
+{
+ struct sk_buff *skb, *tmp;
+ struct xdp_buff xdp;
+ u32 act;
+ int err;
+
+ list_for_each_entry_safe(skb, tmp, listp, list) {
+ act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
+ switch (act) {
+ case XDP_PASS:
+ break;
+ case XDP_REDIRECT:
+ skb_list_del_init(skb);
+ err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
+ rcpu->prog);
+ if (unlikely(err)) {
+ kfree_skb(skb);
+ stats->drop++;
+ } else {
+ stats->redirect++;
+ }
+ return;
+ default:
+ bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
+ fallthrough;
+ case XDP_ABORTED:
+ trace_xdp_exception(skb->dev, rcpu->prog, act);
+ fallthrough;
+ case XDP_DROP:
+ skb_list_del_init(skb);
+ kfree_skb(skb);
+ stats->drop++;
+ return;
+ }
+ }
+}
+
+static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
+ void **frames, int n,
+ struct xdp_cpumap_stats *stats)
+{
+ struct xdp_rxq_info rxq;
+ struct xdp_buff xdp;
+ int i, nframes = 0;
+
+ xdp_set_return_frame_no_direct();
+ xdp.rxq = &rxq;
+
+ for (i = 0; i < n; i++) {
+ struct xdp_frame *xdpf = frames[i];
+ u32 act;
+ int err;
+
+ rxq.dev = xdpf->dev_rx;
+ rxq.mem = xdpf->mem;
+ /* TODO: report queue_index to xdp_rxq_info */
+
+ xdp_convert_frame_to_buff(xdpf, &xdp);
+
+ act = bpf_prog_run_xdp(rcpu->prog, &xdp);
+ switch (act) {
+ case XDP_PASS:
+ err = xdp_update_frame_from_buff(&xdp, xdpf);
+ if (err < 0) {
+ xdp_return_frame(xdpf);
+ stats->drop++;
+ } else {
+ frames[nframes++] = xdpf;
+ stats->pass++;
+ }
+ break;
+ case XDP_REDIRECT:
+ err = xdp_do_redirect(xdpf->dev_rx, &xdp,
+ rcpu->prog);
+ if (unlikely(err)) {
+ xdp_return_frame(xdpf);
+ stats->drop++;
+ } else {
+ stats->redirect++;
+ }
+ break;
+ default:
+ bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
+ fallthrough;
+ case XDP_DROP:
+ xdp_return_frame(xdpf);
+ stats->drop++;
+ break;
+ }
+ }
+
+ xdp_clear_return_frame_no_direct();
+
+ return nframes;
+}
+
+#define CPUMAP_BATCH 8
+
+static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
+ int xdp_n, struct xdp_cpumap_stats *stats,
+ struct list_head *list)
+{
+ int nframes;
+
+ if (!rcpu->prog)
+ return xdp_n;
+
+ rcu_read_lock_bh();
+
+ nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
+
+ if (stats->redirect)
+ xdp_do_flush();
+
+ if (unlikely(!list_empty(list)))
+ cpu_map_bpf_prog_run_skb(rcpu, list, stats);
+
+ rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
+
+ return nframes;
+}
+
+static int cpu_map_kthread_run(void *data)
+{
+ struct bpf_cpu_map_entry *rcpu = data;
+
+ complete(&rcpu->kthread_running);
+ set_current_state(TASK_INTERRUPTIBLE);
+
+ /* When kthread gives stop order, then rcpu have been disconnected
+ * from map, thus no new packets can enter. Remaining in-flight
+ * per CPU stored packets are flushed to this queue. Wait honoring
+ * kthread_stop signal until queue is empty.
+ */
+ while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
+ struct xdp_cpumap_stats stats = {}; /* zero stats */
+ unsigned int kmem_alloc_drops = 0, sched = 0;
+ gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
+ int i, n, m, nframes, xdp_n;
+ void *frames[CPUMAP_BATCH];
+ void *skbs[CPUMAP_BATCH];
+ LIST_HEAD(list);
+
+ /* Release CPU reschedule checks */
+ if (__ptr_ring_empty(rcpu->queue)) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ /* Recheck to avoid lost wake-up */
+ if (__ptr_ring_empty(rcpu->queue)) {
+ schedule();
+ sched = 1;
+ } else {
+ __set_current_state(TASK_RUNNING);
+ }
+ } else {
+ sched = cond_resched();
+ }
+
+ /*
+ * The bpf_cpu_map_entry is single consumer, with this
+ * kthread CPU pinned. Lockless access to ptr_ring
+ * consume side valid as no-resize allowed of queue.
+ */
+ n = __ptr_ring_consume_batched(rcpu->queue, frames,
+ CPUMAP_BATCH);
+ for (i = 0, xdp_n = 0; i < n; i++) {
+ void *f = frames[i];
+ struct page *page;
+
+ if (unlikely(__ptr_test_bit(0, &f))) {
+ struct sk_buff *skb = f;
+
+ __ptr_clear_bit(0, &skb);
+ list_add_tail(&skb->list, &list);
+ continue;
+ }
+
+ frames[xdp_n++] = f;
+ page = virt_to_page(f);
+
+ /* Bring struct page memory area to curr CPU. Read by
+ * build_skb_around via page_is_pfmemalloc(), and when
+ * freed written by page_frag_free call.
+ */
+ prefetchw(page);
+ }
+
+ /* Support running another XDP prog on this CPU */
+ nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
+ if (nframes) {
+ m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
+ if (unlikely(m == 0)) {
+ for (i = 0; i < nframes; i++)
+ skbs[i] = NULL; /* effect: xdp_return_frame */
+ kmem_alloc_drops += nframes;
+ }
+ }
+
+ local_bh_disable();
+ for (i = 0; i < nframes; i++) {
+ struct xdp_frame *xdpf = frames[i];
+ struct sk_buff *skb = skbs[i];
+
+ skb = __xdp_build_skb_from_frame(xdpf, skb,
+ xdpf->dev_rx);
+ if (!skb) {
+ xdp_return_frame(xdpf);
+ continue;
+ }
+
+ list_add_tail(&skb->list, &list);
+ }
+ netif_receive_skb_list(&list);
+
+ /* Feedback loop via tracepoint */
+ trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
+ sched, &stats);
+
+ local_bh_enable(); /* resched point, may call do_softirq() */
+ }
+ __set_current_state(TASK_RUNNING);
+
+ put_cpu_map_entry(rcpu);
+ return 0;
+}
+
+static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
+ struct bpf_map *map, int fd)
+{
+ struct bpf_prog *prog;
+
+ prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
+ !bpf_prog_map_compatible(map, prog)) {
+ bpf_prog_put(prog);
+ return -EINVAL;
+ }
+
+ rcpu->value.bpf_prog.id = prog->aux->id;
+ rcpu->prog = prog;
+
+ return 0;
+}
+
+static struct bpf_cpu_map_entry *
+__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
+ u32 cpu)
+{
+ int numa, err, i, fd = value->bpf_prog.fd;
+ gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
+ struct bpf_cpu_map_entry *rcpu;
+ struct xdp_bulk_queue *bq;
+
+ /* Have map->numa_node, but choose node of redirect target CPU */
+ numa = cpu_to_node(cpu);
+
+ rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
+ if (!rcpu)
+ return NULL;
+
+ /* Alloc percpu bulkq */
+ rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
+ sizeof(void *), gfp);
+ if (!rcpu->bulkq)
+ goto free_rcu;
+
+ for_each_possible_cpu(i) {
+ bq = per_cpu_ptr(rcpu->bulkq, i);
+ bq->obj = rcpu;
+ }
+
+ /* Alloc queue */
+ rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
+ numa);
+ if (!rcpu->queue)
+ goto free_bulkq;
+
+ err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
+ if (err)
+ goto free_queue;
+
+ rcpu->cpu = cpu;
+ rcpu->map_id = map->id;
+ rcpu->value.qsize = value->qsize;
+
+ if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
+ goto free_ptr_ring;
+
+ /* Setup kthread */
+ init_completion(&rcpu->kthread_running);
+ rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
+ "cpumap/%d/map:%d", cpu,
+ map->id);
+ if (IS_ERR(rcpu->kthread))
+ goto free_prog;
+
+ get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
+ get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
+
+ /* Make sure kthread runs on a single CPU */
+ kthread_bind(rcpu->kthread, cpu);
+ wake_up_process(rcpu->kthread);
+
+ /* Make sure kthread has been running, so kthread_stop() will not
+ * stop the kthread prematurely and all pending frames or skbs
+ * will be handled by the kthread before kthread_stop() returns.
+ */
+ wait_for_completion(&rcpu->kthread_running);
+
+ return rcpu;
+
+free_prog:
+ if (rcpu->prog)
+ bpf_prog_put(rcpu->prog);
+free_ptr_ring:
+ ptr_ring_cleanup(rcpu->queue, NULL);
+free_queue:
+ kfree(rcpu->queue);
+free_bulkq:
+ free_percpu(rcpu->bulkq);
+free_rcu:
+ kfree(rcpu);
+ return NULL;
+}
+
+static void __cpu_map_entry_free(struct rcu_head *rcu)
+{
+ struct bpf_cpu_map_entry *rcpu;
+
+ /* This cpu_map_entry have been disconnected from map and one
+ * RCU grace-period have elapsed. Thus, XDP cannot queue any
+ * new packets and cannot change/set flush_needed that can
+ * find this entry.
+ */
+ rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
+
+ free_percpu(rcpu->bulkq);
+ /* Cannot kthread_stop() here, last put free rcpu resources */
+ put_cpu_map_entry(rcpu);
+}
+
+/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
+ * ensure any driver rcu critical sections have completed, but this
+ * does not guarantee a flush has happened yet. Because driver side
+ * rcu_read_lock/unlock only protects the running XDP program. The
+ * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
+ * pending flush op doesn't fail.
+ *
+ * The bpf_cpu_map_entry is still used by the kthread, and there can
+ * still be pending packets (in queue and percpu bulkq). A refcnt
+ * makes sure to last user (kthread_stop vs. call_rcu) free memory
+ * resources.
+ *
+ * The rcu callback __cpu_map_entry_free flush remaining packets in
+ * percpu bulkq to queue. Due to caller map_delete_elem() disable
+ * preemption, cannot call kthread_stop() to make sure queue is empty.
+ * Instead a work_queue is started for stopping kthread,
+ * cpu_map_kthread_stop, which waits for an RCU grace period before
+ * stopping kthread, emptying the queue.
+ */
+static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
+ u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
+{
+ struct bpf_cpu_map_entry *old_rcpu;
+
+ old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
+ if (old_rcpu) {
+ call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
+ INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
+ schedule_work(&old_rcpu->kthread_stop_wq);
+ }
+}
+
+static int cpu_map_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
+ u32 key_cpu = *(u32 *)key;
+
+ if (key_cpu >= map->max_entries)
+ return -EINVAL;
+
+ /* notice caller map_delete_elem() use preempt_disable() */
+ __cpu_map_entry_replace(cmap, key_cpu, NULL);
+ return 0;
+}
+
+static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
+ struct bpf_cpumap_val cpumap_value = {};
+ struct bpf_cpu_map_entry *rcpu;
+ /* Array index key correspond to CPU number */
+ u32 key_cpu = *(u32 *)key;
+
+ memcpy(&cpumap_value, value, map->value_size);
+
+ if (unlikely(map_flags > BPF_EXIST))
+ return -EINVAL;
+ if (unlikely(key_cpu >= cmap->map.max_entries))
+ return -E2BIG;
+ if (unlikely(map_flags == BPF_NOEXIST))
+ return -EEXIST;
+ if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
+ return -EOVERFLOW;
+
+ /* Make sure CPU is a valid possible cpu */
+ if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
+ return -ENODEV;
+
+ if (cpumap_value.qsize == 0) {
+ rcpu = NULL; /* Same as deleting */
+ } else {
+ /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
+ rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
+ if (!rcpu)
+ return -ENOMEM;
+ rcpu->cmap = cmap;
+ }
+ rcu_read_lock();
+ __cpu_map_entry_replace(cmap, key_cpu, rcpu);
+ rcu_read_unlock();
+ return 0;
+}
+
+static void cpu_map_free(struct bpf_map *map)
+{
+ struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
+ u32 i;
+
+ /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
+ * so the bpf programs (can be more than one that used this map) were
+ * disconnected from events. Wait for outstanding critical sections in
+ * these programs to complete. The rcu critical section only guarantees
+ * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
+ * It does __not__ ensure pending flush operations (if any) are
+ * complete.
+ */
+
+ synchronize_rcu();
+
+ /* For cpu_map the remote CPUs can still be using the entries
+ * (struct bpf_cpu_map_entry).
+ */
+ for (i = 0; i < cmap->map.max_entries; i++) {
+ struct bpf_cpu_map_entry *rcpu;
+
+ rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
+ if (!rcpu)
+ continue;
+
+ /* bq flush and cleanup happens after RCU grace-period */
+ __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
+ }
+ bpf_map_area_free(cmap->cpu_map);
+ bpf_map_area_free(cmap);
+}
+
+/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
+ * by local_bh_disable() (from XDP calls inside NAPI). The
+ * rcu_read_lock_bh_held() below makes lockdep accept both.
+ */
+static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
+{
+ struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
+ struct bpf_cpu_map_entry *rcpu;
+
+ if (key >= map->max_entries)
+ return NULL;
+
+ rcpu = rcu_dereference_check(cmap->cpu_map[key],
+ rcu_read_lock_bh_held());
+ return rcpu;
+}
+
+static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_cpu_map_entry *rcpu =
+ __cpu_map_lookup_elem(map, *(u32 *)key);
+
+ return rcpu ? &rcpu->value : NULL;
+}
+
+static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
+{
+ struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
+ u32 index = key ? *(u32 *)key : U32_MAX;
+ u32 *next = next_key;
+
+ if (index >= cmap->map.max_entries) {
+ *next = 0;
+ return 0;
+ }
+
+ if (index == cmap->map.max_entries - 1)
+ return -ENOENT;
+ *next = index + 1;
+ return 0;
+}
+
+static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
+{
+ return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
+ __cpu_map_lookup_elem);
+}
+
+BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
+const struct bpf_map_ops cpu_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = cpu_map_alloc,
+ .map_free = cpu_map_free,
+ .map_delete_elem = cpu_map_delete_elem,
+ .map_update_elem = cpu_map_update_elem,
+ .map_lookup_elem = cpu_map_lookup_elem,
+ .map_get_next_key = cpu_map_get_next_key,
+ .map_check_btf = map_check_no_btf,
+ .map_btf_id = &cpu_map_btf_ids[0],
+ .map_redirect = cpu_map_redirect,
+};
+
+static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
+{
+ struct bpf_cpu_map_entry *rcpu = bq->obj;
+ unsigned int processed = 0, drops = 0;
+ const int to_cpu = rcpu->cpu;
+ struct ptr_ring *q;
+ int i;
+
+ if (unlikely(!bq->count))
+ return;
+
+ q = rcpu->queue;
+ spin_lock(&q->producer_lock);
+
+ for (i = 0; i < bq->count; i++) {
+ struct xdp_frame *xdpf = bq->q[i];
+ int err;
+
+ err = __ptr_ring_produce(q, xdpf);
+ if (err) {
+ drops++;
+ xdp_return_frame_rx_napi(xdpf);
+ }
+ processed++;
+ }
+ bq->count = 0;
+ spin_unlock(&q->producer_lock);
+
+ __list_del_clearprev(&bq->flush_node);
+
+ /* Feedback loop via tracepoints */
+ trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
+}
+
+/* Runs under RCU-read-side, plus in softirq under NAPI protection.
+ * Thus, safe percpu variable access.
+ */
+static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
+{
+ struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
+ struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
+
+ if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
+ bq_flush_to_queue(bq);
+
+ /* Notice, xdp_buff/page MUST be queued here, long enough for
+ * driver to code invoking us to finished, due to driver
+ * (e.g. ixgbe) recycle tricks based on page-refcnt.
+ *
+ * Thus, incoming xdp_frame is always queued here (else we race
+ * with another CPU on page-refcnt and remaining driver code).
+ * Queue time is very short, as driver will invoke flush
+ * operation, when completing napi->poll call.
+ */
+ bq->q[bq->count++] = xdpf;
+
+ if (!bq->flush_node.prev)
+ list_add(&bq->flush_node, flush_list);
+}
+
+int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
+ struct net_device *dev_rx)
+{
+ /* Info needed when constructing SKB on remote CPU */
+ xdpf->dev_rx = dev_rx;
+
+ bq_enqueue(rcpu, xdpf);
+ return 0;
+}
+
+int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
+ struct sk_buff *skb)
+{
+ int ret;
+
+ __skb_pull(skb, skb->mac_len);
+ skb_set_redirected(skb, false);
+ __ptr_set_bit(0, &skb);
+
+ ret = ptr_ring_produce(rcpu->queue, skb);
+ if (ret < 0)
+ goto trace;
+
+ wake_up_process(rcpu->kthread);
+trace:
+ trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
+ return ret;
+}
+
+void __cpu_map_flush(void)
+{
+ struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
+ struct xdp_bulk_queue *bq, *tmp;
+
+ list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
+ bq_flush_to_queue(bq);
+
+ /* If already running, costs spin_lock_irqsave + smb_mb */
+ wake_up_process(bq->obj->kthread);
+ }
+}
+
+static int __init cpu_map_init(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
+ return 0;
+}
+
+subsys_initcall(cpu_map_init);
diff --git a/kernel/bpf/devmap.c b/kernel/bpf/devmap.c
new file mode 100644
index 000000000..f9a87dcc5
--- /dev/null
+++ b/kernel/bpf/devmap.c
@@ -0,0 +1,1133 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
+ */
+
+/* Devmaps primary use is as a backend map for XDP BPF helper call
+ * bpf_redirect_map(). Because XDP is mostly concerned with performance we
+ * spent some effort to ensure the datapath with redirect maps does not use
+ * any locking. This is a quick note on the details.
+ *
+ * We have three possible paths to get into the devmap control plane bpf
+ * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
+ * will invoke an update, delete, or lookup operation. To ensure updates and
+ * deletes appear atomic from the datapath side xchg() is used to modify the
+ * netdev_map array. Then because the datapath does a lookup into the netdev_map
+ * array (read-only) from an RCU critical section we use call_rcu() to wait for
+ * an rcu grace period before free'ing the old data structures. This ensures the
+ * datapath always has a valid copy. However, the datapath does a "flush"
+ * operation that pushes any pending packets in the driver outside the RCU
+ * critical section. Each bpf_dtab_netdev tracks these pending operations using
+ * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
+ * this list is empty, indicating outstanding flush operations have completed.
+ *
+ * BPF syscalls may race with BPF program calls on any of the update, delete
+ * or lookup operations. As noted above the xchg() operation also keep the
+ * netdev_map consistent in this case. From the devmap side BPF programs
+ * calling into these operations are the same as multiple user space threads
+ * making system calls.
+ *
+ * Finally, any of the above may race with a netdev_unregister notifier. The
+ * unregister notifier must search for net devices in the map structure that
+ * contain a reference to the net device and remove them. This is a two step
+ * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
+ * check to see if the ifindex is the same as the net_device being removed.
+ * When removing the dev a cmpxchg() is used to ensure the correct dev is
+ * removed, in the case of a concurrent update or delete operation it is
+ * possible that the initially referenced dev is no longer in the map. As the
+ * notifier hook walks the map we know that new dev references can not be
+ * added by the user because core infrastructure ensures dev_get_by_index()
+ * calls will fail at this point.
+ *
+ * The devmap_hash type is a map type which interprets keys as ifindexes and
+ * indexes these using a hashmap. This allows maps that use ifindex as key to be
+ * densely packed instead of having holes in the lookup array for unused
+ * ifindexes. The setup and packet enqueue/send code is shared between the two
+ * types of devmap; only the lookup and insertion is different.
+ */
+#include <linux/bpf.h>
+#include <net/xdp.h>
+#include <linux/filter.h>
+#include <trace/events/xdp.h>
+#include <linux/btf_ids.h>
+
+#define DEV_CREATE_FLAG_MASK \
+ (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
+
+struct xdp_dev_bulk_queue {
+ struct xdp_frame *q[DEV_MAP_BULK_SIZE];
+ struct list_head flush_node;
+ struct net_device *dev;
+ struct net_device *dev_rx;
+ struct bpf_prog *xdp_prog;
+ unsigned int count;
+};
+
+struct bpf_dtab_netdev {
+ struct net_device *dev; /* must be first member, due to tracepoint */
+ struct hlist_node index_hlist;
+ struct bpf_dtab *dtab;
+ struct bpf_prog *xdp_prog;
+ struct rcu_head rcu;
+ unsigned int idx;
+ struct bpf_devmap_val val;
+};
+
+struct bpf_dtab {
+ struct bpf_map map;
+ struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */
+ struct list_head list;
+
+ /* these are only used for DEVMAP_HASH type maps */
+ struct hlist_head *dev_index_head;
+ spinlock_t index_lock;
+ unsigned int items;
+ u32 n_buckets;
+};
+
+static DEFINE_PER_CPU(struct list_head, dev_flush_list);
+static DEFINE_SPINLOCK(dev_map_lock);
+static LIST_HEAD(dev_map_list);
+
+static struct hlist_head *dev_map_create_hash(unsigned int entries,
+ int numa_node)
+{
+ int i;
+ struct hlist_head *hash;
+
+ hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
+ if (hash != NULL)
+ for (i = 0; i < entries; i++)
+ INIT_HLIST_HEAD(&hash[i]);
+
+ return hash;
+}
+
+static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
+ int idx)
+{
+ return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
+}
+
+static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
+{
+ u32 valsize = attr->value_size;
+
+ /* check sanity of attributes. 2 value sizes supported:
+ * 4 bytes: ifindex
+ * 8 bytes: ifindex + prog fd
+ */
+ if (attr->max_entries == 0 || attr->key_size != 4 ||
+ (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
+ valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
+ attr->map_flags & ~DEV_CREATE_FLAG_MASK)
+ return -EINVAL;
+
+ /* Lookup returns a pointer straight to dev->ifindex, so make sure the
+ * verifier prevents writes from the BPF side
+ */
+ attr->map_flags |= BPF_F_RDONLY_PROG;
+
+
+ bpf_map_init_from_attr(&dtab->map, attr);
+
+ if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
+ dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
+
+ if (!dtab->n_buckets) /* Overflow check */
+ return -EINVAL;
+ }
+
+ if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
+ dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
+ dtab->map.numa_node);
+ if (!dtab->dev_index_head)
+ return -ENOMEM;
+
+ spin_lock_init(&dtab->index_lock);
+ } else {
+ dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
+ sizeof(struct bpf_dtab_netdev *),
+ dtab->map.numa_node);
+ if (!dtab->netdev_map)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_dtab *dtab;
+ int err;
+
+ if (!capable(CAP_NET_ADMIN))
+ return ERR_PTR(-EPERM);
+
+ dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE);
+ if (!dtab)
+ return ERR_PTR(-ENOMEM);
+
+ err = dev_map_init_map(dtab, attr);
+ if (err) {
+ bpf_map_area_free(dtab);
+ return ERR_PTR(err);
+ }
+
+ spin_lock(&dev_map_lock);
+ list_add_tail_rcu(&dtab->list, &dev_map_list);
+ spin_unlock(&dev_map_lock);
+
+ return &dtab->map;
+}
+
+static void dev_map_free(struct bpf_map *map)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ int i;
+
+ /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
+ * so the programs (can be more than one that used this map) were
+ * disconnected from events. The following synchronize_rcu() guarantees
+ * both rcu read critical sections complete and waits for
+ * preempt-disable regions (NAPI being the relevant context here) so we
+ * are certain there will be no further reads against the netdev_map and
+ * all flush operations are complete. Flush operations can only be done
+ * from NAPI context for this reason.
+ */
+
+ spin_lock(&dev_map_lock);
+ list_del_rcu(&dtab->list);
+ spin_unlock(&dev_map_lock);
+
+ bpf_clear_redirect_map(map);
+ synchronize_rcu();
+
+ /* Make sure prior __dev_map_entry_free() have completed. */
+ rcu_barrier();
+
+ if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
+ for (i = 0; i < dtab->n_buckets; i++) {
+ struct bpf_dtab_netdev *dev;
+ struct hlist_head *head;
+ struct hlist_node *next;
+
+ head = dev_map_index_hash(dtab, i);
+
+ hlist_for_each_entry_safe(dev, next, head, index_hlist) {
+ hlist_del_rcu(&dev->index_hlist);
+ if (dev->xdp_prog)
+ bpf_prog_put(dev->xdp_prog);
+ dev_put(dev->dev);
+ kfree(dev);
+ }
+ }
+
+ bpf_map_area_free(dtab->dev_index_head);
+ } else {
+ for (i = 0; i < dtab->map.max_entries; i++) {
+ struct bpf_dtab_netdev *dev;
+
+ dev = rcu_dereference_raw(dtab->netdev_map[i]);
+ if (!dev)
+ continue;
+
+ if (dev->xdp_prog)
+ bpf_prog_put(dev->xdp_prog);
+ dev_put(dev->dev);
+ kfree(dev);
+ }
+
+ bpf_map_area_free(dtab->netdev_map);
+ }
+
+ bpf_map_area_free(dtab);
+}
+
+static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ u32 index = key ? *(u32 *)key : U32_MAX;
+ u32 *next = next_key;
+
+ if (index >= dtab->map.max_entries) {
+ *next = 0;
+ return 0;
+ }
+
+ if (index == dtab->map.max_entries - 1)
+ return -ENOENT;
+ *next = index + 1;
+ return 0;
+}
+
+/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
+ * by local_bh_disable() (from XDP calls inside NAPI). The
+ * rcu_read_lock_bh_held() below makes lockdep accept both.
+ */
+static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ struct hlist_head *head = dev_map_index_hash(dtab, key);
+ struct bpf_dtab_netdev *dev;
+
+ hlist_for_each_entry_rcu(dev, head, index_hlist,
+ lockdep_is_held(&dtab->index_lock))
+ if (dev->idx == key)
+ return dev;
+
+ return NULL;
+}
+
+static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
+ void *next_key)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ u32 idx, *next = next_key;
+ struct bpf_dtab_netdev *dev, *next_dev;
+ struct hlist_head *head;
+ int i = 0;
+
+ if (!key)
+ goto find_first;
+
+ idx = *(u32 *)key;
+
+ dev = __dev_map_hash_lookup_elem(map, idx);
+ if (!dev)
+ goto find_first;
+
+ next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
+ struct bpf_dtab_netdev, index_hlist);
+
+ if (next_dev) {
+ *next = next_dev->idx;
+ return 0;
+ }
+
+ i = idx & (dtab->n_buckets - 1);
+ i++;
+
+ find_first:
+ for (; i < dtab->n_buckets; i++) {
+ head = dev_map_index_hash(dtab, i);
+
+ next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
+ struct bpf_dtab_netdev,
+ index_hlist);
+ if (next_dev) {
+ *next = next_dev->idx;
+ return 0;
+ }
+ }
+
+ return -ENOENT;
+}
+
+static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog,
+ struct xdp_frame **frames, int n,
+ struct net_device *dev)
+{
+ struct xdp_txq_info txq = { .dev = dev };
+ struct xdp_buff xdp;
+ int i, nframes = 0;
+
+ for (i = 0; i < n; i++) {
+ struct xdp_frame *xdpf = frames[i];
+ u32 act;
+ int err;
+
+ xdp_convert_frame_to_buff(xdpf, &xdp);
+ xdp.txq = &txq;
+
+ act = bpf_prog_run_xdp(xdp_prog, &xdp);
+ switch (act) {
+ case XDP_PASS:
+ err = xdp_update_frame_from_buff(&xdp, xdpf);
+ if (unlikely(err < 0))
+ xdp_return_frame_rx_napi(xdpf);
+ else
+ frames[nframes++] = xdpf;
+ break;
+ default:
+ bpf_warn_invalid_xdp_action(NULL, xdp_prog, act);
+ fallthrough;
+ case XDP_ABORTED:
+ trace_xdp_exception(dev, xdp_prog, act);
+ fallthrough;
+ case XDP_DROP:
+ xdp_return_frame_rx_napi(xdpf);
+ break;
+ }
+ }
+ return nframes; /* sent frames count */
+}
+
+static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
+{
+ struct net_device *dev = bq->dev;
+ unsigned int cnt = bq->count;
+ int sent = 0, err = 0;
+ int to_send = cnt;
+ int i;
+
+ if (unlikely(!cnt))
+ return;
+
+ for (i = 0; i < cnt; i++) {
+ struct xdp_frame *xdpf = bq->q[i];
+
+ prefetch(xdpf);
+ }
+
+ if (bq->xdp_prog) {
+ to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev);
+ if (!to_send)
+ goto out;
+ }
+
+ sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags);
+ if (sent < 0) {
+ /* If ndo_xdp_xmit fails with an errno, no frames have
+ * been xmit'ed.
+ */
+ err = sent;
+ sent = 0;
+ }
+
+ /* If not all frames have been transmitted, it is our
+ * responsibility to free them
+ */
+ for (i = sent; unlikely(i < to_send); i++)
+ xdp_return_frame_rx_napi(bq->q[i]);
+
+out:
+ bq->count = 0;
+ trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err);
+}
+
+/* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the
+ * driver before returning from its napi->poll() routine. See the comment above
+ * xdp_do_flush() in filter.c.
+ */
+void __dev_flush(void)
+{
+ struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
+ struct xdp_dev_bulk_queue *bq, *tmp;
+
+ list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
+ bq_xmit_all(bq, XDP_XMIT_FLUSH);
+ bq->dev_rx = NULL;
+ bq->xdp_prog = NULL;
+ __list_del_clearprev(&bq->flush_node);
+ }
+}
+
+/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
+ * by local_bh_disable() (from XDP calls inside NAPI). The
+ * rcu_read_lock_bh_held() below makes lockdep accept both.
+ */
+static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ struct bpf_dtab_netdev *obj;
+
+ if (key >= map->max_entries)
+ return NULL;
+
+ obj = rcu_dereference_check(dtab->netdev_map[key],
+ rcu_read_lock_bh_held());
+ return obj;
+}
+
+/* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu
+ * variable access, and map elements stick around. See comment above
+ * xdp_do_flush() in filter.c.
+ */
+static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
+ struct net_device *dev_rx, struct bpf_prog *xdp_prog)
+{
+ struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
+ struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
+
+ if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
+ bq_xmit_all(bq, 0);
+
+ /* Ingress dev_rx will be the same for all xdp_frame's in
+ * bulk_queue, because bq stored per-CPU and must be flushed
+ * from net_device drivers NAPI func end.
+ *
+ * Do the same with xdp_prog and flush_list since these fields
+ * are only ever modified together.
+ */
+ if (!bq->dev_rx) {
+ bq->dev_rx = dev_rx;
+ bq->xdp_prog = xdp_prog;
+ list_add(&bq->flush_node, flush_list);
+ }
+
+ bq->q[bq->count++] = xdpf;
+}
+
+static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
+ struct net_device *dev_rx,
+ struct bpf_prog *xdp_prog)
+{
+ int err;
+
+ if (!dev->netdev_ops->ndo_xdp_xmit)
+ return -EOPNOTSUPP;
+
+ err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf));
+ if (unlikely(err))
+ return err;
+
+ bq_enqueue(dev, xdpf, dev_rx, xdp_prog);
+ return 0;
+}
+
+static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst)
+{
+ struct xdp_txq_info txq = { .dev = dst->dev };
+ struct xdp_buff xdp;
+ u32 act;
+
+ if (!dst->xdp_prog)
+ return XDP_PASS;
+
+ __skb_pull(skb, skb->mac_len);
+ xdp.txq = &txq;
+
+ act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog);
+ switch (act) {
+ case XDP_PASS:
+ __skb_push(skb, skb->mac_len);
+ break;
+ default:
+ bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act);
+ fallthrough;
+ case XDP_ABORTED:
+ trace_xdp_exception(dst->dev, dst->xdp_prog, act);
+ fallthrough;
+ case XDP_DROP:
+ kfree_skb(skb);
+ break;
+ }
+
+ return act;
+}
+
+int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
+ struct net_device *dev_rx)
+{
+ return __xdp_enqueue(dev, xdpf, dev_rx, NULL);
+}
+
+int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
+ struct net_device *dev_rx)
+{
+ struct net_device *dev = dst->dev;
+
+ return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog);
+}
+
+static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf)
+{
+ if (!obj ||
+ !obj->dev->netdev_ops->ndo_xdp_xmit)
+ return false;
+
+ if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf)))
+ return false;
+
+ return true;
+}
+
+static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj,
+ struct net_device *dev_rx,
+ struct xdp_frame *xdpf)
+{
+ struct xdp_frame *nxdpf;
+
+ nxdpf = xdpf_clone(xdpf);
+ if (!nxdpf)
+ return -ENOMEM;
+
+ bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog);
+
+ return 0;
+}
+
+static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex)
+{
+ while (num_excluded--) {
+ if (ifindex == excluded[num_excluded])
+ return true;
+ }
+ return false;
+}
+
+/* Get ifindex of each upper device. 'indexes' must be able to hold at
+ * least MAX_NEST_DEV elements.
+ * Returns the number of ifindexes added.
+ */
+static int get_upper_ifindexes(struct net_device *dev, int *indexes)
+{
+ struct net_device *upper;
+ struct list_head *iter;
+ int n = 0;
+
+ netdev_for_each_upper_dev_rcu(dev, upper, iter) {
+ indexes[n++] = upper->ifindex;
+ }
+ return n;
+}
+
+int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
+ struct bpf_map *map, bool exclude_ingress)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ struct bpf_dtab_netdev *dst, *last_dst = NULL;
+ int excluded_devices[1+MAX_NEST_DEV];
+ struct hlist_head *head;
+ int num_excluded = 0;
+ unsigned int i;
+ int err;
+
+ if (exclude_ingress) {
+ num_excluded = get_upper_ifindexes(dev_rx, excluded_devices);
+ excluded_devices[num_excluded++] = dev_rx->ifindex;
+ }
+
+ if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
+ for (i = 0; i < map->max_entries; i++) {
+ dst = rcu_dereference_check(dtab->netdev_map[i],
+ rcu_read_lock_bh_held());
+ if (!is_valid_dst(dst, xdpf))
+ continue;
+
+ if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
+ continue;
+
+ /* we only need n-1 clones; last_dst enqueued below */
+ if (!last_dst) {
+ last_dst = dst;
+ continue;
+ }
+
+ err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
+ if (err)
+ return err;
+
+ last_dst = dst;
+ }
+ } else { /* BPF_MAP_TYPE_DEVMAP_HASH */
+ for (i = 0; i < dtab->n_buckets; i++) {
+ head = dev_map_index_hash(dtab, i);
+ hlist_for_each_entry_rcu(dst, head, index_hlist,
+ lockdep_is_held(&dtab->index_lock)) {
+ if (!is_valid_dst(dst, xdpf))
+ continue;
+
+ if (is_ifindex_excluded(excluded_devices, num_excluded,
+ dst->dev->ifindex))
+ continue;
+
+ /* we only need n-1 clones; last_dst enqueued below */
+ if (!last_dst) {
+ last_dst = dst;
+ continue;
+ }
+
+ err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf);
+ if (err)
+ return err;
+
+ last_dst = dst;
+ }
+ }
+ }
+
+ /* consume the last copy of the frame */
+ if (last_dst)
+ bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog);
+ else
+ xdp_return_frame_rx_napi(xdpf); /* dtab is empty */
+
+ return 0;
+}
+
+int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
+ struct bpf_prog *xdp_prog)
+{
+ int err;
+
+ err = xdp_ok_fwd_dev(dst->dev, skb->len);
+ if (unlikely(err))
+ return err;
+
+ /* Redirect has already succeeded semantically at this point, so we just
+ * return 0 even if packet is dropped. Helper below takes care of
+ * freeing skb.
+ */
+ if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS)
+ return 0;
+
+ skb->dev = dst->dev;
+ generic_xdp_tx(skb, xdp_prog);
+
+ return 0;
+}
+
+static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst,
+ struct sk_buff *skb,
+ struct bpf_prog *xdp_prog)
+{
+ struct sk_buff *nskb;
+ int err;
+
+ nskb = skb_clone(skb, GFP_ATOMIC);
+ if (!nskb)
+ return -ENOMEM;
+
+ err = dev_map_generic_redirect(dst, nskb, xdp_prog);
+ if (unlikely(err)) {
+ consume_skb(nskb);
+ return err;
+ }
+
+ return 0;
+}
+
+int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
+ struct bpf_prog *xdp_prog, struct bpf_map *map,
+ bool exclude_ingress)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ struct bpf_dtab_netdev *dst, *last_dst = NULL;
+ int excluded_devices[1+MAX_NEST_DEV];
+ struct hlist_head *head;
+ struct hlist_node *next;
+ int num_excluded = 0;
+ unsigned int i;
+ int err;
+
+ if (exclude_ingress) {
+ num_excluded = get_upper_ifindexes(dev, excluded_devices);
+ excluded_devices[num_excluded++] = dev->ifindex;
+ }
+
+ if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
+ for (i = 0; i < map->max_entries; i++) {
+ dst = rcu_dereference_check(dtab->netdev_map[i],
+ rcu_read_lock_bh_held());
+ if (!dst)
+ continue;
+
+ if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex))
+ continue;
+
+ /* we only need n-1 clones; last_dst enqueued below */
+ if (!last_dst) {
+ last_dst = dst;
+ continue;
+ }
+
+ err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
+ if (err)
+ return err;
+
+ last_dst = dst;
+
+ }
+ } else { /* BPF_MAP_TYPE_DEVMAP_HASH */
+ for (i = 0; i < dtab->n_buckets; i++) {
+ head = dev_map_index_hash(dtab, i);
+ hlist_for_each_entry_safe(dst, next, head, index_hlist) {
+ if (!dst)
+ continue;
+
+ if (is_ifindex_excluded(excluded_devices, num_excluded,
+ dst->dev->ifindex))
+ continue;
+
+ /* we only need n-1 clones; last_dst enqueued below */
+ if (!last_dst) {
+ last_dst = dst;
+ continue;
+ }
+
+ err = dev_map_redirect_clone(last_dst, skb, xdp_prog);
+ if (err)
+ return err;
+
+ last_dst = dst;
+ }
+ }
+ }
+
+ /* consume the first skb and return */
+ if (last_dst)
+ return dev_map_generic_redirect(last_dst, skb, xdp_prog);
+
+ /* dtab is empty */
+ consume_skb(skb);
+ return 0;
+}
+
+static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
+
+ return obj ? &obj->val : NULL;
+}
+
+static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
+ *(u32 *)key);
+ return obj ? &obj->val : NULL;
+}
+
+static void __dev_map_entry_free(struct rcu_head *rcu)
+{
+ struct bpf_dtab_netdev *dev;
+
+ dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
+ if (dev->xdp_prog)
+ bpf_prog_put(dev->xdp_prog);
+ dev_put(dev->dev);
+ kfree(dev);
+}
+
+static int dev_map_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ struct bpf_dtab_netdev *old_dev;
+ int k = *(u32 *)key;
+
+ if (k >= map->max_entries)
+ return -EINVAL;
+
+ old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL));
+ if (old_dev)
+ call_rcu(&old_dev->rcu, __dev_map_entry_free);
+ return 0;
+}
+
+static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ struct bpf_dtab_netdev *old_dev;
+ int k = *(u32 *)key;
+ unsigned long flags;
+ int ret = -ENOENT;
+
+ spin_lock_irqsave(&dtab->index_lock, flags);
+
+ old_dev = __dev_map_hash_lookup_elem(map, k);
+ if (old_dev) {
+ dtab->items--;
+ hlist_del_init_rcu(&old_dev->index_hlist);
+ call_rcu(&old_dev->rcu, __dev_map_entry_free);
+ ret = 0;
+ }
+ spin_unlock_irqrestore(&dtab->index_lock, flags);
+
+ return ret;
+}
+
+static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
+ struct bpf_dtab *dtab,
+ struct bpf_devmap_val *val,
+ unsigned int idx)
+{
+ struct bpf_prog *prog = NULL;
+ struct bpf_dtab_netdev *dev;
+
+ dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
+ GFP_NOWAIT | __GFP_NOWARN,
+ dtab->map.numa_node);
+ if (!dev)
+ return ERR_PTR(-ENOMEM);
+
+ dev->dev = dev_get_by_index(net, val->ifindex);
+ if (!dev->dev)
+ goto err_out;
+
+ if (val->bpf_prog.fd > 0) {
+ prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
+ BPF_PROG_TYPE_XDP, false);
+ if (IS_ERR(prog))
+ goto err_put_dev;
+ if (prog->expected_attach_type != BPF_XDP_DEVMAP ||
+ !bpf_prog_map_compatible(&dtab->map, prog))
+ goto err_put_prog;
+ }
+
+ dev->idx = idx;
+ dev->dtab = dtab;
+ if (prog) {
+ dev->xdp_prog = prog;
+ dev->val.bpf_prog.id = prog->aux->id;
+ } else {
+ dev->xdp_prog = NULL;
+ dev->val.bpf_prog.id = 0;
+ }
+ dev->val.ifindex = val->ifindex;
+
+ return dev;
+err_put_prog:
+ bpf_prog_put(prog);
+err_put_dev:
+ dev_put(dev->dev);
+err_out:
+ kfree(dev);
+ return ERR_PTR(-EINVAL);
+}
+
+static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
+ void *key, void *value, u64 map_flags)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ struct bpf_dtab_netdev *dev, *old_dev;
+ struct bpf_devmap_val val = {};
+ u32 i = *(u32 *)key;
+
+ if (unlikely(map_flags > BPF_EXIST))
+ return -EINVAL;
+ if (unlikely(i >= dtab->map.max_entries))
+ return -E2BIG;
+ if (unlikely(map_flags == BPF_NOEXIST))
+ return -EEXIST;
+
+ /* already verified value_size <= sizeof val */
+ memcpy(&val, value, map->value_size);
+
+ if (!val.ifindex) {
+ dev = NULL;
+ /* can not specify fd if ifindex is 0 */
+ if (val.bpf_prog.fd > 0)
+ return -EINVAL;
+ } else {
+ dev = __dev_map_alloc_node(net, dtab, &val, i);
+ if (IS_ERR(dev))
+ return PTR_ERR(dev);
+ }
+
+ /* Use call_rcu() here to ensure rcu critical sections have completed
+ * Remembering the driver side flush operation will happen before the
+ * net device is removed.
+ */
+ old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev)));
+ if (old_dev)
+ call_rcu(&old_dev->rcu, __dev_map_entry_free);
+
+ return 0;
+}
+
+static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ return __dev_map_update_elem(current->nsproxy->net_ns,
+ map, key, value, map_flags);
+}
+
+static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
+ void *key, void *value, u64 map_flags)
+{
+ struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
+ struct bpf_dtab_netdev *dev, *old_dev;
+ struct bpf_devmap_val val = {};
+ u32 idx = *(u32 *)key;
+ unsigned long flags;
+ int err = -EEXIST;
+
+ /* already verified value_size <= sizeof val */
+ memcpy(&val, value, map->value_size);
+
+ if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
+ return -EINVAL;
+
+ spin_lock_irqsave(&dtab->index_lock, flags);
+
+ old_dev = __dev_map_hash_lookup_elem(map, idx);
+ if (old_dev && (map_flags & BPF_NOEXIST))
+ goto out_err;
+
+ dev = __dev_map_alloc_node(net, dtab, &val, idx);
+ if (IS_ERR(dev)) {
+ err = PTR_ERR(dev);
+ goto out_err;
+ }
+
+ if (old_dev) {
+ hlist_del_rcu(&old_dev->index_hlist);
+ } else {
+ if (dtab->items >= dtab->map.max_entries) {
+ spin_unlock_irqrestore(&dtab->index_lock, flags);
+ call_rcu(&dev->rcu, __dev_map_entry_free);
+ return -E2BIG;
+ }
+ dtab->items++;
+ }
+
+ hlist_add_head_rcu(&dev->index_hlist,
+ dev_map_index_hash(dtab, idx));
+ spin_unlock_irqrestore(&dtab->index_lock, flags);
+
+ if (old_dev)
+ call_rcu(&old_dev->rcu, __dev_map_entry_free);
+
+ return 0;
+
+out_err:
+ spin_unlock_irqrestore(&dtab->index_lock, flags);
+ return err;
+}
+
+static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ return __dev_map_hash_update_elem(current->nsproxy->net_ns,
+ map, key, value, map_flags);
+}
+
+static int dev_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
+{
+ return __bpf_xdp_redirect_map(map, ifindex, flags,
+ BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
+ __dev_map_lookup_elem);
+}
+
+static int dev_hash_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
+{
+ return __bpf_xdp_redirect_map(map, ifindex, flags,
+ BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS,
+ __dev_map_hash_lookup_elem);
+}
+
+BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab)
+const struct bpf_map_ops dev_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = dev_map_alloc,
+ .map_free = dev_map_free,
+ .map_get_next_key = dev_map_get_next_key,
+ .map_lookup_elem = dev_map_lookup_elem,
+ .map_update_elem = dev_map_update_elem,
+ .map_delete_elem = dev_map_delete_elem,
+ .map_check_btf = map_check_no_btf,
+ .map_btf_id = &dev_map_btf_ids[0],
+ .map_redirect = dev_map_redirect,
+};
+
+const struct bpf_map_ops dev_map_hash_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = dev_map_alloc,
+ .map_free = dev_map_free,
+ .map_get_next_key = dev_map_hash_get_next_key,
+ .map_lookup_elem = dev_map_hash_lookup_elem,
+ .map_update_elem = dev_map_hash_update_elem,
+ .map_delete_elem = dev_map_hash_delete_elem,
+ .map_check_btf = map_check_no_btf,
+ .map_btf_id = &dev_map_btf_ids[0],
+ .map_redirect = dev_hash_map_redirect,
+};
+
+static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
+ struct net_device *netdev)
+{
+ unsigned long flags;
+ u32 i;
+
+ spin_lock_irqsave(&dtab->index_lock, flags);
+ for (i = 0; i < dtab->n_buckets; i++) {
+ struct bpf_dtab_netdev *dev;
+ struct hlist_head *head;
+ struct hlist_node *next;
+
+ head = dev_map_index_hash(dtab, i);
+
+ hlist_for_each_entry_safe(dev, next, head, index_hlist) {
+ if (netdev != dev->dev)
+ continue;
+
+ dtab->items--;
+ hlist_del_rcu(&dev->index_hlist);
+ call_rcu(&dev->rcu, __dev_map_entry_free);
+ }
+ }
+ spin_unlock_irqrestore(&dtab->index_lock, flags);
+}
+
+static int dev_map_notification(struct notifier_block *notifier,
+ ulong event, void *ptr)
+{
+ struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
+ struct bpf_dtab *dtab;
+ int i, cpu;
+
+ switch (event) {
+ case NETDEV_REGISTER:
+ if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
+ break;
+
+ /* will be freed in free_netdev() */
+ netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
+ if (!netdev->xdp_bulkq)
+ return NOTIFY_BAD;
+
+ for_each_possible_cpu(cpu)
+ per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
+ break;
+ case NETDEV_UNREGISTER:
+ /* This rcu_read_lock/unlock pair is needed because
+ * dev_map_list is an RCU list AND to ensure a delete
+ * operation does not free a netdev_map entry while we
+ * are comparing it against the netdev being unregistered.
+ */
+ rcu_read_lock();
+ list_for_each_entry_rcu(dtab, &dev_map_list, list) {
+ if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
+ dev_map_hash_remove_netdev(dtab, netdev);
+ continue;
+ }
+
+ for (i = 0; i < dtab->map.max_entries; i++) {
+ struct bpf_dtab_netdev *dev, *odev;
+
+ dev = rcu_dereference(dtab->netdev_map[i]);
+ if (!dev || netdev != dev->dev)
+ continue;
+ odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL));
+ if (dev == odev)
+ call_rcu(&dev->rcu,
+ __dev_map_entry_free);
+ }
+ }
+ rcu_read_unlock();
+ break;
+ default:
+ break;
+ }
+ return NOTIFY_OK;
+}
+
+static struct notifier_block dev_map_notifier = {
+ .notifier_call = dev_map_notification,
+};
+
+static int __init dev_map_init(void)
+{
+ int cpu;
+
+ /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
+ BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
+ offsetof(struct _bpf_dtab_netdev, dev));
+ register_netdevice_notifier(&dev_map_notifier);
+
+ for_each_possible_cpu(cpu)
+ INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
+ return 0;
+}
+
+subsys_initcall(dev_map_init);
diff --git a/kernel/bpf/disasm.c b/kernel/bpf/disasm.c
new file mode 100644
index 000000000..7b4afb7d9
--- /dev/null
+++ b/kernel/bpf/disasm.c
@@ -0,0 +1,304 @@
+// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ * Copyright (c) 2016 Facebook
+ */
+
+#include <linux/bpf.h>
+
+#include "disasm.h"
+
+#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
+static const char * const func_id_str[] = {
+ __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
+};
+#undef __BPF_FUNC_STR_FN
+
+static const char *__func_get_name(const struct bpf_insn_cbs *cbs,
+ const struct bpf_insn *insn,
+ char *buff, size_t len)
+{
+ BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
+
+ if (!insn->src_reg &&
+ insn->imm >= 0 && insn->imm < __BPF_FUNC_MAX_ID &&
+ func_id_str[insn->imm])
+ return func_id_str[insn->imm];
+
+ if (cbs && cbs->cb_call) {
+ const char *res;
+
+ res = cbs->cb_call(cbs->private_data, insn);
+ if (res)
+ return res;
+ }
+
+ if (insn->src_reg == BPF_PSEUDO_CALL)
+ snprintf(buff, len, "%+d", insn->imm);
+ else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
+ snprintf(buff, len, "kernel-function");
+
+ return buff;
+}
+
+static const char *__func_imm_name(const struct bpf_insn_cbs *cbs,
+ const struct bpf_insn *insn,
+ u64 full_imm, char *buff, size_t len)
+{
+ if (cbs && cbs->cb_imm)
+ return cbs->cb_imm(cbs->private_data, insn, full_imm);
+
+ snprintf(buff, len, "0x%llx", (unsigned long long)full_imm);
+ return buff;
+}
+
+const char *func_id_name(int id)
+{
+ if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
+ return func_id_str[id];
+ else
+ return "unknown";
+}
+
+const char *const bpf_class_string[8] = {
+ [BPF_LD] = "ld",
+ [BPF_LDX] = "ldx",
+ [BPF_ST] = "st",
+ [BPF_STX] = "stx",
+ [BPF_ALU] = "alu",
+ [BPF_JMP] = "jmp",
+ [BPF_JMP32] = "jmp32",
+ [BPF_ALU64] = "alu64",
+};
+
+const char *const bpf_alu_string[16] = {
+ [BPF_ADD >> 4] = "+=",
+ [BPF_SUB >> 4] = "-=",
+ [BPF_MUL >> 4] = "*=",
+ [BPF_DIV >> 4] = "/=",
+ [BPF_OR >> 4] = "|=",
+ [BPF_AND >> 4] = "&=",
+ [BPF_LSH >> 4] = "<<=",
+ [BPF_RSH >> 4] = ">>=",
+ [BPF_NEG >> 4] = "neg",
+ [BPF_MOD >> 4] = "%=",
+ [BPF_XOR >> 4] = "^=",
+ [BPF_MOV >> 4] = "=",
+ [BPF_ARSH >> 4] = "s>>=",
+ [BPF_END >> 4] = "endian",
+};
+
+static const char *const bpf_atomic_alu_string[16] = {
+ [BPF_ADD >> 4] = "add",
+ [BPF_AND >> 4] = "and",
+ [BPF_OR >> 4] = "or",
+ [BPF_XOR >> 4] = "xor",
+};
+
+static const char *const bpf_ldst_string[] = {
+ [BPF_W >> 3] = "u32",
+ [BPF_H >> 3] = "u16",
+ [BPF_B >> 3] = "u8",
+ [BPF_DW >> 3] = "u64",
+};
+
+static const char *const bpf_jmp_string[16] = {
+ [BPF_JA >> 4] = "jmp",
+ [BPF_JEQ >> 4] = "==",
+ [BPF_JGT >> 4] = ">",
+ [BPF_JLT >> 4] = "<",
+ [BPF_JGE >> 4] = ">=",
+ [BPF_JLE >> 4] = "<=",
+ [BPF_JSET >> 4] = "&",
+ [BPF_JNE >> 4] = "!=",
+ [BPF_JSGT >> 4] = "s>",
+ [BPF_JSLT >> 4] = "s<",
+ [BPF_JSGE >> 4] = "s>=",
+ [BPF_JSLE >> 4] = "s<=",
+ [BPF_CALL >> 4] = "call",
+ [BPF_EXIT >> 4] = "exit",
+};
+
+static void print_bpf_end_insn(bpf_insn_print_t verbose,
+ void *private_data,
+ const struct bpf_insn *insn)
+{
+ verbose(private_data, "(%02x) r%d = %s%d r%d\n",
+ insn->code, insn->dst_reg,
+ BPF_SRC(insn->code) == BPF_TO_BE ? "be" : "le",
+ insn->imm, insn->dst_reg);
+}
+
+void print_bpf_insn(const struct bpf_insn_cbs *cbs,
+ const struct bpf_insn *insn,
+ bool allow_ptr_leaks)
+{
+ const bpf_insn_print_t verbose = cbs->cb_print;
+ u8 class = BPF_CLASS(insn->code);
+
+ if (class == BPF_ALU || class == BPF_ALU64) {
+ if (BPF_OP(insn->code) == BPF_END) {
+ if (class == BPF_ALU64)
+ verbose(cbs->private_data, "BUG_alu64_%02x\n", insn->code);
+ else
+ print_bpf_end_insn(verbose, cbs->private_data, insn);
+ } else if (BPF_OP(insn->code) == BPF_NEG) {
+ verbose(cbs->private_data, "(%02x) %c%d = -%c%d\n",
+ insn->code, class == BPF_ALU ? 'w' : 'r',
+ insn->dst_reg, class == BPF_ALU ? 'w' : 'r',
+ insn->dst_reg);
+ } else if (BPF_SRC(insn->code) == BPF_X) {
+ verbose(cbs->private_data, "(%02x) %c%d %s %c%d\n",
+ insn->code, class == BPF_ALU ? 'w' : 'r',
+ insn->dst_reg,
+ bpf_alu_string[BPF_OP(insn->code) >> 4],
+ class == BPF_ALU ? 'w' : 'r',
+ insn->src_reg);
+ } else {
+ verbose(cbs->private_data, "(%02x) %c%d %s %d\n",
+ insn->code, class == BPF_ALU ? 'w' : 'r',
+ insn->dst_reg,
+ bpf_alu_string[BPF_OP(insn->code) >> 4],
+ insn->imm);
+ }
+ } else if (class == BPF_STX) {
+ if (BPF_MODE(insn->code) == BPF_MEM)
+ verbose(cbs->private_data, "(%02x) *(%s *)(r%d %+d) = r%d\n",
+ insn->code,
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->dst_reg,
+ insn->off, insn->src_reg);
+ else if (BPF_MODE(insn->code) == BPF_ATOMIC &&
+ (insn->imm == BPF_ADD || insn->imm == BPF_AND ||
+ insn->imm == BPF_OR || insn->imm == BPF_XOR)) {
+ verbose(cbs->private_data, "(%02x) lock *(%s *)(r%d %+d) %s r%d\n",
+ insn->code,
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->dst_reg, insn->off,
+ bpf_alu_string[BPF_OP(insn->imm) >> 4],
+ insn->src_reg);
+ } else if (BPF_MODE(insn->code) == BPF_ATOMIC &&
+ (insn->imm == (BPF_ADD | BPF_FETCH) ||
+ insn->imm == (BPF_AND | BPF_FETCH) ||
+ insn->imm == (BPF_OR | BPF_FETCH) ||
+ insn->imm == (BPF_XOR | BPF_FETCH))) {
+ verbose(cbs->private_data, "(%02x) r%d = atomic%s_fetch_%s((%s *)(r%d %+d), r%d)\n",
+ insn->code, insn->src_reg,
+ BPF_SIZE(insn->code) == BPF_DW ? "64" : "",
+ bpf_atomic_alu_string[BPF_OP(insn->imm) >> 4],
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->dst_reg, insn->off, insn->src_reg);
+ } else if (BPF_MODE(insn->code) == BPF_ATOMIC &&
+ insn->imm == BPF_CMPXCHG) {
+ verbose(cbs->private_data, "(%02x) r0 = atomic%s_cmpxchg((%s *)(r%d %+d), r0, r%d)\n",
+ insn->code,
+ BPF_SIZE(insn->code) == BPF_DW ? "64" : "",
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->dst_reg, insn->off,
+ insn->src_reg);
+ } else if (BPF_MODE(insn->code) == BPF_ATOMIC &&
+ insn->imm == BPF_XCHG) {
+ verbose(cbs->private_data, "(%02x) r%d = atomic%s_xchg((%s *)(r%d %+d), r%d)\n",
+ insn->code, insn->src_reg,
+ BPF_SIZE(insn->code) == BPF_DW ? "64" : "",
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->dst_reg, insn->off, insn->src_reg);
+ } else {
+ verbose(cbs->private_data, "BUG_%02x\n", insn->code);
+ }
+ } else if (class == BPF_ST) {
+ if (BPF_MODE(insn->code) == BPF_MEM) {
+ verbose(cbs->private_data, "(%02x) *(%s *)(r%d %+d) = %d\n",
+ insn->code,
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->dst_reg,
+ insn->off, insn->imm);
+ } else if (BPF_MODE(insn->code) == 0xc0 /* BPF_NOSPEC, no UAPI */) {
+ verbose(cbs->private_data, "(%02x) nospec\n", insn->code);
+ } else {
+ verbose(cbs->private_data, "BUG_st_%02x\n", insn->code);
+ }
+ } else if (class == BPF_LDX) {
+ if (BPF_MODE(insn->code) != BPF_MEM) {
+ verbose(cbs->private_data, "BUG_ldx_%02x\n", insn->code);
+ return;
+ }
+ verbose(cbs->private_data, "(%02x) r%d = *(%s *)(r%d %+d)\n",
+ insn->code, insn->dst_reg,
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->src_reg, insn->off);
+ } else if (class == BPF_LD) {
+ if (BPF_MODE(insn->code) == BPF_ABS) {
+ verbose(cbs->private_data, "(%02x) r0 = *(%s *)skb[%d]\n",
+ insn->code,
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->imm);
+ } else if (BPF_MODE(insn->code) == BPF_IND) {
+ verbose(cbs->private_data, "(%02x) r0 = *(%s *)skb[r%d + %d]\n",
+ insn->code,
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->src_reg, insn->imm);
+ } else if (BPF_MODE(insn->code) == BPF_IMM &&
+ BPF_SIZE(insn->code) == BPF_DW) {
+ /* At this point, we already made sure that the second
+ * part of the ldimm64 insn is accessible.
+ */
+ u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
+ bool is_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD ||
+ insn->src_reg == BPF_PSEUDO_MAP_VALUE;
+ char tmp[64];
+
+ if (is_ptr && !allow_ptr_leaks)
+ imm = 0;
+
+ verbose(cbs->private_data, "(%02x) r%d = %s\n",
+ insn->code, insn->dst_reg,
+ __func_imm_name(cbs, insn, imm,
+ tmp, sizeof(tmp)));
+ } else {
+ verbose(cbs->private_data, "BUG_ld_%02x\n", insn->code);
+ return;
+ }
+ } else if (class == BPF_JMP32 || class == BPF_JMP) {
+ u8 opcode = BPF_OP(insn->code);
+
+ if (opcode == BPF_CALL) {
+ char tmp[64];
+
+ if (insn->src_reg == BPF_PSEUDO_CALL) {
+ verbose(cbs->private_data, "(%02x) call pc%s\n",
+ insn->code,
+ __func_get_name(cbs, insn,
+ tmp, sizeof(tmp)));
+ } else {
+ strcpy(tmp, "unknown");
+ verbose(cbs->private_data, "(%02x) call %s#%d\n", insn->code,
+ __func_get_name(cbs, insn,
+ tmp, sizeof(tmp)),
+ insn->imm);
+ }
+ } else if (insn->code == (BPF_JMP | BPF_JA)) {
+ verbose(cbs->private_data, "(%02x) goto pc%+d\n",
+ insn->code, insn->off);
+ } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
+ verbose(cbs->private_data, "(%02x) exit\n", insn->code);
+ } else if (BPF_SRC(insn->code) == BPF_X) {
+ verbose(cbs->private_data,
+ "(%02x) if %c%d %s %c%d goto pc%+d\n",
+ insn->code, class == BPF_JMP32 ? 'w' : 'r',
+ insn->dst_reg,
+ bpf_jmp_string[BPF_OP(insn->code) >> 4],
+ class == BPF_JMP32 ? 'w' : 'r',
+ insn->src_reg, insn->off);
+ } else {
+ verbose(cbs->private_data,
+ "(%02x) if %c%d %s 0x%x goto pc%+d\n",
+ insn->code, class == BPF_JMP32 ? 'w' : 'r',
+ insn->dst_reg,
+ bpf_jmp_string[BPF_OP(insn->code) >> 4],
+ insn->imm, insn->off);
+ }
+ } else {
+ verbose(cbs->private_data, "(%02x) %s\n",
+ insn->code, bpf_class_string[class]);
+ }
+}
diff --git a/kernel/bpf/disasm.h b/kernel/bpf/disasm.h
new file mode 100644
index 000000000..a4b040793
--- /dev/null
+++ b/kernel/bpf/disasm.h
@@ -0,0 +1,40 @@
+/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) */
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ * Copyright (c) 2016 Facebook
+ */
+
+#ifndef __BPF_DISASM_H__
+#define __BPF_DISASM_H__
+
+#include <linux/bpf.h>
+#include <linux/kernel.h>
+#include <linux/stringify.h>
+#ifndef __KERNEL__
+#include <stdio.h>
+#include <string.h>
+#endif
+
+extern const char *const bpf_alu_string[16];
+extern const char *const bpf_class_string[8];
+
+const char *func_id_name(int id);
+
+typedef __printf(2, 3) void (*bpf_insn_print_t)(void *private_data,
+ const char *, ...);
+typedef const char *(*bpf_insn_revmap_call_t)(void *private_data,
+ const struct bpf_insn *insn);
+typedef const char *(*bpf_insn_print_imm_t)(void *private_data,
+ const struct bpf_insn *insn,
+ __u64 full_imm);
+
+struct bpf_insn_cbs {
+ bpf_insn_print_t cb_print;
+ bpf_insn_revmap_call_t cb_call;
+ bpf_insn_print_imm_t cb_imm;
+ void *private_data;
+};
+
+void print_bpf_insn(const struct bpf_insn_cbs *cbs,
+ const struct bpf_insn *insn,
+ bool allow_ptr_leaks);
+#endif
diff --git a/kernel/bpf/dispatcher.c b/kernel/bpf/dispatcher.c
new file mode 100644
index 000000000..c19719f48
--- /dev/null
+++ b/kernel/bpf/dispatcher.c
@@ -0,0 +1,168 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright(c) 2019 Intel Corporation. */
+
+#include <linux/hash.h>
+#include <linux/bpf.h>
+#include <linux/filter.h>
+#include <linux/static_call.h>
+
+/* The BPF dispatcher is a multiway branch code generator. The
+ * dispatcher is a mechanism to avoid the performance penalty of an
+ * indirect call, which is expensive when retpolines are enabled. A
+ * dispatch client registers a BPF program into the dispatcher, and if
+ * there is available room in the dispatcher a direct call to the BPF
+ * program will be generated. All calls to the BPF programs called via
+ * the dispatcher will then be a direct call, instead of an
+ * indirect. The dispatcher hijacks a trampoline function it via the
+ * __fentry__ of the trampoline. The trampoline function has the
+ * following signature:
+ *
+ * unsigned int trampoline(const void *ctx, const struct bpf_insn *insnsi,
+ * unsigned int (*bpf_func)(const void *,
+ * const struct bpf_insn *));
+ */
+
+static struct bpf_dispatcher_prog *bpf_dispatcher_find_prog(
+ struct bpf_dispatcher *d, struct bpf_prog *prog)
+{
+ int i;
+
+ for (i = 0; i < BPF_DISPATCHER_MAX; i++) {
+ if (prog == d->progs[i].prog)
+ return &d->progs[i];
+ }
+ return NULL;
+}
+
+static struct bpf_dispatcher_prog *bpf_dispatcher_find_free(
+ struct bpf_dispatcher *d)
+{
+ return bpf_dispatcher_find_prog(d, NULL);
+}
+
+static bool bpf_dispatcher_add_prog(struct bpf_dispatcher *d,
+ struct bpf_prog *prog)
+{
+ struct bpf_dispatcher_prog *entry;
+
+ if (!prog)
+ return false;
+
+ entry = bpf_dispatcher_find_prog(d, prog);
+ if (entry) {
+ refcount_inc(&entry->users);
+ return false;
+ }
+
+ entry = bpf_dispatcher_find_free(d);
+ if (!entry)
+ return false;
+
+ bpf_prog_inc(prog);
+ entry->prog = prog;
+ refcount_set(&entry->users, 1);
+ d->num_progs++;
+ return true;
+}
+
+static bool bpf_dispatcher_remove_prog(struct bpf_dispatcher *d,
+ struct bpf_prog *prog)
+{
+ struct bpf_dispatcher_prog *entry;
+
+ if (!prog)
+ return false;
+
+ entry = bpf_dispatcher_find_prog(d, prog);
+ if (!entry)
+ return false;
+
+ if (refcount_dec_and_test(&entry->users)) {
+ entry->prog = NULL;
+ bpf_prog_put(prog);
+ d->num_progs--;
+ return true;
+ }
+ return false;
+}
+
+int __weak arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
+{
+ return -ENOTSUPP;
+}
+
+static int bpf_dispatcher_prepare(struct bpf_dispatcher *d, void *image, void *buf)
+{
+ s64 ips[BPF_DISPATCHER_MAX] = {}, *ipsp = &ips[0];
+ int i;
+
+ for (i = 0; i < BPF_DISPATCHER_MAX; i++) {
+ if (d->progs[i].prog)
+ *ipsp++ = (s64)(uintptr_t)d->progs[i].prog->bpf_func;
+ }
+ return arch_prepare_bpf_dispatcher(image, buf, &ips[0], d->num_progs);
+}
+
+static void bpf_dispatcher_update(struct bpf_dispatcher *d, int prev_num_progs)
+{
+ void *new, *tmp;
+ u32 noff = 0;
+
+ if (prev_num_progs)
+ noff = d->image_off ^ (PAGE_SIZE / 2);
+
+ new = d->num_progs ? d->image + noff : NULL;
+ tmp = d->num_progs ? d->rw_image + noff : NULL;
+ if (new) {
+ /* Prepare the dispatcher in d->rw_image. Then use
+ * bpf_arch_text_copy to update d->image, which is RO+X.
+ */
+ if (bpf_dispatcher_prepare(d, new, tmp))
+ return;
+ if (IS_ERR(bpf_arch_text_copy(new, tmp, PAGE_SIZE / 2)))
+ return;
+ }
+
+ __BPF_DISPATCHER_UPDATE(d, new ?: (void *)&bpf_dispatcher_nop_func);
+
+ if (new)
+ d->image_off = noff;
+}
+
+void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
+ struct bpf_prog *to)
+{
+ bool changed = false;
+ int prev_num_progs;
+
+ if (from == to)
+ return;
+
+ mutex_lock(&d->mutex);
+ if (!d->image) {
+ d->image = bpf_prog_pack_alloc(PAGE_SIZE, bpf_jit_fill_hole_with_zero);
+ if (!d->image)
+ goto out;
+ d->rw_image = bpf_jit_alloc_exec(PAGE_SIZE);
+ if (!d->rw_image) {
+ u32 size = PAGE_SIZE;
+
+ bpf_arch_text_copy(d->image, &size, sizeof(size));
+ bpf_prog_pack_free((struct bpf_binary_header *)d->image);
+ d->image = NULL;
+ goto out;
+ }
+ bpf_image_ksym_add(d->image, &d->ksym);
+ }
+
+ prev_num_progs = d->num_progs;
+ changed |= bpf_dispatcher_remove_prog(d, from);
+ changed |= bpf_dispatcher_add_prog(d, to);
+
+ if (!changed)
+ goto out;
+
+ bpf_dispatcher_update(d, prev_num_progs);
+out:
+ mutex_unlock(&d->mutex);
+}
diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c
new file mode 100644
index 000000000..88c71de0a
--- /dev/null
+++ b/kernel/bpf/hashtab.c
@@ -0,0 +1,2540 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ * Copyright (c) 2016 Facebook
+ */
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/jhash.h>
+#include <linux/filter.h>
+#include <linux/rculist_nulls.h>
+#include <linux/random.h>
+#include <uapi/linux/btf.h>
+#include <linux/rcupdate_trace.h>
+#include <linux/btf_ids.h>
+#include "percpu_freelist.h"
+#include "bpf_lru_list.h"
+#include "map_in_map.h"
+#include <linux/bpf_mem_alloc.h>
+
+#define HTAB_CREATE_FLAG_MASK \
+ (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
+ BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
+
+#define BATCH_OPS(_name) \
+ .map_lookup_batch = \
+ _name##_map_lookup_batch, \
+ .map_lookup_and_delete_batch = \
+ _name##_map_lookup_and_delete_batch, \
+ .map_update_batch = \
+ generic_map_update_batch, \
+ .map_delete_batch = \
+ generic_map_delete_batch
+
+/*
+ * The bucket lock has two protection scopes:
+ *
+ * 1) Serializing concurrent operations from BPF programs on different
+ * CPUs
+ *
+ * 2) Serializing concurrent operations from BPF programs and sys_bpf()
+ *
+ * BPF programs can execute in any context including perf, kprobes and
+ * tracing. As there are almost no limits where perf, kprobes and tracing
+ * can be invoked from the lock operations need to be protected against
+ * deadlocks. Deadlocks can be caused by recursion and by an invocation in
+ * the lock held section when functions which acquire this lock are invoked
+ * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
+ * variable bpf_prog_active, which prevents BPF programs attached to perf
+ * events, kprobes and tracing to be invoked before the prior invocation
+ * from one of these contexts completed. sys_bpf() uses the same mechanism
+ * by pinning the task to the current CPU and incrementing the recursion
+ * protection across the map operation.
+ *
+ * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
+ * operations like memory allocations (even with GFP_ATOMIC) from atomic
+ * contexts. This is required because even with GFP_ATOMIC the memory
+ * allocator calls into code paths which acquire locks with long held lock
+ * sections. To ensure the deterministic behaviour these locks are regular
+ * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
+ * true atomic contexts on an RT kernel are the low level hardware
+ * handling, scheduling, low level interrupt handling, NMIs etc. None of
+ * these contexts should ever do memory allocations.
+ *
+ * As regular device interrupt handlers and soft interrupts are forced into
+ * thread context, the existing code which does
+ * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
+ * just works.
+ *
+ * In theory the BPF locks could be converted to regular spinlocks as well,
+ * but the bucket locks and percpu_freelist locks can be taken from
+ * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
+ * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
+ * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
+ * because there is no memory allocation within the lock held sections. However
+ * after hash map was fully converted to use bpf_mem_alloc, there will be
+ * non-synchronous memory allocation for non-preallocated hash map, so it is
+ * safe to always use raw spinlock for bucket lock.
+ */
+struct bucket {
+ struct hlist_nulls_head head;
+ raw_spinlock_t raw_lock;
+};
+
+#define HASHTAB_MAP_LOCK_COUNT 8
+#define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
+
+struct bpf_htab {
+ struct bpf_map map;
+ struct bpf_mem_alloc ma;
+ struct bpf_mem_alloc pcpu_ma;
+ struct bucket *buckets;
+ void *elems;
+ union {
+ struct pcpu_freelist freelist;
+ struct bpf_lru lru;
+ };
+ struct htab_elem *__percpu *extra_elems;
+ /* number of elements in non-preallocated hashtable are kept
+ * in either pcount or count
+ */
+ struct percpu_counter pcount;
+ atomic_t count;
+ bool use_percpu_counter;
+ u32 n_buckets; /* number of hash buckets */
+ u32 elem_size; /* size of each element in bytes */
+ u32 hashrnd;
+ struct lock_class_key lockdep_key;
+ int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
+};
+
+/* each htab element is struct htab_elem + key + value */
+struct htab_elem {
+ union {
+ struct hlist_nulls_node hash_node;
+ struct {
+ void *padding;
+ union {
+ struct pcpu_freelist_node fnode;
+ struct htab_elem *batch_flink;
+ };
+ };
+ };
+ union {
+ /* pointer to per-cpu pointer */
+ void *ptr_to_pptr;
+ struct bpf_lru_node lru_node;
+ };
+ u32 hash;
+ char key[] __aligned(8);
+};
+
+static inline bool htab_is_prealloc(const struct bpf_htab *htab)
+{
+ return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
+}
+
+static void htab_init_buckets(struct bpf_htab *htab)
+{
+ unsigned int i;
+
+ for (i = 0; i < htab->n_buckets; i++) {
+ INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
+ raw_spin_lock_init(&htab->buckets[i].raw_lock);
+ lockdep_set_class(&htab->buckets[i].raw_lock,
+ &htab->lockdep_key);
+ cond_resched();
+ }
+}
+
+static inline int htab_lock_bucket(const struct bpf_htab *htab,
+ struct bucket *b, u32 hash,
+ unsigned long *pflags)
+{
+ unsigned long flags;
+
+ hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
+
+ preempt_disable();
+ local_irq_save(flags);
+ if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
+ __this_cpu_dec(*(htab->map_locked[hash]));
+ local_irq_restore(flags);
+ preempt_enable();
+ return -EBUSY;
+ }
+
+ raw_spin_lock(&b->raw_lock);
+ *pflags = flags;
+
+ return 0;
+}
+
+static inline void htab_unlock_bucket(const struct bpf_htab *htab,
+ struct bucket *b, u32 hash,
+ unsigned long flags)
+{
+ hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
+ raw_spin_unlock(&b->raw_lock);
+ __this_cpu_dec(*(htab->map_locked[hash]));
+ local_irq_restore(flags);
+ preempt_enable();
+}
+
+static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
+
+static bool htab_is_lru(const struct bpf_htab *htab)
+{
+ return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
+ htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
+}
+
+static bool htab_is_percpu(const struct bpf_htab *htab)
+{
+ return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
+}
+
+static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
+ void __percpu *pptr)
+{
+ *(void __percpu **)(l->key + key_size) = pptr;
+}
+
+static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
+{
+ return *(void __percpu **)(l->key + key_size);
+}
+
+static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
+{
+ return *(void **)(l->key + roundup(map->key_size, 8));
+}
+
+static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
+{
+ return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
+}
+
+static bool htab_has_extra_elems(struct bpf_htab *htab)
+{
+ return !htab_is_percpu(htab) && !htab_is_lru(htab);
+}
+
+static void htab_free_prealloced_timers(struct bpf_htab *htab)
+{
+ u32 num_entries = htab->map.max_entries;
+ int i;
+
+ if (!map_value_has_timer(&htab->map))
+ return;
+ if (htab_has_extra_elems(htab))
+ num_entries += num_possible_cpus();
+
+ for (i = 0; i < num_entries; i++) {
+ struct htab_elem *elem;
+
+ elem = get_htab_elem(htab, i);
+ bpf_timer_cancel_and_free(elem->key +
+ round_up(htab->map.key_size, 8) +
+ htab->map.timer_off);
+ cond_resched();
+ }
+}
+
+static void htab_free_prealloced_kptrs(struct bpf_htab *htab)
+{
+ u32 num_entries = htab->map.max_entries;
+ int i;
+
+ if (!map_value_has_kptrs(&htab->map))
+ return;
+ if (htab_has_extra_elems(htab))
+ num_entries += num_possible_cpus();
+
+ for (i = 0; i < num_entries; i++) {
+ struct htab_elem *elem;
+
+ elem = get_htab_elem(htab, i);
+ bpf_map_free_kptrs(&htab->map, elem->key + round_up(htab->map.key_size, 8));
+ cond_resched();
+ }
+}
+
+static void htab_free_elems(struct bpf_htab *htab)
+{
+ int i;
+
+ if (!htab_is_percpu(htab))
+ goto free_elems;
+
+ for (i = 0; i < htab->map.max_entries; i++) {
+ void __percpu *pptr;
+
+ pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
+ htab->map.key_size);
+ free_percpu(pptr);
+ cond_resched();
+ }
+free_elems:
+ bpf_map_area_free(htab->elems);
+}
+
+/* The LRU list has a lock (lru_lock). Each htab bucket has a lock
+ * (bucket_lock). If both locks need to be acquired together, the lock
+ * order is always lru_lock -> bucket_lock and this only happens in
+ * bpf_lru_list.c logic. For example, certain code path of
+ * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
+ * will acquire lru_lock first followed by acquiring bucket_lock.
+ *
+ * In hashtab.c, to avoid deadlock, lock acquisition of
+ * bucket_lock followed by lru_lock is not allowed. In such cases,
+ * bucket_lock needs to be released first before acquiring lru_lock.
+ */
+static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
+ u32 hash)
+{
+ struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
+ struct htab_elem *l;
+
+ if (node) {
+ l = container_of(node, struct htab_elem, lru_node);
+ memcpy(l->key, key, htab->map.key_size);
+ return l;
+ }
+
+ return NULL;
+}
+
+static int prealloc_init(struct bpf_htab *htab)
+{
+ u32 num_entries = htab->map.max_entries;
+ int err = -ENOMEM, i;
+
+ if (htab_has_extra_elems(htab))
+ num_entries += num_possible_cpus();
+
+ htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
+ htab->map.numa_node);
+ if (!htab->elems)
+ return -ENOMEM;
+
+ if (!htab_is_percpu(htab))
+ goto skip_percpu_elems;
+
+ for (i = 0; i < num_entries; i++) {
+ u32 size = round_up(htab->map.value_size, 8);
+ void __percpu *pptr;
+
+ pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
+ GFP_USER | __GFP_NOWARN);
+ if (!pptr)
+ goto free_elems;
+ htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
+ pptr);
+ cond_resched();
+ }
+
+skip_percpu_elems:
+ if (htab_is_lru(htab))
+ err = bpf_lru_init(&htab->lru,
+ htab->map.map_flags & BPF_F_NO_COMMON_LRU,
+ offsetof(struct htab_elem, hash) -
+ offsetof(struct htab_elem, lru_node),
+ htab_lru_map_delete_node,
+ htab);
+ else
+ err = pcpu_freelist_init(&htab->freelist);
+
+ if (err)
+ goto free_elems;
+
+ if (htab_is_lru(htab))
+ bpf_lru_populate(&htab->lru, htab->elems,
+ offsetof(struct htab_elem, lru_node),
+ htab->elem_size, num_entries);
+ else
+ pcpu_freelist_populate(&htab->freelist,
+ htab->elems + offsetof(struct htab_elem, fnode),
+ htab->elem_size, num_entries);
+
+ return 0;
+
+free_elems:
+ htab_free_elems(htab);
+ return err;
+}
+
+static void prealloc_destroy(struct bpf_htab *htab)
+{
+ htab_free_elems(htab);
+
+ if (htab_is_lru(htab))
+ bpf_lru_destroy(&htab->lru);
+ else
+ pcpu_freelist_destroy(&htab->freelist);
+}
+
+static int alloc_extra_elems(struct bpf_htab *htab)
+{
+ struct htab_elem *__percpu *pptr, *l_new;
+ struct pcpu_freelist_node *l;
+ int cpu;
+
+ pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
+ GFP_USER | __GFP_NOWARN);
+ if (!pptr)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu) {
+ l = pcpu_freelist_pop(&htab->freelist);
+ /* pop will succeed, since prealloc_init()
+ * preallocated extra num_possible_cpus elements
+ */
+ l_new = container_of(l, struct htab_elem, fnode);
+ *per_cpu_ptr(pptr, cpu) = l_new;
+ }
+ htab->extra_elems = pptr;
+ return 0;
+}
+
+/* Called from syscall */
+static int htab_map_alloc_check(union bpf_attr *attr)
+{
+ bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
+ bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
+ attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
+ /* percpu_lru means each cpu has its own LRU list.
+ * it is different from BPF_MAP_TYPE_PERCPU_HASH where
+ * the map's value itself is percpu. percpu_lru has
+ * nothing to do with the map's value.
+ */
+ bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
+ bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
+ bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
+ int numa_node = bpf_map_attr_numa_node(attr);
+
+ BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
+ offsetof(struct htab_elem, hash_node.pprev));
+
+ if (lru && !bpf_capable())
+ /* LRU implementation is much complicated than other
+ * maps. Hence, limit to CAP_BPF.
+ */
+ return -EPERM;
+
+ if (zero_seed && !capable(CAP_SYS_ADMIN))
+ /* Guard against local DoS, and discourage production use. */
+ return -EPERM;
+
+ if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
+ !bpf_map_flags_access_ok(attr->map_flags))
+ return -EINVAL;
+
+ if (!lru && percpu_lru)
+ return -EINVAL;
+
+ if (lru && !prealloc)
+ return -ENOTSUPP;
+
+ if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
+ return -EINVAL;
+
+ /* check sanity of attributes.
+ * value_size == 0 may be allowed in the future to use map as a set
+ */
+ if (attr->max_entries == 0 || attr->key_size == 0 ||
+ attr->value_size == 0)
+ return -EINVAL;
+
+ if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
+ sizeof(struct htab_elem))
+ /* if key_size + value_size is bigger, the user space won't be
+ * able to access the elements via bpf syscall. This check
+ * also makes sure that the elem_size doesn't overflow and it's
+ * kmalloc-able later in htab_map_update_elem()
+ */
+ return -E2BIG;
+
+ return 0;
+}
+
+static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
+{
+ bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
+ bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
+ attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
+ /* percpu_lru means each cpu has its own LRU list.
+ * it is different from BPF_MAP_TYPE_PERCPU_HASH where
+ * the map's value itself is percpu. percpu_lru has
+ * nothing to do with the map's value.
+ */
+ bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
+ bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
+ struct bpf_htab *htab;
+ int err, i;
+
+ htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
+ if (!htab)
+ return ERR_PTR(-ENOMEM);
+
+ lockdep_register_key(&htab->lockdep_key);
+
+ bpf_map_init_from_attr(&htab->map, attr);
+
+ if (percpu_lru) {
+ /* ensure each CPU's lru list has >=1 elements.
+ * since we are at it, make each lru list has the same
+ * number of elements.
+ */
+ htab->map.max_entries = roundup(attr->max_entries,
+ num_possible_cpus());
+ if (htab->map.max_entries < attr->max_entries)
+ htab->map.max_entries = rounddown(attr->max_entries,
+ num_possible_cpus());
+ }
+
+ /* hash table size must be power of 2 */
+ htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
+
+ htab->elem_size = sizeof(struct htab_elem) +
+ round_up(htab->map.key_size, 8);
+ if (percpu)
+ htab->elem_size += sizeof(void *);
+ else
+ htab->elem_size += round_up(htab->map.value_size, 8);
+
+ err = -E2BIG;
+ /* prevent zero size kmalloc and check for u32 overflow */
+ if (htab->n_buckets == 0 ||
+ htab->n_buckets > U32_MAX / sizeof(struct bucket))
+ goto free_htab;
+
+ err = -ENOMEM;
+ htab->buckets = bpf_map_area_alloc(htab->n_buckets *
+ sizeof(struct bucket),
+ htab->map.numa_node);
+ if (!htab->buckets)
+ goto free_htab;
+
+ for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
+ htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
+ sizeof(int),
+ sizeof(int),
+ GFP_USER);
+ if (!htab->map_locked[i])
+ goto free_map_locked;
+ }
+
+ if (htab->map.map_flags & BPF_F_ZERO_SEED)
+ htab->hashrnd = 0;
+ else
+ htab->hashrnd = get_random_u32();
+
+ htab_init_buckets(htab);
+
+/* compute_batch_value() computes batch value as num_online_cpus() * 2
+ * and __percpu_counter_compare() needs
+ * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
+ * for percpu_counter to be faster than atomic_t. In practice the average bpf
+ * hash map size is 10k, which means that a system with 64 cpus will fill
+ * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
+ * define our own batch count as 32 then 10k hash map can be filled up to 80%:
+ * 10k - 8k > 32 _batch_ * 64 _cpus_
+ * and __percpu_counter_compare() will still be fast. At that point hash map
+ * collisions will dominate its performance anyway. Assume that hash map filled
+ * to 50+% isn't going to be O(1) and use the following formula to choose
+ * between percpu_counter and atomic_t.
+ */
+#define PERCPU_COUNTER_BATCH 32
+ if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
+ htab->use_percpu_counter = true;
+
+ if (htab->use_percpu_counter) {
+ err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
+ if (err)
+ goto free_map_locked;
+ }
+
+ if (prealloc) {
+ err = prealloc_init(htab);
+ if (err)
+ goto free_map_locked;
+
+ if (!percpu && !lru) {
+ /* lru itself can remove the least used element, so
+ * there is no need for an extra elem during map_update.
+ */
+ err = alloc_extra_elems(htab);
+ if (err)
+ goto free_prealloc;
+ }
+ } else {
+ err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
+ if (err)
+ goto free_map_locked;
+ if (percpu) {
+ err = bpf_mem_alloc_init(&htab->pcpu_ma,
+ round_up(htab->map.value_size, 8), true);
+ if (err)
+ goto free_map_locked;
+ }
+ }
+
+ return &htab->map;
+
+free_prealloc:
+ prealloc_destroy(htab);
+free_map_locked:
+ if (htab->use_percpu_counter)
+ percpu_counter_destroy(&htab->pcount);
+ for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
+ free_percpu(htab->map_locked[i]);
+ bpf_map_area_free(htab->buckets);
+ bpf_mem_alloc_destroy(&htab->pcpu_ma);
+ bpf_mem_alloc_destroy(&htab->ma);
+free_htab:
+ lockdep_unregister_key(&htab->lockdep_key);
+ bpf_map_area_free(htab);
+ return ERR_PTR(err);
+}
+
+static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
+{
+ return jhash(key, key_len, hashrnd);
+}
+
+static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
+{
+ return &htab->buckets[hash & (htab->n_buckets - 1)];
+}
+
+static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
+{
+ return &__select_bucket(htab, hash)->head;
+}
+
+/* this lookup function can only be called with bucket lock taken */
+static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
+ void *key, u32 key_size)
+{
+ struct hlist_nulls_node *n;
+ struct htab_elem *l;
+
+ hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
+ if (l->hash == hash && !memcmp(&l->key, key, key_size))
+ return l;
+
+ return NULL;
+}
+
+/* can be called without bucket lock. it will repeat the loop in
+ * the unlikely event when elements moved from one bucket into another
+ * while link list is being walked
+ */
+static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
+ u32 hash, void *key,
+ u32 key_size, u32 n_buckets)
+{
+ struct hlist_nulls_node *n;
+ struct htab_elem *l;
+
+again:
+ hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
+ if (l->hash == hash && !memcmp(&l->key, key, key_size))
+ return l;
+
+ if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
+ goto again;
+
+ return NULL;
+}
+
+/* Called from syscall or from eBPF program directly, so
+ * arguments have to match bpf_map_lookup_elem() exactly.
+ * The return value is adjusted by BPF instructions
+ * in htab_map_gen_lookup().
+ */
+static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct hlist_nulls_head *head;
+ struct htab_elem *l;
+ u32 hash, key_size;
+
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
+ !rcu_read_lock_bh_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+
+ head = select_bucket(htab, hash);
+
+ l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
+
+ return l;
+}
+
+static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct htab_elem *l = __htab_map_lookup_elem(map, key);
+
+ if (l)
+ return l->key + round_up(map->key_size, 8);
+
+ return NULL;
+}
+
+/* inline bpf_map_lookup_elem() call.
+ * Instead of:
+ * bpf_prog
+ * bpf_map_lookup_elem
+ * map->ops->map_lookup_elem
+ * htab_map_lookup_elem
+ * __htab_map_lookup_elem
+ * do:
+ * bpf_prog
+ * __htab_map_lookup_elem
+ */
+static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
+{
+ struct bpf_insn *insn = insn_buf;
+ const int ret = BPF_REG_0;
+
+ BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
+ (void *(*)(struct bpf_map *map, void *key))NULL));
+ *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
+ *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
+ *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
+ offsetof(struct htab_elem, key) +
+ round_up(map->key_size, 8));
+ return insn - insn_buf;
+}
+
+static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
+ void *key, const bool mark)
+{
+ struct htab_elem *l = __htab_map_lookup_elem(map, key);
+
+ if (l) {
+ if (mark)
+ bpf_lru_node_set_ref(&l->lru_node);
+ return l->key + round_up(map->key_size, 8);
+ }
+
+ return NULL;
+}
+
+static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ return __htab_lru_map_lookup_elem(map, key, true);
+}
+
+static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
+{
+ return __htab_lru_map_lookup_elem(map, key, false);
+}
+
+static int htab_lru_map_gen_lookup(struct bpf_map *map,
+ struct bpf_insn *insn_buf)
+{
+ struct bpf_insn *insn = insn_buf;
+ const int ret = BPF_REG_0;
+ const int ref_reg = BPF_REG_1;
+
+ BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
+ (void *(*)(struct bpf_map *map, void *key))NULL));
+ *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
+ *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
+ *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
+ offsetof(struct htab_elem, lru_node) +
+ offsetof(struct bpf_lru_node, ref));
+ *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
+ *insn++ = BPF_ST_MEM(BPF_B, ret,
+ offsetof(struct htab_elem, lru_node) +
+ offsetof(struct bpf_lru_node, ref),
+ 1);
+ *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
+ offsetof(struct htab_elem, key) +
+ round_up(map->key_size, 8));
+ return insn - insn_buf;
+}
+
+static void check_and_free_fields(struct bpf_htab *htab,
+ struct htab_elem *elem)
+{
+ void *map_value = elem->key + round_up(htab->map.key_size, 8);
+
+ if (map_value_has_timer(&htab->map))
+ bpf_timer_cancel_and_free(map_value + htab->map.timer_off);
+ if (map_value_has_kptrs(&htab->map))
+ bpf_map_free_kptrs(&htab->map, map_value);
+}
+
+/* It is called from the bpf_lru_list when the LRU needs to delete
+ * older elements from the htab.
+ */
+static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
+{
+ struct bpf_htab *htab = arg;
+ struct htab_elem *l = NULL, *tgt_l;
+ struct hlist_nulls_head *head;
+ struct hlist_nulls_node *n;
+ unsigned long flags;
+ struct bucket *b;
+ int ret;
+
+ tgt_l = container_of(node, struct htab_elem, lru_node);
+ b = __select_bucket(htab, tgt_l->hash);
+ head = &b->head;
+
+ ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
+ if (ret)
+ return false;
+
+ hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
+ if (l == tgt_l) {
+ hlist_nulls_del_rcu(&l->hash_node);
+ check_and_free_fields(htab, l);
+ break;
+ }
+
+ htab_unlock_bucket(htab, b, tgt_l->hash, flags);
+
+ return l == tgt_l;
+}
+
+/* Called from syscall */
+static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct hlist_nulls_head *head;
+ struct htab_elem *l, *next_l;
+ u32 hash, key_size;
+ int i = 0;
+
+ WARN_ON_ONCE(!rcu_read_lock_held());
+
+ key_size = map->key_size;
+
+ if (!key)
+ goto find_first_elem;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+
+ head = select_bucket(htab, hash);
+
+ /* lookup the key */
+ l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
+
+ if (!l)
+ goto find_first_elem;
+
+ /* key was found, get next key in the same bucket */
+ next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
+ struct htab_elem, hash_node);
+
+ if (next_l) {
+ /* if next elem in this hash list is non-zero, just return it */
+ memcpy(next_key, next_l->key, key_size);
+ return 0;
+ }
+
+ /* no more elements in this hash list, go to the next bucket */
+ i = hash & (htab->n_buckets - 1);
+ i++;
+
+find_first_elem:
+ /* iterate over buckets */
+ for (; i < htab->n_buckets; i++) {
+ head = select_bucket(htab, i);
+
+ /* pick first element in the bucket */
+ next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
+ struct htab_elem, hash_node);
+ if (next_l) {
+ /* if it's not empty, just return it */
+ memcpy(next_key, next_l->key, key_size);
+ return 0;
+ }
+ }
+
+ /* iterated over all buckets and all elements */
+ return -ENOENT;
+}
+
+static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
+{
+ if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
+ bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
+ check_and_free_fields(htab, l);
+ bpf_mem_cache_free(&htab->ma, l);
+}
+
+static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
+{
+ struct bpf_map *map = &htab->map;
+ void *ptr;
+
+ if (map->ops->map_fd_put_ptr) {
+ ptr = fd_htab_map_get_ptr(map, l);
+ map->ops->map_fd_put_ptr(map, ptr, true);
+ }
+}
+
+static bool is_map_full(struct bpf_htab *htab)
+{
+ if (htab->use_percpu_counter)
+ return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
+ PERCPU_COUNTER_BATCH) >= 0;
+ return atomic_read(&htab->count) >= htab->map.max_entries;
+}
+
+static void inc_elem_count(struct bpf_htab *htab)
+{
+ if (htab->use_percpu_counter)
+ percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
+ else
+ atomic_inc(&htab->count);
+}
+
+static void dec_elem_count(struct bpf_htab *htab)
+{
+ if (htab->use_percpu_counter)
+ percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
+ else
+ atomic_dec(&htab->count);
+}
+
+
+static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
+{
+ htab_put_fd_value(htab, l);
+
+ if (htab_is_prealloc(htab)) {
+ check_and_free_fields(htab, l);
+ __pcpu_freelist_push(&htab->freelist, &l->fnode);
+ } else {
+ dec_elem_count(htab);
+ htab_elem_free(htab, l);
+ }
+}
+
+static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
+ void *value, bool onallcpus)
+{
+ if (!onallcpus) {
+ /* copy true value_size bytes */
+ memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
+ } else {
+ u32 size = round_up(htab->map.value_size, 8);
+ int off = 0, cpu;
+
+ for_each_possible_cpu(cpu) {
+ bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
+ value + off, size);
+ off += size;
+ }
+ }
+}
+
+static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
+ void *value, bool onallcpus)
+{
+ /* When not setting the initial value on all cpus, zero-fill element
+ * values for other cpus. Otherwise, bpf program has no way to ensure
+ * known initial values for cpus other than current one
+ * (onallcpus=false always when coming from bpf prog).
+ */
+ if (!onallcpus) {
+ u32 size = round_up(htab->map.value_size, 8);
+ int current_cpu = raw_smp_processor_id();
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ if (cpu == current_cpu)
+ bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
+ size);
+ else
+ memset(per_cpu_ptr(pptr, cpu), 0, size);
+ }
+ } else {
+ pcpu_copy_value(htab, pptr, value, onallcpus);
+ }
+}
+
+static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
+{
+ return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
+ BITS_PER_LONG == 64;
+}
+
+static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
+ void *value, u32 key_size, u32 hash,
+ bool percpu, bool onallcpus,
+ struct htab_elem *old_elem)
+{
+ u32 size = htab->map.value_size;
+ bool prealloc = htab_is_prealloc(htab);
+ struct htab_elem *l_new, **pl_new;
+ void __percpu *pptr;
+
+ if (prealloc) {
+ if (old_elem) {
+ /* if we're updating the existing element,
+ * use per-cpu extra elems to avoid freelist_pop/push
+ */
+ pl_new = this_cpu_ptr(htab->extra_elems);
+ l_new = *pl_new;
+ htab_put_fd_value(htab, old_elem);
+ *pl_new = old_elem;
+ } else {
+ struct pcpu_freelist_node *l;
+
+ l = __pcpu_freelist_pop(&htab->freelist);
+ if (!l)
+ return ERR_PTR(-E2BIG);
+ l_new = container_of(l, struct htab_elem, fnode);
+ }
+ } else {
+ if (is_map_full(htab))
+ if (!old_elem)
+ /* when map is full and update() is replacing
+ * old element, it's ok to allocate, since
+ * old element will be freed immediately.
+ * Otherwise return an error
+ */
+ return ERR_PTR(-E2BIG);
+ inc_elem_count(htab);
+ l_new = bpf_mem_cache_alloc(&htab->ma);
+ if (!l_new) {
+ l_new = ERR_PTR(-ENOMEM);
+ goto dec_count;
+ }
+ }
+
+ memcpy(l_new->key, key, key_size);
+ if (percpu) {
+ if (prealloc) {
+ pptr = htab_elem_get_ptr(l_new, key_size);
+ } else {
+ /* alloc_percpu zero-fills */
+ pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
+ if (!pptr) {
+ bpf_mem_cache_free(&htab->ma, l_new);
+ l_new = ERR_PTR(-ENOMEM);
+ goto dec_count;
+ }
+ l_new->ptr_to_pptr = pptr;
+ pptr = *(void **)pptr;
+ }
+
+ pcpu_init_value(htab, pptr, value, onallcpus);
+
+ if (!prealloc)
+ htab_elem_set_ptr(l_new, key_size, pptr);
+ } else if (fd_htab_map_needs_adjust(htab)) {
+ size = round_up(size, 8);
+ memcpy(l_new->key + round_up(key_size, 8), value, size);
+ } else {
+ copy_map_value(&htab->map,
+ l_new->key + round_up(key_size, 8),
+ value);
+ }
+
+ l_new->hash = hash;
+ return l_new;
+dec_count:
+ dec_elem_count(htab);
+ return l_new;
+}
+
+static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
+ u64 map_flags)
+{
+ if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
+ /* elem already exists */
+ return -EEXIST;
+
+ if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
+ /* elem doesn't exist, cannot update it */
+ return -ENOENT;
+
+ return 0;
+}
+
+/* Called from syscall or from eBPF program */
+static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct htab_elem *l_new = NULL, *l_old;
+ struct hlist_nulls_head *head;
+ unsigned long flags;
+ struct bucket *b;
+ u32 key_size, hash;
+ int ret;
+
+ if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
+ /* unknown flags */
+ return -EINVAL;
+
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
+ !rcu_read_lock_bh_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ if (unlikely(map_flags & BPF_F_LOCK)) {
+ if (unlikely(!map_value_has_spin_lock(map)))
+ return -EINVAL;
+ /* find an element without taking the bucket lock */
+ l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
+ htab->n_buckets);
+ ret = check_flags(htab, l_old, map_flags);
+ if (ret)
+ return ret;
+ if (l_old) {
+ /* grab the element lock and update value in place */
+ copy_map_value_locked(map,
+ l_old->key + round_up(key_size, 8),
+ value, false);
+ return 0;
+ }
+ /* fall through, grab the bucket lock and lookup again.
+ * 99.9% chance that the element won't be found,
+ * but second lookup under lock has to be done.
+ */
+ }
+
+ ret = htab_lock_bucket(htab, b, hash, &flags);
+ if (ret)
+ return ret;
+
+ l_old = lookup_elem_raw(head, hash, key, key_size);
+
+ ret = check_flags(htab, l_old, map_flags);
+ if (ret)
+ goto err;
+
+ if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
+ /* first lookup without the bucket lock didn't find the element,
+ * but second lookup with the bucket lock found it.
+ * This case is highly unlikely, but has to be dealt with:
+ * grab the element lock in addition to the bucket lock
+ * and update element in place
+ */
+ copy_map_value_locked(map,
+ l_old->key + round_up(key_size, 8),
+ value, false);
+ ret = 0;
+ goto err;
+ }
+
+ l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
+ l_old);
+ if (IS_ERR(l_new)) {
+ /* all pre-allocated elements are in use or memory exhausted */
+ ret = PTR_ERR(l_new);
+ goto err;
+ }
+
+ /* add new element to the head of the list, so that
+ * concurrent search will find it before old elem
+ */
+ hlist_nulls_add_head_rcu(&l_new->hash_node, head);
+ if (l_old) {
+ hlist_nulls_del_rcu(&l_old->hash_node);
+ if (!htab_is_prealloc(htab))
+ free_htab_elem(htab, l_old);
+ else
+ check_and_free_fields(htab, l_old);
+ }
+ ret = 0;
+err:
+ htab_unlock_bucket(htab, b, hash, flags);
+ return ret;
+}
+
+static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
+{
+ check_and_free_fields(htab, elem);
+ bpf_lru_push_free(&htab->lru, &elem->lru_node);
+}
+
+static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct htab_elem *l_new, *l_old = NULL;
+ struct hlist_nulls_head *head;
+ unsigned long flags;
+ struct bucket *b;
+ u32 key_size, hash;
+ int ret;
+
+ if (unlikely(map_flags > BPF_EXIST))
+ /* unknown flags */
+ return -EINVAL;
+
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
+ !rcu_read_lock_bh_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ /* For LRU, we need to alloc before taking bucket's
+ * spinlock because getting free nodes from LRU may need
+ * to remove older elements from htab and this removal
+ * operation will need a bucket lock.
+ */
+ l_new = prealloc_lru_pop(htab, key, hash);
+ if (!l_new)
+ return -ENOMEM;
+ copy_map_value(&htab->map,
+ l_new->key + round_up(map->key_size, 8), value);
+
+ ret = htab_lock_bucket(htab, b, hash, &flags);
+ if (ret)
+ goto err_lock_bucket;
+
+ l_old = lookup_elem_raw(head, hash, key, key_size);
+
+ ret = check_flags(htab, l_old, map_flags);
+ if (ret)
+ goto err;
+
+ /* add new element to the head of the list, so that
+ * concurrent search will find it before old elem
+ */
+ hlist_nulls_add_head_rcu(&l_new->hash_node, head);
+ if (l_old) {
+ bpf_lru_node_set_ref(&l_new->lru_node);
+ hlist_nulls_del_rcu(&l_old->hash_node);
+ }
+ ret = 0;
+
+err:
+ htab_unlock_bucket(htab, b, hash, flags);
+
+err_lock_bucket:
+ if (ret)
+ htab_lru_push_free(htab, l_new);
+ else if (l_old)
+ htab_lru_push_free(htab, l_old);
+
+ return ret;
+}
+
+static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags,
+ bool onallcpus)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct htab_elem *l_new = NULL, *l_old;
+ struct hlist_nulls_head *head;
+ unsigned long flags;
+ struct bucket *b;
+ u32 key_size, hash;
+ int ret;
+
+ if (unlikely(map_flags > BPF_EXIST))
+ /* unknown flags */
+ return -EINVAL;
+
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
+ !rcu_read_lock_bh_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ ret = htab_lock_bucket(htab, b, hash, &flags);
+ if (ret)
+ return ret;
+
+ l_old = lookup_elem_raw(head, hash, key, key_size);
+
+ ret = check_flags(htab, l_old, map_flags);
+ if (ret)
+ goto err;
+
+ if (l_old) {
+ /* per-cpu hash map can update value in-place */
+ pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
+ value, onallcpus);
+ } else {
+ l_new = alloc_htab_elem(htab, key, value, key_size,
+ hash, true, onallcpus, NULL);
+ if (IS_ERR(l_new)) {
+ ret = PTR_ERR(l_new);
+ goto err;
+ }
+ hlist_nulls_add_head_rcu(&l_new->hash_node, head);
+ }
+ ret = 0;
+err:
+ htab_unlock_bucket(htab, b, hash, flags);
+ return ret;
+}
+
+static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags,
+ bool onallcpus)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct htab_elem *l_new = NULL, *l_old;
+ struct hlist_nulls_head *head;
+ unsigned long flags;
+ struct bucket *b;
+ u32 key_size, hash;
+ int ret;
+
+ if (unlikely(map_flags > BPF_EXIST))
+ /* unknown flags */
+ return -EINVAL;
+
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
+ !rcu_read_lock_bh_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ /* For LRU, we need to alloc before taking bucket's
+ * spinlock because LRU's elem alloc may need
+ * to remove older elem from htab and this removal
+ * operation will need a bucket lock.
+ */
+ if (map_flags != BPF_EXIST) {
+ l_new = prealloc_lru_pop(htab, key, hash);
+ if (!l_new)
+ return -ENOMEM;
+ }
+
+ ret = htab_lock_bucket(htab, b, hash, &flags);
+ if (ret)
+ goto err_lock_bucket;
+
+ l_old = lookup_elem_raw(head, hash, key, key_size);
+
+ ret = check_flags(htab, l_old, map_flags);
+ if (ret)
+ goto err;
+
+ if (l_old) {
+ bpf_lru_node_set_ref(&l_old->lru_node);
+
+ /* per-cpu hash map can update value in-place */
+ pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
+ value, onallcpus);
+ } else {
+ pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
+ value, onallcpus);
+ hlist_nulls_add_head_rcu(&l_new->hash_node, head);
+ l_new = NULL;
+ }
+ ret = 0;
+err:
+ htab_unlock_bucket(htab, b, hash, flags);
+err_lock_bucket:
+ if (l_new)
+ bpf_lru_push_free(&htab->lru, &l_new->lru_node);
+ return ret;
+}
+
+static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags)
+{
+ return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
+}
+
+static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags)
+{
+ return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
+ false);
+}
+
+/* Called from syscall or from eBPF program */
+static int htab_map_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct hlist_nulls_head *head;
+ struct bucket *b;
+ struct htab_elem *l;
+ unsigned long flags;
+ u32 hash, key_size;
+ int ret;
+
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
+ !rcu_read_lock_bh_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ ret = htab_lock_bucket(htab, b, hash, &flags);
+ if (ret)
+ return ret;
+
+ l = lookup_elem_raw(head, hash, key, key_size);
+
+ if (l) {
+ hlist_nulls_del_rcu(&l->hash_node);
+ free_htab_elem(htab, l);
+ } else {
+ ret = -ENOENT;
+ }
+
+ htab_unlock_bucket(htab, b, hash, flags);
+ return ret;
+}
+
+static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct hlist_nulls_head *head;
+ struct bucket *b;
+ struct htab_elem *l;
+ unsigned long flags;
+ u32 hash, key_size;
+ int ret;
+
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
+ !rcu_read_lock_bh_held());
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ ret = htab_lock_bucket(htab, b, hash, &flags);
+ if (ret)
+ return ret;
+
+ l = lookup_elem_raw(head, hash, key, key_size);
+
+ if (l)
+ hlist_nulls_del_rcu(&l->hash_node);
+ else
+ ret = -ENOENT;
+
+ htab_unlock_bucket(htab, b, hash, flags);
+ if (l)
+ htab_lru_push_free(htab, l);
+ return ret;
+}
+
+static void delete_all_elements(struct bpf_htab *htab)
+{
+ int i;
+
+ /* It's called from a worker thread, so disable migration here,
+ * since bpf_mem_cache_free() relies on that.
+ */
+ migrate_disable();
+ for (i = 0; i < htab->n_buckets; i++) {
+ struct hlist_nulls_head *head = select_bucket(htab, i);
+ struct hlist_nulls_node *n;
+ struct htab_elem *l;
+
+ hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
+ hlist_nulls_del_rcu(&l->hash_node);
+ htab_elem_free(htab, l);
+ }
+ }
+ migrate_enable();
+}
+
+static void htab_free_malloced_timers(struct bpf_htab *htab)
+{
+ int i;
+
+ rcu_read_lock();
+ for (i = 0; i < htab->n_buckets; i++) {
+ struct hlist_nulls_head *head = select_bucket(htab, i);
+ struct hlist_nulls_node *n;
+ struct htab_elem *l;
+
+ hlist_nulls_for_each_entry(l, n, head, hash_node) {
+ /* We don't reset or free kptr on uref dropping to zero,
+ * hence just free timer.
+ */
+ bpf_timer_cancel_and_free(l->key +
+ round_up(htab->map.key_size, 8) +
+ htab->map.timer_off);
+ }
+ cond_resched_rcu();
+ }
+ rcu_read_unlock();
+}
+
+static void htab_map_free_timers(struct bpf_map *map)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+
+ /* We don't reset or free kptr on uref dropping to zero. */
+ if (!map_value_has_timer(&htab->map))
+ return;
+ if (!htab_is_prealloc(htab))
+ htab_free_malloced_timers(htab);
+ else
+ htab_free_prealloced_timers(htab);
+}
+
+/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
+static void htab_map_free(struct bpf_map *map)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ int i;
+
+ /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
+ * bpf_free_used_maps() is called after bpf prog is no longer executing.
+ * There is no need to synchronize_rcu() here to protect map elements.
+ */
+
+ /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
+ * underneath and is reponsible for waiting for callbacks to finish
+ * during bpf_mem_alloc_destroy().
+ */
+ if (!htab_is_prealloc(htab)) {
+ delete_all_elements(htab);
+ } else {
+ htab_free_prealloced_kptrs(htab);
+ prealloc_destroy(htab);
+ }
+
+ bpf_map_free_kptr_off_tab(map);
+ free_percpu(htab->extra_elems);
+ bpf_map_area_free(htab->buckets);
+ bpf_mem_alloc_destroy(&htab->pcpu_ma);
+ bpf_mem_alloc_destroy(&htab->ma);
+ if (htab->use_percpu_counter)
+ percpu_counter_destroy(&htab->pcount);
+ for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
+ free_percpu(htab->map_locked[i]);
+ lockdep_unregister_key(&htab->lockdep_key);
+ bpf_map_area_free(htab);
+}
+
+static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
+ struct seq_file *m)
+{
+ void *value;
+
+ rcu_read_lock();
+
+ value = htab_map_lookup_elem(map, key);
+ if (!value) {
+ rcu_read_unlock();
+ return;
+ }
+
+ btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
+ seq_puts(m, ": ");
+ btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
+ seq_puts(m, "\n");
+
+ rcu_read_unlock();
+}
+
+static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
+ void *value, bool is_lru_map,
+ bool is_percpu, u64 flags)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct hlist_nulls_head *head;
+ unsigned long bflags;
+ struct htab_elem *l;
+ u32 hash, key_size;
+ struct bucket *b;
+ int ret;
+
+ key_size = map->key_size;
+
+ hash = htab_map_hash(key, key_size, htab->hashrnd);
+ b = __select_bucket(htab, hash);
+ head = &b->head;
+
+ ret = htab_lock_bucket(htab, b, hash, &bflags);
+ if (ret)
+ return ret;
+
+ l = lookup_elem_raw(head, hash, key, key_size);
+ if (!l) {
+ ret = -ENOENT;
+ } else {
+ if (is_percpu) {
+ u32 roundup_value_size = round_up(map->value_size, 8);
+ void __percpu *pptr;
+ int off = 0, cpu;
+
+ pptr = htab_elem_get_ptr(l, key_size);
+ for_each_possible_cpu(cpu) {
+ bpf_long_memcpy(value + off,
+ per_cpu_ptr(pptr, cpu),
+ roundup_value_size);
+ off += roundup_value_size;
+ }
+ } else {
+ u32 roundup_key_size = round_up(map->key_size, 8);
+
+ if (flags & BPF_F_LOCK)
+ copy_map_value_locked(map, value, l->key +
+ roundup_key_size,
+ true);
+ else
+ copy_map_value(map, value, l->key +
+ roundup_key_size);
+ /* Zeroing special fields in the temp buffer */
+ check_and_init_map_value(map, value);
+ }
+
+ hlist_nulls_del_rcu(&l->hash_node);
+ if (!is_lru_map)
+ free_htab_elem(htab, l);
+ }
+
+ htab_unlock_bucket(htab, b, hash, bflags);
+
+ if (is_lru_map && l)
+ htab_lru_push_free(htab, l);
+
+ return ret;
+}
+
+static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
+ void *value, u64 flags)
+{
+ return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
+ flags);
+}
+
+static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
+ void *key, void *value,
+ u64 flags)
+{
+ return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
+ flags);
+}
+
+static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
+ void *value, u64 flags)
+{
+ return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
+ flags);
+}
+
+static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
+ void *key, void *value,
+ u64 flags)
+{
+ return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
+ flags);
+}
+
+static int
+__htab_map_lookup_and_delete_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr,
+ bool do_delete, bool is_lru_map,
+ bool is_percpu)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
+ void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
+ void __user *uvalues = u64_to_user_ptr(attr->batch.values);
+ void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
+ void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
+ u32 batch, max_count, size, bucket_size, map_id;
+ struct htab_elem *node_to_free = NULL;
+ u64 elem_map_flags, map_flags;
+ struct hlist_nulls_head *head;
+ struct hlist_nulls_node *n;
+ unsigned long flags = 0;
+ bool locked = false;
+ struct htab_elem *l;
+ struct bucket *b;
+ int ret = 0;
+
+ elem_map_flags = attr->batch.elem_flags;
+ if ((elem_map_flags & ~BPF_F_LOCK) ||
+ ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
+ return -EINVAL;
+
+ map_flags = attr->batch.flags;
+ if (map_flags)
+ return -EINVAL;
+
+ max_count = attr->batch.count;
+ if (!max_count)
+ return 0;
+
+ if (put_user(0, &uattr->batch.count))
+ return -EFAULT;
+
+ batch = 0;
+ if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
+ return -EFAULT;
+
+ if (batch >= htab->n_buckets)
+ return -ENOENT;
+
+ key_size = htab->map.key_size;
+ roundup_key_size = round_up(htab->map.key_size, 8);
+ value_size = htab->map.value_size;
+ size = round_up(value_size, 8);
+ if (is_percpu)
+ value_size = size * num_possible_cpus();
+ total = 0;
+ /* while experimenting with hash tables with sizes ranging from 10 to
+ * 1000, it was observed that a bucket can have up to 5 entries.
+ */
+ bucket_size = 5;
+
+alloc:
+ /* We cannot do copy_from_user or copy_to_user inside
+ * the rcu_read_lock. Allocate enough space here.
+ */
+ keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
+ values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
+ if (!keys || !values) {
+ ret = -ENOMEM;
+ goto after_loop;
+ }
+
+again:
+ bpf_disable_instrumentation();
+ rcu_read_lock();
+again_nocopy:
+ dst_key = keys;
+ dst_val = values;
+ b = &htab->buckets[batch];
+ head = &b->head;
+ /* do not grab the lock unless need it (bucket_cnt > 0). */
+ if (locked) {
+ ret = htab_lock_bucket(htab, b, batch, &flags);
+ if (ret) {
+ rcu_read_unlock();
+ bpf_enable_instrumentation();
+ goto after_loop;
+ }
+ }
+
+ bucket_cnt = 0;
+ hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
+ bucket_cnt++;
+
+ if (bucket_cnt && !locked) {
+ locked = true;
+ goto again_nocopy;
+ }
+
+ if (bucket_cnt > (max_count - total)) {
+ if (total == 0)
+ ret = -ENOSPC;
+ /* Note that since bucket_cnt > 0 here, it is implicit
+ * that the locked was grabbed, so release it.
+ */
+ htab_unlock_bucket(htab, b, batch, flags);
+ rcu_read_unlock();
+ bpf_enable_instrumentation();
+ goto after_loop;
+ }
+
+ if (bucket_cnt > bucket_size) {
+ bucket_size = bucket_cnt;
+ /* Note that since bucket_cnt > 0 here, it is implicit
+ * that the locked was grabbed, so release it.
+ */
+ htab_unlock_bucket(htab, b, batch, flags);
+ rcu_read_unlock();
+ bpf_enable_instrumentation();
+ kvfree(keys);
+ kvfree(values);
+ goto alloc;
+ }
+
+ /* Next block is only safe to run if you have grabbed the lock */
+ if (!locked)
+ goto next_batch;
+
+ hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
+ memcpy(dst_key, l->key, key_size);
+
+ if (is_percpu) {
+ int off = 0, cpu;
+ void __percpu *pptr;
+
+ pptr = htab_elem_get_ptr(l, map->key_size);
+ for_each_possible_cpu(cpu) {
+ bpf_long_memcpy(dst_val + off,
+ per_cpu_ptr(pptr, cpu), size);
+ off += size;
+ }
+ } else {
+ value = l->key + roundup_key_size;
+ if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
+ struct bpf_map **inner_map = value;
+
+ /* Actual value is the id of the inner map */
+ map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
+ value = &map_id;
+ }
+
+ if (elem_map_flags & BPF_F_LOCK)
+ copy_map_value_locked(map, dst_val, value,
+ true);
+ else
+ copy_map_value(map, dst_val, value);
+ /* Zeroing special fields in the temp buffer */
+ check_and_init_map_value(map, dst_val);
+ }
+ if (do_delete) {
+ hlist_nulls_del_rcu(&l->hash_node);
+
+ /* bpf_lru_push_free() will acquire lru_lock, which
+ * may cause deadlock. See comments in function
+ * prealloc_lru_pop(). Let us do bpf_lru_push_free()
+ * after releasing the bucket lock.
+ */
+ if (is_lru_map) {
+ l->batch_flink = node_to_free;
+ node_to_free = l;
+ } else {
+ free_htab_elem(htab, l);
+ }
+ }
+ dst_key += key_size;
+ dst_val += value_size;
+ }
+
+ htab_unlock_bucket(htab, b, batch, flags);
+ locked = false;
+
+ while (node_to_free) {
+ l = node_to_free;
+ node_to_free = node_to_free->batch_flink;
+ htab_lru_push_free(htab, l);
+ }
+
+next_batch:
+ /* If we are not copying data, we can go to next bucket and avoid
+ * unlocking the rcu.
+ */
+ if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
+ batch++;
+ goto again_nocopy;
+ }
+
+ rcu_read_unlock();
+ bpf_enable_instrumentation();
+ if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
+ key_size * bucket_cnt) ||
+ copy_to_user(uvalues + total * value_size, values,
+ value_size * bucket_cnt))) {
+ ret = -EFAULT;
+ goto after_loop;
+ }
+
+ total += bucket_cnt;
+ batch++;
+ if (batch >= htab->n_buckets) {
+ ret = -ENOENT;
+ goto after_loop;
+ }
+ goto again;
+
+after_loop:
+ if (ret == -EFAULT)
+ goto out;
+
+ /* copy # of entries and next batch */
+ ubatch = u64_to_user_ptr(attr->batch.out_batch);
+ if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
+ put_user(total, &uattr->batch.count))
+ ret = -EFAULT;
+
+out:
+ kvfree(keys);
+ kvfree(values);
+ return ret;
+}
+
+static int
+htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
+ false, true);
+}
+
+static int
+htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
+ false, true);
+}
+
+static int
+htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
+ false, false);
+}
+
+static int
+htab_map_lookup_and_delete_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
+ false, false);
+}
+
+static int
+htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
+ true, true);
+}
+
+static int
+htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
+ true, true);
+}
+
+static int
+htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
+ true, false);
+}
+
+static int
+htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
+ true, false);
+}
+
+struct bpf_iter_seq_hash_map_info {
+ struct bpf_map *map;
+ struct bpf_htab *htab;
+ void *percpu_value_buf; // non-zero means percpu hash
+ u32 bucket_id;
+ u32 skip_elems;
+};
+
+static struct htab_elem *
+bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
+ struct htab_elem *prev_elem)
+{
+ const struct bpf_htab *htab = info->htab;
+ u32 skip_elems = info->skip_elems;
+ u32 bucket_id = info->bucket_id;
+ struct hlist_nulls_head *head;
+ struct hlist_nulls_node *n;
+ struct htab_elem *elem;
+ struct bucket *b;
+ u32 i, count;
+
+ if (bucket_id >= htab->n_buckets)
+ return NULL;
+
+ /* try to find next elem in the same bucket */
+ if (prev_elem) {
+ /* no update/deletion on this bucket, prev_elem should be still valid
+ * and we won't skip elements.
+ */
+ n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
+ elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
+ if (elem)
+ return elem;
+
+ /* not found, unlock and go to the next bucket */
+ b = &htab->buckets[bucket_id++];
+ rcu_read_unlock();
+ skip_elems = 0;
+ }
+
+ for (i = bucket_id; i < htab->n_buckets; i++) {
+ b = &htab->buckets[i];
+ rcu_read_lock();
+
+ count = 0;
+ head = &b->head;
+ hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
+ if (count >= skip_elems) {
+ info->bucket_id = i;
+ info->skip_elems = count;
+ return elem;
+ }
+ count++;
+ }
+
+ rcu_read_unlock();
+ skip_elems = 0;
+ }
+
+ info->bucket_id = i;
+ info->skip_elems = 0;
+ return NULL;
+}
+
+static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct bpf_iter_seq_hash_map_info *info = seq->private;
+ struct htab_elem *elem;
+
+ elem = bpf_hash_map_seq_find_next(info, NULL);
+ if (!elem)
+ return NULL;
+
+ if (*pos == 0)
+ ++*pos;
+ return elem;
+}
+
+static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct bpf_iter_seq_hash_map_info *info = seq->private;
+
+ ++*pos;
+ ++info->skip_elems;
+ return bpf_hash_map_seq_find_next(info, v);
+}
+
+static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
+{
+ struct bpf_iter_seq_hash_map_info *info = seq->private;
+ u32 roundup_key_size, roundup_value_size;
+ struct bpf_iter__bpf_map_elem ctx = {};
+ struct bpf_map *map = info->map;
+ struct bpf_iter_meta meta;
+ int ret = 0, off = 0, cpu;
+ struct bpf_prog *prog;
+ void __percpu *pptr;
+
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, elem == NULL);
+ if (prog) {
+ ctx.meta = &meta;
+ ctx.map = info->map;
+ if (elem) {
+ roundup_key_size = round_up(map->key_size, 8);
+ ctx.key = elem->key;
+ if (!info->percpu_value_buf) {
+ ctx.value = elem->key + roundup_key_size;
+ } else {
+ roundup_value_size = round_up(map->value_size, 8);
+ pptr = htab_elem_get_ptr(elem, map->key_size);
+ for_each_possible_cpu(cpu) {
+ bpf_long_memcpy(info->percpu_value_buf + off,
+ per_cpu_ptr(pptr, cpu),
+ roundup_value_size);
+ off += roundup_value_size;
+ }
+ ctx.value = info->percpu_value_buf;
+ }
+ }
+ ret = bpf_iter_run_prog(prog, &ctx);
+ }
+
+ return ret;
+}
+
+static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
+{
+ return __bpf_hash_map_seq_show(seq, v);
+}
+
+static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
+{
+ if (!v)
+ (void)__bpf_hash_map_seq_show(seq, NULL);
+ else
+ rcu_read_unlock();
+}
+
+static int bpf_iter_init_hash_map(void *priv_data,
+ struct bpf_iter_aux_info *aux)
+{
+ struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
+ struct bpf_map *map = aux->map;
+ void *value_buf;
+ u32 buf_size;
+
+ if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
+ buf_size = round_up(map->value_size, 8) * num_possible_cpus();
+ value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
+ if (!value_buf)
+ return -ENOMEM;
+
+ seq_info->percpu_value_buf = value_buf;
+ }
+
+ bpf_map_inc_with_uref(map);
+ seq_info->map = map;
+ seq_info->htab = container_of(map, struct bpf_htab, map);
+ return 0;
+}
+
+static void bpf_iter_fini_hash_map(void *priv_data)
+{
+ struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
+
+ bpf_map_put_with_uref(seq_info->map);
+ kfree(seq_info->percpu_value_buf);
+}
+
+static const struct seq_operations bpf_hash_map_seq_ops = {
+ .start = bpf_hash_map_seq_start,
+ .next = bpf_hash_map_seq_next,
+ .stop = bpf_hash_map_seq_stop,
+ .show = bpf_hash_map_seq_show,
+};
+
+static const struct bpf_iter_seq_info iter_seq_info = {
+ .seq_ops = &bpf_hash_map_seq_ops,
+ .init_seq_private = bpf_iter_init_hash_map,
+ .fini_seq_private = bpf_iter_fini_hash_map,
+ .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
+};
+
+static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
+ void *callback_ctx, u64 flags)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct hlist_nulls_head *head;
+ struct hlist_nulls_node *n;
+ struct htab_elem *elem;
+ u32 roundup_key_size;
+ int i, num_elems = 0;
+ void __percpu *pptr;
+ struct bucket *b;
+ void *key, *val;
+ bool is_percpu;
+ u64 ret = 0;
+
+ if (flags != 0)
+ return -EINVAL;
+
+ is_percpu = htab_is_percpu(htab);
+
+ roundup_key_size = round_up(map->key_size, 8);
+ /* disable migration so percpu value prepared here will be the
+ * same as the one seen by the bpf program with bpf_map_lookup_elem().
+ */
+ if (is_percpu)
+ migrate_disable();
+ for (i = 0; i < htab->n_buckets; i++) {
+ b = &htab->buckets[i];
+ rcu_read_lock();
+ head = &b->head;
+ hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
+ key = elem->key;
+ if (is_percpu) {
+ /* current cpu value for percpu map */
+ pptr = htab_elem_get_ptr(elem, map->key_size);
+ val = this_cpu_ptr(pptr);
+ } else {
+ val = elem->key + roundup_key_size;
+ }
+ num_elems++;
+ ret = callback_fn((u64)(long)map, (u64)(long)key,
+ (u64)(long)val, (u64)(long)callback_ctx, 0);
+ /* return value: 0 - continue, 1 - stop and return */
+ if (ret) {
+ rcu_read_unlock();
+ goto out;
+ }
+ }
+ rcu_read_unlock();
+ }
+out:
+ if (is_percpu)
+ migrate_enable();
+ return num_elems;
+}
+
+BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
+const struct bpf_map_ops htab_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = htab_map_alloc_check,
+ .map_alloc = htab_map_alloc,
+ .map_free = htab_map_free,
+ .map_get_next_key = htab_map_get_next_key,
+ .map_release_uref = htab_map_free_timers,
+ .map_lookup_elem = htab_map_lookup_elem,
+ .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
+ .map_update_elem = htab_map_update_elem,
+ .map_delete_elem = htab_map_delete_elem,
+ .map_gen_lookup = htab_map_gen_lookup,
+ .map_seq_show_elem = htab_map_seq_show_elem,
+ .map_set_for_each_callback_args = map_set_for_each_callback_args,
+ .map_for_each_callback = bpf_for_each_hash_elem,
+ BATCH_OPS(htab),
+ .map_btf_id = &htab_map_btf_ids[0],
+ .iter_seq_info = &iter_seq_info,
+};
+
+const struct bpf_map_ops htab_lru_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = htab_map_alloc_check,
+ .map_alloc = htab_map_alloc,
+ .map_free = htab_map_free,
+ .map_get_next_key = htab_map_get_next_key,
+ .map_release_uref = htab_map_free_timers,
+ .map_lookup_elem = htab_lru_map_lookup_elem,
+ .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
+ .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
+ .map_update_elem = htab_lru_map_update_elem,
+ .map_delete_elem = htab_lru_map_delete_elem,
+ .map_gen_lookup = htab_lru_map_gen_lookup,
+ .map_seq_show_elem = htab_map_seq_show_elem,
+ .map_set_for_each_callback_args = map_set_for_each_callback_args,
+ .map_for_each_callback = bpf_for_each_hash_elem,
+ BATCH_OPS(htab_lru),
+ .map_btf_id = &htab_map_btf_ids[0],
+ .iter_seq_info = &iter_seq_info,
+};
+
+/* Called from eBPF program */
+static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct htab_elem *l = __htab_map_lookup_elem(map, key);
+
+ if (l)
+ return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
+ else
+ return NULL;
+}
+
+static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
+{
+ struct htab_elem *l;
+
+ if (cpu >= nr_cpu_ids)
+ return NULL;
+
+ l = __htab_map_lookup_elem(map, key);
+ if (l)
+ return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
+ else
+ return NULL;
+}
+
+static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct htab_elem *l = __htab_map_lookup_elem(map, key);
+
+ if (l) {
+ bpf_lru_node_set_ref(&l->lru_node);
+ return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
+ }
+
+ return NULL;
+}
+
+static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
+{
+ struct htab_elem *l;
+
+ if (cpu >= nr_cpu_ids)
+ return NULL;
+
+ l = __htab_map_lookup_elem(map, key);
+ if (l) {
+ bpf_lru_node_set_ref(&l->lru_node);
+ return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
+ }
+
+ return NULL;
+}
+
+int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
+{
+ struct htab_elem *l;
+ void __percpu *pptr;
+ int ret = -ENOENT;
+ int cpu, off = 0;
+ u32 size;
+
+ /* per_cpu areas are zero-filled and bpf programs can only
+ * access 'value_size' of them, so copying rounded areas
+ * will not leak any kernel data
+ */
+ size = round_up(map->value_size, 8);
+ rcu_read_lock();
+ l = __htab_map_lookup_elem(map, key);
+ if (!l)
+ goto out;
+ /* We do not mark LRU map element here in order to not mess up
+ * eviction heuristics when user space does a map walk.
+ */
+ pptr = htab_elem_get_ptr(l, map->key_size);
+ for_each_possible_cpu(cpu) {
+ bpf_long_memcpy(value + off,
+ per_cpu_ptr(pptr, cpu), size);
+ off += size;
+ }
+ ret = 0;
+out:
+ rcu_read_unlock();
+ return ret;
+}
+
+int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ int ret;
+
+ rcu_read_lock();
+ if (htab_is_lru(htab))
+ ret = __htab_lru_percpu_map_update_elem(map, key, value,
+ map_flags, true);
+ else
+ ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
+ true);
+ rcu_read_unlock();
+
+ return ret;
+}
+
+static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
+ struct seq_file *m)
+{
+ struct htab_elem *l;
+ void __percpu *pptr;
+ int cpu;
+
+ rcu_read_lock();
+
+ l = __htab_map_lookup_elem(map, key);
+ if (!l) {
+ rcu_read_unlock();
+ return;
+ }
+
+ btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
+ seq_puts(m, ": {\n");
+ pptr = htab_elem_get_ptr(l, map->key_size);
+ for_each_possible_cpu(cpu) {
+ seq_printf(m, "\tcpu%d: ", cpu);
+ btf_type_seq_show(map->btf, map->btf_value_type_id,
+ per_cpu_ptr(pptr, cpu), m);
+ seq_puts(m, "\n");
+ }
+ seq_puts(m, "}\n");
+
+ rcu_read_unlock();
+}
+
+const struct bpf_map_ops htab_percpu_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = htab_map_alloc_check,
+ .map_alloc = htab_map_alloc,
+ .map_free = htab_map_free,
+ .map_get_next_key = htab_map_get_next_key,
+ .map_lookup_elem = htab_percpu_map_lookup_elem,
+ .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
+ .map_update_elem = htab_percpu_map_update_elem,
+ .map_delete_elem = htab_map_delete_elem,
+ .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
+ .map_seq_show_elem = htab_percpu_map_seq_show_elem,
+ .map_set_for_each_callback_args = map_set_for_each_callback_args,
+ .map_for_each_callback = bpf_for_each_hash_elem,
+ BATCH_OPS(htab_percpu),
+ .map_btf_id = &htab_map_btf_ids[0],
+ .iter_seq_info = &iter_seq_info,
+};
+
+const struct bpf_map_ops htab_lru_percpu_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = htab_map_alloc_check,
+ .map_alloc = htab_map_alloc,
+ .map_free = htab_map_free,
+ .map_get_next_key = htab_map_get_next_key,
+ .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
+ .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
+ .map_update_elem = htab_lru_percpu_map_update_elem,
+ .map_delete_elem = htab_lru_map_delete_elem,
+ .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
+ .map_seq_show_elem = htab_percpu_map_seq_show_elem,
+ .map_set_for_each_callback_args = map_set_for_each_callback_args,
+ .map_for_each_callback = bpf_for_each_hash_elem,
+ BATCH_OPS(htab_lru_percpu),
+ .map_btf_id = &htab_map_btf_ids[0],
+ .iter_seq_info = &iter_seq_info,
+};
+
+static int fd_htab_map_alloc_check(union bpf_attr *attr)
+{
+ if (attr->value_size != sizeof(u32))
+ return -EINVAL;
+ return htab_map_alloc_check(attr);
+}
+
+static void fd_htab_map_free(struct bpf_map *map)
+{
+ struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
+ struct hlist_nulls_node *n;
+ struct hlist_nulls_head *head;
+ struct htab_elem *l;
+ int i;
+
+ for (i = 0; i < htab->n_buckets; i++) {
+ head = select_bucket(htab, i);
+
+ hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
+ void *ptr = fd_htab_map_get_ptr(map, l);
+
+ map->ops->map_fd_put_ptr(map, ptr, false);
+ }
+ }
+
+ htab_map_free(map);
+}
+
+/* only called from syscall */
+int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
+{
+ void **ptr;
+ int ret = 0;
+
+ if (!map->ops->map_fd_sys_lookup_elem)
+ return -ENOTSUPP;
+
+ rcu_read_lock();
+ ptr = htab_map_lookup_elem(map, key);
+ if (ptr)
+ *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
+ else
+ ret = -ENOENT;
+ rcu_read_unlock();
+
+ return ret;
+}
+
+/* only called from syscall */
+int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
+ void *key, void *value, u64 map_flags)
+{
+ void *ptr;
+ int ret;
+ u32 ufd = *(u32 *)value;
+
+ ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
+ if (IS_ERR(ptr))
+ return PTR_ERR(ptr);
+
+ ret = htab_map_update_elem(map, key, &ptr, map_flags);
+ if (ret)
+ map->ops->map_fd_put_ptr(map, ptr, false);
+
+ return ret;
+}
+
+static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_map *map, *inner_map_meta;
+
+ inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
+ if (IS_ERR(inner_map_meta))
+ return inner_map_meta;
+
+ map = htab_map_alloc(attr);
+ if (IS_ERR(map)) {
+ bpf_map_meta_free(inner_map_meta);
+ return map;
+ }
+
+ map->inner_map_meta = inner_map_meta;
+
+ return map;
+}
+
+static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
+
+ if (!inner_map)
+ return NULL;
+
+ return READ_ONCE(*inner_map);
+}
+
+static int htab_of_map_gen_lookup(struct bpf_map *map,
+ struct bpf_insn *insn_buf)
+{
+ struct bpf_insn *insn = insn_buf;
+ const int ret = BPF_REG_0;
+
+ BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
+ (void *(*)(struct bpf_map *map, void *key))NULL));
+ *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
+ *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
+ *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
+ offsetof(struct htab_elem, key) +
+ round_up(map->key_size, 8));
+ *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
+
+ return insn - insn_buf;
+}
+
+static void htab_of_map_free(struct bpf_map *map)
+{
+ bpf_map_meta_free(map->inner_map_meta);
+ fd_htab_map_free(map);
+}
+
+const struct bpf_map_ops htab_of_maps_map_ops = {
+ .map_alloc_check = fd_htab_map_alloc_check,
+ .map_alloc = htab_of_map_alloc,
+ .map_free = htab_of_map_free,
+ .map_get_next_key = htab_map_get_next_key,
+ .map_lookup_elem = htab_of_map_lookup_elem,
+ .map_delete_elem = htab_map_delete_elem,
+ .map_fd_get_ptr = bpf_map_fd_get_ptr,
+ .map_fd_put_ptr = bpf_map_fd_put_ptr,
+ .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
+ .map_gen_lookup = htab_of_map_gen_lookup,
+ .map_check_btf = map_check_no_btf,
+ BATCH_OPS(htab),
+ .map_btf_id = &htab_map_btf_ids[0],
+};
diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c
new file mode 100644
index 000000000..6212e4ae0
--- /dev/null
+++ b/kernel/bpf/helpers.c
@@ -0,0 +1,1726 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ */
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/bpf-cgroup.h>
+#include <linux/rcupdate.h>
+#include <linux/random.h>
+#include <linux/smp.h>
+#include <linux/topology.h>
+#include <linux/ktime.h>
+#include <linux/sched.h>
+#include <linux/uidgid.h>
+#include <linux/filter.h>
+#include <linux/ctype.h>
+#include <linux/jiffies.h>
+#include <linux/pid_namespace.h>
+#include <linux/poison.h>
+#include <linux/proc_ns.h>
+#include <linux/security.h>
+#include <linux/btf_ids.h>
+
+#include "../../lib/kstrtox.h"
+
+/* If kernel subsystem is allowing eBPF programs to call this function,
+ * inside its own verifier_ops->get_func_proto() callback it should return
+ * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
+ *
+ * Different map implementations will rely on rcu in map methods
+ * lookup/update/delete, therefore eBPF programs must run under rcu lock
+ * if program is allowed to access maps, so check rcu_read_lock_held in
+ * all three functions.
+ */
+BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
+{
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
+ return (unsigned long) map->ops->map_lookup_elem(map, key);
+}
+
+const struct bpf_func_proto bpf_map_lookup_elem_proto = {
+ .func = bpf_map_lookup_elem,
+ .gpl_only = false,
+ .pkt_access = true,
+ .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_MAP_KEY,
+};
+
+BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
+ void *, value, u64, flags)
+{
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
+ return map->ops->map_update_elem(map, key, value, flags);
+}
+
+const struct bpf_func_proto bpf_map_update_elem_proto = {
+ .func = bpf_map_update_elem,
+ .gpl_only = false,
+ .pkt_access = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_MAP_KEY,
+ .arg3_type = ARG_PTR_TO_MAP_VALUE,
+ .arg4_type = ARG_ANYTHING,
+};
+
+BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
+{
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
+ return map->ops->map_delete_elem(map, key);
+}
+
+const struct bpf_func_proto bpf_map_delete_elem_proto = {
+ .func = bpf_map_delete_elem,
+ .gpl_only = false,
+ .pkt_access = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_MAP_KEY,
+};
+
+BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
+{
+ return map->ops->map_push_elem(map, value, flags);
+}
+
+const struct bpf_func_proto bpf_map_push_elem_proto = {
+ .func = bpf_map_push_elem,
+ .gpl_only = false,
+ .pkt_access = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_MAP_VALUE,
+ .arg3_type = ARG_ANYTHING,
+};
+
+BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
+{
+ return map->ops->map_pop_elem(map, value);
+}
+
+const struct bpf_func_proto bpf_map_pop_elem_proto = {
+ .func = bpf_map_pop_elem,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
+};
+
+BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
+{
+ return map->ops->map_peek_elem(map, value);
+}
+
+const struct bpf_func_proto bpf_map_peek_elem_proto = {
+ .func = bpf_map_peek_elem,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
+};
+
+BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
+{
+ WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
+ return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
+}
+
+const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
+ .func = bpf_map_lookup_percpu_elem,
+ .gpl_only = false,
+ .pkt_access = true,
+ .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_MAP_KEY,
+ .arg3_type = ARG_ANYTHING,
+};
+
+const struct bpf_func_proto bpf_get_prandom_u32_proto = {
+ .func = bpf_user_rnd_u32,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_0(bpf_get_smp_processor_id)
+{
+ return smp_processor_id();
+}
+
+const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
+ .func = bpf_get_smp_processor_id,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_0(bpf_get_numa_node_id)
+{
+ return numa_node_id();
+}
+
+const struct bpf_func_proto bpf_get_numa_node_id_proto = {
+ .func = bpf_get_numa_node_id,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_0(bpf_ktime_get_ns)
+{
+ /* NMI safe access to clock monotonic */
+ return ktime_get_mono_fast_ns();
+}
+
+const struct bpf_func_proto bpf_ktime_get_ns_proto = {
+ .func = bpf_ktime_get_ns,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_0(bpf_ktime_get_boot_ns)
+{
+ /* NMI safe access to clock boottime */
+ return ktime_get_boot_fast_ns();
+}
+
+const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
+ .func = bpf_ktime_get_boot_ns,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_0(bpf_ktime_get_coarse_ns)
+{
+ return ktime_get_coarse_ns();
+}
+
+const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
+ .func = bpf_ktime_get_coarse_ns,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_0(bpf_ktime_get_tai_ns)
+{
+ /* NMI safe access to clock tai */
+ return ktime_get_tai_fast_ns();
+}
+
+const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
+ .func = bpf_ktime_get_tai_ns,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_0(bpf_get_current_pid_tgid)
+{
+ struct task_struct *task = current;
+
+ if (unlikely(!task))
+ return -EINVAL;
+
+ return (u64) task->tgid << 32 | task->pid;
+}
+
+const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
+ .func = bpf_get_current_pid_tgid,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_0(bpf_get_current_uid_gid)
+{
+ struct task_struct *task = current;
+ kuid_t uid;
+ kgid_t gid;
+
+ if (unlikely(!task))
+ return -EINVAL;
+
+ current_uid_gid(&uid, &gid);
+ return (u64) from_kgid(&init_user_ns, gid) << 32 |
+ from_kuid(&init_user_ns, uid);
+}
+
+const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
+ .func = bpf_get_current_uid_gid,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
+{
+ struct task_struct *task = current;
+
+ if (unlikely(!task))
+ goto err_clear;
+
+ /* Verifier guarantees that size > 0 */
+ strscpy(buf, task->comm, size);
+ return 0;
+err_clear:
+ memset(buf, 0, size);
+ return -EINVAL;
+}
+
+const struct bpf_func_proto bpf_get_current_comm_proto = {
+ .func = bpf_get_current_comm,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE,
+};
+
+#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
+
+static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
+{
+ arch_spinlock_t *l = (void *)lock;
+ union {
+ __u32 val;
+ arch_spinlock_t lock;
+ } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
+
+ compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
+ BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
+ BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
+ arch_spin_lock(l);
+}
+
+static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
+{
+ arch_spinlock_t *l = (void *)lock;
+
+ arch_spin_unlock(l);
+}
+
+#else
+
+static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
+{
+ atomic_t *l = (void *)lock;
+
+ BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
+ do {
+ atomic_cond_read_relaxed(l, !VAL);
+ } while (atomic_xchg(l, 1));
+}
+
+static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
+{
+ atomic_t *l = (void *)lock;
+
+ atomic_set_release(l, 0);
+}
+
+#endif
+
+static DEFINE_PER_CPU(unsigned long, irqsave_flags);
+
+static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __bpf_spin_lock(lock);
+ __this_cpu_write(irqsave_flags, flags);
+}
+
+notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
+{
+ __bpf_spin_lock_irqsave(lock);
+ return 0;
+}
+
+const struct bpf_func_proto bpf_spin_lock_proto = {
+ .func = bpf_spin_lock,
+ .gpl_only = false,
+ .ret_type = RET_VOID,
+ .arg1_type = ARG_PTR_TO_SPIN_LOCK,
+};
+
+static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
+{
+ unsigned long flags;
+
+ flags = __this_cpu_read(irqsave_flags);
+ __bpf_spin_unlock(lock);
+ local_irq_restore(flags);
+}
+
+notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
+{
+ __bpf_spin_unlock_irqrestore(lock);
+ return 0;
+}
+
+const struct bpf_func_proto bpf_spin_unlock_proto = {
+ .func = bpf_spin_unlock,
+ .gpl_only = false,
+ .ret_type = RET_VOID,
+ .arg1_type = ARG_PTR_TO_SPIN_LOCK,
+};
+
+void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
+ bool lock_src)
+{
+ struct bpf_spin_lock *lock;
+
+ if (lock_src)
+ lock = src + map->spin_lock_off;
+ else
+ lock = dst + map->spin_lock_off;
+ preempt_disable();
+ __bpf_spin_lock_irqsave(lock);
+ copy_map_value(map, dst, src);
+ __bpf_spin_unlock_irqrestore(lock);
+ preempt_enable();
+}
+
+BPF_CALL_0(bpf_jiffies64)
+{
+ return get_jiffies_64();
+}
+
+const struct bpf_func_proto bpf_jiffies64_proto = {
+ .func = bpf_jiffies64,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+#ifdef CONFIG_CGROUPS
+BPF_CALL_0(bpf_get_current_cgroup_id)
+{
+ struct cgroup *cgrp;
+ u64 cgrp_id;
+
+ rcu_read_lock();
+ cgrp = task_dfl_cgroup(current);
+ cgrp_id = cgroup_id(cgrp);
+ rcu_read_unlock();
+
+ return cgrp_id;
+}
+
+const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
+ .func = bpf_get_current_cgroup_id,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
+{
+ struct cgroup *cgrp;
+ struct cgroup *ancestor;
+ u64 cgrp_id;
+
+ rcu_read_lock();
+ cgrp = task_dfl_cgroup(current);
+ ancestor = cgroup_ancestor(cgrp, ancestor_level);
+ cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
+ rcu_read_unlock();
+
+ return cgrp_id;
+}
+
+const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
+ .func = bpf_get_current_ancestor_cgroup_id,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_ANYTHING,
+};
+#endif /* CONFIG_CGROUPS */
+
+#define BPF_STRTOX_BASE_MASK 0x1F
+
+static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
+ unsigned long long *res, bool *is_negative)
+{
+ unsigned int base = flags & BPF_STRTOX_BASE_MASK;
+ const char *cur_buf = buf;
+ size_t cur_len = buf_len;
+ unsigned int consumed;
+ size_t val_len;
+ char str[64];
+
+ if (!buf || !buf_len || !res || !is_negative)
+ return -EINVAL;
+
+ if (base != 0 && base != 8 && base != 10 && base != 16)
+ return -EINVAL;
+
+ if (flags & ~BPF_STRTOX_BASE_MASK)
+ return -EINVAL;
+
+ while (cur_buf < buf + buf_len && isspace(*cur_buf))
+ ++cur_buf;
+
+ *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
+ if (*is_negative)
+ ++cur_buf;
+
+ consumed = cur_buf - buf;
+ cur_len -= consumed;
+ if (!cur_len)
+ return -EINVAL;
+
+ cur_len = min(cur_len, sizeof(str) - 1);
+ memcpy(str, cur_buf, cur_len);
+ str[cur_len] = '\0';
+ cur_buf = str;
+
+ cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
+ val_len = _parse_integer(cur_buf, base, res);
+
+ if (val_len & KSTRTOX_OVERFLOW)
+ return -ERANGE;
+
+ if (val_len == 0)
+ return -EINVAL;
+
+ cur_buf += val_len;
+ consumed += cur_buf - str;
+
+ return consumed;
+}
+
+static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
+ long long *res)
+{
+ unsigned long long _res;
+ bool is_negative;
+ int err;
+
+ err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
+ if (err < 0)
+ return err;
+ if (is_negative) {
+ if ((long long)-_res > 0)
+ return -ERANGE;
+ *res = -_res;
+ } else {
+ if ((long long)_res < 0)
+ return -ERANGE;
+ *res = _res;
+ }
+ return err;
+}
+
+BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
+ long *, res)
+{
+ long long _res;
+ int err;
+
+ err = __bpf_strtoll(buf, buf_len, flags, &_res);
+ if (err < 0)
+ return err;
+ if (_res != (long)_res)
+ return -ERANGE;
+ *res = _res;
+ return err;
+}
+
+const struct bpf_func_proto bpf_strtol_proto = {
+ .func = bpf_strtol,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg2_type = ARG_CONST_SIZE,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_PTR_TO_LONG,
+};
+
+BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
+ unsigned long *, res)
+{
+ unsigned long long _res;
+ bool is_negative;
+ int err;
+
+ err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
+ if (err < 0)
+ return err;
+ if (is_negative)
+ return -EINVAL;
+ if (_res != (unsigned long)_res)
+ return -ERANGE;
+ *res = _res;
+ return err;
+}
+
+const struct bpf_func_proto bpf_strtoul_proto = {
+ .func = bpf_strtoul,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg2_type = ARG_CONST_SIZE,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_PTR_TO_LONG,
+};
+
+BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
+{
+ return strncmp(s1, s2, s1_sz);
+}
+
+static const struct bpf_func_proto bpf_strncmp_proto = {
+ .func = bpf_strncmp,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_MEM,
+ .arg2_type = ARG_CONST_SIZE,
+ .arg3_type = ARG_PTR_TO_CONST_STR,
+};
+
+BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
+ struct bpf_pidns_info *, nsdata, u32, size)
+{
+ struct task_struct *task = current;
+ struct pid_namespace *pidns;
+ int err = -EINVAL;
+
+ if (unlikely(size != sizeof(struct bpf_pidns_info)))
+ goto clear;
+
+ if (unlikely((u64)(dev_t)dev != dev))
+ goto clear;
+
+ if (unlikely(!task))
+ goto clear;
+
+ pidns = task_active_pid_ns(task);
+ if (unlikely(!pidns)) {
+ err = -ENOENT;
+ goto clear;
+ }
+
+ if (!ns_match(&pidns->ns, (dev_t)dev, ino))
+ goto clear;
+
+ nsdata->pid = task_pid_nr_ns(task, pidns);
+ nsdata->tgid = task_tgid_nr_ns(task, pidns);
+ return 0;
+clear:
+ memset((void *)nsdata, 0, (size_t) size);
+ return err;
+}
+
+const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
+ .func = bpf_get_ns_current_pid_tgid,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_ANYTHING,
+ .arg2_type = ARG_ANYTHING,
+ .arg3_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg4_type = ARG_CONST_SIZE,
+};
+
+static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
+ .func = bpf_get_raw_cpu_id,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+};
+
+BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
+ u64, flags, void *, data, u64, size)
+{
+ if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
+ return -EINVAL;
+
+ return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
+}
+
+const struct bpf_func_proto bpf_event_output_data_proto = {
+ .func = bpf_event_output_data,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_CONST_MAP_PTR,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg5_type = ARG_CONST_SIZE_OR_ZERO,
+};
+
+BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
+ const void __user *, user_ptr)
+{
+ int ret = copy_from_user(dst, user_ptr, size);
+
+ if (unlikely(ret)) {
+ memset(dst, 0, size);
+ ret = -EFAULT;
+ }
+
+ return ret;
+}
+
+const struct bpf_func_proto bpf_copy_from_user_proto = {
+ .func = bpf_copy_from_user,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+};
+
+BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
+ const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
+{
+ int ret;
+
+ /* flags is not used yet */
+ if (unlikely(flags))
+ return -EINVAL;
+
+ if (unlikely(!size))
+ return 0;
+
+ ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
+ if (ret == size)
+ return 0;
+
+ memset(dst, 0, size);
+ /* Return -EFAULT for partial read */
+ return ret < 0 ? ret : -EFAULT;
+}
+
+const struct bpf_func_proto bpf_copy_from_user_task_proto = {
+ .func = bpf_copy_from_user_task,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_PTR_TO_BTF_ID,
+ .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
+ .arg5_type = ARG_ANYTHING
+};
+
+BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
+{
+ if (cpu >= nr_cpu_ids)
+ return (unsigned long)NULL;
+
+ return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
+}
+
+const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
+ .func = bpf_per_cpu_ptr,
+ .gpl_only = false,
+ .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
+ .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
+ .arg2_type = ARG_ANYTHING,
+};
+
+BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
+{
+ return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
+}
+
+const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
+ .func = bpf_this_cpu_ptr,
+ .gpl_only = false,
+ .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
+ .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
+};
+
+static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
+ size_t bufsz)
+{
+ void __user *user_ptr = (__force void __user *)unsafe_ptr;
+
+ buf[0] = 0;
+
+ switch (fmt_ptype) {
+ case 's':
+#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
+ if ((unsigned long)unsafe_ptr < TASK_SIZE)
+ return strncpy_from_user_nofault(buf, user_ptr, bufsz);
+ fallthrough;
+#endif
+ case 'k':
+ return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
+ case 'u':
+ return strncpy_from_user_nofault(buf, user_ptr, bufsz);
+ }
+
+ return -EINVAL;
+}
+
+/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
+ * arguments representation.
+ */
+#define MAX_BPRINTF_BUF_LEN 512
+
+/* Support executing three nested bprintf helper calls on a given CPU */
+#define MAX_BPRINTF_NEST_LEVEL 3
+struct bpf_bprintf_buffers {
+ char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
+};
+static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
+static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
+
+static int try_get_fmt_tmp_buf(char **tmp_buf)
+{
+ struct bpf_bprintf_buffers *bufs;
+ int nest_level;
+
+ preempt_disable();
+ nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
+ if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
+ this_cpu_dec(bpf_bprintf_nest_level);
+ preempt_enable();
+ return -EBUSY;
+ }
+ bufs = this_cpu_ptr(&bpf_bprintf_bufs);
+ *tmp_buf = bufs->tmp_bufs[nest_level - 1];
+
+ return 0;
+}
+
+void bpf_bprintf_cleanup(void)
+{
+ if (this_cpu_read(bpf_bprintf_nest_level)) {
+ this_cpu_dec(bpf_bprintf_nest_level);
+ preempt_enable();
+ }
+}
+
+/*
+ * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
+ *
+ * Returns a negative value if fmt is an invalid format string or 0 otherwise.
+ *
+ * This can be used in two ways:
+ * - Format string verification only: when bin_args is NULL
+ * - Arguments preparation: in addition to the above verification, it writes in
+ * bin_args a binary representation of arguments usable by bstr_printf where
+ * pointers from BPF have been sanitized.
+ *
+ * In argument preparation mode, if 0 is returned, safe temporary buffers are
+ * allocated and bpf_bprintf_cleanup should be called to free them after use.
+ */
+int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
+ u32 **bin_args, u32 num_args)
+{
+ char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
+ size_t sizeof_cur_arg, sizeof_cur_ip;
+ int err, i, num_spec = 0;
+ u64 cur_arg;
+ char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
+
+ fmt_end = strnchr(fmt, fmt_size, 0);
+ if (!fmt_end)
+ return -EINVAL;
+ fmt_size = fmt_end - fmt;
+
+ if (bin_args) {
+ if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
+ return -EBUSY;
+
+ tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
+ *bin_args = (u32 *)tmp_buf;
+ }
+
+ for (i = 0; i < fmt_size; i++) {
+ if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ if (fmt[i] != '%')
+ continue;
+
+ if (fmt[i + 1] == '%') {
+ i++;
+ continue;
+ }
+
+ if (num_spec >= num_args) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ /* The string is zero-terminated so if fmt[i] != 0, we can
+ * always access fmt[i + 1], in the worst case it will be a 0
+ */
+ i++;
+
+ /* skip optional "[0 +-][num]" width formatting field */
+ while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
+ fmt[i] == ' ')
+ i++;
+ if (fmt[i] >= '1' && fmt[i] <= '9') {
+ i++;
+ while (fmt[i] >= '0' && fmt[i] <= '9')
+ i++;
+ }
+
+ if (fmt[i] == 'p') {
+ sizeof_cur_arg = sizeof(long);
+
+ if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
+ fmt[i + 2] == 's') {
+ fmt_ptype = fmt[i + 1];
+ i += 2;
+ goto fmt_str;
+ }
+
+ if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
+ ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
+ fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
+ fmt[i + 1] == 'S') {
+ /* just kernel pointers */
+ if (tmp_buf)
+ cur_arg = raw_args[num_spec];
+ i++;
+ goto nocopy_fmt;
+ }
+
+ if (fmt[i + 1] == 'B') {
+ if (tmp_buf) {
+ err = snprintf(tmp_buf,
+ (tmp_buf_end - tmp_buf),
+ "%pB",
+ (void *)(long)raw_args[num_spec]);
+ tmp_buf += (err + 1);
+ }
+
+ i++;
+ num_spec++;
+ continue;
+ }
+
+ /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
+ if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
+ (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ i += 2;
+ if (!tmp_buf)
+ goto nocopy_fmt;
+
+ sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
+ if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
+ err = -ENOSPC;
+ goto out;
+ }
+
+ unsafe_ptr = (char *)(long)raw_args[num_spec];
+ err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
+ sizeof_cur_ip);
+ if (err < 0)
+ memset(cur_ip, 0, sizeof_cur_ip);
+
+ /* hack: bstr_printf expects IP addresses to be
+ * pre-formatted as strings, ironically, the easiest way
+ * to do that is to call snprintf.
+ */
+ ip_spec[2] = fmt[i - 1];
+ ip_spec[3] = fmt[i];
+ err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
+ ip_spec, &cur_ip);
+
+ tmp_buf += err + 1;
+ num_spec++;
+
+ continue;
+ } else if (fmt[i] == 's') {
+ fmt_ptype = fmt[i];
+fmt_str:
+ if (fmt[i + 1] != 0 &&
+ !isspace(fmt[i + 1]) &&
+ !ispunct(fmt[i + 1])) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ if (!tmp_buf)
+ goto nocopy_fmt;
+
+ if (tmp_buf_end == tmp_buf) {
+ err = -ENOSPC;
+ goto out;
+ }
+
+ unsafe_ptr = (char *)(long)raw_args[num_spec];
+ err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
+ fmt_ptype,
+ tmp_buf_end - tmp_buf);
+ if (err < 0) {
+ tmp_buf[0] = '\0';
+ err = 1;
+ }
+
+ tmp_buf += err;
+ num_spec++;
+
+ continue;
+ } else if (fmt[i] == 'c') {
+ if (!tmp_buf)
+ goto nocopy_fmt;
+
+ if (tmp_buf_end == tmp_buf) {
+ err = -ENOSPC;
+ goto out;
+ }
+
+ *tmp_buf = raw_args[num_spec];
+ tmp_buf++;
+ num_spec++;
+
+ continue;
+ }
+
+ sizeof_cur_arg = sizeof(int);
+
+ if (fmt[i] == 'l') {
+ sizeof_cur_arg = sizeof(long);
+ i++;
+ }
+ if (fmt[i] == 'l') {
+ sizeof_cur_arg = sizeof(long long);
+ i++;
+ }
+
+ if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
+ fmt[i] != 'x' && fmt[i] != 'X') {
+ err = -EINVAL;
+ goto out;
+ }
+
+ if (tmp_buf)
+ cur_arg = raw_args[num_spec];
+nocopy_fmt:
+ if (tmp_buf) {
+ tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
+ if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
+ err = -ENOSPC;
+ goto out;
+ }
+
+ if (sizeof_cur_arg == 8) {
+ *(u32 *)tmp_buf = *(u32 *)&cur_arg;
+ *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
+ } else {
+ *(u32 *)tmp_buf = (u32)(long)cur_arg;
+ }
+ tmp_buf += sizeof_cur_arg;
+ }
+ num_spec++;
+ }
+
+ err = 0;
+out:
+ if (err)
+ bpf_bprintf_cleanup();
+ return err;
+}
+
+BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
+ const void *, data, u32, data_len)
+{
+ int err, num_args;
+ u32 *bin_args;
+
+ if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
+ (data_len && !data))
+ return -EINVAL;
+ num_args = data_len / 8;
+
+ /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
+ * can safely give an unbounded size.
+ */
+ err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
+ if (err < 0)
+ return err;
+
+ err = bstr_printf(str, str_size, fmt, bin_args);
+
+ bpf_bprintf_cleanup();
+
+ return err + 1;
+}
+
+const struct bpf_func_proto bpf_snprintf_proto = {
+ .func = bpf_snprintf,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_PTR_TO_CONST_STR,
+ .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
+ .arg5_type = ARG_CONST_SIZE_OR_ZERO,
+};
+
+/* BPF map elements can contain 'struct bpf_timer'.
+ * Such map owns all of its BPF timers.
+ * 'struct bpf_timer' is allocated as part of map element allocation
+ * and it's zero initialized.
+ * That space is used to keep 'struct bpf_timer_kern'.
+ * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
+ * remembers 'struct bpf_map *' pointer it's part of.
+ * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
+ * bpf_timer_start() arms the timer.
+ * If user space reference to a map goes to zero at this point
+ * ops->map_release_uref callback is responsible for cancelling the timers,
+ * freeing their memory, and decrementing prog's refcnts.
+ * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
+ * Inner maps can contain bpf timers as well. ops->map_release_uref is
+ * freeing the timers when inner map is replaced or deleted by user space.
+ */
+struct bpf_hrtimer {
+ struct hrtimer timer;
+ struct bpf_map *map;
+ struct bpf_prog *prog;
+ void __rcu *callback_fn;
+ void *value;
+};
+
+/* the actual struct hidden inside uapi struct bpf_timer */
+struct bpf_timer_kern {
+ struct bpf_hrtimer *timer;
+ /* bpf_spin_lock is used here instead of spinlock_t to make
+ * sure that it always fits into space reserved by struct bpf_timer
+ * regardless of LOCKDEP and spinlock debug flags.
+ */
+ struct bpf_spin_lock lock;
+} __attribute__((aligned(8)));
+
+static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
+
+static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
+{
+ struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
+ struct bpf_map *map = t->map;
+ void *value = t->value;
+ bpf_callback_t callback_fn;
+ void *key;
+ u32 idx;
+
+ BTF_TYPE_EMIT(struct bpf_timer);
+ callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
+ if (!callback_fn)
+ goto out;
+
+ /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
+ * cannot be preempted by another bpf_timer_cb() on the same cpu.
+ * Remember the timer this callback is servicing to prevent
+ * deadlock if callback_fn() calls bpf_timer_cancel() or
+ * bpf_map_delete_elem() on the same timer.
+ */
+ this_cpu_write(hrtimer_running, t);
+ if (map->map_type == BPF_MAP_TYPE_ARRAY) {
+ struct bpf_array *array = container_of(map, struct bpf_array, map);
+
+ /* compute the key */
+ idx = ((char *)value - array->value) / array->elem_size;
+ key = &idx;
+ } else { /* hash or lru */
+ key = value - round_up(map->key_size, 8);
+ }
+
+ callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
+ /* The verifier checked that return value is zero. */
+
+ this_cpu_write(hrtimer_running, NULL);
+out:
+ return HRTIMER_NORESTART;
+}
+
+BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
+ u64, flags)
+{
+ clockid_t clockid = flags & (MAX_CLOCKS - 1);
+ struct bpf_hrtimer *t;
+ int ret = 0;
+
+ BUILD_BUG_ON(MAX_CLOCKS != 16);
+ BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
+ BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
+
+ if (in_nmi())
+ return -EOPNOTSUPP;
+
+ if (flags >= MAX_CLOCKS ||
+ /* similar to timerfd except _ALARM variants are not supported */
+ (clockid != CLOCK_MONOTONIC &&
+ clockid != CLOCK_REALTIME &&
+ clockid != CLOCK_BOOTTIME))
+ return -EINVAL;
+ __bpf_spin_lock_irqsave(&timer->lock);
+ t = timer->timer;
+ if (t) {
+ ret = -EBUSY;
+ goto out;
+ }
+ /* allocate hrtimer via map_kmalloc to use memcg accounting */
+ t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
+ if (!t) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ t->value = (void *)timer - map->timer_off;
+ t->map = map;
+ t->prog = NULL;
+ rcu_assign_pointer(t->callback_fn, NULL);
+ hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
+ t->timer.function = bpf_timer_cb;
+ WRITE_ONCE(timer->timer, t);
+ /* Guarantee the order between timer->timer and map->usercnt. So
+ * when there are concurrent uref release and bpf timer init, either
+ * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
+ * timer or atomic64_read() below returns a zero usercnt.
+ */
+ smp_mb();
+ if (!atomic64_read(&map->usercnt)) {
+ /* maps with timers must be either held by user space
+ * or pinned in bpffs.
+ */
+ WRITE_ONCE(timer->timer, NULL);
+ kfree(t);
+ ret = -EPERM;
+ }
+out:
+ __bpf_spin_unlock_irqrestore(&timer->lock);
+ return ret;
+}
+
+static const struct bpf_func_proto bpf_timer_init_proto = {
+ .func = bpf_timer_init,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_TIMER,
+ .arg2_type = ARG_CONST_MAP_PTR,
+ .arg3_type = ARG_ANYTHING,
+};
+
+BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
+ struct bpf_prog_aux *, aux)
+{
+ struct bpf_prog *prev, *prog = aux->prog;
+ struct bpf_hrtimer *t;
+ int ret = 0;
+
+ if (in_nmi())
+ return -EOPNOTSUPP;
+ __bpf_spin_lock_irqsave(&timer->lock);
+ t = timer->timer;
+ if (!t) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (!atomic64_read(&t->map->usercnt)) {
+ /* maps with timers must be either held by user space
+ * or pinned in bpffs. Otherwise timer might still be
+ * running even when bpf prog is detached and user space
+ * is gone, since map_release_uref won't ever be called.
+ */
+ ret = -EPERM;
+ goto out;
+ }
+ prev = t->prog;
+ if (prev != prog) {
+ /* Bump prog refcnt once. Every bpf_timer_set_callback()
+ * can pick different callback_fn-s within the same prog.
+ */
+ prog = bpf_prog_inc_not_zero(prog);
+ if (IS_ERR(prog)) {
+ ret = PTR_ERR(prog);
+ goto out;
+ }
+ if (prev)
+ /* Drop prev prog refcnt when swapping with new prog */
+ bpf_prog_put(prev);
+ t->prog = prog;
+ }
+ rcu_assign_pointer(t->callback_fn, callback_fn);
+out:
+ __bpf_spin_unlock_irqrestore(&timer->lock);
+ return ret;
+}
+
+static const struct bpf_func_proto bpf_timer_set_callback_proto = {
+ .func = bpf_timer_set_callback,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_TIMER,
+ .arg2_type = ARG_PTR_TO_FUNC,
+};
+
+BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
+{
+ struct bpf_hrtimer *t;
+ int ret = 0;
+
+ if (in_nmi())
+ return -EOPNOTSUPP;
+ if (flags)
+ return -EINVAL;
+ __bpf_spin_lock_irqsave(&timer->lock);
+ t = timer->timer;
+ if (!t || !t->prog) {
+ ret = -EINVAL;
+ goto out;
+ }
+ hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
+out:
+ __bpf_spin_unlock_irqrestore(&timer->lock);
+ return ret;
+}
+
+static const struct bpf_func_proto bpf_timer_start_proto = {
+ .func = bpf_timer_start,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_TIMER,
+ .arg2_type = ARG_ANYTHING,
+ .arg3_type = ARG_ANYTHING,
+};
+
+static void drop_prog_refcnt(struct bpf_hrtimer *t)
+{
+ struct bpf_prog *prog = t->prog;
+
+ if (prog) {
+ bpf_prog_put(prog);
+ t->prog = NULL;
+ rcu_assign_pointer(t->callback_fn, NULL);
+ }
+}
+
+BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
+{
+ struct bpf_hrtimer *t;
+ int ret = 0;
+
+ if (in_nmi())
+ return -EOPNOTSUPP;
+ __bpf_spin_lock_irqsave(&timer->lock);
+ t = timer->timer;
+ if (!t) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (this_cpu_read(hrtimer_running) == t) {
+ /* If bpf callback_fn is trying to bpf_timer_cancel()
+ * its own timer the hrtimer_cancel() will deadlock
+ * since it waits for callback_fn to finish
+ */
+ ret = -EDEADLK;
+ goto out;
+ }
+ drop_prog_refcnt(t);
+out:
+ __bpf_spin_unlock_irqrestore(&timer->lock);
+ /* Cancel the timer and wait for associated callback to finish
+ * if it was running.
+ */
+ ret = ret ?: hrtimer_cancel(&t->timer);
+ return ret;
+}
+
+static const struct bpf_func_proto bpf_timer_cancel_proto = {
+ .func = bpf_timer_cancel,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_TIMER,
+};
+
+/* This function is called by map_delete/update_elem for individual element and
+ * by ops->map_release_uref when the user space reference to a map reaches zero.
+ */
+void bpf_timer_cancel_and_free(void *val)
+{
+ struct bpf_timer_kern *timer = val;
+ struct bpf_hrtimer *t;
+
+ /* Performance optimization: read timer->timer without lock first. */
+ if (!READ_ONCE(timer->timer))
+ return;
+
+ __bpf_spin_lock_irqsave(&timer->lock);
+ /* re-read it under lock */
+ t = timer->timer;
+ if (!t)
+ goto out;
+ drop_prog_refcnt(t);
+ /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
+ * this timer, since it won't be initialized.
+ */
+ WRITE_ONCE(timer->timer, NULL);
+out:
+ __bpf_spin_unlock_irqrestore(&timer->lock);
+ if (!t)
+ return;
+ /* Cancel the timer and wait for callback to complete if it was running.
+ * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
+ * right after for both preallocated and non-preallocated maps.
+ * The timer->timer = NULL was already done and no code path can
+ * see address 't' anymore.
+ *
+ * Check that bpf_map_delete/update_elem() wasn't called from timer
+ * callback_fn. In such case don't call hrtimer_cancel() (since it will
+ * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
+ * return -1). Though callback_fn is still running on this cpu it's
+ * safe to do kfree(t) because bpf_timer_cb() read everything it needed
+ * from 't'. The bpf subprog callback_fn won't be able to access 't',
+ * since timer->timer = NULL was already done. The timer will be
+ * effectively cancelled because bpf_timer_cb() will return
+ * HRTIMER_NORESTART.
+ */
+ if (this_cpu_read(hrtimer_running) != t)
+ hrtimer_cancel(&t->timer);
+ kfree(t);
+}
+
+BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
+{
+ unsigned long *kptr = map_value;
+
+ return xchg(kptr, (unsigned long)ptr);
+}
+
+/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
+ * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
+ * denote type that verifier will determine.
+ */
+static const struct bpf_func_proto bpf_kptr_xchg_proto = {
+ .func = bpf_kptr_xchg,
+ .gpl_only = false,
+ .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
+ .ret_btf_id = BPF_PTR_POISON,
+ .arg1_type = ARG_PTR_TO_KPTR,
+ .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
+ .arg2_btf_id = BPF_PTR_POISON,
+};
+
+/* Since the upper 8 bits of dynptr->size is reserved, the
+ * maximum supported size is 2^24 - 1.
+ */
+#define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
+#define DYNPTR_TYPE_SHIFT 28
+#define DYNPTR_SIZE_MASK 0xFFFFFF
+#define DYNPTR_RDONLY_BIT BIT(31)
+
+static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
+{
+ return ptr->size & DYNPTR_RDONLY_BIT;
+}
+
+static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
+{
+ ptr->size |= type << DYNPTR_TYPE_SHIFT;
+}
+
+u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr)
+{
+ return ptr->size & DYNPTR_SIZE_MASK;
+}
+
+int bpf_dynptr_check_size(u32 size)
+{
+ return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
+}
+
+void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
+ enum bpf_dynptr_type type, u32 offset, u32 size)
+{
+ ptr->data = data;
+ ptr->offset = offset;
+ ptr->size = size;
+ bpf_dynptr_set_type(ptr, type);
+}
+
+void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
+{
+ memset(ptr, 0, sizeof(*ptr));
+}
+
+static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
+{
+ u32 size = bpf_dynptr_get_size(ptr);
+
+ if (len > size || offset > size - len)
+ return -E2BIG;
+
+ return 0;
+}
+
+BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
+{
+ int err;
+
+ BTF_TYPE_EMIT(struct bpf_dynptr);
+
+ err = bpf_dynptr_check_size(size);
+ if (err)
+ goto error;
+
+ /* flags is currently unsupported */
+ if (flags) {
+ err = -EINVAL;
+ goto error;
+ }
+
+ bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
+
+ return 0;
+
+error:
+ bpf_dynptr_set_null(ptr);
+ return err;
+}
+
+static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
+ .func = bpf_dynptr_from_mem,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
+};
+
+BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src,
+ u32, offset, u64, flags)
+{
+ int err;
+
+ if (!src->data || flags)
+ return -EINVAL;
+
+ err = bpf_dynptr_check_off_len(src, offset, len);
+ if (err)
+ return err;
+
+ memcpy(dst, src->data + src->offset + offset, len);
+
+ return 0;
+}
+
+static const struct bpf_func_proto bpf_dynptr_read_proto = {
+ .func = bpf_dynptr_read,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_PTR_TO_DYNPTR,
+ .arg4_type = ARG_ANYTHING,
+ .arg5_type = ARG_ANYTHING,
+};
+
+BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
+ u32, len, u64, flags)
+{
+ int err;
+
+ if (!dst->data || flags || bpf_dynptr_is_rdonly(dst))
+ return -EINVAL;
+
+ err = bpf_dynptr_check_off_len(dst, offset, len);
+ if (err)
+ return err;
+
+ memcpy(dst->data + dst->offset + offset, src, len);
+
+ return 0;
+}
+
+static const struct bpf_func_proto bpf_dynptr_write_proto = {
+ .func = bpf_dynptr_write,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_DYNPTR,
+ .arg2_type = ARG_ANYTHING,
+ .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg4_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg5_type = ARG_ANYTHING,
+};
+
+BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
+{
+ int err;
+
+ if (!ptr->data)
+ return 0;
+
+ err = bpf_dynptr_check_off_len(ptr, offset, len);
+ if (err)
+ return 0;
+
+ if (bpf_dynptr_is_rdonly(ptr))
+ return 0;
+
+ return (unsigned long)(ptr->data + ptr->offset + offset);
+}
+
+static const struct bpf_func_proto bpf_dynptr_data_proto = {
+ .func = bpf_dynptr_data,
+ .gpl_only = false,
+ .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
+ .arg1_type = ARG_PTR_TO_DYNPTR,
+ .arg2_type = ARG_ANYTHING,
+ .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
+};
+
+const struct bpf_func_proto bpf_get_current_task_proto __weak;
+const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
+const struct bpf_func_proto bpf_probe_read_user_proto __weak;
+const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
+const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
+const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
+const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
+
+const struct bpf_func_proto *
+bpf_base_func_proto(enum bpf_func_id func_id)
+{
+ switch (func_id) {
+ case BPF_FUNC_map_lookup_elem:
+ return &bpf_map_lookup_elem_proto;
+ case BPF_FUNC_map_update_elem:
+ return &bpf_map_update_elem_proto;
+ case BPF_FUNC_map_delete_elem:
+ return &bpf_map_delete_elem_proto;
+ case BPF_FUNC_map_push_elem:
+ return &bpf_map_push_elem_proto;
+ case BPF_FUNC_map_pop_elem:
+ return &bpf_map_pop_elem_proto;
+ case BPF_FUNC_map_peek_elem:
+ return &bpf_map_peek_elem_proto;
+ case BPF_FUNC_map_lookup_percpu_elem:
+ return &bpf_map_lookup_percpu_elem_proto;
+ case BPF_FUNC_get_prandom_u32:
+ return &bpf_get_prandom_u32_proto;
+ case BPF_FUNC_get_smp_processor_id:
+ return &bpf_get_raw_smp_processor_id_proto;
+ case BPF_FUNC_get_numa_node_id:
+ return &bpf_get_numa_node_id_proto;
+ case BPF_FUNC_tail_call:
+ return &bpf_tail_call_proto;
+ case BPF_FUNC_ktime_get_ns:
+ return &bpf_ktime_get_ns_proto;
+ case BPF_FUNC_ktime_get_boot_ns:
+ return &bpf_ktime_get_boot_ns_proto;
+ case BPF_FUNC_ktime_get_tai_ns:
+ return &bpf_ktime_get_tai_ns_proto;
+ case BPF_FUNC_ringbuf_output:
+ return &bpf_ringbuf_output_proto;
+ case BPF_FUNC_ringbuf_reserve:
+ return &bpf_ringbuf_reserve_proto;
+ case BPF_FUNC_ringbuf_submit:
+ return &bpf_ringbuf_submit_proto;
+ case BPF_FUNC_ringbuf_discard:
+ return &bpf_ringbuf_discard_proto;
+ case BPF_FUNC_ringbuf_query:
+ return &bpf_ringbuf_query_proto;
+ case BPF_FUNC_strncmp:
+ return &bpf_strncmp_proto;
+ case BPF_FUNC_strtol:
+ return &bpf_strtol_proto;
+ case BPF_FUNC_strtoul:
+ return &bpf_strtoul_proto;
+ default:
+ break;
+ }
+
+ if (!bpf_capable())
+ return NULL;
+
+ switch (func_id) {
+ case BPF_FUNC_spin_lock:
+ return &bpf_spin_lock_proto;
+ case BPF_FUNC_spin_unlock:
+ return &bpf_spin_unlock_proto;
+ case BPF_FUNC_jiffies64:
+ return &bpf_jiffies64_proto;
+ case BPF_FUNC_per_cpu_ptr:
+ return &bpf_per_cpu_ptr_proto;
+ case BPF_FUNC_this_cpu_ptr:
+ return &bpf_this_cpu_ptr_proto;
+ case BPF_FUNC_timer_init:
+ return &bpf_timer_init_proto;
+ case BPF_FUNC_timer_set_callback:
+ return &bpf_timer_set_callback_proto;
+ case BPF_FUNC_timer_start:
+ return &bpf_timer_start_proto;
+ case BPF_FUNC_timer_cancel:
+ return &bpf_timer_cancel_proto;
+ case BPF_FUNC_kptr_xchg:
+ return &bpf_kptr_xchg_proto;
+ case BPF_FUNC_for_each_map_elem:
+ return &bpf_for_each_map_elem_proto;
+ case BPF_FUNC_loop:
+ return &bpf_loop_proto;
+ case BPF_FUNC_user_ringbuf_drain:
+ return &bpf_user_ringbuf_drain_proto;
+ case BPF_FUNC_ringbuf_reserve_dynptr:
+ return &bpf_ringbuf_reserve_dynptr_proto;
+ case BPF_FUNC_ringbuf_submit_dynptr:
+ return &bpf_ringbuf_submit_dynptr_proto;
+ case BPF_FUNC_ringbuf_discard_dynptr:
+ return &bpf_ringbuf_discard_dynptr_proto;
+ case BPF_FUNC_dynptr_from_mem:
+ return &bpf_dynptr_from_mem_proto;
+ case BPF_FUNC_dynptr_read:
+ return &bpf_dynptr_read_proto;
+ case BPF_FUNC_dynptr_write:
+ return &bpf_dynptr_write_proto;
+ case BPF_FUNC_dynptr_data:
+ return &bpf_dynptr_data_proto;
+ default:
+ break;
+ }
+
+ if (!perfmon_capable())
+ return NULL;
+
+ switch (func_id) {
+ case BPF_FUNC_trace_printk:
+ return bpf_get_trace_printk_proto();
+ case BPF_FUNC_get_current_task:
+ return &bpf_get_current_task_proto;
+ case BPF_FUNC_get_current_task_btf:
+ return &bpf_get_current_task_btf_proto;
+ case BPF_FUNC_probe_read_user:
+ return &bpf_probe_read_user_proto;
+ case BPF_FUNC_probe_read_kernel:
+ return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
+ NULL : &bpf_probe_read_kernel_proto;
+ case BPF_FUNC_probe_read_user_str:
+ return &bpf_probe_read_user_str_proto;
+ case BPF_FUNC_probe_read_kernel_str:
+ return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
+ NULL : &bpf_probe_read_kernel_str_proto;
+ case BPF_FUNC_snprintf_btf:
+ return &bpf_snprintf_btf_proto;
+ case BPF_FUNC_snprintf:
+ return &bpf_snprintf_proto;
+ case BPF_FUNC_task_pt_regs:
+ return &bpf_task_pt_regs_proto;
+ case BPF_FUNC_trace_vprintk:
+ return bpf_get_trace_vprintk_proto();
+ default:
+ return NULL;
+ }
+}
+
+BTF_SET8_START(tracing_btf_ids)
+#ifdef CONFIG_KEXEC_CORE
+BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
+#endif
+BTF_SET8_END(tracing_btf_ids)
+
+static const struct btf_kfunc_id_set tracing_kfunc_set = {
+ .owner = THIS_MODULE,
+ .set = &tracing_btf_ids,
+};
+
+static int __init kfunc_init(void)
+{
+ return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &tracing_kfunc_set);
+}
+
+late_initcall(kfunc_init);
diff --git a/kernel/bpf/inode.c b/kernel/bpf/inode.c
new file mode 100644
index 000000000..4f841e167
--- /dev/null
+++ b/kernel/bpf/inode.c
@@ -0,0 +1,820 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Minimal file system backend for holding eBPF maps and programs,
+ * used by bpf(2) object pinning.
+ *
+ * Authors:
+ *
+ * Daniel Borkmann <daniel@iogearbox.net>
+ */
+
+#include <linux/init.h>
+#include <linux/magic.h>
+#include <linux/major.h>
+#include <linux/mount.h>
+#include <linux/namei.h>
+#include <linux/fs.h>
+#include <linux/fs_context.h>
+#include <linux/fs_parser.h>
+#include <linux/kdev_t.h>
+#include <linux/filter.h>
+#include <linux/bpf.h>
+#include <linux/bpf_trace.h>
+#include "preload/bpf_preload.h"
+
+enum bpf_type {
+ BPF_TYPE_UNSPEC = 0,
+ BPF_TYPE_PROG,
+ BPF_TYPE_MAP,
+ BPF_TYPE_LINK,
+};
+
+static void *bpf_any_get(void *raw, enum bpf_type type)
+{
+ switch (type) {
+ case BPF_TYPE_PROG:
+ bpf_prog_inc(raw);
+ break;
+ case BPF_TYPE_MAP:
+ bpf_map_inc_with_uref(raw);
+ break;
+ case BPF_TYPE_LINK:
+ bpf_link_inc(raw);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ break;
+ }
+
+ return raw;
+}
+
+static void bpf_any_put(void *raw, enum bpf_type type)
+{
+ switch (type) {
+ case BPF_TYPE_PROG:
+ bpf_prog_put(raw);
+ break;
+ case BPF_TYPE_MAP:
+ bpf_map_put_with_uref(raw);
+ break;
+ case BPF_TYPE_LINK:
+ bpf_link_put(raw);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ break;
+ }
+}
+
+static void *bpf_fd_probe_obj(u32 ufd, enum bpf_type *type)
+{
+ void *raw;
+
+ raw = bpf_map_get_with_uref(ufd);
+ if (!IS_ERR(raw)) {
+ *type = BPF_TYPE_MAP;
+ return raw;
+ }
+
+ raw = bpf_prog_get(ufd);
+ if (!IS_ERR(raw)) {
+ *type = BPF_TYPE_PROG;
+ return raw;
+ }
+
+ raw = bpf_link_get_from_fd(ufd);
+ if (!IS_ERR(raw)) {
+ *type = BPF_TYPE_LINK;
+ return raw;
+ }
+
+ return ERR_PTR(-EINVAL);
+}
+
+static const struct inode_operations bpf_dir_iops;
+
+static const struct inode_operations bpf_prog_iops = { };
+static const struct inode_operations bpf_map_iops = { };
+static const struct inode_operations bpf_link_iops = { };
+
+static struct inode *bpf_get_inode(struct super_block *sb,
+ const struct inode *dir,
+ umode_t mode)
+{
+ struct inode *inode;
+
+ switch (mode & S_IFMT) {
+ case S_IFDIR:
+ case S_IFREG:
+ case S_IFLNK:
+ break;
+ default:
+ return ERR_PTR(-EINVAL);
+ }
+
+ inode = new_inode(sb);
+ if (!inode)
+ return ERR_PTR(-ENOSPC);
+
+ inode->i_ino = get_next_ino();
+ inode->i_atime = current_time(inode);
+ inode->i_mtime = inode->i_atime;
+ inode->i_ctime = inode->i_atime;
+
+ inode_init_owner(&init_user_ns, inode, dir, mode);
+
+ return inode;
+}
+
+static int bpf_inode_type(const struct inode *inode, enum bpf_type *type)
+{
+ *type = BPF_TYPE_UNSPEC;
+ if (inode->i_op == &bpf_prog_iops)
+ *type = BPF_TYPE_PROG;
+ else if (inode->i_op == &bpf_map_iops)
+ *type = BPF_TYPE_MAP;
+ else if (inode->i_op == &bpf_link_iops)
+ *type = BPF_TYPE_LINK;
+ else
+ return -EACCES;
+
+ return 0;
+}
+
+static void bpf_dentry_finalize(struct dentry *dentry, struct inode *inode,
+ struct inode *dir)
+{
+ d_instantiate(dentry, inode);
+ dget(dentry);
+
+ dir->i_mtime = current_time(dir);
+ dir->i_ctime = dir->i_mtime;
+}
+
+static int bpf_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
+ struct dentry *dentry, umode_t mode)
+{
+ struct inode *inode;
+
+ inode = bpf_get_inode(dir->i_sb, dir, mode | S_IFDIR);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ inode->i_op = &bpf_dir_iops;
+ inode->i_fop = &simple_dir_operations;
+
+ inc_nlink(inode);
+ inc_nlink(dir);
+
+ bpf_dentry_finalize(dentry, inode, dir);
+ return 0;
+}
+
+struct map_iter {
+ void *key;
+ bool done;
+};
+
+static struct map_iter *map_iter(struct seq_file *m)
+{
+ return m->private;
+}
+
+static struct bpf_map *seq_file_to_map(struct seq_file *m)
+{
+ return file_inode(m->file)->i_private;
+}
+
+static void map_iter_free(struct map_iter *iter)
+{
+ if (iter) {
+ kfree(iter->key);
+ kfree(iter);
+ }
+}
+
+static struct map_iter *map_iter_alloc(struct bpf_map *map)
+{
+ struct map_iter *iter;
+
+ iter = kzalloc(sizeof(*iter), GFP_KERNEL | __GFP_NOWARN);
+ if (!iter)
+ goto error;
+
+ iter->key = kzalloc(map->key_size, GFP_KERNEL | __GFP_NOWARN);
+ if (!iter->key)
+ goto error;
+
+ return iter;
+
+error:
+ map_iter_free(iter);
+ return NULL;
+}
+
+static void *map_seq_next(struct seq_file *m, void *v, loff_t *pos)
+{
+ struct bpf_map *map = seq_file_to_map(m);
+ void *key = map_iter(m)->key;
+ void *prev_key;
+
+ (*pos)++;
+ if (map_iter(m)->done)
+ return NULL;
+
+ if (unlikely(v == SEQ_START_TOKEN))
+ prev_key = NULL;
+ else
+ prev_key = key;
+
+ rcu_read_lock();
+ if (map->ops->map_get_next_key(map, prev_key, key)) {
+ map_iter(m)->done = true;
+ key = NULL;
+ }
+ rcu_read_unlock();
+ return key;
+}
+
+static void *map_seq_start(struct seq_file *m, loff_t *pos)
+{
+ if (map_iter(m)->done)
+ return NULL;
+
+ return *pos ? map_iter(m)->key : SEQ_START_TOKEN;
+}
+
+static void map_seq_stop(struct seq_file *m, void *v)
+{
+}
+
+static int map_seq_show(struct seq_file *m, void *v)
+{
+ struct bpf_map *map = seq_file_to_map(m);
+ void *key = map_iter(m)->key;
+
+ if (unlikely(v == SEQ_START_TOKEN)) {
+ seq_puts(m, "# WARNING!! The output is for debug purpose only\n");
+ seq_puts(m, "# WARNING!! The output format will change\n");
+ } else {
+ map->ops->map_seq_show_elem(map, key, m);
+ }
+
+ return 0;
+}
+
+static const struct seq_operations bpffs_map_seq_ops = {
+ .start = map_seq_start,
+ .next = map_seq_next,
+ .show = map_seq_show,
+ .stop = map_seq_stop,
+};
+
+static int bpffs_map_open(struct inode *inode, struct file *file)
+{
+ struct bpf_map *map = inode->i_private;
+ struct map_iter *iter;
+ struct seq_file *m;
+ int err;
+
+ iter = map_iter_alloc(map);
+ if (!iter)
+ return -ENOMEM;
+
+ err = seq_open(file, &bpffs_map_seq_ops);
+ if (err) {
+ map_iter_free(iter);
+ return err;
+ }
+
+ m = file->private_data;
+ m->private = iter;
+
+ return 0;
+}
+
+static int bpffs_map_release(struct inode *inode, struct file *file)
+{
+ struct seq_file *m = file->private_data;
+
+ map_iter_free(map_iter(m));
+
+ return seq_release(inode, file);
+}
+
+/* bpffs_map_fops should only implement the basic
+ * read operation for a BPF map. The purpose is to
+ * provide a simple user intuitive way to do
+ * "cat bpffs/pathto/a-pinned-map".
+ *
+ * Other operations (e.g. write, lookup...) should be realized by
+ * the userspace tools (e.g. bpftool) through the
+ * BPF_OBJ_GET_INFO_BY_FD and the map's lookup/update
+ * interface.
+ */
+static const struct file_operations bpffs_map_fops = {
+ .open = bpffs_map_open,
+ .read = seq_read,
+ .release = bpffs_map_release,
+};
+
+static int bpffs_obj_open(struct inode *inode, struct file *file)
+{
+ return -EIO;
+}
+
+static const struct file_operations bpffs_obj_fops = {
+ .open = bpffs_obj_open,
+};
+
+static int bpf_mkobj_ops(struct dentry *dentry, umode_t mode, void *raw,
+ const struct inode_operations *iops,
+ const struct file_operations *fops)
+{
+ struct inode *dir = dentry->d_parent->d_inode;
+ struct inode *inode = bpf_get_inode(dir->i_sb, dir, mode);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ inode->i_op = iops;
+ inode->i_fop = fops;
+ inode->i_private = raw;
+
+ bpf_dentry_finalize(dentry, inode, dir);
+ return 0;
+}
+
+static int bpf_mkprog(struct dentry *dentry, umode_t mode, void *arg)
+{
+ return bpf_mkobj_ops(dentry, mode, arg, &bpf_prog_iops,
+ &bpffs_obj_fops);
+}
+
+static int bpf_mkmap(struct dentry *dentry, umode_t mode, void *arg)
+{
+ struct bpf_map *map = arg;
+
+ return bpf_mkobj_ops(dentry, mode, arg, &bpf_map_iops,
+ bpf_map_support_seq_show(map) ?
+ &bpffs_map_fops : &bpffs_obj_fops);
+}
+
+static int bpf_mklink(struct dentry *dentry, umode_t mode, void *arg)
+{
+ struct bpf_link *link = arg;
+
+ return bpf_mkobj_ops(dentry, mode, arg, &bpf_link_iops,
+ bpf_link_is_iter(link) ?
+ &bpf_iter_fops : &bpffs_obj_fops);
+}
+
+static struct dentry *
+bpf_lookup(struct inode *dir, struct dentry *dentry, unsigned flags)
+{
+ /* Dots in names (e.g. "/sys/fs/bpf/foo.bar") are reserved for future
+ * extensions. That allows popoulate_bpffs() create special files.
+ */
+ if ((dir->i_mode & S_IALLUGO) &&
+ strchr(dentry->d_name.name, '.'))
+ return ERR_PTR(-EPERM);
+
+ return simple_lookup(dir, dentry, flags);
+}
+
+static int bpf_symlink(struct user_namespace *mnt_userns, struct inode *dir,
+ struct dentry *dentry, const char *target)
+{
+ char *link = kstrdup(target, GFP_USER | __GFP_NOWARN);
+ struct inode *inode;
+
+ if (!link)
+ return -ENOMEM;
+
+ inode = bpf_get_inode(dir->i_sb, dir, S_IRWXUGO | S_IFLNK);
+ if (IS_ERR(inode)) {
+ kfree(link);
+ return PTR_ERR(inode);
+ }
+
+ inode->i_op = &simple_symlink_inode_operations;
+ inode->i_link = link;
+
+ bpf_dentry_finalize(dentry, inode, dir);
+ return 0;
+}
+
+static const struct inode_operations bpf_dir_iops = {
+ .lookup = bpf_lookup,
+ .mkdir = bpf_mkdir,
+ .symlink = bpf_symlink,
+ .rmdir = simple_rmdir,
+ .rename = simple_rename,
+ .link = simple_link,
+ .unlink = simple_unlink,
+};
+
+/* pin iterator link into bpffs */
+static int bpf_iter_link_pin_kernel(struct dentry *parent,
+ const char *name, struct bpf_link *link)
+{
+ umode_t mode = S_IFREG | S_IRUSR;
+ struct dentry *dentry;
+ int ret;
+
+ inode_lock(parent->d_inode);
+ dentry = lookup_one_len(name, parent, strlen(name));
+ if (IS_ERR(dentry)) {
+ inode_unlock(parent->d_inode);
+ return PTR_ERR(dentry);
+ }
+ ret = bpf_mkobj_ops(dentry, mode, link, &bpf_link_iops,
+ &bpf_iter_fops);
+ dput(dentry);
+ inode_unlock(parent->d_inode);
+ return ret;
+}
+
+static int bpf_obj_do_pin(const char __user *pathname, void *raw,
+ enum bpf_type type)
+{
+ struct dentry *dentry;
+ struct inode *dir;
+ struct path path;
+ umode_t mode;
+ int ret;
+
+ dentry = user_path_create(AT_FDCWD, pathname, &path, 0);
+ if (IS_ERR(dentry))
+ return PTR_ERR(dentry);
+
+ mode = S_IFREG | ((S_IRUSR | S_IWUSR) & ~current_umask());
+
+ ret = security_path_mknod(&path, dentry, mode, 0);
+ if (ret)
+ goto out;
+
+ dir = d_inode(path.dentry);
+ if (dir->i_op != &bpf_dir_iops) {
+ ret = -EPERM;
+ goto out;
+ }
+
+ switch (type) {
+ case BPF_TYPE_PROG:
+ ret = vfs_mkobj(dentry, mode, bpf_mkprog, raw);
+ break;
+ case BPF_TYPE_MAP:
+ ret = vfs_mkobj(dentry, mode, bpf_mkmap, raw);
+ break;
+ case BPF_TYPE_LINK:
+ ret = vfs_mkobj(dentry, mode, bpf_mklink, raw);
+ break;
+ default:
+ ret = -EPERM;
+ }
+out:
+ done_path_create(&path, dentry);
+ return ret;
+}
+
+int bpf_obj_pin_user(u32 ufd, const char __user *pathname)
+{
+ enum bpf_type type;
+ void *raw;
+ int ret;
+
+ raw = bpf_fd_probe_obj(ufd, &type);
+ if (IS_ERR(raw))
+ return PTR_ERR(raw);
+
+ ret = bpf_obj_do_pin(pathname, raw, type);
+ if (ret != 0)
+ bpf_any_put(raw, type);
+
+ return ret;
+}
+
+static void *bpf_obj_do_get(const char __user *pathname,
+ enum bpf_type *type, int flags)
+{
+ struct inode *inode;
+ struct path path;
+ void *raw;
+ int ret;
+
+ ret = user_path_at(AT_FDCWD, pathname, LOOKUP_FOLLOW, &path);
+ if (ret)
+ return ERR_PTR(ret);
+
+ inode = d_backing_inode(path.dentry);
+ ret = path_permission(&path, ACC_MODE(flags));
+ if (ret)
+ goto out;
+
+ ret = bpf_inode_type(inode, type);
+ if (ret)
+ goto out;
+
+ raw = bpf_any_get(inode->i_private, *type);
+ if (!IS_ERR(raw))
+ touch_atime(&path);
+
+ path_put(&path);
+ return raw;
+out:
+ path_put(&path);
+ return ERR_PTR(ret);
+}
+
+int bpf_obj_get_user(const char __user *pathname, int flags)
+{
+ enum bpf_type type = BPF_TYPE_UNSPEC;
+ int f_flags;
+ void *raw;
+ int ret;
+
+ f_flags = bpf_get_file_flag(flags);
+ if (f_flags < 0)
+ return f_flags;
+
+ raw = bpf_obj_do_get(pathname, &type, f_flags);
+ if (IS_ERR(raw))
+ return PTR_ERR(raw);
+
+ if (type == BPF_TYPE_PROG)
+ ret = bpf_prog_new_fd(raw);
+ else if (type == BPF_TYPE_MAP)
+ ret = bpf_map_new_fd(raw, f_flags);
+ else if (type == BPF_TYPE_LINK)
+ ret = (f_flags != O_RDWR) ? -EINVAL : bpf_link_new_fd(raw);
+ else
+ return -ENOENT;
+
+ if (ret < 0)
+ bpf_any_put(raw, type);
+ return ret;
+}
+
+static struct bpf_prog *__get_prog_inode(struct inode *inode, enum bpf_prog_type type)
+{
+ struct bpf_prog *prog;
+ int ret = inode_permission(&init_user_ns, inode, MAY_READ);
+ if (ret)
+ return ERR_PTR(ret);
+
+ if (inode->i_op == &bpf_map_iops)
+ return ERR_PTR(-EINVAL);
+ if (inode->i_op == &bpf_link_iops)
+ return ERR_PTR(-EINVAL);
+ if (inode->i_op != &bpf_prog_iops)
+ return ERR_PTR(-EACCES);
+
+ prog = inode->i_private;
+
+ ret = security_bpf_prog(prog);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ if (!bpf_prog_get_ok(prog, &type, false))
+ return ERR_PTR(-EINVAL);
+
+ bpf_prog_inc(prog);
+ return prog;
+}
+
+struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type)
+{
+ struct bpf_prog *prog;
+ struct path path;
+ int ret = kern_path(name, LOOKUP_FOLLOW, &path);
+ if (ret)
+ return ERR_PTR(ret);
+ prog = __get_prog_inode(d_backing_inode(path.dentry), type);
+ if (!IS_ERR(prog))
+ touch_atime(&path);
+ path_put(&path);
+ return prog;
+}
+EXPORT_SYMBOL(bpf_prog_get_type_path);
+
+/*
+ * Display the mount options in /proc/mounts.
+ */
+static int bpf_show_options(struct seq_file *m, struct dentry *root)
+{
+ umode_t mode = d_inode(root)->i_mode & S_IALLUGO & ~S_ISVTX;
+
+ if (mode != S_IRWXUGO)
+ seq_printf(m, ",mode=%o", mode);
+ return 0;
+}
+
+static void bpf_free_inode(struct inode *inode)
+{
+ enum bpf_type type;
+
+ if (S_ISLNK(inode->i_mode))
+ kfree(inode->i_link);
+ if (!bpf_inode_type(inode, &type))
+ bpf_any_put(inode->i_private, type);
+ free_inode_nonrcu(inode);
+}
+
+static const struct super_operations bpf_super_ops = {
+ .statfs = simple_statfs,
+ .drop_inode = generic_delete_inode,
+ .show_options = bpf_show_options,
+ .free_inode = bpf_free_inode,
+};
+
+enum {
+ OPT_MODE,
+};
+
+static const struct fs_parameter_spec bpf_fs_parameters[] = {
+ fsparam_u32oct ("mode", OPT_MODE),
+ {}
+};
+
+struct bpf_mount_opts {
+ umode_t mode;
+};
+
+static int bpf_parse_param(struct fs_context *fc, struct fs_parameter *param)
+{
+ struct bpf_mount_opts *opts = fc->fs_private;
+ struct fs_parse_result result;
+ int opt;
+
+ opt = fs_parse(fc, bpf_fs_parameters, param, &result);
+ if (opt < 0) {
+ /* We might like to report bad mount options here, but
+ * traditionally we've ignored all mount options, so we'd
+ * better continue to ignore non-existing options for bpf.
+ */
+ if (opt == -ENOPARAM) {
+ opt = vfs_parse_fs_param_source(fc, param);
+ if (opt != -ENOPARAM)
+ return opt;
+
+ return 0;
+ }
+
+ if (opt < 0)
+ return opt;
+ }
+
+ switch (opt) {
+ case OPT_MODE:
+ opts->mode = result.uint_32 & S_IALLUGO;
+ break;
+ }
+
+ return 0;
+}
+
+struct bpf_preload_ops *bpf_preload_ops;
+EXPORT_SYMBOL_GPL(bpf_preload_ops);
+
+static bool bpf_preload_mod_get(void)
+{
+ /* If bpf_preload.ko wasn't loaded earlier then load it now.
+ * When bpf_preload is built into vmlinux the module's __init
+ * function will populate it.
+ */
+ if (!bpf_preload_ops) {
+ request_module("bpf_preload");
+ if (!bpf_preload_ops)
+ return false;
+ }
+ /* And grab the reference, so the module doesn't disappear while the
+ * kernel is interacting with the kernel module and its UMD.
+ */
+ if (!try_module_get(bpf_preload_ops->owner)) {
+ pr_err("bpf_preload module get failed.\n");
+ return false;
+ }
+ return true;
+}
+
+static void bpf_preload_mod_put(void)
+{
+ if (bpf_preload_ops)
+ /* now user can "rmmod bpf_preload" if necessary */
+ module_put(bpf_preload_ops->owner);
+}
+
+static DEFINE_MUTEX(bpf_preload_lock);
+
+static int populate_bpffs(struct dentry *parent)
+{
+ struct bpf_preload_info objs[BPF_PRELOAD_LINKS] = {};
+ int err = 0, i;
+
+ /* grab the mutex to make sure the kernel interactions with bpf_preload
+ * are serialized
+ */
+ mutex_lock(&bpf_preload_lock);
+
+ /* if bpf_preload.ko wasn't built into vmlinux then load it */
+ if (!bpf_preload_mod_get())
+ goto out;
+
+ err = bpf_preload_ops->preload(objs);
+ if (err)
+ goto out_put;
+ for (i = 0; i < BPF_PRELOAD_LINKS; i++) {
+ bpf_link_inc(objs[i].link);
+ err = bpf_iter_link_pin_kernel(parent,
+ objs[i].link_name, objs[i].link);
+ if (err) {
+ bpf_link_put(objs[i].link);
+ goto out_put;
+ }
+ }
+out_put:
+ bpf_preload_mod_put();
+out:
+ mutex_unlock(&bpf_preload_lock);
+ return err;
+}
+
+static int bpf_fill_super(struct super_block *sb, struct fs_context *fc)
+{
+ static const struct tree_descr bpf_rfiles[] = { { "" } };
+ struct bpf_mount_opts *opts = fc->fs_private;
+ struct inode *inode;
+ int ret;
+
+ ret = simple_fill_super(sb, BPF_FS_MAGIC, bpf_rfiles);
+ if (ret)
+ return ret;
+
+ sb->s_op = &bpf_super_ops;
+
+ inode = sb->s_root->d_inode;
+ inode->i_op = &bpf_dir_iops;
+ inode->i_mode &= ~S_IALLUGO;
+ populate_bpffs(sb->s_root);
+ inode->i_mode |= S_ISVTX | opts->mode;
+ return 0;
+}
+
+static int bpf_get_tree(struct fs_context *fc)
+{
+ return get_tree_nodev(fc, bpf_fill_super);
+}
+
+static void bpf_free_fc(struct fs_context *fc)
+{
+ kfree(fc->fs_private);
+}
+
+static const struct fs_context_operations bpf_context_ops = {
+ .free = bpf_free_fc,
+ .parse_param = bpf_parse_param,
+ .get_tree = bpf_get_tree,
+};
+
+/*
+ * Set up the filesystem mount context.
+ */
+static int bpf_init_fs_context(struct fs_context *fc)
+{
+ struct bpf_mount_opts *opts;
+
+ opts = kzalloc(sizeof(struct bpf_mount_opts), GFP_KERNEL);
+ if (!opts)
+ return -ENOMEM;
+
+ opts->mode = S_IRWXUGO;
+
+ fc->fs_private = opts;
+ fc->ops = &bpf_context_ops;
+ return 0;
+}
+
+static struct file_system_type bpf_fs_type = {
+ .owner = THIS_MODULE,
+ .name = "bpf",
+ .init_fs_context = bpf_init_fs_context,
+ .parameters = bpf_fs_parameters,
+ .kill_sb = kill_litter_super,
+};
+
+static int __init bpf_init(void)
+{
+ int ret;
+
+ ret = sysfs_create_mount_point(fs_kobj, "bpf");
+ if (ret)
+ return ret;
+
+ ret = register_filesystem(&bpf_fs_type);
+ if (ret)
+ sysfs_remove_mount_point(fs_kobj, "bpf");
+
+ return ret;
+}
+fs_initcall(bpf_init);
diff --git a/kernel/bpf/link_iter.c b/kernel/bpf/link_iter.c
new file mode 100644
index 000000000..fec8005a1
--- /dev/null
+++ b/kernel/bpf/link_iter.c
@@ -0,0 +1,107 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2022 Red Hat, Inc. */
+#include <linux/bpf.h>
+#include <linux/fs.h>
+#include <linux/filter.h>
+#include <linux/kernel.h>
+#include <linux/btf_ids.h>
+
+struct bpf_iter_seq_link_info {
+ u32 link_id;
+};
+
+static void *bpf_link_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct bpf_iter_seq_link_info *info = seq->private;
+ struct bpf_link *link;
+
+ link = bpf_link_get_curr_or_next(&info->link_id);
+ if (!link)
+ return NULL;
+
+ if (*pos == 0)
+ ++*pos;
+ return link;
+}
+
+static void *bpf_link_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct bpf_iter_seq_link_info *info = seq->private;
+
+ ++*pos;
+ ++info->link_id;
+ bpf_link_put((struct bpf_link *)v);
+ return bpf_link_get_curr_or_next(&info->link_id);
+}
+
+struct bpf_iter__bpf_link {
+ __bpf_md_ptr(struct bpf_iter_meta *, meta);
+ __bpf_md_ptr(struct bpf_link *, link);
+};
+
+DEFINE_BPF_ITER_FUNC(bpf_link, struct bpf_iter_meta *meta, struct bpf_link *link)
+
+static int __bpf_link_seq_show(struct seq_file *seq, void *v, bool in_stop)
+{
+ struct bpf_iter__bpf_link ctx;
+ struct bpf_iter_meta meta;
+ struct bpf_prog *prog;
+ int ret = 0;
+
+ ctx.meta = &meta;
+ ctx.link = v;
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, in_stop);
+ if (prog)
+ ret = bpf_iter_run_prog(prog, &ctx);
+
+ return ret;
+}
+
+static int bpf_link_seq_show(struct seq_file *seq, void *v)
+{
+ return __bpf_link_seq_show(seq, v, false);
+}
+
+static void bpf_link_seq_stop(struct seq_file *seq, void *v)
+{
+ if (!v)
+ (void)__bpf_link_seq_show(seq, v, true);
+ else
+ bpf_link_put((struct bpf_link *)v);
+}
+
+static const struct seq_operations bpf_link_seq_ops = {
+ .start = bpf_link_seq_start,
+ .next = bpf_link_seq_next,
+ .stop = bpf_link_seq_stop,
+ .show = bpf_link_seq_show,
+};
+
+BTF_ID_LIST(btf_bpf_link_id)
+BTF_ID(struct, bpf_link)
+
+static const struct bpf_iter_seq_info bpf_link_seq_info = {
+ .seq_ops = &bpf_link_seq_ops,
+ .init_seq_private = NULL,
+ .fini_seq_private = NULL,
+ .seq_priv_size = sizeof(struct bpf_iter_seq_link_info),
+};
+
+static struct bpf_iter_reg bpf_link_reg_info = {
+ .target = "bpf_link",
+ .ctx_arg_info_size = 1,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__bpf_link, link),
+ PTR_TO_BTF_ID_OR_NULL },
+ },
+ .seq_info = &bpf_link_seq_info,
+};
+
+static int __init bpf_link_iter_init(void)
+{
+ bpf_link_reg_info.ctx_arg_info[0].btf_id = *btf_bpf_link_id;
+ return bpf_iter_reg_target(&bpf_link_reg_info);
+}
+
+late_initcall(bpf_link_iter_init);
diff --git a/kernel/bpf/local_storage.c b/kernel/bpf/local_storage.c
new file mode 100644
index 000000000..f01ca6f1e
--- /dev/null
+++ b/kernel/bpf/local_storage.c
@@ -0,0 +1,607 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/bpf-cgroup.h>
+#include <linux/bpf.h>
+#include <linux/bpf_local_storage.h>
+#include <linux/btf.h>
+#include <linux/bug.h>
+#include <linux/filter.h>
+#include <linux/mm.h>
+#include <linux/rbtree.h>
+#include <linux/slab.h>
+#include <uapi/linux/btf.h>
+#include <linux/btf_ids.h>
+
+#ifdef CONFIG_CGROUP_BPF
+
+#include "../cgroup/cgroup-internal.h"
+
+#define LOCAL_STORAGE_CREATE_FLAG_MASK \
+ (BPF_F_NUMA_NODE | BPF_F_ACCESS_MASK)
+
+struct bpf_cgroup_storage_map {
+ struct bpf_map map;
+
+ spinlock_t lock;
+ struct rb_root root;
+ struct list_head list;
+};
+
+static struct bpf_cgroup_storage_map *map_to_storage(struct bpf_map *map)
+{
+ return container_of(map, struct bpf_cgroup_storage_map, map);
+}
+
+static bool attach_type_isolated(const struct bpf_map *map)
+{
+ return map->key_size == sizeof(struct bpf_cgroup_storage_key);
+}
+
+static int bpf_cgroup_storage_key_cmp(const struct bpf_cgroup_storage_map *map,
+ const void *_key1, const void *_key2)
+{
+ if (attach_type_isolated(&map->map)) {
+ const struct bpf_cgroup_storage_key *key1 = _key1;
+ const struct bpf_cgroup_storage_key *key2 = _key2;
+
+ if (key1->cgroup_inode_id < key2->cgroup_inode_id)
+ return -1;
+ else if (key1->cgroup_inode_id > key2->cgroup_inode_id)
+ return 1;
+ else if (key1->attach_type < key2->attach_type)
+ return -1;
+ else if (key1->attach_type > key2->attach_type)
+ return 1;
+ } else {
+ const __u64 *cgroup_inode_id1 = _key1;
+ const __u64 *cgroup_inode_id2 = _key2;
+
+ if (*cgroup_inode_id1 < *cgroup_inode_id2)
+ return -1;
+ else if (*cgroup_inode_id1 > *cgroup_inode_id2)
+ return 1;
+ }
+ return 0;
+}
+
+struct bpf_cgroup_storage *
+cgroup_storage_lookup(struct bpf_cgroup_storage_map *map,
+ void *key, bool locked)
+{
+ struct rb_root *root = &map->root;
+ struct rb_node *node;
+
+ if (!locked)
+ spin_lock_bh(&map->lock);
+
+ node = root->rb_node;
+ while (node) {
+ struct bpf_cgroup_storage *storage;
+
+ storage = container_of(node, struct bpf_cgroup_storage, node);
+
+ switch (bpf_cgroup_storage_key_cmp(map, key, &storage->key)) {
+ case -1:
+ node = node->rb_left;
+ break;
+ case 1:
+ node = node->rb_right;
+ break;
+ default:
+ if (!locked)
+ spin_unlock_bh(&map->lock);
+ return storage;
+ }
+ }
+
+ if (!locked)
+ spin_unlock_bh(&map->lock);
+
+ return NULL;
+}
+
+static int cgroup_storage_insert(struct bpf_cgroup_storage_map *map,
+ struct bpf_cgroup_storage *storage)
+{
+ struct rb_root *root = &map->root;
+ struct rb_node **new = &(root->rb_node), *parent = NULL;
+
+ while (*new) {
+ struct bpf_cgroup_storage *this;
+
+ this = container_of(*new, struct bpf_cgroup_storage, node);
+
+ parent = *new;
+ switch (bpf_cgroup_storage_key_cmp(map, &storage->key, &this->key)) {
+ case -1:
+ new = &((*new)->rb_left);
+ break;
+ case 1:
+ new = &((*new)->rb_right);
+ break;
+ default:
+ return -EEXIST;
+ }
+ }
+
+ rb_link_node(&storage->node, parent, new);
+ rb_insert_color(&storage->node, root);
+
+ return 0;
+}
+
+static void *cgroup_storage_lookup_elem(struct bpf_map *_map, void *key)
+{
+ struct bpf_cgroup_storage_map *map = map_to_storage(_map);
+ struct bpf_cgroup_storage *storage;
+
+ storage = cgroup_storage_lookup(map, key, false);
+ if (!storage)
+ return NULL;
+
+ return &READ_ONCE(storage->buf)->data[0];
+}
+
+static int cgroup_storage_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 flags)
+{
+ struct bpf_cgroup_storage *storage;
+ struct bpf_storage_buffer *new;
+
+ if (unlikely(flags & ~(BPF_F_LOCK | BPF_EXIST)))
+ return -EINVAL;
+
+ if (unlikely((flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(map)))
+ return -EINVAL;
+
+ storage = cgroup_storage_lookup((struct bpf_cgroup_storage_map *)map,
+ key, false);
+ if (!storage)
+ return -ENOENT;
+
+ if (flags & BPF_F_LOCK) {
+ copy_map_value_locked(map, storage->buf->data, value, false);
+ return 0;
+ }
+
+ new = bpf_map_kmalloc_node(map, struct_size(new, data, map->value_size),
+ __GFP_ZERO | GFP_NOWAIT | __GFP_NOWARN,
+ map->numa_node);
+ if (!new)
+ return -ENOMEM;
+
+ memcpy(&new->data[0], value, map->value_size);
+ check_and_init_map_value(map, new->data);
+
+ new = xchg(&storage->buf, new);
+ kfree_rcu(new, rcu);
+
+ return 0;
+}
+
+int bpf_percpu_cgroup_storage_copy(struct bpf_map *_map, void *key,
+ void *value)
+{
+ struct bpf_cgroup_storage_map *map = map_to_storage(_map);
+ struct bpf_cgroup_storage *storage;
+ int cpu, off = 0;
+ u32 size;
+
+ rcu_read_lock();
+ storage = cgroup_storage_lookup(map, key, false);
+ if (!storage) {
+ rcu_read_unlock();
+ return -ENOENT;
+ }
+
+ /* per_cpu areas are zero-filled and bpf programs can only
+ * access 'value_size' of them, so copying rounded areas
+ * will not leak any kernel data
+ */
+ size = round_up(_map->value_size, 8);
+ for_each_possible_cpu(cpu) {
+ bpf_long_memcpy(value + off,
+ per_cpu_ptr(storage->percpu_buf, cpu), size);
+ off += size;
+ }
+ rcu_read_unlock();
+ return 0;
+}
+
+int bpf_percpu_cgroup_storage_update(struct bpf_map *_map, void *key,
+ void *value, u64 map_flags)
+{
+ struct bpf_cgroup_storage_map *map = map_to_storage(_map);
+ struct bpf_cgroup_storage *storage;
+ int cpu, off = 0;
+ u32 size;
+
+ if (map_flags != BPF_ANY && map_flags != BPF_EXIST)
+ return -EINVAL;
+
+ rcu_read_lock();
+ storage = cgroup_storage_lookup(map, key, false);
+ if (!storage) {
+ rcu_read_unlock();
+ return -ENOENT;
+ }
+
+ /* the user space will provide round_up(value_size, 8) bytes that
+ * will be copied into per-cpu area. bpf programs can only access
+ * value_size of it. During lookup the same extra bytes will be
+ * returned or zeros which were zero-filled by percpu_alloc,
+ * so no kernel data leaks possible
+ */
+ size = round_up(_map->value_size, 8);
+ for_each_possible_cpu(cpu) {
+ bpf_long_memcpy(per_cpu_ptr(storage->percpu_buf, cpu),
+ value + off, size);
+ off += size;
+ }
+ rcu_read_unlock();
+ return 0;
+}
+
+static int cgroup_storage_get_next_key(struct bpf_map *_map, void *key,
+ void *_next_key)
+{
+ struct bpf_cgroup_storage_map *map = map_to_storage(_map);
+ struct bpf_cgroup_storage *storage;
+
+ spin_lock_bh(&map->lock);
+
+ if (list_empty(&map->list))
+ goto enoent;
+
+ if (key) {
+ storage = cgroup_storage_lookup(map, key, true);
+ if (!storage)
+ goto enoent;
+
+ storage = list_next_entry(storage, list_map);
+ if (!storage)
+ goto enoent;
+ } else {
+ storage = list_first_entry(&map->list,
+ struct bpf_cgroup_storage, list_map);
+ }
+
+ spin_unlock_bh(&map->lock);
+
+ if (attach_type_isolated(&map->map)) {
+ struct bpf_cgroup_storage_key *next = _next_key;
+ *next = storage->key;
+ } else {
+ __u64 *next = _next_key;
+ *next = storage->key.cgroup_inode_id;
+ }
+ return 0;
+
+enoent:
+ spin_unlock_bh(&map->lock);
+ return -ENOENT;
+}
+
+static struct bpf_map *cgroup_storage_map_alloc(union bpf_attr *attr)
+{
+ __u32 max_value_size = BPF_LOCAL_STORAGE_MAX_VALUE_SIZE;
+ int numa_node = bpf_map_attr_numa_node(attr);
+ struct bpf_cgroup_storage_map *map;
+
+ /* percpu is bound by PCPU_MIN_UNIT_SIZE, non-percu
+ * is the same as other local storages.
+ */
+ if (attr->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
+ max_value_size = min_t(__u32, max_value_size,
+ PCPU_MIN_UNIT_SIZE);
+
+ if (attr->key_size != sizeof(struct bpf_cgroup_storage_key) &&
+ attr->key_size != sizeof(__u64))
+ return ERR_PTR(-EINVAL);
+
+ if (attr->value_size == 0)
+ return ERR_PTR(-EINVAL);
+
+ if (attr->value_size > max_value_size)
+ return ERR_PTR(-E2BIG);
+
+ if (attr->map_flags & ~LOCAL_STORAGE_CREATE_FLAG_MASK ||
+ !bpf_map_flags_access_ok(attr->map_flags))
+ return ERR_PTR(-EINVAL);
+
+ if (attr->max_entries)
+ /* max_entries is not used and enforced to be 0 */
+ return ERR_PTR(-EINVAL);
+
+ map = bpf_map_area_alloc(sizeof(struct bpf_cgroup_storage_map), numa_node);
+ if (!map)
+ return ERR_PTR(-ENOMEM);
+
+ /* copy mandatory map attributes */
+ bpf_map_init_from_attr(&map->map, attr);
+
+ spin_lock_init(&map->lock);
+ map->root = RB_ROOT;
+ INIT_LIST_HEAD(&map->list);
+
+ return &map->map;
+}
+
+static void cgroup_storage_map_free(struct bpf_map *_map)
+{
+ struct bpf_cgroup_storage_map *map = map_to_storage(_map);
+ struct list_head *storages = &map->list;
+ struct bpf_cgroup_storage *storage, *stmp;
+
+ cgroup_lock();
+
+ list_for_each_entry_safe(storage, stmp, storages, list_map) {
+ bpf_cgroup_storage_unlink(storage);
+ bpf_cgroup_storage_free(storage);
+ }
+
+ cgroup_unlock();
+
+ WARN_ON(!RB_EMPTY_ROOT(&map->root));
+ WARN_ON(!list_empty(&map->list));
+
+ bpf_map_area_free(map);
+}
+
+static int cgroup_storage_delete_elem(struct bpf_map *map, void *key)
+{
+ return -EINVAL;
+}
+
+static int cgroup_storage_check_btf(const struct bpf_map *map,
+ const struct btf *btf,
+ const struct btf_type *key_type,
+ const struct btf_type *value_type)
+{
+ if (attach_type_isolated(map)) {
+ struct btf_member *m;
+ u32 offset, size;
+
+ /* Key is expected to be of struct bpf_cgroup_storage_key type,
+ * which is:
+ * struct bpf_cgroup_storage_key {
+ * __u64 cgroup_inode_id;
+ * __u32 attach_type;
+ * };
+ */
+
+ /*
+ * Key_type must be a structure with two fields.
+ */
+ if (BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ||
+ BTF_INFO_VLEN(key_type->info) != 2)
+ return -EINVAL;
+
+ /*
+ * The first field must be a 64 bit integer at 0 offset.
+ */
+ m = (struct btf_member *)(key_type + 1);
+ size = sizeof_field(struct bpf_cgroup_storage_key, cgroup_inode_id);
+ if (!btf_member_is_reg_int(btf, key_type, m, 0, size))
+ return -EINVAL;
+
+ /*
+ * The second field must be a 32 bit integer at 64 bit offset.
+ */
+ m++;
+ offset = offsetof(struct bpf_cgroup_storage_key, attach_type);
+ size = sizeof_field(struct bpf_cgroup_storage_key, attach_type);
+ if (!btf_member_is_reg_int(btf, key_type, m, offset, size))
+ return -EINVAL;
+ } else {
+ u32 int_data;
+
+ /*
+ * Key is expected to be u64, which stores the cgroup_inode_id
+ */
+
+ if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
+ return -EINVAL;
+
+ int_data = *(u32 *)(key_type + 1);
+ if (BTF_INT_BITS(int_data) != 64 || BTF_INT_OFFSET(int_data))
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static void cgroup_storage_seq_show_elem(struct bpf_map *map, void *key,
+ struct seq_file *m)
+{
+ enum bpf_cgroup_storage_type stype;
+ struct bpf_cgroup_storage *storage;
+ int cpu;
+
+ rcu_read_lock();
+ storage = cgroup_storage_lookup(map_to_storage(map), key, false);
+ if (!storage) {
+ rcu_read_unlock();
+ return;
+ }
+
+ btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
+ stype = cgroup_storage_type(map);
+ if (stype == BPF_CGROUP_STORAGE_SHARED) {
+ seq_puts(m, ": ");
+ btf_type_seq_show(map->btf, map->btf_value_type_id,
+ &READ_ONCE(storage->buf)->data[0], m);
+ seq_puts(m, "\n");
+ } else {
+ seq_puts(m, ": {\n");
+ for_each_possible_cpu(cpu) {
+ seq_printf(m, "\tcpu%d: ", cpu);
+ btf_type_seq_show(map->btf, map->btf_value_type_id,
+ per_cpu_ptr(storage->percpu_buf, cpu),
+ m);
+ seq_puts(m, "\n");
+ }
+ seq_puts(m, "}\n");
+ }
+ rcu_read_unlock();
+}
+
+BTF_ID_LIST_SINGLE(cgroup_storage_map_btf_ids, struct,
+ bpf_cgroup_storage_map)
+const struct bpf_map_ops cgroup_storage_map_ops = {
+ .map_alloc = cgroup_storage_map_alloc,
+ .map_free = cgroup_storage_map_free,
+ .map_get_next_key = cgroup_storage_get_next_key,
+ .map_lookup_elem = cgroup_storage_lookup_elem,
+ .map_update_elem = cgroup_storage_update_elem,
+ .map_delete_elem = cgroup_storage_delete_elem,
+ .map_check_btf = cgroup_storage_check_btf,
+ .map_seq_show_elem = cgroup_storage_seq_show_elem,
+ .map_btf_id = &cgroup_storage_map_btf_ids[0],
+};
+
+int bpf_cgroup_storage_assign(struct bpf_prog_aux *aux, struct bpf_map *_map)
+{
+ enum bpf_cgroup_storage_type stype = cgroup_storage_type(_map);
+
+ if (aux->cgroup_storage[stype] &&
+ aux->cgroup_storage[stype] != _map)
+ return -EBUSY;
+
+ aux->cgroup_storage[stype] = _map;
+ return 0;
+}
+
+static size_t bpf_cgroup_storage_calculate_size(struct bpf_map *map, u32 *pages)
+{
+ size_t size;
+
+ if (cgroup_storage_type(map) == BPF_CGROUP_STORAGE_SHARED) {
+ size = sizeof(struct bpf_storage_buffer) + map->value_size;
+ *pages = round_up(sizeof(struct bpf_cgroup_storage) + size,
+ PAGE_SIZE) >> PAGE_SHIFT;
+ } else {
+ size = map->value_size;
+ *pages = round_up(round_up(size, 8) * num_possible_cpus(),
+ PAGE_SIZE) >> PAGE_SHIFT;
+ }
+
+ return size;
+}
+
+struct bpf_cgroup_storage *bpf_cgroup_storage_alloc(struct bpf_prog *prog,
+ enum bpf_cgroup_storage_type stype)
+{
+ const gfp_t gfp = __GFP_ZERO | GFP_USER;
+ struct bpf_cgroup_storage *storage;
+ struct bpf_map *map;
+ size_t size;
+ u32 pages;
+
+ map = prog->aux->cgroup_storage[stype];
+ if (!map)
+ return NULL;
+
+ size = bpf_cgroup_storage_calculate_size(map, &pages);
+
+ storage = bpf_map_kmalloc_node(map, sizeof(struct bpf_cgroup_storage),
+ gfp, map->numa_node);
+ if (!storage)
+ goto enomem;
+
+ if (stype == BPF_CGROUP_STORAGE_SHARED) {
+ storage->buf = bpf_map_kmalloc_node(map, size, gfp,
+ map->numa_node);
+ if (!storage->buf)
+ goto enomem;
+ check_and_init_map_value(map, storage->buf->data);
+ } else {
+ storage->percpu_buf = bpf_map_alloc_percpu(map, size, 8, gfp);
+ if (!storage->percpu_buf)
+ goto enomem;
+ }
+
+ storage->map = (struct bpf_cgroup_storage_map *)map;
+
+ return storage;
+
+enomem:
+ kfree(storage);
+ return ERR_PTR(-ENOMEM);
+}
+
+static void free_shared_cgroup_storage_rcu(struct rcu_head *rcu)
+{
+ struct bpf_cgroup_storage *storage =
+ container_of(rcu, struct bpf_cgroup_storage, rcu);
+
+ kfree(storage->buf);
+ kfree(storage);
+}
+
+static void free_percpu_cgroup_storage_rcu(struct rcu_head *rcu)
+{
+ struct bpf_cgroup_storage *storage =
+ container_of(rcu, struct bpf_cgroup_storage, rcu);
+
+ free_percpu(storage->percpu_buf);
+ kfree(storage);
+}
+
+void bpf_cgroup_storage_free(struct bpf_cgroup_storage *storage)
+{
+ enum bpf_cgroup_storage_type stype;
+ struct bpf_map *map;
+
+ if (!storage)
+ return;
+
+ map = &storage->map->map;
+ stype = cgroup_storage_type(map);
+ if (stype == BPF_CGROUP_STORAGE_SHARED)
+ call_rcu(&storage->rcu, free_shared_cgroup_storage_rcu);
+ else
+ call_rcu(&storage->rcu, free_percpu_cgroup_storage_rcu);
+}
+
+void bpf_cgroup_storage_link(struct bpf_cgroup_storage *storage,
+ struct cgroup *cgroup,
+ enum bpf_attach_type type)
+{
+ struct bpf_cgroup_storage_map *map;
+
+ if (!storage)
+ return;
+
+ storage->key.attach_type = type;
+ storage->key.cgroup_inode_id = cgroup_id(cgroup);
+
+ map = storage->map;
+
+ spin_lock_bh(&map->lock);
+ WARN_ON(cgroup_storage_insert(map, storage));
+ list_add(&storage->list_map, &map->list);
+ list_add(&storage->list_cg, &cgroup->bpf.storages);
+ spin_unlock_bh(&map->lock);
+}
+
+void bpf_cgroup_storage_unlink(struct bpf_cgroup_storage *storage)
+{
+ struct bpf_cgroup_storage_map *map;
+ struct rb_root *root;
+
+ if (!storage)
+ return;
+
+ map = storage->map;
+
+ spin_lock_bh(&map->lock);
+ root = &map->root;
+ rb_erase(&storage->node, root);
+
+ list_del(&storage->list_map);
+ list_del(&storage->list_cg);
+ spin_unlock_bh(&map->lock);
+}
+
+#endif
diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c
new file mode 100644
index 000000000..ce3a091d5
--- /dev/null
+++ b/kernel/bpf/lpm_trie.c
@@ -0,0 +1,740 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Longest prefix match list implementation
+ *
+ * Copyright (c) 2016,2017 Daniel Mack
+ * Copyright (c) 2016 David Herrmann
+ */
+
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/vmalloc.h>
+#include <net/ipv6.h>
+#include <uapi/linux/btf.h>
+#include <linux/btf_ids.h>
+
+/* Intermediate node */
+#define LPM_TREE_NODE_FLAG_IM BIT(0)
+
+struct lpm_trie_node;
+
+struct lpm_trie_node {
+ struct rcu_head rcu;
+ struct lpm_trie_node __rcu *child[2];
+ u32 prefixlen;
+ u32 flags;
+ u8 data[];
+};
+
+struct lpm_trie {
+ struct bpf_map map;
+ struct lpm_trie_node __rcu *root;
+ size_t n_entries;
+ size_t max_prefixlen;
+ size_t data_size;
+ spinlock_t lock;
+};
+
+/* This trie implements a longest prefix match algorithm that can be used to
+ * match IP addresses to a stored set of ranges.
+ *
+ * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
+ * interpreted as big endian, so data[0] stores the most significant byte.
+ *
+ * Match ranges are internally stored in instances of struct lpm_trie_node
+ * which each contain their prefix length as well as two pointers that may
+ * lead to more nodes containing more specific matches. Each node also stores
+ * a value that is defined by and returned to userspace via the update_elem
+ * and lookup functions.
+ *
+ * For instance, let's start with a trie that was created with a prefix length
+ * of 32, so it can be used for IPv4 addresses, and one single element that
+ * matches 192.168.0.0/16. The data array would hence contain
+ * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
+ * stick to IP-address notation for readability though.
+ *
+ * As the trie is empty initially, the new node (1) will be places as root
+ * node, denoted as (R) in the example below. As there are no other node, both
+ * child pointers are %NULL.
+ *
+ * +----------------+
+ * | (1) (R) |
+ * | 192.168.0.0/16 |
+ * | value: 1 |
+ * | [0] [1] |
+ * +----------------+
+ *
+ * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
+ * a node with the same data and a smaller prefix (ie, a less specific one),
+ * node (2) will become a child of (1). In child index depends on the next bit
+ * that is outside of what (1) matches, and that bit is 0, so (2) will be
+ * child[0] of (1):
+ *
+ * +----------------+
+ * | (1) (R) |
+ * | 192.168.0.0/16 |
+ * | value: 1 |
+ * | [0] [1] |
+ * +----------------+
+ * |
+ * +----------------+
+ * | (2) |
+ * | 192.168.0.0/24 |
+ * | value: 2 |
+ * | [0] [1] |
+ * +----------------+
+ *
+ * The child[1] slot of (1) could be filled with another node which has bit #17
+ * (the next bit after the ones that (1) matches on) set to 1. For instance,
+ * 192.168.128.0/24:
+ *
+ * +----------------+
+ * | (1) (R) |
+ * | 192.168.0.0/16 |
+ * | value: 1 |
+ * | [0] [1] |
+ * +----------------+
+ * | |
+ * +----------------+ +------------------+
+ * | (2) | | (3) |
+ * | 192.168.0.0/24 | | 192.168.128.0/24 |
+ * | value: 2 | | value: 3 |
+ * | [0] [1] | | [0] [1] |
+ * +----------------+ +------------------+
+ *
+ * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
+ * it, node (1) is looked at first, and because (4) of the semantics laid out
+ * above (bit #17 is 0), it would normally be attached to (1) as child[0].
+ * However, that slot is already allocated, so a new node is needed in between.
+ * That node does not have a value attached to it and it will never be
+ * returned to users as result of a lookup. It is only there to differentiate
+ * the traversal further. It will get a prefix as wide as necessary to
+ * distinguish its two children:
+ *
+ * +----------------+
+ * | (1) (R) |
+ * | 192.168.0.0/16 |
+ * | value: 1 |
+ * | [0] [1] |
+ * +----------------+
+ * | |
+ * +----------------+ +------------------+
+ * | (4) (I) | | (3) |
+ * | 192.168.0.0/23 | | 192.168.128.0/24 |
+ * | value: --- | | value: 3 |
+ * | [0] [1] | | [0] [1] |
+ * +----------------+ +------------------+
+ * | |
+ * +----------------+ +----------------+
+ * | (2) | | (5) |
+ * | 192.168.0.0/24 | | 192.168.1.0/24 |
+ * | value: 2 | | value: 5 |
+ * | [0] [1] | | [0] [1] |
+ * +----------------+ +----------------+
+ *
+ * 192.168.1.1/32 would be a child of (5) etc.
+ *
+ * An intermediate node will be turned into a 'real' node on demand. In the
+ * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
+ *
+ * A fully populated trie would have a height of 32 nodes, as the trie was
+ * created with a prefix length of 32.
+ *
+ * The lookup starts at the root node. If the current node matches and if there
+ * is a child that can be used to become more specific, the trie is traversed
+ * downwards. The last node in the traversal that is a non-intermediate one is
+ * returned.
+ */
+
+static inline int extract_bit(const u8 *data, size_t index)
+{
+ return !!(data[index / 8] & (1 << (7 - (index % 8))));
+}
+
+/**
+ * longest_prefix_match() - determine the longest prefix
+ * @trie: The trie to get internal sizes from
+ * @node: The node to operate on
+ * @key: The key to compare to @node
+ *
+ * Determine the longest prefix of @node that matches the bits in @key.
+ */
+static size_t longest_prefix_match(const struct lpm_trie *trie,
+ const struct lpm_trie_node *node,
+ const struct bpf_lpm_trie_key *key)
+{
+ u32 limit = min(node->prefixlen, key->prefixlen);
+ u32 prefixlen = 0, i = 0;
+
+ BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
+ BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
+
+#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
+
+ /* data_size >= 16 has very small probability.
+ * We do not use a loop for optimal code generation.
+ */
+ if (trie->data_size >= 8) {
+ u64 diff = be64_to_cpu(*(__be64 *)node->data ^
+ *(__be64 *)key->data);
+
+ prefixlen = 64 - fls64(diff);
+ if (prefixlen >= limit)
+ return limit;
+ if (diff)
+ return prefixlen;
+ i = 8;
+ }
+#endif
+
+ while (trie->data_size >= i + 4) {
+ u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
+ *(__be32 *)&key->data[i]);
+
+ prefixlen += 32 - fls(diff);
+ if (prefixlen >= limit)
+ return limit;
+ if (diff)
+ return prefixlen;
+ i += 4;
+ }
+
+ if (trie->data_size >= i + 2) {
+ u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
+ *(__be16 *)&key->data[i]);
+
+ prefixlen += 16 - fls(diff);
+ if (prefixlen >= limit)
+ return limit;
+ if (diff)
+ return prefixlen;
+ i += 2;
+ }
+
+ if (trie->data_size >= i + 1) {
+ prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
+
+ if (prefixlen >= limit)
+ return limit;
+ }
+
+ return prefixlen;
+}
+
+/* Called from syscall or from eBPF program */
+static void *trie_lookup_elem(struct bpf_map *map, void *_key)
+{
+ struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
+ struct lpm_trie_node *node, *found = NULL;
+ struct bpf_lpm_trie_key *key = _key;
+
+ if (key->prefixlen > trie->max_prefixlen)
+ return NULL;
+
+ /* Start walking the trie from the root node ... */
+
+ for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
+ node;) {
+ unsigned int next_bit;
+ size_t matchlen;
+
+ /* Determine the longest prefix of @node that matches @key.
+ * If it's the maximum possible prefix for this trie, we have
+ * an exact match and can return it directly.
+ */
+ matchlen = longest_prefix_match(trie, node, key);
+ if (matchlen == trie->max_prefixlen) {
+ found = node;
+ break;
+ }
+
+ /* If the number of bits that match is smaller than the prefix
+ * length of @node, bail out and return the node we have seen
+ * last in the traversal (ie, the parent).
+ */
+ if (matchlen < node->prefixlen)
+ break;
+
+ /* Consider this node as return candidate unless it is an
+ * artificially added intermediate one.
+ */
+ if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
+ found = node;
+
+ /* If the node match is fully satisfied, let's see if we can
+ * become more specific. Determine the next bit in the key and
+ * traverse down.
+ */
+ next_bit = extract_bit(key->data, node->prefixlen);
+ node = rcu_dereference_check(node->child[next_bit],
+ rcu_read_lock_bh_held());
+ }
+
+ if (!found)
+ return NULL;
+
+ return found->data + trie->data_size;
+}
+
+static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
+ const void *value)
+{
+ struct lpm_trie_node *node;
+ size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
+
+ if (value)
+ size += trie->map.value_size;
+
+ node = bpf_map_kmalloc_node(&trie->map, size, GFP_NOWAIT | __GFP_NOWARN,
+ trie->map.numa_node);
+ if (!node)
+ return NULL;
+
+ node->flags = 0;
+
+ if (value)
+ memcpy(node->data + trie->data_size, value,
+ trie->map.value_size);
+
+ return node;
+}
+
+/* Called from syscall or from eBPF program */
+static int trie_update_elem(struct bpf_map *map,
+ void *_key, void *value, u64 flags)
+{
+ struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
+ struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
+ struct lpm_trie_node __rcu **slot;
+ struct bpf_lpm_trie_key *key = _key;
+ unsigned long irq_flags;
+ unsigned int next_bit;
+ size_t matchlen = 0;
+ int ret = 0;
+
+ if (unlikely(flags > BPF_EXIST))
+ return -EINVAL;
+
+ if (key->prefixlen > trie->max_prefixlen)
+ return -EINVAL;
+
+ spin_lock_irqsave(&trie->lock, irq_flags);
+
+ /* Allocate and fill a new node */
+
+ if (trie->n_entries == trie->map.max_entries) {
+ ret = -ENOSPC;
+ goto out;
+ }
+
+ new_node = lpm_trie_node_alloc(trie, value);
+ if (!new_node) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ trie->n_entries++;
+
+ new_node->prefixlen = key->prefixlen;
+ RCU_INIT_POINTER(new_node->child[0], NULL);
+ RCU_INIT_POINTER(new_node->child[1], NULL);
+ memcpy(new_node->data, key->data, trie->data_size);
+
+ /* Now find a slot to attach the new node. To do that, walk the tree
+ * from the root and match as many bits as possible for each node until
+ * we either find an empty slot or a slot that needs to be replaced by
+ * an intermediate node.
+ */
+ slot = &trie->root;
+
+ while ((node = rcu_dereference_protected(*slot,
+ lockdep_is_held(&trie->lock)))) {
+ matchlen = longest_prefix_match(trie, node, key);
+
+ if (node->prefixlen != matchlen ||
+ node->prefixlen == key->prefixlen ||
+ node->prefixlen == trie->max_prefixlen)
+ break;
+
+ next_bit = extract_bit(key->data, node->prefixlen);
+ slot = &node->child[next_bit];
+ }
+
+ /* If the slot is empty (a free child pointer or an empty root),
+ * simply assign the @new_node to that slot and be done.
+ */
+ if (!node) {
+ rcu_assign_pointer(*slot, new_node);
+ goto out;
+ }
+
+ /* If the slot we picked already exists, replace it with @new_node
+ * which already has the correct data array set.
+ */
+ if (node->prefixlen == matchlen) {
+ new_node->child[0] = node->child[0];
+ new_node->child[1] = node->child[1];
+
+ if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
+ trie->n_entries--;
+
+ rcu_assign_pointer(*slot, new_node);
+ kfree_rcu(node, rcu);
+
+ goto out;
+ }
+
+ /* If the new node matches the prefix completely, it must be inserted
+ * as an ancestor. Simply insert it between @node and *@slot.
+ */
+ if (matchlen == key->prefixlen) {
+ next_bit = extract_bit(node->data, matchlen);
+ rcu_assign_pointer(new_node->child[next_bit], node);
+ rcu_assign_pointer(*slot, new_node);
+ goto out;
+ }
+
+ im_node = lpm_trie_node_alloc(trie, NULL);
+ if (!im_node) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ im_node->prefixlen = matchlen;
+ im_node->flags |= LPM_TREE_NODE_FLAG_IM;
+ memcpy(im_node->data, node->data, trie->data_size);
+
+ /* Now determine which child to install in which slot */
+ if (extract_bit(key->data, matchlen)) {
+ rcu_assign_pointer(im_node->child[0], node);
+ rcu_assign_pointer(im_node->child[1], new_node);
+ } else {
+ rcu_assign_pointer(im_node->child[0], new_node);
+ rcu_assign_pointer(im_node->child[1], node);
+ }
+
+ /* Finally, assign the intermediate node to the determined slot */
+ rcu_assign_pointer(*slot, im_node);
+
+out:
+ if (ret) {
+ if (new_node)
+ trie->n_entries--;
+
+ kfree(new_node);
+ kfree(im_node);
+ }
+
+ spin_unlock_irqrestore(&trie->lock, irq_flags);
+
+ return ret;
+}
+
+/* Called from syscall or from eBPF program */
+static int trie_delete_elem(struct bpf_map *map, void *_key)
+{
+ struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
+ struct bpf_lpm_trie_key *key = _key;
+ struct lpm_trie_node __rcu **trim, **trim2;
+ struct lpm_trie_node *node, *parent;
+ unsigned long irq_flags;
+ unsigned int next_bit;
+ size_t matchlen = 0;
+ int ret = 0;
+
+ if (key->prefixlen > trie->max_prefixlen)
+ return -EINVAL;
+
+ spin_lock_irqsave(&trie->lock, irq_flags);
+
+ /* Walk the tree looking for an exact key/length match and keeping
+ * track of the path we traverse. We will need to know the node
+ * we wish to delete, and the slot that points to the node we want
+ * to delete. We may also need to know the nodes parent and the
+ * slot that contains it.
+ */
+ trim = &trie->root;
+ trim2 = trim;
+ parent = NULL;
+ while ((node = rcu_dereference_protected(
+ *trim, lockdep_is_held(&trie->lock)))) {
+ matchlen = longest_prefix_match(trie, node, key);
+
+ if (node->prefixlen != matchlen ||
+ node->prefixlen == key->prefixlen)
+ break;
+
+ parent = node;
+ trim2 = trim;
+ next_bit = extract_bit(key->data, node->prefixlen);
+ trim = &node->child[next_bit];
+ }
+
+ if (!node || node->prefixlen != key->prefixlen ||
+ node->prefixlen != matchlen ||
+ (node->flags & LPM_TREE_NODE_FLAG_IM)) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ trie->n_entries--;
+
+ /* If the node we are removing has two children, simply mark it
+ * as intermediate and we are done.
+ */
+ if (rcu_access_pointer(node->child[0]) &&
+ rcu_access_pointer(node->child[1])) {
+ node->flags |= LPM_TREE_NODE_FLAG_IM;
+ goto out;
+ }
+
+ /* If the parent of the node we are about to delete is an intermediate
+ * node, and the deleted node doesn't have any children, we can delete
+ * the intermediate parent as well and promote its other child
+ * up the tree. Doing this maintains the invariant that all
+ * intermediate nodes have exactly 2 children and that there are no
+ * unnecessary intermediate nodes in the tree.
+ */
+ if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
+ !node->child[0] && !node->child[1]) {
+ if (node == rcu_access_pointer(parent->child[0]))
+ rcu_assign_pointer(
+ *trim2, rcu_access_pointer(parent->child[1]));
+ else
+ rcu_assign_pointer(
+ *trim2, rcu_access_pointer(parent->child[0]));
+ kfree_rcu(parent, rcu);
+ kfree_rcu(node, rcu);
+ goto out;
+ }
+
+ /* The node we are removing has either zero or one child. If there
+ * is a child, move it into the removed node's slot then delete
+ * the node. Otherwise just clear the slot and delete the node.
+ */
+ if (node->child[0])
+ rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
+ else if (node->child[1])
+ rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
+ else
+ RCU_INIT_POINTER(*trim, NULL);
+ kfree_rcu(node, rcu);
+
+out:
+ spin_unlock_irqrestore(&trie->lock, irq_flags);
+
+ return ret;
+}
+
+#define LPM_DATA_SIZE_MAX 256
+#define LPM_DATA_SIZE_MIN 1
+
+#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
+ sizeof(struct lpm_trie_node))
+#define LPM_VAL_SIZE_MIN 1
+
+#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X))
+#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
+#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
+
+#define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
+ BPF_F_ACCESS_MASK)
+
+static struct bpf_map *trie_alloc(union bpf_attr *attr)
+{
+ struct lpm_trie *trie;
+
+ if (!bpf_capable())
+ return ERR_PTR(-EPERM);
+
+ /* check sanity of attributes */
+ if (attr->max_entries == 0 ||
+ !(attr->map_flags & BPF_F_NO_PREALLOC) ||
+ attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
+ !bpf_map_flags_access_ok(attr->map_flags) ||
+ attr->key_size < LPM_KEY_SIZE_MIN ||
+ attr->key_size > LPM_KEY_SIZE_MAX ||
+ attr->value_size < LPM_VAL_SIZE_MIN ||
+ attr->value_size > LPM_VAL_SIZE_MAX)
+ return ERR_PTR(-EINVAL);
+
+ trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
+ if (!trie)
+ return ERR_PTR(-ENOMEM);
+
+ /* copy mandatory map attributes */
+ bpf_map_init_from_attr(&trie->map, attr);
+ trie->data_size = attr->key_size -
+ offsetof(struct bpf_lpm_trie_key, data);
+ trie->max_prefixlen = trie->data_size * 8;
+
+ spin_lock_init(&trie->lock);
+
+ return &trie->map;
+}
+
+static void trie_free(struct bpf_map *map)
+{
+ struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
+ struct lpm_trie_node __rcu **slot;
+ struct lpm_trie_node *node;
+
+ /* Always start at the root and walk down to a node that has no
+ * children. Then free that node, nullify its reference in the parent
+ * and start over.
+ */
+
+ for (;;) {
+ slot = &trie->root;
+
+ for (;;) {
+ node = rcu_dereference_protected(*slot, 1);
+ if (!node)
+ goto out;
+
+ if (rcu_access_pointer(node->child[0])) {
+ slot = &node->child[0];
+ continue;
+ }
+
+ if (rcu_access_pointer(node->child[1])) {
+ slot = &node->child[1];
+ continue;
+ }
+
+ kfree(node);
+ RCU_INIT_POINTER(*slot, NULL);
+ break;
+ }
+ }
+
+out:
+ bpf_map_area_free(trie);
+}
+
+static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
+{
+ struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
+ struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
+ struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
+ struct lpm_trie_node **node_stack = NULL;
+ int err = 0, stack_ptr = -1;
+ unsigned int next_bit;
+ size_t matchlen;
+
+ /* The get_next_key follows postorder. For the 4 node example in
+ * the top of this file, the trie_get_next_key() returns the following
+ * one after another:
+ * 192.168.0.0/24
+ * 192.168.1.0/24
+ * 192.168.128.0/24
+ * 192.168.0.0/16
+ *
+ * The idea is to return more specific keys before less specific ones.
+ */
+
+ /* Empty trie */
+ search_root = rcu_dereference(trie->root);
+ if (!search_root)
+ return -ENOENT;
+
+ /* For invalid key, find the leftmost node in the trie */
+ if (!key || key->prefixlen > trie->max_prefixlen)
+ goto find_leftmost;
+
+ node_stack = kmalloc_array(trie->max_prefixlen,
+ sizeof(struct lpm_trie_node *),
+ GFP_ATOMIC | __GFP_NOWARN);
+ if (!node_stack)
+ return -ENOMEM;
+
+ /* Try to find the exact node for the given key */
+ for (node = search_root; node;) {
+ node_stack[++stack_ptr] = node;
+ matchlen = longest_prefix_match(trie, node, key);
+ if (node->prefixlen != matchlen ||
+ node->prefixlen == key->prefixlen)
+ break;
+
+ next_bit = extract_bit(key->data, node->prefixlen);
+ node = rcu_dereference(node->child[next_bit]);
+ }
+ if (!node || node->prefixlen != key->prefixlen ||
+ (node->flags & LPM_TREE_NODE_FLAG_IM))
+ goto find_leftmost;
+
+ /* The node with the exactly-matching key has been found,
+ * find the first node in postorder after the matched node.
+ */
+ node = node_stack[stack_ptr];
+ while (stack_ptr > 0) {
+ parent = node_stack[stack_ptr - 1];
+ if (rcu_dereference(parent->child[0]) == node) {
+ search_root = rcu_dereference(parent->child[1]);
+ if (search_root)
+ goto find_leftmost;
+ }
+ if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
+ next_node = parent;
+ goto do_copy;
+ }
+
+ node = parent;
+ stack_ptr--;
+ }
+
+ /* did not find anything */
+ err = -ENOENT;
+ goto free_stack;
+
+find_leftmost:
+ /* Find the leftmost non-intermediate node, all intermediate nodes
+ * have exact two children, so this function will never return NULL.
+ */
+ for (node = search_root; node;) {
+ if (node->flags & LPM_TREE_NODE_FLAG_IM) {
+ node = rcu_dereference(node->child[0]);
+ } else {
+ next_node = node;
+ node = rcu_dereference(node->child[0]);
+ if (!node)
+ node = rcu_dereference(next_node->child[1]);
+ }
+ }
+do_copy:
+ next_key->prefixlen = next_node->prefixlen;
+ memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
+ next_node->data, trie->data_size);
+free_stack:
+ kfree(node_stack);
+ return err;
+}
+
+static int trie_check_btf(const struct bpf_map *map,
+ const struct btf *btf,
+ const struct btf_type *key_type,
+ const struct btf_type *value_type)
+{
+ /* Keys must have struct bpf_lpm_trie_key embedded. */
+ return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
+ -EINVAL : 0;
+}
+
+BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
+const struct bpf_map_ops trie_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = trie_alloc,
+ .map_free = trie_free,
+ .map_get_next_key = trie_get_next_key,
+ .map_lookup_elem = trie_lookup_elem,
+ .map_update_elem = trie_update_elem,
+ .map_delete_elem = trie_delete_elem,
+ .map_lookup_batch = generic_map_lookup_batch,
+ .map_update_batch = generic_map_update_batch,
+ .map_delete_batch = generic_map_delete_batch,
+ .map_check_btf = trie_check_btf,
+ .map_btf_id = &trie_map_btf_ids[0],
+};
diff --git a/kernel/bpf/map_in_map.c b/kernel/bpf/map_in_map.c
new file mode 100644
index 000000000..141f33320
--- /dev/null
+++ b/kernel/bpf/map_in_map.c
@@ -0,0 +1,134 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2017 Facebook
+ */
+#include <linux/slab.h>
+#include <linux/bpf.h>
+#include <linux/btf.h>
+
+#include "map_in_map.h"
+
+struct bpf_map *bpf_map_meta_alloc(int inner_map_ufd)
+{
+ struct bpf_map *inner_map, *inner_map_meta;
+ u32 inner_map_meta_size;
+ struct fd f;
+
+ f = fdget(inner_map_ufd);
+ inner_map = __bpf_map_get(f);
+ if (IS_ERR(inner_map))
+ return inner_map;
+
+ /* Does not support >1 level map-in-map */
+ if (inner_map->inner_map_meta) {
+ fdput(f);
+ return ERR_PTR(-EINVAL);
+ }
+
+ if (!inner_map->ops->map_meta_equal) {
+ fdput(f);
+ return ERR_PTR(-ENOTSUPP);
+ }
+
+ if (map_value_has_spin_lock(inner_map)) {
+ fdput(f);
+ return ERR_PTR(-ENOTSUPP);
+ }
+
+ inner_map_meta_size = sizeof(*inner_map_meta);
+ /* In some cases verifier needs to access beyond just base map. */
+ if (inner_map->ops == &array_map_ops)
+ inner_map_meta_size = sizeof(struct bpf_array);
+
+ inner_map_meta = kzalloc(inner_map_meta_size, GFP_USER);
+ if (!inner_map_meta) {
+ fdput(f);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ inner_map_meta->map_type = inner_map->map_type;
+ inner_map_meta->key_size = inner_map->key_size;
+ inner_map_meta->value_size = inner_map->value_size;
+ inner_map_meta->map_flags = inner_map->map_flags;
+ inner_map_meta->max_entries = inner_map->max_entries;
+ inner_map_meta->spin_lock_off = inner_map->spin_lock_off;
+ inner_map_meta->timer_off = inner_map->timer_off;
+ inner_map_meta->kptr_off_tab = bpf_map_copy_kptr_off_tab(inner_map);
+ if (inner_map->btf) {
+ btf_get(inner_map->btf);
+ inner_map_meta->btf = inner_map->btf;
+ }
+
+ /* Misc members not needed in bpf_map_meta_equal() check. */
+ inner_map_meta->ops = inner_map->ops;
+ if (inner_map->ops == &array_map_ops) {
+ struct bpf_array *inner_array_meta =
+ container_of(inner_map_meta, struct bpf_array, map);
+ struct bpf_array *inner_array = container_of(inner_map, struct bpf_array, map);
+
+ inner_array_meta->index_mask = inner_array->index_mask;
+ inner_array_meta->elem_size = inner_array->elem_size;
+ inner_map_meta->bypass_spec_v1 = inner_map->bypass_spec_v1;
+ }
+
+ fdput(f);
+ return inner_map_meta;
+}
+
+void bpf_map_meta_free(struct bpf_map *map_meta)
+{
+ bpf_map_free_kptr_off_tab(map_meta);
+ btf_put(map_meta->btf);
+ kfree(map_meta);
+}
+
+bool bpf_map_meta_equal(const struct bpf_map *meta0,
+ const struct bpf_map *meta1)
+{
+ /* No need to compare ops because it is covered by map_type */
+ return meta0->map_type == meta1->map_type &&
+ meta0->key_size == meta1->key_size &&
+ meta0->value_size == meta1->value_size &&
+ meta0->timer_off == meta1->timer_off &&
+ meta0->map_flags == meta1->map_flags &&
+ bpf_map_equal_kptr_off_tab(meta0, meta1);
+}
+
+void *bpf_map_fd_get_ptr(struct bpf_map *map,
+ struct file *map_file /* not used */,
+ int ufd)
+{
+ struct bpf_map *inner_map, *inner_map_meta;
+ struct fd f;
+
+ f = fdget(ufd);
+ inner_map = __bpf_map_get(f);
+ if (IS_ERR(inner_map))
+ return inner_map;
+
+ inner_map_meta = map->inner_map_meta;
+ if (inner_map_meta->ops->map_meta_equal(inner_map_meta, inner_map))
+ bpf_map_inc(inner_map);
+ else
+ inner_map = ERR_PTR(-EINVAL);
+
+ fdput(f);
+ return inner_map;
+}
+
+void bpf_map_fd_put_ptr(struct bpf_map *map, void *ptr, bool need_defer)
+{
+ struct bpf_map *inner_map = ptr;
+
+ /* The inner map may still be used by both non-sleepable and sleepable
+ * bpf program, so free it after one RCU grace period and one tasks
+ * trace RCU grace period.
+ */
+ if (need_defer)
+ WRITE_ONCE(inner_map->free_after_mult_rcu_gp, true);
+ bpf_map_put(inner_map);
+}
+
+u32 bpf_map_fd_sys_lookup_elem(void *ptr)
+{
+ return ((struct bpf_map *)ptr)->id;
+}
diff --git a/kernel/bpf/map_in_map.h b/kernel/bpf/map_in_map.h
new file mode 100644
index 000000000..7d6160235
--- /dev/null
+++ b/kernel/bpf/map_in_map.h
@@ -0,0 +1,19 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/* Copyright (c) 2017 Facebook
+ */
+#ifndef __MAP_IN_MAP_H__
+#define __MAP_IN_MAP_H__
+
+#include <linux/types.h>
+
+struct file;
+struct bpf_map;
+
+struct bpf_map *bpf_map_meta_alloc(int inner_map_ufd);
+void bpf_map_meta_free(struct bpf_map *map_meta);
+void *bpf_map_fd_get_ptr(struct bpf_map *map, struct file *map_file,
+ int ufd);
+void bpf_map_fd_put_ptr(struct bpf_map *map, void *ptr, bool need_defer);
+u32 bpf_map_fd_sys_lookup_elem(void *ptr);
+
+#endif
diff --git a/kernel/bpf/map_iter.c b/kernel/bpf/map_iter.c
new file mode 100644
index 000000000..b0fa190b0
--- /dev/null
+++ b/kernel/bpf/map_iter.c
@@ -0,0 +1,195 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2020 Facebook */
+#include <linux/bpf.h>
+#include <linux/fs.h>
+#include <linux/filter.h>
+#include <linux/kernel.h>
+#include <linux/btf_ids.h>
+
+struct bpf_iter_seq_map_info {
+ u32 map_id;
+};
+
+static void *bpf_map_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct bpf_iter_seq_map_info *info = seq->private;
+ struct bpf_map *map;
+
+ map = bpf_map_get_curr_or_next(&info->map_id);
+ if (!map)
+ return NULL;
+
+ if (*pos == 0)
+ ++*pos;
+ return map;
+}
+
+static void *bpf_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct bpf_iter_seq_map_info *info = seq->private;
+
+ ++*pos;
+ ++info->map_id;
+ bpf_map_put((struct bpf_map *)v);
+ return bpf_map_get_curr_or_next(&info->map_id);
+}
+
+struct bpf_iter__bpf_map {
+ __bpf_md_ptr(struct bpf_iter_meta *, meta);
+ __bpf_md_ptr(struct bpf_map *, map);
+};
+
+DEFINE_BPF_ITER_FUNC(bpf_map, struct bpf_iter_meta *meta, struct bpf_map *map)
+
+static int __bpf_map_seq_show(struct seq_file *seq, void *v, bool in_stop)
+{
+ struct bpf_iter__bpf_map ctx;
+ struct bpf_iter_meta meta;
+ struct bpf_prog *prog;
+ int ret = 0;
+
+ ctx.meta = &meta;
+ ctx.map = v;
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, in_stop);
+ if (prog)
+ ret = bpf_iter_run_prog(prog, &ctx);
+
+ return ret;
+}
+
+static int bpf_map_seq_show(struct seq_file *seq, void *v)
+{
+ return __bpf_map_seq_show(seq, v, false);
+}
+
+static void bpf_map_seq_stop(struct seq_file *seq, void *v)
+{
+ if (!v)
+ (void)__bpf_map_seq_show(seq, v, true);
+ else
+ bpf_map_put((struct bpf_map *)v);
+}
+
+static const struct seq_operations bpf_map_seq_ops = {
+ .start = bpf_map_seq_start,
+ .next = bpf_map_seq_next,
+ .stop = bpf_map_seq_stop,
+ .show = bpf_map_seq_show,
+};
+
+BTF_ID_LIST(btf_bpf_map_id)
+BTF_ID(struct, bpf_map)
+
+static const struct bpf_iter_seq_info bpf_map_seq_info = {
+ .seq_ops = &bpf_map_seq_ops,
+ .init_seq_private = NULL,
+ .fini_seq_private = NULL,
+ .seq_priv_size = sizeof(struct bpf_iter_seq_map_info),
+};
+
+static struct bpf_iter_reg bpf_map_reg_info = {
+ .target = "bpf_map",
+ .ctx_arg_info_size = 1,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__bpf_map, map),
+ PTR_TO_BTF_ID_OR_NULL },
+ },
+ .seq_info = &bpf_map_seq_info,
+};
+
+static int bpf_iter_attach_map(struct bpf_prog *prog,
+ union bpf_iter_link_info *linfo,
+ struct bpf_iter_aux_info *aux)
+{
+ u32 key_acc_size, value_acc_size, key_size, value_size;
+ struct bpf_map *map;
+ bool is_percpu = false;
+ int err = -EINVAL;
+
+ if (!linfo->map.map_fd)
+ return -EBADF;
+
+ map = bpf_map_get_with_uref(linfo->map.map_fd);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+
+ if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
+ is_percpu = true;
+ else if (map->map_type != BPF_MAP_TYPE_HASH &&
+ map->map_type != BPF_MAP_TYPE_LRU_HASH &&
+ map->map_type != BPF_MAP_TYPE_ARRAY)
+ goto put_map;
+
+ key_acc_size = prog->aux->max_rdonly_access;
+ value_acc_size = prog->aux->max_rdwr_access;
+ key_size = map->key_size;
+ if (!is_percpu)
+ value_size = map->value_size;
+ else
+ value_size = round_up(map->value_size, 8) * num_possible_cpus();
+
+ if (key_acc_size > key_size || value_acc_size > value_size) {
+ err = -EACCES;
+ goto put_map;
+ }
+
+ aux->map = map;
+ return 0;
+
+put_map:
+ bpf_map_put_with_uref(map);
+ return err;
+}
+
+static void bpf_iter_detach_map(struct bpf_iter_aux_info *aux)
+{
+ bpf_map_put_with_uref(aux->map);
+}
+
+void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
+ struct seq_file *seq)
+{
+ seq_printf(seq, "map_id:\t%u\n", aux->map->id);
+}
+
+int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
+ struct bpf_link_info *info)
+{
+ info->iter.map.map_id = aux->map->id;
+ return 0;
+}
+
+DEFINE_BPF_ITER_FUNC(bpf_map_elem, struct bpf_iter_meta *meta,
+ struct bpf_map *map, void *key, void *value)
+
+static const struct bpf_iter_reg bpf_map_elem_reg_info = {
+ .target = "bpf_map_elem",
+ .attach_target = bpf_iter_attach_map,
+ .detach_target = bpf_iter_detach_map,
+ .show_fdinfo = bpf_iter_map_show_fdinfo,
+ .fill_link_info = bpf_iter_map_fill_link_info,
+ .ctx_arg_info_size = 2,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__bpf_map_elem, key),
+ PTR_TO_BUF | PTR_MAYBE_NULL | MEM_RDONLY },
+ { offsetof(struct bpf_iter__bpf_map_elem, value),
+ PTR_TO_BUF | PTR_MAYBE_NULL },
+ },
+};
+
+static int __init bpf_map_iter_init(void)
+{
+ int ret;
+
+ bpf_map_reg_info.ctx_arg_info[0].btf_id = *btf_bpf_map_id;
+ ret = bpf_iter_reg_target(&bpf_map_reg_info);
+ if (ret)
+ return ret;
+
+ return bpf_iter_reg_target(&bpf_map_elem_reg_info);
+}
+
+late_initcall(bpf_map_iter_init);
diff --git a/kernel/bpf/memalloc.c b/kernel/bpf/memalloc.c
new file mode 100644
index 000000000..ace303a22
--- /dev/null
+++ b/kernel/bpf/memalloc.c
@@ -0,0 +1,649 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
+#include <linux/mm.h>
+#include <linux/llist.h>
+#include <linux/bpf.h>
+#include <linux/irq_work.h>
+#include <linux/bpf_mem_alloc.h>
+#include <linux/memcontrol.h>
+#include <asm/local.h>
+
+/* Any context (including NMI) BPF specific memory allocator.
+ *
+ * Tracing BPF programs can attach to kprobe and fentry. Hence they
+ * run in unknown context where calling plain kmalloc() might not be safe.
+ *
+ * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
+ * Refill this cache asynchronously from irq_work.
+ *
+ * CPU_0 buckets
+ * 16 32 64 96 128 196 256 512 1024 2048 4096
+ * ...
+ * CPU_N buckets
+ * 16 32 64 96 128 196 256 512 1024 2048 4096
+ *
+ * The buckets are prefilled at the start.
+ * BPF programs always run with migration disabled.
+ * It's safe to allocate from cache of the current cpu with irqs disabled.
+ * Free-ing is always done into bucket of the current cpu as well.
+ * irq_work trims extra free elements from buckets with kfree
+ * and refills them with kmalloc, so global kmalloc logic takes care
+ * of freeing objects allocated by one cpu and freed on another.
+ *
+ * Every allocated objected is padded with extra 8 bytes that contains
+ * struct llist_node.
+ */
+#define LLIST_NODE_SZ sizeof(struct llist_node)
+
+/* similar to kmalloc, but sizeof == 8 bucket is gone */
+static u8 size_index[24] __ro_after_init = {
+ 3, /* 8 */
+ 3, /* 16 */
+ 4, /* 24 */
+ 4, /* 32 */
+ 5, /* 40 */
+ 5, /* 48 */
+ 5, /* 56 */
+ 5, /* 64 */
+ 1, /* 72 */
+ 1, /* 80 */
+ 1, /* 88 */
+ 1, /* 96 */
+ 6, /* 104 */
+ 6, /* 112 */
+ 6, /* 120 */
+ 6, /* 128 */
+ 2, /* 136 */
+ 2, /* 144 */
+ 2, /* 152 */
+ 2, /* 160 */
+ 2, /* 168 */
+ 2, /* 176 */
+ 2, /* 184 */
+ 2 /* 192 */
+};
+
+static int bpf_mem_cache_idx(size_t size)
+{
+ if (!size || size > 4096)
+ return -1;
+
+ if (size <= 192)
+ return size_index[(size - 1) / 8] - 1;
+
+ return fls(size - 1) - 2;
+}
+
+#define NUM_CACHES 11
+
+struct bpf_mem_cache {
+ /* per-cpu list of free objects of size 'unit_size'.
+ * All accesses are done with interrupts disabled and 'active' counter
+ * protection with __llist_add() and __llist_del_first().
+ */
+ struct llist_head free_llist;
+ local_t active;
+
+ /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
+ * are sequenced by per-cpu 'active' counter. But unit_free() cannot
+ * fail. When 'active' is busy the unit_free() will add an object to
+ * free_llist_extra.
+ */
+ struct llist_head free_llist_extra;
+
+ struct irq_work refill_work;
+ struct obj_cgroup *objcg;
+ int unit_size;
+ /* count of objects in free_llist */
+ int free_cnt;
+ int low_watermark, high_watermark, batch;
+ int percpu_size;
+
+ struct rcu_head rcu;
+ struct llist_head free_by_rcu;
+ struct llist_head waiting_for_gp;
+ atomic_t call_rcu_in_progress;
+};
+
+struct bpf_mem_caches {
+ struct bpf_mem_cache cache[NUM_CACHES];
+};
+
+static struct llist_node notrace *__llist_del_first(struct llist_head *head)
+{
+ struct llist_node *entry, *next;
+
+ entry = head->first;
+ if (!entry)
+ return NULL;
+ next = entry->next;
+ head->first = next;
+ return entry;
+}
+
+static void *__alloc(struct bpf_mem_cache *c, int node)
+{
+ /* Allocate, but don't deplete atomic reserves that typical
+ * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
+ * will allocate from the current numa node which is what we
+ * want here.
+ */
+ gfp_t flags = GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT;
+
+ if (c->percpu_size) {
+ void **obj = kmalloc_node(c->percpu_size, flags, node);
+ void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
+
+ if (!obj || !pptr) {
+ free_percpu(pptr);
+ kfree(obj);
+ return NULL;
+ }
+ obj[1] = pptr;
+ return obj;
+ }
+
+ return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
+}
+
+static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
+{
+#ifdef CONFIG_MEMCG_KMEM
+ if (c->objcg)
+ return get_mem_cgroup_from_objcg(c->objcg);
+#endif
+
+#ifdef CONFIG_MEMCG
+ return root_mem_cgroup;
+#else
+ return NULL;
+#endif
+}
+
+/* Mostly runs from irq_work except __init phase. */
+static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
+{
+ struct mem_cgroup *memcg = NULL, *old_memcg;
+ unsigned long flags;
+ void *obj;
+ int i;
+
+ memcg = get_memcg(c);
+ old_memcg = set_active_memcg(memcg);
+ for (i = 0; i < cnt; i++) {
+ obj = __alloc(c, node);
+ if (!obj)
+ break;
+ if (IS_ENABLED(CONFIG_PREEMPT_RT))
+ /* In RT irq_work runs in per-cpu kthread, so disable
+ * interrupts to avoid preemption and interrupts and
+ * reduce the chance of bpf prog executing on this cpu
+ * when active counter is busy.
+ */
+ local_irq_save(flags);
+ /* alloc_bulk runs from irq_work which will not preempt a bpf
+ * program that does unit_alloc/unit_free since IRQs are
+ * disabled there. There is no race to increment 'active'
+ * counter. It protects free_llist from corruption in case NMI
+ * bpf prog preempted this loop.
+ */
+ WARN_ON_ONCE(local_inc_return(&c->active) != 1);
+ __llist_add(obj, &c->free_llist);
+ c->free_cnt++;
+ local_dec(&c->active);
+ if (IS_ENABLED(CONFIG_PREEMPT_RT))
+ local_irq_restore(flags);
+ }
+ set_active_memcg(old_memcg);
+ mem_cgroup_put(memcg);
+}
+
+static void free_one(struct bpf_mem_cache *c, void *obj)
+{
+ if (c->percpu_size) {
+ free_percpu(((void **)obj)[1]);
+ kfree(obj);
+ return;
+ }
+
+ kfree(obj);
+}
+
+static void __free_rcu(struct rcu_head *head)
+{
+ struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
+ struct llist_node *llnode = llist_del_all(&c->waiting_for_gp);
+ struct llist_node *pos, *t;
+
+ llist_for_each_safe(pos, t, llnode)
+ free_one(c, pos);
+ atomic_set(&c->call_rcu_in_progress, 0);
+}
+
+static void __free_rcu_tasks_trace(struct rcu_head *head)
+{
+ struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
+
+ call_rcu(&c->rcu, __free_rcu);
+}
+
+static void enque_to_free(struct bpf_mem_cache *c, void *obj)
+{
+ struct llist_node *llnode = obj;
+
+ /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
+ * Nothing races to add to free_by_rcu list.
+ */
+ __llist_add(llnode, &c->free_by_rcu);
+}
+
+static void do_call_rcu(struct bpf_mem_cache *c)
+{
+ struct llist_node *llnode, *t;
+
+ if (atomic_xchg(&c->call_rcu_in_progress, 1))
+ return;
+
+ WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
+ llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
+ /* There is no concurrent __llist_add(waiting_for_gp) access.
+ * It doesn't race with llist_del_all either.
+ * But there could be two concurrent llist_del_all(waiting_for_gp):
+ * from __free_rcu() and from drain_mem_cache().
+ */
+ __llist_add(llnode, &c->waiting_for_gp);
+ /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
+ * Then use call_rcu() to wait for normal progs to finish
+ * and finally do free_one() on each element.
+ */
+ call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace);
+}
+
+static void free_bulk(struct bpf_mem_cache *c)
+{
+ struct llist_node *llnode, *t;
+ unsigned long flags;
+ int cnt;
+
+ do {
+ if (IS_ENABLED(CONFIG_PREEMPT_RT))
+ local_irq_save(flags);
+ WARN_ON_ONCE(local_inc_return(&c->active) != 1);
+ llnode = __llist_del_first(&c->free_llist);
+ if (llnode)
+ cnt = --c->free_cnt;
+ else
+ cnt = 0;
+ local_dec(&c->active);
+ if (IS_ENABLED(CONFIG_PREEMPT_RT))
+ local_irq_restore(flags);
+ if (llnode)
+ enque_to_free(c, llnode);
+ } while (cnt > (c->high_watermark + c->low_watermark) / 2);
+
+ /* and drain free_llist_extra */
+ llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
+ enque_to_free(c, llnode);
+ do_call_rcu(c);
+}
+
+static void bpf_mem_refill(struct irq_work *work)
+{
+ struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
+ int cnt;
+
+ /* Racy access to free_cnt. It doesn't need to be 100% accurate */
+ cnt = c->free_cnt;
+ if (cnt < c->low_watermark)
+ /* irq_work runs on this cpu and kmalloc will allocate
+ * from the current numa node which is what we want here.
+ */
+ alloc_bulk(c, c->batch, NUMA_NO_NODE);
+ else if (cnt > c->high_watermark)
+ free_bulk(c);
+}
+
+static void notrace irq_work_raise(struct bpf_mem_cache *c)
+{
+ irq_work_queue(&c->refill_work);
+}
+
+/* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
+ * the freelist cache will be elem_size * 64 (or less) on each cpu.
+ *
+ * For bpf programs that don't have statically known allocation sizes and
+ * assuming (low_mark + high_mark) / 2 as an average number of elements per
+ * bucket and all buckets are used the total amount of memory in freelists
+ * on each cpu will be:
+ * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
+ * == ~ 116 Kbyte using below heuristic.
+ * Initialized, but unused bpf allocator (not bpf map specific one) will
+ * consume ~ 11 Kbyte per cpu.
+ * Typical case will be between 11K and 116K closer to 11K.
+ * bpf progs can and should share bpf_mem_cache when possible.
+ */
+
+static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
+{
+ init_irq_work(&c->refill_work, bpf_mem_refill);
+ if (c->unit_size <= 256) {
+ c->low_watermark = 32;
+ c->high_watermark = 96;
+ } else {
+ /* When page_size == 4k, order-0 cache will have low_mark == 2
+ * and high_mark == 6 with batch alloc of 3 individual pages at
+ * a time.
+ * 8k allocs and above low == 1, high == 3, batch == 1.
+ */
+ c->low_watermark = max(32 * 256 / c->unit_size, 1);
+ c->high_watermark = max(96 * 256 / c->unit_size, 3);
+ }
+ c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
+
+ /* To avoid consuming memory assume that 1st run of bpf
+ * prog won't be doing more than 4 map_update_elem from
+ * irq disabled region
+ */
+ alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
+}
+
+/* When size != 0 bpf_mem_cache for each cpu.
+ * This is typical bpf hash map use case when all elements have equal size.
+ *
+ * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
+ * kmalloc/kfree. Max allocation size is 4096 in this case.
+ * This is bpf_dynptr and bpf_kptr use case.
+ */
+int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
+{
+ static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
+ struct bpf_mem_caches *cc, __percpu *pcc;
+ struct bpf_mem_cache *c, __percpu *pc;
+ struct obj_cgroup *objcg = NULL;
+ int cpu, i, unit_size, percpu_size = 0;
+
+ if (size) {
+ pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
+ if (!pc)
+ return -ENOMEM;
+
+ if (percpu)
+ /* room for llist_node and per-cpu pointer */
+ percpu_size = LLIST_NODE_SZ + sizeof(void *);
+ else
+ size += LLIST_NODE_SZ; /* room for llist_node */
+ unit_size = size;
+
+#ifdef CONFIG_MEMCG_KMEM
+ objcg = get_obj_cgroup_from_current();
+#endif
+ for_each_possible_cpu(cpu) {
+ c = per_cpu_ptr(pc, cpu);
+ c->unit_size = unit_size;
+ c->objcg = objcg;
+ c->percpu_size = percpu_size;
+ prefill_mem_cache(c, cpu);
+ }
+ ma->cache = pc;
+ return 0;
+ }
+
+ /* size == 0 && percpu is an invalid combination */
+ if (WARN_ON_ONCE(percpu))
+ return -EINVAL;
+
+ pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
+ if (!pcc)
+ return -ENOMEM;
+#ifdef CONFIG_MEMCG_KMEM
+ objcg = get_obj_cgroup_from_current();
+#endif
+ for_each_possible_cpu(cpu) {
+ cc = per_cpu_ptr(pcc, cpu);
+ for (i = 0; i < NUM_CACHES; i++) {
+ c = &cc->cache[i];
+ c->unit_size = sizes[i];
+ c->objcg = objcg;
+ prefill_mem_cache(c, cpu);
+ }
+ }
+ ma->caches = pcc;
+ return 0;
+}
+
+static void drain_mem_cache(struct bpf_mem_cache *c)
+{
+ struct llist_node *llnode, *t;
+
+ /* No progs are using this bpf_mem_cache, but htab_map_free() called
+ * bpf_mem_cache_free() for all remaining elements and they can be in
+ * free_by_rcu or in waiting_for_gp lists, so drain those lists now.
+ *
+ * Except for waiting_for_gp list, there are no concurrent operations
+ * on these lists, so it is safe to use __llist_del_all().
+ */
+ llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
+ free_one(c, llnode);
+ llist_for_each_safe(llnode, t, llist_del_all(&c->waiting_for_gp))
+ free_one(c, llnode);
+ llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist))
+ free_one(c, llnode);
+ llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist_extra))
+ free_one(c, llnode);
+}
+
+static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
+{
+ free_percpu(ma->cache);
+ free_percpu(ma->caches);
+ ma->cache = NULL;
+ ma->caches = NULL;
+}
+
+static void free_mem_alloc(struct bpf_mem_alloc *ma)
+{
+ /* waiting_for_gp lists was drained, but __free_rcu might
+ * still execute. Wait for it now before we freeing percpu caches.
+ */
+ rcu_barrier_tasks_trace();
+ rcu_barrier();
+ free_mem_alloc_no_barrier(ma);
+}
+
+static void free_mem_alloc_deferred(struct work_struct *work)
+{
+ struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
+
+ free_mem_alloc(ma);
+ kfree(ma);
+}
+
+static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
+{
+ struct bpf_mem_alloc *copy;
+
+ if (!rcu_in_progress) {
+ /* Fast path. No callbacks are pending, hence no need to do
+ * rcu_barrier-s.
+ */
+ free_mem_alloc_no_barrier(ma);
+ return;
+ }
+
+ copy = kmalloc(sizeof(*ma), GFP_KERNEL);
+ if (!copy) {
+ /* Slow path with inline barrier-s */
+ free_mem_alloc(ma);
+ return;
+ }
+
+ /* Defer barriers into worker to let the rest of map memory to be freed */
+ copy->cache = ma->cache;
+ ma->cache = NULL;
+ copy->caches = ma->caches;
+ ma->caches = NULL;
+ INIT_WORK(&copy->work, free_mem_alloc_deferred);
+ queue_work(system_unbound_wq, &copy->work);
+}
+
+void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
+{
+ struct bpf_mem_caches *cc;
+ struct bpf_mem_cache *c;
+ int cpu, i, rcu_in_progress;
+
+ if (ma->cache) {
+ rcu_in_progress = 0;
+ for_each_possible_cpu(cpu) {
+ c = per_cpu_ptr(ma->cache, cpu);
+ /*
+ * refill_work may be unfinished for PREEMPT_RT kernel
+ * in which irq work is invoked in a per-CPU RT thread.
+ * It is also possible for kernel with
+ * arch_irq_work_has_interrupt() being false and irq
+ * work is invoked in timer interrupt. So waiting for
+ * the completion of irq work to ease the handling of
+ * concurrency.
+ */
+ irq_work_sync(&c->refill_work);
+ drain_mem_cache(c);
+ rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
+ }
+ /* objcg is the same across cpus */
+ if (c->objcg)
+ obj_cgroup_put(c->objcg);
+ destroy_mem_alloc(ma, rcu_in_progress);
+ }
+ if (ma->caches) {
+ rcu_in_progress = 0;
+ for_each_possible_cpu(cpu) {
+ cc = per_cpu_ptr(ma->caches, cpu);
+ for (i = 0; i < NUM_CACHES; i++) {
+ c = &cc->cache[i];
+ irq_work_sync(&c->refill_work);
+ drain_mem_cache(c);
+ rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
+ }
+ }
+ if (c->objcg)
+ obj_cgroup_put(c->objcg);
+ destroy_mem_alloc(ma, rcu_in_progress);
+ }
+}
+
+/* notrace is necessary here and in other functions to make sure
+ * bpf programs cannot attach to them and cause llist corruptions.
+ */
+static void notrace *unit_alloc(struct bpf_mem_cache *c)
+{
+ struct llist_node *llnode = NULL;
+ unsigned long flags;
+ int cnt = 0;
+
+ /* Disable irqs to prevent the following race for majority of prog types:
+ * prog_A
+ * bpf_mem_alloc
+ * preemption or irq -> prog_B
+ * bpf_mem_alloc
+ *
+ * but prog_B could be a perf_event NMI prog.
+ * Use per-cpu 'active' counter to order free_list access between
+ * unit_alloc/unit_free/bpf_mem_refill.
+ */
+ local_irq_save(flags);
+ if (local_inc_return(&c->active) == 1) {
+ llnode = __llist_del_first(&c->free_llist);
+ if (llnode)
+ cnt = --c->free_cnt;
+ }
+ local_dec(&c->active);
+ local_irq_restore(flags);
+
+ WARN_ON(cnt < 0);
+
+ if (cnt < c->low_watermark)
+ irq_work_raise(c);
+ return llnode;
+}
+
+/* Though 'ptr' object could have been allocated on a different cpu
+ * add it to the free_llist of the current cpu.
+ * Let kfree() logic deal with it when it's later called from irq_work.
+ */
+static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
+{
+ struct llist_node *llnode = ptr - LLIST_NODE_SZ;
+ unsigned long flags;
+ int cnt = 0;
+
+ BUILD_BUG_ON(LLIST_NODE_SZ > 8);
+
+ local_irq_save(flags);
+ if (local_inc_return(&c->active) == 1) {
+ __llist_add(llnode, &c->free_llist);
+ cnt = ++c->free_cnt;
+ } else {
+ /* unit_free() cannot fail. Therefore add an object to atomic
+ * llist. free_bulk() will drain it. Though free_llist_extra is
+ * a per-cpu list we have to use atomic llist_add here, since
+ * it also can be interrupted by bpf nmi prog that does another
+ * unit_free() into the same free_llist_extra.
+ */
+ llist_add(llnode, &c->free_llist_extra);
+ }
+ local_dec(&c->active);
+ local_irq_restore(flags);
+
+ if (cnt > c->high_watermark)
+ /* free few objects from current cpu into global kmalloc pool */
+ irq_work_raise(c);
+}
+
+/* Called from BPF program or from sys_bpf syscall.
+ * In both cases migration is disabled.
+ */
+void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
+{
+ int idx;
+ void *ret;
+
+ if (!size)
+ return ZERO_SIZE_PTR;
+
+ idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
+ if (idx < 0)
+ return NULL;
+
+ ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
+ return !ret ? NULL : ret + LLIST_NODE_SZ;
+}
+
+void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
+{
+ int idx;
+
+ if (!ptr)
+ return;
+
+ idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
+ if (idx < 0)
+ return;
+
+ unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
+}
+
+void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
+{
+ void *ret;
+
+ ret = unit_alloc(this_cpu_ptr(ma->cache));
+ return !ret ? NULL : ret + LLIST_NODE_SZ;
+}
+
+void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
+{
+ if (!ptr)
+ return;
+
+ unit_free(this_cpu_ptr(ma->cache), ptr);
+}
diff --git a/kernel/bpf/mmap_unlock_work.h b/kernel/bpf/mmap_unlock_work.h
new file mode 100644
index 000000000..5d18d7d85
--- /dev/null
+++ b/kernel/bpf/mmap_unlock_work.h
@@ -0,0 +1,65 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/* Copyright (c) 2021 Facebook
+ */
+
+#ifndef __MMAP_UNLOCK_WORK_H__
+#define __MMAP_UNLOCK_WORK_H__
+#include <linux/irq_work.h>
+
+/* irq_work to run mmap_read_unlock() in irq_work */
+struct mmap_unlock_irq_work {
+ struct irq_work irq_work;
+ struct mm_struct *mm;
+};
+
+DECLARE_PER_CPU(struct mmap_unlock_irq_work, mmap_unlock_work);
+
+/*
+ * We cannot do mmap_read_unlock() when the irq is disabled, because of
+ * risk to deadlock with rq_lock. To look up vma when the irqs are
+ * disabled, we need to run mmap_read_unlock() in irq_work. We use a
+ * percpu variable to do the irq_work. If the irq_work is already used
+ * by another lookup, we fall over.
+ */
+static inline bool bpf_mmap_unlock_get_irq_work(struct mmap_unlock_irq_work **work_ptr)
+{
+ struct mmap_unlock_irq_work *work = NULL;
+ bool irq_work_busy = false;
+
+ if (irqs_disabled()) {
+ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
+ work = this_cpu_ptr(&mmap_unlock_work);
+ if (irq_work_is_busy(&work->irq_work)) {
+ /* cannot queue more up_read, fallback */
+ irq_work_busy = true;
+ }
+ } else {
+ /*
+ * PREEMPT_RT does not allow to trylock mmap sem in
+ * interrupt disabled context. Force the fallback code.
+ */
+ irq_work_busy = true;
+ }
+ }
+
+ *work_ptr = work;
+ return irq_work_busy;
+}
+
+static inline void bpf_mmap_unlock_mm(struct mmap_unlock_irq_work *work, struct mm_struct *mm)
+{
+ if (!work) {
+ mmap_read_unlock(mm);
+ } else {
+ work->mm = mm;
+
+ /* The lock will be released once we're out of interrupt
+ * context. Tell lockdep that we've released it now so
+ * it doesn't complain that we forgot to release it.
+ */
+ rwsem_release(&mm->mmap_lock.dep_map, _RET_IP_);
+ irq_work_queue(&work->irq_work);
+ }
+}
+
+#endif /* __MMAP_UNLOCK_WORK_H__ */
diff --git a/kernel/bpf/net_namespace.c b/kernel/bpf/net_namespace.c
new file mode 100644
index 000000000..868cc2c43
--- /dev/null
+++ b/kernel/bpf/net_namespace.c
@@ -0,0 +1,567 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/bpf.h>
+#include <linux/bpf-netns.h>
+#include <linux/filter.h>
+#include <net/net_namespace.h>
+
+/*
+ * Functions to manage BPF programs attached to netns
+ */
+
+struct bpf_netns_link {
+ struct bpf_link link;
+ enum bpf_attach_type type;
+ enum netns_bpf_attach_type netns_type;
+
+ /* We don't hold a ref to net in order to auto-detach the link
+ * when netns is going away. Instead we rely on pernet
+ * pre_exit callback to clear this pointer. Must be accessed
+ * with netns_bpf_mutex held.
+ */
+ struct net *net;
+ struct list_head node; /* node in list of links attached to net */
+};
+
+/* Protects updates to netns_bpf */
+DEFINE_MUTEX(netns_bpf_mutex);
+
+static void netns_bpf_attach_type_unneed(enum netns_bpf_attach_type type)
+{
+ switch (type) {
+#ifdef CONFIG_INET
+ case NETNS_BPF_SK_LOOKUP:
+ static_branch_dec(&bpf_sk_lookup_enabled);
+ break;
+#endif
+ default:
+ break;
+ }
+}
+
+static void netns_bpf_attach_type_need(enum netns_bpf_attach_type type)
+{
+ switch (type) {
+#ifdef CONFIG_INET
+ case NETNS_BPF_SK_LOOKUP:
+ static_branch_inc(&bpf_sk_lookup_enabled);
+ break;
+#endif
+ default:
+ break;
+ }
+}
+
+/* Must be called with netns_bpf_mutex held. */
+static void netns_bpf_run_array_detach(struct net *net,
+ enum netns_bpf_attach_type type)
+{
+ struct bpf_prog_array *run_array;
+
+ run_array = rcu_replace_pointer(net->bpf.run_array[type], NULL,
+ lockdep_is_held(&netns_bpf_mutex));
+ bpf_prog_array_free(run_array);
+}
+
+static int link_index(struct net *net, enum netns_bpf_attach_type type,
+ struct bpf_netns_link *link)
+{
+ struct bpf_netns_link *pos;
+ int i = 0;
+
+ list_for_each_entry(pos, &net->bpf.links[type], node) {
+ if (pos == link)
+ return i;
+ i++;
+ }
+ return -ENOENT;
+}
+
+static int link_count(struct net *net, enum netns_bpf_attach_type type)
+{
+ struct list_head *pos;
+ int i = 0;
+
+ list_for_each(pos, &net->bpf.links[type])
+ i++;
+ return i;
+}
+
+static void fill_prog_array(struct net *net, enum netns_bpf_attach_type type,
+ struct bpf_prog_array *prog_array)
+{
+ struct bpf_netns_link *pos;
+ unsigned int i = 0;
+
+ list_for_each_entry(pos, &net->bpf.links[type], node) {
+ prog_array->items[i].prog = pos->link.prog;
+ i++;
+ }
+}
+
+static void bpf_netns_link_release(struct bpf_link *link)
+{
+ struct bpf_netns_link *net_link =
+ container_of(link, struct bpf_netns_link, link);
+ enum netns_bpf_attach_type type = net_link->netns_type;
+ struct bpf_prog_array *old_array, *new_array;
+ struct net *net;
+ int cnt, idx;
+
+ mutex_lock(&netns_bpf_mutex);
+
+ /* We can race with cleanup_net, but if we see a non-NULL
+ * struct net pointer, pre_exit has not run yet and wait for
+ * netns_bpf_mutex.
+ */
+ net = net_link->net;
+ if (!net)
+ goto out_unlock;
+
+ /* Mark attach point as unused */
+ netns_bpf_attach_type_unneed(type);
+
+ /* Remember link position in case of safe delete */
+ idx = link_index(net, type, net_link);
+ list_del(&net_link->node);
+
+ cnt = link_count(net, type);
+ if (!cnt) {
+ netns_bpf_run_array_detach(net, type);
+ goto out_unlock;
+ }
+
+ old_array = rcu_dereference_protected(net->bpf.run_array[type],
+ lockdep_is_held(&netns_bpf_mutex));
+ new_array = bpf_prog_array_alloc(cnt, GFP_KERNEL);
+ if (!new_array) {
+ WARN_ON(bpf_prog_array_delete_safe_at(old_array, idx));
+ goto out_unlock;
+ }
+ fill_prog_array(net, type, new_array);
+ rcu_assign_pointer(net->bpf.run_array[type], new_array);
+ bpf_prog_array_free(old_array);
+
+out_unlock:
+ net_link->net = NULL;
+ mutex_unlock(&netns_bpf_mutex);
+}
+
+static int bpf_netns_link_detach(struct bpf_link *link)
+{
+ bpf_netns_link_release(link);
+ return 0;
+}
+
+static void bpf_netns_link_dealloc(struct bpf_link *link)
+{
+ struct bpf_netns_link *net_link =
+ container_of(link, struct bpf_netns_link, link);
+
+ kfree(net_link);
+}
+
+static int bpf_netns_link_update_prog(struct bpf_link *link,
+ struct bpf_prog *new_prog,
+ struct bpf_prog *old_prog)
+{
+ struct bpf_netns_link *net_link =
+ container_of(link, struct bpf_netns_link, link);
+ enum netns_bpf_attach_type type = net_link->netns_type;
+ struct bpf_prog_array *run_array;
+ struct net *net;
+ int idx, ret;
+
+ if (old_prog && old_prog != link->prog)
+ return -EPERM;
+ if (new_prog->type != link->prog->type)
+ return -EINVAL;
+
+ mutex_lock(&netns_bpf_mutex);
+
+ net = net_link->net;
+ if (!net || !check_net(net)) {
+ /* Link auto-detached or netns dying */
+ ret = -ENOLINK;
+ goto out_unlock;
+ }
+
+ run_array = rcu_dereference_protected(net->bpf.run_array[type],
+ lockdep_is_held(&netns_bpf_mutex));
+ idx = link_index(net, type, net_link);
+ ret = bpf_prog_array_update_at(run_array, idx, new_prog);
+ if (ret)
+ goto out_unlock;
+
+ old_prog = xchg(&link->prog, new_prog);
+ bpf_prog_put(old_prog);
+
+out_unlock:
+ mutex_unlock(&netns_bpf_mutex);
+ return ret;
+}
+
+static int bpf_netns_link_fill_info(const struct bpf_link *link,
+ struct bpf_link_info *info)
+{
+ const struct bpf_netns_link *net_link =
+ container_of(link, struct bpf_netns_link, link);
+ unsigned int inum = 0;
+ struct net *net;
+
+ mutex_lock(&netns_bpf_mutex);
+ net = net_link->net;
+ if (net && check_net(net))
+ inum = net->ns.inum;
+ mutex_unlock(&netns_bpf_mutex);
+
+ info->netns.netns_ino = inum;
+ info->netns.attach_type = net_link->type;
+ return 0;
+}
+
+static void bpf_netns_link_show_fdinfo(const struct bpf_link *link,
+ struct seq_file *seq)
+{
+ struct bpf_link_info info = {};
+
+ bpf_netns_link_fill_info(link, &info);
+ seq_printf(seq,
+ "netns_ino:\t%u\n"
+ "attach_type:\t%u\n",
+ info.netns.netns_ino,
+ info.netns.attach_type);
+}
+
+static const struct bpf_link_ops bpf_netns_link_ops = {
+ .release = bpf_netns_link_release,
+ .dealloc = bpf_netns_link_dealloc,
+ .detach = bpf_netns_link_detach,
+ .update_prog = bpf_netns_link_update_prog,
+ .fill_link_info = bpf_netns_link_fill_info,
+ .show_fdinfo = bpf_netns_link_show_fdinfo,
+};
+
+/* Must be called with netns_bpf_mutex held. */
+static int __netns_bpf_prog_query(const union bpf_attr *attr,
+ union bpf_attr __user *uattr,
+ struct net *net,
+ enum netns_bpf_attach_type type)
+{
+ __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
+ struct bpf_prog_array *run_array;
+ u32 prog_cnt = 0, flags = 0;
+
+ run_array = rcu_dereference_protected(net->bpf.run_array[type],
+ lockdep_is_held(&netns_bpf_mutex));
+ if (run_array)
+ prog_cnt = bpf_prog_array_length(run_array);
+
+ if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
+ return -EFAULT;
+ if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
+ return -EFAULT;
+ if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
+ return 0;
+
+ return bpf_prog_array_copy_to_user(run_array, prog_ids,
+ attr->query.prog_cnt);
+}
+
+int netns_bpf_prog_query(const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ enum netns_bpf_attach_type type;
+ struct net *net;
+ int ret;
+
+ if (attr->query.query_flags)
+ return -EINVAL;
+
+ type = to_netns_bpf_attach_type(attr->query.attach_type);
+ if (type < 0)
+ return -EINVAL;
+
+ net = get_net_ns_by_fd(attr->query.target_fd);
+ if (IS_ERR(net))
+ return PTR_ERR(net);
+
+ mutex_lock(&netns_bpf_mutex);
+ ret = __netns_bpf_prog_query(attr, uattr, net, type);
+ mutex_unlock(&netns_bpf_mutex);
+
+ put_net(net);
+ return ret;
+}
+
+int netns_bpf_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog)
+{
+ struct bpf_prog_array *run_array;
+ enum netns_bpf_attach_type type;
+ struct bpf_prog *attached;
+ struct net *net;
+ int ret;
+
+ if (attr->target_fd || attr->attach_flags || attr->replace_bpf_fd)
+ return -EINVAL;
+
+ type = to_netns_bpf_attach_type(attr->attach_type);
+ if (type < 0)
+ return -EINVAL;
+
+ net = current->nsproxy->net_ns;
+ mutex_lock(&netns_bpf_mutex);
+
+ /* Attaching prog directly is not compatible with links */
+ if (!list_empty(&net->bpf.links[type])) {
+ ret = -EEXIST;
+ goto out_unlock;
+ }
+
+ switch (type) {
+ case NETNS_BPF_FLOW_DISSECTOR:
+ ret = flow_dissector_bpf_prog_attach_check(net, prog);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+ if (ret)
+ goto out_unlock;
+
+ attached = net->bpf.progs[type];
+ if (attached == prog) {
+ /* The same program cannot be attached twice */
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ run_array = rcu_dereference_protected(net->bpf.run_array[type],
+ lockdep_is_held(&netns_bpf_mutex));
+ if (run_array) {
+ WRITE_ONCE(run_array->items[0].prog, prog);
+ } else {
+ run_array = bpf_prog_array_alloc(1, GFP_KERNEL);
+ if (!run_array) {
+ ret = -ENOMEM;
+ goto out_unlock;
+ }
+ run_array->items[0].prog = prog;
+ rcu_assign_pointer(net->bpf.run_array[type], run_array);
+ }
+
+ net->bpf.progs[type] = prog;
+ if (attached)
+ bpf_prog_put(attached);
+
+out_unlock:
+ mutex_unlock(&netns_bpf_mutex);
+
+ return ret;
+}
+
+/* Must be called with netns_bpf_mutex held. */
+static int __netns_bpf_prog_detach(struct net *net,
+ enum netns_bpf_attach_type type,
+ struct bpf_prog *old)
+{
+ struct bpf_prog *attached;
+
+ /* Progs attached via links cannot be detached */
+ if (!list_empty(&net->bpf.links[type]))
+ return -EINVAL;
+
+ attached = net->bpf.progs[type];
+ if (!attached || attached != old)
+ return -ENOENT;
+ netns_bpf_run_array_detach(net, type);
+ net->bpf.progs[type] = NULL;
+ bpf_prog_put(attached);
+ return 0;
+}
+
+int netns_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
+{
+ enum netns_bpf_attach_type type;
+ struct bpf_prog *prog;
+ int ret;
+
+ if (attr->target_fd)
+ return -EINVAL;
+
+ type = to_netns_bpf_attach_type(attr->attach_type);
+ if (type < 0)
+ return -EINVAL;
+
+ prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ mutex_lock(&netns_bpf_mutex);
+ ret = __netns_bpf_prog_detach(current->nsproxy->net_ns, type, prog);
+ mutex_unlock(&netns_bpf_mutex);
+
+ bpf_prog_put(prog);
+
+ return ret;
+}
+
+static int netns_bpf_max_progs(enum netns_bpf_attach_type type)
+{
+ switch (type) {
+ case NETNS_BPF_FLOW_DISSECTOR:
+ return 1;
+ case NETNS_BPF_SK_LOOKUP:
+ return 64;
+ default:
+ return 0;
+ }
+}
+
+static int netns_bpf_link_attach(struct net *net, struct bpf_link *link,
+ enum netns_bpf_attach_type type)
+{
+ struct bpf_netns_link *net_link =
+ container_of(link, struct bpf_netns_link, link);
+ struct bpf_prog_array *run_array;
+ int cnt, err;
+
+ mutex_lock(&netns_bpf_mutex);
+
+ cnt = link_count(net, type);
+ if (cnt >= netns_bpf_max_progs(type)) {
+ err = -E2BIG;
+ goto out_unlock;
+ }
+ /* Links are not compatible with attaching prog directly */
+ if (net->bpf.progs[type]) {
+ err = -EEXIST;
+ goto out_unlock;
+ }
+
+ switch (type) {
+ case NETNS_BPF_FLOW_DISSECTOR:
+ err = flow_dissector_bpf_prog_attach_check(net, link->prog);
+ break;
+ case NETNS_BPF_SK_LOOKUP:
+ err = 0; /* nothing to check */
+ break;
+ default:
+ err = -EINVAL;
+ break;
+ }
+ if (err)
+ goto out_unlock;
+
+ run_array = bpf_prog_array_alloc(cnt + 1, GFP_KERNEL);
+ if (!run_array) {
+ err = -ENOMEM;
+ goto out_unlock;
+ }
+
+ list_add_tail(&net_link->node, &net->bpf.links[type]);
+
+ fill_prog_array(net, type, run_array);
+ run_array = rcu_replace_pointer(net->bpf.run_array[type], run_array,
+ lockdep_is_held(&netns_bpf_mutex));
+ bpf_prog_array_free(run_array);
+
+ /* Mark attach point as used */
+ netns_bpf_attach_type_need(type);
+
+out_unlock:
+ mutex_unlock(&netns_bpf_mutex);
+ return err;
+}
+
+int netns_bpf_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
+{
+ enum netns_bpf_attach_type netns_type;
+ struct bpf_link_primer link_primer;
+ struct bpf_netns_link *net_link;
+ enum bpf_attach_type type;
+ struct net *net;
+ int err;
+
+ if (attr->link_create.flags)
+ return -EINVAL;
+
+ type = attr->link_create.attach_type;
+ netns_type = to_netns_bpf_attach_type(type);
+ if (netns_type < 0)
+ return -EINVAL;
+
+ net = get_net_ns_by_fd(attr->link_create.target_fd);
+ if (IS_ERR(net))
+ return PTR_ERR(net);
+
+ net_link = kzalloc(sizeof(*net_link), GFP_USER);
+ if (!net_link) {
+ err = -ENOMEM;
+ goto out_put_net;
+ }
+ bpf_link_init(&net_link->link, BPF_LINK_TYPE_NETNS,
+ &bpf_netns_link_ops, prog);
+ net_link->net = net;
+ net_link->type = type;
+ net_link->netns_type = netns_type;
+
+ err = bpf_link_prime(&net_link->link, &link_primer);
+ if (err) {
+ kfree(net_link);
+ goto out_put_net;
+ }
+
+ err = netns_bpf_link_attach(net, &net_link->link, netns_type);
+ if (err) {
+ bpf_link_cleanup(&link_primer);
+ goto out_put_net;
+ }
+
+ put_net(net);
+ return bpf_link_settle(&link_primer);
+
+out_put_net:
+ put_net(net);
+ return err;
+}
+
+static int __net_init netns_bpf_pernet_init(struct net *net)
+{
+ int type;
+
+ for (type = 0; type < MAX_NETNS_BPF_ATTACH_TYPE; type++)
+ INIT_LIST_HEAD(&net->bpf.links[type]);
+
+ return 0;
+}
+
+static void __net_exit netns_bpf_pernet_pre_exit(struct net *net)
+{
+ enum netns_bpf_attach_type type;
+ struct bpf_netns_link *net_link;
+
+ mutex_lock(&netns_bpf_mutex);
+ for (type = 0; type < MAX_NETNS_BPF_ATTACH_TYPE; type++) {
+ netns_bpf_run_array_detach(net, type);
+ list_for_each_entry(net_link, &net->bpf.links[type], node) {
+ net_link->net = NULL; /* auto-detach link */
+ netns_bpf_attach_type_unneed(type);
+ }
+ if (net->bpf.progs[type])
+ bpf_prog_put(net->bpf.progs[type]);
+ }
+ mutex_unlock(&netns_bpf_mutex);
+}
+
+static struct pernet_operations netns_bpf_pernet_ops __net_initdata = {
+ .init = netns_bpf_pernet_init,
+ .pre_exit = netns_bpf_pernet_pre_exit,
+};
+
+static int __init netns_bpf_init(void)
+{
+ return register_pernet_subsys(&netns_bpf_pernet_ops);
+}
+
+subsys_initcall(netns_bpf_init);
diff --git a/kernel/bpf/offload.c b/kernel/bpf/offload.c
new file mode 100644
index 000000000..190d9f9dc
--- /dev/null
+++ b/kernel/bpf/offload.c
@@ -0,0 +1,709 @@
+/*
+ * Copyright (C) 2017-2018 Netronome Systems, Inc.
+ *
+ * This software is licensed under the GNU General License Version 2,
+ * June 1991 as shown in the file COPYING in the top-level directory of this
+ * source tree.
+ *
+ * THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
+ * WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
+ * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
+ * OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
+ * THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+ */
+
+#include <linux/bpf.h>
+#include <linux/bpf_verifier.h>
+#include <linux/bug.h>
+#include <linux/kdev_t.h>
+#include <linux/list.h>
+#include <linux/lockdep.h>
+#include <linux/netdevice.h>
+#include <linux/printk.h>
+#include <linux/proc_ns.h>
+#include <linux/rhashtable.h>
+#include <linux/rtnetlink.h>
+#include <linux/rwsem.h>
+
+/* Protects offdevs, members of bpf_offload_netdev and offload members
+ * of all progs.
+ * RTNL lock cannot be taken when holding this lock.
+ */
+static DECLARE_RWSEM(bpf_devs_lock);
+
+struct bpf_offload_dev {
+ const struct bpf_prog_offload_ops *ops;
+ struct list_head netdevs;
+ void *priv;
+};
+
+struct bpf_offload_netdev {
+ struct rhash_head l;
+ struct net_device *netdev;
+ struct bpf_offload_dev *offdev;
+ struct list_head progs;
+ struct list_head maps;
+ struct list_head offdev_netdevs;
+};
+
+static const struct rhashtable_params offdevs_params = {
+ .nelem_hint = 4,
+ .key_len = sizeof(struct net_device *),
+ .key_offset = offsetof(struct bpf_offload_netdev, netdev),
+ .head_offset = offsetof(struct bpf_offload_netdev, l),
+ .automatic_shrinking = true,
+};
+
+static struct rhashtable offdevs;
+static bool offdevs_inited;
+
+static int bpf_dev_offload_check(struct net_device *netdev)
+{
+ if (!netdev)
+ return -EINVAL;
+ if (!netdev->netdev_ops->ndo_bpf)
+ return -EOPNOTSUPP;
+ return 0;
+}
+
+static struct bpf_offload_netdev *
+bpf_offload_find_netdev(struct net_device *netdev)
+{
+ lockdep_assert_held(&bpf_devs_lock);
+
+ if (!offdevs_inited)
+ return NULL;
+ return rhashtable_lookup_fast(&offdevs, &netdev, offdevs_params);
+}
+
+int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr)
+{
+ struct bpf_offload_netdev *ondev;
+ struct bpf_prog_offload *offload;
+ int err;
+
+ if (attr->prog_type != BPF_PROG_TYPE_SCHED_CLS &&
+ attr->prog_type != BPF_PROG_TYPE_XDP)
+ return -EINVAL;
+
+ if (attr->prog_flags)
+ return -EINVAL;
+
+ offload = kzalloc(sizeof(*offload), GFP_USER);
+ if (!offload)
+ return -ENOMEM;
+
+ offload->prog = prog;
+
+ offload->netdev = dev_get_by_index(current->nsproxy->net_ns,
+ attr->prog_ifindex);
+ err = bpf_dev_offload_check(offload->netdev);
+ if (err)
+ goto err_maybe_put;
+
+ down_write(&bpf_devs_lock);
+ ondev = bpf_offload_find_netdev(offload->netdev);
+ if (!ondev) {
+ err = -EINVAL;
+ goto err_unlock;
+ }
+ offload->offdev = ondev->offdev;
+ prog->aux->offload = offload;
+ list_add_tail(&offload->offloads, &ondev->progs);
+ dev_put(offload->netdev);
+ up_write(&bpf_devs_lock);
+
+ return 0;
+err_unlock:
+ up_write(&bpf_devs_lock);
+err_maybe_put:
+ if (offload->netdev)
+ dev_put(offload->netdev);
+ kfree(offload);
+ return err;
+}
+
+int bpf_prog_offload_verifier_prep(struct bpf_prog *prog)
+{
+ struct bpf_prog_offload *offload;
+ int ret = -ENODEV;
+
+ down_read(&bpf_devs_lock);
+ offload = prog->aux->offload;
+ if (offload) {
+ ret = offload->offdev->ops->prepare(prog);
+ offload->dev_state = !ret;
+ }
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
+ int insn_idx, int prev_insn_idx)
+{
+ struct bpf_prog_offload *offload;
+ int ret = -ENODEV;
+
+ down_read(&bpf_devs_lock);
+ offload = env->prog->aux->offload;
+ if (offload)
+ ret = offload->offdev->ops->insn_hook(env, insn_idx,
+ prev_insn_idx);
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+int bpf_prog_offload_finalize(struct bpf_verifier_env *env)
+{
+ struct bpf_prog_offload *offload;
+ int ret = -ENODEV;
+
+ down_read(&bpf_devs_lock);
+ offload = env->prog->aux->offload;
+ if (offload) {
+ if (offload->offdev->ops->finalize)
+ ret = offload->offdev->ops->finalize(env);
+ else
+ ret = 0;
+ }
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+void
+bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
+ struct bpf_insn *insn)
+{
+ const struct bpf_prog_offload_ops *ops;
+ struct bpf_prog_offload *offload;
+ int ret = -EOPNOTSUPP;
+
+ down_read(&bpf_devs_lock);
+ offload = env->prog->aux->offload;
+ if (offload) {
+ ops = offload->offdev->ops;
+ if (!offload->opt_failed && ops->replace_insn)
+ ret = ops->replace_insn(env, off, insn);
+ offload->opt_failed |= ret;
+ }
+ up_read(&bpf_devs_lock);
+}
+
+void
+bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
+{
+ struct bpf_prog_offload *offload;
+ int ret = -EOPNOTSUPP;
+
+ down_read(&bpf_devs_lock);
+ offload = env->prog->aux->offload;
+ if (offload) {
+ if (!offload->opt_failed && offload->offdev->ops->remove_insns)
+ ret = offload->offdev->ops->remove_insns(env, off, cnt);
+ offload->opt_failed |= ret;
+ }
+ up_read(&bpf_devs_lock);
+}
+
+static void __bpf_prog_offload_destroy(struct bpf_prog *prog)
+{
+ struct bpf_prog_offload *offload = prog->aux->offload;
+
+ if (offload->dev_state)
+ offload->offdev->ops->destroy(prog);
+
+ list_del_init(&offload->offloads);
+ kfree(offload);
+ prog->aux->offload = NULL;
+}
+
+void bpf_prog_offload_destroy(struct bpf_prog *prog)
+{
+ down_write(&bpf_devs_lock);
+ if (prog->aux->offload)
+ __bpf_prog_offload_destroy(prog);
+ up_write(&bpf_devs_lock);
+}
+
+static int bpf_prog_offload_translate(struct bpf_prog *prog)
+{
+ struct bpf_prog_offload *offload;
+ int ret = -ENODEV;
+
+ down_read(&bpf_devs_lock);
+ offload = prog->aux->offload;
+ if (offload)
+ ret = offload->offdev->ops->translate(prog);
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+static unsigned int bpf_prog_warn_on_exec(const void *ctx,
+ const struct bpf_insn *insn)
+{
+ WARN(1, "attempt to execute device eBPF program on the host!");
+ return 0;
+}
+
+int bpf_prog_offload_compile(struct bpf_prog *prog)
+{
+ prog->bpf_func = bpf_prog_warn_on_exec;
+
+ return bpf_prog_offload_translate(prog);
+}
+
+struct ns_get_path_bpf_prog_args {
+ struct bpf_prog *prog;
+ struct bpf_prog_info *info;
+};
+
+static struct ns_common *bpf_prog_offload_info_fill_ns(void *private_data)
+{
+ struct ns_get_path_bpf_prog_args *args = private_data;
+ struct bpf_prog_aux *aux = args->prog->aux;
+ struct ns_common *ns;
+ struct net *net;
+
+ rtnl_lock();
+ down_read(&bpf_devs_lock);
+
+ if (aux->offload) {
+ args->info->ifindex = aux->offload->netdev->ifindex;
+ net = dev_net(aux->offload->netdev);
+ get_net(net);
+ ns = &net->ns;
+ } else {
+ args->info->ifindex = 0;
+ ns = NULL;
+ }
+
+ up_read(&bpf_devs_lock);
+ rtnl_unlock();
+
+ return ns;
+}
+
+int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
+ struct bpf_prog *prog)
+{
+ struct ns_get_path_bpf_prog_args args = {
+ .prog = prog,
+ .info = info,
+ };
+ struct bpf_prog_aux *aux = prog->aux;
+ struct inode *ns_inode;
+ struct path ns_path;
+ char __user *uinsns;
+ int res;
+ u32 ulen;
+
+ res = ns_get_path_cb(&ns_path, bpf_prog_offload_info_fill_ns, &args);
+ if (res) {
+ if (!info->ifindex)
+ return -ENODEV;
+ return res;
+ }
+
+ down_read(&bpf_devs_lock);
+
+ if (!aux->offload) {
+ up_read(&bpf_devs_lock);
+ return -ENODEV;
+ }
+
+ ulen = info->jited_prog_len;
+ info->jited_prog_len = aux->offload->jited_len;
+ if (info->jited_prog_len && ulen) {
+ uinsns = u64_to_user_ptr(info->jited_prog_insns);
+ ulen = min_t(u32, info->jited_prog_len, ulen);
+ if (copy_to_user(uinsns, aux->offload->jited_image, ulen)) {
+ up_read(&bpf_devs_lock);
+ return -EFAULT;
+ }
+ }
+
+ up_read(&bpf_devs_lock);
+
+ ns_inode = ns_path.dentry->d_inode;
+ info->netns_dev = new_encode_dev(ns_inode->i_sb->s_dev);
+ info->netns_ino = ns_inode->i_ino;
+ path_put(&ns_path);
+
+ return 0;
+}
+
+const struct bpf_prog_ops bpf_offload_prog_ops = {
+};
+
+static int bpf_map_offload_ndo(struct bpf_offloaded_map *offmap,
+ enum bpf_netdev_command cmd)
+{
+ struct netdev_bpf data = {};
+ struct net_device *netdev;
+
+ ASSERT_RTNL();
+
+ data.command = cmd;
+ data.offmap = offmap;
+ /* Caller must make sure netdev is valid */
+ netdev = offmap->netdev;
+
+ return netdev->netdev_ops->ndo_bpf(netdev, &data);
+}
+
+struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
+{
+ struct net *net = current->nsproxy->net_ns;
+ struct bpf_offload_netdev *ondev;
+ struct bpf_offloaded_map *offmap;
+ int err;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return ERR_PTR(-EPERM);
+ if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
+ attr->map_type != BPF_MAP_TYPE_HASH)
+ return ERR_PTR(-EINVAL);
+
+ offmap = bpf_map_area_alloc(sizeof(*offmap), NUMA_NO_NODE);
+ if (!offmap)
+ return ERR_PTR(-ENOMEM);
+
+ bpf_map_init_from_attr(&offmap->map, attr);
+
+ rtnl_lock();
+ down_write(&bpf_devs_lock);
+ offmap->netdev = __dev_get_by_index(net, attr->map_ifindex);
+ err = bpf_dev_offload_check(offmap->netdev);
+ if (err)
+ goto err_unlock;
+
+ ondev = bpf_offload_find_netdev(offmap->netdev);
+ if (!ondev) {
+ err = -EINVAL;
+ goto err_unlock;
+ }
+
+ err = bpf_map_offload_ndo(offmap, BPF_OFFLOAD_MAP_ALLOC);
+ if (err)
+ goto err_unlock;
+
+ list_add_tail(&offmap->offloads, &ondev->maps);
+ up_write(&bpf_devs_lock);
+ rtnl_unlock();
+
+ return &offmap->map;
+
+err_unlock:
+ up_write(&bpf_devs_lock);
+ rtnl_unlock();
+ bpf_map_area_free(offmap);
+ return ERR_PTR(err);
+}
+
+static void __bpf_map_offload_destroy(struct bpf_offloaded_map *offmap)
+{
+ WARN_ON(bpf_map_offload_ndo(offmap, BPF_OFFLOAD_MAP_FREE));
+ /* Make sure BPF_MAP_GET_NEXT_ID can't find this dead map */
+ bpf_map_free_id(&offmap->map, true);
+ list_del_init(&offmap->offloads);
+ offmap->netdev = NULL;
+}
+
+void bpf_map_offload_map_free(struct bpf_map *map)
+{
+ struct bpf_offloaded_map *offmap = map_to_offmap(map);
+
+ rtnl_lock();
+ down_write(&bpf_devs_lock);
+ if (offmap->netdev)
+ __bpf_map_offload_destroy(offmap);
+ up_write(&bpf_devs_lock);
+ rtnl_unlock();
+
+ bpf_map_area_free(offmap);
+}
+
+int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value)
+{
+ struct bpf_offloaded_map *offmap = map_to_offmap(map);
+ int ret = -ENODEV;
+
+ down_read(&bpf_devs_lock);
+ if (offmap->netdev)
+ ret = offmap->dev_ops->map_lookup_elem(offmap, key, value);
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+int bpf_map_offload_update_elem(struct bpf_map *map,
+ void *key, void *value, u64 flags)
+{
+ struct bpf_offloaded_map *offmap = map_to_offmap(map);
+ int ret = -ENODEV;
+
+ if (unlikely(flags > BPF_EXIST))
+ return -EINVAL;
+
+ down_read(&bpf_devs_lock);
+ if (offmap->netdev)
+ ret = offmap->dev_ops->map_update_elem(offmap, key, value,
+ flags);
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+int bpf_map_offload_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_offloaded_map *offmap = map_to_offmap(map);
+ int ret = -ENODEV;
+
+ down_read(&bpf_devs_lock);
+ if (offmap->netdev)
+ ret = offmap->dev_ops->map_delete_elem(offmap, key);
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+int bpf_map_offload_get_next_key(struct bpf_map *map, void *key, void *next_key)
+{
+ struct bpf_offloaded_map *offmap = map_to_offmap(map);
+ int ret = -ENODEV;
+
+ down_read(&bpf_devs_lock);
+ if (offmap->netdev)
+ ret = offmap->dev_ops->map_get_next_key(offmap, key, next_key);
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+struct ns_get_path_bpf_map_args {
+ struct bpf_offloaded_map *offmap;
+ struct bpf_map_info *info;
+};
+
+static struct ns_common *bpf_map_offload_info_fill_ns(void *private_data)
+{
+ struct ns_get_path_bpf_map_args *args = private_data;
+ struct ns_common *ns;
+ struct net *net;
+
+ rtnl_lock();
+ down_read(&bpf_devs_lock);
+
+ if (args->offmap->netdev) {
+ args->info->ifindex = args->offmap->netdev->ifindex;
+ net = dev_net(args->offmap->netdev);
+ get_net(net);
+ ns = &net->ns;
+ } else {
+ args->info->ifindex = 0;
+ ns = NULL;
+ }
+
+ up_read(&bpf_devs_lock);
+ rtnl_unlock();
+
+ return ns;
+}
+
+int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map)
+{
+ struct ns_get_path_bpf_map_args args = {
+ .offmap = map_to_offmap(map),
+ .info = info,
+ };
+ struct inode *ns_inode;
+ struct path ns_path;
+ int res;
+
+ res = ns_get_path_cb(&ns_path, bpf_map_offload_info_fill_ns, &args);
+ if (res) {
+ if (!info->ifindex)
+ return -ENODEV;
+ return res;
+ }
+
+ ns_inode = ns_path.dentry->d_inode;
+ info->netns_dev = new_encode_dev(ns_inode->i_sb->s_dev);
+ info->netns_ino = ns_inode->i_ino;
+ path_put(&ns_path);
+
+ return 0;
+}
+
+static bool __bpf_offload_dev_match(struct bpf_prog *prog,
+ struct net_device *netdev)
+{
+ struct bpf_offload_netdev *ondev1, *ondev2;
+ struct bpf_prog_offload *offload;
+
+ if (!bpf_prog_is_dev_bound(prog->aux))
+ return false;
+
+ offload = prog->aux->offload;
+ if (!offload)
+ return false;
+ if (offload->netdev == netdev)
+ return true;
+
+ ondev1 = bpf_offload_find_netdev(offload->netdev);
+ ondev2 = bpf_offload_find_netdev(netdev);
+
+ return ondev1 && ondev2 && ondev1->offdev == ondev2->offdev;
+}
+
+bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev)
+{
+ bool ret;
+
+ down_read(&bpf_devs_lock);
+ ret = __bpf_offload_dev_match(prog, netdev);
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(bpf_offload_dev_match);
+
+bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map)
+{
+ struct bpf_offloaded_map *offmap;
+ bool ret;
+
+ if (!bpf_map_is_dev_bound(map))
+ return bpf_map_offload_neutral(map);
+ offmap = map_to_offmap(map);
+
+ down_read(&bpf_devs_lock);
+ ret = __bpf_offload_dev_match(prog, offmap->netdev);
+ up_read(&bpf_devs_lock);
+
+ return ret;
+}
+
+int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
+ struct net_device *netdev)
+{
+ struct bpf_offload_netdev *ondev;
+ int err;
+
+ ondev = kzalloc(sizeof(*ondev), GFP_KERNEL);
+ if (!ondev)
+ return -ENOMEM;
+
+ ondev->netdev = netdev;
+ ondev->offdev = offdev;
+ INIT_LIST_HEAD(&ondev->progs);
+ INIT_LIST_HEAD(&ondev->maps);
+
+ down_write(&bpf_devs_lock);
+ err = rhashtable_insert_fast(&offdevs, &ondev->l, offdevs_params);
+ if (err) {
+ netdev_warn(netdev, "failed to register for BPF offload\n");
+ goto err_unlock_free;
+ }
+
+ list_add(&ondev->offdev_netdevs, &offdev->netdevs);
+ up_write(&bpf_devs_lock);
+ return 0;
+
+err_unlock_free:
+ up_write(&bpf_devs_lock);
+ kfree(ondev);
+ return err;
+}
+EXPORT_SYMBOL_GPL(bpf_offload_dev_netdev_register);
+
+void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
+ struct net_device *netdev)
+{
+ struct bpf_offload_netdev *ondev, *altdev;
+ struct bpf_offloaded_map *offmap, *mtmp;
+ struct bpf_prog_offload *offload, *ptmp;
+
+ ASSERT_RTNL();
+
+ down_write(&bpf_devs_lock);
+ ondev = rhashtable_lookup_fast(&offdevs, &netdev, offdevs_params);
+ if (WARN_ON(!ondev))
+ goto unlock;
+
+ WARN_ON(rhashtable_remove_fast(&offdevs, &ondev->l, offdevs_params));
+ list_del(&ondev->offdev_netdevs);
+
+ /* Try to move the objects to another netdev of the device */
+ altdev = list_first_entry_or_null(&offdev->netdevs,
+ struct bpf_offload_netdev,
+ offdev_netdevs);
+ if (altdev) {
+ list_for_each_entry(offload, &ondev->progs, offloads)
+ offload->netdev = altdev->netdev;
+ list_splice_init(&ondev->progs, &altdev->progs);
+
+ list_for_each_entry(offmap, &ondev->maps, offloads)
+ offmap->netdev = altdev->netdev;
+ list_splice_init(&ondev->maps, &altdev->maps);
+ } else {
+ list_for_each_entry_safe(offload, ptmp, &ondev->progs, offloads)
+ __bpf_prog_offload_destroy(offload->prog);
+ list_for_each_entry_safe(offmap, mtmp, &ondev->maps, offloads)
+ __bpf_map_offload_destroy(offmap);
+ }
+
+ WARN_ON(!list_empty(&ondev->progs));
+ WARN_ON(!list_empty(&ondev->maps));
+ kfree(ondev);
+unlock:
+ up_write(&bpf_devs_lock);
+}
+EXPORT_SYMBOL_GPL(bpf_offload_dev_netdev_unregister);
+
+struct bpf_offload_dev *
+bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv)
+{
+ struct bpf_offload_dev *offdev;
+ int err;
+
+ down_write(&bpf_devs_lock);
+ if (!offdevs_inited) {
+ err = rhashtable_init(&offdevs, &offdevs_params);
+ if (err) {
+ up_write(&bpf_devs_lock);
+ return ERR_PTR(err);
+ }
+ offdevs_inited = true;
+ }
+ up_write(&bpf_devs_lock);
+
+ offdev = kzalloc(sizeof(*offdev), GFP_KERNEL);
+ if (!offdev)
+ return ERR_PTR(-ENOMEM);
+
+ offdev->ops = ops;
+ offdev->priv = priv;
+ INIT_LIST_HEAD(&offdev->netdevs);
+
+ return offdev;
+}
+EXPORT_SYMBOL_GPL(bpf_offload_dev_create);
+
+void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev)
+{
+ WARN_ON(!list_empty(&offdev->netdevs));
+ kfree(offdev);
+}
+EXPORT_SYMBOL_GPL(bpf_offload_dev_destroy);
+
+void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev)
+{
+ return offdev->priv;
+}
+EXPORT_SYMBOL_GPL(bpf_offload_dev_priv);
diff --git a/kernel/bpf/percpu_freelist.c b/kernel/bpf/percpu_freelist.c
new file mode 100644
index 000000000..034cf87b5
--- /dev/null
+++ b/kernel/bpf/percpu_freelist.c
@@ -0,0 +1,200 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2016 Facebook
+ */
+#include "percpu_freelist.h"
+
+int pcpu_freelist_init(struct pcpu_freelist *s)
+{
+ int cpu;
+
+ s->freelist = alloc_percpu(struct pcpu_freelist_head);
+ if (!s->freelist)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu) {
+ struct pcpu_freelist_head *head = per_cpu_ptr(s->freelist, cpu);
+
+ raw_spin_lock_init(&head->lock);
+ head->first = NULL;
+ }
+ raw_spin_lock_init(&s->extralist.lock);
+ s->extralist.first = NULL;
+ return 0;
+}
+
+void pcpu_freelist_destroy(struct pcpu_freelist *s)
+{
+ free_percpu(s->freelist);
+}
+
+static inline void pcpu_freelist_push_node(struct pcpu_freelist_head *head,
+ struct pcpu_freelist_node *node)
+{
+ node->next = head->first;
+ WRITE_ONCE(head->first, node);
+}
+
+static inline void ___pcpu_freelist_push(struct pcpu_freelist_head *head,
+ struct pcpu_freelist_node *node)
+{
+ raw_spin_lock(&head->lock);
+ pcpu_freelist_push_node(head, node);
+ raw_spin_unlock(&head->lock);
+}
+
+static inline bool pcpu_freelist_try_push_extra(struct pcpu_freelist *s,
+ struct pcpu_freelist_node *node)
+{
+ if (!raw_spin_trylock(&s->extralist.lock))
+ return false;
+
+ pcpu_freelist_push_node(&s->extralist, node);
+ raw_spin_unlock(&s->extralist.lock);
+ return true;
+}
+
+static inline void ___pcpu_freelist_push_nmi(struct pcpu_freelist *s,
+ struct pcpu_freelist_node *node)
+{
+ int cpu, orig_cpu;
+
+ orig_cpu = raw_smp_processor_id();
+ while (1) {
+ for_each_cpu_wrap(cpu, cpu_possible_mask, orig_cpu) {
+ struct pcpu_freelist_head *head;
+
+ head = per_cpu_ptr(s->freelist, cpu);
+ if (raw_spin_trylock(&head->lock)) {
+ pcpu_freelist_push_node(head, node);
+ raw_spin_unlock(&head->lock);
+ return;
+ }
+ }
+
+ /* cannot lock any per cpu lock, try extralist */
+ if (pcpu_freelist_try_push_extra(s, node))
+ return;
+ }
+}
+
+void __pcpu_freelist_push(struct pcpu_freelist *s,
+ struct pcpu_freelist_node *node)
+{
+ if (in_nmi())
+ ___pcpu_freelist_push_nmi(s, node);
+ else
+ ___pcpu_freelist_push(this_cpu_ptr(s->freelist), node);
+}
+
+void pcpu_freelist_push(struct pcpu_freelist *s,
+ struct pcpu_freelist_node *node)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __pcpu_freelist_push(s, node);
+ local_irq_restore(flags);
+}
+
+void pcpu_freelist_populate(struct pcpu_freelist *s, void *buf, u32 elem_size,
+ u32 nr_elems)
+{
+ struct pcpu_freelist_head *head;
+ unsigned int cpu, cpu_idx, i, j, n, m;
+
+ n = nr_elems / num_possible_cpus();
+ m = nr_elems % num_possible_cpus();
+
+ cpu_idx = 0;
+ for_each_possible_cpu(cpu) {
+ head = per_cpu_ptr(s->freelist, cpu);
+ j = n + (cpu_idx < m ? 1 : 0);
+ for (i = 0; i < j; i++) {
+ /* No locking required as this is not visible yet. */
+ pcpu_freelist_push_node(head, buf);
+ buf += elem_size;
+ }
+ cpu_idx++;
+ }
+}
+
+static struct pcpu_freelist_node *___pcpu_freelist_pop(struct pcpu_freelist *s)
+{
+ struct pcpu_freelist_head *head;
+ struct pcpu_freelist_node *node;
+ int cpu;
+
+ for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) {
+ head = per_cpu_ptr(s->freelist, cpu);
+ if (!READ_ONCE(head->first))
+ continue;
+ raw_spin_lock(&head->lock);
+ node = head->first;
+ if (node) {
+ WRITE_ONCE(head->first, node->next);
+ raw_spin_unlock(&head->lock);
+ return node;
+ }
+ raw_spin_unlock(&head->lock);
+ }
+
+ /* per cpu lists are all empty, try extralist */
+ if (!READ_ONCE(s->extralist.first))
+ return NULL;
+ raw_spin_lock(&s->extralist.lock);
+ node = s->extralist.first;
+ if (node)
+ WRITE_ONCE(s->extralist.first, node->next);
+ raw_spin_unlock(&s->extralist.lock);
+ return node;
+}
+
+static struct pcpu_freelist_node *
+___pcpu_freelist_pop_nmi(struct pcpu_freelist *s)
+{
+ struct pcpu_freelist_head *head;
+ struct pcpu_freelist_node *node;
+ int cpu;
+
+ for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) {
+ head = per_cpu_ptr(s->freelist, cpu);
+ if (!READ_ONCE(head->first))
+ continue;
+ if (raw_spin_trylock(&head->lock)) {
+ node = head->first;
+ if (node) {
+ WRITE_ONCE(head->first, node->next);
+ raw_spin_unlock(&head->lock);
+ return node;
+ }
+ raw_spin_unlock(&head->lock);
+ }
+ }
+
+ /* cannot pop from per cpu lists, try extralist */
+ if (!READ_ONCE(s->extralist.first) || !raw_spin_trylock(&s->extralist.lock))
+ return NULL;
+ node = s->extralist.first;
+ if (node)
+ WRITE_ONCE(s->extralist.first, node->next);
+ raw_spin_unlock(&s->extralist.lock);
+ return node;
+}
+
+struct pcpu_freelist_node *__pcpu_freelist_pop(struct pcpu_freelist *s)
+{
+ if (in_nmi())
+ return ___pcpu_freelist_pop_nmi(s);
+ return ___pcpu_freelist_pop(s);
+}
+
+struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *s)
+{
+ struct pcpu_freelist_node *ret;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ ret = __pcpu_freelist_pop(s);
+ local_irq_restore(flags);
+ return ret;
+}
diff --git a/kernel/bpf/percpu_freelist.h b/kernel/bpf/percpu_freelist.h
new file mode 100644
index 000000000..3c76553cf
--- /dev/null
+++ b/kernel/bpf/percpu_freelist.h
@@ -0,0 +1,33 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/* Copyright (c) 2016 Facebook
+ */
+#ifndef __PERCPU_FREELIST_H__
+#define __PERCPU_FREELIST_H__
+#include <linux/spinlock.h>
+#include <linux/percpu.h>
+
+struct pcpu_freelist_head {
+ struct pcpu_freelist_node *first;
+ raw_spinlock_t lock;
+};
+
+struct pcpu_freelist {
+ struct pcpu_freelist_head __percpu *freelist;
+ struct pcpu_freelist_head extralist;
+};
+
+struct pcpu_freelist_node {
+ struct pcpu_freelist_node *next;
+};
+
+/* pcpu_freelist_* do spin_lock_irqsave. */
+void pcpu_freelist_push(struct pcpu_freelist *, struct pcpu_freelist_node *);
+struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *);
+/* __pcpu_freelist_* do spin_lock only. caller must disable irqs. */
+void __pcpu_freelist_push(struct pcpu_freelist *, struct pcpu_freelist_node *);
+struct pcpu_freelist_node *__pcpu_freelist_pop(struct pcpu_freelist *);
+void pcpu_freelist_populate(struct pcpu_freelist *s, void *buf, u32 elem_size,
+ u32 nr_elems);
+int pcpu_freelist_init(struct pcpu_freelist *);
+void pcpu_freelist_destroy(struct pcpu_freelist *s);
+#endif
diff --git a/kernel/bpf/preload/.gitignore b/kernel/bpf/preload/.gitignore
new file mode 100644
index 000000000..945232290
--- /dev/null
+++ b/kernel/bpf/preload/.gitignore
@@ -0,0 +1,2 @@
+/libbpf
+/bpf_preload_umd
diff --git a/kernel/bpf/preload/Kconfig b/kernel/bpf/preload/Kconfig
new file mode 100644
index 000000000..c9d45c9d6
--- /dev/null
+++ b/kernel/bpf/preload/Kconfig
@@ -0,0 +1,26 @@
+# SPDX-License-Identifier: GPL-2.0-only
+config USERMODE_DRIVER
+ bool
+ default n
+
+menuconfig BPF_PRELOAD
+ bool "Preload BPF file system with kernel specific program and map iterators"
+ depends on BPF
+ depends on BPF_SYSCALL
+ # The dependency on !COMPILE_TEST prevents it from being enabled
+ # in allmodconfig or allyesconfig configurations
+ depends on !COMPILE_TEST
+ select USERMODE_DRIVER
+ help
+ This builds kernel module with several embedded BPF programs that are
+ pinned into BPF FS mount point as human readable files that are
+ useful in debugging and introspection of BPF programs and maps.
+
+if BPF_PRELOAD
+config BPF_PRELOAD_UMD
+ tristate "bpf_preload kernel module"
+ default m
+ help
+ This builds bpf_preload kernel module with embedded BPF programs for
+ introspection in bpffs.
+endif
diff --git a/kernel/bpf/preload/Makefile b/kernel/bpf/preload/Makefile
new file mode 100644
index 000000000..20f89cc0a
--- /dev/null
+++ b/kernel/bpf/preload/Makefile
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: GPL-2.0
+
+LIBBPF_INCLUDE = $(srctree)/tools/lib
+
+obj-$(CONFIG_BPF_PRELOAD_UMD) += bpf_preload.o
+CFLAGS_bpf_preload_kern.o += -I$(LIBBPF_INCLUDE)
+bpf_preload-objs += bpf_preload_kern.o
diff --git a/kernel/bpf/preload/bpf_preload.h b/kernel/bpf/preload/bpf_preload.h
new file mode 100644
index 000000000..f065c9121
--- /dev/null
+++ b/kernel/bpf/preload/bpf_preload.h
@@ -0,0 +1,16 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BPF_PRELOAD_H
+#define _BPF_PRELOAD_H
+
+struct bpf_preload_info {
+ char link_name[16];
+ struct bpf_link *link;
+};
+
+struct bpf_preload_ops {
+ int (*preload)(struct bpf_preload_info *);
+ struct module *owner;
+};
+extern struct bpf_preload_ops *bpf_preload_ops;
+#define BPF_PRELOAD_LINKS 2
+#endif
diff --git a/kernel/bpf/preload/bpf_preload_kern.c b/kernel/bpf/preload/bpf_preload_kern.c
new file mode 100644
index 000000000..5106b5372
--- /dev/null
+++ b/kernel/bpf/preload/bpf_preload_kern.c
@@ -0,0 +1,88 @@
+// SPDX-License-Identifier: GPL-2.0
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#include <linux/init.h>
+#include <linux/module.h>
+#include "bpf_preload.h"
+#include "iterators/iterators.lskel.h"
+
+static struct bpf_link *maps_link, *progs_link;
+static struct iterators_bpf *skel;
+
+static void free_links_and_skel(void)
+{
+ if (!IS_ERR_OR_NULL(maps_link))
+ bpf_link_put(maps_link);
+ if (!IS_ERR_OR_NULL(progs_link))
+ bpf_link_put(progs_link);
+ iterators_bpf__destroy(skel);
+}
+
+static int preload(struct bpf_preload_info *obj)
+{
+ strlcpy(obj[0].link_name, "maps.debug", sizeof(obj[0].link_name));
+ obj[0].link = maps_link;
+ strlcpy(obj[1].link_name, "progs.debug", sizeof(obj[1].link_name));
+ obj[1].link = progs_link;
+ return 0;
+}
+
+static struct bpf_preload_ops ops = {
+ .preload = preload,
+ .owner = THIS_MODULE,
+};
+
+static int load_skel(void)
+{
+ int err;
+
+ skel = iterators_bpf__open();
+ if (!skel)
+ return -ENOMEM;
+ err = iterators_bpf__load(skel);
+ if (err)
+ goto out;
+ err = iterators_bpf__attach(skel);
+ if (err)
+ goto out;
+ maps_link = bpf_link_get_from_fd(skel->links.dump_bpf_map_fd);
+ if (IS_ERR(maps_link)) {
+ err = PTR_ERR(maps_link);
+ goto out;
+ }
+ progs_link = bpf_link_get_from_fd(skel->links.dump_bpf_prog_fd);
+ if (IS_ERR(progs_link)) {
+ err = PTR_ERR(progs_link);
+ goto out;
+ }
+ /* Avoid taking over stdin/stdout/stderr of init process. Zeroing out
+ * makes skel_closenz() a no-op later in iterators_bpf__destroy().
+ */
+ close_fd(skel->links.dump_bpf_map_fd);
+ skel->links.dump_bpf_map_fd = 0;
+ close_fd(skel->links.dump_bpf_prog_fd);
+ skel->links.dump_bpf_prog_fd = 0;
+ return 0;
+out:
+ free_links_and_skel();
+ return err;
+}
+
+static int __init load(void)
+{
+ int err;
+
+ err = load_skel();
+ if (err)
+ return err;
+ bpf_preload_ops = &ops;
+ return err;
+}
+
+static void __exit fini(void)
+{
+ bpf_preload_ops = NULL;
+ free_links_and_skel();
+}
+late_initcall(load);
+module_exit(fini);
+MODULE_LICENSE("GPL");
diff --git a/kernel/bpf/preload/iterators/.gitignore b/kernel/bpf/preload/iterators/.gitignore
new file mode 100644
index 000000000..ffdb70230
--- /dev/null
+++ b/kernel/bpf/preload/iterators/.gitignore
@@ -0,0 +1,2 @@
+# SPDX-License-Identifier: GPL-2.0-only
+/.output
diff --git a/kernel/bpf/preload/iterators/Makefile b/kernel/bpf/preload/iterators/Makefile
new file mode 100644
index 000000000..6762b1260
--- /dev/null
+++ b/kernel/bpf/preload/iterators/Makefile
@@ -0,0 +1,65 @@
+# SPDX-License-Identifier: GPL-2.0
+OUTPUT := .output
+abs_out := $(abspath $(OUTPUT))
+
+CLANG ?= clang
+LLC ?= llc
+LLVM_STRIP ?= llvm-strip
+
+TOOLS_PATH := $(abspath ../../../../tools)
+BPFTOOL_SRC := $(TOOLS_PATH)/bpf/bpftool
+BPFTOOL_OUTPUT := $(abs_out)/bpftool
+DEFAULT_BPFTOOL := $(BPFTOOL_OUTPUT)/bootstrap/bpftool
+BPFTOOL ?= $(DEFAULT_BPFTOOL)
+
+LIBBPF_SRC := $(TOOLS_PATH)/lib/bpf
+LIBBPF_OUTPUT := $(abs_out)/libbpf
+LIBBPF_DESTDIR := $(LIBBPF_OUTPUT)
+LIBBPF_INCLUDE := $(LIBBPF_DESTDIR)/include
+BPFOBJ := $(LIBBPF_OUTPUT)/libbpf.a
+
+INCLUDES := -I$(OUTPUT) -I$(LIBBPF_INCLUDE) -I$(TOOLS_PATH)/include/uapi
+CFLAGS := -g -Wall
+
+ifeq ($(V),1)
+Q =
+msg =
+else
+Q = @
+msg = @printf ' %-8s %s%s\n' "$(1)" "$(notdir $(2))" "$(if $(3), $(3))";
+MAKEFLAGS += --no-print-directory
+submake_extras := feature_display=0
+endif
+
+.DELETE_ON_ERROR:
+
+.PHONY: all clean
+
+all: iterators.lskel.h
+
+clean:
+ $(call msg,CLEAN)
+ $(Q)rm -rf $(OUTPUT) iterators
+
+iterators.lskel.h: $(OUTPUT)/iterators.bpf.o | $(BPFTOOL)
+ $(call msg,GEN-SKEL,$@)
+ $(Q)$(BPFTOOL) gen skeleton -L $< > $@
+
+
+$(OUTPUT)/iterators.bpf.o: iterators.bpf.c $(BPFOBJ) | $(OUTPUT)
+ $(call msg,BPF,$@)
+ $(Q)$(CLANG) -g -O2 -target bpf $(INCLUDES) \
+ -c $(filter %.c,$^) -o $@ && \
+ $(LLVM_STRIP) -g $@
+
+$(OUTPUT) $(LIBBPF_OUTPUT) $(BPFTOOL_OUTPUT):
+ $(call msg,MKDIR,$@)
+ $(Q)mkdir -p $@
+
+$(BPFOBJ): $(wildcard $(LIBBPF_SRC)/*.[ch] $(LIBBPF_SRC)/Makefile) | $(LIBBPF_OUTPUT)
+ $(Q)$(MAKE) $(submake_extras) -C $(LIBBPF_SRC) \
+ OUTPUT=$(abspath $(dir $@))/ prefix= \
+ DESTDIR=$(LIBBPF_DESTDIR) $(abspath $@) install_headers
+
+$(DEFAULT_BPFTOOL): | $(BPFTOOL_OUTPUT)
+ $(Q)$(MAKE) $(submake_extras) -C $(BPFTOOL_SRC) OUTPUT=$(BPFTOOL_OUTPUT)/ bootstrap
diff --git a/kernel/bpf/preload/iterators/README b/kernel/bpf/preload/iterators/README
new file mode 100644
index 000000000..7fd6d39a9
--- /dev/null
+++ b/kernel/bpf/preload/iterators/README
@@ -0,0 +1,4 @@
+WARNING:
+If you change "iterators.bpf.c" do "make -j" in this directory to rebuild "iterators.skel.h".
+Make sure to have clang 10 installed.
+See Documentation/bpf/bpf_devel_QA.rst
diff --git a/kernel/bpf/preload/iterators/iterators.bpf.c b/kernel/bpf/preload/iterators/iterators.bpf.c
new file mode 100644
index 000000000..03af86331
--- /dev/null
+++ b/kernel/bpf/preload/iterators/iterators.bpf.c
@@ -0,0 +1,113 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (c) 2020 Facebook */
+#include <linux/bpf.h>
+#include <bpf/bpf_helpers.h>
+#include <bpf/bpf_core_read.h>
+
+#pragma clang attribute push (__attribute__((preserve_access_index)), apply_to = record)
+struct seq_file;
+struct bpf_iter_meta {
+ struct seq_file *seq;
+ __u64 session_id;
+ __u64 seq_num;
+};
+
+struct bpf_map {
+ __u32 id;
+ char name[16];
+ __u32 max_entries;
+};
+
+struct bpf_iter__bpf_map {
+ struct bpf_iter_meta *meta;
+ struct bpf_map *map;
+};
+
+struct btf_type {
+ __u32 name_off;
+};
+
+struct btf_header {
+ __u32 str_len;
+};
+
+struct btf {
+ const char *strings;
+ struct btf_type **types;
+ struct btf_header hdr;
+};
+
+struct bpf_prog_aux {
+ __u32 id;
+ char name[16];
+ const char *attach_func_name;
+ struct bpf_prog *dst_prog;
+ struct bpf_func_info *func_info;
+ struct btf *btf;
+};
+
+struct bpf_prog {
+ struct bpf_prog_aux *aux;
+};
+
+struct bpf_iter__bpf_prog {
+ struct bpf_iter_meta *meta;
+ struct bpf_prog *prog;
+};
+#pragma clang attribute pop
+
+static const char *get_name(struct btf *btf, long btf_id, const char *fallback)
+{
+ struct btf_type **types, *t;
+ unsigned int name_off;
+ const char *str;
+
+ if (!btf)
+ return fallback;
+ str = btf->strings;
+ types = btf->types;
+ bpf_probe_read_kernel(&t, sizeof(t), types + btf_id);
+ name_off = BPF_CORE_READ(t, name_off);
+ if (name_off >= btf->hdr.str_len)
+ return fallback;
+ return str + name_off;
+}
+
+SEC("iter/bpf_map")
+int dump_bpf_map(struct bpf_iter__bpf_map *ctx)
+{
+ struct seq_file *seq = ctx->meta->seq;
+ __u64 seq_num = ctx->meta->seq_num;
+ struct bpf_map *map = ctx->map;
+
+ if (!map)
+ return 0;
+
+ if (seq_num == 0)
+ BPF_SEQ_PRINTF(seq, " id name max_entries\n");
+
+ BPF_SEQ_PRINTF(seq, "%4u %-16s%6d\n", map->id, map->name, map->max_entries);
+ return 0;
+}
+
+SEC("iter/bpf_prog")
+int dump_bpf_prog(struct bpf_iter__bpf_prog *ctx)
+{
+ struct seq_file *seq = ctx->meta->seq;
+ __u64 seq_num = ctx->meta->seq_num;
+ struct bpf_prog *prog = ctx->prog;
+ struct bpf_prog_aux *aux;
+
+ if (!prog)
+ return 0;
+
+ aux = prog->aux;
+ if (seq_num == 0)
+ BPF_SEQ_PRINTF(seq, " id name attached\n");
+
+ BPF_SEQ_PRINTF(seq, "%4u %-16s %s %s\n", aux->id,
+ get_name(aux->btf, aux->func_info[0].type_id, aux->name),
+ aux->attach_func_name, aux->dst_prog->aux->name);
+ return 0;
+}
+char LICENSE[] SEC("license") = "GPL";
diff --git a/kernel/bpf/preload/iterators/iterators.lskel.h b/kernel/bpf/preload/iterators/iterators.lskel.h
new file mode 100644
index 000000000..70f236a82
--- /dev/null
+++ b/kernel/bpf/preload/iterators/iterators.lskel.h
@@ -0,0 +1,425 @@
+/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
+/* THIS FILE IS AUTOGENERATED! */
+#ifndef __ITERATORS_BPF_SKEL_H__
+#define __ITERATORS_BPF_SKEL_H__
+
+#include <bpf/skel_internal.h>
+
+struct iterators_bpf {
+ struct bpf_loader_ctx ctx;
+ struct {
+ struct bpf_map_desc rodata;
+ } maps;
+ struct {
+ struct bpf_prog_desc dump_bpf_map;
+ struct bpf_prog_desc dump_bpf_prog;
+ } progs;
+ struct {
+ int dump_bpf_map_fd;
+ int dump_bpf_prog_fd;
+ } links;
+ struct iterators_bpf__rodata {
+ } *rodata;
+};
+
+static inline int
+iterators_bpf__dump_bpf_map__attach(struct iterators_bpf *skel)
+{
+ int prog_fd = skel->progs.dump_bpf_map.prog_fd;
+ int fd = skel_link_create(prog_fd, 0, BPF_TRACE_ITER);
+
+ if (fd > 0)
+ skel->links.dump_bpf_map_fd = fd;
+ return fd;
+}
+
+static inline int
+iterators_bpf__dump_bpf_prog__attach(struct iterators_bpf *skel)
+{
+ int prog_fd = skel->progs.dump_bpf_prog.prog_fd;
+ int fd = skel_link_create(prog_fd, 0, BPF_TRACE_ITER);
+
+ if (fd > 0)
+ skel->links.dump_bpf_prog_fd = fd;
+ return fd;
+}
+
+static inline int
+iterators_bpf__attach(struct iterators_bpf *skel)
+{
+ int ret = 0;
+
+ ret = ret < 0 ? ret : iterators_bpf__dump_bpf_map__attach(skel);
+ ret = ret < 0 ? ret : iterators_bpf__dump_bpf_prog__attach(skel);
+ return ret < 0 ? ret : 0;
+}
+
+static inline void
+iterators_bpf__detach(struct iterators_bpf *skel)
+{
+ skel_closenz(skel->links.dump_bpf_map_fd);
+ skel_closenz(skel->links.dump_bpf_prog_fd);
+}
+static void
+iterators_bpf__destroy(struct iterators_bpf *skel)
+{
+ if (!skel)
+ return;
+ iterators_bpf__detach(skel);
+ skel_closenz(skel->progs.dump_bpf_map.prog_fd);
+ skel_closenz(skel->progs.dump_bpf_prog.prog_fd);
+ skel_free_map_data(skel->rodata, skel->maps.rodata.initial_value, 4096);
+ skel_closenz(skel->maps.rodata.map_fd);
+ skel_free(skel);
+}
+static inline struct iterators_bpf *
+iterators_bpf__open(void)
+{
+ struct iterators_bpf *skel;
+
+ skel = skel_alloc(sizeof(*skel));
+ if (!skel)
+ goto cleanup;
+ skel->ctx.sz = (void *)&skel->links - (void *)skel;
+ skel->rodata = skel_prep_map_data((void *)"\
+\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\
+\x20\x20\x20\x6d\x61\x78\x5f\x65\x6e\x74\x72\x69\x65\x73\x0a\0\x25\x34\x75\x20\
+\x25\x2d\x31\x36\x73\x25\x36\x64\x0a\0\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\
+\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x61\x74\x74\x61\x63\x68\x65\
+\x64\x0a\0\x25\x34\x75\x20\x25\x2d\x31\x36\x73\x20\x25\x73\x20\x25\x73\x0a\0", 4096, 98);
+ if (!skel->rodata)
+ goto cleanup;
+ skel->maps.rodata.initial_value = (__u64) (long) skel->rodata;
+ return skel;
+cleanup:
+ iterators_bpf__destroy(skel);
+ return NULL;
+}
+
+static inline int
+iterators_bpf__load(struct iterators_bpf *skel)
+{
+ struct bpf_load_and_run_opts opts = {};
+ int err;
+
+ opts.ctx = (struct bpf_loader_ctx *)skel;
+ opts.data_sz = 6056;
+ opts.data = (void *)"\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x9f\xeb\x01\0\
+\x18\0\0\0\0\0\0\0\x1c\x04\0\0\x1c\x04\0\0\xf9\x04\0\0\0\0\0\0\0\0\0\x02\x02\0\
+\0\0\x01\0\0\0\x02\0\0\x04\x10\0\0\0\x13\0\0\0\x03\0\0\0\0\0\0\0\x18\0\0\0\x04\
+\0\0\0\x40\0\0\0\0\0\0\0\0\0\0\x02\x08\0\0\0\0\0\0\0\0\0\0\x02\x0d\0\0\0\0\0\0\
+\0\x01\0\0\x0d\x06\0\0\0\x1c\0\0\0\x01\0\0\0\x20\0\0\0\0\0\0\x01\x04\0\0\0\x20\
+\0\0\x01\x24\0\0\0\x01\0\0\x0c\x05\0\0\0\xa3\0\0\0\x03\0\0\x04\x18\0\0\0\xb1\0\
+\0\0\x09\0\0\0\0\0\0\0\xb5\0\0\0\x0b\0\0\0\x40\0\0\0\xc0\0\0\0\x0b\0\0\0\x80\0\
+\0\0\0\0\0\0\0\0\0\x02\x0a\0\0\0\xc8\0\0\0\0\0\0\x07\0\0\0\0\xd1\0\0\0\0\0\0\
+\x08\x0c\0\0\0\xd7\0\0\0\0\0\0\x01\x08\0\0\0\x40\0\0\0\x94\x01\0\0\x03\0\0\x04\
+\x18\0\0\0\x9c\x01\0\0\x0e\0\0\0\0\0\0\0\x9f\x01\0\0\x11\0\0\0\x20\0\0\0\xa4\
+\x01\0\0\x0e\0\0\0\xa0\0\0\0\xb0\x01\0\0\0\0\0\x08\x0f\0\0\0\xb6\x01\0\0\0\0\0\
+\x01\x04\0\0\0\x20\0\0\0\xc3\x01\0\0\0\0\0\x01\x01\0\0\0\x08\0\0\x01\0\0\0\0\0\
+\0\0\x03\0\0\0\0\x10\0\0\0\x12\0\0\0\x10\0\0\0\xc8\x01\0\0\0\0\0\x01\x04\0\0\0\
+\x20\0\0\0\0\0\0\0\0\0\0\x02\x14\0\0\0\x2c\x02\0\0\x02\0\0\x04\x10\0\0\0\x13\0\
+\0\0\x03\0\0\0\0\0\0\0\x3f\x02\0\0\x15\0\0\0\x40\0\0\0\0\0\0\0\0\0\0\x02\x18\0\
+\0\0\0\0\0\0\x01\0\0\x0d\x06\0\0\0\x1c\0\0\0\x13\0\0\0\x44\x02\0\0\x01\0\0\x0c\
+\x16\0\0\0\x90\x02\0\0\x01\0\0\x04\x08\0\0\0\x99\x02\0\0\x19\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\x02\x1a\0\0\0\xea\x02\0\0\x06\0\0\x04\x38\0\0\0\x9c\x01\0\0\x0e\0\0\
+\0\0\0\0\0\x9f\x01\0\0\x11\0\0\0\x20\0\0\0\xf7\x02\0\0\x1b\0\0\0\xc0\0\0\0\x08\
+\x03\0\0\x15\0\0\0\0\x01\0\0\x11\x03\0\0\x1d\0\0\0\x40\x01\0\0\x1b\x03\0\0\x1e\
+\0\0\0\x80\x01\0\0\0\0\0\0\0\0\0\x02\x1c\0\0\0\0\0\0\0\0\0\0\x0a\x10\0\0\0\0\0\
+\0\0\0\0\0\x02\x1f\0\0\0\0\0\0\0\0\0\0\x02\x20\0\0\0\x65\x03\0\0\x02\0\0\x04\
+\x08\0\0\0\x73\x03\0\0\x0e\0\0\0\0\0\0\0\x7c\x03\0\0\x0e\0\0\0\x20\0\0\0\x1b\
+\x03\0\0\x03\0\0\x04\x18\0\0\0\x86\x03\0\0\x1b\0\0\0\0\0\0\0\x8e\x03\0\0\x21\0\
+\0\0\x40\0\0\0\x94\x03\0\0\x23\0\0\0\x80\0\0\0\0\0\0\0\0\0\0\x02\x22\0\0\0\0\0\
+\0\0\0\0\0\x02\x24\0\0\0\x98\x03\0\0\x01\0\0\x04\x04\0\0\0\xa3\x03\0\0\x0e\0\0\
+\0\0\0\0\0\x0c\x04\0\0\x01\0\0\x04\x04\0\0\0\x15\x04\0\0\x0e\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\x03\0\0\0\0\x1c\0\0\0\x12\0\0\0\x23\0\0\0\x8b\x04\0\0\0\0\0\x0e\x25\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x03\0\0\0\0\x1c\0\0\0\x12\0\0\0\x0e\0\0\0\x9f\x04\
+\0\0\0\0\0\x0e\x27\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x03\0\0\0\0\x1c\0\0\0\x12\0\0\0\
+\x20\0\0\0\xb5\x04\0\0\0\0\0\x0e\x29\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x03\0\0\0\0\
+\x1c\0\0\0\x12\0\0\0\x11\0\0\0\xca\x04\0\0\0\0\0\x0e\x2b\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\x03\0\0\0\0\x10\0\0\0\x12\0\0\0\x04\0\0\0\xe1\x04\0\0\0\0\0\x0e\x2d\0\0\
+\0\x01\0\0\0\xe9\x04\0\0\x04\0\0\x0f\x62\0\0\0\x26\0\0\0\0\0\0\0\x23\0\0\0\x28\
+\0\0\0\x23\0\0\0\x0e\0\0\0\x2a\0\0\0\x31\0\0\0\x20\0\0\0\x2c\0\0\0\x51\0\0\0\
+\x11\0\0\0\xf1\x04\0\0\x01\0\0\x0f\x04\0\0\0\x2e\0\0\0\0\0\0\0\x04\0\0\0\0\x62\
+\x70\x66\x5f\x69\x74\x65\x72\x5f\x5f\x62\x70\x66\x5f\x6d\x61\x70\0\x6d\x65\x74\
+\x61\0\x6d\x61\x70\0\x63\x74\x78\0\x69\x6e\x74\0\x64\x75\x6d\x70\x5f\x62\x70\
+\x66\x5f\x6d\x61\x70\0\x69\x74\x65\x72\x2f\x62\x70\x66\x5f\x6d\x61\x70\0\x30\
+\x3a\x30\0\x2f\x77\x2f\x6e\x65\x74\x2d\x6e\x65\x78\x74\x2f\x6b\x65\x72\x6e\x65\
+\x6c\x2f\x62\x70\x66\x2f\x70\x72\x65\x6c\x6f\x61\x64\x2f\x69\x74\x65\x72\x61\
+\x74\x6f\x72\x73\x2f\x69\x74\x65\x72\x61\x74\x6f\x72\x73\x2e\x62\x70\x66\x2e\
+\x63\0\x09\x73\x74\x72\x75\x63\x74\x20\x73\x65\x71\x5f\x66\x69\x6c\x65\x20\x2a\
+\x73\x65\x71\x20\x3d\x20\x63\x74\x78\x2d\x3e\x6d\x65\x74\x61\x2d\x3e\x73\x65\
+\x71\x3b\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x6d\x65\x74\x61\0\x73\x65\x71\0\
+\x73\x65\x73\x73\x69\x6f\x6e\x5f\x69\x64\0\x73\x65\x71\x5f\x6e\x75\x6d\0\x73\
+\x65\x71\x5f\x66\x69\x6c\x65\0\x5f\x5f\x75\x36\x34\0\x75\x6e\x73\x69\x67\x6e\
+\x65\x64\x20\x6c\x6f\x6e\x67\x20\x6c\x6f\x6e\x67\0\x30\x3a\x31\0\x09\x73\x74\
+\x72\x75\x63\x74\x20\x62\x70\x66\x5f\x6d\x61\x70\x20\x2a\x6d\x61\x70\x20\x3d\
+\x20\x63\x74\x78\x2d\x3e\x6d\x61\x70\x3b\0\x09\x69\x66\x20\x28\x21\x6d\x61\x70\
+\x29\0\x09\x5f\x5f\x75\x36\x34\x20\x73\x65\x71\x5f\x6e\x75\x6d\x20\x3d\x20\x63\
+\x74\x78\x2d\x3e\x6d\x65\x74\x61\x2d\x3e\x73\x65\x71\x5f\x6e\x75\x6d\x3b\0\x30\
+\x3a\x32\0\x09\x69\x66\x20\x28\x73\x65\x71\x5f\x6e\x75\x6d\x20\x3d\x3d\x20\x30\
+\x29\0\x09\x09\x42\x50\x46\x5f\x53\x45\x51\x5f\x50\x52\x49\x4e\x54\x46\x28\x73\
+\x65\x71\x2c\x20\x22\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\x20\x20\x20\x20\
+\x20\x20\x20\x20\x20\x20\x20\x20\x6d\x61\x78\x5f\x65\x6e\x74\x72\x69\x65\x73\
+\x5c\x6e\x22\x29\x3b\0\x62\x70\x66\x5f\x6d\x61\x70\0\x69\x64\0\x6e\x61\x6d\x65\
+\0\x6d\x61\x78\x5f\x65\x6e\x74\x72\x69\x65\x73\0\x5f\x5f\x75\x33\x32\0\x75\x6e\
+\x73\x69\x67\x6e\x65\x64\x20\x69\x6e\x74\0\x63\x68\x61\x72\0\x5f\x5f\x41\x52\
+\x52\x41\x59\x5f\x53\x49\x5a\x45\x5f\x54\x59\x50\x45\x5f\x5f\0\x09\x42\x50\x46\
+\x5f\x53\x45\x51\x5f\x50\x52\x49\x4e\x54\x46\x28\x73\x65\x71\x2c\x20\x22\x25\
+\x34\x75\x20\x25\x2d\x31\x36\x73\x25\x36\x64\x5c\x6e\x22\x2c\x20\x6d\x61\x70\
+\x2d\x3e\x69\x64\x2c\x20\x6d\x61\x70\x2d\x3e\x6e\x61\x6d\x65\x2c\x20\x6d\x61\
+\x70\x2d\x3e\x6d\x61\x78\x5f\x65\x6e\x74\x72\x69\x65\x73\x29\x3b\0\x7d\0\x62\
+\x70\x66\x5f\x69\x74\x65\x72\x5f\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\x70\x72\
+\x6f\x67\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\x69\x74\x65\
+\x72\x2f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\x09\x73\x74\x72\x75\x63\x74\x20\x62\
+\x70\x66\x5f\x70\x72\x6f\x67\x20\x2a\x70\x72\x6f\x67\x20\x3d\x20\x63\x74\x78\
+\x2d\x3e\x70\x72\x6f\x67\x3b\0\x09\x69\x66\x20\x28\x21\x70\x72\x6f\x67\x29\0\
+\x62\x70\x66\x5f\x70\x72\x6f\x67\0\x61\x75\x78\0\x09\x61\x75\x78\x20\x3d\x20\
+\x70\x72\x6f\x67\x2d\x3e\x61\x75\x78\x3b\0\x09\x09\x42\x50\x46\x5f\x53\x45\x51\
+\x5f\x50\x52\x49\x4e\x54\x46\x28\x73\x65\x71\x2c\x20\x22\x20\x20\x69\x64\x20\
+\x6e\x61\x6d\x65\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x61\x74\
+\x74\x61\x63\x68\x65\x64\x5c\x6e\x22\x29\x3b\0\x62\x70\x66\x5f\x70\x72\x6f\x67\
+\x5f\x61\x75\x78\0\x61\x74\x74\x61\x63\x68\x5f\x66\x75\x6e\x63\x5f\x6e\x61\x6d\
+\x65\0\x64\x73\x74\x5f\x70\x72\x6f\x67\0\x66\x75\x6e\x63\x5f\x69\x6e\x66\x6f\0\
+\x62\x74\x66\0\x09\x42\x50\x46\x5f\x53\x45\x51\x5f\x50\x52\x49\x4e\x54\x46\x28\
+\x73\x65\x71\x2c\x20\x22\x25\x34\x75\x20\x25\x2d\x31\x36\x73\x20\x25\x73\x20\
+\x25\x73\x5c\x6e\x22\x2c\x20\x61\x75\x78\x2d\x3e\x69\x64\x2c\0\x30\x3a\x34\0\
+\x30\x3a\x35\0\x09\x69\x66\x20\x28\x21\x62\x74\x66\x29\0\x62\x70\x66\x5f\x66\
+\x75\x6e\x63\x5f\x69\x6e\x66\x6f\0\x69\x6e\x73\x6e\x5f\x6f\x66\x66\0\x74\x79\
+\x70\x65\x5f\x69\x64\0\x30\0\x73\x74\x72\x69\x6e\x67\x73\0\x74\x79\x70\x65\x73\
+\0\x68\x64\x72\0\x62\x74\x66\x5f\x68\x65\x61\x64\x65\x72\0\x73\x74\x72\x5f\x6c\
+\x65\x6e\0\x09\x74\x79\x70\x65\x73\x20\x3d\x20\x62\x74\x66\x2d\x3e\x74\x79\x70\
+\x65\x73\x3b\0\x09\x62\x70\x66\x5f\x70\x72\x6f\x62\x65\x5f\x72\x65\x61\x64\x5f\
+\x6b\x65\x72\x6e\x65\x6c\x28\x26\x74\x2c\x20\x73\x69\x7a\x65\x6f\x66\x28\x74\
+\x29\x2c\x20\x74\x79\x70\x65\x73\x20\x2b\x20\x62\x74\x66\x5f\x69\x64\x29\x3b\0\
+\x09\x73\x74\x72\x20\x3d\x20\x62\x74\x66\x2d\x3e\x73\x74\x72\x69\x6e\x67\x73\
+\x3b\0\x62\x74\x66\x5f\x74\x79\x70\x65\0\x6e\x61\x6d\x65\x5f\x6f\x66\x66\0\x09\
+\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x20\x3d\x20\x42\x50\x46\x5f\x43\x4f\x52\x45\
+\x5f\x52\x45\x41\x44\x28\x74\x2c\x20\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x29\x3b\0\
+\x30\x3a\x32\x3a\x30\0\x09\x69\x66\x20\x28\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x20\
+\x3e\x3d\x20\x62\x74\x66\x2d\x3e\x68\x64\x72\x2e\x73\x74\x72\x5f\x6c\x65\x6e\
+\x29\0\x09\x72\x65\x74\x75\x72\x6e\x20\x73\x74\x72\x20\x2b\x20\x6e\x61\x6d\x65\
+\x5f\x6f\x66\x66\x3b\0\x30\x3a\x33\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x6d\
+\x61\x70\x2e\x5f\x5f\x5f\x66\x6d\x74\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x6d\
+\x61\x70\x2e\x5f\x5f\x5f\x66\x6d\x74\x2e\x31\0\x64\x75\x6d\x70\x5f\x62\x70\x66\
+\x5f\x70\x72\x6f\x67\x2e\x5f\x5f\x5f\x66\x6d\x74\0\x64\x75\x6d\x70\x5f\x62\x70\
+\x66\x5f\x70\x72\x6f\x67\x2e\x5f\x5f\x5f\x66\x6d\x74\x2e\x32\0\x4c\x49\x43\x45\
+\x4e\x53\x45\0\x2e\x72\x6f\x64\x61\x74\x61\0\x6c\x69\x63\x65\x6e\x73\x65\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x2d\x09\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x02\0\0\
+\0\x04\0\0\0\x62\0\0\0\x01\0\0\0\x80\x04\0\0\0\0\0\0\0\0\0\0\x69\x74\x65\x72\
+\x61\x74\x6f\x72\x2e\x72\x6f\x64\x61\x74\x61\0\0\0\0\0\0\0\0\0\0\0\0\0\x2f\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\x20\x20\x20\
+\x20\x20\x20\x20\x20\x20\x20\x20\x20\x6d\x61\x78\x5f\x65\x6e\x74\x72\x69\x65\
+\x73\x0a\0\x25\x34\x75\x20\x25\x2d\x31\x36\x73\x25\x36\x64\x0a\0\x20\x20\x69\
+\x64\x20\x6e\x61\x6d\x65\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\
+\x61\x74\x74\x61\x63\x68\x65\x64\x0a\0\x25\x34\x75\x20\x25\x2d\x31\x36\x73\x20\
+\x25\x73\x20\x25\x73\x0a\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x47\x50\x4c\0\0\0\0\0\
+\x79\x12\0\0\0\0\0\0\x79\x26\0\0\0\0\0\0\x79\x17\x08\0\0\0\0\0\x15\x07\x1b\0\0\
+\0\0\0\x79\x11\0\0\0\0\0\0\x79\x11\x10\0\0\0\0\0\x55\x01\x08\0\0\0\0\0\xbf\xa4\
+\0\0\0\0\0\0\x07\x04\0\0\xe8\xff\xff\xff\xbf\x61\0\0\0\0\0\0\x18\x62\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\xb7\x03\0\0\x23\0\0\0\xb7\x05\0\0\0\0\0\0\x85\0\0\0\x7e\0\0\
+\0\x61\x71\0\0\0\0\0\0\x7b\x1a\xe8\xff\0\0\0\0\xb7\x01\0\0\x04\0\0\0\xbf\x72\0\
+\0\0\0\0\0\x0f\x12\0\0\0\0\0\0\x7b\x2a\xf0\xff\0\0\0\0\x61\x71\x14\0\0\0\0\0\
+\x7b\x1a\xf8\xff\0\0\0\0\xbf\xa4\0\0\0\0\0\0\x07\x04\0\0\xe8\xff\xff\xff\xbf\
+\x61\0\0\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\x23\0\0\0\xb7\x03\0\0\x0e\0\0\0\
+\xb7\x05\0\0\x18\0\0\0\x85\0\0\0\x7e\0\0\0\xb7\0\0\0\0\0\0\0\x95\0\0\0\0\0\0\0\
+\0\0\0\0\x07\0\0\0\0\0\0\0\x42\0\0\0\x7b\0\0\0\x1e\x3c\x01\0\x01\0\0\0\x42\0\0\
+\0\x7b\0\0\0\x24\x3c\x01\0\x02\0\0\0\x42\0\0\0\xee\0\0\0\x1d\x44\x01\0\x03\0\0\
+\0\x42\0\0\0\x0f\x01\0\0\x06\x4c\x01\0\x04\0\0\0\x42\0\0\0\x1a\x01\0\0\x17\x40\
+\x01\0\x05\0\0\0\x42\0\0\0\x1a\x01\0\0\x1d\x40\x01\0\x06\0\0\0\x42\0\0\0\x43\
+\x01\0\0\x06\x58\x01\0\x08\0\0\0\x42\0\0\0\x56\x01\0\0\x03\x5c\x01\0\x0f\0\0\0\
+\x42\0\0\0\xdc\x01\0\0\x02\x64\x01\0\x1f\0\0\0\x42\0\0\0\x2a\x02\0\0\x01\x6c\
+\x01\0\0\0\0\0\x02\0\0\0\x3e\0\0\0\0\0\0\0\x08\0\0\0\x08\0\0\0\x3e\0\0\0\0\0\0\
+\0\x10\0\0\0\x02\0\0\0\xea\0\0\0\0\0\0\0\x20\0\0\0\x02\0\0\0\x3e\0\0\0\0\0\0\0\
+\x28\0\0\0\x08\0\0\0\x3f\x01\0\0\0\0\0\0\x78\0\0\0\x0d\0\0\0\x3e\0\0\0\0\0\0\0\
+\x88\0\0\0\x0d\0\0\0\xea\0\0\0\0\0\0\0\xa8\0\0\0\x0d\0\0\0\x3f\x01\0\0\0\0\0\0\
+\x1a\0\0\0\x21\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x6d\x61\x70\0\0\0\0\
+\0\0\0\0\x1c\0\0\0\0\0\0\0\x08\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x10\0\0\0\0\0\0\
+\0\0\0\0\0\x0a\0\0\0\x01\0\0\0\0\0\0\0\x08\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\x10\0\0\0\0\0\0\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x62\x70\x66\x5f\x6d\
+\x61\x70\0\0\0\0\0\0\0\0\x47\x50\x4c\0\0\0\0\0\x79\x12\0\0\0\0\0\0\x79\x26\0\0\
+\0\0\0\0\x79\x12\x08\0\0\0\0\0\x15\x02\x3c\0\0\0\0\0\x79\x11\0\0\0\0\0\0\x79\
+\x27\0\0\0\0\0\0\x79\x11\x10\0\0\0\0\0\x55\x01\x08\0\0\0\0\0\xbf\xa4\0\0\0\0\0\
+\0\x07\x04\0\0\xd0\xff\xff\xff\xbf\x61\0\0\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\
+\x31\0\0\0\xb7\x03\0\0\x20\0\0\0\xb7\x05\0\0\0\0\0\0\x85\0\0\0\x7e\0\0\0\x7b\
+\x6a\xc8\xff\0\0\0\0\x61\x71\0\0\0\0\0\0\x7b\x1a\xd0\xff\0\0\0\0\xb7\x03\0\0\
+\x04\0\0\0\xbf\x79\0\0\0\0\0\0\x0f\x39\0\0\0\0\0\0\x79\x71\x28\0\0\0\0\0\x79\
+\x78\x30\0\0\0\0\0\x15\x08\x18\0\0\0\0\0\xb7\x02\0\0\0\0\0\0\x0f\x21\0\0\0\0\0\
+\0\x61\x11\x04\0\0\0\0\0\x79\x83\x08\0\0\0\0\0\x67\x01\0\0\x03\0\0\0\x0f\x13\0\
+\0\0\0\0\0\x79\x86\0\0\0\0\0\0\xbf\xa1\0\0\0\0\0\0\x07\x01\0\0\xf8\xff\xff\xff\
+\xb7\x02\0\0\x08\0\0\0\x85\0\0\0\x71\0\0\0\xb7\x01\0\0\0\0\0\0\x79\xa3\xf8\xff\
+\0\0\0\0\x0f\x13\0\0\0\0\0\0\xbf\xa1\0\0\0\0\0\0\x07\x01\0\0\xf4\xff\xff\xff\
+\xb7\x02\0\0\x04\0\0\0\x85\0\0\0\x71\0\0\0\xb7\x03\0\0\x04\0\0\0\x61\xa1\xf4\
+\xff\0\0\0\0\x61\x82\x10\0\0\0\0\0\x3d\x21\x02\0\0\0\0\0\x0f\x16\0\0\0\0\0\0\
+\xbf\x69\0\0\0\0\0\0\x7b\x9a\xd8\xff\0\0\0\0\x79\x71\x18\0\0\0\0\0\x7b\x1a\xe0\
+\xff\0\0\0\0\x79\x71\x20\0\0\0\0\0\x79\x11\0\0\0\0\0\0\x0f\x31\0\0\0\0\0\0\x7b\
+\x1a\xe8\xff\0\0\0\0\xbf\xa4\0\0\0\0\0\0\x07\x04\0\0\xd0\xff\xff\xff\x79\xa1\
+\xc8\xff\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\x51\0\0\0\xb7\x03\0\0\x11\0\0\0\
+\xb7\x05\0\0\x20\0\0\0\x85\0\0\0\x7e\0\0\0\xb7\0\0\0\0\0\0\0\x95\0\0\0\0\0\0\0\
+\0\0\0\0\x17\0\0\0\0\0\0\0\x42\0\0\0\x7b\0\0\0\x1e\x80\x01\0\x01\0\0\0\x42\0\0\
+\0\x7b\0\0\0\x24\x80\x01\0\x02\0\0\0\x42\0\0\0\x60\x02\0\0\x1f\x88\x01\0\x03\0\
+\0\0\x42\0\0\0\x84\x02\0\0\x06\x94\x01\0\x04\0\0\0\x42\0\0\0\x1a\x01\0\0\x17\
+\x84\x01\0\x05\0\0\0\x42\0\0\0\x9d\x02\0\0\x0e\xa0\x01\0\x06\0\0\0\x42\0\0\0\
+\x1a\x01\0\0\x1d\x84\x01\0\x07\0\0\0\x42\0\0\0\x43\x01\0\0\x06\xa4\x01\0\x09\0\
+\0\0\x42\0\0\0\xaf\x02\0\0\x03\xa8\x01\0\x11\0\0\0\x42\0\0\0\x1f\x03\0\0\x02\
+\xb0\x01\0\x18\0\0\0\x42\0\0\0\x5a\x03\0\0\x06\x04\x01\0\x1b\0\0\0\x42\0\0\0\0\
+\0\0\0\0\0\0\0\x1c\0\0\0\x42\0\0\0\xab\x03\0\0\x0f\x10\x01\0\x1d\0\0\0\x42\0\0\
+\0\xc0\x03\0\0\x2d\x14\x01\0\x1f\0\0\0\x42\0\0\0\xf7\x03\0\0\x0d\x0c\x01\0\x21\
+\0\0\0\x42\0\0\0\0\0\0\0\0\0\0\0\x22\0\0\0\x42\0\0\0\xc0\x03\0\0\x02\x14\x01\0\
+\x25\0\0\0\x42\0\0\0\x1e\x04\0\0\x0d\x18\x01\0\x28\0\0\0\x42\0\0\0\0\0\0\0\0\0\
+\0\0\x29\0\0\0\x42\0\0\0\x1e\x04\0\0\x0d\x18\x01\0\x2c\0\0\0\x42\0\0\0\x1e\x04\
+\0\0\x0d\x18\x01\0\x2d\0\0\0\x42\0\0\0\x4c\x04\0\0\x1b\x1c\x01\0\x2e\0\0\0\x42\
+\0\0\0\x4c\x04\0\0\x06\x1c\x01\0\x2f\0\0\0\x42\0\0\0\x6f\x04\0\0\x0d\x24\x01\0\
+\x31\0\0\0\x42\0\0\0\x1f\x03\0\0\x02\xb0\x01\0\x40\0\0\0\x42\0\0\0\x2a\x02\0\0\
+\x01\xc0\x01\0\0\0\0\0\x14\0\0\0\x3e\0\0\0\0\0\0\0\x08\0\0\0\x08\0\0\0\x3e\0\0\
+\0\0\0\0\0\x10\0\0\0\x14\0\0\0\xea\0\0\0\0\0\0\0\x20\0\0\0\x14\0\0\0\x3e\0\0\0\
+\0\0\0\0\x28\0\0\0\x18\0\0\0\x3e\0\0\0\0\0\0\0\x30\0\0\0\x08\0\0\0\x3f\x01\0\0\
+\0\0\0\0\x88\0\0\0\x1a\0\0\0\x3e\0\0\0\0\0\0\0\x98\0\0\0\x1a\0\0\0\xea\0\0\0\0\
+\0\0\0\xb0\0\0\0\x1a\0\0\0\x52\x03\0\0\0\0\0\0\xb8\0\0\0\x1a\0\0\0\x56\x03\0\0\
+\0\0\0\0\xc8\0\0\0\x1f\0\0\0\x84\x03\0\0\0\0\0\0\xe0\0\0\0\x20\0\0\0\xea\0\0\0\
+\0\0\0\0\xf8\0\0\0\x20\0\0\0\x3e\0\0\0\0\0\0\0\x20\x01\0\0\x24\0\0\0\x3e\0\0\0\
+\0\0\0\0\x58\x01\0\0\x1a\0\0\0\xea\0\0\0\0\0\0\0\x68\x01\0\0\x20\0\0\0\x46\x04\
+\0\0\0\0\0\0\x90\x01\0\0\x1a\0\0\0\x3f\x01\0\0\0\0\0\0\xa0\x01\0\0\x1a\0\0\0\
+\x87\x04\0\0\0\0\0\0\xa8\x01\0\0\x18\0\0\0\x3e\0\0\0\0\0\0\0\x1a\0\0\0\x42\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\0\0\0\0\0\0\x1c\0\0\
+\0\0\0\0\0\x08\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x10\0\0\0\0\0\0\0\0\0\0\0\x1a\0\
+\0\0\x01\0\0\0\0\0\0\0\x13\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x10\0\0\0\0\0\
+\0\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\0\0\
+\0\0\0\0";
+ opts.insns_sz = 2216;
+ opts.insns = (void *)"\
+\xbf\x16\0\0\0\0\0\0\xbf\xa1\0\0\0\0\0\0\x07\x01\0\0\x78\xff\xff\xff\xb7\x02\0\
+\0\x88\0\0\0\xb7\x03\0\0\0\0\0\0\x85\0\0\0\x71\0\0\0\x05\0\x14\0\0\0\0\0\x61\
+\xa1\x78\xff\0\0\0\0\xd5\x01\x01\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\x61\xa1\x7c\xff\
+\0\0\0\0\xd5\x01\x01\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\x61\xa1\x80\xff\0\0\0\0\xd5\
+\x01\x01\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\x61\xa1\x84\xff\0\0\0\0\xd5\x01\x01\0\0\
+\0\0\0\x85\0\0\0\xa8\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x61\x01\0\0\0\0\
+\0\0\xd5\x01\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\xbf\x70\0\0\
+\0\0\0\0\x95\0\0\0\0\0\0\0\x61\x60\x08\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\
+\x48\x0e\0\0\x63\x01\0\0\0\0\0\0\x61\x60\x0c\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\
+\0\0\x44\x0e\0\0\x63\x01\0\0\0\0\0\0\x79\x60\x10\0\0\0\0\0\x18\x61\0\0\0\0\0\0\
+\0\0\0\0\x38\x0e\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\x05\0\0\
+\x18\x61\0\0\0\0\0\0\0\0\0\0\x30\x0e\0\0\x7b\x01\0\0\0\0\0\0\xb7\x01\0\0\x12\0\
+\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\x30\x0e\0\0\xb7\x03\0\0\x1c\0\0\0\x85\0\0\0\
+\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\x07\xd4\xff\0\0\0\0\x63\x7a\x78\xff\0\0\0\0\
+\x61\xa0\x78\xff\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x80\x0e\0\0\x63\x01\0\0\0\
+\0\0\0\x61\x60\x1c\0\0\0\0\0\x15\0\x03\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\
+\x5c\x0e\0\0\x63\x01\0\0\0\0\0\0\xb7\x01\0\0\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\
+\0\x50\x0e\0\0\xb7\x03\0\0\x48\0\0\0\x85\0\0\0\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\
+\xc5\x07\xc3\xff\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x63\x71\0\0\0\0\0\
+\0\x79\x63\x20\0\0\0\0\0\x15\x03\x08\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x98\
+\x0e\0\0\xb7\x02\0\0\x62\0\0\0\x61\x60\x04\0\0\0\0\0\x45\0\x02\0\x01\0\0\0\x85\
+\0\0\0\x94\0\0\0\x05\0\x01\0\0\0\0\0\x85\0\0\0\x71\0\0\0\x18\x62\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\x61\x20\0\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x08\x0f\0\0\x63\
+\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\x0f\0\0\x18\x61\0\0\0\0\0\0\0\0\
+\0\0\x10\x0f\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x98\x0e\0\0\
+\x18\x61\0\0\0\0\0\0\0\0\0\0\x18\x0f\0\0\x7b\x01\0\0\0\0\0\0\xb7\x01\0\0\x02\0\
+\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\x08\x0f\0\0\xb7\x03\0\0\x20\0\0\0\x85\0\0\0\
+\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\x07\x9f\xff\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\x61\x20\0\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x28\x0f\0\0\x63\
+\x01\0\0\0\0\0\0\xb7\x01\0\0\x16\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\x28\x0f\0\0\
+\xb7\x03\0\0\x04\0\0\0\x85\0\0\0\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\x07\x92\xff\
+\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x30\x0f\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\
+\x78\x11\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x38\x0f\0\0\x18\
+\x61\0\0\0\0\0\0\0\0\0\0\x70\x11\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\
+\0\0\0\x40\x10\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xb8\x11\0\0\x7b\x01\0\0\0\0\0\0\
+\x18\x60\0\0\0\0\0\0\0\0\0\0\x48\x10\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xc8\x11\0\
+\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xe8\x10\0\0\x18\x61\0\0\0\0\
+\0\0\0\0\0\0\xe8\x11\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xe0\x11\0\0\x7b\x01\0\0\0\0\0\0\x61\x60\x08\0\0\
+\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x80\x11\0\0\x63\x01\0\0\0\0\0\0\x61\x60\x0c\
+\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x84\x11\0\0\x63\x01\0\0\0\0\0\0\x79\x60\
+\x10\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x88\x11\0\0\x7b\x01\0\0\0\0\0\0\x61\
+\xa0\x78\xff\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xb0\x11\0\0\x63\x01\0\0\0\0\0\
+\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xf8\x11\0\0\xb7\x02\0\0\x11\0\0\0\xb7\x03\0\0\
+\x0c\0\0\0\xb7\x04\0\0\0\0\0\0\x85\0\0\0\xa7\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\x07\
+\x5c\xff\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x68\x11\0\0\x63\x70\x6c\0\0\0\0\0\
+\x77\x07\0\0\x20\0\0\0\x63\x70\x70\0\0\0\0\0\xb7\x01\0\0\x05\0\0\0\x18\x62\0\0\
+\0\0\0\0\0\0\0\0\x68\x11\0\0\xb7\x03\0\0\x8c\0\0\0\x85\0\0\0\xa6\0\0\0\xbf\x07\
+\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xd8\x11\0\0\x61\x01\0\0\0\0\0\0\xd5\
+\x01\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\xc5\x07\x4a\xff\0\0\
+\0\0\x63\x7a\x80\xff\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x10\x12\0\0\x18\x61\0\
+\0\0\0\0\0\0\0\0\0\x10\x17\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\
+\x18\x12\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x08\x17\0\0\x7b\x01\0\0\0\0\0\0\x18\
+\x60\0\0\0\0\0\0\0\0\0\0\x28\x14\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x50\x17\0\0\
+\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x30\x14\0\0\x18\x61\0\0\0\0\0\
+\0\0\0\0\0\x60\x17\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xd0\x15\
+\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x80\x17\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x78\x17\0\0\x7b\x01\0\0\0\0\
+\0\0\x61\x60\x08\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x18\x17\0\0\x63\x01\0\0\
+\0\0\0\0\x61\x60\x0c\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x1c\x17\0\0\x63\x01\
+\0\0\0\0\0\0\x79\x60\x10\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x20\x17\0\0\x7b\
+\x01\0\0\0\0\0\0\x61\xa0\x78\xff\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x48\x17\0\
+\0\x63\x01\0\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x90\x17\0\0\xb7\x02\0\0\x12\
+\0\0\0\xb7\x03\0\0\x0c\0\0\0\xb7\x04\0\0\0\0\0\0\x85\0\0\0\xa7\0\0\0\xbf\x07\0\
+\0\0\0\0\0\xc5\x07\x13\xff\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\x17\0\0\x63\
+\x70\x6c\0\0\0\0\0\x77\x07\0\0\x20\0\0\0\x63\x70\x70\0\0\0\0\0\xb7\x01\0\0\x05\
+\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\0\x17\0\0\xb7\x03\0\0\x8c\0\0\0\x85\0\0\0\
+\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x70\x17\0\0\x61\x01\
+\0\0\0\0\0\0\xd5\x01\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\xc5\
+\x07\x01\xff\0\0\0\0\x63\x7a\x84\xff\0\0\0\0\x61\xa1\x78\xff\0\0\0\0\xd5\x01\
+\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\x61\xa0\x80\xff\0\0\0\0\
+\x63\x06\x28\0\0\0\0\0\x61\xa0\x84\xff\0\0\0\0\x63\x06\x2c\0\0\0\0\0\x18\x61\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\x61\x10\0\0\0\0\0\0\x63\x06\x18\0\0\0\0\0\xb7\0\0\0\
+\0\0\0\0\x95\0\0\0\0\0\0\0";
+ err = bpf_load_and_run(&opts);
+ if (err < 0)
+ return err;
+ skel->rodata = skel_finalize_map_data(&skel->maps.rodata.initial_value,
+ 4096, PROT_READ, skel->maps.rodata.map_fd);
+ if (!skel->rodata)
+ return -ENOMEM;
+ return 0;
+}
+
+static inline struct iterators_bpf *
+iterators_bpf__open_and_load(void)
+{
+ struct iterators_bpf *skel;
+
+ skel = iterators_bpf__open();
+ if (!skel)
+ return NULL;
+ if (iterators_bpf__load(skel)) {
+ iterators_bpf__destroy(skel);
+ return NULL;
+ }
+ return skel;
+}
+
+#endif /* __ITERATORS_BPF_SKEL_H__ */
diff --git a/kernel/bpf/prog_iter.c b/kernel/bpf/prog_iter.c
new file mode 100644
index 000000000..53a73c841
--- /dev/null
+++ b/kernel/bpf/prog_iter.c
@@ -0,0 +1,107 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2020 Facebook */
+#include <linux/bpf.h>
+#include <linux/fs.h>
+#include <linux/filter.h>
+#include <linux/kernel.h>
+#include <linux/btf_ids.h>
+
+struct bpf_iter_seq_prog_info {
+ u32 prog_id;
+};
+
+static void *bpf_prog_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct bpf_iter_seq_prog_info *info = seq->private;
+ struct bpf_prog *prog;
+
+ prog = bpf_prog_get_curr_or_next(&info->prog_id);
+ if (!prog)
+ return NULL;
+
+ if (*pos == 0)
+ ++*pos;
+ return prog;
+}
+
+static void *bpf_prog_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct bpf_iter_seq_prog_info *info = seq->private;
+
+ ++*pos;
+ ++info->prog_id;
+ bpf_prog_put((struct bpf_prog *)v);
+ return bpf_prog_get_curr_or_next(&info->prog_id);
+}
+
+struct bpf_iter__bpf_prog {
+ __bpf_md_ptr(struct bpf_iter_meta *, meta);
+ __bpf_md_ptr(struct bpf_prog *, prog);
+};
+
+DEFINE_BPF_ITER_FUNC(bpf_prog, struct bpf_iter_meta *meta, struct bpf_prog *prog)
+
+static int __bpf_prog_seq_show(struct seq_file *seq, void *v, bool in_stop)
+{
+ struct bpf_iter__bpf_prog ctx;
+ struct bpf_iter_meta meta;
+ struct bpf_prog *prog;
+ int ret = 0;
+
+ ctx.meta = &meta;
+ ctx.prog = v;
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, in_stop);
+ if (prog)
+ ret = bpf_iter_run_prog(prog, &ctx);
+
+ return ret;
+}
+
+static int bpf_prog_seq_show(struct seq_file *seq, void *v)
+{
+ return __bpf_prog_seq_show(seq, v, false);
+}
+
+static void bpf_prog_seq_stop(struct seq_file *seq, void *v)
+{
+ if (!v)
+ (void)__bpf_prog_seq_show(seq, v, true);
+ else
+ bpf_prog_put((struct bpf_prog *)v);
+}
+
+static const struct seq_operations bpf_prog_seq_ops = {
+ .start = bpf_prog_seq_start,
+ .next = bpf_prog_seq_next,
+ .stop = bpf_prog_seq_stop,
+ .show = bpf_prog_seq_show,
+};
+
+BTF_ID_LIST(btf_bpf_prog_id)
+BTF_ID(struct, bpf_prog)
+
+static const struct bpf_iter_seq_info bpf_prog_seq_info = {
+ .seq_ops = &bpf_prog_seq_ops,
+ .init_seq_private = NULL,
+ .fini_seq_private = NULL,
+ .seq_priv_size = sizeof(struct bpf_iter_seq_prog_info),
+};
+
+static struct bpf_iter_reg bpf_prog_reg_info = {
+ .target = "bpf_prog",
+ .ctx_arg_info_size = 1,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__bpf_prog, prog),
+ PTR_TO_BTF_ID_OR_NULL },
+ },
+ .seq_info = &bpf_prog_seq_info,
+};
+
+static int __init bpf_prog_iter_init(void)
+{
+ bpf_prog_reg_info.ctx_arg_info[0].btf_id = *btf_bpf_prog_id;
+ return bpf_iter_reg_target(&bpf_prog_reg_info);
+}
+
+late_initcall(bpf_prog_iter_init);
diff --git a/kernel/bpf/queue_stack_maps.c b/kernel/bpf/queue_stack_maps.c
new file mode 100644
index 000000000..a8fe64031
--- /dev/null
+++ b/kernel/bpf/queue_stack_maps.c
@@ -0,0 +1,293 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * queue_stack_maps.c: BPF queue and stack maps
+ *
+ * Copyright (c) 2018 Politecnico di Torino
+ */
+#include <linux/bpf.h>
+#include <linux/list.h>
+#include <linux/slab.h>
+#include <linux/capability.h>
+#include <linux/btf_ids.h>
+#include "percpu_freelist.h"
+
+#define QUEUE_STACK_CREATE_FLAG_MASK \
+ (BPF_F_NUMA_NODE | BPF_F_ACCESS_MASK)
+
+struct bpf_queue_stack {
+ struct bpf_map map;
+ raw_spinlock_t lock;
+ u32 head, tail;
+ u32 size; /* max_entries + 1 */
+
+ char elements[] __aligned(8);
+};
+
+static struct bpf_queue_stack *bpf_queue_stack(struct bpf_map *map)
+{
+ return container_of(map, struct bpf_queue_stack, map);
+}
+
+static bool queue_stack_map_is_empty(struct bpf_queue_stack *qs)
+{
+ return qs->head == qs->tail;
+}
+
+static bool queue_stack_map_is_full(struct bpf_queue_stack *qs)
+{
+ u32 head = qs->head + 1;
+
+ if (unlikely(head >= qs->size))
+ head = 0;
+
+ return head == qs->tail;
+}
+
+/* Called from syscall */
+static int queue_stack_map_alloc_check(union bpf_attr *attr)
+{
+ if (!bpf_capable())
+ return -EPERM;
+
+ /* check sanity of attributes */
+ if (attr->max_entries == 0 || attr->key_size != 0 ||
+ attr->value_size == 0 ||
+ attr->map_flags & ~QUEUE_STACK_CREATE_FLAG_MASK ||
+ !bpf_map_flags_access_ok(attr->map_flags))
+ return -EINVAL;
+
+ if (attr->value_size > KMALLOC_MAX_SIZE)
+ /* if value_size is bigger, the user space won't be able to
+ * access the elements.
+ */
+ return -E2BIG;
+
+ return 0;
+}
+
+static struct bpf_map *queue_stack_map_alloc(union bpf_attr *attr)
+{
+ int numa_node = bpf_map_attr_numa_node(attr);
+ struct bpf_queue_stack *qs;
+ u64 size, queue_size;
+
+ size = (u64) attr->max_entries + 1;
+ queue_size = sizeof(*qs) + size * attr->value_size;
+
+ qs = bpf_map_area_alloc(queue_size, numa_node);
+ if (!qs)
+ return ERR_PTR(-ENOMEM);
+
+ bpf_map_init_from_attr(&qs->map, attr);
+
+ qs->size = size;
+
+ raw_spin_lock_init(&qs->lock);
+
+ return &qs->map;
+}
+
+/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
+static void queue_stack_map_free(struct bpf_map *map)
+{
+ struct bpf_queue_stack *qs = bpf_queue_stack(map);
+
+ bpf_map_area_free(qs);
+}
+
+static int __queue_map_get(struct bpf_map *map, void *value, bool delete)
+{
+ struct bpf_queue_stack *qs = bpf_queue_stack(map);
+ unsigned long flags;
+ int err = 0;
+ void *ptr;
+
+ if (in_nmi()) {
+ if (!raw_spin_trylock_irqsave(&qs->lock, flags))
+ return -EBUSY;
+ } else {
+ raw_spin_lock_irqsave(&qs->lock, flags);
+ }
+
+ if (queue_stack_map_is_empty(qs)) {
+ memset(value, 0, qs->map.value_size);
+ err = -ENOENT;
+ goto out;
+ }
+
+ ptr = &qs->elements[qs->tail * qs->map.value_size];
+ memcpy(value, ptr, qs->map.value_size);
+
+ if (delete) {
+ if (unlikely(++qs->tail >= qs->size))
+ qs->tail = 0;
+ }
+
+out:
+ raw_spin_unlock_irqrestore(&qs->lock, flags);
+ return err;
+}
+
+
+static int __stack_map_get(struct bpf_map *map, void *value, bool delete)
+{
+ struct bpf_queue_stack *qs = bpf_queue_stack(map);
+ unsigned long flags;
+ int err = 0;
+ void *ptr;
+ u32 index;
+
+ if (in_nmi()) {
+ if (!raw_spin_trylock_irqsave(&qs->lock, flags))
+ return -EBUSY;
+ } else {
+ raw_spin_lock_irqsave(&qs->lock, flags);
+ }
+
+ if (queue_stack_map_is_empty(qs)) {
+ memset(value, 0, qs->map.value_size);
+ err = -ENOENT;
+ goto out;
+ }
+
+ index = qs->head - 1;
+ if (unlikely(index >= qs->size))
+ index = qs->size - 1;
+
+ ptr = &qs->elements[index * qs->map.value_size];
+ memcpy(value, ptr, qs->map.value_size);
+
+ if (delete)
+ qs->head = index;
+
+out:
+ raw_spin_unlock_irqrestore(&qs->lock, flags);
+ return err;
+}
+
+/* Called from syscall or from eBPF program */
+static int queue_map_peek_elem(struct bpf_map *map, void *value)
+{
+ return __queue_map_get(map, value, false);
+}
+
+/* Called from syscall or from eBPF program */
+static int stack_map_peek_elem(struct bpf_map *map, void *value)
+{
+ return __stack_map_get(map, value, false);
+}
+
+/* Called from syscall or from eBPF program */
+static int queue_map_pop_elem(struct bpf_map *map, void *value)
+{
+ return __queue_map_get(map, value, true);
+}
+
+/* Called from syscall or from eBPF program */
+static int stack_map_pop_elem(struct bpf_map *map, void *value)
+{
+ return __stack_map_get(map, value, true);
+}
+
+/* Called from syscall or from eBPF program */
+static int queue_stack_map_push_elem(struct bpf_map *map, void *value,
+ u64 flags)
+{
+ struct bpf_queue_stack *qs = bpf_queue_stack(map);
+ unsigned long irq_flags;
+ int err = 0;
+ void *dst;
+
+ /* BPF_EXIST is used to force making room for a new element in case the
+ * map is full
+ */
+ bool replace = (flags & BPF_EXIST);
+
+ /* Check supported flags for queue and stack maps */
+ if (flags & BPF_NOEXIST || flags > BPF_EXIST)
+ return -EINVAL;
+
+ if (in_nmi()) {
+ if (!raw_spin_trylock_irqsave(&qs->lock, irq_flags))
+ return -EBUSY;
+ } else {
+ raw_spin_lock_irqsave(&qs->lock, irq_flags);
+ }
+
+ if (queue_stack_map_is_full(qs)) {
+ if (!replace) {
+ err = -E2BIG;
+ goto out;
+ }
+ /* advance tail pointer to overwrite oldest element */
+ if (unlikely(++qs->tail >= qs->size))
+ qs->tail = 0;
+ }
+
+ dst = &qs->elements[qs->head * qs->map.value_size];
+ memcpy(dst, value, qs->map.value_size);
+
+ if (unlikely(++qs->head >= qs->size))
+ qs->head = 0;
+
+out:
+ raw_spin_unlock_irqrestore(&qs->lock, irq_flags);
+ return err;
+}
+
+/* Called from syscall or from eBPF program */
+static void *queue_stack_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ return NULL;
+}
+
+/* Called from syscall or from eBPF program */
+static int queue_stack_map_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 flags)
+{
+ return -EINVAL;
+}
+
+/* Called from syscall or from eBPF program */
+static int queue_stack_map_delete_elem(struct bpf_map *map, void *key)
+{
+ return -EINVAL;
+}
+
+/* Called from syscall */
+static int queue_stack_map_get_next_key(struct bpf_map *map, void *key,
+ void *next_key)
+{
+ return -EINVAL;
+}
+
+BTF_ID_LIST_SINGLE(queue_map_btf_ids, struct, bpf_queue_stack)
+const struct bpf_map_ops queue_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = queue_stack_map_alloc_check,
+ .map_alloc = queue_stack_map_alloc,
+ .map_free = queue_stack_map_free,
+ .map_lookup_elem = queue_stack_map_lookup_elem,
+ .map_update_elem = queue_stack_map_update_elem,
+ .map_delete_elem = queue_stack_map_delete_elem,
+ .map_push_elem = queue_stack_map_push_elem,
+ .map_pop_elem = queue_map_pop_elem,
+ .map_peek_elem = queue_map_peek_elem,
+ .map_get_next_key = queue_stack_map_get_next_key,
+ .map_btf_id = &queue_map_btf_ids[0],
+};
+
+const struct bpf_map_ops stack_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = queue_stack_map_alloc_check,
+ .map_alloc = queue_stack_map_alloc,
+ .map_free = queue_stack_map_free,
+ .map_lookup_elem = queue_stack_map_lookup_elem,
+ .map_update_elem = queue_stack_map_update_elem,
+ .map_delete_elem = queue_stack_map_delete_elem,
+ .map_push_elem = queue_stack_map_push_elem,
+ .map_pop_elem = stack_map_pop_elem,
+ .map_peek_elem = stack_map_peek_elem,
+ .map_get_next_key = queue_stack_map_get_next_key,
+ .map_btf_id = &queue_map_btf_ids[0],
+};
diff --git a/kernel/bpf/reuseport_array.c b/kernel/bpf/reuseport_array.c
new file mode 100644
index 000000000..82c61612f
--- /dev/null
+++ b/kernel/bpf/reuseport_array.c
@@ -0,0 +1,348 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2018 Facebook
+ */
+#include <linux/bpf.h>
+#include <linux/err.h>
+#include <linux/sock_diag.h>
+#include <net/sock_reuseport.h>
+#include <linux/btf_ids.h>
+
+struct reuseport_array {
+ struct bpf_map map;
+ struct sock __rcu *ptrs[];
+};
+
+static struct reuseport_array *reuseport_array(struct bpf_map *map)
+{
+ return (struct reuseport_array *)map;
+}
+
+/* The caller must hold the reuseport_lock */
+void bpf_sk_reuseport_detach(struct sock *sk)
+{
+ struct sock __rcu **socks;
+
+ write_lock_bh(&sk->sk_callback_lock);
+ socks = __locked_read_sk_user_data_with_flags(sk, SK_USER_DATA_BPF);
+ if (socks) {
+ WRITE_ONCE(sk->sk_user_data, NULL);
+ /*
+ * Do not move this NULL assignment outside of
+ * sk->sk_callback_lock because there is
+ * a race with reuseport_array_free()
+ * which does not hold the reuseport_lock.
+ */
+ RCU_INIT_POINTER(*socks, NULL);
+ }
+ write_unlock_bh(&sk->sk_callback_lock);
+}
+
+static int reuseport_array_alloc_check(union bpf_attr *attr)
+{
+ if (attr->value_size != sizeof(u32) &&
+ attr->value_size != sizeof(u64))
+ return -EINVAL;
+
+ return array_map_alloc_check(attr);
+}
+
+static void *reuseport_array_lookup_elem(struct bpf_map *map, void *key)
+{
+ struct reuseport_array *array = reuseport_array(map);
+ u32 index = *(u32 *)key;
+
+ if (unlikely(index >= array->map.max_entries))
+ return NULL;
+
+ return rcu_dereference(array->ptrs[index]);
+}
+
+/* Called from syscall only */
+static int reuseport_array_delete_elem(struct bpf_map *map, void *key)
+{
+ struct reuseport_array *array = reuseport_array(map);
+ u32 index = *(u32 *)key;
+ struct sock *sk;
+ int err;
+
+ if (index >= map->max_entries)
+ return -E2BIG;
+
+ if (!rcu_access_pointer(array->ptrs[index]))
+ return -ENOENT;
+
+ spin_lock_bh(&reuseport_lock);
+
+ sk = rcu_dereference_protected(array->ptrs[index],
+ lockdep_is_held(&reuseport_lock));
+ if (sk) {
+ write_lock_bh(&sk->sk_callback_lock);
+ WRITE_ONCE(sk->sk_user_data, NULL);
+ RCU_INIT_POINTER(array->ptrs[index], NULL);
+ write_unlock_bh(&sk->sk_callback_lock);
+ err = 0;
+ } else {
+ err = -ENOENT;
+ }
+
+ spin_unlock_bh(&reuseport_lock);
+
+ return err;
+}
+
+static void reuseport_array_free(struct bpf_map *map)
+{
+ struct reuseport_array *array = reuseport_array(map);
+ struct sock *sk;
+ u32 i;
+
+ /*
+ * ops->map_*_elem() will not be able to access this
+ * array now. Hence, this function only races with
+ * bpf_sk_reuseport_detach() which was triggered by
+ * close() or disconnect().
+ *
+ * This function and bpf_sk_reuseport_detach() are
+ * both removing sk from "array". Who removes it
+ * first does not matter.
+ *
+ * The only concern here is bpf_sk_reuseport_detach()
+ * may access "array" which is being freed here.
+ * bpf_sk_reuseport_detach() access this "array"
+ * through sk->sk_user_data _and_ with sk->sk_callback_lock
+ * held which is enough because this "array" is not freed
+ * until all sk->sk_user_data has stopped referencing this "array".
+ *
+ * Hence, due to the above, taking "reuseport_lock" is not
+ * needed here.
+ */
+
+ /*
+ * Since reuseport_lock is not taken, sk is accessed under
+ * rcu_read_lock()
+ */
+ rcu_read_lock();
+ for (i = 0; i < map->max_entries; i++) {
+ sk = rcu_dereference(array->ptrs[i]);
+ if (sk) {
+ write_lock_bh(&sk->sk_callback_lock);
+ /*
+ * No need for WRITE_ONCE(). At this point,
+ * no one is reading it without taking the
+ * sk->sk_callback_lock.
+ */
+ sk->sk_user_data = NULL;
+ write_unlock_bh(&sk->sk_callback_lock);
+ RCU_INIT_POINTER(array->ptrs[i], NULL);
+ }
+ }
+ rcu_read_unlock();
+
+ /*
+ * Once reaching here, all sk->sk_user_data is not
+ * referencing this "array". "array" can be freed now.
+ */
+ bpf_map_area_free(array);
+}
+
+static struct bpf_map *reuseport_array_alloc(union bpf_attr *attr)
+{
+ int numa_node = bpf_map_attr_numa_node(attr);
+ struct reuseport_array *array;
+
+ if (!bpf_capable())
+ return ERR_PTR(-EPERM);
+
+ /* allocate all map elements and zero-initialize them */
+ array = bpf_map_area_alloc(struct_size(array, ptrs, attr->max_entries), numa_node);
+ if (!array)
+ return ERR_PTR(-ENOMEM);
+
+ /* copy mandatory map attributes */
+ bpf_map_init_from_attr(&array->map, attr);
+
+ return &array->map;
+}
+
+int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
+ void *value)
+{
+ struct sock *sk;
+ int err;
+
+ if (map->value_size != sizeof(u64))
+ return -ENOSPC;
+
+ rcu_read_lock();
+ sk = reuseport_array_lookup_elem(map, key);
+ if (sk) {
+ *(u64 *)value = __sock_gen_cookie(sk);
+ err = 0;
+ } else {
+ err = -ENOENT;
+ }
+ rcu_read_unlock();
+
+ return err;
+}
+
+static int
+reuseport_array_update_check(const struct reuseport_array *array,
+ const struct sock *nsk,
+ const struct sock *osk,
+ const struct sock_reuseport *nsk_reuse,
+ u32 map_flags)
+{
+ if (osk && map_flags == BPF_NOEXIST)
+ return -EEXIST;
+
+ if (!osk && map_flags == BPF_EXIST)
+ return -ENOENT;
+
+ if (nsk->sk_protocol != IPPROTO_UDP && nsk->sk_protocol != IPPROTO_TCP)
+ return -ENOTSUPP;
+
+ if (nsk->sk_family != AF_INET && nsk->sk_family != AF_INET6)
+ return -ENOTSUPP;
+
+ if (nsk->sk_type != SOCK_STREAM && nsk->sk_type != SOCK_DGRAM)
+ return -ENOTSUPP;
+
+ /*
+ * sk must be hashed (i.e. listening in the TCP case or binded
+ * in the UDP case) and
+ * it must also be a SO_REUSEPORT sk (i.e. reuse cannot be NULL).
+ *
+ * Also, sk will be used in bpf helper that is protected by
+ * rcu_read_lock().
+ */
+ if (!sock_flag(nsk, SOCK_RCU_FREE) || !sk_hashed(nsk) || !nsk_reuse)
+ return -EINVAL;
+
+ /* READ_ONCE because the sk->sk_callback_lock may not be held here */
+ if (READ_ONCE(nsk->sk_user_data))
+ return -EBUSY;
+
+ return 0;
+}
+
+/*
+ * Called from syscall only.
+ * The "nsk" in the fd refcnt.
+ * The "osk" and "reuse" are protected by reuseport_lock.
+ */
+int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
+ void *value, u64 map_flags)
+{
+ struct reuseport_array *array = reuseport_array(map);
+ struct sock *free_osk = NULL, *osk, *nsk;
+ struct sock_reuseport *reuse;
+ u32 index = *(u32 *)key;
+ uintptr_t sk_user_data;
+ struct socket *socket;
+ int err, fd;
+
+ if (map_flags > BPF_EXIST)
+ return -EINVAL;
+
+ if (index >= map->max_entries)
+ return -E2BIG;
+
+ if (map->value_size == sizeof(u64)) {
+ u64 fd64 = *(u64 *)value;
+
+ if (fd64 > S32_MAX)
+ return -EINVAL;
+ fd = fd64;
+ } else {
+ fd = *(int *)value;
+ }
+
+ socket = sockfd_lookup(fd, &err);
+ if (!socket)
+ return err;
+
+ nsk = socket->sk;
+ if (!nsk) {
+ err = -EINVAL;
+ goto put_file;
+ }
+
+ /* Quick checks before taking reuseport_lock */
+ err = reuseport_array_update_check(array, nsk,
+ rcu_access_pointer(array->ptrs[index]),
+ rcu_access_pointer(nsk->sk_reuseport_cb),
+ map_flags);
+ if (err)
+ goto put_file;
+
+ spin_lock_bh(&reuseport_lock);
+ /*
+ * Some of the checks only need reuseport_lock
+ * but it is done under sk_callback_lock also
+ * for simplicity reason.
+ */
+ write_lock_bh(&nsk->sk_callback_lock);
+
+ osk = rcu_dereference_protected(array->ptrs[index],
+ lockdep_is_held(&reuseport_lock));
+ reuse = rcu_dereference_protected(nsk->sk_reuseport_cb,
+ lockdep_is_held(&reuseport_lock));
+ err = reuseport_array_update_check(array, nsk, osk, reuse, map_flags);
+ if (err)
+ goto put_file_unlock;
+
+ sk_user_data = (uintptr_t)&array->ptrs[index] | SK_USER_DATA_NOCOPY |
+ SK_USER_DATA_BPF;
+ WRITE_ONCE(nsk->sk_user_data, (void *)sk_user_data);
+ rcu_assign_pointer(array->ptrs[index], nsk);
+ free_osk = osk;
+ err = 0;
+
+put_file_unlock:
+ write_unlock_bh(&nsk->sk_callback_lock);
+
+ if (free_osk) {
+ write_lock_bh(&free_osk->sk_callback_lock);
+ WRITE_ONCE(free_osk->sk_user_data, NULL);
+ write_unlock_bh(&free_osk->sk_callback_lock);
+ }
+
+ spin_unlock_bh(&reuseport_lock);
+put_file:
+ fput(socket->file);
+ return err;
+}
+
+/* Called from syscall */
+static int reuseport_array_get_next_key(struct bpf_map *map, void *key,
+ void *next_key)
+{
+ struct reuseport_array *array = reuseport_array(map);
+ u32 index = key ? *(u32 *)key : U32_MAX;
+ u32 *next = (u32 *)next_key;
+
+ if (index >= array->map.max_entries) {
+ *next = 0;
+ return 0;
+ }
+
+ if (index == array->map.max_entries - 1)
+ return -ENOENT;
+
+ *next = index + 1;
+ return 0;
+}
+
+BTF_ID_LIST_SINGLE(reuseport_array_map_btf_ids, struct, reuseport_array)
+const struct bpf_map_ops reuseport_array_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc_check = reuseport_array_alloc_check,
+ .map_alloc = reuseport_array_alloc,
+ .map_free = reuseport_array_free,
+ .map_lookup_elem = reuseport_array_lookup_elem,
+ .map_get_next_key = reuseport_array_get_next_key,
+ .map_delete_elem = reuseport_array_delete_elem,
+ .map_btf_id = &reuseport_array_map_btf_ids[0],
+};
diff --git a/kernel/bpf/ringbuf.c b/kernel/bpf/ringbuf.c
new file mode 100644
index 000000000..9e832acf4
--- /dev/null
+++ b/kernel/bpf/ringbuf.c
@@ -0,0 +1,776 @@
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/err.h>
+#include <linux/irq_work.h>
+#include <linux/slab.h>
+#include <linux/filter.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+#include <linux/wait.h>
+#include <linux/poll.h>
+#include <linux/kmemleak.h>
+#include <uapi/linux/btf.h>
+#include <linux/btf_ids.h>
+
+#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
+
+/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
+#define RINGBUF_PGOFF \
+ (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
+/* consumer page and producer page */
+#define RINGBUF_POS_PAGES 2
+
+#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
+
+/* Maximum size of ring buffer area is limited by 32-bit page offset within
+ * record header, counted in pages. Reserve 8 bits for extensibility, and take
+ * into account few extra pages for consumer/producer pages and
+ * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
+ * ring buffer.
+ */
+#define RINGBUF_MAX_DATA_SZ \
+ (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
+
+struct bpf_ringbuf {
+ wait_queue_head_t waitq;
+ struct irq_work work;
+ u64 mask;
+ struct page **pages;
+ int nr_pages;
+ spinlock_t spinlock ____cacheline_aligned_in_smp;
+ /* For user-space producer ring buffers, an atomic_t busy bit is used
+ * to synchronize access to the ring buffers in the kernel, rather than
+ * the spinlock that is used for kernel-producer ring buffers. This is
+ * done because the ring buffer must hold a lock across a BPF program's
+ * callback:
+ *
+ * __bpf_user_ringbuf_peek() // lock acquired
+ * -> program callback_fn()
+ * -> __bpf_user_ringbuf_sample_release() // lock released
+ *
+ * It is unsafe and incorrect to hold an IRQ spinlock across what could
+ * be a long execution window, so we instead simply disallow concurrent
+ * access to the ring buffer by kernel consumers, and return -EBUSY from
+ * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
+ */
+ atomic_t busy ____cacheline_aligned_in_smp;
+ /* Consumer and producer counters are put into separate pages to
+ * allow each position to be mapped with different permissions.
+ * This prevents a user-space application from modifying the
+ * position and ruining in-kernel tracking. The permissions of the
+ * pages depend on who is producing samples: user-space or the
+ * kernel.
+ *
+ * Kernel-producer
+ * ---------------
+ * The producer position and data pages are mapped as r/o in
+ * userspace. For this approach, bits in the header of samples are
+ * used to signal to user-space, and to other producers, whether a
+ * sample is currently being written.
+ *
+ * User-space producer
+ * -------------------
+ * Only the page containing the consumer position is mapped r/o in
+ * user-space. User-space producers also use bits of the header to
+ * communicate to the kernel, but the kernel must carefully check and
+ * validate each sample to ensure that they're correctly formatted, and
+ * fully contained within the ring buffer.
+ */
+ unsigned long consumer_pos __aligned(PAGE_SIZE);
+ unsigned long producer_pos __aligned(PAGE_SIZE);
+ char data[] __aligned(PAGE_SIZE);
+};
+
+struct bpf_ringbuf_map {
+ struct bpf_map map;
+ struct bpf_ringbuf *rb;
+};
+
+/* 8-byte ring buffer record header structure */
+struct bpf_ringbuf_hdr {
+ u32 len;
+ u32 pg_off;
+};
+
+static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
+{
+ const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
+ __GFP_NOWARN | __GFP_ZERO;
+ int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
+ int nr_data_pages = data_sz >> PAGE_SHIFT;
+ int nr_pages = nr_meta_pages + nr_data_pages;
+ struct page **pages, *page;
+ struct bpf_ringbuf *rb;
+ size_t array_size;
+ int i;
+
+ /* Each data page is mapped twice to allow "virtual"
+ * continuous read of samples wrapping around the end of ring
+ * buffer area:
+ * ------------------------------------------------------
+ * | meta pages | real data pages | same data pages |
+ * ------------------------------------------------------
+ * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
+ * ------------------------------------------------------
+ * | | TA DA | TA DA |
+ * ------------------------------------------------------
+ * ^^^^^^^
+ * |
+ * Here, no need to worry about special handling of wrapped-around
+ * data due to double-mapped data pages. This works both in kernel and
+ * when mmap()'ed in user-space, simplifying both kernel and
+ * user-space implementations significantly.
+ */
+ array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
+ pages = bpf_map_area_alloc(array_size, numa_node);
+ if (!pages)
+ return NULL;
+
+ for (i = 0; i < nr_pages; i++) {
+ page = alloc_pages_node(numa_node, flags, 0);
+ if (!page) {
+ nr_pages = i;
+ goto err_free_pages;
+ }
+ pages[i] = page;
+ if (i >= nr_meta_pages)
+ pages[nr_data_pages + i] = page;
+ }
+
+ rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
+ VM_MAP | VM_USERMAP, PAGE_KERNEL);
+ if (rb) {
+ kmemleak_not_leak(pages);
+ rb->pages = pages;
+ rb->nr_pages = nr_pages;
+ return rb;
+ }
+
+err_free_pages:
+ for (i = 0; i < nr_pages; i++)
+ __free_page(pages[i]);
+ bpf_map_area_free(pages);
+ return NULL;
+}
+
+static void bpf_ringbuf_notify(struct irq_work *work)
+{
+ struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
+
+ wake_up_all(&rb->waitq);
+}
+
+static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
+{
+ struct bpf_ringbuf *rb;
+
+ rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
+ if (!rb)
+ return NULL;
+
+ spin_lock_init(&rb->spinlock);
+ atomic_set(&rb->busy, 0);
+ init_waitqueue_head(&rb->waitq);
+ init_irq_work(&rb->work, bpf_ringbuf_notify);
+
+ rb->mask = data_sz - 1;
+ rb->consumer_pos = 0;
+ rb->producer_pos = 0;
+
+ return rb;
+}
+
+static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
+{
+ struct bpf_ringbuf_map *rb_map;
+
+ if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
+ return ERR_PTR(-EINVAL);
+
+ if (attr->key_size || attr->value_size ||
+ !is_power_of_2(attr->max_entries) ||
+ !PAGE_ALIGNED(attr->max_entries))
+ return ERR_PTR(-EINVAL);
+
+#ifdef CONFIG_64BIT
+ /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
+ if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
+ return ERR_PTR(-E2BIG);
+#endif
+
+ rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
+ if (!rb_map)
+ return ERR_PTR(-ENOMEM);
+
+ bpf_map_init_from_attr(&rb_map->map, attr);
+
+ rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
+ if (!rb_map->rb) {
+ bpf_map_area_free(rb_map);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ return &rb_map->map;
+}
+
+static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
+{
+ /* copy pages pointer and nr_pages to local variable, as we are going
+ * to unmap rb itself with vunmap() below
+ */
+ struct page **pages = rb->pages;
+ int i, nr_pages = rb->nr_pages;
+
+ vunmap(rb);
+ for (i = 0; i < nr_pages; i++)
+ __free_page(pages[i]);
+ bpf_map_area_free(pages);
+}
+
+static void ringbuf_map_free(struct bpf_map *map)
+{
+ struct bpf_ringbuf_map *rb_map;
+
+ rb_map = container_of(map, struct bpf_ringbuf_map, map);
+ bpf_ringbuf_free(rb_map->rb);
+ bpf_map_area_free(rb_map);
+}
+
+static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ return ERR_PTR(-ENOTSUPP);
+}
+
+static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 flags)
+{
+ return -ENOTSUPP;
+}
+
+static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
+{
+ return -ENOTSUPP;
+}
+
+static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
+ void *next_key)
+{
+ return -ENOTSUPP;
+}
+
+static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
+{
+ struct bpf_ringbuf_map *rb_map;
+
+ rb_map = container_of(map, struct bpf_ringbuf_map, map);
+
+ if (vma->vm_flags & VM_WRITE) {
+ /* allow writable mapping for the consumer_pos only */
+ if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
+ return -EPERM;
+ } else {
+ vma->vm_flags &= ~VM_MAYWRITE;
+ }
+ /* remap_vmalloc_range() checks size and offset constraints */
+ return remap_vmalloc_range(vma, rb_map->rb,
+ vma->vm_pgoff + RINGBUF_PGOFF);
+}
+
+static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
+{
+ struct bpf_ringbuf_map *rb_map;
+
+ rb_map = container_of(map, struct bpf_ringbuf_map, map);
+
+ if (vma->vm_flags & VM_WRITE) {
+ if (vma->vm_pgoff == 0)
+ /* Disallow writable mappings to the consumer pointer,
+ * and allow writable mappings to both the producer
+ * position, and the ring buffer data itself.
+ */
+ return -EPERM;
+ } else {
+ vma->vm_flags &= ~VM_MAYWRITE;
+ }
+ /* remap_vmalloc_range() checks size and offset constraints */
+ return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
+}
+
+static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
+{
+ unsigned long cons_pos, prod_pos;
+
+ cons_pos = smp_load_acquire(&rb->consumer_pos);
+ prod_pos = smp_load_acquire(&rb->producer_pos);
+ return prod_pos - cons_pos;
+}
+
+static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
+{
+ return rb->mask + 1;
+}
+
+static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
+ struct poll_table_struct *pts)
+{
+ struct bpf_ringbuf_map *rb_map;
+
+ rb_map = container_of(map, struct bpf_ringbuf_map, map);
+ poll_wait(filp, &rb_map->rb->waitq, pts);
+
+ if (ringbuf_avail_data_sz(rb_map->rb))
+ return EPOLLIN | EPOLLRDNORM;
+ return 0;
+}
+
+static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
+ struct poll_table_struct *pts)
+{
+ struct bpf_ringbuf_map *rb_map;
+
+ rb_map = container_of(map, struct bpf_ringbuf_map, map);
+ poll_wait(filp, &rb_map->rb->waitq, pts);
+
+ if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
+ return EPOLLOUT | EPOLLWRNORM;
+ return 0;
+}
+
+BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
+const struct bpf_map_ops ringbuf_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = ringbuf_map_alloc,
+ .map_free = ringbuf_map_free,
+ .map_mmap = ringbuf_map_mmap_kern,
+ .map_poll = ringbuf_map_poll_kern,
+ .map_lookup_elem = ringbuf_map_lookup_elem,
+ .map_update_elem = ringbuf_map_update_elem,
+ .map_delete_elem = ringbuf_map_delete_elem,
+ .map_get_next_key = ringbuf_map_get_next_key,
+ .map_btf_id = &ringbuf_map_btf_ids[0],
+};
+
+BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
+const struct bpf_map_ops user_ringbuf_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = ringbuf_map_alloc,
+ .map_free = ringbuf_map_free,
+ .map_mmap = ringbuf_map_mmap_user,
+ .map_poll = ringbuf_map_poll_user,
+ .map_lookup_elem = ringbuf_map_lookup_elem,
+ .map_update_elem = ringbuf_map_update_elem,
+ .map_delete_elem = ringbuf_map_delete_elem,
+ .map_get_next_key = ringbuf_map_get_next_key,
+ .map_btf_id = &user_ringbuf_map_btf_ids[0],
+};
+
+/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
+ * calculate offset from record metadata to ring buffer in pages, rounded
+ * down. This page offset is stored as part of record metadata and allows to
+ * restore struct bpf_ringbuf * from record pointer. This page offset is
+ * stored at offset 4 of record metadata header.
+ */
+static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
+ struct bpf_ringbuf_hdr *hdr)
+{
+ return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
+}
+
+/* Given pointer to ring buffer record header, restore pointer to struct
+ * bpf_ringbuf itself by using page offset stored at offset 4
+ */
+static struct bpf_ringbuf *
+bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
+{
+ unsigned long addr = (unsigned long)(void *)hdr;
+ unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
+
+ return (void*)((addr & PAGE_MASK) - off);
+}
+
+static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
+{
+ unsigned long cons_pos, prod_pos, new_prod_pos, flags;
+ u32 len, pg_off;
+ struct bpf_ringbuf_hdr *hdr;
+
+ if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
+ return NULL;
+
+ len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
+ if (len > ringbuf_total_data_sz(rb))
+ return NULL;
+
+ cons_pos = smp_load_acquire(&rb->consumer_pos);
+
+ if (in_nmi()) {
+ if (!spin_trylock_irqsave(&rb->spinlock, flags))
+ return NULL;
+ } else {
+ spin_lock_irqsave(&rb->spinlock, flags);
+ }
+
+ prod_pos = rb->producer_pos;
+ new_prod_pos = prod_pos + len;
+
+ /* check for out of ringbuf space by ensuring producer position
+ * doesn't advance more than (ringbuf_size - 1) ahead
+ */
+ if (new_prod_pos - cons_pos > rb->mask) {
+ spin_unlock_irqrestore(&rb->spinlock, flags);
+ return NULL;
+ }
+
+ hdr = (void *)rb->data + (prod_pos & rb->mask);
+ pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
+ hdr->len = size | BPF_RINGBUF_BUSY_BIT;
+ hdr->pg_off = pg_off;
+
+ /* pairs with consumer's smp_load_acquire() */
+ smp_store_release(&rb->producer_pos, new_prod_pos);
+
+ spin_unlock_irqrestore(&rb->spinlock, flags);
+
+ return (void *)hdr + BPF_RINGBUF_HDR_SZ;
+}
+
+BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
+{
+ struct bpf_ringbuf_map *rb_map;
+
+ if (unlikely(flags))
+ return 0;
+
+ rb_map = container_of(map, struct bpf_ringbuf_map, map);
+ return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
+}
+
+const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
+ .func = bpf_ringbuf_reserve,
+ .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+};
+
+static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
+{
+ unsigned long rec_pos, cons_pos;
+ struct bpf_ringbuf_hdr *hdr;
+ struct bpf_ringbuf *rb;
+ u32 new_len;
+
+ hdr = sample - BPF_RINGBUF_HDR_SZ;
+ rb = bpf_ringbuf_restore_from_rec(hdr);
+ new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
+ if (discard)
+ new_len |= BPF_RINGBUF_DISCARD_BIT;
+
+ /* update record header with correct final size prefix */
+ xchg(&hdr->len, new_len);
+
+ /* if consumer caught up and is waiting for our record, notify about
+ * new data availability
+ */
+ rec_pos = (void *)hdr - (void *)rb->data;
+ cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
+
+ if (flags & BPF_RB_FORCE_WAKEUP)
+ irq_work_queue(&rb->work);
+ else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
+ irq_work_queue(&rb->work);
+}
+
+BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
+{
+ bpf_ringbuf_commit(sample, flags, false /* discard */);
+ return 0;
+}
+
+const struct bpf_func_proto bpf_ringbuf_submit_proto = {
+ .func = bpf_ringbuf_submit,
+ .ret_type = RET_VOID,
+ .arg1_type = ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
+ .arg2_type = ARG_ANYTHING,
+};
+
+BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
+{
+ bpf_ringbuf_commit(sample, flags, true /* discard */);
+ return 0;
+}
+
+const struct bpf_func_proto bpf_ringbuf_discard_proto = {
+ .func = bpf_ringbuf_discard,
+ .ret_type = RET_VOID,
+ .arg1_type = ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
+ .arg2_type = ARG_ANYTHING,
+};
+
+BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
+ u64, flags)
+{
+ struct bpf_ringbuf_map *rb_map;
+ void *rec;
+
+ if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
+ return -EINVAL;
+
+ rb_map = container_of(map, struct bpf_ringbuf_map, map);
+ rec = __bpf_ringbuf_reserve(rb_map->rb, size);
+ if (!rec)
+ return -EAGAIN;
+
+ memcpy(rec, data, size);
+ bpf_ringbuf_commit(rec, flags, false /* discard */);
+ return 0;
+}
+
+const struct bpf_func_proto bpf_ringbuf_output_proto = {
+ .func = bpf_ringbuf_output,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg3_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg4_type = ARG_ANYTHING,
+};
+
+BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
+{
+ struct bpf_ringbuf *rb;
+
+ rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
+
+ switch (flags) {
+ case BPF_RB_AVAIL_DATA:
+ return ringbuf_avail_data_sz(rb);
+ case BPF_RB_RING_SIZE:
+ return ringbuf_total_data_sz(rb);
+ case BPF_RB_CONS_POS:
+ return smp_load_acquire(&rb->consumer_pos);
+ case BPF_RB_PROD_POS:
+ return smp_load_acquire(&rb->producer_pos);
+ default:
+ return 0;
+ }
+}
+
+const struct bpf_func_proto bpf_ringbuf_query_proto = {
+ .func = bpf_ringbuf_query,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_ANYTHING,
+};
+
+BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
+ struct bpf_dynptr_kern *, ptr)
+{
+ struct bpf_ringbuf_map *rb_map;
+ void *sample;
+ int err;
+
+ if (unlikely(flags)) {
+ bpf_dynptr_set_null(ptr);
+ return -EINVAL;
+ }
+
+ err = bpf_dynptr_check_size(size);
+ if (err) {
+ bpf_dynptr_set_null(ptr);
+ return err;
+ }
+
+ rb_map = container_of(map, struct bpf_ringbuf_map, map);
+
+ sample = __bpf_ringbuf_reserve(rb_map->rb, size);
+ if (!sample) {
+ bpf_dynptr_set_null(ptr);
+ return -EINVAL;
+ }
+
+ bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
+
+ return 0;
+}
+
+const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
+ .func = bpf_ringbuf_reserve_dynptr,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_ANYTHING,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
+};
+
+BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
+{
+ if (!ptr->data)
+ return 0;
+
+ bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
+
+ bpf_dynptr_set_null(ptr);
+
+ return 0;
+}
+
+const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
+ .func = bpf_ringbuf_submit_dynptr,
+ .ret_type = RET_VOID,
+ .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
+ .arg2_type = ARG_ANYTHING,
+};
+
+BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
+{
+ if (!ptr->data)
+ return 0;
+
+ bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
+
+ bpf_dynptr_set_null(ptr);
+
+ return 0;
+}
+
+const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
+ .func = bpf_ringbuf_discard_dynptr,
+ .ret_type = RET_VOID,
+ .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
+ .arg2_type = ARG_ANYTHING,
+};
+
+static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
+{
+ int err;
+ u32 hdr_len, sample_len, total_len, flags, *hdr;
+ u64 cons_pos, prod_pos;
+
+ /* Synchronizes with smp_store_release() in user-space producer. */
+ prod_pos = smp_load_acquire(&rb->producer_pos);
+ if (prod_pos % 8)
+ return -EINVAL;
+
+ /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
+ cons_pos = smp_load_acquire(&rb->consumer_pos);
+ if (cons_pos >= prod_pos)
+ return -ENODATA;
+
+ hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
+ /* Synchronizes with smp_store_release() in user-space producer. */
+ hdr_len = smp_load_acquire(hdr);
+ flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
+ sample_len = hdr_len & ~flags;
+ total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
+
+ /* The sample must fit within the region advertised by the producer position. */
+ if (total_len > prod_pos - cons_pos)
+ return -EINVAL;
+
+ /* The sample must fit within the data region of the ring buffer. */
+ if (total_len > ringbuf_total_data_sz(rb))
+ return -E2BIG;
+
+ /* The sample must fit into a struct bpf_dynptr. */
+ err = bpf_dynptr_check_size(sample_len);
+ if (err)
+ return -E2BIG;
+
+ if (flags & BPF_RINGBUF_DISCARD_BIT) {
+ /* If the discard bit is set, the sample should be skipped.
+ *
+ * Update the consumer pos, and return -EAGAIN so the caller
+ * knows to skip this sample and try to read the next one.
+ */
+ smp_store_release(&rb->consumer_pos, cons_pos + total_len);
+ return -EAGAIN;
+ }
+
+ if (flags & BPF_RINGBUF_BUSY_BIT)
+ return -ENODATA;
+
+ *sample = (void *)((uintptr_t)rb->data +
+ (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
+ *size = sample_len;
+ return 0;
+}
+
+static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
+{
+ u64 consumer_pos;
+ u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
+
+ /* Using smp_load_acquire() is unnecessary here, as the busy-bit
+ * prevents another task from writing to consumer_pos after it was read
+ * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
+ */
+ consumer_pos = rb->consumer_pos;
+ /* Synchronizes with smp_load_acquire() in user-space producer. */
+ smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
+}
+
+BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
+ void *, callback_fn, void *, callback_ctx, u64, flags)
+{
+ struct bpf_ringbuf *rb;
+ long samples, discarded_samples = 0, ret = 0;
+ bpf_callback_t callback = (bpf_callback_t)callback_fn;
+ u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
+ int busy = 0;
+
+ if (unlikely(flags & ~wakeup_flags))
+ return -EINVAL;
+
+ rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
+
+ /* If another consumer is already consuming a sample, wait for them to finish. */
+ if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
+ return -EBUSY;
+
+ for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
+ int err;
+ u32 size;
+ void *sample;
+ struct bpf_dynptr_kern dynptr;
+
+ err = __bpf_user_ringbuf_peek(rb, &sample, &size);
+ if (err) {
+ if (err == -ENODATA) {
+ break;
+ } else if (err == -EAGAIN) {
+ discarded_samples++;
+ continue;
+ } else {
+ ret = err;
+ goto schedule_work_return;
+ }
+ }
+
+ bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
+ ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
+ __bpf_user_ringbuf_sample_release(rb, size, flags);
+ }
+ ret = samples - discarded_samples;
+
+schedule_work_return:
+ /* Prevent the clearing of the busy-bit from being reordered before the
+ * storing of any rb consumer or producer positions.
+ */
+ smp_mb__before_atomic();
+ atomic_set(&rb->busy, 0);
+
+ if (flags & BPF_RB_FORCE_WAKEUP)
+ irq_work_queue(&rb->work);
+ else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
+ irq_work_queue(&rb->work);
+ return ret;
+}
+
+const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
+ .func = bpf_user_ringbuf_drain,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_CONST_MAP_PTR,
+ .arg2_type = ARG_PTR_TO_FUNC,
+ .arg3_type = ARG_PTR_TO_STACK_OR_NULL,
+ .arg4_type = ARG_ANYTHING,
+};
diff --git a/kernel/bpf/stackmap.c b/kernel/bpf/stackmap.c
new file mode 100644
index 000000000..f86db3cf7
--- /dev/null
+++ b/kernel/bpf/stackmap.c
@@ -0,0 +1,677 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2016 Facebook
+ */
+#include <linux/bpf.h>
+#include <linux/jhash.h>
+#include <linux/filter.h>
+#include <linux/kernel.h>
+#include <linux/stacktrace.h>
+#include <linux/perf_event.h>
+#include <linux/btf_ids.h>
+#include <linux/buildid.h>
+#include "percpu_freelist.h"
+#include "mmap_unlock_work.h"
+
+#define STACK_CREATE_FLAG_MASK \
+ (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY | \
+ BPF_F_STACK_BUILD_ID)
+
+struct stack_map_bucket {
+ struct pcpu_freelist_node fnode;
+ u32 hash;
+ u32 nr;
+ u64 data[];
+};
+
+struct bpf_stack_map {
+ struct bpf_map map;
+ void *elems;
+ struct pcpu_freelist freelist;
+ u32 n_buckets;
+ struct stack_map_bucket *buckets[];
+};
+
+static inline bool stack_map_use_build_id(struct bpf_map *map)
+{
+ return (map->map_flags & BPF_F_STACK_BUILD_ID);
+}
+
+static inline int stack_map_data_size(struct bpf_map *map)
+{
+ return stack_map_use_build_id(map) ?
+ sizeof(struct bpf_stack_build_id) : sizeof(u64);
+}
+
+static int prealloc_elems_and_freelist(struct bpf_stack_map *smap)
+{
+ u64 elem_size = sizeof(struct stack_map_bucket) +
+ (u64)smap->map.value_size;
+ int err;
+
+ smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries,
+ smap->map.numa_node);
+ if (!smap->elems)
+ return -ENOMEM;
+
+ err = pcpu_freelist_init(&smap->freelist);
+ if (err)
+ goto free_elems;
+
+ pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size,
+ smap->map.max_entries);
+ return 0;
+
+free_elems:
+ bpf_map_area_free(smap->elems);
+ return err;
+}
+
+/* Called from syscall */
+static struct bpf_map *stack_map_alloc(union bpf_attr *attr)
+{
+ u32 value_size = attr->value_size;
+ struct bpf_stack_map *smap;
+ u64 cost, n_buckets;
+ int err;
+
+ if (!bpf_capable())
+ return ERR_PTR(-EPERM);
+
+ if (attr->map_flags & ~STACK_CREATE_FLAG_MASK)
+ return ERR_PTR(-EINVAL);
+
+ /* check sanity of attributes */
+ if (attr->max_entries == 0 || attr->key_size != 4 ||
+ value_size < 8 || value_size % 8)
+ return ERR_PTR(-EINVAL);
+
+ BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64));
+ if (attr->map_flags & BPF_F_STACK_BUILD_ID) {
+ if (value_size % sizeof(struct bpf_stack_build_id) ||
+ value_size / sizeof(struct bpf_stack_build_id)
+ > sysctl_perf_event_max_stack)
+ return ERR_PTR(-EINVAL);
+ } else if (value_size / 8 > sysctl_perf_event_max_stack)
+ return ERR_PTR(-EINVAL);
+
+ /* hash table size must be power of 2 */
+ n_buckets = roundup_pow_of_two(attr->max_entries);
+ if (!n_buckets)
+ return ERR_PTR(-E2BIG);
+
+ cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap);
+ smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr));
+ if (!smap)
+ return ERR_PTR(-ENOMEM);
+
+ bpf_map_init_from_attr(&smap->map, attr);
+ smap->n_buckets = n_buckets;
+
+ err = get_callchain_buffers(sysctl_perf_event_max_stack);
+ if (err)
+ goto free_smap;
+
+ err = prealloc_elems_and_freelist(smap);
+ if (err)
+ goto put_buffers;
+
+ return &smap->map;
+
+put_buffers:
+ put_callchain_buffers();
+free_smap:
+ bpf_map_area_free(smap);
+ return ERR_PTR(err);
+}
+
+static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
+ u64 *ips, u32 trace_nr, bool user)
+{
+ int i;
+ struct mmap_unlock_irq_work *work = NULL;
+ bool irq_work_busy = bpf_mmap_unlock_get_irq_work(&work);
+ struct vm_area_struct *vma, *prev_vma = NULL;
+ const char *prev_build_id;
+
+ /* If the irq_work is in use, fall back to report ips. Same
+ * fallback is used for kernel stack (!user) on a stackmap with
+ * build_id.
+ */
+ if (!user || !current || !current->mm || irq_work_busy ||
+ !mmap_read_trylock(current->mm)) {
+ /* cannot access current->mm, fall back to ips */
+ for (i = 0; i < trace_nr; i++) {
+ id_offs[i].status = BPF_STACK_BUILD_ID_IP;
+ id_offs[i].ip = ips[i];
+ memset(id_offs[i].build_id, 0, BUILD_ID_SIZE_MAX);
+ }
+ return;
+ }
+
+ for (i = 0; i < trace_nr; i++) {
+ if (range_in_vma(prev_vma, ips[i], ips[i])) {
+ vma = prev_vma;
+ memcpy(id_offs[i].build_id, prev_build_id,
+ BUILD_ID_SIZE_MAX);
+ goto build_id_valid;
+ }
+ vma = find_vma(current->mm, ips[i]);
+ if (!vma || build_id_parse(vma, id_offs[i].build_id, NULL)) {
+ /* per entry fall back to ips */
+ id_offs[i].status = BPF_STACK_BUILD_ID_IP;
+ id_offs[i].ip = ips[i];
+ memset(id_offs[i].build_id, 0, BUILD_ID_SIZE_MAX);
+ continue;
+ }
+build_id_valid:
+ id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ips[i]
+ - vma->vm_start;
+ id_offs[i].status = BPF_STACK_BUILD_ID_VALID;
+ prev_vma = vma;
+ prev_build_id = id_offs[i].build_id;
+ }
+ bpf_mmap_unlock_mm(work, current->mm);
+}
+
+static struct perf_callchain_entry *
+get_callchain_entry_for_task(struct task_struct *task, u32 max_depth)
+{
+#ifdef CONFIG_STACKTRACE
+ struct perf_callchain_entry *entry;
+ int rctx;
+
+ entry = get_callchain_entry(&rctx);
+
+ if (!entry)
+ return NULL;
+
+ entry->nr = stack_trace_save_tsk(task, (unsigned long *)entry->ip,
+ max_depth, 0);
+
+ /* stack_trace_save_tsk() works on unsigned long array, while
+ * perf_callchain_entry uses u64 array. For 32-bit systems, it is
+ * necessary to fix this mismatch.
+ */
+ if (__BITS_PER_LONG != 64) {
+ unsigned long *from = (unsigned long *) entry->ip;
+ u64 *to = entry->ip;
+ int i;
+
+ /* copy data from the end to avoid using extra buffer */
+ for (i = entry->nr - 1; i >= 0; i--)
+ to[i] = (u64)(from[i]);
+ }
+
+ put_callchain_entry(rctx);
+
+ return entry;
+#else /* CONFIG_STACKTRACE */
+ return NULL;
+#endif
+}
+
+static long __bpf_get_stackid(struct bpf_map *map,
+ struct perf_callchain_entry *trace, u64 flags)
+{
+ struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
+ struct stack_map_bucket *bucket, *new_bucket, *old_bucket;
+ u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
+ u32 hash, id, trace_nr, trace_len;
+ bool user = flags & BPF_F_USER_STACK;
+ u64 *ips;
+ bool hash_matches;
+
+ if (trace->nr <= skip)
+ /* skipping more than usable stack trace */
+ return -EFAULT;
+
+ trace_nr = trace->nr - skip;
+ trace_len = trace_nr * sizeof(u64);
+ ips = trace->ip + skip;
+ hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0);
+ id = hash & (smap->n_buckets - 1);
+ bucket = READ_ONCE(smap->buckets[id]);
+
+ hash_matches = bucket && bucket->hash == hash;
+ /* fast cmp */
+ if (hash_matches && flags & BPF_F_FAST_STACK_CMP)
+ return id;
+
+ if (stack_map_use_build_id(map)) {
+ /* for build_id+offset, pop a bucket before slow cmp */
+ new_bucket = (struct stack_map_bucket *)
+ pcpu_freelist_pop(&smap->freelist);
+ if (unlikely(!new_bucket))
+ return -ENOMEM;
+ new_bucket->nr = trace_nr;
+ stack_map_get_build_id_offset(
+ (struct bpf_stack_build_id *)new_bucket->data,
+ ips, trace_nr, user);
+ trace_len = trace_nr * sizeof(struct bpf_stack_build_id);
+ if (hash_matches && bucket->nr == trace_nr &&
+ memcmp(bucket->data, new_bucket->data, trace_len) == 0) {
+ pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
+ return id;
+ }
+ if (bucket && !(flags & BPF_F_REUSE_STACKID)) {
+ pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
+ return -EEXIST;
+ }
+ } else {
+ if (hash_matches && bucket->nr == trace_nr &&
+ memcmp(bucket->data, ips, trace_len) == 0)
+ return id;
+ if (bucket && !(flags & BPF_F_REUSE_STACKID))
+ return -EEXIST;
+
+ new_bucket = (struct stack_map_bucket *)
+ pcpu_freelist_pop(&smap->freelist);
+ if (unlikely(!new_bucket))
+ return -ENOMEM;
+ memcpy(new_bucket->data, ips, trace_len);
+ }
+
+ new_bucket->hash = hash;
+ new_bucket->nr = trace_nr;
+
+ old_bucket = xchg(&smap->buckets[id], new_bucket);
+ if (old_bucket)
+ pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
+ return id;
+}
+
+BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map,
+ u64, flags)
+{
+ u32 max_depth = map->value_size / stack_map_data_size(map);
+ u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
+ bool user = flags & BPF_F_USER_STACK;
+ struct perf_callchain_entry *trace;
+ bool kernel = !user;
+
+ if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
+ BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
+ return -EINVAL;
+
+ max_depth += skip;
+ if (max_depth > sysctl_perf_event_max_stack)
+ max_depth = sysctl_perf_event_max_stack;
+
+ trace = get_perf_callchain(regs, 0, kernel, user, max_depth,
+ false, false);
+
+ if (unlikely(!trace))
+ /* couldn't fetch the stack trace */
+ return -EFAULT;
+
+ return __bpf_get_stackid(map, trace, flags);
+}
+
+const struct bpf_func_proto bpf_get_stackid_proto = {
+ .func = bpf_get_stackid,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_CONST_MAP_PTR,
+ .arg3_type = ARG_ANYTHING,
+};
+
+static __u64 count_kernel_ip(struct perf_callchain_entry *trace)
+{
+ __u64 nr_kernel = 0;
+
+ while (nr_kernel < trace->nr) {
+ if (trace->ip[nr_kernel] == PERF_CONTEXT_USER)
+ break;
+ nr_kernel++;
+ }
+ return nr_kernel;
+}
+
+BPF_CALL_3(bpf_get_stackid_pe, struct bpf_perf_event_data_kern *, ctx,
+ struct bpf_map *, map, u64, flags)
+{
+ struct perf_event *event = ctx->event;
+ struct perf_callchain_entry *trace;
+ bool kernel, user;
+ __u64 nr_kernel;
+ int ret;
+
+ /* perf_sample_data doesn't have callchain, use bpf_get_stackid */
+ if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
+ return bpf_get_stackid((unsigned long)(ctx->regs),
+ (unsigned long) map, flags, 0, 0);
+
+ if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
+ BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
+ return -EINVAL;
+
+ user = flags & BPF_F_USER_STACK;
+ kernel = !user;
+
+ trace = ctx->data->callchain;
+ if (unlikely(!trace))
+ return -EFAULT;
+
+ nr_kernel = count_kernel_ip(trace);
+
+ if (kernel) {
+ __u64 nr = trace->nr;
+
+ trace->nr = nr_kernel;
+ ret = __bpf_get_stackid(map, trace, flags);
+
+ /* restore nr */
+ trace->nr = nr;
+ } else { /* user */
+ u64 skip = flags & BPF_F_SKIP_FIELD_MASK;
+
+ skip += nr_kernel;
+ if (skip > BPF_F_SKIP_FIELD_MASK)
+ return -EFAULT;
+
+ flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip;
+ ret = __bpf_get_stackid(map, trace, flags);
+ }
+ return ret;
+}
+
+const struct bpf_func_proto bpf_get_stackid_proto_pe = {
+ .func = bpf_get_stackid_pe,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_CONST_MAP_PTR,
+ .arg3_type = ARG_ANYTHING,
+};
+
+static long __bpf_get_stack(struct pt_regs *regs, struct task_struct *task,
+ struct perf_callchain_entry *trace_in,
+ void *buf, u32 size, u64 flags)
+{
+ u32 trace_nr, copy_len, elem_size, num_elem, max_depth;
+ bool user_build_id = flags & BPF_F_USER_BUILD_ID;
+ bool crosstask = task && task != current;
+ u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
+ bool user = flags & BPF_F_USER_STACK;
+ struct perf_callchain_entry *trace;
+ bool kernel = !user;
+ int err = -EINVAL;
+ u64 *ips;
+
+ if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
+ BPF_F_USER_BUILD_ID)))
+ goto clear;
+ if (kernel && user_build_id)
+ goto clear;
+
+ elem_size = (user && user_build_id) ? sizeof(struct bpf_stack_build_id)
+ : sizeof(u64);
+ if (unlikely(size % elem_size))
+ goto clear;
+
+ /* cannot get valid user stack for task without user_mode regs */
+ if (task && user && !user_mode(regs))
+ goto err_fault;
+
+ /* get_perf_callchain does not support crosstask user stack walking
+ * but returns an empty stack instead of NULL.
+ */
+ if (crosstask && user) {
+ err = -EOPNOTSUPP;
+ goto clear;
+ }
+
+ num_elem = size / elem_size;
+ max_depth = num_elem + skip;
+ if (sysctl_perf_event_max_stack < max_depth)
+ max_depth = sysctl_perf_event_max_stack;
+
+ if (trace_in)
+ trace = trace_in;
+ else if (kernel && task)
+ trace = get_callchain_entry_for_task(task, max_depth);
+ else
+ trace = get_perf_callchain(regs, 0, kernel, user, max_depth,
+ crosstask, false);
+ if (unlikely(!trace))
+ goto err_fault;
+
+ if (trace->nr < skip)
+ goto err_fault;
+
+ trace_nr = trace->nr - skip;
+ trace_nr = (trace_nr <= num_elem) ? trace_nr : num_elem;
+ copy_len = trace_nr * elem_size;
+
+ ips = trace->ip + skip;
+ if (user && user_build_id)
+ stack_map_get_build_id_offset(buf, ips, trace_nr, user);
+ else
+ memcpy(buf, ips, copy_len);
+
+ if (size > copy_len)
+ memset(buf + copy_len, 0, size - copy_len);
+ return copy_len;
+
+err_fault:
+ err = -EFAULT;
+clear:
+ memset(buf, 0, size);
+ return err;
+}
+
+BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size,
+ u64, flags)
+{
+ return __bpf_get_stack(regs, NULL, NULL, buf, size, flags);
+}
+
+const struct bpf_func_proto bpf_get_stack_proto = {
+ .func = bpf_get_stack,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg3_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg4_type = ARG_ANYTHING,
+};
+
+BPF_CALL_4(bpf_get_task_stack, struct task_struct *, task, void *, buf,
+ u32, size, u64, flags)
+{
+ struct pt_regs *regs;
+ long res = -EINVAL;
+
+ if (!try_get_task_stack(task))
+ return -EFAULT;
+
+ regs = task_pt_regs(task);
+ if (regs)
+ res = __bpf_get_stack(regs, task, NULL, buf, size, flags);
+ put_task_stack(task);
+
+ return res;
+}
+
+const struct bpf_func_proto bpf_get_task_stack_proto = {
+ .func = bpf_get_task_stack,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_BTF_ID,
+ .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
+ .arg2_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg3_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg4_type = ARG_ANYTHING,
+};
+
+BPF_CALL_4(bpf_get_stack_pe, struct bpf_perf_event_data_kern *, ctx,
+ void *, buf, u32, size, u64, flags)
+{
+ struct pt_regs *regs = (struct pt_regs *)(ctx->regs);
+ struct perf_event *event = ctx->event;
+ struct perf_callchain_entry *trace;
+ bool kernel, user;
+ int err = -EINVAL;
+ __u64 nr_kernel;
+
+ if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
+ return __bpf_get_stack(regs, NULL, NULL, buf, size, flags);
+
+ if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
+ BPF_F_USER_BUILD_ID)))
+ goto clear;
+
+ user = flags & BPF_F_USER_STACK;
+ kernel = !user;
+
+ err = -EFAULT;
+ trace = ctx->data->callchain;
+ if (unlikely(!trace))
+ goto clear;
+
+ nr_kernel = count_kernel_ip(trace);
+
+ if (kernel) {
+ __u64 nr = trace->nr;
+
+ trace->nr = nr_kernel;
+ err = __bpf_get_stack(regs, NULL, trace, buf, size, flags);
+
+ /* restore nr */
+ trace->nr = nr;
+ } else { /* user */
+ u64 skip = flags & BPF_F_SKIP_FIELD_MASK;
+
+ skip += nr_kernel;
+ if (skip > BPF_F_SKIP_FIELD_MASK)
+ goto clear;
+
+ flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip;
+ err = __bpf_get_stack(regs, NULL, trace, buf, size, flags);
+ }
+ return err;
+
+clear:
+ memset(buf, 0, size);
+ return err;
+
+}
+
+const struct bpf_func_proto bpf_get_stack_proto_pe = {
+ .func = bpf_get_stack_pe,
+ .gpl_only = true,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_CTX,
+ .arg2_type = ARG_PTR_TO_UNINIT_MEM,
+ .arg3_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg4_type = ARG_ANYTHING,
+};
+
+/* Called from eBPF program */
+static void *stack_map_lookup_elem(struct bpf_map *map, void *key)
+{
+ return ERR_PTR(-EOPNOTSUPP);
+}
+
+/* Called from syscall */
+int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
+{
+ struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
+ struct stack_map_bucket *bucket, *old_bucket;
+ u32 id = *(u32 *)key, trace_len;
+
+ if (unlikely(id >= smap->n_buckets))
+ return -ENOENT;
+
+ bucket = xchg(&smap->buckets[id], NULL);
+ if (!bucket)
+ return -ENOENT;
+
+ trace_len = bucket->nr * stack_map_data_size(map);
+ memcpy(value, bucket->data, trace_len);
+ memset(value + trace_len, 0, map->value_size - trace_len);
+
+ old_bucket = xchg(&smap->buckets[id], bucket);
+ if (old_bucket)
+ pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
+ return 0;
+}
+
+static int stack_map_get_next_key(struct bpf_map *map, void *key,
+ void *next_key)
+{
+ struct bpf_stack_map *smap = container_of(map,
+ struct bpf_stack_map, map);
+ u32 id;
+
+ WARN_ON_ONCE(!rcu_read_lock_held());
+
+ if (!key) {
+ id = 0;
+ } else {
+ id = *(u32 *)key;
+ if (id >= smap->n_buckets || !smap->buckets[id])
+ id = 0;
+ else
+ id++;
+ }
+
+ while (id < smap->n_buckets && !smap->buckets[id])
+ id++;
+
+ if (id >= smap->n_buckets)
+ return -ENOENT;
+
+ *(u32 *)next_key = id;
+ return 0;
+}
+
+static int stack_map_update_elem(struct bpf_map *map, void *key, void *value,
+ u64 map_flags)
+{
+ return -EINVAL;
+}
+
+/* Called from syscall or from eBPF program */
+static int stack_map_delete_elem(struct bpf_map *map, void *key)
+{
+ struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
+ struct stack_map_bucket *old_bucket;
+ u32 id = *(u32 *)key;
+
+ if (unlikely(id >= smap->n_buckets))
+ return -E2BIG;
+
+ old_bucket = xchg(&smap->buckets[id], NULL);
+ if (old_bucket) {
+ pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
+ return 0;
+ } else {
+ return -ENOENT;
+ }
+}
+
+/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
+static void stack_map_free(struct bpf_map *map)
+{
+ struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
+
+ bpf_map_area_free(smap->elems);
+ pcpu_freelist_destroy(&smap->freelist);
+ bpf_map_area_free(smap);
+ put_callchain_buffers();
+}
+
+BTF_ID_LIST_SINGLE(stack_trace_map_btf_ids, struct, bpf_stack_map)
+const struct bpf_map_ops stack_trace_map_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = stack_map_alloc,
+ .map_free = stack_map_free,
+ .map_get_next_key = stack_map_get_next_key,
+ .map_lookup_elem = stack_map_lookup_elem,
+ .map_update_elem = stack_map_update_elem,
+ .map_delete_elem = stack_map_delete_elem,
+ .map_check_btf = map_check_no_btf,
+ .map_btf_id = &stack_trace_map_btf_ids[0],
+};
diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
new file mode 100644
index 000000000..8d0c38a8d
--- /dev/null
+++ b/kernel/bpf/syscall.c
@@ -0,0 +1,5356 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ */
+#include <linux/bpf.h>
+#include <linux/bpf-cgroup.h>
+#include <linux/bpf_trace.h>
+#include <linux/bpf_lirc.h>
+#include <linux/bpf_verifier.h>
+#include <linux/bsearch.h>
+#include <linux/btf.h>
+#include <linux/syscalls.h>
+#include <linux/slab.h>
+#include <linux/sched/signal.h>
+#include <linux/vmalloc.h>
+#include <linux/mmzone.h>
+#include <linux/anon_inodes.h>
+#include <linux/fdtable.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/license.h>
+#include <linux/filter.h>
+#include <linux/kernel.h>
+#include <linux/idr.h>
+#include <linux/cred.h>
+#include <linux/timekeeping.h>
+#include <linux/ctype.h>
+#include <linux/nospec.h>
+#include <linux/audit.h>
+#include <uapi/linux/btf.h>
+#include <linux/pgtable.h>
+#include <linux/bpf_lsm.h>
+#include <linux/poll.h>
+#include <linux/sort.h>
+#include <linux/bpf-netns.h>
+#include <linux/rcupdate_trace.h>
+#include <linux/memcontrol.h>
+#include <linux/trace_events.h>
+
+#define IS_FD_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY || \
+ (map)->map_type == BPF_MAP_TYPE_CGROUP_ARRAY || \
+ (map)->map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS)
+#define IS_FD_PROG_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PROG_ARRAY)
+#define IS_FD_HASH(map) ((map)->map_type == BPF_MAP_TYPE_HASH_OF_MAPS)
+#define IS_FD_MAP(map) (IS_FD_ARRAY(map) || IS_FD_PROG_ARRAY(map) || \
+ IS_FD_HASH(map))
+
+#define BPF_OBJ_FLAG_MASK (BPF_F_RDONLY | BPF_F_WRONLY)
+
+DEFINE_PER_CPU(int, bpf_prog_active);
+static DEFINE_IDR(prog_idr);
+static DEFINE_SPINLOCK(prog_idr_lock);
+static DEFINE_IDR(map_idr);
+static DEFINE_SPINLOCK(map_idr_lock);
+static DEFINE_IDR(link_idr);
+static DEFINE_SPINLOCK(link_idr_lock);
+
+int sysctl_unprivileged_bpf_disabled __read_mostly =
+ IS_BUILTIN(CONFIG_BPF_UNPRIV_DEFAULT_OFF) ? 2 : 0;
+
+static const struct bpf_map_ops * const bpf_map_types[] = {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
+#define BPF_MAP_TYPE(_id, _ops) \
+ [_id] = &_ops,
+#define BPF_LINK_TYPE(_id, _name)
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+#undef BPF_MAP_TYPE
+#undef BPF_LINK_TYPE
+};
+
+/*
+ * If we're handed a bigger struct than we know of, ensure all the unknown bits
+ * are 0 - i.e. new user-space does not rely on any kernel feature extensions
+ * we don't know about yet.
+ *
+ * There is a ToCToU between this function call and the following
+ * copy_from_user() call. However, this is not a concern since this function is
+ * meant to be a future-proofing of bits.
+ */
+int bpf_check_uarg_tail_zero(bpfptr_t uaddr,
+ size_t expected_size,
+ size_t actual_size)
+{
+ int res;
+
+ if (unlikely(actual_size > PAGE_SIZE)) /* silly large */
+ return -E2BIG;
+
+ if (actual_size <= expected_size)
+ return 0;
+
+ if (uaddr.is_kernel)
+ res = memchr_inv(uaddr.kernel + expected_size, 0,
+ actual_size - expected_size) == NULL;
+ else
+ res = check_zeroed_user(uaddr.user + expected_size,
+ actual_size - expected_size);
+ if (res < 0)
+ return res;
+ return res ? 0 : -E2BIG;
+}
+
+const struct bpf_map_ops bpf_map_offload_ops = {
+ .map_meta_equal = bpf_map_meta_equal,
+ .map_alloc = bpf_map_offload_map_alloc,
+ .map_free = bpf_map_offload_map_free,
+ .map_check_btf = map_check_no_btf,
+};
+
+static struct bpf_map *find_and_alloc_map(union bpf_attr *attr)
+{
+ const struct bpf_map_ops *ops;
+ u32 type = attr->map_type;
+ struct bpf_map *map;
+ int err;
+
+ if (type >= ARRAY_SIZE(bpf_map_types))
+ return ERR_PTR(-EINVAL);
+ type = array_index_nospec(type, ARRAY_SIZE(bpf_map_types));
+ ops = bpf_map_types[type];
+ if (!ops)
+ return ERR_PTR(-EINVAL);
+
+ if (ops->map_alloc_check) {
+ err = ops->map_alloc_check(attr);
+ if (err)
+ return ERR_PTR(err);
+ }
+ if (attr->map_ifindex)
+ ops = &bpf_map_offload_ops;
+ map = ops->map_alloc(attr);
+ if (IS_ERR(map))
+ return map;
+ map->ops = ops;
+ map->map_type = type;
+ return map;
+}
+
+static void bpf_map_write_active_inc(struct bpf_map *map)
+{
+ atomic64_inc(&map->writecnt);
+}
+
+static void bpf_map_write_active_dec(struct bpf_map *map)
+{
+ atomic64_dec(&map->writecnt);
+}
+
+bool bpf_map_write_active(const struct bpf_map *map)
+{
+ return atomic64_read(&map->writecnt) != 0;
+}
+
+static u32 bpf_map_value_size(const struct bpf_map *map)
+{
+ if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY ||
+ map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
+ return round_up(map->value_size, 8) * num_possible_cpus();
+ else if (IS_FD_MAP(map))
+ return sizeof(u32);
+ else
+ return map->value_size;
+}
+
+static void maybe_wait_bpf_programs(struct bpf_map *map)
+{
+ /* Wait for any running BPF programs to complete so that
+ * userspace, when we return to it, knows that all programs
+ * that could be running use the new map value.
+ */
+ if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS ||
+ map->map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS)
+ synchronize_rcu();
+}
+
+static int bpf_map_update_value(struct bpf_map *map, struct fd f, void *key,
+ void *value, __u64 flags)
+{
+ int err;
+
+ /* Need to create a kthread, thus must support schedule */
+ if (bpf_map_is_dev_bound(map)) {
+ return bpf_map_offload_update_elem(map, key, value, flags);
+ } else if (map->map_type == BPF_MAP_TYPE_CPUMAP ||
+ map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
+ return map->ops->map_update_elem(map, key, value, flags);
+ } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH ||
+ map->map_type == BPF_MAP_TYPE_SOCKMAP) {
+ return sock_map_update_elem_sys(map, key, value, flags);
+ } else if (IS_FD_PROG_ARRAY(map)) {
+ return bpf_fd_array_map_update_elem(map, f.file, key, value,
+ flags);
+ }
+
+ bpf_disable_instrumentation();
+ if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
+ err = bpf_percpu_hash_update(map, key, value, flags);
+ } else if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
+ err = bpf_percpu_array_update(map, key, value, flags);
+ } else if (map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) {
+ err = bpf_percpu_cgroup_storage_update(map, key, value,
+ flags);
+ } else if (IS_FD_ARRAY(map)) {
+ rcu_read_lock();
+ err = bpf_fd_array_map_update_elem(map, f.file, key, value,
+ flags);
+ rcu_read_unlock();
+ } else if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
+ rcu_read_lock();
+ err = bpf_fd_htab_map_update_elem(map, f.file, key, value,
+ flags);
+ rcu_read_unlock();
+ } else if (map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) {
+ /* rcu_read_lock() is not needed */
+ err = bpf_fd_reuseport_array_update_elem(map, key, value,
+ flags);
+ } else if (map->map_type == BPF_MAP_TYPE_QUEUE ||
+ map->map_type == BPF_MAP_TYPE_STACK ||
+ map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) {
+ err = map->ops->map_push_elem(map, value, flags);
+ } else {
+ rcu_read_lock();
+ err = map->ops->map_update_elem(map, key, value, flags);
+ rcu_read_unlock();
+ }
+ bpf_enable_instrumentation();
+ maybe_wait_bpf_programs(map);
+
+ return err;
+}
+
+static int bpf_map_copy_value(struct bpf_map *map, void *key, void *value,
+ __u64 flags)
+{
+ void *ptr;
+ int err;
+
+ if (bpf_map_is_dev_bound(map))
+ return bpf_map_offload_lookup_elem(map, key, value);
+
+ bpf_disable_instrumentation();
+ if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
+ err = bpf_percpu_hash_copy(map, key, value);
+ } else if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
+ err = bpf_percpu_array_copy(map, key, value);
+ } else if (map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) {
+ err = bpf_percpu_cgroup_storage_copy(map, key, value);
+ } else if (map->map_type == BPF_MAP_TYPE_STACK_TRACE) {
+ err = bpf_stackmap_copy(map, key, value);
+ } else if (IS_FD_ARRAY(map) || IS_FD_PROG_ARRAY(map)) {
+ err = bpf_fd_array_map_lookup_elem(map, key, value);
+ } else if (IS_FD_HASH(map)) {
+ err = bpf_fd_htab_map_lookup_elem(map, key, value);
+ } else if (map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) {
+ err = bpf_fd_reuseport_array_lookup_elem(map, key, value);
+ } else if (map->map_type == BPF_MAP_TYPE_QUEUE ||
+ map->map_type == BPF_MAP_TYPE_STACK ||
+ map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) {
+ err = map->ops->map_peek_elem(map, value);
+ } else if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
+ /* struct_ops map requires directly updating "value" */
+ err = bpf_struct_ops_map_sys_lookup_elem(map, key, value);
+ } else {
+ rcu_read_lock();
+ if (map->ops->map_lookup_elem_sys_only)
+ ptr = map->ops->map_lookup_elem_sys_only(map, key);
+ else
+ ptr = map->ops->map_lookup_elem(map, key);
+ if (IS_ERR(ptr)) {
+ err = PTR_ERR(ptr);
+ } else if (!ptr) {
+ err = -ENOENT;
+ } else {
+ err = 0;
+ if (flags & BPF_F_LOCK)
+ /* lock 'ptr' and copy everything but lock */
+ copy_map_value_locked(map, value, ptr, true);
+ else
+ copy_map_value(map, value, ptr);
+ /* mask lock and timer, since value wasn't zero inited */
+ check_and_init_map_value(map, value);
+ }
+ rcu_read_unlock();
+ }
+
+ bpf_enable_instrumentation();
+ maybe_wait_bpf_programs(map);
+
+ return err;
+}
+
+/* Please, do not use this function outside from the map creation path
+ * (e.g. in map update path) without taking care of setting the active
+ * memory cgroup (see at bpf_map_kmalloc_node() for example).
+ */
+static void *__bpf_map_area_alloc(u64 size, int numa_node, bool mmapable)
+{
+ /* We really just want to fail instead of triggering OOM killer
+ * under memory pressure, therefore we set __GFP_NORETRY to kmalloc,
+ * which is used for lower order allocation requests.
+ *
+ * It has been observed that higher order allocation requests done by
+ * vmalloc with __GFP_NORETRY being set might fail due to not trying
+ * to reclaim memory from the page cache, thus we set
+ * __GFP_RETRY_MAYFAIL to avoid such situations.
+ */
+
+ const gfp_t gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_ACCOUNT;
+ unsigned int flags = 0;
+ unsigned long align = 1;
+ void *area;
+
+ if (size >= SIZE_MAX)
+ return NULL;
+
+ /* kmalloc()'ed memory can't be mmap()'ed */
+ if (mmapable) {
+ BUG_ON(!PAGE_ALIGNED(size));
+ align = SHMLBA;
+ flags = VM_USERMAP;
+ } else if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
+ area = kmalloc_node(size, gfp | GFP_USER | __GFP_NORETRY,
+ numa_node);
+ if (area != NULL)
+ return area;
+ }
+
+ return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
+ gfp | GFP_KERNEL | __GFP_RETRY_MAYFAIL, PAGE_KERNEL,
+ flags, numa_node, __builtin_return_address(0));
+}
+
+void *bpf_map_area_alloc(u64 size, int numa_node)
+{
+ return __bpf_map_area_alloc(size, numa_node, false);
+}
+
+void *bpf_map_area_mmapable_alloc(u64 size, int numa_node)
+{
+ return __bpf_map_area_alloc(size, numa_node, true);
+}
+
+void bpf_map_area_free(void *area)
+{
+ kvfree(area);
+}
+
+static u32 bpf_map_flags_retain_permanent(u32 flags)
+{
+ /* Some map creation flags are not tied to the map object but
+ * rather to the map fd instead, so they have no meaning upon
+ * map object inspection since multiple file descriptors with
+ * different (access) properties can exist here. Thus, given
+ * this has zero meaning for the map itself, lets clear these
+ * from here.
+ */
+ return flags & ~(BPF_F_RDONLY | BPF_F_WRONLY);
+}
+
+void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr)
+{
+ map->map_type = attr->map_type;
+ map->key_size = attr->key_size;
+ map->value_size = attr->value_size;
+ map->max_entries = attr->max_entries;
+ map->map_flags = bpf_map_flags_retain_permanent(attr->map_flags);
+ map->numa_node = bpf_map_attr_numa_node(attr);
+ map->map_extra = attr->map_extra;
+}
+
+static int bpf_map_alloc_id(struct bpf_map *map)
+{
+ int id;
+
+ idr_preload(GFP_KERNEL);
+ spin_lock_bh(&map_idr_lock);
+ id = idr_alloc_cyclic(&map_idr, map, 1, INT_MAX, GFP_ATOMIC);
+ if (id > 0)
+ map->id = id;
+ spin_unlock_bh(&map_idr_lock);
+ idr_preload_end();
+
+ if (WARN_ON_ONCE(!id))
+ return -ENOSPC;
+
+ return id > 0 ? 0 : id;
+}
+
+void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock)
+{
+ unsigned long flags;
+
+ /* Offloaded maps are removed from the IDR store when their device
+ * disappears - even if someone holds an fd to them they are unusable,
+ * the memory is gone, all ops will fail; they are simply waiting for
+ * refcnt to drop to be freed.
+ */
+ if (!map->id)
+ return;
+
+ if (do_idr_lock)
+ spin_lock_irqsave(&map_idr_lock, flags);
+ else
+ __acquire(&map_idr_lock);
+
+ idr_remove(&map_idr, map->id);
+ map->id = 0;
+
+ if (do_idr_lock)
+ spin_unlock_irqrestore(&map_idr_lock, flags);
+ else
+ __release(&map_idr_lock);
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+static void bpf_map_save_memcg(struct bpf_map *map)
+{
+ /* Currently if a map is created by a process belonging to the root
+ * memory cgroup, get_obj_cgroup_from_current() will return NULL.
+ * So we have to check map->objcg for being NULL each time it's
+ * being used.
+ */
+ map->objcg = get_obj_cgroup_from_current();
+}
+
+static void bpf_map_release_memcg(struct bpf_map *map)
+{
+ if (map->objcg)
+ obj_cgroup_put(map->objcg);
+}
+
+static struct mem_cgroup *bpf_map_get_memcg(const struct bpf_map *map)
+{
+ if (map->objcg)
+ return get_mem_cgroup_from_objcg(map->objcg);
+
+ return root_mem_cgroup;
+}
+
+void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
+ int node)
+{
+ struct mem_cgroup *memcg, *old_memcg;
+ void *ptr;
+
+ memcg = bpf_map_get_memcg(map);
+ old_memcg = set_active_memcg(memcg);
+ ptr = kmalloc_node(size, flags | __GFP_ACCOUNT, node);
+ set_active_memcg(old_memcg);
+ mem_cgroup_put(memcg);
+
+ return ptr;
+}
+
+void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
+{
+ struct mem_cgroup *memcg, *old_memcg;
+ void *ptr;
+
+ memcg = bpf_map_get_memcg(map);
+ old_memcg = set_active_memcg(memcg);
+ ptr = kzalloc(size, flags | __GFP_ACCOUNT);
+ set_active_memcg(old_memcg);
+ mem_cgroup_put(memcg);
+
+ return ptr;
+}
+
+void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
+ size_t align, gfp_t flags)
+{
+ struct mem_cgroup *memcg, *old_memcg;
+ void __percpu *ptr;
+
+ memcg = bpf_map_get_memcg(map);
+ old_memcg = set_active_memcg(memcg);
+ ptr = __alloc_percpu_gfp(size, align, flags | __GFP_ACCOUNT);
+ set_active_memcg(old_memcg);
+ mem_cgroup_put(memcg);
+
+ return ptr;
+}
+
+#else
+static void bpf_map_save_memcg(struct bpf_map *map)
+{
+}
+
+static void bpf_map_release_memcg(struct bpf_map *map)
+{
+}
+#endif
+
+static int bpf_map_kptr_off_cmp(const void *a, const void *b)
+{
+ const struct bpf_map_value_off_desc *off_desc1 = a, *off_desc2 = b;
+
+ if (off_desc1->offset < off_desc2->offset)
+ return -1;
+ else if (off_desc1->offset > off_desc2->offset)
+ return 1;
+ return 0;
+}
+
+struct bpf_map_value_off_desc *bpf_map_kptr_off_contains(struct bpf_map *map, u32 offset)
+{
+ /* Since members are iterated in btf_find_field in increasing order,
+ * offsets appended to kptr_off_tab are in increasing order, so we can
+ * do bsearch to find exact match.
+ */
+ struct bpf_map_value_off *tab;
+
+ if (!map_value_has_kptrs(map))
+ return NULL;
+ tab = map->kptr_off_tab;
+ return bsearch(&offset, tab->off, tab->nr_off, sizeof(tab->off[0]), bpf_map_kptr_off_cmp);
+}
+
+void bpf_map_free_kptr_off_tab(struct bpf_map *map)
+{
+ struct bpf_map_value_off *tab = map->kptr_off_tab;
+ int i;
+
+ if (!map_value_has_kptrs(map))
+ return;
+ for (i = 0; i < tab->nr_off; i++) {
+ if (tab->off[i].kptr.module)
+ module_put(tab->off[i].kptr.module);
+ btf_put(tab->off[i].kptr.btf);
+ }
+ kfree(tab);
+ map->kptr_off_tab = NULL;
+}
+
+struct bpf_map_value_off *bpf_map_copy_kptr_off_tab(const struct bpf_map *map)
+{
+ struct bpf_map_value_off *tab = map->kptr_off_tab, *new_tab;
+ int size, i;
+
+ if (!map_value_has_kptrs(map))
+ return ERR_PTR(-ENOENT);
+ size = offsetof(struct bpf_map_value_off, off[tab->nr_off]);
+ new_tab = kmemdup(tab, size, GFP_KERNEL | __GFP_NOWARN);
+ if (!new_tab)
+ return ERR_PTR(-ENOMEM);
+ /* Do a deep copy of the kptr_off_tab */
+ for (i = 0; i < tab->nr_off; i++) {
+ btf_get(tab->off[i].kptr.btf);
+ if (tab->off[i].kptr.module && !try_module_get(tab->off[i].kptr.module)) {
+ while (i--) {
+ if (tab->off[i].kptr.module)
+ module_put(tab->off[i].kptr.module);
+ btf_put(tab->off[i].kptr.btf);
+ }
+ kfree(new_tab);
+ return ERR_PTR(-ENXIO);
+ }
+ }
+ return new_tab;
+}
+
+bool bpf_map_equal_kptr_off_tab(const struct bpf_map *map_a, const struct bpf_map *map_b)
+{
+ struct bpf_map_value_off *tab_a = map_a->kptr_off_tab, *tab_b = map_b->kptr_off_tab;
+ bool a_has_kptr = map_value_has_kptrs(map_a), b_has_kptr = map_value_has_kptrs(map_b);
+ int size;
+
+ if (!a_has_kptr && !b_has_kptr)
+ return true;
+ if (a_has_kptr != b_has_kptr)
+ return false;
+ if (tab_a->nr_off != tab_b->nr_off)
+ return false;
+ size = offsetof(struct bpf_map_value_off, off[tab_a->nr_off]);
+ return !memcmp(tab_a, tab_b, size);
+}
+
+/* Caller must ensure map_value_has_kptrs is true. Note that this function can
+ * be called on a map value while the map_value is visible to BPF programs, as
+ * it ensures the correct synchronization, and we already enforce the same using
+ * the bpf_kptr_xchg helper on the BPF program side for referenced kptrs.
+ */
+void bpf_map_free_kptrs(struct bpf_map *map, void *map_value)
+{
+ struct bpf_map_value_off *tab = map->kptr_off_tab;
+ unsigned long *btf_id_ptr;
+ int i;
+
+ for (i = 0; i < tab->nr_off; i++) {
+ struct bpf_map_value_off_desc *off_desc = &tab->off[i];
+ unsigned long old_ptr;
+
+ btf_id_ptr = map_value + off_desc->offset;
+ if (off_desc->type == BPF_KPTR_UNREF) {
+ u64 *p = (u64 *)btf_id_ptr;
+
+ WRITE_ONCE(*p, 0);
+ continue;
+ }
+ old_ptr = xchg(btf_id_ptr, 0);
+ off_desc->kptr.dtor((void *)old_ptr);
+ }
+}
+
+/* called from workqueue */
+static void bpf_map_free_deferred(struct work_struct *work)
+{
+ struct bpf_map *map = container_of(work, struct bpf_map, work);
+
+ security_bpf_map_free(map);
+ kfree(map->off_arr);
+ bpf_map_release_memcg(map);
+ /* implementation dependent freeing, map_free callback also does
+ * bpf_map_free_kptr_off_tab, if needed.
+ */
+ map->ops->map_free(map);
+}
+
+static void bpf_map_put_uref(struct bpf_map *map)
+{
+ if (atomic64_dec_and_test(&map->usercnt)) {
+ if (map->ops->map_release_uref)
+ map->ops->map_release_uref(map);
+ }
+}
+
+static void bpf_map_free_in_work(struct bpf_map *map)
+{
+ INIT_WORK(&map->work, bpf_map_free_deferred);
+ /* Avoid spawning kworkers, since they all might contend
+ * for the same mutex like slab_mutex.
+ */
+ queue_work(system_unbound_wq, &map->work);
+}
+
+static void bpf_map_free_rcu_gp(struct rcu_head *rcu)
+{
+ bpf_map_free_in_work(container_of(rcu, struct bpf_map, rcu));
+}
+
+static void bpf_map_free_mult_rcu_gp(struct rcu_head *rcu)
+{
+ if (rcu_trace_implies_rcu_gp())
+ bpf_map_free_rcu_gp(rcu);
+ else
+ call_rcu(rcu, bpf_map_free_rcu_gp);
+}
+
+/* decrement map refcnt and schedule it for freeing via workqueue
+ * (unrelying map implementation ops->map_free() might sleep)
+ */
+static void __bpf_map_put(struct bpf_map *map, bool do_idr_lock)
+{
+ if (atomic64_dec_and_test(&map->refcnt)) {
+ /* bpf_map_free_id() must be called first */
+ bpf_map_free_id(map, do_idr_lock);
+ btf_put(map->btf);
+
+ if (READ_ONCE(map->free_after_mult_rcu_gp))
+ call_rcu_tasks_trace(&map->rcu, bpf_map_free_mult_rcu_gp);
+ else
+ bpf_map_free_in_work(map);
+ }
+}
+
+void bpf_map_put(struct bpf_map *map)
+{
+ __bpf_map_put(map, true);
+}
+EXPORT_SYMBOL_GPL(bpf_map_put);
+
+void bpf_map_put_with_uref(struct bpf_map *map)
+{
+ bpf_map_put_uref(map);
+ bpf_map_put(map);
+}
+
+static int bpf_map_release(struct inode *inode, struct file *filp)
+{
+ struct bpf_map *map = filp->private_data;
+
+ if (map->ops->map_release)
+ map->ops->map_release(map, filp);
+
+ bpf_map_put_with_uref(map);
+ return 0;
+}
+
+static fmode_t map_get_sys_perms(struct bpf_map *map, struct fd f)
+{
+ fmode_t mode = f.file->f_mode;
+
+ /* Our file permissions may have been overridden by global
+ * map permissions facing syscall side.
+ */
+ if (READ_ONCE(map->frozen))
+ mode &= ~FMODE_CAN_WRITE;
+ return mode;
+}
+
+#ifdef CONFIG_PROC_FS
+/* Provides an approximation of the map's memory footprint.
+ * Used only to provide a backward compatibility and display
+ * a reasonable "memlock" info.
+ */
+static unsigned long bpf_map_memory_footprint(const struct bpf_map *map)
+{
+ unsigned long size;
+
+ size = round_up(map->key_size + bpf_map_value_size(map), 8);
+
+ return round_up(map->max_entries * size, PAGE_SIZE);
+}
+
+static void bpf_map_show_fdinfo(struct seq_file *m, struct file *filp)
+{
+ struct bpf_map *map = filp->private_data;
+ u32 type = 0, jited = 0;
+
+ if (map_type_contains_progs(map)) {
+ spin_lock(&map->owner.lock);
+ type = map->owner.type;
+ jited = map->owner.jited;
+ spin_unlock(&map->owner.lock);
+ }
+
+ seq_printf(m,
+ "map_type:\t%u\n"
+ "key_size:\t%u\n"
+ "value_size:\t%u\n"
+ "max_entries:\t%u\n"
+ "map_flags:\t%#x\n"
+ "map_extra:\t%#llx\n"
+ "memlock:\t%lu\n"
+ "map_id:\t%u\n"
+ "frozen:\t%u\n",
+ map->map_type,
+ map->key_size,
+ map->value_size,
+ map->max_entries,
+ map->map_flags,
+ (unsigned long long)map->map_extra,
+ bpf_map_memory_footprint(map),
+ map->id,
+ READ_ONCE(map->frozen));
+ if (type) {
+ seq_printf(m, "owner_prog_type:\t%u\n", type);
+ seq_printf(m, "owner_jited:\t%u\n", jited);
+ }
+}
+#endif
+
+static ssize_t bpf_dummy_read(struct file *filp, char __user *buf, size_t siz,
+ loff_t *ppos)
+{
+ /* We need this handler such that alloc_file() enables
+ * f_mode with FMODE_CAN_READ.
+ */
+ return -EINVAL;
+}
+
+static ssize_t bpf_dummy_write(struct file *filp, const char __user *buf,
+ size_t siz, loff_t *ppos)
+{
+ /* We need this handler such that alloc_file() enables
+ * f_mode with FMODE_CAN_WRITE.
+ */
+ return -EINVAL;
+}
+
+/* called for any extra memory-mapped regions (except initial) */
+static void bpf_map_mmap_open(struct vm_area_struct *vma)
+{
+ struct bpf_map *map = vma->vm_file->private_data;
+
+ if (vma->vm_flags & VM_MAYWRITE)
+ bpf_map_write_active_inc(map);
+}
+
+/* called for all unmapped memory region (including initial) */
+static void bpf_map_mmap_close(struct vm_area_struct *vma)
+{
+ struct bpf_map *map = vma->vm_file->private_data;
+
+ if (vma->vm_flags & VM_MAYWRITE)
+ bpf_map_write_active_dec(map);
+}
+
+static const struct vm_operations_struct bpf_map_default_vmops = {
+ .open = bpf_map_mmap_open,
+ .close = bpf_map_mmap_close,
+};
+
+static int bpf_map_mmap(struct file *filp, struct vm_area_struct *vma)
+{
+ struct bpf_map *map = filp->private_data;
+ int err;
+
+ if (!map->ops->map_mmap || map_value_has_spin_lock(map) ||
+ map_value_has_timer(map) || map_value_has_kptrs(map))
+ return -ENOTSUPP;
+
+ if (!(vma->vm_flags & VM_SHARED))
+ return -EINVAL;
+
+ mutex_lock(&map->freeze_mutex);
+
+ if (vma->vm_flags & VM_WRITE) {
+ if (map->frozen) {
+ err = -EPERM;
+ goto out;
+ }
+ /* map is meant to be read-only, so do not allow mapping as
+ * writable, because it's possible to leak a writable page
+ * reference and allows user-space to still modify it after
+ * freezing, while verifier will assume contents do not change
+ */
+ if (map->map_flags & BPF_F_RDONLY_PROG) {
+ err = -EACCES;
+ goto out;
+ }
+ }
+
+ /* set default open/close callbacks */
+ vma->vm_ops = &bpf_map_default_vmops;
+ vma->vm_private_data = map;
+ vma->vm_flags &= ~VM_MAYEXEC;
+ if (!(vma->vm_flags & VM_WRITE))
+ /* disallow re-mapping with PROT_WRITE */
+ vma->vm_flags &= ~VM_MAYWRITE;
+
+ err = map->ops->map_mmap(map, vma);
+ if (err)
+ goto out;
+
+ if (vma->vm_flags & VM_MAYWRITE)
+ bpf_map_write_active_inc(map);
+out:
+ mutex_unlock(&map->freeze_mutex);
+ return err;
+}
+
+static __poll_t bpf_map_poll(struct file *filp, struct poll_table_struct *pts)
+{
+ struct bpf_map *map = filp->private_data;
+
+ if (map->ops->map_poll)
+ return map->ops->map_poll(map, filp, pts);
+
+ return EPOLLERR;
+}
+
+const struct file_operations bpf_map_fops = {
+#ifdef CONFIG_PROC_FS
+ .show_fdinfo = bpf_map_show_fdinfo,
+#endif
+ .release = bpf_map_release,
+ .read = bpf_dummy_read,
+ .write = bpf_dummy_write,
+ .mmap = bpf_map_mmap,
+ .poll = bpf_map_poll,
+};
+
+int bpf_map_new_fd(struct bpf_map *map, int flags)
+{
+ int ret;
+
+ ret = security_bpf_map(map, OPEN_FMODE(flags));
+ if (ret < 0)
+ return ret;
+
+ return anon_inode_getfd("bpf-map", &bpf_map_fops, map,
+ flags | O_CLOEXEC);
+}
+
+int bpf_get_file_flag(int flags)
+{
+ if ((flags & BPF_F_RDONLY) && (flags & BPF_F_WRONLY))
+ return -EINVAL;
+ if (flags & BPF_F_RDONLY)
+ return O_RDONLY;
+ if (flags & BPF_F_WRONLY)
+ return O_WRONLY;
+ return O_RDWR;
+}
+
+/* helper macro to check that unused fields 'union bpf_attr' are zero */
+#define CHECK_ATTR(CMD) \
+ memchr_inv((void *) &attr->CMD##_LAST_FIELD + \
+ sizeof(attr->CMD##_LAST_FIELD), 0, \
+ sizeof(*attr) - \
+ offsetof(union bpf_attr, CMD##_LAST_FIELD) - \
+ sizeof(attr->CMD##_LAST_FIELD)) != NULL
+
+/* dst and src must have at least "size" number of bytes.
+ * Return strlen on success and < 0 on error.
+ */
+int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size)
+{
+ const char *end = src + size;
+ const char *orig_src = src;
+
+ memset(dst, 0, size);
+ /* Copy all isalnum(), '_' and '.' chars. */
+ while (src < end && *src) {
+ if (!isalnum(*src) &&
+ *src != '_' && *src != '.')
+ return -EINVAL;
+ *dst++ = *src++;
+ }
+
+ /* No '\0' found in "size" number of bytes */
+ if (src == end)
+ return -EINVAL;
+
+ return src - orig_src;
+}
+
+int map_check_no_btf(const struct bpf_map *map,
+ const struct btf *btf,
+ const struct btf_type *key_type,
+ const struct btf_type *value_type)
+{
+ return -ENOTSUPP;
+}
+
+static int map_off_arr_cmp(const void *_a, const void *_b, const void *priv)
+{
+ const u32 a = *(const u32 *)_a;
+ const u32 b = *(const u32 *)_b;
+
+ if (a < b)
+ return -1;
+ else if (a > b)
+ return 1;
+ return 0;
+}
+
+static void map_off_arr_swap(void *_a, void *_b, int size, const void *priv)
+{
+ struct bpf_map *map = (struct bpf_map *)priv;
+ u32 *off_base = map->off_arr->field_off;
+ u32 *a = _a, *b = _b;
+ u8 *sz_a, *sz_b;
+
+ sz_a = map->off_arr->field_sz + (a - off_base);
+ sz_b = map->off_arr->field_sz + (b - off_base);
+
+ swap(*a, *b);
+ swap(*sz_a, *sz_b);
+}
+
+static int bpf_map_alloc_off_arr(struct bpf_map *map)
+{
+ bool has_spin_lock = map_value_has_spin_lock(map);
+ bool has_timer = map_value_has_timer(map);
+ bool has_kptrs = map_value_has_kptrs(map);
+ struct bpf_map_off_arr *off_arr;
+ u32 i;
+
+ if (!has_spin_lock && !has_timer && !has_kptrs) {
+ map->off_arr = NULL;
+ return 0;
+ }
+
+ off_arr = kmalloc(sizeof(*map->off_arr), GFP_KERNEL | __GFP_NOWARN);
+ if (!off_arr)
+ return -ENOMEM;
+ map->off_arr = off_arr;
+
+ off_arr->cnt = 0;
+ if (has_spin_lock) {
+ i = off_arr->cnt;
+
+ off_arr->field_off[i] = map->spin_lock_off;
+ off_arr->field_sz[i] = sizeof(struct bpf_spin_lock);
+ off_arr->cnt++;
+ }
+ if (has_timer) {
+ i = off_arr->cnt;
+
+ off_arr->field_off[i] = map->timer_off;
+ off_arr->field_sz[i] = sizeof(struct bpf_timer);
+ off_arr->cnt++;
+ }
+ if (has_kptrs) {
+ struct bpf_map_value_off *tab = map->kptr_off_tab;
+ u32 *off = &off_arr->field_off[off_arr->cnt];
+ u8 *sz = &off_arr->field_sz[off_arr->cnt];
+
+ for (i = 0; i < tab->nr_off; i++) {
+ *off++ = tab->off[i].offset;
+ *sz++ = sizeof(u64);
+ }
+ off_arr->cnt += tab->nr_off;
+ }
+
+ if (off_arr->cnt == 1)
+ return 0;
+ sort_r(off_arr->field_off, off_arr->cnt, sizeof(off_arr->field_off[0]),
+ map_off_arr_cmp, map_off_arr_swap, map);
+ return 0;
+}
+
+static int map_check_btf(struct bpf_map *map, const struct btf *btf,
+ u32 btf_key_id, u32 btf_value_id)
+{
+ const struct btf_type *key_type, *value_type;
+ u32 key_size, value_size;
+ int ret = 0;
+
+ /* Some maps allow key to be unspecified. */
+ if (btf_key_id) {
+ key_type = btf_type_id_size(btf, &btf_key_id, &key_size);
+ if (!key_type || key_size != map->key_size)
+ return -EINVAL;
+ } else {
+ key_type = btf_type_by_id(btf, 0);
+ if (!map->ops->map_check_btf)
+ return -EINVAL;
+ }
+
+ value_type = btf_type_id_size(btf, &btf_value_id, &value_size);
+ if (!value_type || value_size != map->value_size)
+ return -EINVAL;
+
+ map->spin_lock_off = btf_find_spin_lock(btf, value_type);
+
+ if (map_value_has_spin_lock(map)) {
+ if (map->map_flags & BPF_F_RDONLY_PROG)
+ return -EACCES;
+ if (map->map_type != BPF_MAP_TYPE_HASH &&
+ map->map_type != BPF_MAP_TYPE_ARRAY &&
+ map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
+ map->map_type != BPF_MAP_TYPE_SK_STORAGE &&
+ map->map_type != BPF_MAP_TYPE_INODE_STORAGE &&
+ map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
+ return -ENOTSUPP;
+ if (map->spin_lock_off + sizeof(struct bpf_spin_lock) >
+ map->value_size) {
+ WARN_ONCE(1,
+ "verifier bug spin_lock_off %d value_size %d\n",
+ map->spin_lock_off, map->value_size);
+ return -EFAULT;
+ }
+ }
+
+ map->timer_off = btf_find_timer(btf, value_type);
+ if (map_value_has_timer(map)) {
+ if (map->map_flags & BPF_F_RDONLY_PROG)
+ return -EACCES;
+ if (map->map_type != BPF_MAP_TYPE_HASH &&
+ map->map_type != BPF_MAP_TYPE_LRU_HASH &&
+ map->map_type != BPF_MAP_TYPE_ARRAY)
+ return -EOPNOTSUPP;
+ }
+
+ map->kptr_off_tab = btf_parse_kptrs(btf, value_type);
+ if (map_value_has_kptrs(map)) {
+ if (!bpf_capable()) {
+ ret = -EPERM;
+ goto free_map_tab;
+ }
+ if (map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) {
+ ret = -EACCES;
+ goto free_map_tab;
+ }
+ if (map->map_type != BPF_MAP_TYPE_HASH &&
+ map->map_type != BPF_MAP_TYPE_LRU_HASH &&
+ map->map_type != BPF_MAP_TYPE_ARRAY &&
+ map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY) {
+ ret = -EOPNOTSUPP;
+ goto free_map_tab;
+ }
+ }
+
+ if (map->ops->map_check_btf) {
+ ret = map->ops->map_check_btf(map, btf, key_type, value_type);
+ if (ret < 0)
+ goto free_map_tab;
+ }
+
+ return ret;
+free_map_tab:
+ bpf_map_free_kptr_off_tab(map);
+ return ret;
+}
+
+#define BPF_MAP_CREATE_LAST_FIELD map_extra
+/* called via syscall */
+static int map_create(union bpf_attr *attr)
+{
+ int numa_node = bpf_map_attr_numa_node(attr);
+ struct bpf_map *map;
+ int f_flags;
+ int err;
+
+ err = CHECK_ATTR(BPF_MAP_CREATE);
+ if (err)
+ return -EINVAL;
+
+ if (attr->btf_vmlinux_value_type_id) {
+ if (attr->map_type != BPF_MAP_TYPE_STRUCT_OPS ||
+ attr->btf_key_type_id || attr->btf_value_type_id)
+ return -EINVAL;
+ } else if (attr->btf_key_type_id && !attr->btf_value_type_id) {
+ return -EINVAL;
+ }
+
+ if (attr->map_type != BPF_MAP_TYPE_BLOOM_FILTER &&
+ attr->map_extra != 0)
+ return -EINVAL;
+
+ f_flags = bpf_get_file_flag(attr->map_flags);
+ if (f_flags < 0)
+ return f_flags;
+
+ if (numa_node != NUMA_NO_NODE &&
+ ((unsigned int)numa_node >= nr_node_ids ||
+ !node_online(numa_node)))
+ return -EINVAL;
+
+ /* find map type and init map: hashtable vs rbtree vs bloom vs ... */
+ map = find_and_alloc_map(attr);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+
+ err = bpf_obj_name_cpy(map->name, attr->map_name,
+ sizeof(attr->map_name));
+ if (err < 0)
+ goto free_map;
+
+ atomic64_set(&map->refcnt, 1);
+ atomic64_set(&map->usercnt, 1);
+ mutex_init(&map->freeze_mutex);
+ spin_lock_init(&map->owner.lock);
+
+ map->spin_lock_off = -EINVAL;
+ map->timer_off = -EINVAL;
+ if (attr->btf_key_type_id || attr->btf_value_type_id ||
+ /* Even the map's value is a kernel's struct,
+ * the bpf_prog.o must have BTF to begin with
+ * to figure out the corresponding kernel's
+ * counter part. Thus, attr->btf_fd has
+ * to be valid also.
+ */
+ attr->btf_vmlinux_value_type_id) {
+ struct btf *btf;
+
+ btf = btf_get_by_fd(attr->btf_fd);
+ if (IS_ERR(btf)) {
+ err = PTR_ERR(btf);
+ goto free_map;
+ }
+ if (btf_is_kernel(btf)) {
+ btf_put(btf);
+ err = -EACCES;
+ goto free_map;
+ }
+ map->btf = btf;
+
+ if (attr->btf_value_type_id) {
+ err = map_check_btf(map, btf, attr->btf_key_type_id,
+ attr->btf_value_type_id);
+ if (err)
+ goto free_map;
+ }
+
+ map->btf_key_type_id = attr->btf_key_type_id;
+ map->btf_value_type_id = attr->btf_value_type_id;
+ map->btf_vmlinux_value_type_id =
+ attr->btf_vmlinux_value_type_id;
+ }
+
+ err = bpf_map_alloc_off_arr(map);
+ if (err)
+ goto free_map;
+
+ err = security_bpf_map_alloc(map);
+ if (err)
+ goto free_map_off_arr;
+
+ err = bpf_map_alloc_id(map);
+ if (err)
+ goto free_map_sec;
+
+ bpf_map_save_memcg(map);
+
+ err = bpf_map_new_fd(map, f_flags);
+ if (err < 0) {
+ /* failed to allocate fd.
+ * bpf_map_put_with_uref() is needed because the above
+ * bpf_map_alloc_id() has published the map
+ * to the userspace and the userspace may
+ * have refcnt-ed it through BPF_MAP_GET_FD_BY_ID.
+ */
+ bpf_map_put_with_uref(map);
+ return err;
+ }
+
+ return err;
+
+free_map_sec:
+ security_bpf_map_free(map);
+free_map_off_arr:
+ kfree(map->off_arr);
+free_map:
+ btf_put(map->btf);
+ map->ops->map_free(map);
+ return err;
+}
+
+/* if error is returned, fd is released.
+ * On success caller should complete fd access with matching fdput()
+ */
+struct bpf_map *__bpf_map_get(struct fd f)
+{
+ if (!f.file)
+ return ERR_PTR(-EBADF);
+ if (f.file->f_op != &bpf_map_fops) {
+ fdput(f);
+ return ERR_PTR(-EINVAL);
+ }
+
+ return f.file->private_data;
+}
+
+void bpf_map_inc(struct bpf_map *map)
+{
+ atomic64_inc(&map->refcnt);
+}
+EXPORT_SYMBOL_GPL(bpf_map_inc);
+
+void bpf_map_inc_with_uref(struct bpf_map *map)
+{
+ atomic64_inc(&map->refcnt);
+ atomic64_inc(&map->usercnt);
+}
+EXPORT_SYMBOL_GPL(bpf_map_inc_with_uref);
+
+struct bpf_map *bpf_map_get(u32 ufd)
+{
+ struct fd f = fdget(ufd);
+ struct bpf_map *map;
+
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return map;
+
+ bpf_map_inc(map);
+ fdput(f);
+
+ return map;
+}
+EXPORT_SYMBOL(bpf_map_get);
+
+struct bpf_map *bpf_map_get_with_uref(u32 ufd)
+{
+ struct fd f = fdget(ufd);
+ struct bpf_map *map;
+
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return map;
+
+ bpf_map_inc_with_uref(map);
+ fdput(f);
+
+ return map;
+}
+
+/* map_idr_lock should have been held */
+static struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref)
+{
+ int refold;
+
+ refold = atomic64_fetch_add_unless(&map->refcnt, 1, 0);
+ if (!refold)
+ return ERR_PTR(-ENOENT);
+ if (uref)
+ atomic64_inc(&map->usercnt);
+
+ return map;
+}
+
+struct bpf_map *bpf_map_inc_not_zero(struct bpf_map *map)
+{
+ spin_lock_bh(&map_idr_lock);
+ map = __bpf_map_inc_not_zero(map, false);
+ spin_unlock_bh(&map_idr_lock);
+
+ return map;
+}
+EXPORT_SYMBOL_GPL(bpf_map_inc_not_zero);
+
+int __weak bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
+{
+ return -ENOTSUPP;
+}
+
+static void *__bpf_copy_key(void __user *ukey, u64 key_size)
+{
+ if (key_size)
+ return vmemdup_user(ukey, key_size);
+
+ if (ukey)
+ return ERR_PTR(-EINVAL);
+
+ return NULL;
+}
+
+static void *___bpf_copy_key(bpfptr_t ukey, u64 key_size)
+{
+ if (key_size)
+ return kvmemdup_bpfptr(ukey, key_size);
+
+ if (!bpfptr_is_null(ukey))
+ return ERR_PTR(-EINVAL);
+
+ return NULL;
+}
+
+/* last field in 'union bpf_attr' used by this command */
+#define BPF_MAP_LOOKUP_ELEM_LAST_FIELD flags
+
+static int map_lookup_elem(union bpf_attr *attr)
+{
+ void __user *ukey = u64_to_user_ptr(attr->key);
+ void __user *uvalue = u64_to_user_ptr(attr->value);
+ int ufd = attr->map_fd;
+ struct bpf_map *map;
+ void *key, *value;
+ u32 value_size;
+ struct fd f;
+ int err;
+
+ if (CHECK_ATTR(BPF_MAP_LOOKUP_ELEM))
+ return -EINVAL;
+
+ if (attr->flags & ~BPF_F_LOCK)
+ return -EINVAL;
+
+ f = fdget(ufd);
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+ if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ)) {
+ err = -EPERM;
+ goto err_put;
+ }
+
+ if ((attr->flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(map)) {
+ err = -EINVAL;
+ goto err_put;
+ }
+
+ key = __bpf_copy_key(ukey, map->key_size);
+ if (IS_ERR(key)) {
+ err = PTR_ERR(key);
+ goto err_put;
+ }
+
+ value_size = bpf_map_value_size(map);
+
+ err = -ENOMEM;
+ value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN);
+ if (!value)
+ goto free_key;
+
+ if (map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) {
+ if (copy_from_user(value, uvalue, value_size))
+ err = -EFAULT;
+ else
+ err = bpf_map_copy_value(map, key, value, attr->flags);
+ goto free_value;
+ }
+
+ err = bpf_map_copy_value(map, key, value, attr->flags);
+ if (err)
+ goto free_value;
+
+ err = -EFAULT;
+ if (copy_to_user(uvalue, value, value_size) != 0)
+ goto free_value;
+
+ err = 0;
+
+free_value:
+ kvfree(value);
+free_key:
+ kvfree(key);
+err_put:
+ fdput(f);
+ return err;
+}
+
+
+#define BPF_MAP_UPDATE_ELEM_LAST_FIELD flags
+
+static int map_update_elem(union bpf_attr *attr, bpfptr_t uattr)
+{
+ bpfptr_t ukey = make_bpfptr(attr->key, uattr.is_kernel);
+ bpfptr_t uvalue = make_bpfptr(attr->value, uattr.is_kernel);
+ int ufd = attr->map_fd;
+ struct bpf_map *map;
+ void *key, *value;
+ u32 value_size;
+ struct fd f;
+ int err;
+
+ if (CHECK_ATTR(BPF_MAP_UPDATE_ELEM))
+ return -EINVAL;
+
+ f = fdget(ufd);
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+ bpf_map_write_active_inc(map);
+ if (!(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) {
+ err = -EPERM;
+ goto err_put;
+ }
+
+ if ((attr->flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(map)) {
+ err = -EINVAL;
+ goto err_put;
+ }
+
+ key = ___bpf_copy_key(ukey, map->key_size);
+ if (IS_ERR(key)) {
+ err = PTR_ERR(key);
+ goto err_put;
+ }
+
+ value_size = bpf_map_value_size(map);
+ value = kvmemdup_bpfptr(uvalue, value_size);
+ if (IS_ERR(value)) {
+ err = PTR_ERR(value);
+ goto free_key;
+ }
+
+ err = bpf_map_update_value(map, f, key, value, attr->flags);
+
+ kvfree(value);
+free_key:
+ kvfree(key);
+err_put:
+ bpf_map_write_active_dec(map);
+ fdput(f);
+ return err;
+}
+
+#define BPF_MAP_DELETE_ELEM_LAST_FIELD key
+
+static int map_delete_elem(union bpf_attr *attr, bpfptr_t uattr)
+{
+ bpfptr_t ukey = make_bpfptr(attr->key, uattr.is_kernel);
+ int ufd = attr->map_fd;
+ struct bpf_map *map;
+ struct fd f;
+ void *key;
+ int err;
+
+ if (CHECK_ATTR(BPF_MAP_DELETE_ELEM))
+ return -EINVAL;
+
+ f = fdget(ufd);
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+ bpf_map_write_active_inc(map);
+ if (!(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) {
+ err = -EPERM;
+ goto err_put;
+ }
+
+ key = ___bpf_copy_key(ukey, map->key_size);
+ if (IS_ERR(key)) {
+ err = PTR_ERR(key);
+ goto err_put;
+ }
+
+ if (bpf_map_is_dev_bound(map)) {
+ err = bpf_map_offload_delete_elem(map, key);
+ goto out;
+ } else if (IS_FD_PROG_ARRAY(map) ||
+ map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
+ /* These maps require sleepable context */
+ err = map->ops->map_delete_elem(map, key);
+ goto out;
+ }
+
+ bpf_disable_instrumentation();
+ rcu_read_lock();
+ err = map->ops->map_delete_elem(map, key);
+ rcu_read_unlock();
+ bpf_enable_instrumentation();
+ maybe_wait_bpf_programs(map);
+out:
+ kvfree(key);
+err_put:
+ bpf_map_write_active_dec(map);
+ fdput(f);
+ return err;
+}
+
+/* last field in 'union bpf_attr' used by this command */
+#define BPF_MAP_GET_NEXT_KEY_LAST_FIELD next_key
+
+static int map_get_next_key(union bpf_attr *attr)
+{
+ void __user *ukey = u64_to_user_ptr(attr->key);
+ void __user *unext_key = u64_to_user_ptr(attr->next_key);
+ int ufd = attr->map_fd;
+ struct bpf_map *map;
+ void *key, *next_key;
+ struct fd f;
+ int err;
+
+ if (CHECK_ATTR(BPF_MAP_GET_NEXT_KEY))
+ return -EINVAL;
+
+ f = fdget(ufd);
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+ if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ)) {
+ err = -EPERM;
+ goto err_put;
+ }
+
+ if (ukey) {
+ key = __bpf_copy_key(ukey, map->key_size);
+ if (IS_ERR(key)) {
+ err = PTR_ERR(key);
+ goto err_put;
+ }
+ } else {
+ key = NULL;
+ }
+
+ err = -ENOMEM;
+ next_key = kvmalloc(map->key_size, GFP_USER);
+ if (!next_key)
+ goto free_key;
+
+ if (bpf_map_is_dev_bound(map)) {
+ err = bpf_map_offload_get_next_key(map, key, next_key);
+ goto out;
+ }
+
+ rcu_read_lock();
+ err = map->ops->map_get_next_key(map, key, next_key);
+ rcu_read_unlock();
+out:
+ if (err)
+ goto free_next_key;
+
+ err = -EFAULT;
+ if (copy_to_user(unext_key, next_key, map->key_size) != 0)
+ goto free_next_key;
+
+ err = 0;
+
+free_next_key:
+ kvfree(next_key);
+free_key:
+ kvfree(key);
+err_put:
+ fdput(f);
+ return err;
+}
+
+int generic_map_delete_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ void __user *keys = u64_to_user_ptr(attr->batch.keys);
+ u32 cp, max_count;
+ int err = 0;
+ void *key;
+
+ if (attr->batch.elem_flags & ~BPF_F_LOCK)
+ return -EINVAL;
+
+ if ((attr->batch.elem_flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(map)) {
+ return -EINVAL;
+ }
+
+ max_count = attr->batch.count;
+ if (!max_count)
+ return 0;
+
+ key = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN);
+ if (!key)
+ return -ENOMEM;
+
+ for (cp = 0; cp < max_count; cp++) {
+ err = -EFAULT;
+ if (copy_from_user(key, keys + cp * map->key_size,
+ map->key_size))
+ break;
+
+ if (bpf_map_is_dev_bound(map)) {
+ err = bpf_map_offload_delete_elem(map, key);
+ break;
+ }
+
+ bpf_disable_instrumentation();
+ rcu_read_lock();
+ err = map->ops->map_delete_elem(map, key);
+ rcu_read_unlock();
+ bpf_enable_instrumentation();
+ if (err)
+ break;
+ cond_resched();
+ }
+ if (copy_to_user(&uattr->batch.count, &cp, sizeof(cp)))
+ err = -EFAULT;
+
+ kvfree(key);
+
+ maybe_wait_bpf_programs(map);
+ return err;
+}
+
+int generic_map_update_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ void __user *values = u64_to_user_ptr(attr->batch.values);
+ void __user *keys = u64_to_user_ptr(attr->batch.keys);
+ u32 value_size, cp, max_count;
+ int ufd = attr->batch.map_fd;
+ void *key, *value;
+ struct fd f;
+ int err = 0;
+
+ if (attr->batch.elem_flags & ~BPF_F_LOCK)
+ return -EINVAL;
+
+ if ((attr->batch.elem_flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(map)) {
+ return -EINVAL;
+ }
+
+ value_size = bpf_map_value_size(map);
+
+ max_count = attr->batch.count;
+ if (!max_count)
+ return 0;
+
+ key = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN);
+ if (!key)
+ return -ENOMEM;
+
+ value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN);
+ if (!value) {
+ kvfree(key);
+ return -ENOMEM;
+ }
+
+ f = fdget(ufd); /* bpf_map_do_batch() guarantees ufd is valid */
+ for (cp = 0; cp < max_count; cp++) {
+ err = -EFAULT;
+ if (copy_from_user(key, keys + cp * map->key_size,
+ map->key_size) ||
+ copy_from_user(value, values + cp * value_size, value_size))
+ break;
+
+ err = bpf_map_update_value(map, f, key, value,
+ attr->batch.elem_flags);
+
+ if (err)
+ break;
+ cond_resched();
+ }
+
+ if (copy_to_user(&uattr->batch.count, &cp, sizeof(cp)))
+ err = -EFAULT;
+
+ kvfree(value);
+ kvfree(key);
+ fdput(f);
+ return err;
+}
+
+#define MAP_LOOKUP_RETRIES 3
+
+int generic_map_lookup_batch(struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ void __user *uobatch = u64_to_user_ptr(attr->batch.out_batch);
+ void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
+ void __user *values = u64_to_user_ptr(attr->batch.values);
+ void __user *keys = u64_to_user_ptr(attr->batch.keys);
+ void *buf, *buf_prevkey, *prev_key, *key, *value;
+ int err, retry = MAP_LOOKUP_RETRIES;
+ u32 value_size, cp, max_count;
+
+ if (attr->batch.elem_flags & ~BPF_F_LOCK)
+ return -EINVAL;
+
+ if ((attr->batch.elem_flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(map))
+ return -EINVAL;
+
+ value_size = bpf_map_value_size(map);
+
+ max_count = attr->batch.count;
+ if (!max_count)
+ return 0;
+
+ if (put_user(0, &uattr->batch.count))
+ return -EFAULT;
+
+ buf_prevkey = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN);
+ if (!buf_prevkey)
+ return -ENOMEM;
+
+ buf = kvmalloc(map->key_size + value_size, GFP_USER | __GFP_NOWARN);
+ if (!buf) {
+ kvfree(buf_prevkey);
+ return -ENOMEM;
+ }
+
+ err = -EFAULT;
+ prev_key = NULL;
+ if (ubatch && copy_from_user(buf_prevkey, ubatch, map->key_size))
+ goto free_buf;
+ key = buf;
+ value = key + map->key_size;
+ if (ubatch)
+ prev_key = buf_prevkey;
+
+ for (cp = 0; cp < max_count;) {
+ rcu_read_lock();
+ err = map->ops->map_get_next_key(map, prev_key, key);
+ rcu_read_unlock();
+ if (err)
+ break;
+ err = bpf_map_copy_value(map, key, value,
+ attr->batch.elem_flags);
+
+ if (err == -ENOENT) {
+ if (retry) {
+ retry--;
+ continue;
+ }
+ err = -EINTR;
+ break;
+ }
+
+ if (err)
+ goto free_buf;
+
+ if (copy_to_user(keys + cp * map->key_size, key,
+ map->key_size)) {
+ err = -EFAULT;
+ goto free_buf;
+ }
+ if (copy_to_user(values + cp * value_size, value, value_size)) {
+ err = -EFAULT;
+ goto free_buf;
+ }
+
+ if (!prev_key)
+ prev_key = buf_prevkey;
+
+ swap(prev_key, key);
+ retry = MAP_LOOKUP_RETRIES;
+ cp++;
+ cond_resched();
+ }
+
+ if (err == -EFAULT)
+ goto free_buf;
+
+ if ((copy_to_user(&uattr->batch.count, &cp, sizeof(cp)) ||
+ (cp && copy_to_user(uobatch, prev_key, map->key_size))))
+ err = -EFAULT;
+
+free_buf:
+ kvfree(buf_prevkey);
+ kvfree(buf);
+ return err;
+}
+
+#define BPF_MAP_LOOKUP_AND_DELETE_ELEM_LAST_FIELD flags
+
+static int map_lookup_and_delete_elem(union bpf_attr *attr)
+{
+ void __user *ukey = u64_to_user_ptr(attr->key);
+ void __user *uvalue = u64_to_user_ptr(attr->value);
+ int ufd = attr->map_fd;
+ struct bpf_map *map;
+ void *key, *value;
+ u32 value_size;
+ struct fd f;
+ int err;
+
+ if (CHECK_ATTR(BPF_MAP_LOOKUP_AND_DELETE_ELEM))
+ return -EINVAL;
+
+ if (attr->flags & ~BPF_F_LOCK)
+ return -EINVAL;
+
+ f = fdget(ufd);
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+ bpf_map_write_active_inc(map);
+ if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ) ||
+ !(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) {
+ err = -EPERM;
+ goto err_put;
+ }
+
+ if (attr->flags &&
+ (map->map_type == BPF_MAP_TYPE_QUEUE ||
+ map->map_type == BPF_MAP_TYPE_STACK)) {
+ err = -EINVAL;
+ goto err_put;
+ }
+
+ if ((attr->flags & BPF_F_LOCK) &&
+ !map_value_has_spin_lock(map)) {
+ err = -EINVAL;
+ goto err_put;
+ }
+
+ key = __bpf_copy_key(ukey, map->key_size);
+ if (IS_ERR(key)) {
+ err = PTR_ERR(key);
+ goto err_put;
+ }
+
+ value_size = bpf_map_value_size(map);
+
+ err = -ENOMEM;
+ value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN);
+ if (!value)
+ goto free_key;
+
+ err = -ENOTSUPP;
+ if (map->map_type == BPF_MAP_TYPE_QUEUE ||
+ map->map_type == BPF_MAP_TYPE_STACK) {
+ err = map->ops->map_pop_elem(map, value);
+ } else if (map->map_type == BPF_MAP_TYPE_HASH ||
+ map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_HASH ||
+ map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
+ if (!bpf_map_is_dev_bound(map)) {
+ bpf_disable_instrumentation();
+ rcu_read_lock();
+ err = map->ops->map_lookup_and_delete_elem(map, key, value, attr->flags);
+ rcu_read_unlock();
+ bpf_enable_instrumentation();
+ }
+ }
+
+ if (err)
+ goto free_value;
+
+ if (copy_to_user(uvalue, value, value_size) != 0) {
+ err = -EFAULT;
+ goto free_value;
+ }
+
+ err = 0;
+
+free_value:
+ kvfree(value);
+free_key:
+ kvfree(key);
+err_put:
+ bpf_map_write_active_dec(map);
+ fdput(f);
+ return err;
+}
+
+#define BPF_MAP_FREEZE_LAST_FIELD map_fd
+
+static int map_freeze(const union bpf_attr *attr)
+{
+ int err = 0, ufd = attr->map_fd;
+ struct bpf_map *map;
+ struct fd f;
+
+ if (CHECK_ATTR(BPF_MAP_FREEZE))
+ return -EINVAL;
+
+ f = fdget(ufd);
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+
+ if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS ||
+ map_value_has_timer(map) || map_value_has_kptrs(map)) {
+ fdput(f);
+ return -ENOTSUPP;
+ }
+
+ mutex_lock(&map->freeze_mutex);
+ if (bpf_map_write_active(map)) {
+ err = -EBUSY;
+ goto err_put;
+ }
+ if (READ_ONCE(map->frozen)) {
+ err = -EBUSY;
+ goto err_put;
+ }
+ if (!bpf_capable()) {
+ err = -EPERM;
+ goto err_put;
+ }
+
+ WRITE_ONCE(map->frozen, true);
+err_put:
+ mutex_unlock(&map->freeze_mutex);
+ fdput(f);
+ return err;
+}
+
+static const struct bpf_prog_ops * const bpf_prog_types[] = {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ [_id] = & _name ## _prog_ops,
+#define BPF_MAP_TYPE(_id, _ops)
+#define BPF_LINK_TYPE(_id, _name)
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+#undef BPF_MAP_TYPE
+#undef BPF_LINK_TYPE
+};
+
+static int find_prog_type(enum bpf_prog_type type, struct bpf_prog *prog)
+{
+ const struct bpf_prog_ops *ops;
+
+ if (type >= ARRAY_SIZE(bpf_prog_types))
+ return -EINVAL;
+ type = array_index_nospec(type, ARRAY_SIZE(bpf_prog_types));
+ ops = bpf_prog_types[type];
+ if (!ops)
+ return -EINVAL;
+
+ if (!bpf_prog_is_dev_bound(prog->aux))
+ prog->aux->ops = ops;
+ else
+ prog->aux->ops = &bpf_offload_prog_ops;
+ prog->type = type;
+ return 0;
+}
+
+enum bpf_audit {
+ BPF_AUDIT_LOAD,
+ BPF_AUDIT_UNLOAD,
+ BPF_AUDIT_MAX,
+};
+
+static const char * const bpf_audit_str[BPF_AUDIT_MAX] = {
+ [BPF_AUDIT_LOAD] = "LOAD",
+ [BPF_AUDIT_UNLOAD] = "UNLOAD",
+};
+
+static void bpf_audit_prog(const struct bpf_prog *prog, unsigned int op)
+{
+ struct audit_context *ctx = NULL;
+ struct audit_buffer *ab;
+
+ if (WARN_ON_ONCE(op >= BPF_AUDIT_MAX))
+ return;
+ if (audit_enabled == AUDIT_OFF)
+ return;
+ if (!in_irq() && !irqs_disabled())
+ ctx = audit_context();
+ ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_BPF);
+ if (unlikely(!ab))
+ return;
+ audit_log_format(ab, "prog-id=%u op=%s",
+ prog->aux->id, bpf_audit_str[op]);
+ audit_log_end(ab);
+}
+
+static int bpf_prog_alloc_id(struct bpf_prog *prog)
+{
+ int id;
+
+ idr_preload(GFP_KERNEL);
+ spin_lock_bh(&prog_idr_lock);
+ id = idr_alloc_cyclic(&prog_idr, prog, 1, INT_MAX, GFP_ATOMIC);
+ if (id > 0)
+ prog->aux->id = id;
+ spin_unlock_bh(&prog_idr_lock);
+ idr_preload_end();
+
+ /* id is in [1, INT_MAX) */
+ if (WARN_ON_ONCE(!id))
+ return -ENOSPC;
+
+ return id > 0 ? 0 : id;
+}
+
+void bpf_prog_free_id(struct bpf_prog *prog, bool do_idr_lock)
+{
+ unsigned long flags;
+
+ /* cBPF to eBPF migrations are currently not in the idr store.
+ * Offloaded programs are removed from the store when their device
+ * disappears - even if someone grabs an fd to them they are unusable,
+ * simply waiting for refcnt to drop to be freed.
+ */
+ if (!prog->aux->id)
+ return;
+
+ if (do_idr_lock)
+ spin_lock_irqsave(&prog_idr_lock, flags);
+ else
+ __acquire(&prog_idr_lock);
+
+ idr_remove(&prog_idr, prog->aux->id);
+ prog->aux->id = 0;
+
+ if (do_idr_lock)
+ spin_unlock_irqrestore(&prog_idr_lock, flags);
+ else
+ __release(&prog_idr_lock);
+}
+
+static void __bpf_prog_put_rcu(struct rcu_head *rcu)
+{
+ struct bpf_prog_aux *aux = container_of(rcu, struct bpf_prog_aux, rcu);
+
+ kvfree(aux->func_info);
+ kfree(aux->func_info_aux);
+ free_uid(aux->user);
+ security_bpf_prog_free(aux);
+ bpf_prog_free(aux->prog);
+}
+
+static void __bpf_prog_put_noref(struct bpf_prog *prog, bool deferred)
+{
+ bpf_prog_kallsyms_del_all(prog);
+ btf_put(prog->aux->btf);
+ kvfree(prog->aux->jited_linfo);
+ kvfree(prog->aux->linfo);
+ kfree(prog->aux->kfunc_tab);
+ if (prog->aux->attach_btf)
+ btf_put(prog->aux->attach_btf);
+
+ if (deferred) {
+ if (prog->aux->sleepable)
+ call_rcu_tasks_trace(&prog->aux->rcu, __bpf_prog_put_rcu);
+ else
+ call_rcu(&prog->aux->rcu, __bpf_prog_put_rcu);
+ } else {
+ __bpf_prog_put_rcu(&prog->aux->rcu);
+ }
+}
+
+static void bpf_prog_put_deferred(struct work_struct *work)
+{
+ struct bpf_prog_aux *aux;
+ struct bpf_prog *prog;
+
+ aux = container_of(work, struct bpf_prog_aux, work);
+ prog = aux->prog;
+ perf_event_bpf_event(prog, PERF_BPF_EVENT_PROG_UNLOAD, 0);
+ bpf_audit_prog(prog, BPF_AUDIT_UNLOAD);
+ bpf_prog_free_id(prog, true);
+ __bpf_prog_put_noref(prog, true);
+}
+
+static void __bpf_prog_put(struct bpf_prog *prog, bool do_idr_lock)
+{
+ struct bpf_prog_aux *aux = prog->aux;
+
+ if (atomic64_dec_and_test(&aux->refcnt)) {
+ if (in_irq() || irqs_disabled()) {
+ INIT_WORK(&aux->work, bpf_prog_put_deferred);
+ schedule_work(&aux->work);
+ } else {
+ bpf_prog_put_deferred(&aux->work);
+ }
+ }
+}
+
+void bpf_prog_put(struct bpf_prog *prog)
+{
+ __bpf_prog_put(prog, true);
+}
+EXPORT_SYMBOL_GPL(bpf_prog_put);
+
+static int bpf_prog_release(struct inode *inode, struct file *filp)
+{
+ struct bpf_prog *prog = filp->private_data;
+
+ bpf_prog_put(prog);
+ return 0;
+}
+
+struct bpf_prog_kstats {
+ u64 nsecs;
+ u64 cnt;
+ u64 misses;
+};
+
+void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog)
+{
+ struct bpf_prog_stats *stats;
+ unsigned int flags;
+
+ stats = this_cpu_ptr(prog->stats);
+ flags = u64_stats_update_begin_irqsave(&stats->syncp);
+ u64_stats_inc(&stats->misses);
+ u64_stats_update_end_irqrestore(&stats->syncp, flags);
+}
+
+static void bpf_prog_get_stats(const struct bpf_prog *prog,
+ struct bpf_prog_kstats *stats)
+{
+ u64 nsecs = 0, cnt = 0, misses = 0;
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ const struct bpf_prog_stats *st;
+ unsigned int start;
+ u64 tnsecs, tcnt, tmisses;
+
+ st = per_cpu_ptr(prog->stats, cpu);
+ do {
+ start = u64_stats_fetch_begin_irq(&st->syncp);
+ tnsecs = u64_stats_read(&st->nsecs);
+ tcnt = u64_stats_read(&st->cnt);
+ tmisses = u64_stats_read(&st->misses);
+ } while (u64_stats_fetch_retry_irq(&st->syncp, start));
+ nsecs += tnsecs;
+ cnt += tcnt;
+ misses += tmisses;
+ }
+ stats->nsecs = nsecs;
+ stats->cnt = cnt;
+ stats->misses = misses;
+}
+
+#ifdef CONFIG_PROC_FS
+static void bpf_prog_show_fdinfo(struct seq_file *m, struct file *filp)
+{
+ const struct bpf_prog *prog = filp->private_data;
+ char prog_tag[sizeof(prog->tag) * 2 + 1] = { };
+ struct bpf_prog_kstats stats;
+
+ bpf_prog_get_stats(prog, &stats);
+ bin2hex(prog_tag, prog->tag, sizeof(prog->tag));
+ seq_printf(m,
+ "prog_type:\t%u\n"
+ "prog_jited:\t%u\n"
+ "prog_tag:\t%s\n"
+ "memlock:\t%llu\n"
+ "prog_id:\t%u\n"
+ "run_time_ns:\t%llu\n"
+ "run_cnt:\t%llu\n"
+ "recursion_misses:\t%llu\n"
+ "verified_insns:\t%u\n",
+ prog->type,
+ prog->jited,
+ prog_tag,
+ prog->pages * 1ULL << PAGE_SHIFT,
+ prog->aux->id,
+ stats.nsecs,
+ stats.cnt,
+ stats.misses,
+ prog->aux->verified_insns);
+}
+#endif
+
+const struct file_operations bpf_prog_fops = {
+#ifdef CONFIG_PROC_FS
+ .show_fdinfo = bpf_prog_show_fdinfo,
+#endif
+ .release = bpf_prog_release,
+ .read = bpf_dummy_read,
+ .write = bpf_dummy_write,
+};
+
+int bpf_prog_new_fd(struct bpf_prog *prog)
+{
+ int ret;
+
+ ret = security_bpf_prog(prog);
+ if (ret < 0)
+ return ret;
+
+ return anon_inode_getfd("bpf-prog", &bpf_prog_fops, prog,
+ O_RDWR | O_CLOEXEC);
+}
+
+static struct bpf_prog *____bpf_prog_get(struct fd f)
+{
+ if (!f.file)
+ return ERR_PTR(-EBADF);
+ if (f.file->f_op != &bpf_prog_fops) {
+ fdput(f);
+ return ERR_PTR(-EINVAL);
+ }
+
+ return f.file->private_data;
+}
+
+void bpf_prog_add(struct bpf_prog *prog, int i)
+{
+ atomic64_add(i, &prog->aux->refcnt);
+}
+EXPORT_SYMBOL_GPL(bpf_prog_add);
+
+void bpf_prog_sub(struct bpf_prog *prog, int i)
+{
+ /* Only to be used for undoing previous bpf_prog_add() in some
+ * error path. We still know that another entity in our call
+ * path holds a reference to the program, thus atomic_sub() can
+ * be safely used in such cases!
+ */
+ WARN_ON(atomic64_sub_return(i, &prog->aux->refcnt) == 0);
+}
+EXPORT_SYMBOL_GPL(bpf_prog_sub);
+
+void bpf_prog_inc(struct bpf_prog *prog)
+{
+ atomic64_inc(&prog->aux->refcnt);
+}
+EXPORT_SYMBOL_GPL(bpf_prog_inc);
+
+/* prog_idr_lock should have been held */
+struct bpf_prog *bpf_prog_inc_not_zero(struct bpf_prog *prog)
+{
+ int refold;
+
+ refold = atomic64_fetch_add_unless(&prog->aux->refcnt, 1, 0);
+
+ if (!refold)
+ return ERR_PTR(-ENOENT);
+
+ return prog;
+}
+EXPORT_SYMBOL_GPL(bpf_prog_inc_not_zero);
+
+bool bpf_prog_get_ok(struct bpf_prog *prog,
+ enum bpf_prog_type *attach_type, bool attach_drv)
+{
+ /* not an attachment, just a refcount inc, always allow */
+ if (!attach_type)
+ return true;
+
+ if (prog->type != *attach_type)
+ return false;
+ if (bpf_prog_is_dev_bound(prog->aux) && !attach_drv)
+ return false;
+
+ return true;
+}
+
+static struct bpf_prog *__bpf_prog_get(u32 ufd, enum bpf_prog_type *attach_type,
+ bool attach_drv)
+{
+ struct fd f = fdget(ufd);
+ struct bpf_prog *prog;
+
+ prog = ____bpf_prog_get(f);
+ if (IS_ERR(prog))
+ return prog;
+ if (!bpf_prog_get_ok(prog, attach_type, attach_drv)) {
+ prog = ERR_PTR(-EINVAL);
+ goto out;
+ }
+
+ bpf_prog_inc(prog);
+out:
+ fdput(f);
+ return prog;
+}
+
+struct bpf_prog *bpf_prog_get(u32 ufd)
+{
+ return __bpf_prog_get(ufd, NULL, false);
+}
+
+struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
+ bool attach_drv)
+{
+ return __bpf_prog_get(ufd, &type, attach_drv);
+}
+EXPORT_SYMBOL_GPL(bpf_prog_get_type_dev);
+
+/* Initially all BPF programs could be loaded w/o specifying
+ * expected_attach_type. Later for some of them specifying expected_attach_type
+ * at load time became required so that program could be validated properly.
+ * Programs of types that are allowed to be loaded both w/ and w/o (for
+ * backward compatibility) expected_attach_type, should have the default attach
+ * type assigned to expected_attach_type for the latter case, so that it can be
+ * validated later at attach time.
+ *
+ * bpf_prog_load_fixup_attach_type() sets expected_attach_type in @attr if
+ * prog type requires it but has some attach types that have to be backward
+ * compatible.
+ */
+static void bpf_prog_load_fixup_attach_type(union bpf_attr *attr)
+{
+ switch (attr->prog_type) {
+ case BPF_PROG_TYPE_CGROUP_SOCK:
+ /* Unfortunately BPF_ATTACH_TYPE_UNSPEC enumeration doesn't
+ * exist so checking for non-zero is the way to go here.
+ */
+ if (!attr->expected_attach_type)
+ attr->expected_attach_type =
+ BPF_CGROUP_INET_SOCK_CREATE;
+ break;
+ case BPF_PROG_TYPE_SK_REUSEPORT:
+ if (!attr->expected_attach_type)
+ attr->expected_attach_type =
+ BPF_SK_REUSEPORT_SELECT;
+ break;
+ }
+}
+
+static int
+bpf_prog_load_check_attach(enum bpf_prog_type prog_type,
+ enum bpf_attach_type expected_attach_type,
+ struct btf *attach_btf, u32 btf_id,
+ struct bpf_prog *dst_prog)
+{
+ if (btf_id) {
+ if (btf_id > BTF_MAX_TYPE)
+ return -EINVAL;
+
+ if (!attach_btf && !dst_prog)
+ return -EINVAL;
+
+ switch (prog_type) {
+ case BPF_PROG_TYPE_TRACING:
+ case BPF_PROG_TYPE_LSM:
+ case BPF_PROG_TYPE_STRUCT_OPS:
+ case BPF_PROG_TYPE_EXT:
+ break;
+ default:
+ return -EINVAL;
+ }
+ }
+
+ if (attach_btf && (!btf_id || dst_prog))
+ return -EINVAL;
+
+ if (dst_prog && prog_type != BPF_PROG_TYPE_TRACING &&
+ prog_type != BPF_PROG_TYPE_EXT)
+ return -EINVAL;
+
+ switch (prog_type) {
+ case BPF_PROG_TYPE_CGROUP_SOCK:
+ switch (expected_attach_type) {
+ case BPF_CGROUP_INET_SOCK_CREATE:
+ case BPF_CGROUP_INET_SOCK_RELEASE:
+ case BPF_CGROUP_INET4_POST_BIND:
+ case BPF_CGROUP_INET6_POST_BIND:
+ return 0;
+ default:
+ return -EINVAL;
+ }
+ case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
+ switch (expected_attach_type) {
+ case BPF_CGROUP_INET4_BIND:
+ case BPF_CGROUP_INET6_BIND:
+ case BPF_CGROUP_INET4_CONNECT:
+ case BPF_CGROUP_INET6_CONNECT:
+ case BPF_CGROUP_INET4_GETPEERNAME:
+ case BPF_CGROUP_INET6_GETPEERNAME:
+ case BPF_CGROUP_INET4_GETSOCKNAME:
+ case BPF_CGROUP_INET6_GETSOCKNAME:
+ case BPF_CGROUP_UDP4_SENDMSG:
+ case BPF_CGROUP_UDP6_SENDMSG:
+ case BPF_CGROUP_UDP4_RECVMSG:
+ case BPF_CGROUP_UDP6_RECVMSG:
+ return 0;
+ default:
+ return -EINVAL;
+ }
+ case BPF_PROG_TYPE_CGROUP_SKB:
+ switch (expected_attach_type) {
+ case BPF_CGROUP_INET_INGRESS:
+ case BPF_CGROUP_INET_EGRESS:
+ return 0;
+ default:
+ return -EINVAL;
+ }
+ case BPF_PROG_TYPE_CGROUP_SOCKOPT:
+ switch (expected_attach_type) {
+ case BPF_CGROUP_SETSOCKOPT:
+ case BPF_CGROUP_GETSOCKOPT:
+ return 0;
+ default:
+ return -EINVAL;
+ }
+ case BPF_PROG_TYPE_SK_LOOKUP:
+ if (expected_attach_type == BPF_SK_LOOKUP)
+ return 0;
+ return -EINVAL;
+ case BPF_PROG_TYPE_SK_REUSEPORT:
+ switch (expected_attach_type) {
+ case BPF_SK_REUSEPORT_SELECT:
+ case BPF_SK_REUSEPORT_SELECT_OR_MIGRATE:
+ return 0;
+ default:
+ return -EINVAL;
+ }
+ case BPF_PROG_TYPE_SYSCALL:
+ case BPF_PROG_TYPE_EXT:
+ if (expected_attach_type)
+ return -EINVAL;
+ fallthrough;
+ default:
+ return 0;
+ }
+}
+
+static bool is_net_admin_prog_type(enum bpf_prog_type prog_type)
+{
+ switch (prog_type) {
+ case BPF_PROG_TYPE_SCHED_CLS:
+ case BPF_PROG_TYPE_SCHED_ACT:
+ case BPF_PROG_TYPE_XDP:
+ case BPF_PROG_TYPE_LWT_IN:
+ case BPF_PROG_TYPE_LWT_OUT:
+ case BPF_PROG_TYPE_LWT_XMIT:
+ case BPF_PROG_TYPE_LWT_SEG6LOCAL:
+ case BPF_PROG_TYPE_SK_SKB:
+ case BPF_PROG_TYPE_SK_MSG:
+ case BPF_PROG_TYPE_LIRC_MODE2:
+ case BPF_PROG_TYPE_FLOW_DISSECTOR:
+ case BPF_PROG_TYPE_CGROUP_DEVICE:
+ case BPF_PROG_TYPE_CGROUP_SOCK:
+ case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
+ case BPF_PROG_TYPE_CGROUP_SOCKOPT:
+ case BPF_PROG_TYPE_CGROUP_SYSCTL:
+ case BPF_PROG_TYPE_SOCK_OPS:
+ case BPF_PROG_TYPE_EXT: /* extends any prog */
+ return true;
+ case BPF_PROG_TYPE_CGROUP_SKB:
+ /* always unpriv */
+ case BPF_PROG_TYPE_SK_REUSEPORT:
+ /* equivalent to SOCKET_FILTER. need CAP_BPF only */
+ default:
+ return false;
+ }
+}
+
+static bool is_perfmon_prog_type(enum bpf_prog_type prog_type)
+{
+ switch (prog_type) {
+ case BPF_PROG_TYPE_KPROBE:
+ case BPF_PROG_TYPE_TRACEPOINT:
+ case BPF_PROG_TYPE_PERF_EVENT:
+ case BPF_PROG_TYPE_RAW_TRACEPOINT:
+ case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
+ case BPF_PROG_TYPE_TRACING:
+ case BPF_PROG_TYPE_LSM:
+ case BPF_PROG_TYPE_STRUCT_OPS: /* has access to struct sock */
+ case BPF_PROG_TYPE_EXT: /* extends any prog */
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* last field in 'union bpf_attr' used by this command */
+#define BPF_PROG_LOAD_LAST_FIELD core_relo_rec_size
+
+static int bpf_prog_load(union bpf_attr *attr, bpfptr_t uattr)
+{
+ enum bpf_prog_type type = attr->prog_type;
+ struct bpf_prog *prog, *dst_prog = NULL;
+ struct btf *attach_btf = NULL;
+ int err;
+ char license[128];
+ bool is_gpl;
+
+ if (CHECK_ATTR(BPF_PROG_LOAD))
+ return -EINVAL;
+
+ if (attr->prog_flags & ~(BPF_F_STRICT_ALIGNMENT |
+ BPF_F_ANY_ALIGNMENT |
+ BPF_F_TEST_STATE_FREQ |
+ BPF_F_SLEEPABLE |
+ BPF_F_TEST_RND_HI32 |
+ BPF_F_XDP_HAS_FRAGS))
+ return -EINVAL;
+
+ if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) &&
+ (attr->prog_flags & BPF_F_ANY_ALIGNMENT) &&
+ !bpf_capable())
+ return -EPERM;
+
+ /* copy eBPF program license from user space */
+ if (strncpy_from_bpfptr(license,
+ make_bpfptr(attr->license, uattr.is_kernel),
+ sizeof(license) - 1) < 0)
+ return -EFAULT;
+ license[sizeof(license) - 1] = 0;
+
+ /* eBPF programs must be GPL compatible to use GPL-ed functions */
+ is_gpl = license_is_gpl_compatible(license);
+
+ if (attr->insn_cnt == 0 ||
+ attr->insn_cnt > (bpf_capable() ? BPF_COMPLEXITY_LIMIT_INSNS : BPF_MAXINSNS))
+ return -E2BIG;
+ if (type != BPF_PROG_TYPE_SOCKET_FILTER &&
+ type != BPF_PROG_TYPE_CGROUP_SKB &&
+ !bpf_capable())
+ return -EPERM;
+
+ if (is_net_admin_prog_type(type) && !capable(CAP_NET_ADMIN) && !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+ if (is_perfmon_prog_type(type) && !perfmon_capable())
+ return -EPERM;
+
+ /* attach_prog_fd/attach_btf_obj_fd can specify fd of either bpf_prog
+ * or btf, we need to check which one it is
+ */
+ if (attr->attach_prog_fd) {
+ dst_prog = bpf_prog_get(attr->attach_prog_fd);
+ if (IS_ERR(dst_prog)) {
+ dst_prog = NULL;
+ attach_btf = btf_get_by_fd(attr->attach_btf_obj_fd);
+ if (IS_ERR(attach_btf))
+ return -EINVAL;
+ if (!btf_is_kernel(attach_btf)) {
+ /* attaching through specifying bpf_prog's BTF
+ * objects directly might be supported eventually
+ */
+ btf_put(attach_btf);
+ return -ENOTSUPP;
+ }
+ }
+ } else if (attr->attach_btf_id) {
+ /* fall back to vmlinux BTF, if BTF type ID is specified */
+ attach_btf = bpf_get_btf_vmlinux();
+ if (IS_ERR(attach_btf))
+ return PTR_ERR(attach_btf);
+ if (!attach_btf)
+ return -EINVAL;
+ btf_get(attach_btf);
+ }
+
+ bpf_prog_load_fixup_attach_type(attr);
+ if (bpf_prog_load_check_attach(type, attr->expected_attach_type,
+ attach_btf, attr->attach_btf_id,
+ dst_prog)) {
+ if (dst_prog)
+ bpf_prog_put(dst_prog);
+ if (attach_btf)
+ btf_put(attach_btf);
+ return -EINVAL;
+ }
+
+ /* plain bpf_prog allocation */
+ prog = bpf_prog_alloc(bpf_prog_size(attr->insn_cnt), GFP_USER);
+ if (!prog) {
+ if (dst_prog)
+ bpf_prog_put(dst_prog);
+ if (attach_btf)
+ btf_put(attach_btf);
+ return -ENOMEM;
+ }
+
+ prog->expected_attach_type = attr->expected_attach_type;
+ prog->aux->attach_btf = attach_btf;
+ prog->aux->attach_btf_id = attr->attach_btf_id;
+ prog->aux->dst_prog = dst_prog;
+ prog->aux->offload_requested = !!attr->prog_ifindex;
+ prog->aux->sleepable = attr->prog_flags & BPF_F_SLEEPABLE;
+ prog->aux->xdp_has_frags = attr->prog_flags & BPF_F_XDP_HAS_FRAGS;
+
+ err = security_bpf_prog_alloc(prog->aux);
+ if (err)
+ goto free_prog;
+
+ prog->aux->user = get_current_user();
+ prog->len = attr->insn_cnt;
+
+ err = -EFAULT;
+ if (copy_from_bpfptr(prog->insns,
+ make_bpfptr(attr->insns, uattr.is_kernel),
+ bpf_prog_insn_size(prog)) != 0)
+ goto free_prog_sec;
+
+ prog->orig_prog = NULL;
+ prog->jited = 0;
+
+ atomic64_set(&prog->aux->refcnt, 1);
+ prog->gpl_compatible = is_gpl ? 1 : 0;
+
+ if (bpf_prog_is_dev_bound(prog->aux)) {
+ err = bpf_prog_offload_init(prog, attr);
+ if (err)
+ goto free_prog_sec;
+ }
+
+ /* find program type: socket_filter vs tracing_filter */
+ err = find_prog_type(type, prog);
+ if (err < 0)
+ goto free_prog_sec;
+
+ prog->aux->load_time = ktime_get_boottime_ns();
+ err = bpf_obj_name_cpy(prog->aux->name, attr->prog_name,
+ sizeof(attr->prog_name));
+ if (err < 0)
+ goto free_prog_sec;
+
+ /* run eBPF verifier */
+ err = bpf_check(&prog, attr, uattr);
+ if (err < 0)
+ goto free_used_maps;
+
+ prog = bpf_prog_select_runtime(prog, &err);
+ if (err < 0)
+ goto free_used_maps;
+
+ err = bpf_prog_alloc_id(prog);
+ if (err)
+ goto free_used_maps;
+
+ /* Upon success of bpf_prog_alloc_id(), the BPF prog is
+ * effectively publicly exposed. However, retrieving via
+ * bpf_prog_get_fd_by_id() will take another reference,
+ * therefore it cannot be gone underneath us.
+ *
+ * Only for the time /after/ successful bpf_prog_new_fd()
+ * and before returning to userspace, we might just hold
+ * one reference and any parallel close on that fd could
+ * rip everything out. Hence, below notifications must
+ * happen before bpf_prog_new_fd().
+ *
+ * Also, any failure handling from this point onwards must
+ * be using bpf_prog_put() given the program is exposed.
+ */
+ bpf_prog_kallsyms_add(prog);
+ perf_event_bpf_event(prog, PERF_BPF_EVENT_PROG_LOAD, 0);
+ bpf_audit_prog(prog, BPF_AUDIT_LOAD);
+
+ err = bpf_prog_new_fd(prog);
+ if (err < 0)
+ bpf_prog_put(prog);
+ return err;
+
+free_used_maps:
+ /* In case we have subprogs, we need to wait for a grace
+ * period before we can tear down JIT memory since symbols
+ * are already exposed under kallsyms.
+ */
+ __bpf_prog_put_noref(prog, prog->aux->func_cnt);
+ return err;
+free_prog_sec:
+ free_uid(prog->aux->user);
+ security_bpf_prog_free(prog->aux);
+free_prog:
+ if (prog->aux->attach_btf)
+ btf_put(prog->aux->attach_btf);
+ bpf_prog_free(prog);
+ return err;
+}
+
+#define BPF_OBJ_LAST_FIELD file_flags
+
+static int bpf_obj_pin(const union bpf_attr *attr)
+{
+ if (CHECK_ATTR(BPF_OBJ) || attr->file_flags != 0)
+ return -EINVAL;
+
+ return bpf_obj_pin_user(attr->bpf_fd, u64_to_user_ptr(attr->pathname));
+}
+
+static int bpf_obj_get(const union bpf_attr *attr)
+{
+ if (CHECK_ATTR(BPF_OBJ) || attr->bpf_fd != 0 ||
+ attr->file_flags & ~BPF_OBJ_FLAG_MASK)
+ return -EINVAL;
+
+ return bpf_obj_get_user(u64_to_user_ptr(attr->pathname),
+ attr->file_flags);
+}
+
+void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
+ const struct bpf_link_ops *ops, struct bpf_prog *prog)
+{
+ atomic64_set(&link->refcnt, 1);
+ link->type = type;
+ link->id = 0;
+ link->ops = ops;
+ link->prog = prog;
+}
+
+static void bpf_link_free_id(int id)
+{
+ if (!id)
+ return;
+
+ spin_lock_bh(&link_idr_lock);
+ idr_remove(&link_idr, id);
+ spin_unlock_bh(&link_idr_lock);
+}
+
+/* Clean up bpf_link and corresponding anon_inode file and FD. After
+ * anon_inode is created, bpf_link can't be just kfree()'d due to deferred
+ * anon_inode's release() call. This helper marksbpf_link as
+ * defunct, releases anon_inode file and puts reserved FD. bpf_prog's refcnt
+ * is not decremented, it's the responsibility of a calling code that failed
+ * to complete bpf_link initialization.
+ */
+void bpf_link_cleanup(struct bpf_link_primer *primer)
+{
+ primer->link->prog = NULL;
+ bpf_link_free_id(primer->id);
+ fput(primer->file);
+ put_unused_fd(primer->fd);
+}
+
+void bpf_link_inc(struct bpf_link *link)
+{
+ atomic64_inc(&link->refcnt);
+}
+
+/* bpf_link_free is guaranteed to be called from process context */
+static void bpf_link_free(struct bpf_link *link)
+{
+ bpf_link_free_id(link->id);
+ if (link->prog) {
+ /* detach BPF program, clean up used resources */
+ link->ops->release(link);
+ bpf_prog_put(link->prog);
+ }
+ /* free bpf_link and its containing memory */
+ link->ops->dealloc(link);
+}
+
+static void bpf_link_put_deferred(struct work_struct *work)
+{
+ struct bpf_link *link = container_of(work, struct bpf_link, work);
+
+ bpf_link_free(link);
+}
+
+/* bpf_link_put can be called from atomic context, but ensures that resources
+ * are freed from process context
+ */
+void bpf_link_put(struct bpf_link *link)
+{
+ if (!atomic64_dec_and_test(&link->refcnt))
+ return;
+
+ if (in_atomic()) {
+ INIT_WORK(&link->work, bpf_link_put_deferred);
+ schedule_work(&link->work);
+ } else {
+ bpf_link_free(link);
+ }
+}
+EXPORT_SYMBOL(bpf_link_put);
+
+static int bpf_link_release(struct inode *inode, struct file *filp)
+{
+ struct bpf_link *link = filp->private_data;
+
+ bpf_link_put(link);
+ return 0;
+}
+
+#ifdef CONFIG_PROC_FS
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
+#define BPF_MAP_TYPE(_id, _ops)
+#define BPF_LINK_TYPE(_id, _name) [_id] = #_name,
+static const char *bpf_link_type_strs[] = {
+ [BPF_LINK_TYPE_UNSPEC] = "<invalid>",
+#include <linux/bpf_types.h>
+};
+#undef BPF_PROG_TYPE
+#undef BPF_MAP_TYPE
+#undef BPF_LINK_TYPE
+
+static void bpf_link_show_fdinfo(struct seq_file *m, struct file *filp)
+{
+ const struct bpf_link *link = filp->private_data;
+ const struct bpf_prog *prog = link->prog;
+ char prog_tag[sizeof(prog->tag) * 2 + 1] = { };
+
+ bin2hex(prog_tag, prog->tag, sizeof(prog->tag));
+ seq_printf(m,
+ "link_type:\t%s\n"
+ "link_id:\t%u\n"
+ "prog_tag:\t%s\n"
+ "prog_id:\t%u\n",
+ bpf_link_type_strs[link->type],
+ link->id,
+ prog_tag,
+ prog->aux->id);
+ if (link->ops->show_fdinfo)
+ link->ops->show_fdinfo(link, m);
+}
+#endif
+
+static const struct file_operations bpf_link_fops = {
+#ifdef CONFIG_PROC_FS
+ .show_fdinfo = bpf_link_show_fdinfo,
+#endif
+ .release = bpf_link_release,
+ .read = bpf_dummy_read,
+ .write = bpf_dummy_write,
+};
+
+static int bpf_link_alloc_id(struct bpf_link *link)
+{
+ int id;
+
+ idr_preload(GFP_KERNEL);
+ spin_lock_bh(&link_idr_lock);
+ id = idr_alloc_cyclic(&link_idr, link, 1, INT_MAX, GFP_ATOMIC);
+ spin_unlock_bh(&link_idr_lock);
+ idr_preload_end();
+
+ return id;
+}
+
+/* Prepare bpf_link to be exposed to user-space by allocating anon_inode file,
+ * reserving unused FD and allocating ID from link_idr. This is to be paired
+ * with bpf_link_settle() to install FD and ID and expose bpf_link to
+ * user-space, if bpf_link is successfully attached. If not, bpf_link and
+ * pre-allocated resources are to be freed with bpf_cleanup() call. All the
+ * transient state is passed around in struct bpf_link_primer.
+ * This is preferred way to create and initialize bpf_link, especially when
+ * there are complicated and expensive operations in between creating bpf_link
+ * itself and attaching it to BPF hook. By using bpf_link_prime() and
+ * bpf_link_settle() kernel code using bpf_link doesn't have to perform
+ * expensive (and potentially failing) roll back operations in a rare case
+ * that file, FD, or ID can't be allocated.
+ */
+int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer)
+{
+ struct file *file;
+ int fd, id;
+
+ fd = get_unused_fd_flags(O_CLOEXEC);
+ if (fd < 0)
+ return fd;
+
+
+ id = bpf_link_alloc_id(link);
+ if (id < 0) {
+ put_unused_fd(fd);
+ return id;
+ }
+
+ file = anon_inode_getfile("bpf_link", &bpf_link_fops, link, O_CLOEXEC);
+ if (IS_ERR(file)) {
+ bpf_link_free_id(id);
+ put_unused_fd(fd);
+ return PTR_ERR(file);
+ }
+
+ primer->link = link;
+ primer->file = file;
+ primer->fd = fd;
+ primer->id = id;
+ return 0;
+}
+
+int bpf_link_settle(struct bpf_link_primer *primer)
+{
+ /* make bpf_link fetchable by ID */
+ spin_lock_bh(&link_idr_lock);
+ primer->link->id = primer->id;
+ spin_unlock_bh(&link_idr_lock);
+ /* make bpf_link fetchable by FD */
+ fd_install(primer->fd, primer->file);
+ /* pass through installed FD */
+ return primer->fd;
+}
+
+int bpf_link_new_fd(struct bpf_link *link)
+{
+ return anon_inode_getfd("bpf-link", &bpf_link_fops, link, O_CLOEXEC);
+}
+
+struct bpf_link *bpf_link_get_from_fd(u32 ufd)
+{
+ struct fd f = fdget(ufd);
+ struct bpf_link *link;
+
+ if (!f.file)
+ return ERR_PTR(-EBADF);
+ if (f.file->f_op != &bpf_link_fops) {
+ fdput(f);
+ return ERR_PTR(-EINVAL);
+ }
+
+ link = f.file->private_data;
+ bpf_link_inc(link);
+ fdput(f);
+
+ return link;
+}
+EXPORT_SYMBOL(bpf_link_get_from_fd);
+
+static void bpf_tracing_link_release(struct bpf_link *link)
+{
+ struct bpf_tracing_link *tr_link =
+ container_of(link, struct bpf_tracing_link, link.link);
+
+ WARN_ON_ONCE(bpf_trampoline_unlink_prog(&tr_link->link,
+ tr_link->trampoline));
+
+ bpf_trampoline_put(tr_link->trampoline);
+
+ /* tgt_prog is NULL if target is a kernel function */
+ if (tr_link->tgt_prog)
+ bpf_prog_put(tr_link->tgt_prog);
+}
+
+static void bpf_tracing_link_dealloc(struct bpf_link *link)
+{
+ struct bpf_tracing_link *tr_link =
+ container_of(link, struct bpf_tracing_link, link.link);
+
+ kfree(tr_link);
+}
+
+static void bpf_tracing_link_show_fdinfo(const struct bpf_link *link,
+ struct seq_file *seq)
+{
+ struct bpf_tracing_link *tr_link =
+ container_of(link, struct bpf_tracing_link, link.link);
+
+ seq_printf(seq,
+ "attach_type:\t%d\n",
+ tr_link->attach_type);
+}
+
+static int bpf_tracing_link_fill_link_info(const struct bpf_link *link,
+ struct bpf_link_info *info)
+{
+ struct bpf_tracing_link *tr_link =
+ container_of(link, struct bpf_tracing_link, link.link);
+
+ info->tracing.attach_type = tr_link->attach_type;
+ bpf_trampoline_unpack_key(tr_link->trampoline->key,
+ &info->tracing.target_obj_id,
+ &info->tracing.target_btf_id);
+
+ return 0;
+}
+
+static const struct bpf_link_ops bpf_tracing_link_lops = {
+ .release = bpf_tracing_link_release,
+ .dealloc = bpf_tracing_link_dealloc,
+ .show_fdinfo = bpf_tracing_link_show_fdinfo,
+ .fill_link_info = bpf_tracing_link_fill_link_info,
+};
+
+static int bpf_tracing_prog_attach(struct bpf_prog *prog,
+ int tgt_prog_fd,
+ u32 btf_id,
+ u64 bpf_cookie)
+{
+ struct bpf_link_primer link_primer;
+ struct bpf_prog *tgt_prog = NULL;
+ struct bpf_trampoline *tr = NULL;
+ struct bpf_tracing_link *link;
+ u64 key = 0;
+ int err;
+
+ switch (prog->type) {
+ case BPF_PROG_TYPE_TRACING:
+ if (prog->expected_attach_type != BPF_TRACE_FENTRY &&
+ prog->expected_attach_type != BPF_TRACE_FEXIT &&
+ prog->expected_attach_type != BPF_MODIFY_RETURN) {
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+ break;
+ case BPF_PROG_TYPE_EXT:
+ if (prog->expected_attach_type != 0) {
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+ break;
+ case BPF_PROG_TYPE_LSM:
+ if (prog->expected_attach_type != BPF_LSM_MAC) {
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+ break;
+ default:
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+
+ if (!!tgt_prog_fd != !!btf_id) {
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+
+ if (tgt_prog_fd) {
+ /* For now we only allow new targets for BPF_PROG_TYPE_EXT */
+ if (prog->type != BPF_PROG_TYPE_EXT) {
+ err = -EINVAL;
+ goto out_put_prog;
+ }
+
+ tgt_prog = bpf_prog_get(tgt_prog_fd);
+ if (IS_ERR(tgt_prog)) {
+ err = PTR_ERR(tgt_prog);
+ tgt_prog = NULL;
+ goto out_put_prog;
+ }
+
+ key = bpf_trampoline_compute_key(tgt_prog, NULL, btf_id);
+ }
+
+ link = kzalloc(sizeof(*link), GFP_USER);
+ if (!link) {
+ err = -ENOMEM;
+ goto out_put_prog;
+ }
+ bpf_link_init(&link->link.link, BPF_LINK_TYPE_TRACING,
+ &bpf_tracing_link_lops, prog);
+ link->attach_type = prog->expected_attach_type;
+ link->link.cookie = bpf_cookie;
+
+ mutex_lock(&prog->aux->dst_mutex);
+
+ /* There are a few possible cases here:
+ *
+ * - if prog->aux->dst_trampoline is set, the program was just loaded
+ * and not yet attached to anything, so we can use the values stored
+ * in prog->aux
+ *
+ * - if prog->aux->dst_trampoline is NULL, the program has already been
+ * attached to a target and its initial target was cleared (below)
+ *
+ * - if tgt_prog != NULL, the caller specified tgt_prog_fd +
+ * target_btf_id using the link_create API.
+ *
+ * - if tgt_prog == NULL when this function was called using the old
+ * raw_tracepoint_open API, and we need a target from prog->aux
+ *
+ * - if prog->aux->dst_trampoline and tgt_prog is NULL, the program
+ * was detached and is going for re-attachment.
+ *
+ * - if prog->aux->dst_trampoline is NULL and tgt_prog and prog->aux->attach_btf
+ * are NULL, then program was already attached and user did not provide
+ * tgt_prog_fd so we have no way to find out or create trampoline
+ */
+ if (!prog->aux->dst_trampoline && !tgt_prog) {
+ /*
+ * Allow re-attach for TRACING and LSM programs. If it's
+ * currently linked, bpf_trampoline_link_prog will fail.
+ * EXT programs need to specify tgt_prog_fd, so they
+ * re-attach in separate code path.
+ */
+ if (prog->type != BPF_PROG_TYPE_TRACING &&
+ prog->type != BPF_PROG_TYPE_LSM) {
+ err = -EINVAL;
+ goto out_unlock;
+ }
+ /* We can allow re-attach only if we have valid attach_btf. */
+ if (!prog->aux->attach_btf) {
+ err = -EINVAL;
+ goto out_unlock;
+ }
+ btf_id = prog->aux->attach_btf_id;
+ key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, btf_id);
+ }
+
+ if (!prog->aux->dst_trampoline ||
+ (key && key != prog->aux->dst_trampoline->key)) {
+ /* If there is no saved target, or the specified target is
+ * different from the destination specified at load time, we
+ * need a new trampoline and a check for compatibility
+ */
+ struct bpf_attach_target_info tgt_info = {};
+
+ err = bpf_check_attach_target(NULL, prog, tgt_prog, btf_id,
+ &tgt_info);
+ if (err)
+ goto out_unlock;
+
+ tr = bpf_trampoline_get(key, &tgt_info);
+ if (!tr) {
+ err = -ENOMEM;
+ goto out_unlock;
+ }
+ } else {
+ /* The caller didn't specify a target, or the target was the
+ * same as the destination supplied during program load. This
+ * means we can reuse the trampoline and reference from program
+ * load time, and there is no need to allocate a new one. This
+ * can only happen once for any program, as the saved values in
+ * prog->aux are cleared below.
+ */
+ tr = prog->aux->dst_trampoline;
+ tgt_prog = prog->aux->dst_prog;
+ }
+
+ err = bpf_link_prime(&link->link.link, &link_primer);
+ if (err)
+ goto out_unlock;
+
+ err = bpf_trampoline_link_prog(&link->link, tr);
+ if (err) {
+ bpf_link_cleanup(&link_primer);
+ link = NULL;
+ goto out_unlock;
+ }
+
+ link->tgt_prog = tgt_prog;
+ link->trampoline = tr;
+
+ /* Always clear the trampoline and target prog from prog->aux to make
+ * sure the original attach destination is not kept alive after a
+ * program is (re-)attached to another target.
+ */
+ if (prog->aux->dst_prog &&
+ (tgt_prog_fd || tr != prog->aux->dst_trampoline))
+ /* got extra prog ref from syscall, or attaching to different prog */
+ bpf_prog_put(prog->aux->dst_prog);
+ if (prog->aux->dst_trampoline && tr != prog->aux->dst_trampoline)
+ /* we allocated a new trampoline, so free the old one */
+ bpf_trampoline_put(prog->aux->dst_trampoline);
+
+ prog->aux->dst_prog = NULL;
+ prog->aux->dst_trampoline = NULL;
+ mutex_unlock(&prog->aux->dst_mutex);
+
+ return bpf_link_settle(&link_primer);
+out_unlock:
+ if (tr && tr != prog->aux->dst_trampoline)
+ bpf_trampoline_put(tr);
+ mutex_unlock(&prog->aux->dst_mutex);
+ kfree(link);
+out_put_prog:
+ if (tgt_prog_fd && tgt_prog)
+ bpf_prog_put(tgt_prog);
+ return err;
+}
+
+struct bpf_raw_tp_link {
+ struct bpf_link link;
+ struct bpf_raw_event_map *btp;
+};
+
+static void bpf_raw_tp_link_release(struct bpf_link *link)
+{
+ struct bpf_raw_tp_link *raw_tp =
+ container_of(link, struct bpf_raw_tp_link, link);
+
+ bpf_probe_unregister(raw_tp->btp, raw_tp->link.prog);
+ bpf_put_raw_tracepoint(raw_tp->btp);
+}
+
+static void bpf_raw_tp_link_dealloc(struct bpf_link *link)
+{
+ struct bpf_raw_tp_link *raw_tp =
+ container_of(link, struct bpf_raw_tp_link, link);
+
+ kfree(raw_tp);
+}
+
+static void bpf_raw_tp_link_show_fdinfo(const struct bpf_link *link,
+ struct seq_file *seq)
+{
+ struct bpf_raw_tp_link *raw_tp_link =
+ container_of(link, struct bpf_raw_tp_link, link);
+
+ seq_printf(seq,
+ "tp_name:\t%s\n",
+ raw_tp_link->btp->tp->name);
+}
+
+static int bpf_raw_tp_link_fill_link_info(const struct bpf_link *link,
+ struct bpf_link_info *info)
+{
+ struct bpf_raw_tp_link *raw_tp_link =
+ container_of(link, struct bpf_raw_tp_link, link);
+ char __user *ubuf = u64_to_user_ptr(info->raw_tracepoint.tp_name);
+ const char *tp_name = raw_tp_link->btp->tp->name;
+ u32 ulen = info->raw_tracepoint.tp_name_len;
+ size_t tp_len = strlen(tp_name);
+
+ if (!ulen ^ !ubuf)
+ return -EINVAL;
+
+ info->raw_tracepoint.tp_name_len = tp_len + 1;
+
+ if (!ubuf)
+ return 0;
+
+ if (ulen >= tp_len + 1) {
+ if (copy_to_user(ubuf, tp_name, tp_len + 1))
+ return -EFAULT;
+ } else {
+ char zero = '\0';
+
+ if (copy_to_user(ubuf, tp_name, ulen - 1))
+ return -EFAULT;
+ if (put_user(zero, ubuf + ulen - 1))
+ return -EFAULT;
+ return -ENOSPC;
+ }
+
+ return 0;
+}
+
+static const struct bpf_link_ops bpf_raw_tp_link_lops = {
+ .release = bpf_raw_tp_link_release,
+ .dealloc = bpf_raw_tp_link_dealloc,
+ .show_fdinfo = bpf_raw_tp_link_show_fdinfo,
+ .fill_link_info = bpf_raw_tp_link_fill_link_info,
+};
+
+#ifdef CONFIG_PERF_EVENTS
+struct bpf_perf_link {
+ struct bpf_link link;
+ struct file *perf_file;
+};
+
+static void bpf_perf_link_release(struct bpf_link *link)
+{
+ struct bpf_perf_link *perf_link = container_of(link, struct bpf_perf_link, link);
+ struct perf_event *event = perf_link->perf_file->private_data;
+
+ perf_event_free_bpf_prog(event);
+ fput(perf_link->perf_file);
+}
+
+static void bpf_perf_link_dealloc(struct bpf_link *link)
+{
+ struct bpf_perf_link *perf_link = container_of(link, struct bpf_perf_link, link);
+
+ kfree(perf_link);
+}
+
+static const struct bpf_link_ops bpf_perf_link_lops = {
+ .release = bpf_perf_link_release,
+ .dealloc = bpf_perf_link_dealloc,
+};
+
+static int bpf_perf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
+{
+ struct bpf_link_primer link_primer;
+ struct bpf_perf_link *link;
+ struct perf_event *event;
+ struct file *perf_file;
+ int err;
+
+ if (attr->link_create.flags)
+ return -EINVAL;
+
+ perf_file = perf_event_get(attr->link_create.target_fd);
+ if (IS_ERR(perf_file))
+ return PTR_ERR(perf_file);
+
+ link = kzalloc(sizeof(*link), GFP_USER);
+ if (!link) {
+ err = -ENOMEM;
+ goto out_put_file;
+ }
+ bpf_link_init(&link->link, BPF_LINK_TYPE_PERF_EVENT, &bpf_perf_link_lops, prog);
+ link->perf_file = perf_file;
+
+ err = bpf_link_prime(&link->link, &link_primer);
+ if (err) {
+ kfree(link);
+ goto out_put_file;
+ }
+
+ event = perf_file->private_data;
+ err = perf_event_set_bpf_prog(event, prog, attr->link_create.perf_event.bpf_cookie);
+ if (err) {
+ bpf_link_cleanup(&link_primer);
+ goto out_put_file;
+ }
+ /* perf_event_set_bpf_prog() doesn't take its own refcnt on prog */
+ bpf_prog_inc(prog);
+
+ return bpf_link_settle(&link_primer);
+
+out_put_file:
+ fput(perf_file);
+ return err;
+}
+#else
+static int bpf_perf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
+{
+ return -EOPNOTSUPP;
+}
+#endif /* CONFIG_PERF_EVENTS */
+
+static int bpf_raw_tp_link_attach(struct bpf_prog *prog,
+ const char __user *user_tp_name)
+{
+ struct bpf_link_primer link_primer;
+ struct bpf_raw_tp_link *link;
+ struct bpf_raw_event_map *btp;
+ const char *tp_name;
+ char buf[128];
+ int err;
+
+ switch (prog->type) {
+ case BPF_PROG_TYPE_TRACING:
+ case BPF_PROG_TYPE_EXT:
+ case BPF_PROG_TYPE_LSM:
+ if (user_tp_name)
+ /* The attach point for this category of programs
+ * should be specified via btf_id during program load.
+ */
+ return -EINVAL;
+ if (prog->type == BPF_PROG_TYPE_TRACING &&
+ prog->expected_attach_type == BPF_TRACE_RAW_TP) {
+ tp_name = prog->aux->attach_func_name;
+ break;
+ }
+ return bpf_tracing_prog_attach(prog, 0, 0, 0);
+ case BPF_PROG_TYPE_RAW_TRACEPOINT:
+ case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
+ if (strncpy_from_user(buf, user_tp_name, sizeof(buf) - 1) < 0)
+ return -EFAULT;
+ buf[sizeof(buf) - 1] = 0;
+ tp_name = buf;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ btp = bpf_get_raw_tracepoint(tp_name);
+ if (!btp)
+ return -ENOENT;
+
+ link = kzalloc(sizeof(*link), GFP_USER);
+ if (!link) {
+ err = -ENOMEM;
+ goto out_put_btp;
+ }
+ bpf_link_init(&link->link, BPF_LINK_TYPE_RAW_TRACEPOINT,
+ &bpf_raw_tp_link_lops, prog);
+ link->btp = btp;
+
+ err = bpf_link_prime(&link->link, &link_primer);
+ if (err) {
+ kfree(link);
+ goto out_put_btp;
+ }
+
+ err = bpf_probe_register(link->btp, prog);
+ if (err) {
+ bpf_link_cleanup(&link_primer);
+ goto out_put_btp;
+ }
+
+ return bpf_link_settle(&link_primer);
+
+out_put_btp:
+ bpf_put_raw_tracepoint(btp);
+ return err;
+}
+
+#define BPF_RAW_TRACEPOINT_OPEN_LAST_FIELD raw_tracepoint.prog_fd
+
+static int bpf_raw_tracepoint_open(const union bpf_attr *attr)
+{
+ struct bpf_prog *prog;
+ int fd;
+
+ if (CHECK_ATTR(BPF_RAW_TRACEPOINT_OPEN))
+ return -EINVAL;
+
+ prog = bpf_prog_get(attr->raw_tracepoint.prog_fd);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ fd = bpf_raw_tp_link_attach(prog, u64_to_user_ptr(attr->raw_tracepoint.name));
+ if (fd < 0)
+ bpf_prog_put(prog);
+ return fd;
+}
+
+static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog,
+ enum bpf_attach_type attach_type)
+{
+ switch (prog->type) {
+ case BPF_PROG_TYPE_CGROUP_SOCK:
+ case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
+ case BPF_PROG_TYPE_CGROUP_SOCKOPT:
+ case BPF_PROG_TYPE_SK_LOOKUP:
+ return attach_type == prog->expected_attach_type ? 0 : -EINVAL;
+ case BPF_PROG_TYPE_CGROUP_SKB:
+ if (!capable(CAP_NET_ADMIN))
+ /* cg-skb progs can be loaded by unpriv user.
+ * check permissions at attach time.
+ */
+ return -EPERM;
+ return prog->enforce_expected_attach_type &&
+ prog->expected_attach_type != attach_type ?
+ -EINVAL : 0;
+ case BPF_PROG_TYPE_KPROBE:
+ if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI &&
+ attach_type != BPF_TRACE_KPROBE_MULTI)
+ return -EINVAL;
+ return 0;
+ default:
+ return 0;
+ }
+}
+
+static enum bpf_prog_type
+attach_type_to_prog_type(enum bpf_attach_type attach_type)
+{
+ switch (attach_type) {
+ case BPF_CGROUP_INET_INGRESS:
+ case BPF_CGROUP_INET_EGRESS:
+ return BPF_PROG_TYPE_CGROUP_SKB;
+ case BPF_CGROUP_INET_SOCK_CREATE:
+ case BPF_CGROUP_INET_SOCK_RELEASE:
+ case BPF_CGROUP_INET4_POST_BIND:
+ case BPF_CGROUP_INET6_POST_BIND:
+ return BPF_PROG_TYPE_CGROUP_SOCK;
+ case BPF_CGROUP_INET4_BIND:
+ case BPF_CGROUP_INET6_BIND:
+ case BPF_CGROUP_INET4_CONNECT:
+ case BPF_CGROUP_INET6_CONNECT:
+ case BPF_CGROUP_INET4_GETPEERNAME:
+ case BPF_CGROUP_INET6_GETPEERNAME:
+ case BPF_CGROUP_INET4_GETSOCKNAME:
+ case BPF_CGROUP_INET6_GETSOCKNAME:
+ case BPF_CGROUP_UDP4_SENDMSG:
+ case BPF_CGROUP_UDP6_SENDMSG:
+ case BPF_CGROUP_UDP4_RECVMSG:
+ case BPF_CGROUP_UDP6_RECVMSG:
+ return BPF_PROG_TYPE_CGROUP_SOCK_ADDR;
+ case BPF_CGROUP_SOCK_OPS:
+ return BPF_PROG_TYPE_SOCK_OPS;
+ case BPF_CGROUP_DEVICE:
+ return BPF_PROG_TYPE_CGROUP_DEVICE;
+ case BPF_SK_MSG_VERDICT:
+ return BPF_PROG_TYPE_SK_MSG;
+ case BPF_SK_SKB_STREAM_PARSER:
+ case BPF_SK_SKB_STREAM_VERDICT:
+ case BPF_SK_SKB_VERDICT:
+ return BPF_PROG_TYPE_SK_SKB;
+ case BPF_LIRC_MODE2:
+ return BPF_PROG_TYPE_LIRC_MODE2;
+ case BPF_FLOW_DISSECTOR:
+ return BPF_PROG_TYPE_FLOW_DISSECTOR;
+ case BPF_CGROUP_SYSCTL:
+ return BPF_PROG_TYPE_CGROUP_SYSCTL;
+ case BPF_CGROUP_GETSOCKOPT:
+ case BPF_CGROUP_SETSOCKOPT:
+ return BPF_PROG_TYPE_CGROUP_SOCKOPT;
+ case BPF_TRACE_ITER:
+ case BPF_TRACE_RAW_TP:
+ case BPF_TRACE_FENTRY:
+ case BPF_TRACE_FEXIT:
+ case BPF_MODIFY_RETURN:
+ return BPF_PROG_TYPE_TRACING;
+ case BPF_LSM_MAC:
+ return BPF_PROG_TYPE_LSM;
+ case BPF_SK_LOOKUP:
+ return BPF_PROG_TYPE_SK_LOOKUP;
+ case BPF_XDP:
+ return BPF_PROG_TYPE_XDP;
+ case BPF_LSM_CGROUP:
+ return BPF_PROG_TYPE_LSM;
+ default:
+ return BPF_PROG_TYPE_UNSPEC;
+ }
+}
+
+#define BPF_PROG_ATTACH_LAST_FIELD replace_bpf_fd
+
+#define BPF_F_ATTACH_MASK \
+ (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI | BPF_F_REPLACE)
+
+static int bpf_prog_attach(const union bpf_attr *attr)
+{
+ enum bpf_prog_type ptype;
+ struct bpf_prog *prog;
+ int ret;
+
+ if (CHECK_ATTR(BPF_PROG_ATTACH))
+ return -EINVAL;
+
+ if (attr->attach_flags & ~BPF_F_ATTACH_MASK)
+ return -EINVAL;
+
+ ptype = attach_type_to_prog_type(attr->attach_type);
+ if (ptype == BPF_PROG_TYPE_UNSPEC)
+ return -EINVAL;
+
+ prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ if (bpf_prog_attach_check_attach_type(prog, attr->attach_type)) {
+ bpf_prog_put(prog);
+ return -EINVAL;
+ }
+
+ switch (ptype) {
+ case BPF_PROG_TYPE_SK_SKB:
+ case BPF_PROG_TYPE_SK_MSG:
+ ret = sock_map_get_from_fd(attr, prog);
+ break;
+ case BPF_PROG_TYPE_LIRC_MODE2:
+ ret = lirc_prog_attach(attr, prog);
+ break;
+ case BPF_PROG_TYPE_FLOW_DISSECTOR:
+ ret = netns_bpf_prog_attach(attr, prog);
+ break;
+ case BPF_PROG_TYPE_CGROUP_DEVICE:
+ case BPF_PROG_TYPE_CGROUP_SKB:
+ case BPF_PROG_TYPE_CGROUP_SOCK:
+ case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
+ case BPF_PROG_TYPE_CGROUP_SOCKOPT:
+ case BPF_PROG_TYPE_CGROUP_SYSCTL:
+ case BPF_PROG_TYPE_SOCK_OPS:
+ case BPF_PROG_TYPE_LSM:
+ if (ptype == BPF_PROG_TYPE_LSM &&
+ prog->expected_attach_type != BPF_LSM_CGROUP)
+ ret = -EINVAL;
+ else
+ ret = cgroup_bpf_prog_attach(attr, ptype, prog);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ if (ret)
+ bpf_prog_put(prog);
+ return ret;
+}
+
+#define BPF_PROG_DETACH_LAST_FIELD attach_type
+
+static int bpf_prog_detach(const union bpf_attr *attr)
+{
+ enum bpf_prog_type ptype;
+
+ if (CHECK_ATTR(BPF_PROG_DETACH))
+ return -EINVAL;
+
+ ptype = attach_type_to_prog_type(attr->attach_type);
+
+ switch (ptype) {
+ case BPF_PROG_TYPE_SK_MSG:
+ case BPF_PROG_TYPE_SK_SKB:
+ return sock_map_prog_detach(attr, ptype);
+ case BPF_PROG_TYPE_LIRC_MODE2:
+ return lirc_prog_detach(attr);
+ case BPF_PROG_TYPE_FLOW_DISSECTOR:
+ return netns_bpf_prog_detach(attr, ptype);
+ case BPF_PROG_TYPE_CGROUP_DEVICE:
+ case BPF_PROG_TYPE_CGROUP_SKB:
+ case BPF_PROG_TYPE_CGROUP_SOCK:
+ case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
+ case BPF_PROG_TYPE_CGROUP_SOCKOPT:
+ case BPF_PROG_TYPE_CGROUP_SYSCTL:
+ case BPF_PROG_TYPE_SOCK_OPS:
+ case BPF_PROG_TYPE_LSM:
+ return cgroup_bpf_prog_detach(attr, ptype);
+ default:
+ return -EINVAL;
+ }
+}
+
+#define BPF_PROG_QUERY_LAST_FIELD query.prog_attach_flags
+
+static int bpf_prog_query(const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ if (!capable(CAP_NET_ADMIN))
+ return -EPERM;
+ if (CHECK_ATTR(BPF_PROG_QUERY))
+ return -EINVAL;
+ if (attr->query.query_flags & ~BPF_F_QUERY_EFFECTIVE)
+ return -EINVAL;
+
+ switch (attr->query.attach_type) {
+ case BPF_CGROUP_INET_INGRESS:
+ case BPF_CGROUP_INET_EGRESS:
+ case BPF_CGROUP_INET_SOCK_CREATE:
+ case BPF_CGROUP_INET_SOCK_RELEASE:
+ case BPF_CGROUP_INET4_BIND:
+ case BPF_CGROUP_INET6_BIND:
+ case BPF_CGROUP_INET4_POST_BIND:
+ case BPF_CGROUP_INET6_POST_BIND:
+ case BPF_CGROUP_INET4_CONNECT:
+ case BPF_CGROUP_INET6_CONNECT:
+ case BPF_CGROUP_INET4_GETPEERNAME:
+ case BPF_CGROUP_INET6_GETPEERNAME:
+ case BPF_CGROUP_INET4_GETSOCKNAME:
+ case BPF_CGROUP_INET6_GETSOCKNAME:
+ case BPF_CGROUP_UDP4_SENDMSG:
+ case BPF_CGROUP_UDP6_SENDMSG:
+ case BPF_CGROUP_UDP4_RECVMSG:
+ case BPF_CGROUP_UDP6_RECVMSG:
+ case BPF_CGROUP_SOCK_OPS:
+ case BPF_CGROUP_DEVICE:
+ case BPF_CGROUP_SYSCTL:
+ case BPF_CGROUP_GETSOCKOPT:
+ case BPF_CGROUP_SETSOCKOPT:
+ case BPF_LSM_CGROUP:
+ return cgroup_bpf_prog_query(attr, uattr);
+ case BPF_LIRC_MODE2:
+ return lirc_prog_query(attr, uattr);
+ case BPF_FLOW_DISSECTOR:
+ case BPF_SK_LOOKUP:
+ return netns_bpf_prog_query(attr, uattr);
+ case BPF_SK_SKB_STREAM_PARSER:
+ case BPF_SK_SKB_STREAM_VERDICT:
+ case BPF_SK_MSG_VERDICT:
+ case BPF_SK_SKB_VERDICT:
+ return sock_map_bpf_prog_query(attr, uattr);
+ default:
+ return -EINVAL;
+ }
+}
+
+#define BPF_PROG_TEST_RUN_LAST_FIELD test.batch_size
+
+static int bpf_prog_test_run(const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ struct bpf_prog *prog;
+ int ret = -ENOTSUPP;
+
+ if (CHECK_ATTR(BPF_PROG_TEST_RUN))
+ return -EINVAL;
+
+ if ((attr->test.ctx_size_in && !attr->test.ctx_in) ||
+ (!attr->test.ctx_size_in && attr->test.ctx_in))
+ return -EINVAL;
+
+ if ((attr->test.ctx_size_out && !attr->test.ctx_out) ||
+ (!attr->test.ctx_size_out && attr->test.ctx_out))
+ return -EINVAL;
+
+ prog = bpf_prog_get(attr->test.prog_fd);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ if (prog->aux->ops->test_run)
+ ret = prog->aux->ops->test_run(prog, attr, uattr);
+
+ bpf_prog_put(prog);
+ return ret;
+}
+
+#define BPF_OBJ_GET_NEXT_ID_LAST_FIELD next_id
+
+static int bpf_obj_get_next_id(const union bpf_attr *attr,
+ union bpf_attr __user *uattr,
+ struct idr *idr,
+ spinlock_t *lock)
+{
+ u32 next_id = attr->start_id;
+ int err = 0;
+
+ if (CHECK_ATTR(BPF_OBJ_GET_NEXT_ID) || next_id >= INT_MAX)
+ return -EINVAL;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ next_id++;
+ spin_lock_bh(lock);
+ if (!idr_get_next(idr, &next_id))
+ err = -ENOENT;
+ spin_unlock_bh(lock);
+
+ if (!err)
+ err = put_user(next_id, &uattr->next_id);
+
+ return err;
+}
+
+struct bpf_map *bpf_map_get_curr_or_next(u32 *id)
+{
+ struct bpf_map *map;
+
+ spin_lock_bh(&map_idr_lock);
+again:
+ map = idr_get_next(&map_idr, id);
+ if (map) {
+ map = __bpf_map_inc_not_zero(map, false);
+ if (IS_ERR(map)) {
+ (*id)++;
+ goto again;
+ }
+ }
+ spin_unlock_bh(&map_idr_lock);
+
+ return map;
+}
+
+struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id)
+{
+ struct bpf_prog *prog;
+
+ spin_lock_bh(&prog_idr_lock);
+again:
+ prog = idr_get_next(&prog_idr, id);
+ if (prog) {
+ prog = bpf_prog_inc_not_zero(prog);
+ if (IS_ERR(prog)) {
+ (*id)++;
+ goto again;
+ }
+ }
+ spin_unlock_bh(&prog_idr_lock);
+
+ return prog;
+}
+
+#define BPF_PROG_GET_FD_BY_ID_LAST_FIELD prog_id
+
+struct bpf_prog *bpf_prog_by_id(u32 id)
+{
+ struct bpf_prog *prog;
+
+ if (!id)
+ return ERR_PTR(-ENOENT);
+
+ spin_lock_bh(&prog_idr_lock);
+ prog = idr_find(&prog_idr, id);
+ if (prog)
+ prog = bpf_prog_inc_not_zero(prog);
+ else
+ prog = ERR_PTR(-ENOENT);
+ spin_unlock_bh(&prog_idr_lock);
+ return prog;
+}
+
+static int bpf_prog_get_fd_by_id(const union bpf_attr *attr)
+{
+ struct bpf_prog *prog;
+ u32 id = attr->prog_id;
+ int fd;
+
+ if (CHECK_ATTR(BPF_PROG_GET_FD_BY_ID))
+ return -EINVAL;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ prog = bpf_prog_by_id(id);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ fd = bpf_prog_new_fd(prog);
+ if (fd < 0)
+ bpf_prog_put(prog);
+
+ return fd;
+}
+
+#define BPF_MAP_GET_FD_BY_ID_LAST_FIELD open_flags
+
+static int bpf_map_get_fd_by_id(const union bpf_attr *attr)
+{
+ struct bpf_map *map;
+ u32 id = attr->map_id;
+ int f_flags;
+ int fd;
+
+ if (CHECK_ATTR(BPF_MAP_GET_FD_BY_ID) ||
+ attr->open_flags & ~BPF_OBJ_FLAG_MASK)
+ return -EINVAL;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ f_flags = bpf_get_file_flag(attr->open_flags);
+ if (f_flags < 0)
+ return f_flags;
+
+ spin_lock_bh(&map_idr_lock);
+ map = idr_find(&map_idr, id);
+ if (map)
+ map = __bpf_map_inc_not_zero(map, true);
+ else
+ map = ERR_PTR(-ENOENT);
+ spin_unlock_bh(&map_idr_lock);
+
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+
+ fd = bpf_map_new_fd(map, f_flags);
+ if (fd < 0)
+ bpf_map_put_with_uref(map);
+
+ return fd;
+}
+
+static const struct bpf_map *bpf_map_from_imm(const struct bpf_prog *prog,
+ unsigned long addr, u32 *off,
+ u32 *type)
+{
+ const struct bpf_map *map;
+ int i;
+
+ mutex_lock(&prog->aux->used_maps_mutex);
+ for (i = 0, *off = 0; i < prog->aux->used_map_cnt; i++) {
+ map = prog->aux->used_maps[i];
+ if (map == (void *)addr) {
+ *type = BPF_PSEUDO_MAP_FD;
+ goto out;
+ }
+ if (!map->ops->map_direct_value_meta)
+ continue;
+ if (!map->ops->map_direct_value_meta(map, addr, off)) {
+ *type = BPF_PSEUDO_MAP_VALUE;
+ goto out;
+ }
+ }
+ map = NULL;
+
+out:
+ mutex_unlock(&prog->aux->used_maps_mutex);
+ return map;
+}
+
+static struct bpf_insn *bpf_insn_prepare_dump(const struct bpf_prog *prog,
+ const struct cred *f_cred)
+{
+ const struct bpf_map *map;
+ struct bpf_insn *insns;
+ u32 off, type;
+ u64 imm;
+ u8 code;
+ int i;
+
+ insns = kmemdup(prog->insnsi, bpf_prog_insn_size(prog),
+ GFP_USER);
+ if (!insns)
+ return insns;
+
+ for (i = 0; i < prog->len; i++) {
+ code = insns[i].code;
+
+ if (code == (BPF_JMP | BPF_TAIL_CALL)) {
+ insns[i].code = BPF_JMP | BPF_CALL;
+ insns[i].imm = BPF_FUNC_tail_call;
+ /* fall-through */
+ }
+ if (code == (BPF_JMP | BPF_CALL) ||
+ code == (BPF_JMP | BPF_CALL_ARGS)) {
+ if (code == (BPF_JMP | BPF_CALL_ARGS))
+ insns[i].code = BPF_JMP | BPF_CALL;
+ if (!bpf_dump_raw_ok(f_cred))
+ insns[i].imm = 0;
+ continue;
+ }
+ if (BPF_CLASS(code) == BPF_LDX && BPF_MODE(code) == BPF_PROBE_MEM) {
+ insns[i].code = BPF_LDX | BPF_SIZE(code) | BPF_MEM;
+ continue;
+ }
+
+ if (code != (BPF_LD | BPF_IMM | BPF_DW))
+ continue;
+
+ imm = ((u64)insns[i + 1].imm << 32) | (u32)insns[i].imm;
+ map = bpf_map_from_imm(prog, imm, &off, &type);
+ if (map) {
+ insns[i].src_reg = type;
+ insns[i].imm = map->id;
+ insns[i + 1].imm = off;
+ continue;
+ }
+ }
+
+ return insns;
+}
+
+static int set_info_rec_size(struct bpf_prog_info *info)
+{
+ /*
+ * Ensure info.*_rec_size is the same as kernel expected size
+ *
+ * or
+ *
+ * Only allow zero *_rec_size if both _rec_size and _cnt are
+ * zero. In this case, the kernel will set the expected
+ * _rec_size back to the info.
+ */
+
+ if ((info->nr_func_info || info->func_info_rec_size) &&
+ info->func_info_rec_size != sizeof(struct bpf_func_info))
+ return -EINVAL;
+
+ if ((info->nr_line_info || info->line_info_rec_size) &&
+ info->line_info_rec_size != sizeof(struct bpf_line_info))
+ return -EINVAL;
+
+ if ((info->nr_jited_line_info || info->jited_line_info_rec_size) &&
+ info->jited_line_info_rec_size != sizeof(__u64))
+ return -EINVAL;
+
+ info->func_info_rec_size = sizeof(struct bpf_func_info);
+ info->line_info_rec_size = sizeof(struct bpf_line_info);
+ info->jited_line_info_rec_size = sizeof(__u64);
+
+ return 0;
+}
+
+static int bpf_prog_get_info_by_fd(struct file *file,
+ struct bpf_prog *prog,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ struct bpf_prog_info __user *uinfo = u64_to_user_ptr(attr->info.info);
+ struct btf *attach_btf = bpf_prog_get_target_btf(prog);
+ struct bpf_prog_info info;
+ u32 info_len = attr->info.info_len;
+ struct bpf_prog_kstats stats;
+ char __user *uinsns;
+ u32 ulen;
+ int err;
+
+ err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len);
+ if (err)
+ return err;
+ info_len = min_t(u32, sizeof(info), info_len);
+
+ memset(&info, 0, sizeof(info));
+ if (copy_from_user(&info, uinfo, info_len))
+ return -EFAULT;
+
+ info.type = prog->type;
+ info.id = prog->aux->id;
+ info.load_time = prog->aux->load_time;
+ info.created_by_uid = from_kuid_munged(current_user_ns(),
+ prog->aux->user->uid);
+ info.gpl_compatible = prog->gpl_compatible;
+
+ memcpy(info.tag, prog->tag, sizeof(prog->tag));
+ memcpy(info.name, prog->aux->name, sizeof(prog->aux->name));
+
+ mutex_lock(&prog->aux->used_maps_mutex);
+ ulen = info.nr_map_ids;
+ info.nr_map_ids = prog->aux->used_map_cnt;
+ ulen = min_t(u32, info.nr_map_ids, ulen);
+ if (ulen) {
+ u32 __user *user_map_ids = u64_to_user_ptr(info.map_ids);
+ u32 i;
+
+ for (i = 0; i < ulen; i++)
+ if (put_user(prog->aux->used_maps[i]->id,
+ &user_map_ids[i])) {
+ mutex_unlock(&prog->aux->used_maps_mutex);
+ return -EFAULT;
+ }
+ }
+ mutex_unlock(&prog->aux->used_maps_mutex);
+
+ err = set_info_rec_size(&info);
+ if (err)
+ return err;
+
+ bpf_prog_get_stats(prog, &stats);
+ info.run_time_ns = stats.nsecs;
+ info.run_cnt = stats.cnt;
+ info.recursion_misses = stats.misses;
+
+ info.verified_insns = prog->aux->verified_insns;
+
+ if (!bpf_capable()) {
+ info.jited_prog_len = 0;
+ info.xlated_prog_len = 0;
+ info.nr_jited_ksyms = 0;
+ info.nr_jited_func_lens = 0;
+ info.nr_func_info = 0;
+ info.nr_line_info = 0;
+ info.nr_jited_line_info = 0;
+ goto done;
+ }
+
+ ulen = info.xlated_prog_len;
+ info.xlated_prog_len = bpf_prog_insn_size(prog);
+ if (info.xlated_prog_len && ulen) {
+ struct bpf_insn *insns_sanitized;
+ bool fault;
+
+ if (prog->blinded && !bpf_dump_raw_ok(file->f_cred)) {
+ info.xlated_prog_insns = 0;
+ goto done;
+ }
+ insns_sanitized = bpf_insn_prepare_dump(prog, file->f_cred);
+ if (!insns_sanitized)
+ return -ENOMEM;
+ uinsns = u64_to_user_ptr(info.xlated_prog_insns);
+ ulen = min_t(u32, info.xlated_prog_len, ulen);
+ fault = copy_to_user(uinsns, insns_sanitized, ulen);
+ kfree(insns_sanitized);
+ if (fault)
+ return -EFAULT;
+ }
+
+ if (bpf_prog_is_dev_bound(prog->aux)) {
+ err = bpf_prog_offload_info_fill(&info, prog);
+ if (err)
+ return err;
+ goto done;
+ }
+
+ /* NOTE: the following code is supposed to be skipped for offload.
+ * bpf_prog_offload_info_fill() is the place to fill similar fields
+ * for offload.
+ */
+ ulen = info.jited_prog_len;
+ if (prog->aux->func_cnt) {
+ u32 i;
+
+ info.jited_prog_len = 0;
+ for (i = 0; i < prog->aux->func_cnt; i++)
+ info.jited_prog_len += prog->aux->func[i]->jited_len;
+ } else {
+ info.jited_prog_len = prog->jited_len;
+ }
+
+ if (info.jited_prog_len && ulen) {
+ if (bpf_dump_raw_ok(file->f_cred)) {
+ uinsns = u64_to_user_ptr(info.jited_prog_insns);
+ ulen = min_t(u32, info.jited_prog_len, ulen);
+
+ /* for multi-function programs, copy the JITed
+ * instructions for all the functions
+ */
+ if (prog->aux->func_cnt) {
+ u32 len, free, i;
+ u8 *img;
+
+ free = ulen;
+ for (i = 0; i < prog->aux->func_cnt; i++) {
+ len = prog->aux->func[i]->jited_len;
+ len = min_t(u32, len, free);
+ img = (u8 *) prog->aux->func[i]->bpf_func;
+ if (copy_to_user(uinsns, img, len))
+ return -EFAULT;
+ uinsns += len;
+ free -= len;
+ if (!free)
+ break;
+ }
+ } else {
+ if (copy_to_user(uinsns, prog->bpf_func, ulen))
+ return -EFAULT;
+ }
+ } else {
+ info.jited_prog_insns = 0;
+ }
+ }
+
+ ulen = info.nr_jited_ksyms;
+ info.nr_jited_ksyms = prog->aux->func_cnt ? : 1;
+ if (ulen) {
+ if (bpf_dump_raw_ok(file->f_cred)) {
+ unsigned long ksym_addr;
+ u64 __user *user_ksyms;
+ u32 i;
+
+ /* copy the address of the kernel symbol
+ * corresponding to each function
+ */
+ ulen = min_t(u32, info.nr_jited_ksyms, ulen);
+ user_ksyms = u64_to_user_ptr(info.jited_ksyms);
+ if (prog->aux->func_cnt) {
+ for (i = 0; i < ulen; i++) {
+ ksym_addr = (unsigned long)
+ prog->aux->func[i]->bpf_func;
+ if (put_user((u64) ksym_addr,
+ &user_ksyms[i]))
+ return -EFAULT;
+ }
+ } else {
+ ksym_addr = (unsigned long) prog->bpf_func;
+ if (put_user((u64) ksym_addr, &user_ksyms[0]))
+ return -EFAULT;
+ }
+ } else {
+ info.jited_ksyms = 0;
+ }
+ }
+
+ ulen = info.nr_jited_func_lens;
+ info.nr_jited_func_lens = prog->aux->func_cnt ? : 1;
+ if (ulen) {
+ if (bpf_dump_raw_ok(file->f_cred)) {
+ u32 __user *user_lens;
+ u32 func_len, i;
+
+ /* copy the JITed image lengths for each function */
+ ulen = min_t(u32, info.nr_jited_func_lens, ulen);
+ user_lens = u64_to_user_ptr(info.jited_func_lens);
+ if (prog->aux->func_cnt) {
+ for (i = 0; i < ulen; i++) {
+ func_len =
+ prog->aux->func[i]->jited_len;
+ if (put_user(func_len, &user_lens[i]))
+ return -EFAULT;
+ }
+ } else {
+ func_len = prog->jited_len;
+ if (put_user(func_len, &user_lens[0]))
+ return -EFAULT;
+ }
+ } else {
+ info.jited_func_lens = 0;
+ }
+ }
+
+ if (prog->aux->btf)
+ info.btf_id = btf_obj_id(prog->aux->btf);
+ info.attach_btf_id = prog->aux->attach_btf_id;
+ if (attach_btf)
+ info.attach_btf_obj_id = btf_obj_id(attach_btf);
+
+ ulen = info.nr_func_info;
+ info.nr_func_info = prog->aux->func_info_cnt;
+ if (info.nr_func_info && ulen) {
+ char __user *user_finfo;
+
+ user_finfo = u64_to_user_ptr(info.func_info);
+ ulen = min_t(u32, info.nr_func_info, ulen);
+ if (copy_to_user(user_finfo, prog->aux->func_info,
+ info.func_info_rec_size * ulen))
+ return -EFAULT;
+ }
+
+ ulen = info.nr_line_info;
+ info.nr_line_info = prog->aux->nr_linfo;
+ if (info.nr_line_info && ulen) {
+ __u8 __user *user_linfo;
+
+ user_linfo = u64_to_user_ptr(info.line_info);
+ ulen = min_t(u32, info.nr_line_info, ulen);
+ if (copy_to_user(user_linfo, prog->aux->linfo,
+ info.line_info_rec_size * ulen))
+ return -EFAULT;
+ }
+
+ ulen = info.nr_jited_line_info;
+ if (prog->aux->jited_linfo)
+ info.nr_jited_line_info = prog->aux->nr_linfo;
+ else
+ info.nr_jited_line_info = 0;
+ if (info.nr_jited_line_info && ulen) {
+ if (bpf_dump_raw_ok(file->f_cred)) {
+ unsigned long line_addr;
+ __u64 __user *user_linfo;
+ u32 i;
+
+ user_linfo = u64_to_user_ptr(info.jited_line_info);
+ ulen = min_t(u32, info.nr_jited_line_info, ulen);
+ for (i = 0; i < ulen; i++) {
+ line_addr = (unsigned long)prog->aux->jited_linfo[i];
+ if (put_user((__u64)line_addr, &user_linfo[i]))
+ return -EFAULT;
+ }
+ } else {
+ info.jited_line_info = 0;
+ }
+ }
+
+ ulen = info.nr_prog_tags;
+ info.nr_prog_tags = prog->aux->func_cnt ? : 1;
+ if (ulen) {
+ __u8 __user (*user_prog_tags)[BPF_TAG_SIZE];
+ u32 i;
+
+ user_prog_tags = u64_to_user_ptr(info.prog_tags);
+ ulen = min_t(u32, info.nr_prog_tags, ulen);
+ if (prog->aux->func_cnt) {
+ for (i = 0; i < ulen; i++) {
+ if (copy_to_user(user_prog_tags[i],
+ prog->aux->func[i]->tag,
+ BPF_TAG_SIZE))
+ return -EFAULT;
+ }
+ } else {
+ if (copy_to_user(user_prog_tags[0],
+ prog->tag, BPF_TAG_SIZE))
+ return -EFAULT;
+ }
+ }
+
+done:
+ if (copy_to_user(uinfo, &info, info_len) ||
+ put_user(info_len, &uattr->info.info_len))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int bpf_map_get_info_by_fd(struct file *file,
+ struct bpf_map *map,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ struct bpf_map_info __user *uinfo = u64_to_user_ptr(attr->info.info);
+ struct bpf_map_info info;
+ u32 info_len = attr->info.info_len;
+ int err;
+
+ err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len);
+ if (err)
+ return err;
+ info_len = min_t(u32, sizeof(info), info_len);
+
+ memset(&info, 0, sizeof(info));
+ info.type = map->map_type;
+ info.id = map->id;
+ info.key_size = map->key_size;
+ info.value_size = map->value_size;
+ info.max_entries = map->max_entries;
+ info.map_flags = map->map_flags;
+ info.map_extra = map->map_extra;
+ memcpy(info.name, map->name, sizeof(map->name));
+
+ if (map->btf) {
+ info.btf_id = btf_obj_id(map->btf);
+ info.btf_key_type_id = map->btf_key_type_id;
+ info.btf_value_type_id = map->btf_value_type_id;
+ }
+ info.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
+
+ if (bpf_map_is_dev_bound(map)) {
+ err = bpf_map_offload_info_fill(&info, map);
+ if (err)
+ return err;
+ }
+
+ if (copy_to_user(uinfo, &info, info_len) ||
+ put_user(info_len, &uattr->info.info_len))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int bpf_btf_get_info_by_fd(struct file *file,
+ struct btf *btf,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ struct bpf_btf_info __user *uinfo = u64_to_user_ptr(attr->info.info);
+ u32 info_len = attr->info.info_len;
+ int err;
+
+ err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(*uinfo), info_len);
+ if (err)
+ return err;
+
+ return btf_get_info_by_fd(btf, attr, uattr);
+}
+
+static int bpf_link_get_info_by_fd(struct file *file,
+ struct bpf_link *link,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ struct bpf_link_info __user *uinfo = u64_to_user_ptr(attr->info.info);
+ struct bpf_link_info info;
+ u32 info_len = attr->info.info_len;
+ int err;
+
+ err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len);
+ if (err)
+ return err;
+ info_len = min_t(u32, sizeof(info), info_len);
+
+ memset(&info, 0, sizeof(info));
+ if (copy_from_user(&info, uinfo, info_len))
+ return -EFAULT;
+
+ info.type = link->type;
+ info.id = link->id;
+ info.prog_id = link->prog->aux->id;
+
+ if (link->ops->fill_link_info) {
+ err = link->ops->fill_link_info(link, &info);
+ if (err)
+ return err;
+ }
+
+ if (copy_to_user(uinfo, &info, info_len) ||
+ put_user(info_len, &uattr->info.info_len))
+ return -EFAULT;
+
+ return 0;
+}
+
+
+#define BPF_OBJ_GET_INFO_BY_FD_LAST_FIELD info.info
+
+static int bpf_obj_get_info_by_fd(const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ int ufd = attr->info.bpf_fd;
+ struct fd f;
+ int err;
+
+ if (CHECK_ATTR(BPF_OBJ_GET_INFO_BY_FD))
+ return -EINVAL;
+
+ f = fdget(ufd);
+ if (!f.file)
+ return -EBADFD;
+
+ if (f.file->f_op == &bpf_prog_fops)
+ err = bpf_prog_get_info_by_fd(f.file, f.file->private_data, attr,
+ uattr);
+ else if (f.file->f_op == &bpf_map_fops)
+ err = bpf_map_get_info_by_fd(f.file, f.file->private_data, attr,
+ uattr);
+ else if (f.file->f_op == &btf_fops)
+ err = bpf_btf_get_info_by_fd(f.file, f.file->private_data, attr, uattr);
+ else if (f.file->f_op == &bpf_link_fops)
+ err = bpf_link_get_info_by_fd(f.file, f.file->private_data,
+ attr, uattr);
+ else
+ err = -EINVAL;
+
+ fdput(f);
+ return err;
+}
+
+#define BPF_BTF_LOAD_LAST_FIELD btf_log_level
+
+static int bpf_btf_load(const union bpf_attr *attr, bpfptr_t uattr)
+{
+ if (CHECK_ATTR(BPF_BTF_LOAD))
+ return -EINVAL;
+
+ if (!bpf_capable())
+ return -EPERM;
+
+ return btf_new_fd(attr, uattr);
+}
+
+#define BPF_BTF_GET_FD_BY_ID_LAST_FIELD btf_id
+
+static int bpf_btf_get_fd_by_id(const union bpf_attr *attr)
+{
+ if (CHECK_ATTR(BPF_BTF_GET_FD_BY_ID))
+ return -EINVAL;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ return btf_get_fd_by_id(attr->btf_id);
+}
+
+static int bpf_task_fd_query_copy(const union bpf_attr *attr,
+ union bpf_attr __user *uattr,
+ u32 prog_id, u32 fd_type,
+ const char *buf, u64 probe_offset,
+ u64 probe_addr)
+{
+ char __user *ubuf = u64_to_user_ptr(attr->task_fd_query.buf);
+ u32 len = buf ? strlen(buf) : 0, input_len;
+ int err = 0;
+
+ if (put_user(len, &uattr->task_fd_query.buf_len))
+ return -EFAULT;
+ input_len = attr->task_fd_query.buf_len;
+ if (input_len && ubuf) {
+ if (!len) {
+ /* nothing to copy, just make ubuf NULL terminated */
+ char zero = '\0';
+
+ if (put_user(zero, ubuf))
+ return -EFAULT;
+ } else if (input_len >= len + 1) {
+ /* ubuf can hold the string with NULL terminator */
+ if (copy_to_user(ubuf, buf, len + 1))
+ return -EFAULT;
+ } else {
+ /* ubuf cannot hold the string with NULL terminator,
+ * do a partial copy with NULL terminator.
+ */
+ char zero = '\0';
+
+ err = -ENOSPC;
+ if (copy_to_user(ubuf, buf, input_len - 1))
+ return -EFAULT;
+ if (put_user(zero, ubuf + input_len - 1))
+ return -EFAULT;
+ }
+ }
+
+ if (put_user(prog_id, &uattr->task_fd_query.prog_id) ||
+ put_user(fd_type, &uattr->task_fd_query.fd_type) ||
+ put_user(probe_offset, &uattr->task_fd_query.probe_offset) ||
+ put_user(probe_addr, &uattr->task_fd_query.probe_addr))
+ return -EFAULT;
+
+ return err;
+}
+
+#define BPF_TASK_FD_QUERY_LAST_FIELD task_fd_query.probe_addr
+
+static int bpf_task_fd_query(const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ pid_t pid = attr->task_fd_query.pid;
+ u32 fd = attr->task_fd_query.fd;
+ const struct perf_event *event;
+ struct task_struct *task;
+ struct file *file;
+ int err;
+
+ if (CHECK_ATTR(BPF_TASK_FD_QUERY))
+ return -EINVAL;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ if (attr->task_fd_query.flags != 0)
+ return -EINVAL;
+
+ rcu_read_lock();
+ task = get_pid_task(find_vpid(pid), PIDTYPE_PID);
+ rcu_read_unlock();
+ if (!task)
+ return -ENOENT;
+
+ err = 0;
+ file = fget_task(task, fd);
+ put_task_struct(task);
+ if (!file)
+ return -EBADF;
+
+ if (file->f_op == &bpf_link_fops) {
+ struct bpf_link *link = file->private_data;
+
+ if (link->ops == &bpf_raw_tp_link_lops) {
+ struct bpf_raw_tp_link *raw_tp =
+ container_of(link, struct bpf_raw_tp_link, link);
+ struct bpf_raw_event_map *btp = raw_tp->btp;
+
+ err = bpf_task_fd_query_copy(attr, uattr,
+ raw_tp->link.prog->aux->id,
+ BPF_FD_TYPE_RAW_TRACEPOINT,
+ btp->tp->name, 0, 0);
+ goto put_file;
+ }
+ goto out_not_supp;
+ }
+
+ event = perf_get_event(file);
+ if (!IS_ERR(event)) {
+ u64 probe_offset, probe_addr;
+ u32 prog_id, fd_type;
+ const char *buf;
+
+ err = bpf_get_perf_event_info(event, &prog_id, &fd_type,
+ &buf, &probe_offset,
+ &probe_addr);
+ if (!err)
+ err = bpf_task_fd_query_copy(attr, uattr, prog_id,
+ fd_type, buf,
+ probe_offset,
+ probe_addr);
+ goto put_file;
+ }
+
+out_not_supp:
+ err = -ENOTSUPP;
+put_file:
+ fput(file);
+ return err;
+}
+
+#define BPF_MAP_BATCH_LAST_FIELD batch.flags
+
+#define BPF_DO_BATCH(fn) \
+ do { \
+ if (!fn) { \
+ err = -ENOTSUPP; \
+ goto err_put; \
+ } \
+ err = fn(map, attr, uattr); \
+ } while (0)
+
+static int bpf_map_do_batch(const union bpf_attr *attr,
+ union bpf_attr __user *uattr,
+ int cmd)
+{
+ bool has_read = cmd == BPF_MAP_LOOKUP_BATCH ||
+ cmd == BPF_MAP_LOOKUP_AND_DELETE_BATCH;
+ bool has_write = cmd != BPF_MAP_LOOKUP_BATCH;
+ struct bpf_map *map;
+ int err, ufd;
+ struct fd f;
+
+ if (CHECK_ATTR(BPF_MAP_BATCH))
+ return -EINVAL;
+
+ ufd = attr->batch.map_fd;
+ f = fdget(ufd);
+ map = __bpf_map_get(f);
+ if (IS_ERR(map))
+ return PTR_ERR(map);
+ if (has_write)
+ bpf_map_write_active_inc(map);
+ if (has_read && !(map_get_sys_perms(map, f) & FMODE_CAN_READ)) {
+ err = -EPERM;
+ goto err_put;
+ }
+ if (has_write && !(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) {
+ err = -EPERM;
+ goto err_put;
+ }
+
+ if (cmd == BPF_MAP_LOOKUP_BATCH)
+ BPF_DO_BATCH(map->ops->map_lookup_batch);
+ else if (cmd == BPF_MAP_LOOKUP_AND_DELETE_BATCH)
+ BPF_DO_BATCH(map->ops->map_lookup_and_delete_batch);
+ else if (cmd == BPF_MAP_UPDATE_BATCH)
+ BPF_DO_BATCH(map->ops->map_update_batch);
+ else
+ BPF_DO_BATCH(map->ops->map_delete_batch);
+err_put:
+ if (has_write)
+ bpf_map_write_active_dec(map);
+ fdput(f);
+ return err;
+}
+
+#define BPF_LINK_CREATE_LAST_FIELD link_create.kprobe_multi.cookies
+static int link_create(union bpf_attr *attr, bpfptr_t uattr)
+{
+ enum bpf_prog_type ptype;
+ struct bpf_prog *prog;
+ int ret;
+
+ if (CHECK_ATTR(BPF_LINK_CREATE))
+ return -EINVAL;
+
+ prog = bpf_prog_get(attr->link_create.prog_fd);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ ret = bpf_prog_attach_check_attach_type(prog,
+ attr->link_create.attach_type);
+ if (ret)
+ goto out;
+
+ switch (prog->type) {
+ case BPF_PROG_TYPE_EXT:
+ break;
+ case BPF_PROG_TYPE_PERF_EVENT:
+ case BPF_PROG_TYPE_TRACEPOINT:
+ if (attr->link_create.attach_type != BPF_PERF_EVENT) {
+ ret = -EINVAL;
+ goto out;
+ }
+ break;
+ case BPF_PROG_TYPE_KPROBE:
+ if (attr->link_create.attach_type != BPF_PERF_EVENT &&
+ attr->link_create.attach_type != BPF_TRACE_KPROBE_MULTI) {
+ ret = -EINVAL;
+ goto out;
+ }
+ break;
+ default:
+ ptype = attach_type_to_prog_type(attr->link_create.attach_type);
+ if (ptype == BPF_PROG_TYPE_UNSPEC || ptype != prog->type) {
+ ret = -EINVAL;
+ goto out;
+ }
+ break;
+ }
+
+ switch (prog->type) {
+ case BPF_PROG_TYPE_CGROUP_SKB:
+ case BPF_PROG_TYPE_CGROUP_SOCK:
+ case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
+ case BPF_PROG_TYPE_SOCK_OPS:
+ case BPF_PROG_TYPE_CGROUP_DEVICE:
+ case BPF_PROG_TYPE_CGROUP_SYSCTL:
+ case BPF_PROG_TYPE_CGROUP_SOCKOPT:
+ ret = cgroup_bpf_link_attach(attr, prog);
+ break;
+ case BPF_PROG_TYPE_EXT:
+ ret = bpf_tracing_prog_attach(prog,
+ attr->link_create.target_fd,
+ attr->link_create.target_btf_id,
+ attr->link_create.tracing.cookie);
+ break;
+ case BPF_PROG_TYPE_LSM:
+ case BPF_PROG_TYPE_TRACING:
+ if (attr->link_create.attach_type != prog->expected_attach_type) {
+ ret = -EINVAL;
+ goto out;
+ }
+ if (prog->expected_attach_type == BPF_TRACE_RAW_TP)
+ ret = bpf_raw_tp_link_attach(prog, NULL);
+ else if (prog->expected_attach_type == BPF_TRACE_ITER)
+ ret = bpf_iter_link_attach(attr, uattr, prog);
+ else if (prog->expected_attach_type == BPF_LSM_CGROUP)
+ ret = cgroup_bpf_link_attach(attr, prog);
+ else
+ ret = bpf_tracing_prog_attach(prog,
+ attr->link_create.target_fd,
+ attr->link_create.target_btf_id,
+ attr->link_create.tracing.cookie);
+ break;
+ case BPF_PROG_TYPE_FLOW_DISSECTOR:
+ case BPF_PROG_TYPE_SK_LOOKUP:
+ ret = netns_bpf_link_create(attr, prog);
+ break;
+#ifdef CONFIG_NET
+ case BPF_PROG_TYPE_XDP:
+ ret = bpf_xdp_link_attach(attr, prog);
+ break;
+#endif
+ case BPF_PROG_TYPE_PERF_EVENT:
+ case BPF_PROG_TYPE_TRACEPOINT:
+ ret = bpf_perf_link_attach(attr, prog);
+ break;
+ case BPF_PROG_TYPE_KPROBE:
+ if (attr->link_create.attach_type == BPF_PERF_EVENT)
+ ret = bpf_perf_link_attach(attr, prog);
+ else
+ ret = bpf_kprobe_multi_link_attach(attr, prog);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+out:
+ if (ret < 0)
+ bpf_prog_put(prog);
+ return ret;
+}
+
+#define BPF_LINK_UPDATE_LAST_FIELD link_update.old_prog_fd
+
+static int link_update(union bpf_attr *attr)
+{
+ struct bpf_prog *old_prog = NULL, *new_prog;
+ struct bpf_link *link;
+ u32 flags;
+ int ret;
+
+ if (CHECK_ATTR(BPF_LINK_UPDATE))
+ return -EINVAL;
+
+ flags = attr->link_update.flags;
+ if (flags & ~BPF_F_REPLACE)
+ return -EINVAL;
+
+ link = bpf_link_get_from_fd(attr->link_update.link_fd);
+ if (IS_ERR(link))
+ return PTR_ERR(link);
+
+ new_prog = bpf_prog_get(attr->link_update.new_prog_fd);
+ if (IS_ERR(new_prog)) {
+ ret = PTR_ERR(new_prog);
+ goto out_put_link;
+ }
+
+ if (flags & BPF_F_REPLACE) {
+ old_prog = bpf_prog_get(attr->link_update.old_prog_fd);
+ if (IS_ERR(old_prog)) {
+ ret = PTR_ERR(old_prog);
+ old_prog = NULL;
+ goto out_put_progs;
+ }
+ } else if (attr->link_update.old_prog_fd) {
+ ret = -EINVAL;
+ goto out_put_progs;
+ }
+
+ if (link->ops->update_prog)
+ ret = link->ops->update_prog(link, new_prog, old_prog);
+ else
+ ret = -EINVAL;
+
+out_put_progs:
+ if (old_prog)
+ bpf_prog_put(old_prog);
+ if (ret)
+ bpf_prog_put(new_prog);
+out_put_link:
+ bpf_link_put(link);
+ return ret;
+}
+
+#define BPF_LINK_DETACH_LAST_FIELD link_detach.link_fd
+
+static int link_detach(union bpf_attr *attr)
+{
+ struct bpf_link *link;
+ int ret;
+
+ if (CHECK_ATTR(BPF_LINK_DETACH))
+ return -EINVAL;
+
+ link = bpf_link_get_from_fd(attr->link_detach.link_fd);
+ if (IS_ERR(link))
+ return PTR_ERR(link);
+
+ if (link->ops->detach)
+ ret = link->ops->detach(link);
+ else
+ ret = -EOPNOTSUPP;
+
+ bpf_link_put(link);
+ return ret;
+}
+
+static struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
+{
+ return atomic64_fetch_add_unless(&link->refcnt, 1, 0) ? link : ERR_PTR(-ENOENT);
+}
+
+struct bpf_link *bpf_link_by_id(u32 id)
+{
+ struct bpf_link *link;
+
+ if (!id)
+ return ERR_PTR(-ENOENT);
+
+ spin_lock_bh(&link_idr_lock);
+ /* before link is "settled", ID is 0, pretend it doesn't exist yet */
+ link = idr_find(&link_idr, id);
+ if (link) {
+ if (link->id)
+ link = bpf_link_inc_not_zero(link);
+ else
+ link = ERR_PTR(-EAGAIN);
+ } else {
+ link = ERR_PTR(-ENOENT);
+ }
+ spin_unlock_bh(&link_idr_lock);
+ return link;
+}
+
+struct bpf_link *bpf_link_get_curr_or_next(u32 *id)
+{
+ struct bpf_link *link;
+
+ spin_lock_bh(&link_idr_lock);
+again:
+ link = idr_get_next(&link_idr, id);
+ if (link) {
+ link = bpf_link_inc_not_zero(link);
+ if (IS_ERR(link)) {
+ (*id)++;
+ goto again;
+ }
+ }
+ spin_unlock_bh(&link_idr_lock);
+
+ return link;
+}
+
+#define BPF_LINK_GET_FD_BY_ID_LAST_FIELD link_id
+
+static int bpf_link_get_fd_by_id(const union bpf_attr *attr)
+{
+ struct bpf_link *link;
+ u32 id = attr->link_id;
+ int fd;
+
+ if (CHECK_ATTR(BPF_LINK_GET_FD_BY_ID))
+ return -EINVAL;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ link = bpf_link_by_id(id);
+ if (IS_ERR(link))
+ return PTR_ERR(link);
+
+ fd = bpf_link_new_fd(link);
+ if (fd < 0)
+ bpf_link_put(link);
+
+ return fd;
+}
+
+DEFINE_MUTEX(bpf_stats_enabled_mutex);
+
+static int bpf_stats_release(struct inode *inode, struct file *file)
+{
+ mutex_lock(&bpf_stats_enabled_mutex);
+ static_key_slow_dec(&bpf_stats_enabled_key.key);
+ mutex_unlock(&bpf_stats_enabled_mutex);
+ return 0;
+}
+
+static const struct file_operations bpf_stats_fops = {
+ .release = bpf_stats_release,
+};
+
+static int bpf_enable_runtime_stats(void)
+{
+ int fd;
+
+ mutex_lock(&bpf_stats_enabled_mutex);
+
+ /* Set a very high limit to avoid overflow */
+ if (static_key_count(&bpf_stats_enabled_key.key) > INT_MAX / 2) {
+ mutex_unlock(&bpf_stats_enabled_mutex);
+ return -EBUSY;
+ }
+
+ fd = anon_inode_getfd("bpf-stats", &bpf_stats_fops, NULL, O_CLOEXEC);
+ if (fd >= 0)
+ static_key_slow_inc(&bpf_stats_enabled_key.key);
+
+ mutex_unlock(&bpf_stats_enabled_mutex);
+ return fd;
+}
+
+#define BPF_ENABLE_STATS_LAST_FIELD enable_stats.type
+
+static int bpf_enable_stats(union bpf_attr *attr)
+{
+
+ if (CHECK_ATTR(BPF_ENABLE_STATS))
+ return -EINVAL;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ switch (attr->enable_stats.type) {
+ case BPF_STATS_RUN_TIME:
+ return bpf_enable_runtime_stats();
+ default:
+ break;
+ }
+ return -EINVAL;
+}
+
+#define BPF_ITER_CREATE_LAST_FIELD iter_create.flags
+
+static int bpf_iter_create(union bpf_attr *attr)
+{
+ struct bpf_link *link;
+ int err;
+
+ if (CHECK_ATTR(BPF_ITER_CREATE))
+ return -EINVAL;
+
+ if (attr->iter_create.flags)
+ return -EINVAL;
+
+ link = bpf_link_get_from_fd(attr->iter_create.link_fd);
+ if (IS_ERR(link))
+ return PTR_ERR(link);
+
+ err = bpf_iter_new_fd(link);
+ bpf_link_put(link);
+
+ return err;
+}
+
+#define BPF_PROG_BIND_MAP_LAST_FIELD prog_bind_map.flags
+
+static int bpf_prog_bind_map(union bpf_attr *attr)
+{
+ struct bpf_prog *prog;
+ struct bpf_map *map;
+ struct bpf_map **used_maps_old, **used_maps_new;
+ int i, ret = 0;
+
+ if (CHECK_ATTR(BPF_PROG_BIND_MAP))
+ return -EINVAL;
+
+ if (attr->prog_bind_map.flags)
+ return -EINVAL;
+
+ prog = bpf_prog_get(attr->prog_bind_map.prog_fd);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ map = bpf_map_get(attr->prog_bind_map.map_fd);
+ if (IS_ERR(map)) {
+ ret = PTR_ERR(map);
+ goto out_prog_put;
+ }
+
+ mutex_lock(&prog->aux->used_maps_mutex);
+
+ used_maps_old = prog->aux->used_maps;
+
+ for (i = 0; i < prog->aux->used_map_cnt; i++)
+ if (used_maps_old[i] == map) {
+ bpf_map_put(map);
+ goto out_unlock;
+ }
+
+ used_maps_new = kmalloc_array(prog->aux->used_map_cnt + 1,
+ sizeof(used_maps_new[0]),
+ GFP_KERNEL);
+ if (!used_maps_new) {
+ ret = -ENOMEM;
+ goto out_unlock;
+ }
+
+ memcpy(used_maps_new, used_maps_old,
+ sizeof(used_maps_old[0]) * prog->aux->used_map_cnt);
+ used_maps_new[prog->aux->used_map_cnt] = map;
+
+ prog->aux->used_map_cnt++;
+ prog->aux->used_maps = used_maps_new;
+
+ kfree(used_maps_old);
+
+out_unlock:
+ mutex_unlock(&prog->aux->used_maps_mutex);
+
+ if (ret)
+ bpf_map_put(map);
+out_prog_put:
+ bpf_prog_put(prog);
+ return ret;
+}
+
+static int __sys_bpf(int cmd, bpfptr_t uattr, unsigned int size)
+{
+ union bpf_attr attr;
+ bool capable;
+ int err;
+
+ capable = bpf_capable() || !sysctl_unprivileged_bpf_disabled;
+
+ /* Intent here is for unprivileged_bpf_disabled to block key object
+ * creation commands for unprivileged users; other actions depend
+ * of fd availability and access to bpffs, so are dependent on
+ * object creation success. Capabilities are later verified for
+ * operations such as load and map create, so even with unprivileged
+ * BPF disabled, capability checks are still carried out for these
+ * and other operations.
+ */
+ if (!capable &&
+ (cmd == BPF_MAP_CREATE || cmd == BPF_PROG_LOAD))
+ return -EPERM;
+
+ err = bpf_check_uarg_tail_zero(uattr, sizeof(attr), size);
+ if (err)
+ return err;
+ size = min_t(u32, size, sizeof(attr));
+
+ /* copy attributes from user space, may be less than sizeof(bpf_attr) */
+ memset(&attr, 0, sizeof(attr));
+ if (copy_from_bpfptr(&attr, uattr, size) != 0)
+ return -EFAULT;
+
+ err = security_bpf(cmd, &attr, size);
+ if (err < 0)
+ return err;
+
+ switch (cmd) {
+ case BPF_MAP_CREATE:
+ err = map_create(&attr);
+ break;
+ case BPF_MAP_LOOKUP_ELEM:
+ err = map_lookup_elem(&attr);
+ break;
+ case BPF_MAP_UPDATE_ELEM:
+ err = map_update_elem(&attr, uattr);
+ break;
+ case BPF_MAP_DELETE_ELEM:
+ err = map_delete_elem(&attr, uattr);
+ break;
+ case BPF_MAP_GET_NEXT_KEY:
+ err = map_get_next_key(&attr);
+ break;
+ case BPF_MAP_FREEZE:
+ err = map_freeze(&attr);
+ break;
+ case BPF_PROG_LOAD:
+ err = bpf_prog_load(&attr, uattr);
+ break;
+ case BPF_OBJ_PIN:
+ err = bpf_obj_pin(&attr);
+ break;
+ case BPF_OBJ_GET:
+ err = bpf_obj_get(&attr);
+ break;
+ case BPF_PROG_ATTACH:
+ err = bpf_prog_attach(&attr);
+ break;
+ case BPF_PROG_DETACH:
+ err = bpf_prog_detach(&attr);
+ break;
+ case BPF_PROG_QUERY:
+ err = bpf_prog_query(&attr, uattr.user);
+ break;
+ case BPF_PROG_TEST_RUN:
+ err = bpf_prog_test_run(&attr, uattr.user);
+ break;
+ case BPF_PROG_GET_NEXT_ID:
+ err = bpf_obj_get_next_id(&attr, uattr.user,
+ &prog_idr, &prog_idr_lock);
+ break;
+ case BPF_MAP_GET_NEXT_ID:
+ err = bpf_obj_get_next_id(&attr, uattr.user,
+ &map_idr, &map_idr_lock);
+ break;
+ case BPF_BTF_GET_NEXT_ID:
+ err = bpf_obj_get_next_id(&attr, uattr.user,
+ &btf_idr, &btf_idr_lock);
+ break;
+ case BPF_PROG_GET_FD_BY_ID:
+ err = bpf_prog_get_fd_by_id(&attr);
+ break;
+ case BPF_MAP_GET_FD_BY_ID:
+ err = bpf_map_get_fd_by_id(&attr);
+ break;
+ case BPF_OBJ_GET_INFO_BY_FD:
+ err = bpf_obj_get_info_by_fd(&attr, uattr.user);
+ break;
+ case BPF_RAW_TRACEPOINT_OPEN:
+ err = bpf_raw_tracepoint_open(&attr);
+ break;
+ case BPF_BTF_LOAD:
+ err = bpf_btf_load(&attr, uattr);
+ break;
+ case BPF_BTF_GET_FD_BY_ID:
+ err = bpf_btf_get_fd_by_id(&attr);
+ break;
+ case BPF_TASK_FD_QUERY:
+ err = bpf_task_fd_query(&attr, uattr.user);
+ break;
+ case BPF_MAP_LOOKUP_AND_DELETE_ELEM:
+ err = map_lookup_and_delete_elem(&attr);
+ break;
+ case BPF_MAP_LOOKUP_BATCH:
+ err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_LOOKUP_BATCH);
+ break;
+ case BPF_MAP_LOOKUP_AND_DELETE_BATCH:
+ err = bpf_map_do_batch(&attr, uattr.user,
+ BPF_MAP_LOOKUP_AND_DELETE_BATCH);
+ break;
+ case BPF_MAP_UPDATE_BATCH:
+ err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_UPDATE_BATCH);
+ break;
+ case BPF_MAP_DELETE_BATCH:
+ err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_DELETE_BATCH);
+ break;
+ case BPF_LINK_CREATE:
+ err = link_create(&attr, uattr);
+ break;
+ case BPF_LINK_UPDATE:
+ err = link_update(&attr);
+ break;
+ case BPF_LINK_GET_FD_BY_ID:
+ err = bpf_link_get_fd_by_id(&attr);
+ break;
+ case BPF_LINK_GET_NEXT_ID:
+ err = bpf_obj_get_next_id(&attr, uattr.user,
+ &link_idr, &link_idr_lock);
+ break;
+ case BPF_ENABLE_STATS:
+ err = bpf_enable_stats(&attr);
+ break;
+ case BPF_ITER_CREATE:
+ err = bpf_iter_create(&attr);
+ break;
+ case BPF_LINK_DETACH:
+ err = link_detach(&attr);
+ break;
+ case BPF_PROG_BIND_MAP:
+ err = bpf_prog_bind_map(&attr);
+ break;
+ default:
+ err = -EINVAL;
+ break;
+ }
+
+ return err;
+}
+
+SYSCALL_DEFINE3(bpf, int, cmd, union bpf_attr __user *, uattr, unsigned int, size)
+{
+ return __sys_bpf(cmd, USER_BPFPTR(uattr), size);
+}
+
+static bool syscall_prog_is_valid_access(int off, int size,
+ enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ if (off < 0 || off >= U16_MAX)
+ return false;
+ if (off % size != 0)
+ return false;
+ return true;
+}
+
+BPF_CALL_3(bpf_sys_bpf, int, cmd, union bpf_attr *, attr, u32, attr_size)
+{
+ switch (cmd) {
+ case BPF_MAP_CREATE:
+ case BPF_MAP_DELETE_ELEM:
+ case BPF_MAP_UPDATE_ELEM:
+ case BPF_MAP_FREEZE:
+ case BPF_MAP_GET_FD_BY_ID:
+ case BPF_PROG_LOAD:
+ case BPF_BTF_LOAD:
+ case BPF_LINK_CREATE:
+ case BPF_RAW_TRACEPOINT_OPEN:
+ break;
+ default:
+ return -EINVAL;
+ }
+ return __sys_bpf(cmd, KERNEL_BPFPTR(attr), attr_size);
+}
+
+
+/* To shut up -Wmissing-prototypes.
+ * This function is used by the kernel light skeleton
+ * to load bpf programs when modules are loaded or during kernel boot.
+ * See tools/lib/bpf/skel_internal.h
+ */
+int kern_sys_bpf(int cmd, union bpf_attr *attr, unsigned int size);
+
+int kern_sys_bpf(int cmd, union bpf_attr *attr, unsigned int size)
+{
+ struct bpf_prog * __maybe_unused prog;
+ struct bpf_tramp_run_ctx __maybe_unused run_ctx;
+
+ switch (cmd) {
+#ifdef CONFIG_BPF_JIT /* __bpf_prog_enter_sleepable used by trampoline and JIT */
+ case BPF_PROG_TEST_RUN:
+ if (attr->test.data_in || attr->test.data_out ||
+ attr->test.ctx_out || attr->test.duration ||
+ attr->test.repeat || attr->test.flags)
+ return -EINVAL;
+
+ prog = bpf_prog_get_type(attr->test.prog_fd, BPF_PROG_TYPE_SYSCALL);
+ if (IS_ERR(prog))
+ return PTR_ERR(prog);
+
+ if (attr->test.ctx_size_in < prog->aux->max_ctx_offset ||
+ attr->test.ctx_size_in > U16_MAX) {
+ bpf_prog_put(prog);
+ return -EINVAL;
+ }
+
+ run_ctx.bpf_cookie = 0;
+ if (!__bpf_prog_enter_sleepable_recur(prog, &run_ctx)) {
+ /* recursion detected */
+ __bpf_prog_exit_sleepable_recur(prog, 0, &run_ctx);
+ bpf_prog_put(prog);
+ return -EBUSY;
+ }
+ attr->test.retval = bpf_prog_run(prog, (void *) (long) attr->test.ctx_in);
+ __bpf_prog_exit_sleepable_recur(prog, 0 /* bpf_prog_run does runtime stats */,
+ &run_ctx);
+ bpf_prog_put(prog);
+ return 0;
+#endif
+ default:
+ return ____bpf_sys_bpf(cmd, attr, size);
+ }
+}
+EXPORT_SYMBOL(kern_sys_bpf);
+
+static const struct bpf_func_proto bpf_sys_bpf_proto = {
+ .func = bpf_sys_bpf,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_ANYTHING,
+ .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg3_type = ARG_CONST_SIZE,
+};
+
+const struct bpf_func_proto * __weak
+tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ return bpf_base_func_proto(func_id);
+}
+
+BPF_CALL_1(bpf_sys_close, u32, fd)
+{
+ /* When bpf program calls this helper there should not be
+ * an fdget() without matching completed fdput().
+ * This helper is allowed in the following callchain only:
+ * sys_bpf->prog_test_run->bpf_prog->bpf_sys_close
+ */
+ return close_fd(fd);
+}
+
+static const struct bpf_func_proto bpf_sys_close_proto = {
+ .func = bpf_sys_close,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_ANYTHING,
+};
+
+BPF_CALL_4(bpf_kallsyms_lookup_name, const char *, name, int, name_sz, int, flags, u64 *, res)
+{
+ if (flags)
+ return -EINVAL;
+
+ if (name_sz <= 1 || name[name_sz - 1])
+ return -EINVAL;
+
+ if (!bpf_dump_raw_ok(current_cred()))
+ return -EPERM;
+
+ *res = kallsyms_lookup_name(name);
+ return *res ? 0 : -ENOENT;
+}
+
+static const struct bpf_func_proto bpf_kallsyms_lookup_name_proto = {
+ .func = bpf_kallsyms_lookup_name,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_MEM,
+ .arg2_type = ARG_CONST_SIZE_OR_ZERO,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_PTR_TO_LONG,
+};
+
+static const struct bpf_func_proto *
+syscall_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
+{
+ switch (func_id) {
+ case BPF_FUNC_sys_bpf:
+ return !perfmon_capable() ? NULL : &bpf_sys_bpf_proto;
+ case BPF_FUNC_btf_find_by_name_kind:
+ return &bpf_btf_find_by_name_kind_proto;
+ case BPF_FUNC_sys_close:
+ return &bpf_sys_close_proto;
+ case BPF_FUNC_kallsyms_lookup_name:
+ return &bpf_kallsyms_lookup_name_proto;
+ default:
+ return tracing_prog_func_proto(func_id, prog);
+ }
+}
+
+const struct bpf_verifier_ops bpf_syscall_verifier_ops = {
+ .get_func_proto = syscall_prog_func_proto,
+ .is_valid_access = syscall_prog_is_valid_access,
+};
+
+const struct bpf_prog_ops bpf_syscall_prog_ops = {
+ .test_run = bpf_prog_test_run_syscall,
+};
+
+#ifdef CONFIG_SYSCTL
+static int bpf_stats_handler(struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
+{
+ struct static_key *key = (struct static_key *)table->data;
+ static int saved_val;
+ int val, ret;
+ struct ctl_table tmp = {
+ .data = &val,
+ .maxlen = sizeof(val),
+ .mode = table->mode,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ };
+
+ if (write && !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ mutex_lock(&bpf_stats_enabled_mutex);
+ val = saved_val;
+ ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
+ if (write && !ret && val != saved_val) {
+ if (val)
+ static_key_slow_inc(key);
+ else
+ static_key_slow_dec(key);
+ saved_val = val;
+ }
+ mutex_unlock(&bpf_stats_enabled_mutex);
+ return ret;
+}
+
+void __weak unpriv_ebpf_notify(int new_state)
+{
+}
+
+static int bpf_unpriv_handler(struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
+{
+ int ret, unpriv_enable = *(int *)table->data;
+ bool locked_state = unpriv_enable == 1;
+ struct ctl_table tmp = *table;
+
+ if (write && !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ tmp.data = &unpriv_enable;
+ ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
+ if (write && !ret) {
+ if (locked_state && unpriv_enable != 1)
+ return -EPERM;
+ *(int *)table->data = unpriv_enable;
+ }
+
+ if (write)
+ unpriv_ebpf_notify(unpriv_enable);
+
+ return ret;
+}
+
+static struct ctl_table bpf_syscall_table[] = {
+ {
+ .procname = "unprivileged_bpf_disabled",
+ .data = &sysctl_unprivileged_bpf_disabled,
+ .maxlen = sizeof(sysctl_unprivileged_bpf_disabled),
+ .mode = 0644,
+ .proc_handler = bpf_unpriv_handler,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_TWO,
+ },
+ {
+ .procname = "bpf_stats_enabled",
+ .data = &bpf_stats_enabled_key.key,
+ .maxlen = sizeof(bpf_stats_enabled_key),
+ .mode = 0644,
+ .proc_handler = bpf_stats_handler,
+ },
+ { }
+};
+
+static int __init bpf_syscall_sysctl_init(void)
+{
+ register_sysctl_init("kernel", bpf_syscall_table);
+ return 0;
+}
+late_initcall(bpf_syscall_sysctl_init);
+#endif /* CONFIG_SYSCTL */
diff --git a/kernel/bpf/sysfs_btf.c b/kernel/bpf/sysfs_btf.c
new file mode 100644
index 000000000..ef6911aee
--- /dev/null
+++ b/kernel/bpf/sysfs_btf.c
@@ -0,0 +1,45 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Provide kernel BTF information for introspection and use by eBPF tools.
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/kobject.h>
+#include <linux/init.h>
+#include <linux/sysfs.h>
+
+/* See scripts/link-vmlinux.sh, gen_btf() func for details */
+extern char __weak __start_BTF[];
+extern char __weak __stop_BTF[];
+
+static ssize_t
+btf_vmlinux_read(struct file *file, struct kobject *kobj,
+ struct bin_attribute *bin_attr,
+ char *buf, loff_t off, size_t len)
+{
+ memcpy(buf, __start_BTF + off, len);
+ return len;
+}
+
+static struct bin_attribute bin_attr_btf_vmlinux __ro_after_init = {
+ .attr = { .name = "vmlinux", .mode = 0444, },
+ .read = btf_vmlinux_read,
+};
+
+struct kobject *btf_kobj;
+
+static int __init btf_vmlinux_init(void)
+{
+ bin_attr_btf_vmlinux.size = __stop_BTF - __start_BTF;
+
+ if (!__start_BTF || bin_attr_btf_vmlinux.size == 0)
+ return 0;
+
+ btf_kobj = kobject_create_and_add("btf", kernel_kobj);
+ if (!btf_kobj)
+ return -ENOMEM;
+
+ return sysfs_create_bin_file(btf_kobj, &bin_attr_btf_vmlinux);
+}
+
+subsys_initcall(btf_vmlinux_init);
diff --git a/kernel/bpf/task_iter.c b/kernel/bpf/task_iter.c
new file mode 100644
index 000000000..c4ab9d6cd
--- /dev/null
+++ b/kernel/bpf/task_iter.c
@@ -0,0 +1,864 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2020 Facebook */
+
+#include <linux/init.h>
+#include <linux/namei.h>
+#include <linux/pid_namespace.h>
+#include <linux/fs.h>
+#include <linux/fdtable.h>
+#include <linux/filter.h>
+#include <linux/btf_ids.h>
+#include "mmap_unlock_work.h"
+
+static const char * const iter_task_type_names[] = {
+ "ALL",
+ "TID",
+ "PID",
+};
+
+struct bpf_iter_seq_task_common {
+ struct pid_namespace *ns;
+ enum bpf_iter_task_type type;
+ u32 pid;
+ u32 pid_visiting;
+};
+
+struct bpf_iter_seq_task_info {
+ /* The first field must be struct bpf_iter_seq_task_common.
+ * this is assumed by {init, fini}_seq_pidns() callback functions.
+ */
+ struct bpf_iter_seq_task_common common;
+ u32 tid;
+};
+
+static struct task_struct *task_group_seq_get_next(struct bpf_iter_seq_task_common *common,
+ u32 *tid,
+ bool skip_if_dup_files)
+{
+ struct task_struct *task, *next_task;
+ struct pid *pid;
+ u32 saved_tid;
+
+ if (!*tid) {
+ /* The first time, the iterator calls this function. */
+ pid = find_pid_ns(common->pid, common->ns);
+ if (!pid)
+ return NULL;
+
+ task = get_pid_task(pid, PIDTYPE_TGID);
+ if (!task)
+ return NULL;
+
+ *tid = common->pid;
+ common->pid_visiting = common->pid;
+
+ return task;
+ }
+
+ /* If the control returns to user space and comes back to the
+ * kernel again, *tid and common->pid_visiting should be the
+ * same for task_seq_start() to pick up the correct task.
+ */
+ if (*tid == common->pid_visiting) {
+ pid = find_pid_ns(common->pid_visiting, common->ns);
+ task = get_pid_task(pid, PIDTYPE_PID);
+
+ return task;
+ }
+
+ pid = find_pid_ns(common->pid_visiting, common->ns);
+ if (!pid)
+ return NULL;
+
+ task = get_pid_task(pid, PIDTYPE_PID);
+ if (!task)
+ return NULL;
+
+retry:
+ if (!pid_alive(task)) {
+ put_task_struct(task);
+ return NULL;
+ }
+
+ next_task = next_thread(task);
+ put_task_struct(task);
+ if (!next_task)
+ return NULL;
+
+ saved_tid = *tid;
+ *tid = __task_pid_nr_ns(next_task, PIDTYPE_PID, common->ns);
+ if (!*tid || *tid == common->pid) {
+ /* Run out of tasks of a process. The tasks of a
+ * thread_group are linked as circular linked list.
+ */
+ *tid = saved_tid;
+ return NULL;
+ }
+
+ get_task_struct(next_task);
+ common->pid_visiting = *tid;
+
+ if (skip_if_dup_files && task->files == task->group_leader->files) {
+ task = next_task;
+ goto retry;
+ }
+
+ return next_task;
+}
+
+static struct task_struct *task_seq_get_next(struct bpf_iter_seq_task_common *common,
+ u32 *tid,
+ bool skip_if_dup_files)
+{
+ struct task_struct *task = NULL;
+ struct pid *pid;
+
+ if (common->type == BPF_TASK_ITER_TID) {
+ if (*tid && *tid != common->pid)
+ return NULL;
+ rcu_read_lock();
+ pid = find_pid_ns(common->pid, common->ns);
+ if (pid) {
+ task = get_pid_task(pid, PIDTYPE_TGID);
+ *tid = common->pid;
+ }
+ rcu_read_unlock();
+
+ return task;
+ }
+
+ if (common->type == BPF_TASK_ITER_TGID) {
+ rcu_read_lock();
+ task = task_group_seq_get_next(common, tid, skip_if_dup_files);
+ rcu_read_unlock();
+
+ return task;
+ }
+
+ rcu_read_lock();
+retry:
+ pid = find_ge_pid(*tid, common->ns);
+ if (pid) {
+ *tid = pid_nr_ns(pid, common->ns);
+ task = get_pid_task(pid, PIDTYPE_PID);
+ if (!task) {
+ ++*tid;
+ goto retry;
+ } else if (skip_if_dup_files && !thread_group_leader(task) &&
+ task->files == task->group_leader->files) {
+ put_task_struct(task);
+ task = NULL;
+ ++*tid;
+ goto retry;
+ }
+ }
+ rcu_read_unlock();
+
+ return task;
+}
+
+static void *task_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct bpf_iter_seq_task_info *info = seq->private;
+ struct task_struct *task;
+
+ task = task_seq_get_next(&info->common, &info->tid, false);
+ if (!task)
+ return NULL;
+
+ if (*pos == 0)
+ ++*pos;
+ return task;
+}
+
+static void *task_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct bpf_iter_seq_task_info *info = seq->private;
+ struct task_struct *task;
+
+ ++*pos;
+ ++info->tid;
+ put_task_struct((struct task_struct *)v);
+ task = task_seq_get_next(&info->common, &info->tid, false);
+ if (!task)
+ return NULL;
+
+ return task;
+}
+
+struct bpf_iter__task {
+ __bpf_md_ptr(struct bpf_iter_meta *, meta);
+ __bpf_md_ptr(struct task_struct *, task);
+};
+
+DEFINE_BPF_ITER_FUNC(task, struct bpf_iter_meta *meta, struct task_struct *task)
+
+static int __task_seq_show(struct seq_file *seq, struct task_struct *task,
+ bool in_stop)
+{
+ struct bpf_iter_meta meta;
+ struct bpf_iter__task ctx;
+ struct bpf_prog *prog;
+
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, in_stop);
+ if (!prog)
+ return 0;
+
+ ctx.meta = &meta;
+ ctx.task = task;
+ return bpf_iter_run_prog(prog, &ctx);
+}
+
+static int task_seq_show(struct seq_file *seq, void *v)
+{
+ return __task_seq_show(seq, v, false);
+}
+
+static void task_seq_stop(struct seq_file *seq, void *v)
+{
+ if (!v)
+ (void)__task_seq_show(seq, v, true);
+ else
+ put_task_struct((struct task_struct *)v);
+}
+
+static int bpf_iter_attach_task(struct bpf_prog *prog,
+ union bpf_iter_link_info *linfo,
+ struct bpf_iter_aux_info *aux)
+{
+ unsigned int flags;
+ struct pid *pid;
+ pid_t tgid;
+
+ if ((!!linfo->task.tid + !!linfo->task.pid + !!linfo->task.pid_fd) > 1)
+ return -EINVAL;
+
+ aux->task.type = BPF_TASK_ITER_ALL;
+ if (linfo->task.tid != 0) {
+ aux->task.type = BPF_TASK_ITER_TID;
+ aux->task.pid = linfo->task.tid;
+ }
+ if (linfo->task.pid != 0) {
+ aux->task.type = BPF_TASK_ITER_TGID;
+ aux->task.pid = linfo->task.pid;
+ }
+ if (linfo->task.pid_fd != 0) {
+ aux->task.type = BPF_TASK_ITER_TGID;
+
+ pid = pidfd_get_pid(linfo->task.pid_fd, &flags);
+ if (IS_ERR(pid))
+ return PTR_ERR(pid);
+
+ tgid = pid_nr_ns(pid, task_active_pid_ns(current));
+ aux->task.pid = tgid;
+ put_pid(pid);
+ }
+
+ return 0;
+}
+
+static const struct seq_operations task_seq_ops = {
+ .start = task_seq_start,
+ .next = task_seq_next,
+ .stop = task_seq_stop,
+ .show = task_seq_show,
+};
+
+struct bpf_iter_seq_task_file_info {
+ /* The first field must be struct bpf_iter_seq_task_common.
+ * this is assumed by {init, fini}_seq_pidns() callback functions.
+ */
+ struct bpf_iter_seq_task_common common;
+ struct task_struct *task;
+ u32 tid;
+ u32 fd;
+};
+
+static struct file *
+task_file_seq_get_next(struct bpf_iter_seq_task_file_info *info)
+{
+ u32 saved_tid = info->tid;
+ struct task_struct *curr_task;
+ unsigned int curr_fd = info->fd;
+
+ /* If this function returns a non-NULL file object,
+ * it held a reference to the task/file.
+ * Otherwise, it does not hold any reference.
+ */
+again:
+ if (info->task) {
+ curr_task = info->task;
+ curr_fd = info->fd;
+ } else {
+ curr_task = task_seq_get_next(&info->common, &info->tid, true);
+ if (!curr_task) {
+ info->task = NULL;
+ return NULL;
+ }
+
+ /* set info->task */
+ info->task = curr_task;
+ if (saved_tid == info->tid)
+ curr_fd = info->fd;
+ else
+ curr_fd = 0;
+ }
+
+ rcu_read_lock();
+ for (;; curr_fd++) {
+ struct file *f;
+ f = task_lookup_next_fd_rcu(curr_task, &curr_fd);
+ if (!f)
+ break;
+ if (!get_file_rcu(f))
+ continue;
+
+ /* set info->fd */
+ info->fd = curr_fd;
+ rcu_read_unlock();
+ return f;
+ }
+
+ /* the current task is done, go to the next task */
+ rcu_read_unlock();
+ put_task_struct(curr_task);
+
+ if (info->common.type == BPF_TASK_ITER_TID) {
+ info->task = NULL;
+ return NULL;
+ }
+
+ info->task = NULL;
+ info->fd = 0;
+ saved_tid = ++(info->tid);
+ goto again;
+}
+
+static void *task_file_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct bpf_iter_seq_task_file_info *info = seq->private;
+ struct file *file;
+
+ info->task = NULL;
+ file = task_file_seq_get_next(info);
+ if (file && *pos == 0)
+ ++*pos;
+
+ return file;
+}
+
+static void *task_file_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct bpf_iter_seq_task_file_info *info = seq->private;
+
+ ++*pos;
+ ++info->fd;
+ fput((struct file *)v);
+ return task_file_seq_get_next(info);
+}
+
+struct bpf_iter__task_file {
+ __bpf_md_ptr(struct bpf_iter_meta *, meta);
+ __bpf_md_ptr(struct task_struct *, task);
+ u32 fd __aligned(8);
+ __bpf_md_ptr(struct file *, file);
+};
+
+DEFINE_BPF_ITER_FUNC(task_file, struct bpf_iter_meta *meta,
+ struct task_struct *task, u32 fd,
+ struct file *file)
+
+static int __task_file_seq_show(struct seq_file *seq, struct file *file,
+ bool in_stop)
+{
+ struct bpf_iter_seq_task_file_info *info = seq->private;
+ struct bpf_iter__task_file ctx;
+ struct bpf_iter_meta meta;
+ struct bpf_prog *prog;
+
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, in_stop);
+ if (!prog)
+ return 0;
+
+ ctx.meta = &meta;
+ ctx.task = info->task;
+ ctx.fd = info->fd;
+ ctx.file = file;
+ return bpf_iter_run_prog(prog, &ctx);
+}
+
+static int task_file_seq_show(struct seq_file *seq, void *v)
+{
+ return __task_file_seq_show(seq, v, false);
+}
+
+static void task_file_seq_stop(struct seq_file *seq, void *v)
+{
+ struct bpf_iter_seq_task_file_info *info = seq->private;
+
+ if (!v) {
+ (void)__task_file_seq_show(seq, v, true);
+ } else {
+ fput((struct file *)v);
+ put_task_struct(info->task);
+ info->task = NULL;
+ }
+}
+
+static int init_seq_pidns(void *priv_data, struct bpf_iter_aux_info *aux)
+{
+ struct bpf_iter_seq_task_common *common = priv_data;
+
+ common->ns = get_pid_ns(task_active_pid_ns(current));
+ common->type = aux->task.type;
+ common->pid = aux->task.pid;
+
+ return 0;
+}
+
+static void fini_seq_pidns(void *priv_data)
+{
+ struct bpf_iter_seq_task_common *common = priv_data;
+
+ put_pid_ns(common->ns);
+}
+
+static const struct seq_operations task_file_seq_ops = {
+ .start = task_file_seq_start,
+ .next = task_file_seq_next,
+ .stop = task_file_seq_stop,
+ .show = task_file_seq_show,
+};
+
+struct bpf_iter_seq_task_vma_info {
+ /* The first field must be struct bpf_iter_seq_task_common.
+ * this is assumed by {init, fini}_seq_pidns() callback functions.
+ */
+ struct bpf_iter_seq_task_common common;
+ struct task_struct *task;
+ struct mm_struct *mm;
+ struct vm_area_struct *vma;
+ u32 tid;
+ unsigned long prev_vm_start;
+ unsigned long prev_vm_end;
+};
+
+enum bpf_task_vma_iter_find_op {
+ task_vma_iter_first_vma, /* use find_vma() with addr 0 */
+ task_vma_iter_next_vma, /* use vma_next() with curr_vma */
+ task_vma_iter_find_vma, /* use find_vma() to find next vma */
+};
+
+static struct vm_area_struct *
+task_vma_seq_get_next(struct bpf_iter_seq_task_vma_info *info)
+{
+ enum bpf_task_vma_iter_find_op op;
+ struct vm_area_struct *curr_vma;
+ struct task_struct *curr_task;
+ struct mm_struct *curr_mm;
+ u32 saved_tid = info->tid;
+
+ /* If this function returns a non-NULL vma, it holds a reference to
+ * the task_struct, holds a refcount on mm->mm_users, and holds
+ * read lock on vma->mm->mmap_lock.
+ * If this function returns NULL, it does not hold any reference or
+ * lock.
+ */
+ if (info->task) {
+ curr_task = info->task;
+ curr_vma = info->vma;
+ curr_mm = info->mm;
+ /* In case of lock contention, drop mmap_lock to unblock
+ * the writer.
+ *
+ * After relock, call find(mm, prev_vm_end - 1) to find
+ * new vma to process.
+ *
+ * +------+------+-----------+
+ * | VMA1 | VMA2 | VMA3 |
+ * +------+------+-----------+
+ * | | | |
+ * 4k 8k 16k 400k
+ *
+ * For example, curr_vma == VMA2. Before unlock, we set
+ *
+ * prev_vm_start = 8k
+ * prev_vm_end = 16k
+ *
+ * There are a few cases:
+ *
+ * 1) VMA2 is freed, but VMA3 exists.
+ *
+ * find_vma() will return VMA3, just process VMA3.
+ *
+ * 2) VMA2 still exists.
+ *
+ * find_vma() will return VMA2, process VMA2->next.
+ *
+ * 3) no more vma in this mm.
+ *
+ * Process the next task.
+ *
+ * 4) find_vma() returns a different vma, VMA2'.
+ *
+ * 4.1) If VMA2 covers same range as VMA2', skip VMA2',
+ * because we already covered the range;
+ * 4.2) VMA2 and VMA2' covers different ranges, process
+ * VMA2'.
+ */
+ if (mmap_lock_is_contended(curr_mm)) {
+ info->prev_vm_start = curr_vma->vm_start;
+ info->prev_vm_end = curr_vma->vm_end;
+ op = task_vma_iter_find_vma;
+ mmap_read_unlock(curr_mm);
+ if (mmap_read_lock_killable(curr_mm)) {
+ mmput(curr_mm);
+ goto finish;
+ }
+ } else {
+ op = task_vma_iter_next_vma;
+ }
+ } else {
+again:
+ curr_task = task_seq_get_next(&info->common, &info->tid, true);
+ if (!curr_task) {
+ info->tid++;
+ goto finish;
+ }
+
+ if (saved_tid != info->tid) {
+ /* new task, process the first vma */
+ op = task_vma_iter_first_vma;
+ } else {
+ /* Found the same tid, which means the user space
+ * finished data in previous buffer and read more.
+ * We dropped mmap_lock before returning to user
+ * space, so it is necessary to use find_vma() to
+ * find the next vma to process.
+ */
+ op = task_vma_iter_find_vma;
+ }
+
+ curr_mm = get_task_mm(curr_task);
+ if (!curr_mm)
+ goto next_task;
+
+ if (mmap_read_lock_killable(curr_mm)) {
+ mmput(curr_mm);
+ goto finish;
+ }
+ }
+
+ switch (op) {
+ case task_vma_iter_first_vma:
+ curr_vma = find_vma(curr_mm, 0);
+ break;
+ case task_vma_iter_next_vma:
+ curr_vma = find_vma(curr_mm, curr_vma->vm_end);
+ break;
+ case task_vma_iter_find_vma:
+ /* We dropped mmap_lock so it is necessary to use find_vma
+ * to find the next vma. This is similar to the mechanism
+ * in show_smaps_rollup().
+ */
+ curr_vma = find_vma(curr_mm, info->prev_vm_end - 1);
+ /* case 1) and 4.2) above just use curr_vma */
+
+ /* check for case 2) or case 4.1) above */
+ if (curr_vma &&
+ curr_vma->vm_start == info->prev_vm_start &&
+ curr_vma->vm_end == info->prev_vm_end)
+ curr_vma = find_vma(curr_mm, curr_vma->vm_end);
+ break;
+ }
+ if (!curr_vma) {
+ /* case 3) above, or case 2) 4.1) with vma->next == NULL */
+ mmap_read_unlock(curr_mm);
+ mmput(curr_mm);
+ goto next_task;
+ }
+ info->task = curr_task;
+ info->vma = curr_vma;
+ info->mm = curr_mm;
+ return curr_vma;
+
+next_task:
+ if (info->common.type == BPF_TASK_ITER_TID)
+ goto finish;
+
+ put_task_struct(curr_task);
+ info->task = NULL;
+ info->mm = NULL;
+ info->tid++;
+ goto again;
+
+finish:
+ if (curr_task)
+ put_task_struct(curr_task);
+ info->task = NULL;
+ info->vma = NULL;
+ info->mm = NULL;
+ return NULL;
+}
+
+static void *task_vma_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct bpf_iter_seq_task_vma_info *info = seq->private;
+ struct vm_area_struct *vma;
+
+ vma = task_vma_seq_get_next(info);
+ if (vma && *pos == 0)
+ ++*pos;
+
+ return vma;
+}
+
+static void *task_vma_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct bpf_iter_seq_task_vma_info *info = seq->private;
+
+ ++*pos;
+ return task_vma_seq_get_next(info);
+}
+
+struct bpf_iter__task_vma {
+ __bpf_md_ptr(struct bpf_iter_meta *, meta);
+ __bpf_md_ptr(struct task_struct *, task);
+ __bpf_md_ptr(struct vm_area_struct *, vma);
+};
+
+DEFINE_BPF_ITER_FUNC(task_vma, struct bpf_iter_meta *meta,
+ struct task_struct *task, struct vm_area_struct *vma)
+
+static int __task_vma_seq_show(struct seq_file *seq, bool in_stop)
+{
+ struct bpf_iter_seq_task_vma_info *info = seq->private;
+ struct bpf_iter__task_vma ctx;
+ struct bpf_iter_meta meta;
+ struct bpf_prog *prog;
+
+ meta.seq = seq;
+ prog = bpf_iter_get_info(&meta, in_stop);
+ if (!prog)
+ return 0;
+
+ ctx.meta = &meta;
+ ctx.task = info->task;
+ ctx.vma = info->vma;
+ return bpf_iter_run_prog(prog, &ctx);
+}
+
+static int task_vma_seq_show(struct seq_file *seq, void *v)
+{
+ return __task_vma_seq_show(seq, false);
+}
+
+static void task_vma_seq_stop(struct seq_file *seq, void *v)
+{
+ struct bpf_iter_seq_task_vma_info *info = seq->private;
+
+ if (!v) {
+ (void)__task_vma_seq_show(seq, true);
+ } else {
+ /* info->vma has not been seen by the BPF program. If the
+ * user space reads more, task_vma_seq_get_next should
+ * return this vma again. Set prev_vm_start to ~0UL,
+ * so that we don't skip the vma returned by the next
+ * find_vma() (case task_vma_iter_find_vma in
+ * task_vma_seq_get_next()).
+ */
+ info->prev_vm_start = ~0UL;
+ info->prev_vm_end = info->vma->vm_end;
+ mmap_read_unlock(info->mm);
+ mmput(info->mm);
+ info->mm = NULL;
+ put_task_struct(info->task);
+ info->task = NULL;
+ }
+}
+
+static const struct seq_operations task_vma_seq_ops = {
+ .start = task_vma_seq_start,
+ .next = task_vma_seq_next,
+ .stop = task_vma_seq_stop,
+ .show = task_vma_seq_show,
+};
+
+static const struct bpf_iter_seq_info task_seq_info = {
+ .seq_ops = &task_seq_ops,
+ .init_seq_private = init_seq_pidns,
+ .fini_seq_private = fini_seq_pidns,
+ .seq_priv_size = sizeof(struct bpf_iter_seq_task_info),
+};
+
+static int bpf_iter_fill_link_info(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info)
+{
+ switch (aux->task.type) {
+ case BPF_TASK_ITER_TID:
+ info->iter.task.tid = aux->task.pid;
+ break;
+ case BPF_TASK_ITER_TGID:
+ info->iter.task.pid = aux->task.pid;
+ break;
+ default:
+ break;
+ }
+ return 0;
+}
+
+static void bpf_iter_task_show_fdinfo(const struct bpf_iter_aux_info *aux, struct seq_file *seq)
+{
+ seq_printf(seq, "task_type:\t%s\n", iter_task_type_names[aux->task.type]);
+ if (aux->task.type == BPF_TASK_ITER_TID)
+ seq_printf(seq, "tid:\t%u\n", aux->task.pid);
+ else if (aux->task.type == BPF_TASK_ITER_TGID)
+ seq_printf(seq, "pid:\t%u\n", aux->task.pid);
+}
+
+static struct bpf_iter_reg task_reg_info = {
+ .target = "task",
+ .attach_target = bpf_iter_attach_task,
+ .feature = BPF_ITER_RESCHED,
+ .ctx_arg_info_size = 1,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__task, task),
+ PTR_TO_BTF_ID_OR_NULL },
+ },
+ .seq_info = &task_seq_info,
+ .fill_link_info = bpf_iter_fill_link_info,
+ .show_fdinfo = bpf_iter_task_show_fdinfo,
+};
+
+static const struct bpf_iter_seq_info task_file_seq_info = {
+ .seq_ops = &task_file_seq_ops,
+ .init_seq_private = init_seq_pidns,
+ .fini_seq_private = fini_seq_pidns,
+ .seq_priv_size = sizeof(struct bpf_iter_seq_task_file_info),
+};
+
+static struct bpf_iter_reg task_file_reg_info = {
+ .target = "task_file",
+ .attach_target = bpf_iter_attach_task,
+ .feature = BPF_ITER_RESCHED,
+ .ctx_arg_info_size = 2,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__task_file, task),
+ PTR_TO_BTF_ID_OR_NULL },
+ { offsetof(struct bpf_iter__task_file, file),
+ PTR_TO_BTF_ID_OR_NULL },
+ },
+ .seq_info = &task_file_seq_info,
+ .fill_link_info = bpf_iter_fill_link_info,
+ .show_fdinfo = bpf_iter_task_show_fdinfo,
+};
+
+static const struct bpf_iter_seq_info task_vma_seq_info = {
+ .seq_ops = &task_vma_seq_ops,
+ .init_seq_private = init_seq_pidns,
+ .fini_seq_private = fini_seq_pidns,
+ .seq_priv_size = sizeof(struct bpf_iter_seq_task_vma_info),
+};
+
+static struct bpf_iter_reg task_vma_reg_info = {
+ .target = "task_vma",
+ .attach_target = bpf_iter_attach_task,
+ .feature = BPF_ITER_RESCHED,
+ .ctx_arg_info_size = 2,
+ .ctx_arg_info = {
+ { offsetof(struct bpf_iter__task_vma, task),
+ PTR_TO_BTF_ID_OR_NULL },
+ { offsetof(struct bpf_iter__task_vma, vma),
+ PTR_TO_BTF_ID_OR_NULL },
+ },
+ .seq_info = &task_vma_seq_info,
+ .fill_link_info = bpf_iter_fill_link_info,
+ .show_fdinfo = bpf_iter_task_show_fdinfo,
+};
+
+BPF_CALL_5(bpf_find_vma, struct task_struct *, task, u64, start,
+ bpf_callback_t, callback_fn, void *, callback_ctx, u64, flags)
+{
+ struct mmap_unlock_irq_work *work = NULL;
+ struct vm_area_struct *vma;
+ bool irq_work_busy = false;
+ struct mm_struct *mm;
+ int ret = -ENOENT;
+
+ if (flags)
+ return -EINVAL;
+
+ if (!task)
+ return -ENOENT;
+
+ mm = task->mm;
+ if (!mm)
+ return -ENOENT;
+
+ irq_work_busy = bpf_mmap_unlock_get_irq_work(&work);
+
+ if (irq_work_busy || !mmap_read_trylock(mm))
+ return -EBUSY;
+
+ vma = find_vma(mm, start);
+
+ if (vma && vma->vm_start <= start && vma->vm_end > start) {
+ callback_fn((u64)(long)task, (u64)(long)vma,
+ (u64)(long)callback_ctx, 0, 0);
+ ret = 0;
+ }
+ bpf_mmap_unlock_mm(work, mm);
+ return ret;
+}
+
+const struct bpf_func_proto bpf_find_vma_proto = {
+ .func = bpf_find_vma,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_BTF_ID,
+ .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
+ .arg2_type = ARG_ANYTHING,
+ .arg3_type = ARG_PTR_TO_FUNC,
+ .arg4_type = ARG_PTR_TO_STACK_OR_NULL,
+ .arg5_type = ARG_ANYTHING,
+};
+
+DEFINE_PER_CPU(struct mmap_unlock_irq_work, mmap_unlock_work);
+
+static void do_mmap_read_unlock(struct irq_work *entry)
+{
+ struct mmap_unlock_irq_work *work;
+
+ if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT)))
+ return;
+
+ work = container_of(entry, struct mmap_unlock_irq_work, irq_work);
+ mmap_read_unlock_non_owner(work->mm);
+}
+
+static int __init task_iter_init(void)
+{
+ struct mmap_unlock_irq_work *work;
+ int ret, cpu;
+
+ for_each_possible_cpu(cpu) {
+ work = per_cpu_ptr(&mmap_unlock_work, cpu);
+ init_irq_work(&work->irq_work, do_mmap_read_unlock);
+ }
+
+ task_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
+ ret = bpf_iter_reg_target(&task_reg_info);
+ if (ret)
+ return ret;
+
+ task_file_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
+ task_file_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_FILE];
+ ret = bpf_iter_reg_target(&task_file_reg_info);
+ if (ret)
+ return ret;
+
+ task_vma_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
+ task_vma_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
+ return bpf_iter_reg_target(&task_vma_reg_info);
+}
+late_initcall(task_iter_init);
diff --git a/kernel/bpf/tnum.c b/kernel/bpf/tnum.c
new file mode 100644
index 000000000..3d7127f43
--- /dev/null
+++ b/kernel/bpf/tnum.c
@@ -0,0 +1,214 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* tnum: tracked (or tristate) numbers
+ *
+ * A tnum tracks knowledge about the bits of a value. Each bit can be either
+ * known (0 or 1), or unknown (x). Arithmetic operations on tnums will
+ * propagate the unknown bits such that the tnum result represents all the
+ * possible results for possible values of the operands.
+ */
+#include <linux/kernel.h>
+#include <linux/tnum.h>
+
+#define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m}
+/* A completely unknown value */
+const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
+
+struct tnum tnum_const(u64 value)
+{
+ return TNUM(value, 0);
+}
+
+struct tnum tnum_range(u64 min, u64 max)
+{
+ u64 chi = min ^ max, delta;
+ u8 bits = fls64(chi);
+
+ /* special case, needed because 1ULL << 64 is undefined */
+ if (bits > 63)
+ return tnum_unknown;
+ /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
+ * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
+ * constant min (since min == max).
+ */
+ delta = (1ULL << bits) - 1;
+ return TNUM(min & ~delta, delta);
+}
+
+struct tnum tnum_lshift(struct tnum a, u8 shift)
+{
+ return TNUM(a.value << shift, a.mask << shift);
+}
+
+struct tnum tnum_rshift(struct tnum a, u8 shift)
+{
+ return TNUM(a.value >> shift, a.mask >> shift);
+}
+
+struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness)
+{
+ /* if a.value is negative, arithmetic shifting by minimum shift
+ * will have larger negative offset compared to more shifting.
+ * If a.value is nonnegative, arithmetic shifting by minimum shift
+ * will have larger positive offset compare to more shifting.
+ */
+ if (insn_bitness == 32)
+ return TNUM((u32)(((s32)a.value) >> min_shift),
+ (u32)(((s32)a.mask) >> min_shift));
+ else
+ return TNUM((s64)a.value >> min_shift,
+ (s64)a.mask >> min_shift);
+}
+
+struct tnum tnum_add(struct tnum a, struct tnum b)
+{
+ u64 sm, sv, sigma, chi, mu;
+
+ sm = a.mask + b.mask;
+ sv = a.value + b.value;
+ sigma = sm + sv;
+ chi = sigma ^ sv;
+ mu = chi | a.mask | b.mask;
+ return TNUM(sv & ~mu, mu);
+}
+
+struct tnum tnum_sub(struct tnum a, struct tnum b)
+{
+ u64 dv, alpha, beta, chi, mu;
+
+ dv = a.value - b.value;
+ alpha = dv + a.mask;
+ beta = dv - b.mask;
+ chi = alpha ^ beta;
+ mu = chi | a.mask | b.mask;
+ return TNUM(dv & ~mu, mu);
+}
+
+struct tnum tnum_and(struct tnum a, struct tnum b)
+{
+ u64 alpha, beta, v;
+
+ alpha = a.value | a.mask;
+ beta = b.value | b.mask;
+ v = a.value & b.value;
+ return TNUM(v, alpha & beta & ~v);
+}
+
+struct tnum tnum_or(struct tnum a, struct tnum b)
+{
+ u64 v, mu;
+
+ v = a.value | b.value;
+ mu = a.mask | b.mask;
+ return TNUM(v, mu & ~v);
+}
+
+struct tnum tnum_xor(struct tnum a, struct tnum b)
+{
+ u64 v, mu;
+
+ v = a.value ^ b.value;
+ mu = a.mask | b.mask;
+ return TNUM(v & ~mu, mu);
+}
+
+/* Generate partial products by multiplying each bit in the multiplier (tnum a)
+ * with the multiplicand (tnum b), and add the partial products after
+ * appropriately bit-shifting them. Instead of directly performing tnum addition
+ * on the generated partial products, equivalenty, decompose each partial
+ * product into two tnums, consisting of the value-sum (acc_v) and the
+ * mask-sum (acc_m) and then perform tnum addition on them. The following paper
+ * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398.
+ */
+struct tnum tnum_mul(struct tnum a, struct tnum b)
+{
+ u64 acc_v = a.value * b.value;
+ struct tnum acc_m = TNUM(0, 0);
+
+ while (a.value || a.mask) {
+ /* LSB of tnum a is a certain 1 */
+ if (a.value & 1)
+ acc_m = tnum_add(acc_m, TNUM(0, b.mask));
+ /* LSB of tnum a is uncertain */
+ else if (a.mask & 1)
+ acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask));
+ /* Note: no case for LSB is certain 0 */
+ a = tnum_rshift(a, 1);
+ b = tnum_lshift(b, 1);
+ }
+ return tnum_add(TNUM(acc_v, 0), acc_m);
+}
+
+/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
+ * a 'known 0' - this will return a 'known 1' for that bit.
+ */
+struct tnum tnum_intersect(struct tnum a, struct tnum b)
+{
+ u64 v, mu;
+
+ v = a.value | b.value;
+ mu = a.mask & b.mask;
+ return TNUM(v & ~mu, mu);
+}
+
+struct tnum tnum_cast(struct tnum a, u8 size)
+{
+ a.value &= (1ULL << (size * 8)) - 1;
+ a.mask &= (1ULL << (size * 8)) - 1;
+ return a;
+}
+
+bool tnum_is_aligned(struct tnum a, u64 size)
+{
+ if (!size)
+ return true;
+ return !((a.value | a.mask) & (size - 1));
+}
+
+bool tnum_in(struct tnum a, struct tnum b)
+{
+ if (b.mask & ~a.mask)
+ return false;
+ b.value &= ~a.mask;
+ return a.value == b.value;
+}
+
+int tnum_strn(char *str, size_t size, struct tnum a)
+{
+ return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
+}
+EXPORT_SYMBOL_GPL(tnum_strn);
+
+int tnum_sbin(char *str, size_t size, struct tnum a)
+{
+ size_t n;
+
+ for (n = 64; n; n--) {
+ if (n < size) {
+ if (a.mask & 1)
+ str[n - 1] = 'x';
+ else if (a.value & 1)
+ str[n - 1] = '1';
+ else
+ str[n - 1] = '0';
+ }
+ a.mask >>= 1;
+ a.value >>= 1;
+ }
+ str[min(size - 1, (size_t)64)] = 0;
+ return 64;
+}
+
+struct tnum tnum_subreg(struct tnum a)
+{
+ return tnum_cast(a, 4);
+}
+
+struct tnum tnum_clear_subreg(struct tnum a)
+{
+ return tnum_lshift(tnum_rshift(a, 32), 32);
+}
+
+struct tnum tnum_const_subreg(struct tnum a, u32 value)
+{
+ return tnum_or(tnum_clear_subreg(a), tnum_const(value));
+}
diff --git a/kernel/bpf/trampoline.c b/kernel/bpf/trampoline.c
new file mode 100644
index 000000000..748ac8616
--- /dev/null
+++ b/kernel/bpf/trampoline.c
@@ -0,0 +1,1080 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2019 Facebook */
+#include <linux/hash.h>
+#include <linux/bpf.h>
+#include <linux/filter.h>
+#include <linux/ftrace.h>
+#include <linux/rbtree_latch.h>
+#include <linux/perf_event.h>
+#include <linux/btf.h>
+#include <linux/rcupdate_trace.h>
+#include <linux/rcupdate_wait.h>
+#include <linux/module.h>
+#include <linux/static_call.h>
+#include <linux/bpf_verifier.h>
+#include <linux/bpf_lsm.h>
+#include <linux/delay.h>
+
+/* dummy _ops. The verifier will operate on target program's ops. */
+const struct bpf_verifier_ops bpf_extension_verifier_ops = {
+};
+const struct bpf_prog_ops bpf_extension_prog_ops = {
+};
+
+/* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
+#define TRAMPOLINE_HASH_BITS 10
+#define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
+
+static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
+
+/* serializes access to trampoline_table */
+static DEFINE_MUTEX(trampoline_mutex);
+
+#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
+static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex);
+
+static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd)
+{
+ struct bpf_trampoline *tr = ops->private;
+ int ret = 0;
+
+ if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) {
+ /* This is called inside register_ftrace_direct_multi(), so
+ * tr->mutex is already locked.
+ */
+ lockdep_assert_held_once(&tr->mutex);
+
+ /* Instead of updating the trampoline here, we propagate
+ * -EAGAIN to register_ftrace_direct_multi(). Then we can
+ * retry register_ftrace_direct_multi() after updating the
+ * trampoline.
+ */
+ if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
+ !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) {
+ if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY))
+ return -EBUSY;
+
+ tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
+ return -EAGAIN;
+ }
+
+ return 0;
+ }
+
+ /* The normal locking order is
+ * tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c)
+ *
+ * The following two commands are called from
+ *
+ * prepare_direct_functions_for_ipmodify
+ * cleanup_direct_functions_after_ipmodify
+ *
+ * In both cases, direct_mutex is already locked. Use
+ * mutex_trylock(&tr->mutex) to avoid deadlock in race condition
+ * (something else is making changes to this same trampoline).
+ */
+ if (!mutex_trylock(&tr->mutex)) {
+ /* sleep 1 ms to make sure whatever holding tr->mutex makes
+ * some progress.
+ */
+ msleep(1);
+ return -EAGAIN;
+ }
+
+ switch (cmd) {
+ case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER:
+ tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
+
+ if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
+ !(tr->flags & BPF_TRAMP_F_ORIG_STACK))
+ ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
+ break;
+ case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER:
+ tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY;
+
+ if (tr->flags & BPF_TRAMP_F_ORIG_STACK)
+ ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ mutex_unlock(&tr->mutex);
+ return ret;
+}
+#endif
+
+bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
+{
+ enum bpf_attach_type eatype = prog->expected_attach_type;
+ enum bpf_prog_type ptype = prog->type;
+
+ return (ptype == BPF_PROG_TYPE_TRACING &&
+ (eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT ||
+ eatype == BPF_MODIFY_RETURN)) ||
+ (ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC);
+}
+
+void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym)
+{
+ ksym->start = (unsigned long) data;
+ ksym->end = ksym->start + PAGE_SIZE;
+ bpf_ksym_add(ksym);
+ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
+ PAGE_SIZE, false, ksym->name);
+}
+
+void bpf_image_ksym_del(struct bpf_ksym *ksym)
+{
+ bpf_ksym_del(ksym);
+ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
+ PAGE_SIZE, true, ksym->name);
+}
+
+static struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
+{
+ struct bpf_trampoline *tr;
+ struct hlist_head *head;
+ int i;
+
+ mutex_lock(&trampoline_mutex);
+ head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
+ hlist_for_each_entry(tr, head, hlist) {
+ if (tr->key == key) {
+ refcount_inc(&tr->refcnt);
+ goto out;
+ }
+ }
+ tr = kzalloc(sizeof(*tr), GFP_KERNEL);
+ if (!tr)
+ goto out;
+#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
+ tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL);
+ if (!tr->fops) {
+ kfree(tr);
+ tr = NULL;
+ goto out;
+ }
+ tr->fops->private = tr;
+ tr->fops->ops_func = bpf_tramp_ftrace_ops_func;
+#endif
+
+ tr->key = key;
+ INIT_HLIST_NODE(&tr->hlist);
+ hlist_add_head(&tr->hlist, head);
+ refcount_set(&tr->refcnt, 1);
+ mutex_init(&tr->mutex);
+ for (i = 0; i < BPF_TRAMP_MAX; i++)
+ INIT_HLIST_HEAD(&tr->progs_hlist[i]);
+out:
+ mutex_unlock(&trampoline_mutex);
+ return tr;
+}
+
+static int bpf_trampoline_module_get(struct bpf_trampoline *tr)
+{
+ struct module *mod;
+ int err = 0;
+
+ preempt_disable();
+ mod = __module_text_address((unsigned long) tr->func.addr);
+ if (mod && !try_module_get(mod))
+ err = -ENOENT;
+ preempt_enable();
+ tr->mod = mod;
+ return err;
+}
+
+static void bpf_trampoline_module_put(struct bpf_trampoline *tr)
+{
+ module_put(tr->mod);
+ tr->mod = NULL;
+}
+
+static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
+{
+ void *ip = tr->func.addr;
+ int ret;
+
+ if (tr->func.ftrace_managed)
+ ret = unregister_ftrace_direct_multi(tr->fops, (long)old_addr);
+ else
+ ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL);
+
+ if (!ret)
+ bpf_trampoline_module_put(tr);
+ return ret;
+}
+
+static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr,
+ bool lock_direct_mutex)
+{
+ void *ip = tr->func.addr;
+ int ret;
+
+ if (tr->func.ftrace_managed) {
+ if (lock_direct_mutex)
+ ret = modify_ftrace_direct_multi(tr->fops, (long)new_addr);
+ else
+ ret = modify_ftrace_direct_multi_nolock(tr->fops, (long)new_addr);
+ } else {
+ ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr);
+ }
+ return ret;
+}
+
+/* first time registering */
+static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
+{
+ void *ip = tr->func.addr;
+ unsigned long faddr;
+ int ret;
+
+ faddr = ftrace_location((unsigned long)ip);
+ if (faddr) {
+ if (!tr->fops)
+ return -ENOTSUPP;
+ tr->func.ftrace_managed = true;
+ }
+
+ if (bpf_trampoline_module_get(tr))
+ return -ENOENT;
+
+ if (tr->func.ftrace_managed) {
+ ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1);
+ ret = register_ftrace_direct_multi(tr->fops, (long)new_addr);
+ } else {
+ ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr);
+ }
+
+ if (ret)
+ bpf_trampoline_module_put(tr);
+ return ret;
+}
+
+static struct bpf_tramp_links *
+bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg)
+{
+ struct bpf_tramp_link *link;
+ struct bpf_tramp_links *tlinks;
+ struct bpf_tramp_link **links;
+ int kind;
+
+ *total = 0;
+ tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL);
+ if (!tlinks)
+ return ERR_PTR(-ENOMEM);
+
+ for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
+ tlinks[kind].nr_links = tr->progs_cnt[kind];
+ *total += tr->progs_cnt[kind];
+ links = tlinks[kind].links;
+
+ hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
+ *ip_arg |= link->link.prog->call_get_func_ip;
+ *links++ = link;
+ }
+ }
+ return tlinks;
+}
+
+static void bpf_tramp_image_free(struct bpf_tramp_image *im)
+{
+ bpf_image_ksym_del(&im->ksym);
+ bpf_jit_free_exec(im->image);
+ bpf_jit_uncharge_modmem(PAGE_SIZE);
+ percpu_ref_exit(&im->pcref);
+ kfree_rcu(im, rcu);
+}
+
+static void __bpf_tramp_image_put_deferred(struct work_struct *work)
+{
+ struct bpf_tramp_image *im;
+
+ im = container_of(work, struct bpf_tramp_image, work);
+ bpf_tramp_image_free(im);
+}
+
+/* callback, fexit step 3 or fentry step 2 */
+static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu)
+{
+ struct bpf_tramp_image *im;
+
+ im = container_of(rcu, struct bpf_tramp_image, rcu);
+ INIT_WORK(&im->work, __bpf_tramp_image_put_deferred);
+ schedule_work(&im->work);
+}
+
+/* callback, fexit step 2. Called after percpu_ref_kill confirms. */
+static void __bpf_tramp_image_release(struct percpu_ref *pcref)
+{
+ struct bpf_tramp_image *im;
+
+ im = container_of(pcref, struct bpf_tramp_image, pcref);
+ call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
+}
+
+/* callback, fexit or fentry step 1 */
+static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu)
+{
+ struct bpf_tramp_image *im;
+
+ im = container_of(rcu, struct bpf_tramp_image, rcu);
+ if (im->ip_after_call)
+ /* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */
+ percpu_ref_kill(&im->pcref);
+ else
+ /* the case of fentry trampoline */
+ call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
+}
+
+static void bpf_tramp_image_put(struct bpf_tramp_image *im)
+{
+ /* The trampoline image that calls original function is using:
+ * rcu_read_lock_trace to protect sleepable bpf progs
+ * rcu_read_lock to protect normal bpf progs
+ * percpu_ref to protect trampoline itself
+ * rcu tasks to protect trampoline asm not covered by percpu_ref
+ * (which are few asm insns before __bpf_tramp_enter and
+ * after __bpf_tramp_exit)
+ *
+ * The trampoline is unreachable before bpf_tramp_image_put().
+ *
+ * First, patch the trampoline to avoid calling into fexit progs.
+ * The progs will be freed even if the original function is still
+ * executing or sleeping.
+ * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on
+ * first few asm instructions to execute and call into
+ * __bpf_tramp_enter->percpu_ref_get.
+ * Then use percpu_ref_kill to wait for the trampoline and the original
+ * function to finish.
+ * Then use call_rcu_tasks() to make sure few asm insns in
+ * the trampoline epilogue are done as well.
+ *
+ * In !PREEMPT case the task that got interrupted in the first asm
+ * insns won't go through an RCU quiescent state which the
+ * percpu_ref_kill will be waiting for. Hence the first
+ * call_rcu_tasks() is not necessary.
+ */
+ if (im->ip_after_call) {
+ int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP,
+ NULL, im->ip_epilogue);
+ WARN_ON(err);
+ if (IS_ENABLED(CONFIG_PREEMPTION))
+ call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
+ else
+ percpu_ref_kill(&im->pcref);
+ return;
+ }
+
+ /* The trampoline without fexit and fmod_ret progs doesn't call original
+ * function and doesn't use percpu_ref.
+ * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
+ * Then use call_rcu_tasks() to wait for the rest of trampoline asm
+ * and normal progs.
+ */
+ call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
+}
+
+static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key)
+{
+ struct bpf_tramp_image *im;
+ struct bpf_ksym *ksym;
+ void *image;
+ int err = -ENOMEM;
+
+ im = kzalloc(sizeof(*im), GFP_KERNEL);
+ if (!im)
+ goto out;
+
+ err = bpf_jit_charge_modmem(PAGE_SIZE);
+ if (err)
+ goto out_free_im;
+
+ err = -ENOMEM;
+ im->image = image = bpf_jit_alloc_exec(PAGE_SIZE);
+ if (!image)
+ goto out_uncharge;
+ set_vm_flush_reset_perms(image);
+
+ err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL);
+ if (err)
+ goto out_free_image;
+
+ ksym = &im->ksym;
+ INIT_LIST_HEAD_RCU(&ksym->lnode);
+ snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu", key);
+ bpf_image_ksym_add(image, ksym);
+ return im;
+
+out_free_image:
+ bpf_jit_free_exec(im->image);
+out_uncharge:
+ bpf_jit_uncharge_modmem(PAGE_SIZE);
+out_free_im:
+ kfree(im);
+out:
+ return ERR_PTR(err);
+}
+
+static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex)
+{
+ struct bpf_tramp_image *im;
+ struct bpf_tramp_links *tlinks;
+ u32 orig_flags = tr->flags;
+ bool ip_arg = false;
+ int err, total;
+
+ tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg);
+ if (IS_ERR(tlinks))
+ return PTR_ERR(tlinks);
+
+ if (total == 0) {
+ err = unregister_fentry(tr, tr->cur_image->image);
+ bpf_tramp_image_put(tr->cur_image);
+ tr->cur_image = NULL;
+ goto out;
+ }
+
+ im = bpf_tramp_image_alloc(tr->key);
+ if (IS_ERR(im)) {
+ err = PTR_ERR(im);
+ goto out;
+ }
+
+ /* clear all bits except SHARE_IPMODIFY and TAIL_CALL_CTX */
+ tr->flags &= (BPF_TRAMP_F_SHARE_IPMODIFY | BPF_TRAMP_F_TAIL_CALL_CTX);
+
+ if (tlinks[BPF_TRAMP_FEXIT].nr_links ||
+ tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) {
+ /* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME
+ * should not be set together.
+ */
+ tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
+ } else {
+ tr->flags |= BPF_TRAMP_F_RESTORE_REGS;
+ }
+
+ if (ip_arg)
+ tr->flags |= BPF_TRAMP_F_IP_ARG;
+
+#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
+again:
+ if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) &&
+ (tr->flags & BPF_TRAMP_F_CALL_ORIG))
+ tr->flags |= BPF_TRAMP_F_ORIG_STACK;
+#endif
+
+ err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE,
+ &tr->func.model, tr->flags, tlinks,
+ tr->func.addr);
+ if (err < 0)
+ goto out_free;
+
+ set_memory_ro((long)im->image, 1);
+ set_memory_x((long)im->image, 1);
+
+ WARN_ON(tr->cur_image && total == 0);
+ if (tr->cur_image)
+ /* progs already running at this address */
+ err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex);
+ else
+ /* first time registering */
+ err = register_fentry(tr, im->image);
+
+#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
+ if (err == -EAGAIN) {
+ /* -EAGAIN from bpf_tramp_ftrace_ops_func. Now
+ * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the
+ * trampoline again, and retry register.
+ */
+ /* reset fops->func and fops->trampoline for re-register */
+ tr->fops->func = NULL;
+ tr->fops->trampoline = 0;
+
+ /* reset im->image memory attr for arch_prepare_bpf_trampoline */
+ set_memory_nx((long)im->image, 1);
+ set_memory_rw((long)im->image, 1);
+ goto again;
+ }
+#endif
+ if (err)
+ goto out_free;
+
+ if (tr->cur_image)
+ bpf_tramp_image_put(tr->cur_image);
+ tr->cur_image = im;
+out:
+ /* If any error happens, restore previous flags */
+ if (err)
+ tr->flags = orig_flags;
+ kfree(tlinks);
+ return err;
+
+out_free:
+ bpf_tramp_image_free(im);
+ goto out;
+}
+
+static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
+{
+ switch (prog->expected_attach_type) {
+ case BPF_TRACE_FENTRY:
+ return BPF_TRAMP_FENTRY;
+ case BPF_MODIFY_RETURN:
+ return BPF_TRAMP_MODIFY_RETURN;
+ case BPF_TRACE_FEXIT:
+ return BPF_TRAMP_FEXIT;
+ case BPF_LSM_MAC:
+ if (!prog->aux->attach_func_proto->type)
+ /* The function returns void, we cannot modify its
+ * return value.
+ */
+ return BPF_TRAMP_FEXIT;
+ else
+ return BPF_TRAMP_MODIFY_RETURN;
+ default:
+ return BPF_TRAMP_REPLACE;
+ }
+}
+
+static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
+{
+ enum bpf_tramp_prog_type kind;
+ struct bpf_tramp_link *link_exiting;
+ int err = 0;
+ int cnt = 0, i;
+
+ kind = bpf_attach_type_to_tramp(link->link.prog);
+ if (tr->extension_prog)
+ /* cannot attach fentry/fexit if extension prog is attached.
+ * cannot overwrite extension prog either.
+ */
+ return -EBUSY;
+
+ for (i = 0; i < BPF_TRAMP_MAX; i++)
+ cnt += tr->progs_cnt[i];
+
+ if (kind == BPF_TRAMP_REPLACE) {
+ /* Cannot attach extension if fentry/fexit are in use. */
+ if (cnt)
+ return -EBUSY;
+ tr->extension_prog = link->link.prog;
+ return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL,
+ link->link.prog->bpf_func);
+ }
+ if (cnt >= BPF_MAX_TRAMP_LINKS)
+ return -E2BIG;
+ if (!hlist_unhashed(&link->tramp_hlist))
+ /* prog already linked */
+ return -EBUSY;
+ hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) {
+ if (link_exiting->link.prog != link->link.prog)
+ continue;
+ /* prog already linked */
+ return -EBUSY;
+ }
+
+ hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]);
+ tr->progs_cnt[kind]++;
+ err = bpf_trampoline_update(tr, true /* lock_direct_mutex */);
+ if (err) {
+ hlist_del_init(&link->tramp_hlist);
+ tr->progs_cnt[kind]--;
+ }
+ return err;
+}
+
+int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
+{
+ int err;
+
+ mutex_lock(&tr->mutex);
+ err = __bpf_trampoline_link_prog(link, tr);
+ mutex_unlock(&tr->mutex);
+ return err;
+}
+
+static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
+{
+ enum bpf_tramp_prog_type kind;
+ int err;
+
+ kind = bpf_attach_type_to_tramp(link->link.prog);
+ if (kind == BPF_TRAMP_REPLACE) {
+ WARN_ON_ONCE(!tr->extension_prog);
+ err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
+ tr->extension_prog->bpf_func, NULL);
+ tr->extension_prog = NULL;
+ return err;
+ }
+ hlist_del_init(&link->tramp_hlist);
+ tr->progs_cnt[kind]--;
+ return bpf_trampoline_update(tr, true /* lock_direct_mutex */);
+}
+
+/* bpf_trampoline_unlink_prog() should never fail. */
+int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
+{
+ int err;
+
+ mutex_lock(&tr->mutex);
+ err = __bpf_trampoline_unlink_prog(link, tr);
+ mutex_unlock(&tr->mutex);
+ return err;
+}
+
+#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
+static void bpf_shim_tramp_link_release(struct bpf_link *link)
+{
+ struct bpf_shim_tramp_link *shim_link =
+ container_of(link, struct bpf_shim_tramp_link, link.link);
+
+ /* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */
+ if (!shim_link->trampoline)
+ return;
+
+ WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline));
+ bpf_trampoline_put(shim_link->trampoline);
+}
+
+static void bpf_shim_tramp_link_dealloc(struct bpf_link *link)
+{
+ struct bpf_shim_tramp_link *shim_link =
+ container_of(link, struct bpf_shim_tramp_link, link.link);
+
+ kfree(shim_link);
+}
+
+static const struct bpf_link_ops bpf_shim_tramp_link_lops = {
+ .release = bpf_shim_tramp_link_release,
+ .dealloc = bpf_shim_tramp_link_dealloc,
+};
+
+static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog,
+ bpf_func_t bpf_func,
+ int cgroup_atype)
+{
+ struct bpf_shim_tramp_link *shim_link = NULL;
+ struct bpf_prog *p;
+
+ shim_link = kzalloc(sizeof(*shim_link), GFP_USER);
+ if (!shim_link)
+ return NULL;
+
+ p = bpf_prog_alloc(1, 0);
+ if (!p) {
+ kfree(shim_link);
+ return NULL;
+ }
+
+ p->jited = false;
+ p->bpf_func = bpf_func;
+
+ p->aux->cgroup_atype = cgroup_atype;
+ p->aux->attach_func_proto = prog->aux->attach_func_proto;
+ p->aux->attach_btf_id = prog->aux->attach_btf_id;
+ p->aux->attach_btf = prog->aux->attach_btf;
+ btf_get(p->aux->attach_btf);
+ p->type = BPF_PROG_TYPE_LSM;
+ p->expected_attach_type = BPF_LSM_MAC;
+ bpf_prog_inc(p);
+ bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC,
+ &bpf_shim_tramp_link_lops, p);
+ bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype);
+
+ return shim_link;
+}
+
+static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr,
+ bpf_func_t bpf_func)
+{
+ struct bpf_tramp_link *link;
+ int kind;
+
+ for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
+ hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
+ struct bpf_prog *p = link->link.prog;
+
+ if (p->bpf_func == bpf_func)
+ return container_of(link, struct bpf_shim_tramp_link, link);
+ }
+ }
+
+ return NULL;
+}
+
+int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
+ int cgroup_atype)
+{
+ struct bpf_shim_tramp_link *shim_link = NULL;
+ struct bpf_attach_target_info tgt_info = {};
+ struct bpf_trampoline *tr;
+ bpf_func_t bpf_func;
+ u64 key;
+ int err;
+
+ err = bpf_check_attach_target(NULL, prog, NULL,
+ prog->aux->attach_btf_id,
+ &tgt_info);
+ if (err)
+ return err;
+
+ key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
+ prog->aux->attach_btf_id);
+
+ bpf_lsm_find_cgroup_shim(prog, &bpf_func);
+ tr = bpf_trampoline_get(key, &tgt_info);
+ if (!tr)
+ return -ENOMEM;
+
+ mutex_lock(&tr->mutex);
+
+ shim_link = cgroup_shim_find(tr, bpf_func);
+ if (shim_link) {
+ /* Reusing existing shim attached by the other program. */
+ bpf_link_inc(&shim_link->link.link);
+
+ mutex_unlock(&tr->mutex);
+ bpf_trampoline_put(tr); /* bpf_trampoline_get above */
+ return 0;
+ }
+
+ /* Allocate and install new shim. */
+
+ shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype);
+ if (!shim_link) {
+ err = -ENOMEM;
+ goto err;
+ }
+
+ err = __bpf_trampoline_link_prog(&shim_link->link, tr);
+ if (err)
+ goto err;
+
+ shim_link->trampoline = tr;
+ /* note, we're still holding tr refcnt from above */
+
+ mutex_unlock(&tr->mutex);
+
+ return 0;
+err:
+ mutex_unlock(&tr->mutex);
+
+ if (shim_link)
+ bpf_link_put(&shim_link->link.link);
+
+ /* have to release tr while _not_ holding its mutex */
+ bpf_trampoline_put(tr); /* bpf_trampoline_get above */
+
+ return err;
+}
+
+void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
+{
+ struct bpf_shim_tramp_link *shim_link = NULL;
+ struct bpf_trampoline *tr;
+ bpf_func_t bpf_func;
+ u64 key;
+
+ key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
+ prog->aux->attach_btf_id);
+
+ bpf_lsm_find_cgroup_shim(prog, &bpf_func);
+ tr = bpf_trampoline_lookup(key);
+ if (WARN_ON_ONCE(!tr))
+ return;
+
+ mutex_lock(&tr->mutex);
+ shim_link = cgroup_shim_find(tr, bpf_func);
+ mutex_unlock(&tr->mutex);
+
+ if (shim_link)
+ bpf_link_put(&shim_link->link.link);
+
+ bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */
+}
+#endif
+
+struct bpf_trampoline *bpf_trampoline_get(u64 key,
+ struct bpf_attach_target_info *tgt_info)
+{
+ struct bpf_trampoline *tr;
+
+ tr = bpf_trampoline_lookup(key);
+ if (!tr)
+ return NULL;
+
+ mutex_lock(&tr->mutex);
+ if (tr->func.addr)
+ goto out;
+
+ memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel));
+ tr->func.addr = (void *)tgt_info->tgt_addr;
+out:
+ mutex_unlock(&tr->mutex);
+ return tr;
+}
+
+void bpf_trampoline_put(struct bpf_trampoline *tr)
+{
+ int i;
+
+ if (!tr)
+ return;
+ mutex_lock(&trampoline_mutex);
+ if (!refcount_dec_and_test(&tr->refcnt))
+ goto out;
+ WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
+
+ for (i = 0; i < BPF_TRAMP_MAX; i++)
+ if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i])))
+ goto out;
+
+ /* This code will be executed even when the last bpf_tramp_image
+ * is alive. All progs are detached from the trampoline and the
+ * trampoline image is patched with jmp into epilogue to skip
+ * fexit progs. The fentry-only trampoline will be freed via
+ * multiple rcu callbacks.
+ */
+ hlist_del(&tr->hlist);
+ if (tr->fops) {
+ ftrace_free_filter(tr->fops);
+ kfree(tr->fops);
+ }
+ kfree(tr);
+out:
+ mutex_unlock(&trampoline_mutex);
+}
+
+#define NO_START_TIME 1
+static __always_inline u64 notrace bpf_prog_start_time(void)
+{
+ u64 start = NO_START_TIME;
+
+ if (static_branch_unlikely(&bpf_stats_enabled_key)) {
+ start = sched_clock();
+ if (unlikely(!start))
+ start = NO_START_TIME;
+ }
+ return start;
+}
+
+/* The logic is similar to bpf_prog_run(), but with an explicit
+ * rcu_read_lock() and migrate_disable() which are required
+ * for the trampoline. The macro is split into
+ * call __bpf_prog_enter
+ * call prog->bpf_func
+ * call __bpf_prog_exit
+ *
+ * __bpf_prog_enter returns:
+ * 0 - skip execution of the bpf prog
+ * 1 - execute bpf prog
+ * [2..MAX_U64] - execute bpf prog and record execution time.
+ * This is start time.
+ */
+static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx)
+ __acquires(RCU)
+{
+ rcu_read_lock();
+ migrate_disable();
+
+ run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
+
+ if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
+ bpf_prog_inc_misses_counter(prog);
+ return 0;
+ }
+ return bpf_prog_start_time();
+}
+
+static void notrace update_prog_stats(struct bpf_prog *prog,
+ u64 start)
+{
+ struct bpf_prog_stats *stats;
+
+ if (static_branch_unlikely(&bpf_stats_enabled_key) &&
+ /* static_key could be enabled in __bpf_prog_enter*
+ * and disabled in __bpf_prog_exit*.
+ * And vice versa.
+ * Hence check that 'start' is valid.
+ */
+ start > NO_START_TIME) {
+ unsigned long flags;
+
+ stats = this_cpu_ptr(prog->stats);
+ flags = u64_stats_update_begin_irqsave(&stats->syncp);
+ u64_stats_inc(&stats->cnt);
+ u64_stats_add(&stats->nsecs, sched_clock() - start);
+ u64_stats_update_end_irqrestore(&stats->syncp, flags);
+ }
+}
+
+static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start,
+ struct bpf_tramp_run_ctx *run_ctx)
+ __releases(RCU)
+{
+ bpf_reset_run_ctx(run_ctx->saved_run_ctx);
+
+ update_prog_stats(prog, start);
+ this_cpu_dec(*(prog->active));
+ migrate_enable();
+ rcu_read_unlock();
+}
+
+static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog,
+ struct bpf_tramp_run_ctx *run_ctx)
+ __acquires(RCU)
+{
+ /* Runtime stats are exported via actual BPF_LSM_CGROUP
+ * programs, not the shims.
+ */
+ rcu_read_lock();
+ migrate_disable();
+
+ run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
+
+ return NO_START_TIME;
+}
+
+static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start,
+ struct bpf_tramp_run_ctx *run_ctx)
+ __releases(RCU)
+{
+ bpf_reset_run_ctx(run_ctx->saved_run_ctx);
+
+ migrate_enable();
+ rcu_read_unlock();
+}
+
+u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
+ struct bpf_tramp_run_ctx *run_ctx)
+{
+ rcu_read_lock_trace();
+ migrate_disable();
+ might_fault();
+
+ run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
+
+ if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
+ bpf_prog_inc_misses_counter(prog);
+ return 0;
+ }
+ return bpf_prog_start_time();
+}
+
+void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
+ struct bpf_tramp_run_ctx *run_ctx)
+{
+ bpf_reset_run_ctx(run_ctx->saved_run_ctx);
+
+ update_prog_stats(prog, start);
+ this_cpu_dec(*(prog->active));
+ migrate_enable();
+ rcu_read_unlock_trace();
+}
+
+static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog,
+ struct bpf_tramp_run_ctx *run_ctx)
+{
+ rcu_read_lock_trace();
+ migrate_disable();
+ might_fault();
+
+ run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
+
+ return bpf_prog_start_time();
+}
+
+static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start,
+ struct bpf_tramp_run_ctx *run_ctx)
+{
+ bpf_reset_run_ctx(run_ctx->saved_run_ctx);
+
+ update_prog_stats(prog, start);
+ migrate_enable();
+ rcu_read_unlock_trace();
+}
+
+static u64 notrace __bpf_prog_enter(struct bpf_prog *prog,
+ struct bpf_tramp_run_ctx *run_ctx)
+ __acquires(RCU)
+{
+ rcu_read_lock();
+ migrate_disable();
+
+ run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
+
+ return bpf_prog_start_time();
+}
+
+static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start,
+ struct bpf_tramp_run_ctx *run_ctx)
+ __releases(RCU)
+{
+ bpf_reset_run_ctx(run_ctx->saved_run_ctx);
+
+ update_prog_stats(prog, start);
+ migrate_enable();
+ rcu_read_unlock();
+}
+
+void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr)
+{
+ percpu_ref_get(&tr->pcref);
+}
+
+void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr)
+{
+ percpu_ref_put(&tr->pcref);
+}
+
+bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog)
+{
+ bool sleepable = prog->aux->sleepable;
+
+ if (bpf_prog_check_recur(prog))
+ return sleepable ? __bpf_prog_enter_sleepable_recur :
+ __bpf_prog_enter_recur;
+
+ if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
+ prog->expected_attach_type == BPF_LSM_CGROUP)
+ return __bpf_prog_enter_lsm_cgroup;
+
+ return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter;
+}
+
+bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog)
+{
+ bool sleepable = prog->aux->sleepable;
+
+ if (bpf_prog_check_recur(prog))
+ return sleepable ? __bpf_prog_exit_sleepable_recur :
+ __bpf_prog_exit_recur;
+
+ if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
+ prog->expected_attach_type == BPF_LSM_CGROUP)
+ return __bpf_prog_exit_lsm_cgroup;
+
+ return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit;
+}
+
+int __weak
+arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
+ const struct btf_func_model *m, u32 flags,
+ struct bpf_tramp_links *tlinks,
+ void *orig_call)
+{
+ return -ENOTSUPP;
+}
+
+static int __init init_trampolines(void)
+{
+ int i;
+
+ for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
+ INIT_HLIST_HEAD(&trampoline_table[i]);
+ return 0;
+}
+late_initcall(init_trampolines);
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
new file mode 100644
index 000000000..23b6d57b5
--- /dev/null
+++ b/kernel/bpf/verifier.c
@@ -0,0 +1,15761 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
+ * Copyright (c) 2016 Facebook
+ * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
+ */
+#include <uapi/linux/btf.h>
+#include <linux/bpf-cgroup.h>
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/bpf.h>
+#include <linux/btf.h>
+#include <linux/bpf_verifier.h>
+#include <linux/filter.h>
+#include <net/netlink.h>
+#include <linux/file.h>
+#include <linux/vmalloc.h>
+#include <linux/stringify.h>
+#include <linux/bsearch.h>
+#include <linux/sort.h>
+#include <linux/perf_event.h>
+#include <linux/ctype.h>
+#include <linux/error-injection.h>
+#include <linux/bpf_lsm.h>
+#include <linux/btf_ids.h>
+#include <linux/poison.h>
+
+#include "disasm.h"
+
+static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ [_id] = & _name ## _verifier_ops,
+#define BPF_MAP_TYPE(_id, _ops)
+#define BPF_LINK_TYPE(_id, _name)
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+#undef BPF_MAP_TYPE
+#undef BPF_LINK_TYPE
+};
+
+/* bpf_check() is a static code analyzer that walks eBPF program
+ * instruction by instruction and updates register/stack state.
+ * All paths of conditional branches are analyzed until 'bpf_exit' insn.
+ *
+ * The first pass is depth-first-search to check that the program is a DAG.
+ * It rejects the following programs:
+ * - larger than BPF_MAXINSNS insns
+ * - if loop is present (detected via back-edge)
+ * - unreachable insns exist (shouldn't be a forest. program = one function)
+ * - out of bounds or malformed jumps
+ * The second pass is all possible path descent from the 1st insn.
+ * Since it's analyzing all paths through the program, the length of the
+ * analysis is limited to 64k insn, which may be hit even if total number of
+ * insn is less then 4K, but there are too many branches that change stack/regs.
+ * Number of 'branches to be analyzed' is limited to 1k
+ *
+ * On entry to each instruction, each register has a type, and the instruction
+ * changes the types of the registers depending on instruction semantics.
+ * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
+ * copied to R1.
+ *
+ * All registers are 64-bit.
+ * R0 - return register
+ * R1-R5 argument passing registers
+ * R6-R9 callee saved registers
+ * R10 - frame pointer read-only
+ *
+ * At the start of BPF program the register R1 contains a pointer to bpf_context
+ * and has type PTR_TO_CTX.
+ *
+ * Verifier tracks arithmetic operations on pointers in case:
+ * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
+ * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
+ * 1st insn copies R10 (which has FRAME_PTR) type into R1
+ * and 2nd arithmetic instruction is pattern matched to recognize
+ * that it wants to construct a pointer to some element within stack.
+ * So after 2nd insn, the register R1 has type PTR_TO_STACK
+ * (and -20 constant is saved for further stack bounds checking).
+ * Meaning that this reg is a pointer to stack plus known immediate constant.
+ *
+ * Most of the time the registers have SCALAR_VALUE type, which
+ * means the register has some value, but it's not a valid pointer.
+ * (like pointer plus pointer becomes SCALAR_VALUE type)
+ *
+ * When verifier sees load or store instructions the type of base register
+ * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
+ * four pointer types recognized by check_mem_access() function.
+ *
+ * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
+ * and the range of [ptr, ptr + map's value_size) is accessible.
+ *
+ * registers used to pass values to function calls are checked against
+ * function argument constraints.
+ *
+ * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
+ * It means that the register type passed to this function must be
+ * PTR_TO_STACK and it will be used inside the function as
+ * 'pointer to map element key'
+ *
+ * For example the argument constraints for bpf_map_lookup_elem():
+ * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
+ * .arg1_type = ARG_CONST_MAP_PTR,
+ * .arg2_type = ARG_PTR_TO_MAP_KEY,
+ *
+ * ret_type says that this function returns 'pointer to map elem value or null'
+ * function expects 1st argument to be a const pointer to 'struct bpf_map' and
+ * 2nd argument should be a pointer to stack, which will be used inside
+ * the helper function as a pointer to map element key.
+ *
+ * On the kernel side the helper function looks like:
+ * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
+ * {
+ * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
+ * void *key = (void *) (unsigned long) r2;
+ * void *value;
+ *
+ * here kernel can access 'key' and 'map' pointers safely, knowing that
+ * [key, key + map->key_size) bytes are valid and were initialized on
+ * the stack of eBPF program.
+ * }
+ *
+ * Corresponding eBPF program may look like:
+ * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
+ * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
+ * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
+ * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
+ * here verifier looks at prototype of map_lookup_elem() and sees:
+ * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
+ * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
+ *
+ * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
+ * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
+ * and were initialized prior to this call.
+ * If it's ok, then verifier allows this BPF_CALL insn and looks at
+ * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
+ * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
+ * returns either pointer to map value or NULL.
+ *
+ * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
+ * insn, the register holding that pointer in the true branch changes state to
+ * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
+ * branch. See check_cond_jmp_op().
+ *
+ * After the call R0 is set to return type of the function and registers R1-R5
+ * are set to NOT_INIT to indicate that they are no longer readable.
+ *
+ * The following reference types represent a potential reference to a kernel
+ * resource which, after first being allocated, must be checked and freed by
+ * the BPF program:
+ * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
+ *
+ * When the verifier sees a helper call return a reference type, it allocates a
+ * pointer id for the reference and stores it in the current function state.
+ * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
+ * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
+ * passes through a NULL-check conditional. For the branch wherein the state is
+ * changed to CONST_IMM, the verifier releases the reference.
+ *
+ * For each helper function that allocates a reference, such as
+ * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
+ * bpf_sk_release(). When a reference type passes into the release function,
+ * the verifier also releases the reference. If any unchecked or unreleased
+ * reference remains at the end of the program, the verifier rejects it.
+ */
+
+/* verifier_state + insn_idx are pushed to stack when branch is encountered */
+struct bpf_verifier_stack_elem {
+ /* verifer state is 'st'
+ * before processing instruction 'insn_idx'
+ * and after processing instruction 'prev_insn_idx'
+ */
+ struct bpf_verifier_state st;
+ int insn_idx;
+ int prev_insn_idx;
+ struct bpf_verifier_stack_elem *next;
+ /* length of verifier log at the time this state was pushed on stack */
+ u32 log_pos;
+};
+
+#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
+#define BPF_COMPLEXITY_LIMIT_STATES 64
+
+#define BPF_MAP_KEY_POISON (1ULL << 63)
+#define BPF_MAP_KEY_SEEN (1ULL << 62)
+
+#define BPF_MAP_PTR_UNPRIV 1UL
+#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
+ POISON_POINTER_DELTA))
+#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
+
+static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
+static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
+
+static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
+{
+ return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
+}
+
+static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
+{
+ return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
+}
+
+static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
+ const struct bpf_map *map, bool unpriv)
+{
+ BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
+ unpriv |= bpf_map_ptr_unpriv(aux);
+ aux->map_ptr_state = (unsigned long)map |
+ (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
+}
+
+static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
+{
+ return aux->map_key_state & BPF_MAP_KEY_POISON;
+}
+
+static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
+{
+ return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
+}
+
+static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
+{
+ return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
+}
+
+static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
+{
+ bool poisoned = bpf_map_key_poisoned(aux);
+
+ aux->map_key_state = state | BPF_MAP_KEY_SEEN |
+ (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
+}
+
+static bool bpf_pseudo_call(const struct bpf_insn *insn)
+{
+ return insn->code == (BPF_JMP | BPF_CALL) &&
+ insn->src_reg == BPF_PSEUDO_CALL;
+}
+
+static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
+{
+ return insn->code == (BPF_JMP | BPF_CALL) &&
+ insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
+}
+
+struct bpf_call_arg_meta {
+ struct bpf_map *map_ptr;
+ bool raw_mode;
+ bool pkt_access;
+ u8 release_regno;
+ int regno;
+ int access_size;
+ int mem_size;
+ u64 msize_max_value;
+ int ref_obj_id;
+ int map_uid;
+ int func_id;
+ struct btf *btf;
+ u32 btf_id;
+ struct btf *ret_btf;
+ u32 ret_btf_id;
+ u32 subprogno;
+ struct bpf_map_value_off_desc *kptr_off_desc;
+ u8 uninit_dynptr_regno;
+};
+
+struct btf *btf_vmlinux;
+
+static DEFINE_MUTEX(bpf_verifier_lock);
+
+static const struct bpf_line_info *
+find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
+{
+ const struct bpf_line_info *linfo;
+ const struct bpf_prog *prog;
+ u32 i, nr_linfo;
+
+ prog = env->prog;
+ nr_linfo = prog->aux->nr_linfo;
+
+ if (!nr_linfo || insn_off >= prog->len)
+ return NULL;
+
+ linfo = prog->aux->linfo;
+ for (i = 1; i < nr_linfo; i++)
+ if (insn_off < linfo[i].insn_off)
+ break;
+
+ return &linfo[i - 1];
+}
+
+void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
+ va_list args)
+{
+ unsigned int n;
+
+ n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
+
+ WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
+ "verifier log line truncated - local buffer too short\n");
+
+ if (log->level == BPF_LOG_KERNEL) {
+ bool newline = n > 0 && log->kbuf[n - 1] == '\n';
+
+ pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
+ return;
+ }
+
+ n = min(log->len_total - log->len_used - 1, n);
+ log->kbuf[n] = '\0';
+ if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
+ log->len_used += n;
+ else
+ log->ubuf = NULL;
+}
+
+static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
+{
+ char zero = 0;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ log->len_used = new_pos;
+ if (put_user(zero, log->ubuf + new_pos))
+ log->ubuf = NULL;
+}
+
+/* log_level controls verbosity level of eBPF verifier.
+ * bpf_verifier_log_write() is used to dump the verification trace to the log,
+ * so the user can figure out what's wrong with the program
+ */
+__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
+ const char *fmt, ...)
+{
+ va_list args;
+
+ if (!bpf_verifier_log_needed(&env->log))
+ return;
+
+ va_start(args, fmt);
+ bpf_verifier_vlog(&env->log, fmt, args);
+ va_end(args);
+}
+EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
+
+__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
+{
+ struct bpf_verifier_env *env = private_data;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(&env->log))
+ return;
+
+ va_start(args, fmt);
+ bpf_verifier_vlog(&env->log, fmt, args);
+ va_end(args);
+}
+
+__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
+ const char *fmt, ...)
+{
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+}
+EXPORT_SYMBOL_GPL(bpf_log);
+
+static const char *ltrim(const char *s)
+{
+ while (isspace(*s))
+ s++;
+
+ return s;
+}
+
+__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
+ u32 insn_off,
+ const char *prefix_fmt, ...)
+{
+ const struct bpf_line_info *linfo;
+
+ if (!bpf_verifier_log_needed(&env->log))
+ return;
+
+ linfo = find_linfo(env, insn_off);
+ if (!linfo || linfo == env->prev_linfo)
+ return;
+
+ if (prefix_fmt) {
+ va_list args;
+
+ va_start(args, prefix_fmt);
+ bpf_verifier_vlog(&env->log, prefix_fmt, args);
+ va_end(args);
+ }
+
+ verbose(env, "%s\n",
+ ltrim(btf_name_by_offset(env->prog->aux->btf,
+ linfo->line_off)));
+
+ env->prev_linfo = linfo;
+}
+
+static void verbose_invalid_scalar(struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg,
+ struct tnum *range, const char *ctx,
+ const char *reg_name)
+{
+ char tn_buf[48];
+
+ verbose(env, "At %s the register %s ", ctx, reg_name);
+ if (!tnum_is_unknown(reg->var_off)) {
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env, "has value %s", tn_buf);
+ } else {
+ verbose(env, "has unknown scalar value");
+ }
+ tnum_strn(tn_buf, sizeof(tn_buf), *range);
+ verbose(env, " should have been in %s\n", tn_buf);
+}
+
+static bool type_is_pkt_pointer(enum bpf_reg_type type)
+{
+ type = base_type(type);
+ return type == PTR_TO_PACKET ||
+ type == PTR_TO_PACKET_META;
+}
+
+static bool type_is_sk_pointer(enum bpf_reg_type type)
+{
+ return type == PTR_TO_SOCKET ||
+ type == PTR_TO_SOCK_COMMON ||
+ type == PTR_TO_TCP_SOCK ||
+ type == PTR_TO_XDP_SOCK;
+}
+
+static bool reg_type_not_null(enum bpf_reg_type type)
+{
+ return type == PTR_TO_SOCKET ||
+ type == PTR_TO_TCP_SOCK ||
+ type == PTR_TO_MAP_VALUE ||
+ type == PTR_TO_MAP_KEY ||
+ type == PTR_TO_SOCK_COMMON;
+}
+
+static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
+{
+ return reg->type == PTR_TO_MAP_VALUE &&
+ map_value_has_spin_lock(reg->map_ptr);
+}
+
+static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
+{
+ type = base_type(type);
+ return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK ||
+ type == PTR_TO_MEM || type == PTR_TO_BTF_ID;
+}
+
+static bool type_is_rdonly_mem(u32 type)
+{
+ return type & MEM_RDONLY;
+}
+
+static bool type_may_be_null(u32 type)
+{
+ return type & PTR_MAYBE_NULL;
+}
+
+static bool is_acquire_function(enum bpf_func_id func_id,
+ const struct bpf_map *map)
+{
+ enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
+
+ if (func_id == BPF_FUNC_sk_lookup_tcp ||
+ func_id == BPF_FUNC_sk_lookup_udp ||
+ func_id == BPF_FUNC_skc_lookup_tcp ||
+ func_id == BPF_FUNC_ringbuf_reserve ||
+ func_id == BPF_FUNC_kptr_xchg)
+ return true;
+
+ if (func_id == BPF_FUNC_map_lookup_elem &&
+ (map_type == BPF_MAP_TYPE_SOCKMAP ||
+ map_type == BPF_MAP_TYPE_SOCKHASH))
+ return true;
+
+ return false;
+}
+
+static bool is_ptr_cast_function(enum bpf_func_id func_id)
+{
+ return func_id == BPF_FUNC_tcp_sock ||
+ func_id == BPF_FUNC_sk_fullsock ||
+ func_id == BPF_FUNC_skc_to_tcp_sock ||
+ func_id == BPF_FUNC_skc_to_tcp6_sock ||
+ func_id == BPF_FUNC_skc_to_udp6_sock ||
+ func_id == BPF_FUNC_skc_to_mptcp_sock ||
+ func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
+ func_id == BPF_FUNC_skc_to_tcp_request_sock;
+}
+
+static bool is_dynptr_ref_function(enum bpf_func_id func_id)
+{
+ return func_id == BPF_FUNC_dynptr_data;
+}
+
+static bool is_callback_calling_function(enum bpf_func_id func_id)
+{
+ return func_id == BPF_FUNC_for_each_map_elem ||
+ func_id == BPF_FUNC_timer_set_callback ||
+ func_id == BPF_FUNC_find_vma ||
+ func_id == BPF_FUNC_loop ||
+ func_id == BPF_FUNC_user_ringbuf_drain;
+}
+
+static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
+ const struct bpf_map *map)
+{
+ int ref_obj_uses = 0;
+
+ if (is_ptr_cast_function(func_id))
+ ref_obj_uses++;
+ if (is_acquire_function(func_id, map))
+ ref_obj_uses++;
+ if (is_dynptr_ref_function(func_id))
+ ref_obj_uses++;
+
+ return ref_obj_uses > 1;
+}
+
+static bool is_cmpxchg_insn(const struct bpf_insn *insn)
+{
+ return BPF_CLASS(insn->code) == BPF_STX &&
+ BPF_MODE(insn->code) == BPF_ATOMIC &&
+ insn->imm == BPF_CMPXCHG;
+}
+
+/* string representation of 'enum bpf_reg_type'
+ *
+ * Note that reg_type_str() can not appear more than once in a single verbose()
+ * statement.
+ */
+static const char *reg_type_str(struct bpf_verifier_env *env,
+ enum bpf_reg_type type)
+{
+ char postfix[16] = {0}, prefix[32] = {0};
+ static const char * const str[] = {
+ [NOT_INIT] = "?",
+ [SCALAR_VALUE] = "scalar",
+ [PTR_TO_CTX] = "ctx",
+ [CONST_PTR_TO_MAP] = "map_ptr",
+ [PTR_TO_MAP_VALUE] = "map_value",
+ [PTR_TO_STACK] = "fp",
+ [PTR_TO_PACKET] = "pkt",
+ [PTR_TO_PACKET_META] = "pkt_meta",
+ [PTR_TO_PACKET_END] = "pkt_end",
+ [PTR_TO_FLOW_KEYS] = "flow_keys",
+ [PTR_TO_SOCKET] = "sock",
+ [PTR_TO_SOCK_COMMON] = "sock_common",
+ [PTR_TO_TCP_SOCK] = "tcp_sock",
+ [PTR_TO_TP_BUFFER] = "tp_buffer",
+ [PTR_TO_XDP_SOCK] = "xdp_sock",
+ [PTR_TO_BTF_ID] = "ptr_",
+ [PTR_TO_MEM] = "mem",
+ [PTR_TO_BUF] = "buf",
+ [PTR_TO_FUNC] = "func",
+ [PTR_TO_MAP_KEY] = "map_key",
+ [PTR_TO_DYNPTR] = "dynptr_ptr",
+ };
+
+ if (type & PTR_MAYBE_NULL) {
+ if (base_type(type) == PTR_TO_BTF_ID)
+ strncpy(postfix, "or_null_", 16);
+ else
+ strncpy(postfix, "_or_null", 16);
+ }
+
+ if (type & MEM_RDONLY)
+ strncpy(prefix, "rdonly_", 32);
+ if (type & MEM_ALLOC)
+ strncpy(prefix, "alloc_", 32);
+ if (type & MEM_USER)
+ strncpy(prefix, "user_", 32);
+ if (type & MEM_PERCPU)
+ strncpy(prefix, "percpu_", 32);
+ if (type & PTR_UNTRUSTED)
+ strncpy(prefix, "untrusted_", 32);
+
+ snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
+ prefix, str[base_type(type)], postfix);
+ return env->type_str_buf;
+}
+
+static char slot_type_char[] = {
+ [STACK_INVALID] = '?',
+ [STACK_SPILL] = 'r',
+ [STACK_MISC] = 'm',
+ [STACK_ZERO] = '0',
+ [STACK_DYNPTR] = 'd',
+};
+
+static void print_liveness(struct bpf_verifier_env *env,
+ enum bpf_reg_liveness live)
+{
+ if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
+ verbose(env, "_");
+ if (live & REG_LIVE_READ)
+ verbose(env, "r");
+ if (live & REG_LIVE_WRITTEN)
+ verbose(env, "w");
+ if (live & REG_LIVE_DONE)
+ verbose(env, "D");
+}
+
+static int get_spi(s32 off)
+{
+ return (-off - 1) / BPF_REG_SIZE;
+}
+
+static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
+{
+ int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
+
+ /* We need to check that slots between [spi - nr_slots + 1, spi] are
+ * within [0, allocated_stack).
+ *
+ * Please note that the spi grows downwards. For example, a dynptr
+ * takes the size of two stack slots; the first slot will be at
+ * spi and the second slot will be at spi - 1.
+ */
+ return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
+}
+
+static struct bpf_func_state *func(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg)
+{
+ struct bpf_verifier_state *cur = env->cur_state;
+
+ return cur->frame[reg->frameno];
+}
+
+static const char *kernel_type_name(const struct btf* btf, u32 id)
+{
+ return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
+}
+
+static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
+{
+ env->scratched_regs |= 1U << regno;
+}
+
+static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
+{
+ env->scratched_stack_slots |= 1ULL << spi;
+}
+
+static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
+{
+ return (env->scratched_regs >> regno) & 1;
+}
+
+static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
+{
+ return (env->scratched_stack_slots >> regno) & 1;
+}
+
+static bool verifier_state_scratched(const struct bpf_verifier_env *env)
+{
+ return env->scratched_regs || env->scratched_stack_slots;
+}
+
+static void mark_verifier_state_clean(struct bpf_verifier_env *env)
+{
+ env->scratched_regs = 0U;
+ env->scratched_stack_slots = 0ULL;
+}
+
+/* Used for printing the entire verifier state. */
+static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
+{
+ env->scratched_regs = ~0U;
+ env->scratched_stack_slots = ~0ULL;
+}
+
+static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
+{
+ switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
+ case DYNPTR_TYPE_LOCAL:
+ return BPF_DYNPTR_TYPE_LOCAL;
+ case DYNPTR_TYPE_RINGBUF:
+ return BPF_DYNPTR_TYPE_RINGBUF;
+ default:
+ return BPF_DYNPTR_TYPE_INVALID;
+ }
+}
+
+static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
+{
+ return type == BPF_DYNPTR_TYPE_RINGBUF;
+}
+
+static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
+ enum bpf_arg_type arg_type, int insn_idx)
+{
+ struct bpf_func_state *state = func(env, reg);
+ enum bpf_dynptr_type type;
+ int spi, i, id;
+
+ spi = get_spi(reg->off);
+
+ if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
+ return -EINVAL;
+
+ for (i = 0; i < BPF_REG_SIZE; i++) {
+ state->stack[spi].slot_type[i] = STACK_DYNPTR;
+ state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
+ }
+
+ type = arg_to_dynptr_type(arg_type);
+ if (type == BPF_DYNPTR_TYPE_INVALID)
+ return -EINVAL;
+
+ state->stack[spi].spilled_ptr.dynptr.first_slot = true;
+ state->stack[spi].spilled_ptr.dynptr.type = type;
+ state->stack[spi - 1].spilled_ptr.dynptr.type = type;
+
+ if (dynptr_type_refcounted(type)) {
+ /* The id is used to track proper releasing */
+ id = acquire_reference_state(env, insn_idx);
+ if (id < 0)
+ return id;
+
+ state->stack[spi].spilled_ptr.id = id;
+ state->stack[spi - 1].spilled_ptr.id = id;
+ }
+
+ return 0;
+}
+
+static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
+{
+ struct bpf_func_state *state = func(env, reg);
+ int spi, i;
+
+ spi = get_spi(reg->off);
+
+ if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
+ return -EINVAL;
+
+ for (i = 0; i < BPF_REG_SIZE; i++) {
+ state->stack[spi].slot_type[i] = STACK_INVALID;
+ state->stack[spi - 1].slot_type[i] = STACK_INVALID;
+ }
+
+ /* Invalidate any slices associated with this dynptr */
+ if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
+ release_reference(env, state->stack[spi].spilled_ptr.id);
+ state->stack[spi].spilled_ptr.id = 0;
+ state->stack[spi - 1].spilled_ptr.id = 0;
+ }
+
+ state->stack[spi].spilled_ptr.dynptr.first_slot = false;
+ state->stack[spi].spilled_ptr.dynptr.type = 0;
+ state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
+
+ return 0;
+}
+
+static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
+{
+ struct bpf_func_state *state = func(env, reg);
+ int spi = get_spi(reg->off);
+ int i;
+
+ if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
+ return true;
+
+ for (i = 0; i < BPF_REG_SIZE; i++) {
+ if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
+ state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
+ return false;
+ }
+
+ return true;
+}
+
+bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg)
+{
+ struct bpf_func_state *state = func(env, reg);
+ int spi = get_spi(reg->off);
+ int i;
+
+ if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
+ !state->stack[spi].spilled_ptr.dynptr.first_slot)
+ return false;
+
+ for (i = 0; i < BPF_REG_SIZE; i++) {
+ if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
+ state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
+ return false;
+ }
+
+ return true;
+}
+
+bool is_dynptr_type_expected(struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg,
+ enum bpf_arg_type arg_type)
+{
+ struct bpf_func_state *state = func(env, reg);
+ enum bpf_dynptr_type dynptr_type;
+ int spi = get_spi(reg->off);
+
+ /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
+ if (arg_type == ARG_PTR_TO_DYNPTR)
+ return true;
+
+ dynptr_type = arg_to_dynptr_type(arg_type);
+
+ return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
+}
+
+/* The reg state of a pointer or a bounded scalar was saved when
+ * it was spilled to the stack.
+ */
+static bool is_spilled_reg(const struct bpf_stack_state *stack)
+{
+ return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
+}
+
+static void scrub_spilled_slot(u8 *stype)
+{
+ if (*stype != STACK_INVALID)
+ *stype = STACK_MISC;
+}
+
+static void print_verifier_state(struct bpf_verifier_env *env,
+ const struct bpf_func_state *state,
+ bool print_all)
+{
+ const struct bpf_reg_state *reg;
+ enum bpf_reg_type t;
+ int i;
+
+ if (state->frameno)
+ verbose(env, " frame%d:", state->frameno);
+ for (i = 0; i < MAX_BPF_REG; i++) {
+ reg = &state->regs[i];
+ t = reg->type;
+ if (t == NOT_INIT)
+ continue;
+ if (!print_all && !reg_scratched(env, i))
+ continue;
+ verbose(env, " R%d", i);
+ print_liveness(env, reg->live);
+ verbose(env, "=");
+ if (t == SCALAR_VALUE && reg->precise)
+ verbose(env, "P");
+ if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
+ tnum_is_const(reg->var_off)) {
+ /* reg->off should be 0 for SCALAR_VALUE */
+ verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
+ verbose(env, "%lld", reg->var_off.value + reg->off);
+ } else {
+ const char *sep = "";
+
+ verbose(env, "%s", reg_type_str(env, t));
+ if (base_type(t) == PTR_TO_BTF_ID)
+ verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
+ verbose(env, "(");
+/*
+ * _a stands for append, was shortened to avoid multiline statements below.
+ * This macro is used to output a comma separated list of attributes.
+ */
+#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
+
+ if (reg->id)
+ verbose_a("id=%d", reg->id);
+ if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
+ verbose_a("ref_obj_id=%d", reg->ref_obj_id);
+ if (t != SCALAR_VALUE)
+ verbose_a("off=%d", reg->off);
+ if (type_is_pkt_pointer(t))
+ verbose_a("r=%d", reg->range);
+ else if (base_type(t) == CONST_PTR_TO_MAP ||
+ base_type(t) == PTR_TO_MAP_KEY ||
+ base_type(t) == PTR_TO_MAP_VALUE)
+ verbose_a("ks=%d,vs=%d",
+ reg->map_ptr->key_size,
+ reg->map_ptr->value_size);
+ if (tnum_is_const(reg->var_off)) {
+ /* Typically an immediate SCALAR_VALUE, but
+ * could be a pointer whose offset is too big
+ * for reg->off
+ */
+ verbose_a("imm=%llx", reg->var_off.value);
+ } else {
+ if (reg->smin_value != reg->umin_value &&
+ reg->smin_value != S64_MIN)
+ verbose_a("smin=%lld", (long long)reg->smin_value);
+ if (reg->smax_value != reg->umax_value &&
+ reg->smax_value != S64_MAX)
+ verbose_a("smax=%lld", (long long)reg->smax_value);
+ if (reg->umin_value != 0)
+ verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
+ if (reg->umax_value != U64_MAX)
+ verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
+ if (!tnum_is_unknown(reg->var_off)) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose_a("var_off=%s", tn_buf);
+ }
+ if (reg->s32_min_value != reg->smin_value &&
+ reg->s32_min_value != S32_MIN)
+ verbose_a("s32_min=%d", (int)(reg->s32_min_value));
+ if (reg->s32_max_value != reg->smax_value &&
+ reg->s32_max_value != S32_MAX)
+ verbose_a("s32_max=%d", (int)(reg->s32_max_value));
+ if (reg->u32_min_value != reg->umin_value &&
+ reg->u32_min_value != U32_MIN)
+ verbose_a("u32_min=%d", (int)(reg->u32_min_value));
+ if (reg->u32_max_value != reg->umax_value &&
+ reg->u32_max_value != U32_MAX)
+ verbose_a("u32_max=%d", (int)(reg->u32_max_value));
+ }
+#undef verbose_a
+
+ verbose(env, ")");
+ }
+ }
+ for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
+ char types_buf[BPF_REG_SIZE + 1];
+ bool valid = false;
+ int j;
+
+ for (j = 0; j < BPF_REG_SIZE; j++) {
+ if (state->stack[i].slot_type[j] != STACK_INVALID)
+ valid = true;
+ types_buf[j] = slot_type_char[
+ state->stack[i].slot_type[j]];
+ }
+ types_buf[BPF_REG_SIZE] = 0;
+ if (!valid)
+ continue;
+ if (!print_all && !stack_slot_scratched(env, i))
+ continue;
+ verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
+ print_liveness(env, state->stack[i].spilled_ptr.live);
+ if (is_spilled_reg(&state->stack[i])) {
+ reg = &state->stack[i].spilled_ptr;
+ t = reg->type;
+ verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
+ if (t == SCALAR_VALUE && reg->precise)
+ verbose(env, "P");
+ if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
+ verbose(env, "%lld", reg->var_off.value + reg->off);
+ } else {
+ verbose(env, "=%s", types_buf);
+ }
+ }
+ if (state->acquired_refs && state->refs[0].id) {
+ verbose(env, " refs=%d", state->refs[0].id);
+ for (i = 1; i < state->acquired_refs; i++)
+ if (state->refs[i].id)
+ verbose(env, ",%d", state->refs[i].id);
+ }
+ if (state->in_callback_fn)
+ verbose(env, " cb");
+ if (state->in_async_callback_fn)
+ verbose(env, " async_cb");
+ verbose(env, "\n");
+ if (!print_all)
+ mark_verifier_state_clean(env);
+}
+
+static inline u32 vlog_alignment(u32 pos)
+{
+ return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
+ BPF_LOG_MIN_ALIGNMENT) - pos - 1;
+}
+
+static void print_insn_state(struct bpf_verifier_env *env,
+ const struct bpf_func_state *state)
+{
+ if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
+ /* remove new line character */
+ bpf_vlog_reset(&env->log, env->prev_log_len - 1);
+ verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
+ } else {
+ verbose(env, "%d:", env->insn_idx);
+ }
+ print_verifier_state(env, state, false);
+}
+
+/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
+ * small to hold src. This is different from krealloc since we don't want to preserve
+ * the contents of dst.
+ *
+ * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
+ * not be allocated.
+ */
+static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
+{
+ size_t alloc_bytes;
+ void *orig = dst;
+ size_t bytes;
+
+ if (ZERO_OR_NULL_PTR(src))
+ goto out;
+
+ if (unlikely(check_mul_overflow(n, size, &bytes)))
+ return NULL;
+
+ alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
+ dst = krealloc(orig, alloc_bytes, flags);
+ if (!dst) {
+ kfree(orig);
+ return NULL;
+ }
+
+ memcpy(dst, src, bytes);
+out:
+ return dst ? dst : ZERO_SIZE_PTR;
+}
+
+/* resize an array from old_n items to new_n items. the array is reallocated if it's too
+ * small to hold new_n items. new items are zeroed out if the array grows.
+ *
+ * Contrary to krealloc_array, does not free arr if new_n is zero.
+ */
+static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
+{
+ size_t alloc_size;
+ void *new_arr;
+
+ if (!new_n || old_n == new_n)
+ goto out;
+
+ alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
+ new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
+ if (!new_arr) {
+ kfree(arr);
+ return NULL;
+ }
+ arr = new_arr;
+
+ if (new_n > old_n)
+ memset(arr + old_n * size, 0, (new_n - old_n) * size);
+
+out:
+ return arr ? arr : ZERO_SIZE_PTR;
+}
+
+static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
+{
+ dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
+ sizeof(struct bpf_reference_state), GFP_KERNEL);
+ if (!dst->refs)
+ return -ENOMEM;
+
+ dst->acquired_refs = src->acquired_refs;
+ return 0;
+}
+
+static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
+{
+ size_t n = src->allocated_stack / BPF_REG_SIZE;
+
+ dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
+ GFP_KERNEL);
+ if (!dst->stack)
+ return -ENOMEM;
+
+ dst->allocated_stack = src->allocated_stack;
+ return 0;
+}
+
+static int resize_reference_state(struct bpf_func_state *state, size_t n)
+{
+ state->refs = realloc_array(state->refs, state->acquired_refs, n,
+ sizeof(struct bpf_reference_state));
+ if (!state->refs)
+ return -ENOMEM;
+
+ state->acquired_refs = n;
+ return 0;
+}
+
+static int grow_stack_state(struct bpf_func_state *state, int size)
+{
+ size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
+
+ if (old_n >= n)
+ return 0;
+
+ state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
+ if (!state->stack)
+ return -ENOMEM;
+
+ state->allocated_stack = size;
+ return 0;
+}
+
+/* Acquire a pointer id from the env and update the state->refs to include
+ * this new pointer reference.
+ * On success, returns a valid pointer id to associate with the register
+ * On failure, returns a negative errno.
+ */
+static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
+{
+ struct bpf_func_state *state = cur_func(env);
+ int new_ofs = state->acquired_refs;
+ int id, err;
+
+ err = resize_reference_state(state, state->acquired_refs + 1);
+ if (err)
+ return err;
+ id = ++env->id_gen;
+ state->refs[new_ofs].id = id;
+ state->refs[new_ofs].insn_idx = insn_idx;
+ state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
+
+ return id;
+}
+
+/* release function corresponding to acquire_reference_state(). Idempotent. */
+static int release_reference_state(struct bpf_func_state *state, int ptr_id)
+{
+ int i, last_idx;
+
+ last_idx = state->acquired_refs - 1;
+ for (i = 0; i < state->acquired_refs; i++) {
+ if (state->refs[i].id == ptr_id) {
+ /* Cannot release caller references in callbacks */
+ if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
+ return -EINVAL;
+ if (last_idx && i != last_idx)
+ memcpy(&state->refs[i], &state->refs[last_idx],
+ sizeof(*state->refs));
+ memset(&state->refs[last_idx], 0, sizeof(*state->refs));
+ state->acquired_refs--;
+ return 0;
+ }
+ }
+ return -EINVAL;
+}
+
+static void free_func_state(struct bpf_func_state *state)
+{
+ if (!state)
+ return;
+ kfree(state->refs);
+ kfree(state->stack);
+ kfree(state);
+}
+
+static void clear_jmp_history(struct bpf_verifier_state *state)
+{
+ kfree(state->jmp_history);
+ state->jmp_history = NULL;
+ state->jmp_history_cnt = 0;
+}
+
+static void free_verifier_state(struct bpf_verifier_state *state,
+ bool free_self)
+{
+ int i;
+
+ for (i = 0; i <= state->curframe; i++) {
+ free_func_state(state->frame[i]);
+ state->frame[i] = NULL;
+ }
+ clear_jmp_history(state);
+ if (free_self)
+ kfree(state);
+}
+
+/* copy verifier state from src to dst growing dst stack space
+ * when necessary to accommodate larger src stack
+ */
+static int copy_func_state(struct bpf_func_state *dst,
+ const struct bpf_func_state *src)
+{
+ int err;
+
+ memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
+ err = copy_reference_state(dst, src);
+ if (err)
+ return err;
+ return copy_stack_state(dst, src);
+}
+
+static int copy_verifier_state(struct bpf_verifier_state *dst_state,
+ const struct bpf_verifier_state *src)
+{
+ struct bpf_func_state *dst;
+ int i, err;
+
+ dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
+ src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
+ GFP_USER);
+ if (!dst_state->jmp_history)
+ return -ENOMEM;
+ dst_state->jmp_history_cnt = src->jmp_history_cnt;
+
+ /* if dst has more stack frames then src frame, free them */
+ for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
+ free_func_state(dst_state->frame[i]);
+ dst_state->frame[i] = NULL;
+ }
+ dst_state->speculative = src->speculative;
+ dst_state->curframe = src->curframe;
+ dst_state->active_spin_lock = src->active_spin_lock;
+ dst_state->branches = src->branches;
+ dst_state->parent = src->parent;
+ dst_state->first_insn_idx = src->first_insn_idx;
+ dst_state->last_insn_idx = src->last_insn_idx;
+ for (i = 0; i <= src->curframe; i++) {
+ dst = dst_state->frame[i];
+ if (!dst) {
+ dst = kzalloc(sizeof(*dst), GFP_KERNEL);
+ if (!dst)
+ return -ENOMEM;
+ dst_state->frame[i] = dst;
+ }
+ err = copy_func_state(dst, src->frame[i]);
+ if (err)
+ return err;
+ }
+ return 0;
+}
+
+static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
+{
+ while (st) {
+ u32 br = --st->branches;
+
+ /* WARN_ON(br > 1) technically makes sense here,
+ * but see comment in push_stack(), hence:
+ */
+ WARN_ONCE((int)br < 0,
+ "BUG update_branch_counts:branches_to_explore=%d\n",
+ br);
+ if (br)
+ break;
+ st = st->parent;
+ }
+}
+
+static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
+ int *insn_idx, bool pop_log)
+{
+ struct bpf_verifier_state *cur = env->cur_state;
+ struct bpf_verifier_stack_elem *elem, *head = env->head;
+ int err;
+
+ if (env->head == NULL)
+ return -ENOENT;
+
+ if (cur) {
+ err = copy_verifier_state(cur, &head->st);
+ if (err)
+ return err;
+ }
+ if (pop_log)
+ bpf_vlog_reset(&env->log, head->log_pos);
+ if (insn_idx)
+ *insn_idx = head->insn_idx;
+ if (prev_insn_idx)
+ *prev_insn_idx = head->prev_insn_idx;
+ elem = head->next;
+ free_verifier_state(&head->st, false);
+ kfree(head);
+ env->head = elem;
+ env->stack_size--;
+ return 0;
+}
+
+static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
+ int insn_idx, int prev_insn_idx,
+ bool speculative)
+{
+ struct bpf_verifier_state *cur = env->cur_state;
+ struct bpf_verifier_stack_elem *elem;
+ int err;
+
+ elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
+ if (!elem)
+ goto err;
+
+ elem->insn_idx = insn_idx;
+ elem->prev_insn_idx = prev_insn_idx;
+ elem->next = env->head;
+ elem->log_pos = env->log.len_used;
+ env->head = elem;
+ env->stack_size++;
+ err = copy_verifier_state(&elem->st, cur);
+ if (err)
+ goto err;
+ elem->st.speculative |= speculative;
+ if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
+ verbose(env, "The sequence of %d jumps is too complex.\n",
+ env->stack_size);
+ goto err;
+ }
+ if (elem->st.parent) {
+ ++elem->st.parent->branches;
+ /* WARN_ON(branches > 2) technically makes sense here,
+ * but
+ * 1. speculative states will bump 'branches' for non-branch
+ * instructions
+ * 2. is_state_visited() heuristics may decide not to create
+ * a new state for a sequence of branches and all such current
+ * and cloned states will be pointing to a single parent state
+ * which might have large 'branches' count.
+ */
+ }
+ return &elem->st;
+err:
+ free_verifier_state(env->cur_state, true);
+ env->cur_state = NULL;
+ /* pop all elements and return */
+ while (!pop_stack(env, NULL, NULL, false));
+ return NULL;
+}
+
+#define CALLER_SAVED_REGS 6
+static const int caller_saved[CALLER_SAVED_REGS] = {
+ BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
+};
+
+static void __mark_reg_not_init(const struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg);
+
+/* This helper doesn't clear reg->id */
+static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
+{
+ reg->var_off = tnum_const(imm);
+ reg->smin_value = (s64)imm;
+ reg->smax_value = (s64)imm;
+ reg->umin_value = imm;
+ reg->umax_value = imm;
+
+ reg->s32_min_value = (s32)imm;
+ reg->s32_max_value = (s32)imm;
+ reg->u32_min_value = (u32)imm;
+ reg->u32_max_value = (u32)imm;
+}
+
+/* Mark the unknown part of a register (variable offset or scalar value) as
+ * known to have the value @imm.
+ */
+static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
+{
+ /* Clear id, off, and union(map_ptr, range) */
+ memset(((u8 *)reg) + sizeof(reg->type), 0,
+ offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
+ ___mark_reg_known(reg, imm);
+}
+
+static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
+{
+ reg->var_off = tnum_const_subreg(reg->var_off, imm);
+ reg->s32_min_value = (s32)imm;
+ reg->s32_max_value = (s32)imm;
+ reg->u32_min_value = (u32)imm;
+ reg->u32_max_value = (u32)imm;
+}
+
+/* Mark the 'variable offset' part of a register as zero. This should be
+ * used only on registers holding a pointer type.
+ */
+static void __mark_reg_known_zero(struct bpf_reg_state *reg)
+{
+ __mark_reg_known(reg, 0);
+}
+
+static void __mark_reg_const_zero(struct bpf_reg_state *reg)
+{
+ __mark_reg_known(reg, 0);
+ reg->type = SCALAR_VALUE;
+}
+
+static void mark_reg_known_zero(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs, u32 regno)
+{
+ if (WARN_ON(regno >= MAX_BPF_REG)) {
+ verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
+ /* Something bad happened, let's kill all regs */
+ for (regno = 0; regno < MAX_BPF_REG; regno++)
+ __mark_reg_not_init(env, regs + regno);
+ return;
+ }
+ __mark_reg_known_zero(regs + regno);
+}
+
+static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
+{
+ if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
+ const struct bpf_map *map = reg->map_ptr;
+
+ if (map->inner_map_meta) {
+ reg->type = CONST_PTR_TO_MAP;
+ reg->map_ptr = map->inner_map_meta;
+ /* transfer reg's id which is unique for every map_lookup_elem
+ * as UID of the inner map.
+ */
+ if (map_value_has_timer(map->inner_map_meta))
+ reg->map_uid = reg->id;
+ } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
+ reg->type = PTR_TO_XDP_SOCK;
+ } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
+ map->map_type == BPF_MAP_TYPE_SOCKHASH) {
+ reg->type = PTR_TO_SOCKET;
+ } else {
+ reg->type = PTR_TO_MAP_VALUE;
+ }
+ return;
+ }
+
+ reg->type &= ~PTR_MAYBE_NULL;
+}
+
+static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
+{
+ return type_is_pkt_pointer(reg->type);
+}
+
+static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
+{
+ return reg_is_pkt_pointer(reg) ||
+ reg->type == PTR_TO_PACKET_END;
+}
+
+/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
+static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
+ enum bpf_reg_type which)
+{
+ /* The register can already have a range from prior markings.
+ * This is fine as long as it hasn't been advanced from its
+ * origin.
+ */
+ return reg->type == which &&
+ reg->id == 0 &&
+ reg->off == 0 &&
+ tnum_equals_const(reg->var_off, 0);
+}
+
+/* Reset the min/max bounds of a register */
+static void __mark_reg_unbounded(struct bpf_reg_state *reg)
+{
+ reg->smin_value = S64_MIN;
+ reg->smax_value = S64_MAX;
+ reg->umin_value = 0;
+ reg->umax_value = U64_MAX;
+
+ reg->s32_min_value = S32_MIN;
+ reg->s32_max_value = S32_MAX;
+ reg->u32_min_value = 0;
+ reg->u32_max_value = U32_MAX;
+}
+
+static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
+{
+ reg->smin_value = S64_MIN;
+ reg->smax_value = S64_MAX;
+ reg->umin_value = 0;
+ reg->umax_value = U64_MAX;
+}
+
+static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
+{
+ reg->s32_min_value = S32_MIN;
+ reg->s32_max_value = S32_MAX;
+ reg->u32_min_value = 0;
+ reg->u32_max_value = U32_MAX;
+}
+
+static void __update_reg32_bounds(struct bpf_reg_state *reg)
+{
+ struct tnum var32_off = tnum_subreg(reg->var_off);
+
+ /* min signed is max(sign bit) | min(other bits) */
+ reg->s32_min_value = max_t(s32, reg->s32_min_value,
+ var32_off.value | (var32_off.mask & S32_MIN));
+ /* max signed is min(sign bit) | max(other bits) */
+ reg->s32_max_value = min_t(s32, reg->s32_max_value,
+ var32_off.value | (var32_off.mask & S32_MAX));
+ reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
+ reg->u32_max_value = min(reg->u32_max_value,
+ (u32)(var32_off.value | var32_off.mask));
+}
+
+static void __update_reg64_bounds(struct bpf_reg_state *reg)
+{
+ /* min signed is max(sign bit) | min(other bits) */
+ reg->smin_value = max_t(s64, reg->smin_value,
+ reg->var_off.value | (reg->var_off.mask & S64_MIN));
+ /* max signed is min(sign bit) | max(other bits) */
+ reg->smax_value = min_t(s64, reg->smax_value,
+ reg->var_off.value | (reg->var_off.mask & S64_MAX));
+ reg->umin_value = max(reg->umin_value, reg->var_off.value);
+ reg->umax_value = min(reg->umax_value,
+ reg->var_off.value | reg->var_off.mask);
+}
+
+static void __update_reg_bounds(struct bpf_reg_state *reg)
+{
+ __update_reg32_bounds(reg);
+ __update_reg64_bounds(reg);
+}
+
+/* Uses signed min/max values to inform unsigned, and vice-versa */
+static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
+{
+ /* Learn sign from signed bounds.
+ * If we cannot cross the sign boundary, then signed and unsigned bounds
+ * are the same, so combine. This works even in the negative case, e.g.
+ * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
+ */
+ if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
+ reg->s32_min_value = reg->u32_min_value =
+ max_t(u32, reg->s32_min_value, reg->u32_min_value);
+ reg->s32_max_value = reg->u32_max_value =
+ min_t(u32, reg->s32_max_value, reg->u32_max_value);
+ return;
+ }
+ /* Learn sign from unsigned bounds. Signed bounds cross the sign
+ * boundary, so we must be careful.
+ */
+ if ((s32)reg->u32_max_value >= 0) {
+ /* Positive. We can't learn anything from the smin, but smax
+ * is positive, hence safe.
+ */
+ reg->s32_min_value = reg->u32_min_value;
+ reg->s32_max_value = reg->u32_max_value =
+ min_t(u32, reg->s32_max_value, reg->u32_max_value);
+ } else if ((s32)reg->u32_min_value < 0) {
+ /* Negative. We can't learn anything from the smax, but smin
+ * is negative, hence safe.
+ */
+ reg->s32_min_value = reg->u32_min_value =
+ max_t(u32, reg->s32_min_value, reg->u32_min_value);
+ reg->s32_max_value = reg->u32_max_value;
+ }
+}
+
+static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
+{
+ /* Learn sign from signed bounds.
+ * If we cannot cross the sign boundary, then signed and unsigned bounds
+ * are the same, so combine. This works even in the negative case, e.g.
+ * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
+ */
+ if (reg->smin_value >= 0 || reg->smax_value < 0) {
+ reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
+ reg->umin_value);
+ reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
+ reg->umax_value);
+ return;
+ }
+ /* Learn sign from unsigned bounds. Signed bounds cross the sign
+ * boundary, so we must be careful.
+ */
+ if ((s64)reg->umax_value >= 0) {
+ /* Positive. We can't learn anything from the smin, but smax
+ * is positive, hence safe.
+ */
+ reg->smin_value = reg->umin_value;
+ reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
+ reg->umax_value);
+ } else if ((s64)reg->umin_value < 0) {
+ /* Negative. We can't learn anything from the smax, but smin
+ * is negative, hence safe.
+ */
+ reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
+ reg->umin_value);
+ reg->smax_value = reg->umax_value;
+ }
+}
+
+static void __reg_deduce_bounds(struct bpf_reg_state *reg)
+{
+ __reg32_deduce_bounds(reg);
+ __reg64_deduce_bounds(reg);
+}
+
+/* Attempts to improve var_off based on unsigned min/max information */
+static void __reg_bound_offset(struct bpf_reg_state *reg)
+{
+ struct tnum var64_off = tnum_intersect(reg->var_off,
+ tnum_range(reg->umin_value,
+ reg->umax_value));
+ struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
+ tnum_range(reg->u32_min_value,
+ reg->u32_max_value));
+
+ reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
+}
+
+static void reg_bounds_sync(struct bpf_reg_state *reg)
+{
+ /* We might have learned new bounds from the var_off. */
+ __update_reg_bounds(reg);
+ /* We might have learned something about the sign bit. */
+ __reg_deduce_bounds(reg);
+ /* We might have learned some bits from the bounds. */
+ __reg_bound_offset(reg);
+ /* Intersecting with the old var_off might have improved our bounds
+ * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
+ * then new var_off is (0; 0x7f...fc) which improves our umax.
+ */
+ __update_reg_bounds(reg);
+}
+
+static bool __reg32_bound_s64(s32 a)
+{
+ return a >= 0 && a <= S32_MAX;
+}
+
+static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
+{
+ reg->umin_value = reg->u32_min_value;
+ reg->umax_value = reg->u32_max_value;
+
+ /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
+ * be positive otherwise set to worse case bounds and refine later
+ * from tnum.
+ */
+ if (__reg32_bound_s64(reg->s32_min_value) &&
+ __reg32_bound_s64(reg->s32_max_value)) {
+ reg->smin_value = reg->s32_min_value;
+ reg->smax_value = reg->s32_max_value;
+ } else {
+ reg->smin_value = 0;
+ reg->smax_value = U32_MAX;
+ }
+}
+
+static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
+{
+ /* special case when 64-bit register has upper 32-bit register
+ * zeroed. Typically happens after zext or <<32, >>32 sequence
+ * allowing us to use 32-bit bounds directly,
+ */
+ if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
+ __reg_assign_32_into_64(reg);
+ } else {
+ /* Otherwise the best we can do is push lower 32bit known and
+ * unknown bits into register (var_off set from jmp logic)
+ * then learn as much as possible from the 64-bit tnum
+ * known and unknown bits. The previous smin/smax bounds are
+ * invalid here because of jmp32 compare so mark them unknown
+ * so they do not impact tnum bounds calculation.
+ */
+ __mark_reg64_unbounded(reg);
+ }
+ reg_bounds_sync(reg);
+}
+
+static bool __reg64_bound_s32(s64 a)
+{
+ return a >= S32_MIN && a <= S32_MAX;
+}
+
+static bool __reg64_bound_u32(u64 a)
+{
+ return a >= U32_MIN && a <= U32_MAX;
+}
+
+static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
+{
+ __mark_reg32_unbounded(reg);
+ if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
+ reg->s32_min_value = (s32)reg->smin_value;
+ reg->s32_max_value = (s32)reg->smax_value;
+ }
+ if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
+ reg->u32_min_value = (u32)reg->umin_value;
+ reg->u32_max_value = (u32)reg->umax_value;
+ }
+ reg_bounds_sync(reg);
+}
+
+/* Mark a register as having a completely unknown (scalar) value. */
+static void __mark_reg_unknown(const struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg)
+{
+ /*
+ * Clear type, id, off, and union(map_ptr, range) and
+ * padding between 'type' and union
+ */
+ memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
+ reg->type = SCALAR_VALUE;
+ reg->var_off = tnum_unknown;
+ reg->frameno = 0;
+ reg->precise = !env->bpf_capable;
+ __mark_reg_unbounded(reg);
+}
+
+static void mark_reg_unknown(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs, u32 regno)
+{
+ if (WARN_ON(regno >= MAX_BPF_REG)) {
+ verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
+ /* Something bad happened, let's kill all regs except FP */
+ for (regno = 0; regno < BPF_REG_FP; regno++)
+ __mark_reg_not_init(env, regs + regno);
+ return;
+ }
+ __mark_reg_unknown(env, regs + regno);
+}
+
+static void __mark_reg_not_init(const struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg)
+{
+ __mark_reg_unknown(env, reg);
+ reg->type = NOT_INIT;
+}
+
+static void mark_reg_not_init(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs, u32 regno)
+{
+ if (WARN_ON(regno >= MAX_BPF_REG)) {
+ verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
+ /* Something bad happened, let's kill all regs except FP */
+ for (regno = 0; regno < BPF_REG_FP; regno++)
+ __mark_reg_not_init(env, regs + regno);
+ return;
+ }
+ __mark_reg_not_init(env, regs + regno);
+}
+
+static void mark_btf_ld_reg(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs, u32 regno,
+ enum bpf_reg_type reg_type,
+ struct btf *btf, u32 btf_id,
+ enum bpf_type_flag flag)
+{
+ if (reg_type == SCALAR_VALUE) {
+ mark_reg_unknown(env, regs, regno);
+ return;
+ }
+ mark_reg_known_zero(env, regs, regno);
+ regs[regno].type = PTR_TO_BTF_ID | flag;
+ regs[regno].btf = btf;
+ regs[regno].btf_id = btf_id;
+}
+
+#define DEF_NOT_SUBREG (0)
+static void init_reg_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *state)
+{
+ struct bpf_reg_state *regs = state->regs;
+ int i;
+
+ for (i = 0; i < MAX_BPF_REG; i++) {
+ mark_reg_not_init(env, regs, i);
+ regs[i].live = REG_LIVE_NONE;
+ regs[i].parent = NULL;
+ regs[i].subreg_def = DEF_NOT_SUBREG;
+ }
+
+ /* frame pointer */
+ regs[BPF_REG_FP].type = PTR_TO_STACK;
+ mark_reg_known_zero(env, regs, BPF_REG_FP);
+ regs[BPF_REG_FP].frameno = state->frameno;
+}
+
+#define BPF_MAIN_FUNC (-1)
+static void init_func_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *state,
+ int callsite, int frameno, int subprogno)
+{
+ state->callsite = callsite;
+ state->frameno = frameno;
+ state->subprogno = subprogno;
+ state->callback_ret_range = tnum_range(0, 0);
+ init_reg_state(env, state);
+ mark_verifier_state_scratched(env);
+}
+
+/* Similar to push_stack(), but for async callbacks */
+static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
+ int insn_idx, int prev_insn_idx,
+ int subprog)
+{
+ struct bpf_verifier_stack_elem *elem;
+ struct bpf_func_state *frame;
+
+ elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
+ if (!elem)
+ goto err;
+
+ elem->insn_idx = insn_idx;
+ elem->prev_insn_idx = prev_insn_idx;
+ elem->next = env->head;
+ elem->log_pos = env->log.len_used;
+ env->head = elem;
+ env->stack_size++;
+ if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
+ verbose(env,
+ "The sequence of %d jumps is too complex for async cb.\n",
+ env->stack_size);
+ goto err;
+ }
+ /* Unlike push_stack() do not copy_verifier_state().
+ * The caller state doesn't matter.
+ * This is async callback. It starts in a fresh stack.
+ * Initialize it similar to do_check_common().
+ */
+ elem->st.branches = 1;
+ frame = kzalloc(sizeof(*frame), GFP_KERNEL);
+ if (!frame)
+ goto err;
+ init_func_state(env, frame,
+ BPF_MAIN_FUNC /* callsite */,
+ 0 /* frameno within this callchain */,
+ subprog /* subprog number within this prog */);
+ elem->st.frame[0] = frame;
+ return &elem->st;
+err:
+ free_verifier_state(env->cur_state, true);
+ env->cur_state = NULL;
+ /* pop all elements and return */
+ while (!pop_stack(env, NULL, NULL, false));
+ return NULL;
+}
+
+
+enum reg_arg_type {
+ SRC_OP, /* register is used as source operand */
+ DST_OP, /* register is used as destination operand */
+ DST_OP_NO_MARK /* same as above, check only, don't mark */
+};
+
+static int cmp_subprogs(const void *a, const void *b)
+{
+ return ((struct bpf_subprog_info *)a)->start -
+ ((struct bpf_subprog_info *)b)->start;
+}
+
+static int find_subprog(struct bpf_verifier_env *env, int off)
+{
+ struct bpf_subprog_info *p;
+
+ p = bsearch(&off, env->subprog_info, env->subprog_cnt,
+ sizeof(env->subprog_info[0]), cmp_subprogs);
+ if (!p)
+ return -ENOENT;
+ return p - env->subprog_info;
+
+}
+
+static int add_subprog(struct bpf_verifier_env *env, int off)
+{
+ int insn_cnt = env->prog->len;
+ int ret;
+
+ if (off >= insn_cnt || off < 0) {
+ verbose(env, "call to invalid destination\n");
+ return -EINVAL;
+ }
+ ret = find_subprog(env, off);
+ if (ret >= 0)
+ return ret;
+ if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
+ verbose(env, "too many subprograms\n");
+ return -E2BIG;
+ }
+ /* determine subprog starts. The end is one before the next starts */
+ env->subprog_info[env->subprog_cnt++].start = off;
+ sort(env->subprog_info, env->subprog_cnt,
+ sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
+ return env->subprog_cnt - 1;
+}
+
+#define MAX_KFUNC_DESCS 256
+#define MAX_KFUNC_BTFS 256
+
+struct bpf_kfunc_desc {
+ struct btf_func_model func_model;
+ u32 func_id;
+ s32 imm;
+ u16 offset;
+};
+
+struct bpf_kfunc_btf {
+ struct btf *btf;
+ struct module *module;
+ u16 offset;
+};
+
+struct bpf_kfunc_desc_tab {
+ struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
+ u32 nr_descs;
+};
+
+struct bpf_kfunc_btf_tab {
+ struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
+ u32 nr_descs;
+};
+
+static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
+{
+ const struct bpf_kfunc_desc *d0 = a;
+ const struct bpf_kfunc_desc *d1 = b;
+
+ /* func_id is not greater than BTF_MAX_TYPE */
+ return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
+}
+
+static int kfunc_btf_cmp_by_off(const void *a, const void *b)
+{
+ const struct bpf_kfunc_btf *d0 = a;
+ const struct bpf_kfunc_btf *d1 = b;
+
+ return d0->offset - d1->offset;
+}
+
+static const struct bpf_kfunc_desc *
+find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
+{
+ struct bpf_kfunc_desc desc = {
+ .func_id = func_id,
+ .offset = offset,
+ };
+ struct bpf_kfunc_desc_tab *tab;
+
+ tab = prog->aux->kfunc_tab;
+ return bsearch(&desc, tab->descs, tab->nr_descs,
+ sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
+}
+
+static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
+ s16 offset)
+{
+ struct bpf_kfunc_btf kf_btf = { .offset = offset };
+ struct bpf_kfunc_btf_tab *tab;
+ struct bpf_kfunc_btf *b;
+ struct module *mod;
+ struct btf *btf;
+ int btf_fd;
+
+ tab = env->prog->aux->kfunc_btf_tab;
+ b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
+ sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
+ if (!b) {
+ if (tab->nr_descs == MAX_KFUNC_BTFS) {
+ verbose(env, "too many different module BTFs\n");
+ return ERR_PTR(-E2BIG);
+ }
+
+ if (bpfptr_is_null(env->fd_array)) {
+ verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
+ return ERR_PTR(-EPROTO);
+ }
+
+ if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
+ offset * sizeof(btf_fd),
+ sizeof(btf_fd)))
+ return ERR_PTR(-EFAULT);
+
+ btf = btf_get_by_fd(btf_fd);
+ if (IS_ERR(btf)) {
+ verbose(env, "invalid module BTF fd specified\n");
+ return btf;
+ }
+
+ if (!btf_is_module(btf)) {
+ verbose(env, "BTF fd for kfunc is not a module BTF\n");
+ btf_put(btf);
+ return ERR_PTR(-EINVAL);
+ }
+
+ mod = btf_try_get_module(btf);
+ if (!mod) {
+ btf_put(btf);
+ return ERR_PTR(-ENXIO);
+ }
+
+ b = &tab->descs[tab->nr_descs++];
+ b->btf = btf;
+ b->module = mod;
+ b->offset = offset;
+
+ sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
+ kfunc_btf_cmp_by_off, NULL);
+ }
+ return b->btf;
+}
+
+void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
+{
+ if (!tab)
+ return;
+
+ while (tab->nr_descs--) {
+ module_put(tab->descs[tab->nr_descs].module);
+ btf_put(tab->descs[tab->nr_descs].btf);
+ }
+ kfree(tab);
+}
+
+static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
+{
+ if (offset) {
+ if (offset < 0) {
+ /* In the future, this can be allowed to increase limit
+ * of fd index into fd_array, interpreted as u16.
+ */
+ verbose(env, "negative offset disallowed for kernel module function call\n");
+ return ERR_PTR(-EINVAL);
+ }
+
+ return __find_kfunc_desc_btf(env, offset);
+ }
+ return btf_vmlinux ?: ERR_PTR(-ENOENT);
+}
+
+static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
+{
+ const struct btf_type *func, *func_proto;
+ struct bpf_kfunc_btf_tab *btf_tab;
+ struct bpf_kfunc_desc_tab *tab;
+ struct bpf_prog_aux *prog_aux;
+ struct bpf_kfunc_desc *desc;
+ const char *func_name;
+ struct btf *desc_btf;
+ unsigned long call_imm;
+ unsigned long addr;
+ int err;
+
+ prog_aux = env->prog->aux;
+ tab = prog_aux->kfunc_tab;
+ btf_tab = prog_aux->kfunc_btf_tab;
+ if (!tab) {
+ if (!btf_vmlinux) {
+ verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
+ return -ENOTSUPP;
+ }
+
+ if (!env->prog->jit_requested) {
+ verbose(env, "JIT is required for calling kernel function\n");
+ return -ENOTSUPP;
+ }
+
+ if (!bpf_jit_supports_kfunc_call()) {
+ verbose(env, "JIT does not support calling kernel function\n");
+ return -ENOTSUPP;
+ }
+
+ if (!env->prog->gpl_compatible) {
+ verbose(env, "cannot call kernel function from non-GPL compatible program\n");
+ return -EINVAL;
+ }
+
+ tab = kzalloc(sizeof(*tab), GFP_KERNEL);
+ if (!tab)
+ return -ENOMEM;
+ prog_aux->kfunc_tab = tab;
+ }
+
+ /* func_id == 0 is always invalid, but instead of returning an error, be
+ * conservative and wait until the code elimination pass before returning
+ * error, so that invalid calls that get pruned out can be in BPF programs
+ * loaded from userspace. It is also required that offset be untouched
+ * for such calls.
+ */
+ if (!func_id && !offset)
+ return 0;
+
+ if (!btf_tab && offset) {
+ btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
+ if (!btf_tab)
+ return -ENOMEM;
+ prog_aux->kfunc_btf_tab = btf_tab;
+ }
+
+ desc_btf = find_kfunc_desc_btf(env, offset);
+ if (IS_ERR(desc_btf)) {
+ verbose(env, "failed to find BTF for kernel function\n");
+ return PTR_ERR(desc_btf);
+ }
+
+ if (find_kfunc_desc(env->prog, func_id, offset))
+ return 0;
+
+ if (tab->nr_descs == MAX_KFUNC_DESCS) {
+ verbose(env, "too many different kernel function calls\n");
+ return -E2BIG;
+ }
+
+ func = btf_type_by_id(desc_btf, func_id);
+ if (!func || !btf_type_is_func(func)) {
+ verbose(env, "kernel btf_id %u is not a function\n",
+ func_id);
+ return -EINVAL;
+ }
+ func_proto = btf_type_by_id(desc_btf, func->type);
+ if (!func_proto || !btf_type_is_func_proto(func_proto)) {
+ verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
+ func_id);
+ return -EINVAL;
+ }
+
+ func_name = btf_name_by_offset(desc_btf, func->name_off);
+ addr = kallsyms_lookup_name(func_name);
+ if (!addr) {
+ verbose(env, "cannot find address for kernel function %s\n",
+ func_name);
+ return -EINVAL;
+ }
+
+ call_imm = BPF_CALL_IMM(addr);
+ /* Check whether or not the relative offset overflows desc->imm */
+ if ((unsigned long)(s32)call_imm != call_imm) {
+ verbose(env, "address of kernel function %s is out of range\n",
+ func_name);
+ return -EINVAL;
+ }
+
+ desc = &tab->descs[tab->nr_descs++];
+ desc->func_id = func_id;
+ desc->imm = call_imm;
+ desc->offset = offset;
+ err = btf_distill_func_proto(&env->log, desc_btf,
+ func_proto, func_name,
+ &desc->func_model);
+ if (!err)
+ sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
+ kfunc_desc_cmp_by_id_off, NULL);
+ return err;
+}
+
+static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
+{
+ const struct bpf_kfunc_desc *d0 = a;
+ const struct bpf_kfunc_desc *d1 = b;
+
+ if (d0->imm > d1->imm)
+ return 1;
+ else if (d0->imm < d1->imm)
+ return -1;
+ return 0;
+}
+
+static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
+{
+ struct bpf_kfunc_desc_tab *tab;
+
+ tab = prog->aux->kfunc_tab;
+ if (!tab)
+ return;
+
+ sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
+ kfunc_desc_cmp_by_imm, NULL);
+}
+
+bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
+{
+ return !!prog->aux->kfunc_tab;
+}
+
+const struct btf_func_model *
+bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
+ const struct bpf_insn *insn)
+{
+ const struct bpf_kfunc_desc desc = {
+ .imm = insn->imm,
+ };
+ const struct bpf_kfunc_desc *res;
+ struct bpf_kfunc_desc_tab *tab;
+
+ tab = prog->aux->kfunc_tab;
+ res = bsearch(&desc, tab->descs, tab->nr_descs,
+ sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
+
+ return res ? &res->func_model : NULL;
+}
+
+static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
+{
+ struct bpf_subprog_info *subprog = env->subprog_info;
+ struct bpf_insn *insn = env->prog->insnsi;
+ int i, ret, insn_cnt = env->prog->len;
+
+ /* Add entry function. */
+ ret = add_subprog(env, 0);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
+ !bpf_pseudo_kfunc_call(insn))
+ continue;
+
+ if (!env->bpf_capable) {
+ verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
+ return -EPERM;
+ }
+
+ if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
+ ret = add_subprog(env, i + insn->imm + 1);
+ else
+ ret = add_kfunc_call(env, insn->imm, insn->off);
+
+ if (ret < 0)
+ return ret;
+ }
+
+ /* Add a fake 'exit' subprog which could simplify subprog iteration
+ * logic. 'subprog_cnt' should not be increased.
+ */
+ subprog[env->subprog_cnt].start = insn_cnt;
+
+ if (env->log.level & BPF_LOG_LEVEL2)
+ for (i = 0; i < env->subprog_cnt; i++)
+ verbose(env, "func#%d @%d\n", i, subprog[i].start);
+
+ return 0;
+}
+
+static int check_subprogs(struct bpf_verifier_env *env)
+{
+ int i, subprog_start, subprog_end, off, cur_subprog = 0;
+ struct bpf_subprog_info *subprog = env->subprog_info;
+ struct bpf_insn *insn = env->prog->insnsi;
+ int insn_cnt = env->prog->len;
+
+ /* now check that all jumps are within the same subprog */
+ subprog_start = subprog[cur_subprog].start;
+ subprog_end = subprog[cur_subprog + 1].start;
+ for (i = 0; i < insn_cnt; i++) {
+ u8 code = insn[i].code;
+
+ if (code == (BPF_JMP | BPF_CALL) &&
+ insn[i].imm == BPF_FUNC_tail_call &&
+ insn[i].src_reg != BPF_PSEUDO_CALL)
+ subprog[cur_subprog].has_tail_call = true;
+ if (BPF_CLASS(code) == BPF_LD &&
+ (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
+ subprog[cur_subprog].has_ld_abs = true;
+ if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
+ goto next;
+ if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
+ goto next;
+ if (code == (BPF_JMP32 | BPF_JA))
+ off = i + insn[i].imm + 1;
+ else
+ off = i + insn[i].off + 1;
+ if (off < subprog_start || off >= subprog_end) {
+ verbose(env, "jump out of range from insn %d to %d\n", i, off);
+ return -EINVAL;
+ }
+next:
+ if (i == subprog_end - 1) {
+ /* to avoid fall-through from one subprog into another
+ * the last insn of the subprog should be either exit
+ * or unconditional jump back
+ */
+ if (code != (BPF_JMP | BPF_EXIT) &&
+ code != (BPF_JMP32 | BPF_JA) &&
+ code != (BPF_JMP | BPF_JA)) {
+ verbose(env, "last insn is not an exit or jmp\n");
+ return -EINVAL;
+ }
+ subprog_start = subprog_end;
+ cur_subprog++;
+ if (cur_subprog < env->subprog_cnt)
+ subprog_end = subprog[cur_subprog + 1].start;
+ }
+ }
+ return 0;
+}
+
+/* Parentage chain of this register (or stack slot) should take care of all
+ * issues like callee-saved registers, stack slot allocation time, etc.
+ */
+static int mark_reg_read(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *state,
+ struct bpf_reg_state *parent, u8 flag)
+{
+ bool writes = parent == state->parent; /* Observe write marks */
+ int cnt = 0;
+
+ while (parent) {
+ /* if read wasn't screened by an earlier write ... */
+ if (writes && state->live & REG_LIVE_WRITTEN)
+ break;
+ if (parent->live & REG_LIVE_DONE) {
+ verbose(env, "verifier BUG type %s var_off %lld off %d\n",
+ reg_type_str(env, parent->type),
+ parent->var_off.value, parent->off);
+ return -EFAULT;
+ }
+ /* The first condition is more likely to be true than the
+ * second, checked it first.
+ */
+ if ((parent->live & REG_LIVE_READ) == flag ||
+ parent->live & REG_LIVE_READ64)
+ /* The parentage chain never changes and
+ * this parent was already marked as LIVE_READ.
+ * There is no need to keep walking the chain again and
+ * keep re-marking all parents as LIVE_READ.
+ * This case happens when the same register is read
+ * multiple times without writes into it in-between.
+ * Also, if parent has the stronger REG_LIVE_READ64 set,
+ * then no need to set the weak REG_LIVE_READ32.
+ */
+ break;
+ /* ... then we depend on parent's value */
+ parent->live |= flag;
+ /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
+ if (flag == REG_LIVE_READ64)
+ parent->live &= ~REG_LIVE_READ32;
+ state = parent;
+ parent = state->parent;
+ writes = true;
+ cnt++;
+ }
+
+ if (env->longest_mark_read_walk < cnt)
+ env->longest_mark_read_walk = cnt;
+ return 0;
+}
+
+/* This function is supposed to be used by the following 32-bit optimization
+ * code only. It returns TRUE if the source or destination register operates
+ * on 64-bit, otherwise return FALSE.
+ */
+static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
+ u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
+{
+ u8 code, class, op;
+
+ code = insn->code;
+ class = BPF_CLASS(code);
+ op = BPF_OP(code);
+ if (class == BPF_JMP) {
+ /* BPF_EXIT for "main" will reach here. Return TRUE
+ * conservatively.
+ */
+ if (op == BPF_EXIT)
+ return true;
+ if (op == BPF_CALL) {
+ /* BPF to BPF call will reach here because of marking
+ * caller saved clobber with DST_OP_NO_MARK for which we
+ * don't care the register def because they are anyway
+ * marked as NOT_INIT already.
+ */
+ if (insn->src_reg == BPF_PSEUDO_CALL)
+ return false;
+ /* Helper call will reach here because of arg type
+ * check, conservatively return TRUE.
+ */
+ if (t == SRC_OP)
+ return true;
+
+ return false;
+ }
+ }
+
+ if (class == BPF_ALU64 || class == BPF_JMP ||
+ /* BPF_END always use BPF_ALU class. */
+ (class == BPF_ALU && op == BPF_END && insn->imm == 64))
+ return true;
+
+ if (class == BPF_ALU || class == BPF_JMP32)
+ return false;
+
+ if (class == BPF_LDX) {
+ if (t != SRC_OP)
+ return BPF_SIZE(code) == BPF_DW;
+ /* LDX source must be ptr. */
+ return true;
+ }
+
+ if (class == BPF_STX) {
+ /* BPF_STX (including atomic variants) has multiple source
+ * operands, one of which is a ptr. Check whether the caller is
+ * asking about it.
+ */
+ if (t == SRC_OP && reg->type != SCALAR_VALUE)
+ return true;
+ return BPF_SIZE(code) == BPF_DW;
+ }
+
+ if (class == BPF_LD) {
+ u8 mode = BPF_MODE(code);
+
+ /* LD_IMM64 */
+ if (mode == BPF_IMM)
+ return true;
+
+ /* Both LD_IND and LD_ABS return 32-bit data. */
+ if (t != SRC_OP)
+ return false;
+
+ /* Implicit ctx ptr. */
+ if (regno == BPF_REG_6)
+ return true;
+
+ /* Explicit source could be any width. */
+ return true;
+ }
+
+ if (class == BPF_ST)
+ /* The only source register for BPF_ST is a ptr. */
+ return true;
+
+ /* Conservatively return true at default. */
+ return true;
+}
+
+/* Return the regno defined by the insn, or -1. */
+static int insn_def_regno(const struct bpf_insn *insn)
+{
+ switch (BPF_CLASS(insn->code)) {
+ case BPF_JMP:
+ case BPF_JMP32:
+ case BPF_ST:
+ return -1;
+ case BPF_STX:
+ if (BPF_MODE(insn->code) == BPF_ATOMIC &&
+ (insn->imm & BPF_FETCH)) {
+ if (insn->imm == BPF_CMPXCHG)
+ return BPF_REG_0;
+ else
+ return insn->src_reg;
+ } else {
+ return -1;
+ }
+ default:
+ return insn->dst_reg;
+ }
+}
+
+/* Return TRUE if INSN has defined any 32-bit value explicitly. */
+static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+ int dst_reg = insn_def_regno(insn);
+
+ if (dst_reg == -1)
+ return false;
+
+ return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
+}
+
+static void mark_insn_zext(struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg)
+{
+ s32 def_idx = reg->subreg_def;
+
+ if (def_idx == DEF_NOT_SUBREG)
+ return;
+
+ env->insn_aux_data[def_idx - 1].zext_dst = true;
+ /* The dst will be zero extended, so won't be sub-register anymore. */
+ reg->subreg_def = DEF_NOT_SUBREG;
+}
+
+static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
+ enum reg_arg_type t)
+{
+ struct bpf_verifier_state *vstate = env->cur_state;
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
+ struct bpf_reg_state *reg, *regs = state->regs;
+ bool rw64;
+
+ if (regno >= MAX_BPF_REG) {
+ verbose(env, "R%d is invalid\n", regno);
+ return -EINVAL;
+ }
+
+ mark_reg_scratched(env, regno);
+
+ reg = &regs[regno];
+ rw64 = is_reg64(env, insn, regno, reg, t);
+ if (t == SRC_OP) {
+ /* check whether register used as source operand can be read */
+ if (reg->type == NOT_INIT) {
+ verbose(env, "R%d !read_ok\n", regno);
+ return -EACCES;
+ }
+ /* We don't need to worry about FP liveness because it's read-only */
+ if (regno == BPF_REG_FP)
+ return 0;
+
+ if (rw64)
+ mark_insn_zext(env, reg);
+
+ return mark_reg_read(env, reg, reg->parent,
+ rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
+ } else {
+ /* check whether register used as dest operand can be written to */
+ if (regno == BPF_REG_FP) {
+ verbose(env, "frame pointer is read only\n");
+ return -EACCES;
+ }
+ reg->live |= REG_LIVE_WRITTEN;
+ reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
+ if (t == DST_OP)
+ mark_reg_unknown(env, regs, regno);
+ }
+ return 0;
+}
+
+static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
+{
+ env->insn_aux_data[idx].jmp_point = true;
+}
+
+static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
+{
+ return env->insn_aux_data[insn_idx].jmp_point;
+}
+
+/* for any branch, call, exit record the history of jmps in the given state */
+static int push_jmp_history(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *cur)
+{
+ u32 cnt = cur->jmp_history_cnt;
+ struct bpf_idx_pair *p;
+ size_t alloc_size;
+
+ if (!is_jmp_point(env, env->insn_idx))
+ return 0;
+
+ cnt++;
+ alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
+ p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
+ if (!p)
+ return -ENOMEM;
+ p[cnt - 1].idx = env->insn_idx;
+ p[cnt - 1].prev_idx = env->prev_insn_idx;
+ cur->jmp_history = p;
+ cur->jmp_history_cnt = cnt;
+ return 0;
+}
+
+/* Backtrack one insn at a time. If idx is not at the top of recorded
+ * history then previous instruction came from straight line execution.
+ * Return -ENOENT if we exhausted all instructions within given state.
+ *
+ * It's legal to have a bit of a looping with the same starting and ending
+ * insn index within the same state, e.g.: 3->4->5->3, so just because current
+ * instruction index is the same as state's first_idx doesn't mean we are
+ * done. If there is still some jump history left, we should keep going. We
+ * need to take into account that we might have a jump history between given
+ * state's parent and itself, due to checkpointing. In this case, we'll have
+ * history entry recording a jump from last instruction of parent state and
+ * first instruction of given state.
+ */
+static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
+ u32 *history)
+{
+ u32 cnt = *history;
+
+ if (i == st->first_insn_idx) {
+ if (cnt == 0)
+ return -ENOENT;
+ if (cnt == 1 && st->jmp_history[0].idx == i)
+ return -ENOENT;
+ }
+
+ if (cnt && st->jmp_history[cnt - 1].idx == i) {
+ i = st->jmp_history[cnt - 1].prev_idx;
+ (*history)--;
+ } else {
+ i--;
+ }
+ return i;
+}
+
+static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
+{
+ const struct btf_type *func;
+ struct btf *desc_btf;
+
+ if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
+ return NULL;
+
+ desc_btf = find_kfunc_desc_btf(data, insn->off);
+ if (IS_ERR(desc_btf))
+ return "<error>";
+
+ func = btf_type_by_id(desc_btf, insn->imm);
+ return btf_name_by_offset(desc_btf, func->name_off);
+}
+
+/* For given verifier state backtrack_insn() is called from the last insn to
+ * the first insn. Its purpose is to compute a bitmask of registers and
+ * stack slots that needs precision in the parent verifier state.
+ */
+static int backtrack_insn(struct bpf_verifier_env *env, int idx,
+ u32 *reg_mask, u64 *stack_mask)
+{
+ const struct bpf_insn_cbs cbs = {
+ .cb_call = disasm_kfunc_name,
+ .cb_print = verbose,
+ .private_data = env,
+ };
+ struct bpf_insn *insn = env->prog->insnsi + idx;
+ u8 class = BPF_CLASS(insn->code);
+ u8 opcode = BPF_OP(insn->code);
+ u8 mode = BPF_MODE(insn->code);
+ u32 dreg = 1u << insn->dst_reg;
+ u32 sreg = 1u << insn->src_reg;
+ u32 spi;
+
+ if (insn->code == 0)
+ return 0;
+ if (env->log.level & BPF_LOG_LEVEL2) {
+ verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
+ verbose(env, "%d: ", idx);
+ print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
+ }
+
+ if (class == BPF_ALU || class == BPF_ALU64) {
+ if (!(*reg_mask & dreg))
+ return 0;
+ if (opcode == BPF_END || opcode == BPF_NEG) {
+ /* sreg is reserved and unused
+ * dreg still need precision before this insn
+ */
+ return 0;
+ } else if (opcode == BPF_MOV) {
+ if (BPF_SRC(insn->code) == BPF_X) {
+ /* dreg = sreg
+ * dreg needs precision after this insn
+ * sreg needs precision before this insn
+ */
+ *reg_mask &= ~dreg;
+ *reg_mask |= sreg;
+ } else {
+ /* dreg = K
+ * dreg needs precision after this insn.
+ * Corresponding register is already marked
+ * as precise=true in this verifier state.
+ * No further markings in parent are necessary
+ */
+ *reg_mask &= ~dreg;
+ }
+ } else {
+ if (BPF_SRC(insn->code) == BPF_X) {
+ /* dreg += sreg
+ * both dreg and sreg need precision
+ * before this insn
+ */
+ *reg_mask |= sreg;
+ } /* else dreg += K
+ * dreg still needs precision before this insn
+ */
+ }
+ } else if (class == BPF_LDX) {
+ if (!(*reg_mask & dreg))
+ return 0;
+ *reg_mask &= ~dreg;
+
+ /* scalars can only be spilled into stack w/o losing precision.
+ * Load from any other memory can be zero extended.
+ * The desire to keep that precision is already indicated
+ * by 'precise' mark in corresponding register of this state.
+ * No further tracking necessary.
+ */
+ if (insn->src_reg != BPF_REG_FP)
+ return 0;
+
+ /* dreg = *(u64 *)[fp - off] was a fill from the stack.
+ * that [fp - off] slot contains scalar that needs to be
+ * tracked with precision
+ */
+ spi = (-insn->off - 1) / BPF_REG_SIZE;
+ if (spi >= 64) {
+ verbose(env, "BUG spi %d\n", spi);
+ WARN_ONCE(1, "verifier backtracking bug");
+ return -EFAULT;
+ }
+ *stack_mask |= 1ull << spi;
+ } else if (class == BPF_STX || class == BPF_ST) {
+ if (*reg_mask & dreg)
+ /* stx & st shouldn't be using _scalar_ dst_reg
+ * to access memory. It means backtracking
+ * encountered a case of pointer subtraction.
+ */
+ return -ENOTSUPP;
+ /* scalars can only be spilled into stack */
+ if (insn->dst_reg != BPF_REG_FP)
+ return 0;
+ spi = (-insn->off - 1) / BPF_REG_SIZE;
+ if (spi >= 64) {
+ verbose(env, "BUG spi %d\n", spi);
+ WARN_ONCE(1, "verifier backtracking bug");
+ return -EFAULT;
+ }
+ if (!(*stack_mask & (1ull << spi)))
+ return 0;
+ *stack_mask &= ~(1ull << spi);
+ if (class == BPF_STX)
+ *reg_mask |= sreg;
+ } else if (class == BPF_JMP || class == BPF_JMP32) {
+ if (opcode == BPF_CALL) {
+ if (insn->src_reg == BPF_PSEUDO_CALL)
+ return -ENOTSUPP;
+ /* kfunc with imm==0 is invalid and fixup_kfunc_call will
+ * catch this error later. Make backtracking conservative
+ * with ENOTSUPP.
+ */
+ if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
+ return -ENOTSUPP;
+ /* BPF helpers that invoke callback subprogs are
+ * equivalent to BPF_PSEUDO_CALL above
+ */
+ if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
+ return -ENOTSUPP;
+ /* regular helper call sets R0 */
+ *reg_mask &= ~1;
+ if (*reg_mask & 0x3f) {
+ /* if backtracing was looking for registers R1-R5
+ * they should have been found already.
+ */
+ verbose(env, "BUG regs %x\n", *reg_mask);
+ WARN_ONCE(1, "verifier backtracking bug");
+ return -EFAULT;
+ }
+ } else if (opcode == BPF_EXIT) {
+ return -ENOTSUPP;
+ } else if (BPF_SRC(insn->code) == BPF_X) {
+ if (!(*reg_mask & (dreg | sreg)))
+ return 0;
+ /* dreg <cond> sreg
+ * Both dreg and sreg need precision before
+ * this insn. If only sreg was marked precise
+ * before it would be equally necessary to
+ * propagate it to dreg.
+ */
+ *reg_mask |= (sreg | dreg);
+ /* else dreg <cond> K
+ * Only dreg still needs precision before
+ * this insn, so for the K-based conditional
+ * there is nothing new to be marked.
+ */
+ }
+ } else if (class == BPF_LD) {
+ if (!(*reg_mask & dreg))
+ return 0;
+ *reg_mask &= ~dreg;
+ /* It's ld_imm64 or ld_abs or ld_ind.
+ * For ld_imm64 no further tracking of precision
+ * into parent is necessary
+ */
+ if (mode == BPF_IND || mode == BPF_ABS)
+ /* to be analyzed */
+ return -ENOTSUPP;
+ }
+ return 0;
+}
+
+/* the scalar precision tracking algorithm:
+ * . at the start all registers have precise=false.
+ * . scalar ranges are tracked as normal through alu and jmp insns.
+ * . once precise value of the scalar register is used in:
+ * . ptr + scalar alu
+ * . if (scalar cond K|scalar)
+ * . helper_call(.., scalar, ...) where ARG_CONST is expected
+ * backtrack through the verifier states and mark all registers and
+ * stack slots with spilled constants that these scalar regisers
+ * should be precise.
+ * . during state pruning two registers (or spilled stack slots)
+ * are equivalent if both are not precise.
+ *
+ * Note the verifier cannot simply walk register parentage chain,
+ * since many different registers and stack slots could have been
+ * used to compute single precise scalar.
+ *
+ * The approach of starting with precise=true for all registers and then
+ * backtrack to mark a register as not precise when the verifier detects
+ * that program doesn't care about specific value (e.g., when helper
+ * takes register as ARG_ANYTHING parameter) is not safe.
+ *
+ * It's ok to walk single parentage chain of the verifier states.
+ * It's possible that this backtracking will go all the way till 1st insn.
+ * All other branches will be explored for needing precision later.
+ *
+ * The backtracking needs to deal with cases like:
+ * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
+ * r9 -= r8
+ * r5 = r9
+ * if r5 > 0x79f goto pc+7
+ * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
+ * r5 += 1
+ * ...
+ * call bpf_perf_event_output#25
+ * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
+ *
+ * and this case:
+ * r6 = 1
+ * call foo // uses callee's r6 inside to compute r0
+ * r0 += r6
+ * if r0 == 0 goto
+ *
+ * to track above reg_mask/stack_mask needs to be independent for each frame.
+ *
+ * Also if parent's curframe > frame where backtracking started,
+ * the verifier need to mark registers in both frames, otherwise callees
+ * may incorrectly prune callers. This is similar to
+ * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
+ *
+ * For now backtracking falls back into conservative marking.
+ */
+static void mark_all_scalars_precise(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *st)
+{
+ struct bpf_func_state *func;
+ struct bpf_reg_state *reg;
+ int i, j;
+
+ /* big hammer: mark all scalars precise in this path.
+ * pop_stack may still get !precise scalars.
+ * We also skip current state and go straight to first parent state,
+ * because precision markings in current non-checkpointed state are
+ * not needed. See why in the comment in __mark_chain_precision below.
+ */
+ for (st = st->parent; st; st = st->parent) {
+ for (i = 0; i <= st->curframe; i++) {
+ func = st->frame[i];
+ for (j = 0; j < BPF_REG_FP; j++) {
+ reg = &func->regs[j];
+ if (reg->type != SCALAR_VALUE)
+ continue;
+ reg->precise = true;
+ }
+ for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
+ if (!is_spilled_reg(&func->stack[j]))
+ continue;
+ reg = &func->stack[j].spilled_ptr;
+ if (reg->type != SCALAR_VALUE)
+ continue;
+ reg->precise = true;
+ }
+ }
+ }
+}
+
+static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
+{
+ struct bpf_func_state *func;
+ struct bpf_reg_state *reg;
+ int i, j;
+
+ for (i = 0; i <= st->curframe; i++) {
+ func = st->frame[i];
+ for (j = 0; j < BPF_REG_FP; j++) {
+ reg = &func->regs[j];
+ if (reg->type != SCALAR_VALUE)
+ continue;
+ reg->precise = false;
+ }
+ for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
+ if (!is_spilled_reg(&func->stack[j]))
+ continue;
+ reg = &func->stack[j].spilled_ptr;
+ if (reg->type != SCALAR_VALUE)
+ continue;
+ reg->precise = false;
+ }
+ }
+}
+
+/*
+ * __mark_chain_precision() backtracks BPF program instruction sequence and
+ * chain of verifier states making sure that register *regno* (if regno >= 0)
+ * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
+ * SCALARS, as well as any other registers and slots that contribute to
+ * a tracked state of given registers/stack slots, depending on specific BPF
+ * assembly instructions (see backtrack_insns() for exact instruction handling
+ * logic). This backtracking relies on recorded jmp_history and is able to
+ * traverse entire chain of parent states. This process ends only when all the
+ * necessary registers/slots and their transitive dependencies are marked as
+ * precise.
+ *
+ * One important and subtle aspect is that precise marks *do not matter* in
+ * the currently verified state (current state). It is important to understand
+ * why this is the case.
+ *
+ * First, note that current state is the state that is not yet "checkpointed",
+ * i.e., it is not yet put into env->explored_states, and it has no children
+ * states as well. It's ephemeral, and can end up either a) being discarded if
+ * compatible explored state is found at some point or BPF_EXIT instruction is
+ * reached or b) checkpointed and put into env->explored_states, branching out
+ * into one or more children states.
+ *
+ * In the former case, precise markings in current state are completely
+ * ignored by state comparison code (see regsafe() for details). Only
+ * checkpointed ("old") state precise markings are important, and if old
+ * state's register/slot is precise, regsafe() assumes current state's
+ * register/slot as precise and checks value ranges exactly and precisely. If
+ * states turn out to be compatible, current state's necessary precise
+ * markings and any required parent states' precise markings are enforced
+ * after the fact with propagate_precision() logic, after the fact. But it's
+ * important to realize that in this case, even after marking current state
+ * registers/slots as precise, we immediately discard current state. So what
+ * actually matters is any of the precise markings propagated into current
+ * state's parent states, which are always checkpointed (due to b) case above).
+ * As such, for scenario a) it doesn't matter if current state has precise
+ * markings set or not.
+ *
+ * Now, for the scenario b), checkpointing and forking into child(ren)
+ * state(s). Note that before current state gets to checkpointing step, any
+ * processed instruction always assumes precise SCALAR register/slot
+ * knowledge: if precise value or range is useful to prune jump branch, BPF
+ * verifier takes this opportunity enthusiastically. Similarly, when
+ * register's value is used to calculate offset or memory address, exact
+ * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
+ * what we mentioned above about state comparison ignoring precise markings
+ * during state comparison, BPF verifier ignores and also assumes precise
+ * markings *at will* during instruction verification process. But as verifier
+ * assumes precision, it also propagates any precision dependencies across
+ * parent states, which are not yet finalized, so can be further restricted
+ * based on new knowledge gained from restrictions enforced by their children
+ * states. This is so that once those parent states are finalized, i.e., when
+ * they have no more active children state, state comparison logic in
+ * is_state_visited() would enforce strict and precise SCALAR ranges, if
+ * required for correctness.
+ *
+ * To build a bit more intuition, note also that once a state is checkpointed,
+ * the path we took to get to that state is not important. This is crucial
+ * property for state pruning. When state is checkpointed and finalized at
+ * some instruction index, it can be correctly and safely used to "short
+ * circuit" any *compatible* state that reaches exactly the same instruction
+ * index. I.e., if we jumped to that instruction from a completely different
+ * code path than original finalized state was derived from, it doesn't
+ * matter, current state can be discarded because from that instruction
+ * forward having a compatible state will ensure we will safely reach the
+ * exit. States describe preconditions for further exploration, but completely
+ * forget the history of how we got here.
+ *
+ * This also means that even if we needed precise SCALAR range to get to
+ * finalized state, but from that point forward *that same* SCALAR register is
+ * never used in a precise context (i.e., it's precise value is not needed for
+ * correctness), it's correct and safe to mark such register as "imprecise"
+ * (i.e., precise marking set to false). This is what we rely on when we do
+ * not set precise marking in current state. If no child state requires
+ * precision for any given SCALAR register, it's safe to dictate that it can
+ * be imprecise. If any child state does require this register to be precise,
+ * we'll mark it precise later retroactively during precise markings
+ * propagation from child state to parent states.
+ *
+ * Skipping precise marking setting in current state is a mild version of
+ * relying on the above observation. But we can utilize this property even
+ * more aggressively by proactively forgetting any precise marking in the
+ * current state (which we inherited from the parent state), right before we
+ * checkpoint it and branch off into new child state. This is done by
+ * mark_all_scalars_imprecise() to hopefully get more permissive and generic
+ * finalized states which help in short circuiting more future states.
+ */
+static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
+ int spi)
+{
+ struct bpf_verifier_state *st = env->cur_state;
+ int first_idx = st->first_insn_idx;
+ int last_idx = env->insn_idx;
+ struct bpf_func_state *func;
+ struct bpf_reg_state *reg;
+ u32 reg_mask = regno >= 0 ? 1u << regno : 0;
+ u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
+ bool skip_first = true;
+ bool new_marks = false;
+ int i, err;
+
+ if (!env->bpf_capable)
+ return 0;
+
+ /* Do sanity checks against current state of register and/or stack
+ * slot, but don't set precise flag in current state, as precision
+ * tracking in the current state is unnecessary.
+ */
+ func = st->frame[frame];
+ if (regno >= 0) {
+ reg = &func->regs[regno];
+ if (reg->type != SCALAR_VALUE) {
+ WARN_ONCE(1, "backtracing misuse");
+ return -EFAULT;
+ }
+ new_marks = true;
+ }
+
+ while (spi >= 0) {
+ if (!is_spilled_reg(&func->stack[spi])) {
+ stack_mask = 0;
+ break;
+ }
+ reg = &func->stack[spi].spilled_ptr;
+ if (reg->type != SCALAR_VALUE) {
+ stack_mask = 0;
+ break;
+ }
+ new_marks = true;
+ break;
+ }
+
+ if (!new_marks)
+ return 0;
+ if (!reg_mask && !stack_mask)
+ return 0;
+
+ for (;;) {
+ DECLARE_BITMAP(mask, 64);
+ u32 history = st->jmp_history_cnt;
+
+ if (env->log.level & BPF_LOG_LEVEL2)
+ verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
+
+ if (last_idx < 0) {
+ /* we are at the entry into subprog, which
+ * is expected for global funcs, but only if
+ * requested precise registers are R1-R5
+ * (which are global func's input arguments)
+ */
+ if (st->curframe == 0 &&
+ st->frame[0]->subprogno > 0 &&
+ st->frame[0]->callsite == BPF_MAIN_FUNC &&
+ stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
+ bitmap_from_u64(mask, reg_mask);
+ for_each_set_bit(i, mask, 32) {
+ reg = &st->frame[0]->regs[i];
+ if (reg->type != SCALAR_VALUE) {
+ reg_mask &= ~(1u << i);
+ continue;
+ }
+ reg->precise = true;
+ }
+ return 0;
+ }
+
+ verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
+ st->frame[0]->subprogno, reg_mask, stack_mask);
+ WARN_ONCE(1, "verifier backtracking bug");
+ return -EFAULT;
+ }
+
+ for (i = last_idx;;) {
+ if (skip_first) {
+ err = 0;
+ skip_first = false;
+ } else {
+ err = backtrack_insn(env, i, &reg_mask, &stack_mask);
+ }
+ if (err == -ENOTSUPP) {
+ mark_all_scalars_precise(env, st);
+ return 0;
+ } else if (err) {
+ return err;
+ }
+ if (!reg_mask && !stack_mask)
+ /* Found assignment(s) into tracked register in this state.
+ * Since this state is already marked, just return.
+ * Nothing to be tracked further in the parent state.
+ */
+ return 0;
+ i = get_prev_insn_idx(st, i, &history);
+ if (i == -ENOENT)
+ break;
+ if (i >= env->prog->len) {
+ /* This can happen if backtracking reached insn 0
+ * and there are still reg_mask or stack_mask
+ * to backtrack.
+ * It means the backtracking missed the spot where
+ * particular register was initialized with a constant.
+ */
+ verbose(env, "BUG backtracking idx %d\n", i);
+ WARN_ONCE(1, "verifier backtracking bug");
+ return -EFAULT;
+ }
+ }
+ st = st->parent;
+ if (!st)
+ break;
+
+ new_marks = false;
+ func = st->frame[frame];
+ bitmap_from_u64(mask, reg_mask);
+ for_each_set_bit(i, mask, 32) {
+ reg = &func->regs[i];
+ if (reg->type != SCALAR_VALUE) {
+ reg_mask &= ~(1u << i);
+ continue;
+ }
+ if (!reg->precise)
+ new_marks = true;
+ reg->precise = true;
+ }
+
+ bitmap_from_u64(mask, stack_mask);
+ for_each_set_bit(i, mask, 64) {
+ if (i >= func->allocated_stack / BPF_REG_SIZE) {
+ /* the sequence of instructions:
+ * 2: (bf) r3 = r10
+ * 3: (7b) *(u64 *)(r3 -8) = r0
+ * 4: (79) r4 = *(u64 *)(r10 -8)
+ * doesn't contain jmps. It's backtracked
+ * as a single block.
+ * During backtracking insn 3 is not recognized as
+ * stack access, so at the end of backtracking
+ * stack slot fp-8 is still marked in stack_mask.
+ * However the parent state may not have accessed
+ * fp-8 and it's "unallocated" stack space.
+ * In such case fallback to conservative.
+ */
+ mark_all_scalars_precise(env, st);
+ return 0;
+ }
+
+ if (!is_spilled_reg(&func->stack[i])) {
+ stack_mask &= ~(1ull << i);
+ continue;
+ }
+ reg = &func->stack[i].spilled_ptr;
+ if (reg->type != SCALAR_VALUE) {
+ stack_mask &= ~(1ull << i);
+ continue;
+ }
+ if (!reg->precise)
+ new_marks = true;
+ reg->precise = true;
+ }
+ if (env->log.level & BPF_LOG_LEVEL2) {
+ verbose(env, "parent %s regs=%x stack=%llx marks:",
+ new_marks ? "didn't have" : "already had",
+ reg_mask, stack_mask);
+ print_verifier_state(env, func, true);
+ }
+
+ if (!reg_mask && !stack_mask)
+ break;
+ if (!new_marks)
+ break;
+
+ last_idx = st->last_insn_idx;
+ first_idx = st->first_insn_idx;
+ }
+ return 0;
+}
+
+int mark_chain_precision(struct bpf_verifier_env *env, int regno)
+{
+ return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
+}
+
+static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
+{
+ return __mark_chain_precision(env, frame, regno, -1);
+}
+
+static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
+{
+ return __mark_chain_precision(env, frame, -1, spi);
+}
+
+static bool is_spillable_regtype(enum bpf_reg_type type)
+{
+ switch (base_type(type)) {
+ case PTR_TO_MAP_VALUE:
+ case PTR_TO_STACK:
+ case PTR_TO_CTX:
+ case PTR_TO_PACKET:
+ case PTR_TO_PACKET_META:
+ case PTR_TO_PACKET_END:
+ case PTR_TO_FLOW_KEYS:
+ case CONST_PTR_TO_MAP:
+ case PTR_TO_SOCKET:
+ case PTR_TO_SOCK_COMMON:
+ case PTR_TO_TCP_SOCK:
+ case PTR_TO_XDP_SOCK:
+ case PTR_TO_BTF_ID:
+ case PTR_TO_BUF:
+ case PTR_TO_MEM:
+ case PTR_TO_FUNC:
+ case PTR_TO_MAP_KEY:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Does this register contain a constant zero? */
+static bool register_is_null(struct bpf_reg_state *reg)
+{
+ return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
+}
+
+static bool register_is_const(struct bpf_reg_state *reg)
+{
+ return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
+}
+
+static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
+{
+ return tnum_is_unknown(reg->var_off) &&
+ reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
+ reg->umin_value == 0 && reg->umax_value == U64_MAX &&
+ reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
+ reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
+}
+
+static bool register_is_bounded(struct bpf_reg_state *reg)
+{
+ return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
+}
+
+static bool __is_pointer_value(bool allow_ptr_leaks,
+ const struct bpf_reg_state *reg)
+{
+ if (allow_ptr_leaks)
+ return false;
+
+ return reg->type != SCALAR_VALUE;
+}
+
+/* Copy src state preserving dst->parent and dst->live fields */
+static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
+{
+ struct bpf_reg_state *parent = dst->parent;
+ enum bpf_reg_liveness live = dst->live;
+
+ *dst = *src;
+ dst->parent = parent;
+ dst->live = live;
+}
+
+static void save_register_state(struct bpf_func_state *state,
+ int spi, struct bpf_reg_state *reg,
+ int size)
+{
+ int i;
+
+ copy_register_state(&state->stack[spi].spilled_ptr, reg);
+ if (size == BPF_REG_SIZE)
+ state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
+
+ for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
+ state->stack[spi].slot_type[i - 1] = STACK_SPILL;
+
+ /* size < 8 bytes spill */
+ for (; i; i--)
+ scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
+}
+
+static bool is_bpf_st_mem(struct bpf_insn *insn)
+{
+ return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
+}
+
+/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
+ * stack boundary and alignment are checked in check_mem_access()
+ */
+static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
+ /* stack frame we're writing to */
+ struct bpf_func_state *state,
+ int off, int size, int value_regno,
+ int insn_idx)
+{
+ struct bpf_func_state *cur; /* state of the current function */
+ int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
+ struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
+ struct bpf_reg_state *reg = NULL;
+ u32 dst_reg = insn->dst_reg;
+
+ err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
+ if (err)
+ return err;
+ /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
+ * so it's aligned access and [off, off + size) are within stack limits
+ */
+ if (!env->allow_ptr_leaks &&
+ is_spilled_reg(&state->stack[spi]) &&
+ size != BPF_REG_SIZE) {
+ verbose(env, "attempt to corrupt spilled pointer on stack\n");
+ return -EACCES;
+ }
+
+ cur = env->cur_state->frame[env->cur_state->curframe];
+ if (value_regno >= 0)
+ reg = &cur->regs[value_regno];
+ if (!env->bypass_spec_v4) {
+ bool sanitize = reg && is_spillable_regtype(reg->type);
+
+ for (i = 0; i < size; i++) {
+ u8 type = state->stack[spi].slot_type[i];
+
+ if (type != STACK_MISC && type != STACK_ZERO) {
+ sanitize = true;
+ break;
+ }
+ }
+
+ if (sanitize)
+ env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
+ }
+
+ mark_stack_slot_scratched(env, spi);
+ if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
+ !register_is_null(reg) && env->bpf_capable) {
+ if (dst_reg != BPF_REG_FP) {
+ /* The backtracking logic can only recognize explicit
+ * stack slot address like [fp - 8]. Other spill of
+ * scalar via different register has to be conservative.
+ * Backtrack from here and mark all registers as precise
+ * that contributed into 'reg' being a constant.
+ */
+ err = mark_chain_precision(env, value_regno);
+ if (err)
+ return err;
+ }
+ save_register_state(state, spi, reg, size);
+ /* Break the relation on a narrowing spill. */
+ if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
+ state->stack[spi].spilled_ptr.id = 0;
+ } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
+ insn->imm != 0 && env->bpf_capable) {
+ struct bpf_reg_state fake_reg = {};
+
+ __mark_reg_known(&fake_reg, insn->imm);
+ fake_reg.type = SCALAR_VALUE;
+ save_register_state(state, spi, &fake_reg, size);
+ } else if (reg && is_spillable_regtype(reg->type)) {
+ /* register containing pointer is being spilled into stack */
+ if (size != BPF_REG_SIZE) {
+ verbose_linfo(env, insn_idx, "; ");
+ verbose(env, "invalid size of register spill\n");
+ return -EACCES;
+ }
+ if (state != cur && reg->type == PTR_TO_STACK) {
+ verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
+ return -EINVAL;
+ }
+ save_register_state(state, spi, reg, size);
+ } else {
+ u8 type = STACK_MISC;
+
+ /* regular write of data into stack destroys any spilled ptr */
+ state->stack[spi].spilled_ptr.type = NOT_INIT;
+ /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
+ if (is_spilled_reg(&state->stack[spi]))
+ for (i = 0; i < BPF_REG_SIZE; i++)
+ scrub_spilled_slot(&state->stack[spi].slot_type[i]);
+
+ /* only mark the slot as written if all 8 bytes were written
+ * otherwise read propagation may incorrectly stop too soon
+ * when stack slots are partially written.
+ * This heuristic means that read propagation will be
+ * conservative, since it will add reg_live_read marks
+ * to stack slots all the way to first state when programs
+ * writes+reads less than 8 bytes
+ */
+ if (size == BPF_REG_SIZE)
+ state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
+
+ /* when we zero initialize stack slots mark them as such */
+ if ((reg && register_is_null(reg)) ||
+ (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
+ /* backtracking doesn't work for STACK_ZERO yet. */
+ err = mark_chain_precision(env, value_regno);
+ if (err)
+ return err;
+ type = STACK_ZERO;
+ }
+
+ /* Mark slots affected by this stack write. */
+ for (i = 0; i < size; i++)
+ state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
+ type;
+ }
+ return 0;
+}
+
+/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
+ * known to contain a variable offset.
+ * This function checks whether the write is permitted and conservatively
+ * tracks the effects of the write, considering that each stack slot in the
+ * dynamic range is potentially written to.
+ *
+ * 'off' includes 'regno->off'.
+ * 'value_regno' can be -1, meaning that an unknown value is being written to
+ * the stack.
+ *
+ * Spilled pointers in range are not marked as written because we don't know
+ * what's going to be actually written. This means that read propagation for
+ * future reads cannot be terminated by this write.
+ *
+ * For privileged programs, uninitialized stack slots are considered
+ * initialized by this write (even though we don't know exactly what offsets
+ * are going to be written to). The idea is that we don't want the verifier to
+ * reject future reads that access slots written to through variable offsets.
+ */
+static int check_stack_write_var_off(struct bpf_verifier_env *env,
+ /* func where register points to */
+ struct bpf_func_state *state,
+ int ptr_regno, int off, int size,
+ int value_regno, int insn_idx)
+{
+ struct bpf_func_state *cur; /* state of the current function */
+ int min_off, max_off;
+ int i, err;
+ struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
+ bool writing_zero = false;
+ /* set if the fact that we're writing a zero is used to let any
+ * stack slots remain STACK_ZERO
+ */
+ bool zero_used = false;
+
+ cur = env->cur_state->frame[env->cur_state->curframe];
+ ptr_reg = &cur->regs[ptr_regno];
+ min_off = ptr_reg->smin_value + off;
+ max_off = ptr_reg->smax_value + off + size;
+ if (value_regno >= 0)
+ value_reg = &cur->regs[value_regno];
+ if (value_reg && register_is_null(value_reg))
+ writing_zero = true;
+
+ err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
+ if (err)
+ return err;
+
+
+ /* Variable offset writes destroy any spilled pointers in range. */
+ for (i = min_off; i < max_off; i++) {
+ u8 new_type, *stype;
+ int slot, spi;
+
+ slot = -i - 1;
+ spi = slot / BPF_REG_SIZE;
+ stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
+ mark_stack_slot_scratched(env, spi);
+
+ if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
+ /* Reject the write if range we may write to has not
+ * been initialized beforehand. If we didn't reject
+ * here, the ptr status would be erased below (even
+ * though not all slots are actually overwritten),
+ * possibly opening the door to leaks.
+ *
+ * We do however catch STACK_INVALID case below, and
+ * only allow reading possibly uninitialized memory
+ * later for CAP_PERFMON, as the write may not happen to
+ * that slot.
+ */
+ verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
+ insn_idx, i);
+ return -EINVAL;
+ }
+
+ /* Erase all spilled pointers. */
+ state->stack[spi].spilled_ptr.type = NOT_INIT;
+
+ /* Update the slot type. */
+ new_type = STACK_MISC;
+ if (writing_zero && *stype == STACK_ZERO) {
+ new_type = STACK_ZERO;
+ zero_used = true;
+ }
+ /* If the slot is STACK_INVALID, we check whether it's OK to
+ * pretend that it will be initialized by this write. The slot
+ * might not actually be written to, and so if we mark it as
+ * initialized future reads might leak uninitialized memory.
+ * For privileged programs, we will accept such reads to slots
+ * that may or may not be written because, if we're reject
+ * them, the error would be too confusing.
+ */
+ if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
+ verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
+ insn_idx, i);
+ return -EINVAL;
+ }
+ *stype = new_type;
+ }
+ if (zero_used) {
+ /* backtracking doesn't work for STACK_ZERO yet. */
+ err = mark_chain_precision(env, value_regno);
+ if (err)
+ return err;
+ }
+ return 0;
+}
+
+/* When register 'dst_regno' is assigned some values from stack[min_off,
+ * max_off), we set the register's type according to the types of the
+ * respective stack slots. If all the stack values are known to be zeros, then
+ * so is the destination reg. Otherwise, the register is considered to be
+ * SCALAR. This function does not deal with register filling; the caller must
+ * ensure that all spilled registers in the stack range have been marked as
+ * read.
+ */
+static void mark_reg_stack_read(struct bpf_verifier_env *env,
+ /* func where src register points to */
+ struct bpf_func_state *ptr_state,
+ int min_off, int max_off, int dst_regno)
+{
+ struct bpf_verifier_state *vstate = env->cur_state;
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ int i, slot, spi;
+ u8 *stype;
+ int zeros = 0;
+
+ for (i = min_off; i < max_off; i++) {
+ slot = -i - 1;
+ spi = slot / BPF_REG_SIZE;
+ stype = ptr_state->stack[spi].slot_type;
+ if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
+ break;
+ zeros++;
+ }
+ if (zeros == max_off - min_off) {
+ /* any access_size read into register is zero extended,
+ * so the whole register == const_zero
+ */
+ __mark_reg_const_zero(&state->regs[dst_regno]);
+ /* backtracking doesn't support STACK_ZERO yet,
+ * so mark it precise here, so that later
+ * backtracking can stop here.
+ * Backtracking may not need this if this register
+ * doesn't participate in pointer adjustment.
+ * Forward propagation of precise flag is not
+ * necessary either. This mark is only to stop
+ * backtracking. Any register that contributed
+ * to const 0 was marked precise before spill.
+ */
+ state->regs[dst_regno].precise = true;
+ } else {
+ /* have read misc data from the stack */
+ mark_reg_unknown(env, state->regs, dst_regno);
+ }
+ state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
+}
+
+/* Read the stack at 'off' and put the results into the register indicated by
+ * 'dst_regno'. It handles reg filling if the addressed stack slot is a
+ * spilled reg.
+ *
+ * 'dst_regno' can be -1, meaning that the read value is not going to a
+ * register.
+ *
+ * The access is assumed to be within the current stack bounds.
+ */
+static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
+ /* func where src register points to */
+ struct bpf_func_state *reg_state,
+ int off, int size, int dst_regno)
+{
+ struct bpf_verifier_state *vstate = env->cur_state;
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
+ struct bpf_reg_state *reg;
+ u8 *stype, type;
+
+ stype = reg_state->stack[spi].slot_type;
+ reg = &reg_state->stack[spi].spilled_ptr;
+
+ if (is_spilled_reg(&reg_state->stack[spi])) {
+ u8 spill_size = 1;
+
+ for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
+ spill_size++;
+
+ if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
+ if (reg->type != SCALAR_VALUE) {
+ verbose_linfo(env, env->insn_idx, "; ");
+ verbose(env, "invalid size of register fill\n");
+ return -EACCES;
+ }
+
+ mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
+ if (dst_regno < 0)
+ return 0;
+
+ if (!(off % BPF_REG_SIZE) && size == spill_size) {
+ /* The earlier check_reg_arg() has decided the
+ * subreg_def for this insn. Save it first.
+ */
+ s32 subreg_def = state->regs[dst_regno].subreg_def;
+
+ copy_register_state(&state->regs[dst_regno], reg);
+ state->regs[dst_regno].subreg_def = subreg_def;
+ } else {
+ for (i = 0; i < size; i++) {
+ type = stype[(slot - i) % BPF_REG_SIZE];
+ if (type == STACK_SPILL)
+ continue;
+ if (type == STACK_MISC)
+ continue;
+ verbose(env, "invalid read from stack off %d+%d size %d\n",
+ off, i, size);
+ return -EACCES;
+ }
+ mark_reg_unknown(env, state->regs, dst_regno);
+ }
+ state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
+ return 0;
+ }
+
+ if (dst_regno >= 0) {
+ /* restore register state from stack */
+ copy_register_state(&state->regs[dst_regno], reg);
+ /* mark reg as written since spilled pointer state likely
+ * has its liveness marks cleared by is_state_visited()
+ * which resets stack/reg liveness for state transitions
+ */
+ state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
+ } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
+ /* If dst_regno==-1, the caller is asking us whether
+ * it is acceptable to use this value as a SCALAR_VALUE
+ * (e.g. for XADD).
+ * We must not allow unprivileged callers to do that
+ * with spilled pointers.
+ */
+ verbose(env, "leaking pointer from stack off %d\n",
+ off);
+ return -EACCES;
+ }
+ mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
+ } else {
+ for (i = 0; i < size; i++) {
+ type = stype[(slot - i) % BPF_REG_SIZE];
+ if (type == STACK_MISC)
+ continue;
+ if (type == STACK_ZERO)
+ continue;
+ verbose(env, "invalid read from stack off %d+%d size %d\n",
+ off, i, size);
+ return -EACCES;
+ }
+ mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
+ if (dst_regno >= 0)
+ mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
+ }
+ return 0;
+}
+
+enum bpf_access_src {
+ ACCESS_DIRECT = 1, /* the access is performed by an instruction */
+ ACCESS_HELPER = 2, /* the access is performed by a helper */
+};
+
+static int check_stack_range_initialized(struct bpf_verifier_env *env,
+ int regno, int off, int access_size,
+ bool zero_size_allowed,
+ enum bpf_access_src type,
+ struct bpf_call_arg_meta *meta);
+
+static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
+{
+ return cur_regs(env) + regno;
+}
+
+/* Read the stack at 'ptr_regno + off' and put the result into the register
+ * 'dst_regno'.
+ * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
+ * but not its variable offset.
+ * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
+ *
+ * As opposed to check_stack_read_fixed_off, this function doesn't deal with
+ * filling registers (i.e. reads of spilled register cannot be detected when
+ * the offset is not fixed). We conservatively mark 'dst_regno' as containing
+ * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
+ * offset; for a fixed offset check_stack_read_fixed_off should be used
+ * instead.
+ */
+static int check_stack_read_var_off(struct bpf_verifier_env *env,
+ int ptr_regno, int off, int size, int dst_regno)
+{
+ /* The state of the source register. */
+ struct bpf_reg_state *reg = reg_state(env, ptr_regno);
+ struct bpf_func_state *ptr_state = func(env, reg);
+ int err;
+ int min_off, max_off;
+
+ /* Note that we pass a NULL meta, so raw access will not be permitted.
+ */
+ err = check_stack_range_initialized(env, ptr_regno, off, size,
+ false, ACCESS_DIRECT, NULL);
+ if (err)
+ return err;
+
+ min_off = reg->smin_value + off;
+ max_off = reg->smax_value + off;
+ mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
+ return 0;
+}
+
+/* check_stack_read dispatches to check_stack_read_fixed_off or
+ * check_stack_read_var_off.
+ *
+ * The caller must ensure that the offset falls within the allocated stack
+ * bounds.
+ *
+ * 'dst_regno' is a register which will receive the value from the stack. It
+ * can be -1, meaning that the read value is not going to a register.
+ */
+static int check_stack_read(struct bpf_verifier_env *env,
+ int ptr_regno, int off, int size,
+ int dst_regno)
+{
+ struct bpf_reg_state *reg = reg_state(env, ptr_regno);
+ struct bpf_func_state *state = func(env, reg);
+ int err;
+ /* Some accesses are only permitted with a static offset. */
+ bool var_off = !tnum_is_const(reg->var_off);
+
+ /* The offset is required to be static when reads don't go to a
+ * register, in order to not leak pointers (see
+ * check_stack_read_fixed_off).
+ */
+ if (dst_regno < 0 && var_off) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
+ tn_buf, off, size);
+ return -EACCES;
+ }
+ /* Variable offset is prohibited for unprivileged mode for simplicity
+ * since it requires corresponding support in Spectre masking for stack
+ * ALU. See also retrieve_ptr_limit(). The check in
+ * check_stack_access_for_ptr_arithmetic() called by
+ * adjust_ptr_min_max_vals() prevents users from creating stack pointers
+ * with variable offsets, therefore no check is required here. Further,
+ * just checking it here would be insufficient as speculative stack
+ * writes could still lead to unsafe speculative behaviour.
+ */
+ if (!var_off) {
+ off += reg->var_off.value;
+ err = check_stack_read_fixed_off(env, state, off, size,
+ dst_regno);
+ } else {
+ /* Variable offset stack reads need more conservative handling
+ * than fixed offset ones. Note that dst_regno >= 0 on this
+ * branch.
+ */
+ err = check_stack_read_var_off(env, ptr_regno, off, size,
+ dst_regno);
+ }
+ return err;
+}
+
+
+/* check_stack_write dispatches to check_stack_write_fixed_off or
+ * check_stack_write_var_off.
+ *
+ * 'ptr_regno' is the register used as a pointer into the stack.
+ * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
+ * 'value_regno' is the register whose value we're writing to the stack. It can
+ * be -1, meaning that we're not writing from a register.
+ *
+ * The caller must ensure that the offset falls within the maximum stack size.
+ */
+static int check_stack_write(struct bpf_verifier_env *env,
+ int ptr_regno, int off, int size,
+ int value_regno, int insn_idx)
+{
+ struct bpf_reg_state *reg = reg_state(env, ptr_regno);
+ struct bpf_func_state *state = func(env, reg);
+ int err;
+
+ if (tnum_is_const(reg->var_off)) {
+ off += reg->var_off.value;
+ err = check_stack_write_fixed_off(env, state, off, size,
+ value_regno, insn_idx);
+ } else {
+ /* Variable offset stack reads need more conservative handling
+ * than fixed offset ones.
+ */
+ err = check_stack_write_var_off(env, state,
+ ptr_regno, off, size,
+ value_regno, insn_idx);
+ }
+ return err;
+}
+
+static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
+ int off, int size, enum bpf_access_type type)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ struct bpf_map *map = regs[regno].map_ptr;
+ u32 cap = bpf_map_flags_to_cap(map);
+
+ if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
+ verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
+ map->value_size, off, size);
+ return -EACCES;
+ }
+
+ if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
+ verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
+ map->value_size, off, size);
+ return -EACCES;
+ }
+
+ return 0;
+}
+
+/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
+static int __check_mem_access(struct bpf_verifier_env *env, int regno,
+ int off, int size, u32 mem_size,
+ bool zero_size_allowed)
+{
+ bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
+ struct bpf_reg_state *reg;
+
+ if (off >= 0 && size_ok && (u64)off + size <= mem_size)
+ return 0;
+
+ reg = &cur_regs(env)[regno];
+ switch (reg->type) {
+ case PTR_TO_MAP_KEY:
+ verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
+ mem_size, off, size);
+ break;
+ case PTR_TO_MAP_VALUE:
+ verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
+ mem_size, off, size);
+ break;
+ case PTR_TO_PACKET:
+ case PTR_TO_PACKET_META:
+ case PTR_TO_PACKET_END:
+ verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
+ off, size, regno, reg->id, off, mem_size);
+ break;
+ case PTR_TO_MEM:
+ default:
+ verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
+ mem_size, off, size);
+ }
+
+ return -EACCES;
+}
+
+/* check read/write into a memory region with possible variable offset */
+static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
+ int off, int size, u32 mem_size,
+ bool zero_size_allowed)
+{
+ struct bpf_verifier_state *vstate = env->cur_state;
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ struct bpf_reg_state *reg = &state->regs[regno];
+ int err;
+
+ /* We may have adjusted the register pointing to memory region, so we
+ * need to try adding each of min_value and max_value to off
+ * to make sure our theoretical access will be safe.
+ *
+ * The minimum value is only important with signed
+ * comparisons where we can't assume the floor of a
+ * value is 0. If we are using signed variables for our
+ * index'es we need to make sure that whatever we use
+ * will have a set floor within our range.
+ */
+ if (reg->smin_value < 0 &&
+ (reg->smin_value == S64_MIN ||
+ (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
+ reg->smin_value + off < 0)) {
+ verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
+ regno);
+ return -EACCES;
+ }
+ err = __check_mem_access(env, regno, reg->smin_value + off, size,
+ mem_size, zero_size_allowed);
+ if (err) {
+ verbose(env, "R%d min value is outside of the allowed memory range\n",
+ regno);
+ return err;
+ }
+
+ /* If we haven't set a max value then we need to bail since we can't be
+ * sure we won't do bad things.
+ * If reg->umax_value + off could overflow, treat that as unbounded too.
+ */
+ if (reg->umax_value >= BPF_MAX_VAR_OFF) {
+ verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
+ regno);
+ return -EACCES;
+ }
+ err = __check_mem_access(env, regno, reg->umax_value + off, size,
+ mem_size, zero_size_allowed);
+ if (err) {
+ verbose(env, "R%d max value is outside of the allowed memory range\n",
+ regno);
+ return err;
+ }
+
+ return 0;
+}
+
+static int __check_ptr_off_reg(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg, int regno,
+ bool fixed_off_ok)
+{
+ /* Access to this pointer-typed register or passing it to a helper
+ * is only allowed in its original, unmodified form.
+ */
+
+ if (reg->off < 0) {
+ verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
+ reg_type_str(env, reg->type), regno, reg->off);
+ return -EACCES;
+ }
+
+ if (!fixed_off_ok && reg->off) {
+ verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
+ reg_type_str(env, reg->type), regno, reg->off);
+ return -EACCES;
+ }
+
+ if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env, "variable %s access var_off=%s disallowed\n",
+ reg_type_str(env, reg->type), tn_buf);
+ return -EACCES;
+ }
+
+ return 0;
+}
+
+int check_ptr_off_reg(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg, int regno)
+{
+ return __check_ptr_off_reg(env, reg, regno, false);
+}
+
+static int map_kptr_match_type(struct bpf_verifier_env *env,
+ struct bpf_map_value_off_desc *off_desc,
+ struct bpf_reg_state *reg, u32 regno)
+{
+ const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
+ int perm_flags = PTR_MAYBE_NULL;
+ const char *reg_name = "";
+
+ /* Only unreferenced case accepts untrusted pointers */
+ if (off_desc->type == BPF_KPTR_UNREF)
+ perm_flags |= PTR_UNTRUSTED;
+
+ if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
+ goto bad_type;
+
+ if (!btf_is_kernel(reg->btf)) {
+ verbose(env, "R%d must point to kernel BTF\n", regno);
+ return -EINVAL;
+ }
+ /* We need to verify reg->type and reg->btf, before accessing reg->btf */
+ reg_name = kernel_type_name(reg->btf, reg->btf_id);
+
+ /* For ref_ptr case, release function check should ensure we get one
+ * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
+ * normal store of unreferenced kptr, we must ensure var_off is zero.
+ * Since ref_ptr cannot be accessed directly by BPF insns, checks for
+ * reg->off and reg->ref_obj_id are not needed here.
+ */
+ if (__check_ptr_off_reg(env, reg, regno, true))
+ return -EACCES;
+
+ /* A full type match is needed, as BTF can be vmlinux or module BTF, and
+ * we also need to take into account the reg->off.
+ *
+ * We want to support cases like:
+ *
+ * struct foo {
+ * struct bar br;
+ * struct baz bz;
+ * };
+ *
+ * struct foo *v;
+ * v = func(); // PTR_TO_BTF_ID
+ * val->foo = v; // reg->off is zero, btf and btf_id match type
+ * val->bar = &v->br; // reg->off is still zero, but we need to retry with
+ * // first member type of struct after comparison fails
+ * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
+ * // to match type
+ *
+ * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
+ * is zero. We must also ensure that btf_struct_ids_match does not walk
+ * the struct to match type against first member of struct, i.e. reject
+ * second case from above. Hence, when type is BPF_KPTR_REF, we set
+ * strict mode to true for type match.
+ */
+ if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
+ off_desc->kptr.btf, off_desc->kptr.btf_id,
+ off_desc->type == BPF_KPTR_REF))
+ goto bad_type;
+ return 0;
+bad_type:
+ verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
+ reg_type_str(env, reg->type), reg_name);
+ verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
+ if (off_desc->type == BPF_KPTR_UNREF)
+ verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
+ targ_name);
+ else
+ verbose(env, "\n");
+ return -EINVAL;
+}
+
+static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
+ int value_regno, int insn_idx,
+ struct bpf_map_value_off_desc *off_desc)
+{
+ struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
+ int class = BPF_CLASS(insn->code);
+ struct bpf_reg_state *val_reg;
+
+ /* Things we already checked for in check_map_access and caller:
+ * - Reject cases where variable offset may touch kptr
+ * - size of access (must be BPF_DW)
+ * - tnum_is_const(reg->var_off)
+ * - off_desc->offset == off + reg->var_off.value
+ */
+ /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
+ if (BPF_MODE(insn->code) != BPF_MEM) {
+ verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
+ return -EACCES;
+ }
+
+ /* We only allow loading referenced kptr, since it will be marked as
+ * untrusted, similar to unreferenced kptr.
+ */
+ if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
+ verbose(env, "store to referenced kptr disallowed\n");
+ return -EACCES;
+ }
+
+ if (class == BPF_LDX) {
+ val_reg = reg_state(env, value_regno);
+ /* We can simply mark the value_regno receiving the pointer
+ * value from map as PTR_TO_BTF_ID, with the correct type.
+ */
+ mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
+ off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
+ /* For mark_ptr_or_null_reg */
+ val_reg->id = ++env->id_gen;
+ } else if (class == BPF_STX) {
+ val_reg = reg_state(env, value_regno);
+ if (!register_is_null(val_reg) &&
+ map_kptr_match_type(env, off_desc, val_reg, value_regno))
+ return -EACCES;
+ } else if (class == BPF_ST) {
+ if (insn->imm) {
+ verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
+ off_desc->offset);
+ return -EACCES;
+ }
+ } else {
+ verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
+ return -EACCES;
+ }
+ return 0;
+}
+
+/* check read/write into a map element with possible variable offset */
+static int check_map_access(struct bpf_verifier_env *env, u32 regno,
+ int off, int size, bool zero_size_allowed,
+ enum bpf_access_src src)
+{
+ struct bpf_verifier_state *vstate = env->cur_state;
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ struct bpf_reg_state *reg = &state->regs[regno];
+ struct bpf_map *map = reg->map_ptr;
+ int err;
+
+ err = check_mem_region_access(env, regno, off, size, map->value_size,
+ zero_size_allowed);
+ if (err)
+ return err;
+
+ if (map_value_has_spin_lock(map)) {
+ u32 lock = map->spin_lock_off;
+
+ /* if any part of struct bpf_spin_lock can be touched by
+ * load/store reject this program.
+ * To check that [x1, x2) overlaps with [y1, y2)
+ * it is sufficient to check x1 < y2 && y1 < x2.
+ */
+ if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
+ lock < reg->umax_value + off + size) {
+ verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
+ return -EACCES;
+ }
+ }
+ if (map_value_has_timer(map)) {
+ u32 t = map->timer_off;
+
+ if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
+ t < reg->umax_value + off + size) {
+ verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
+ return -EACCES;
+ }
+ }
+ if (map_value_has_kptrs(map)) {
+ struct bpf_map_value_off *tab = map->kptr_off_tab;
+ int i;
+
+ for (i = 0; i < tab->nr_off; i++) {
+ u32 p = tab->off[i].offset;
+
+ if (reg->smin_value + off < p + sizeof(u64) &&
+ p < reg->umax_value + off + size) {
+ if (src != ACCESS_DIRECT) {
+ verbose(env, "kptr cannot be accessed indirectly by helper\n");
+ return -EACCES;
+ }
+ if (!tnum_is_const(reg->var_off)) {
+ verbose(env, "kptr access cannot have variable offset\n");
+ return -EACCES;
+ }
+ if (p != off + reg->var_off.value) {
+ verbose(env, "kptr access misaligned expected=%u off=%llu\n",
+ p, off + reg->var_off.value);
+ return -EACCES;
+ }
+ if (size != bpf_size_to_bytes(BPF_DW)) {
+ verbose(env, "kptr access size must be BPF_DW\n");
+ return -EACCES;
+ }
+ break;
+ }
+ }
+ }
+ return err;
+}
+
+#define MAX_PACKET_OFF 0xffff
+
+static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
+ const struct bpf_call_arg_meta *meta,
+ enum bpf_access_type t)
+{
+ enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
+
+ switch (prog_type) {
+ /* Program types only with direct read access go here! */
+ case BPF_PROG_TYPE_LWT_IN:
+ case BPF_PROG_TYPE_LWT_OUT:
+ case BPF_PROG_TYPE_LWT_SEG6LOCAL:
+ case BPF_PROG_TYPE_SK_REUSEPORT:
+ case BPF_PROG_TYPE_FLOW_DISSECTOR:
+ case BPF_PROG_TYPE_CGROUP_SKB:
+ if (t == BPF_WRITE)
+ return false;
+ fallthrough;
+
+ /* Program types with direct read + write access go here! */
+ case BPF_PROG_TYPE_SCHED_CLS:
+ case BPF_PROG_TYPE_SCHED_ACT:
+ case BPF_PROG_TYPE_XDP:
+ case BPF_PROG_TYPE_LWT_XMIT:
+ case BPF_PROG_TYPE_SK_SKB:
+ case BPF_PROG_TYPE_SK_MSG:
+ if (meta)
+ return meta->pkt_access;
+
+ env->seen_direct_write = true;
+ return true;
+
+ case BPF_PROG_TYPE_CGROUP_SOCKOPT:
+ if (t == BPF_WRITE)
+ env->seen_direct_write = true;
+
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
+ int size, bool zero_size_allowed)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ struct bpf_reg_state *reg = &regs[regno];
+ int err;
+
+ /* We may have added a variable offset to the packet pointer; but any
+ * reg->range we have comes after that. We are only checking the fixed
+ * offset.
+ */
+
+ /* We don't allow negative numbers, because we aren't tracking enough
+ * detail to prove they're safe.
+ */
+ if (reg->smin_value < 0) {
+ verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
+ regno);
+ return -EACCES;
+ }
+
+ err = reg->range < 0 ? -EINVAL :
+ __check_mem_access(env, regno, off, size, reg->range,
+ zero_size_allowed);
+ if (err) {
+ verbose(env, "R%d offset is outside of the packet\n", regno);
+ return err;
+ }
+
+ /* __check_mem_access has made sure "off + size - 1" is within u16.
+ * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
+ * otherwise find_good_pkt_pointers would have refused to set range info
+ * that __check_mem_access would have rejected this pkt access.
+ * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
+ */
+ env->prog->aux->max_pkt_offset =
+ max_t(u32, env->prog->aux->max_pkt_offset,
+ off + reg->umax_value + size - 1);
+
+ return err;
+}
+
+/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
+static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
+ enum bpf_access_type t, enum bpf_reg_type *reg_type,
+ struct btf **btf, u32 *btf_id)
+{
+ struct bpf_insn_access_aux info = {
+ .reg_type = *reg_type,
+ .log = &env->log,
+ };
+
+ if (env->ops->is_valid_access &&
+ env->ops->is_valid_access(off, size, t, env->prog, &info)) {
+ /* A non zero info.ctx_field_size indicates that this field is a
+ * candidate for later verifier transformation to load the whole
+ * field and then apply a mask when accessed with a narrower
+ * access than actual ctx access size. A zero info.ctx_field_size
+ * will only allow for whole field access and rejects any other
+ * type of narrower access.
+ */
+ *reg_type = info.reg_type;
+
+ if (base_type(*reg_type) == PTR_TO_BTF_ID) {
+ *btf = info.btf;
+ *btf_id = info.btf_id;
+ } else {
+ env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
+ }
+ /* remember the offset of last byte accessed in ctx */
+ if (env->prog->aux->max_ctx_offset < off + size)
+ env->prog->aux->max_ctx_offset = off + size;
+ return 0;
+ }
+
+ verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
+ return -EACCES;
+}
+
+static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
+ int size)
+{
+ if (size < 0 || off < 0 ||
+ (u64)off + size > sizeof(struct bpf_flow_keys)) {
+ verbose(env, "invalid access to flow keys off=%d size=%d\n",
+ off, size);
+ return -EACCES;
+ }
+ return 0;
+}
+
+static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
+ u32 regno, int off, int size,
+ enum bpf_access_type t)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ struct bpf_reg_state *reg = &regs[regno];
+ struct bpf_insn_access_aux info = {};
+ bool valid;
+
+ if (reg->smin_value < 0) {
+ verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
+ regno);
+ return -EACCES;
+ }
+
+ switch (reg->type) {
+ case PTR_TO_SOCK_COMMON:
+ valid = bpf_sock_common_is_valid_access(off, size, t, &info);
+ break;
+ case PTR_TO_SOCKET:
+ valid = bpf_sock_is_valid_access(off, size, t, &info);
+ break;
+ case PTR_TO_TCP_SOCK:
+ valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
+ break;
+ case PTR_TO_XDP_SOCK:
+ valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
+ break;
+ default:
+ valid = false;
+ }
+
+
+ if (valid) {
+ env->insn_aux_data[insn_idx].ctx_field_size =
+ info.ctx_field_size;
+ return 0;
+ }
+
+ verbose(env, "R%d invalid %s access off=%d size=%d\n",
+ regno, reg_type_str(env, reg->type), off, size);
+
+ return -EACCES;
+}
+
+static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
+{
+ return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
+}
+
+static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
+{
+ const struct bpf_reg_state *reg = reg_state(env, regno);
+
+ return reg->type == PTR_TO_CTX;
+}
+
+static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
+{
+ const struct bpf_reg_state *reg = reg_state(env, regno);
+
+ return type_is_sk_pointer(reg->type);
+}
+
+static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
+{
+ const struct bpf_reg_state *reg = reg_state(env, regno);
+
+ return type_is_pkt_pointer(reg->type);
+}
+
+static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
+{
+ const struct bpf_reg_state *reg = reg_state(env, regno);
+
+ /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
+ return reg->type == PTR_TO_FLOW_KEYS;
+}
+
+static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg,
+ int off, int size, bool strict)
+{
+ struct tnum reg_off;
+ int ip_align;
+
+ /* Byte size accesses are always allowed. */
+ if (!strict || size == 1)
+ return 0;
+
+ /* For platforms that do not have a Kconfig enabling
+ * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
+ * NET_IP_ALIGN is universally set to '2'. And on platforms
+ * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
+ * to this code only in strict mode where we want to emulate
+ * the NET_IP_ALIGN==2 checking. Therefore use an
+ * unconditional IP align value of '2'.
+ */
+ ip_align = 2;
+
+ reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
+ if (!tnum_is_aligned(reg_off, size)) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env,
+ "misaligned packet access off %d+%s+%d+%d size %d\n",
+ ip_align, tn_buf, reg->off, off, size);
+ return -EACCES;
+ }
+
+ return 0;
+}
+
+static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg,
+ const char *pointer_desc,
+ int off, int size, bool strict)
+{
+ struct tnum reg_off;
+
+ /* Byte size accesses are always allowed. */
+ if (!strict || size == 1)
+ return 0;
+
+ reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
+ if (!tnum_is_aligned(reg_off, size)) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
+ pointer_desc, tn_buf, reg->off, off, size);
+ return -EACCES;
+ }
+
+ return 0;
+}
+
+static int check_ptr_alignment(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg, int off,
+ int size, bool strict_alignment_once)
+{
+ bool strict = env->strict_alignment || strict_alignment_once;
+ const char *pointer_desc = "";
+
+ switch (reg->type) {
+ case PTR_TO_PACKET:
+ case PTR_TO_PACKET_META:
+ /* Special case, because of NET_IP_ALIGN. Given metadata sits
+ * right in front, treat it the very same way.
+ */
+ return check_pkt_ptr_alignment(env, reg, off, size, strict);
+ case PTR_TO_FLOW_KEYS:
+ pointer_desc = "flow keys ";
+ break;
+ case PTR_TO_MAP_KEY:
+ pointer_desc = "key ";
+ break;
+ case PTR_TO_MAP_VALUE:
+ pointer_desc = "value ";
+ break;
+ case PTR_TO_CTX:
+ pointer_desc = "context ";
+ break;
+ case PTR_TO_STACK:
+ pointer_desc = "stack ";
+ /* The stack spill tracking logic in check_stack_write_fixed_off()
+ * and check_stack_read_fixed_off() relies on stack accesses being
+ * aligned.
+ */
+ strict = true;
+ break;
+ case PTR_TO_SOCKET:
+ pointer_desc = "sock ";
+ break;
+ case PTR_TO_SOCK_COMMON:
+ pointer_desc = "sock_common ";
+ break;
+ case PTR_TO_TCP_SOCK:
+ pointer_desc = "tcp_sock ";
+ break;
+ case PTR_TO_XDP_SOCK:
+ pointer_desc = "xdp_sock ";
+ break;
+ default:
+ break;
+ }
+ return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
+ strict);
+}
+
+static int update_stack_depth(struct bpf_verifier_env *env,
+ const struct bpf_func_state *func,
+ int off)
+{
+ u16 stack = env->subprog_info[func->subprogno].stack_depth;
+
+ if (stack >= -off)
+ return 0;
+
+ /* update known max for given subprogram */
+ env->subprog_info[func->subprogno].stack_depth = -off;
+ return 0;
+}
+
+/* starting from main bpf function walk all instructions of the function
+ * and recursively walk all callees that given function can call.
+ * Ignore jump and exit insns.
+ * Since recursion is prevented by check_cfg() this algorithm
+ * only needs a local stack of MAX_CALL_FRAMES to remember callsites
+ */
+static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
+{
+ struct bpf_subprog_info *subprog = env->subprog_info;
+ struct bpf_insn *insn = env->prog->insnsi;
+ int depth = 0, frame = 0, i, subprog_end;
+ bool tail_call_reachable = false;
+ int ret_insn[MAX_CALL_FRAMES];
+ int ret_prog[MAX_CALL_FRAMES];
+ int j;
+
+ i = subprog[idx].start;
+process_func:
+ /* protect against potential stack overflow that might happen when
+ * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
+ * depth for such case down to 256 so that the worst case scenario
+ * would result in 8k stack size (32 which is tailcall limit * 256 =
+ * 8k).
+ *
+ * To get the idea what might happen, see an example:
+ * func1 -> sub rsp, 128
+ * subfunc1 -> sub rsp, 256
+ * tailcall1 -> add rsp, 256
+ * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
+ * subfunc2 -> sub rsp, 64
+ * subfunc22 -> sub rsp, 128
+ * tailcall2 -> add rsp, 128
+ * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
+ *
+ * tailcall will unwind the current stack frame but it will not get rid
+ * of caller's stack as shown on the example above.
+ */
+ if (idx && subprog[idx].has_tail_call && depth >= 256) {
+ verbose(env,
+ "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
+ depth);
+ return -EACCES;
+ }
+ /* round up to 32-bytes, since this is granularity
+ * of interpreter stack size
+ */
+ depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
+ if (depth > MAX_BPF_STACK) {
+ verbose(env, "combined stack size of %d calls is %d. Too large\n",
+ frame + 1, depth);
+ return -EACCES;
+ }
+continue_func:
+ subprog_end = subprog[idx + 1].start;
+ for (; i < subprog_end; i++) {
+ int next_insn, sidx;
+
+ if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
+ continue;
+ /* remember insn and function to return to */
+ ret_insn[frame] = i + 1;
+ ret_prog[frame] = idx;
+
+ /* find the callee */
+ next_insn = i + insn[i].imm + 1;
+ sidx = find_subprog(env, next_insn);
+ if (sidx < 0) {
+ WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
+ next_insn);
+ return -EFAULT;
+ }
+ if (subprog[sidx].is_async_cb) {
+ if (subprog[sidx].has_tail_call) {
+ verbose(env, "verifier bug. subprog has tail_call and async cb\n");
+ return -EFAULT;
+ }
+ /* async callbacks don't increase bpf prog stack size unless called directly */
+ if (!bpf_pseudo_call(insn + i))
+ continue;
+ }
+ i = next_insn;
+ idx = sidx;
+
+ if (subprog[idx].has_tail_call)
+ tail_call_reachable = true;
+
+ frame++;
+ if (frame >= MAX_CALL_FRAMES) {
+ verbose(env, "the call stack of %d frames is too deep !\n",
+ frame);
+ return -E2BIG;
+ }
+ goto process_func;
+ }
+ /* if tail call got detected across bpf2bpf calls then mark each of the
+ * currently present subprog frames as tail call reachable subprogs;
+ * this info will be utilized by JIT so that we will be preserving the
+ * tail call counter throughout bpf2bpf calls combined with tailcalls
+ */
+ if (tail_call_reachable)
+ for (j = 0; j < frame; j++)
+ subprog[ret_prog[j]].tail_call_reachable = true;
+ if (subprog[0].tail_call_reachable)
+ env->prog->aux->tail_call_reachable = true;
+
+ /* end of for() loop means the last insn of the 'subprog'
+ * was reached. Doesn't matter whether it was JA or EXIT
+ */
+ if (frame == 0)
+ return 0;
+ depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
+ frame--;
+ i = ret_insn[frame];
+ idx = ret_prog[frame];
+ goto continue_func;
+}
+
+static int check_max_stack_depth(struct bpf_verifier_env *env)
+{
+ struct bpf_subprog_info *si = env->subprog_info;
+ int ret;
+
+ for (int i = 0; i < env->subprog_cnt; i++) {
+ if (!i || si[i].is_async_cb) {
+ ret = check_max_stack_depth_subprog(env, i);
+ if (ret < 0)
+ return ret;
+ }
+ continue;
+ }
+ return 0;
+}
+
+#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+static int get_callee_stack_depth(struct bpf_verifier_env *env,
+ const struct bpf_insn *insn, int idx)
+{
+ int start = idx + insn->imm + 1, subprog;
+
+ subprog = find_subprog(env, start);
+ if (subprog < 0) {
+ WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
+ start);
+ return -EFAULT;
+ }
+ return env->subprog_info[subprog].stack_depth;
+}
+#endif
+
+static int __check_buffer_access(struct bpf_verifier_env *env,
+ const char *buf_info,
+ const struct bpf_reg_state *reg,
+ int regno, int off, int size)
+{
+ if (off < 0) {
+ verbose(env,
+ "R%d invalid %s buffer access: off=%d, size=%d\n",
+ regno, buf_info, off, size);
+ return -EACCES;
+ }
+ if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env,
+ "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
+ regno, off, tn_buf);
+ return -EACCES;
+ }
+
+ return 0;
+}
+
+static int check_tp_buffer_access(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg,
+ int regno, int off, int size)
+{
+ int err;
+
+ err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
+ if (err)
+ return err;
+
+ if (off + size > env->prog->aux->max_tp_access)
+ env->prog->aux->max_tp_access = off + size;
+
+ return 0;
+}
+
+static int check_buffer_access(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg,
+ int regno, int off, int size,
+ bool zero_size_allowed,
+ u32 *max_access)
+{
+ const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
+ int err;
+
+ err = __check_buffer_access(env, buf_info, reg, regno, off, size);
+ if (err)
+ return err;
+
+ if (off + size > *max_access)
+ *max_access = off + size;
+
+ return 0;
+}
+
+/* BPF architecture zero extends alu32 ops into 64-bit registesr */
+static void zext_32_to_64(struct bpf_reg_state *reg)
+{
+ reg->var_off = tnum_subreg(reg->var_off);
+ __reg_assign_32_into_64(reg);
+}
+
+/* truncate register to smaller size (in bytes)
+ * must be called with size < BPF_REG_SIZE
+ */
+static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
+{
+ u64 mask;
+
+ /* clear high bits in bit representation */
+ reg->var_off = tnum_cast(reg->var_off, size);
+
+ /* fix arithmetic bounds */
+ mask = ((u64)1 << (size * 8)) - 1;
+ if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
+ reg->umin_value &= mask;
+ reg->umax_value &= mask;
+ } else {
+ reg->umin_value = 0;
+ reg->umax_value = mask;
+ }
+ reg->smin_value = reg->umin_value;
+ reg->smax_value = reg->umax_value;
+
+ /* If size is smaller than 32bit register the 32bit register
+ * values are also truncated so we push 64-bit bounds into
+ * 32-bit bounds. Above were truncated < 32-bits already.
+ */
+ if (size >= 4)
+ return;
+ __reg_combine_64_into_32(reg);
+}
+
+static bool bpf_map_is_rdonly(const struct bpf_map *map)
+{
+ /* A map is considered read-only if the following condition are true:
+ *
+ * 1) BPF program side cannot change any of the map content. The
+ * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
+ * and was set at map creation time.
+ * 2) The map value(s) have been initialized from user space by a
+ * loader and then "frozen", such that no new map update/delete
+ * operations from syscall side are possible for the rest of
+ * the map's lifetime from that point onwards.
+ * 3) Any parallel/pending map update/delete operations from syscall
+ * side have been completed. Only after that point, it's safe to
+ * assume that map value(s) are immutable.
+ */
+ return (map->map_flags & BPF_F_RDONLY_PROG) &&
+ READ_ONCE(map->frozen) &&
+ !bpf_map_write_active(map);
+}
+
+static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
+{
+ void *ptr;
+ u64 addr;
+ int err;
+
+ err = map->ops->map_direct_value_addr(map, &addr, off);
+ if (err)
+ return err;
+ ptr = (void *)(long)addr + off;
+
+ switch (size) {
+ case sizeof(u8):
+ *val = (u64)*(u8 *)ptr;
+ break;
+ case sizeof(u16):
+ *val = (u64)*(u16 *)ptr;
+ break;
+ case sizeof(u32):
+ *val = (u64)*(u32 *)ptr;
+ break;
+ case sizeof(u64):
+ *val = *(u64 *)ptr;
+ break;
+ default:
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs,
+ int regno, int off, int size,
+ enum bpf_access_type atype,
+ int value_regno)
+{
+ struct bpf_reg_state *reg = regs + regno;
+ const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
+ const char *tname = btf_name_by_offset(reg->btf, t->name_off);
+ enum bpf_type_flag flag = 0;
+ u32 btf_id;
+ int ret;
+
+ if (off < 0) {
+ verbose(env,
+ "R%d is ptr_%s invalid negative access: off=%d\n",
+ regno, tname, off);
+ return -EACCES;
+ }
+ if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env,
+ "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
+ regno, tname, off, tn_buf);
+ return -EACCES;
+ }
+
+ if (reg->type & MEM_USER) {
+ verbose(env,
+ "R%d is ptr_%s access user memory: off=%d\n",
+ regno, tname, off);
+ return -EACCES;
+ }
+
+ if (reg->type & MEM_PERCPU) {
+ verbose(env,
+ "R%d is ptr_%s access percpu memory: off=%d\n",
+ regno, tname, off);
+ return -EACCES;
+ }
+
+ if (env->ops->btf_struct_access) {
+ ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
+ off, size, atype, &btf_id, &flag);
+ } else {
+ if (atype != BPF_READ) {
+ verbose(env, "only read is supported\n");
+ return -EACCES;
+ }
+
+ ret = btf_struct_access(&env->log, reg->btf, t, off, size,
+ atype, &btf_id, &flag);
+ }
+
+ if (ret < 0)
+ return ret;
+
+ /* If this is an untrusted pointer, all pointers formed by walking it
+ * also inherit the untrusted flag.
+ */
+ if (type_flag(reg->type) & PTR_UNTRUSTED)
+ flag |= PTR_UNTRUSTED;
+
+ if (atype == BPF_READ && value_regno >= 0)
+ mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
+
+ return 0;
+}
+
+static int check_ptr_to_map_access(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs,
+ int regno, int off, int size,
+ enum bpf_access_type atype,
+ int value_regno)
+{
+ struct bpf_reg_state *reg = regs + regno;
+ struct bpf_map *map = reg->map_ptr;
+ enum bpf_type_flag flag = 0;
+ const struct btf_type *t;
+ const char *tname;
+ u32 btf_id;
+ int ret;
+
+ if (!btf_vmlinux) {
+ verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
+ return -ENOTSUPP;
+ }
+
+ if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
+ verbose(env, "map_ptr access not supported for map type %d\n",
+ map->map_type);
+ return -ENOTSUPP;
+ }
+
+ t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
+ tname = btf_name_by_offset(btf_vmlinux, t->name_off);
+
+ if (!env->allow_ptr_to_map_access) {
+ verbose(env,
+ "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
+ tname);
+ return -EPERM;
+ }
+
+ if (off < 0) {
+ verbose(env, "R%d is %s invalid negative access: off=%d\n",
+ regno, tname, off);
+ return -EACCES;
+ }
+
+ if (atype != BPF_READ) {
+ verbose(env, "only read from %s is supported\n", tname);
+ return -EACCES;
+ }
+
+ ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
+ if (ret < 0)
+ return ret;
+
+ if (value_regno >= 0)
+ mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
+
+ return 0;
+}
+
+/* Check that the stack access at the given offset is within bounds. The
+ * maximum valid offset is -1.
+ *
+ * The minimum valid offset is -MAX_BPF_STACK for writes, and
+ * -state->allocated_stack for reads.
+ */
+static int check_stack_slot_within_bounds(int off,
+ struct bpf_func_state *state,
+ enum bpf_access_type t)
+{
+ int min_valid_off;
+
+ if (t == BPF_WRITE)
+ min_valid_off = -MAX_BPF_STACK;
+ else
+ min_valid_off = -state->allocated_stack;
+
+ if (off < min_valid_off || off > -1)
+ return -EACCES;
+ return 0;
+}
+
+/* Check that the stack access at 'regno + off' falls within the maximum stack
+ * bounds.
+ *
+ * 'off' includes `regno->offset`, but not its dynamic part (if any).
+ */
+static int check_stack_access_within_bounds(
+ struct bpf_verifier_env *env,
+ int regno, int off, int access_size,
+ enum bpf_access_src src, enum bpf_access_type type)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ struct bpf_reg_state *reg = regs + regno;
+ struct bpf_func_state *state = func(env, reg);
+ int min_off, max_off;
+ int err;
+ char *err_extra;
+
+ if (src == ACCESS_HELPER)
+ /* We don't know if helpers are reading or writing (or both). */
+ err_extra = " indirect access to";
+ else if (type == BPF_READ)
+ err_extra = " read from";
+ else
+ err_extra = " write to";
+
+ if (tnum_is_const(reg->var_off)) {
+ min_off = reg->var_off.value + off;
+ max_off = min_off + access_size;
+ } else {
+ if (reg->smax_value >= BPF_MAX_VAR_OFF ||
+ reg->smin_value <= -BPF_MAX_VAR_OFF) {
+ verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
+ err_extra, regno);
+ return -EACCES;
+ }
+ min_off = reg->smin_value + off;
+ max_off = reg->smax_value + off + access_size;
+ }
+
+ err = check_stack_slot_within_bounds(min_off, state, type);
+ if (!err && max_off > 0)
+ err = -EINVAL; /* out of stack access into non-negative offsets */
+
+ if (err) {
+ if (tnum_is_const(reg->var_off)) {
+ verbose(env, "invalid%s stack R%d off=%d size=%d\n",
+ err_extra, regno, off, access_size);
+ } else {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
+ err_extra, regno, tn_buf, access_size);
+ }
+ }
+ return err;
+}
+
+/* check whether memory at (regno + off) is accessible for t = (read | write)
+ * if t==write, value_regno is a register which value is stored into memory
+ * if t==read, value_regno is a register which will receive the value from memory
+ * if t==write && value_regno==-1, some unknown value is stored into memory
+ * if t==read && value_regno==-1, don't care what we read from memory
+ */
+static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
+ int off, int bpf_size, enum bpf_access_type t,
+ int value_regno, bool strict_alignment_once)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ struct bpf_reg_state *reg = regs + regno;
+ struct bpf_func_state *state;
+ int size, err = 0;
+
+ size = bpf_size_to_bytes(bpf_size);
+ if (size < 0)
+ return size;
+
+ /* alignment checks will add in reg->off themselves */
+ err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
+ if (err)
+ return err;
+
+ /* for access checks, reg->off is just part of off */
+ off += reg->off;
+
+ if (reg->type == PTR_TO_MAP_KEY) {
+ if (t == BPF_WRITE) {
+ verbose(env, "write to change key R%d not allowed\n", regno);
+ return -EACCES;
+ }
+
+ err = check_mem_region_access(env, regno, off, size,
+ reg->map_ptr->key_size, false);
+ if (err)
+ return err;
+ if (value_regno >= 0)
+ mark_reg_unknown(env, regs, value_regno);
+ } else if (reg->type == PTR_TO_MAP_VALUE) {
+ struct bpf_map_value_off_desc *kptr_off_desc = NULL;
+
+ if (t == BPF_WRITE && value_regno >= 0 &&
+ is_pointer_value(env, value_regno)) {
+ verbose(env, "R%d leaks addr into map\n", value_regno);
+ return -EACCES;
+ }
+ err = check_map_access_type(env, regno, off, size, t);
+ if (err)
+ return err;
+ err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
+ if (err)
+ return err;
+ if (tnum_is_const(reg->var_off))
+ kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
+ off + reg->var_off.value);
+ if (kptr_off_desc) {
+ err = check_map_kptr_access(env, regno, value_regno, insn_idx,
+ kptr_off_desc);
+ } else if (t == BPF_READ && value_regno >= 0) {
+ struct bpf_map *map = reg->map_ptr;
+
+ /* if map is read-only, track its contents as scalars */
+ if (tnum_is_const(reg->var_off) &&
+ bpf_map_is_rdonly(map) &&
+ map->ops->map_direct_value_addr) {
+ int map_off = off + reg->var_off.value;
+ u64 val = 0;
+
+ err = bpf_map_direct_read(map, map_off, size,
+ &val);
+ if (err)
+ return err;
+
+ regs[value_regno].type = SCALAR_VALUE;
+ __mark_reg_known(&regs[value_regno], val);
+ } else {
+ mark_reg_unknown(env, regs, value_regno);
+ }
+ }
+ } else if (base_type(reg->type) == PTR_TO_MEM) {
+ bool rdonly_mem = type_is_rdonly_mem(reg->type);
+
+ if (type_may_be_null(reg->type)) {
+ verbose(env, "R%d invalid mem access '%s'\n", regno,
+ reg_type_str(env, reg->type));
+ return -EACCES;
+ }
+
+ if (t == BPF_WRITE && rdonly_mem) {
+ verbose(env, "R%d cannot write into %s\n",
+ regno, reg_type_str(env, reg->type));
+ return -EACCES;
+ }
+
+ if (t == BPF_WRITE && value_regno >= 0 &&
+ is_pointer_value(env, value_regno)) {
+ verbose(env, "R%d leaks addr into mem\n", value_regno);
+ return -EACCES;
+ }
+
+ err = check_mem_region_access(env, regno, off, size,
+ reg->mem_size, false);
+ if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
+ mark_reg_unknown(env, regs, value_regno);
+ } else if (reg->type == PTR_TO_CTX) {
+ enum bpf_reg_type reg_type = SCALAR_VALUE;
+ struct btf *btf = NULL;
+ u32 btf_id = 0;
+
+ if (t == BPF_WRITE && value_regno >= 0 &&
+ is_pointer_value(env, value_regno)) {
+ verbose(env, "R%d leaks addr into ctx\n", value_regno);
+ return -EACCES;
+ }
+
+ err = check_ptr_off_reg(env, reg, regno);
+ if (err < 0)
+ return err;
+
+ err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
+ &btf_id);
+ if (err)
+ verbose_linfo(env, insn_idx, "; ");
+ if (!err && t == BPF_READ && value_regno >= 0) {
+ /* ctx access returns either a scalar, or a
+ * PTR_TO_PACKET[_META,_END]. In the latter
+ * case, we know the offset is zero.
+ */
+ if (reg_type == SCALAR_VALUE) {
+ mark_reg_unknown(env, regs, value_regno);
+ } else {
+ mark_reg_known_zero(env, regs,
+ value_regno);
+ if (type_may_be_null(reg_type))
+ regs[value_regno].id = ++env->id_gen;
+ /* A load of ctx field could have different
+ * actual load size with the one encoded in the
+ * insn. When the dst is PTR, it is for sure not
+ * a sub-register.
+ */
+ regs[value_regno].subreg_def = DEF_NOT_SUBREG;
+ if (base_type(reg_type) == PTR_TO_BTF_ID) {
+ regs[value_regno].btf = btf;
+ regs[value_regno].btf_id = btf_id;
+ }
+ }
+ regs[value_regno].type = reg_type;
+ }
+
+ } else if (reg->type == PTR_TO_STACK) {
+ /* Basic bounds checks. */
+ err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
+ if (err)
+ return err;
+
+ state = func(env, reg);
+ err = update_stack_depth(env, state, off);
+ if (err)
+ return err;
+
+ if (t == BPF_READ)
+ err = check_stack_read(env, regno, off, size,
+ value_regno);
+ else
+ err = check_stack_write(env, regno, off, size,
+ value_regno, insn_idx);
+ } else if (reg_is_pkt_pointer(reg)) {
+ if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
+ verbose(env, "cannot write into packet\n");
+ return -EACCES;
+ }
+ if (t == BPF_WRITE && value_regno >= 0 &&
+ is_pointer_value(env, value_regno)) {
+ verbose(env, "R%d leaks addr into packet\n",
+ value_regno);
+ return -EACCES;
+ }
+ err = check_packet_access(env, regno, off, size, false);
+ if (!err && t == BPF_READ && value_regno >= 0)
+ mark_reg_unknown(env, regs, value_regno);
+ } else if (reg->type == PTR_TO_FLOW_KEYS) {
+ if (t == BPF_WRITE && value_regno >= 0 &&
+ is_pointer_value(env, value_regno)) {
+ verbose(env, "R%d leaks addr into flow keys\n",
+ value_regno);
+ return -EACCES;
+ }
+
+ err = check_flow_keys_access(env, off, size);
+ if (!err && t == BPF_READ && value_regno >= 0)
+ mark_reg_unknown(env, regs, value_regno);
+ } else if (type_is_sk_pointer(reg->type)) {
+ if (t == BPF_WRITE) {
+ verbose(env, "R%d cannot write into %s\n",
+ regno, reg_type_str(env, reg->type));
+ return -EACCES;
+ }
+ err = check_sock_access(env, insn_idx, regno, off, size, t);
+ if (!err && value_regno >= 0)
+ mark_reg_unknown(env, regs, value_regno);
+ } else if (reg->type == PTR_TO_TP_BUFFER) {
+ err = check_tp_buffer_access(env, reg, regno, off, size);
+ if (!err && t == BPF_READ && value_regno >= 0)
+ mark_reg_unknown(env, regs, value_regno);
+ } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
+ !type_may_be_null(reg->type)) {
+ err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
+ value_regno);
+ } else if (reg->type == CONST_PTR_TO_MAP) {
+ err = check_ptr_to_map_access(env, regs, regno, off, size, t,
+ value_regno);
+ } else if (base_type(reg->type) == PTR_TO_BUF) {
+ bool rdonly_mem = type_is_rdonly_mem(reg->type);
+ u32 *max_access;
+
+ if (rdonly_mem) {
+ if (t == BPF_WRITE) {
+ verbose(env, "R%d cannot write into %s\n",
+ regno, reg_type_str(env, reg->type));
+ return -EACCES;
+ }
+ max_access = &env->prog->aux->max_rdonly_access;
+ } else {
+ max_access = &env->prog->aux->max_rdwr_access;
+ }
+
+ err = check_buffer_access(env, reg, regno, off, size, false,
+ max_access);
+
+ if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
+ mark_reg_unknown(env, regs, value_regno);
+ } else {
+ verbose(env, "R%d invalid mem access '%s'\n", regno,
+ reg_type_str(env, reg->type));
+ return -EACCES;
+ }
+
+ if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
+ regs[value_regno].type == SCALAR_VALUE) {
+ /* b/h/w load zero-extends, mark upper bits as known 0 */
+ coerce_reg_to_size(&regs[value_regno], size);
+ }
+ return err;
+}
+
+static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
+{
+ int load_reg;
+ int err;
+
+ switch (insn->imm) {
+ case BPF_ADD:
+ case BPF_ADD | BPF_FETCH:
+ case BPF_AND:
+ case BPF_AND | BPF_FETCH:
+ case BPF_OR:
+ case BPF_OR | BPF_FETCH:
+ case BPF_XOR:
+ case BPF_XOR | BPF_FETCH:
+ case BPF_XCHG:
+ case BPF_CMPXCHG:
+ break;
+ default:
+ verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
+ return -EINVAL;
+ }
+
+ if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
+ verbose(env, "invalid atomic operand size\n");
+ return -EINVAL;
+ }
+
+ /* check src1 operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+
+ /* check src2 operand */
+ err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+ if (err)
+ return err;
+
+ if (insn->imm == BPF_CMPXCHG) {
+ /* Check comparison of R0 with memory location */
+ const u32 aux_reg = BPF_REG_0;
+
+ err = check_reg_arg(env, aux_reg, SRC_OP);
+ if (err)
+ return err;
+
+ if (is_pointer_value(env, aux_reg)) {
+ verbose(env, "R%d leaks addr into mem\n", aux_reg);
+ return -EACCES;
+ }
+ }
+
+ if (is_pointer_value(env, insn->src_reg)) {
+ verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
+ return -EACCES;
+ }
+
+ if (is_ctx_reg(env, insn->dst_reg) ||
+ is_pkt_reg(env, insn->dst_reg) ||
+ is_flow_key_reg(env, insn->dst_reg) ||
+ is_sk_reg(env, insn->dst_reg)) {
+ verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
+ insn->dst_reg,
+ reg_type_str(env, reg_state(env, insn->dst_reg)->type));
+ return -EACCES;
+ }
+
+ if (insn->imm & BPF_FETCH) {
+ if (insn->imm == BPF_CMPXCHG)
+ load_reg = BPF_REG_0;
+ else
+ load_reg = insn->src_reg;
+
+ /* check and record load of old value */
+ err = check_reg_arg(env, load_reg, DST_OP);
+ if (err)
+ return err;
+ } else {
+ /* This instruction accesses a memory location but doesn't
+ * actually load it into a register.
+ */
+ load_reg = -1;
+ }
+
+ /* Check whether we can read the memory, with second call for fetch
+ * case to simulate the register fill.
+ */
+ err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+ BPF_SIZE(insn->code), BPF_READ, -1, true);
+ if (!err && load_reg >= 0)
+ err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+ BPF_SIZE(insn->code), BPF_READ, load_reg,
+ true);
+ if (err)
+ return err;
+
+ /* Check whether we can write into the same memory. */
+ err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+ BPF_SIZE(insn->code), BPF_WRITE, -1, true);
+ if (err)
+ return err;
+
+ return 0;
+}
+
+/* When register 'regno' is used to read the stack (either directly or through
+ * a helper function) make sure that it's within stack boundary and, depending
+ * on the access type, that all elements of the stack are initialized.
+ *
+ * 'off' includes 'regno->off', but not its dynamic part (if any).
+ *
+ * All registers that have been spilled on the stack in the slots within the
+ * read offsets are marked as read.
+ */
+static int check_stack_range_initialized(
+ struct bpf_verifier_env *env, int regno, int off,
+ int access_size, bool zero_size_allowed,
+ enum bpf_access_src type, struct bpf_call_arg_meta *meta)
+{
+ struct bpf_reg_state *reg = reg_state(env, regno);
+ struct bpf_func_state *state = func(env, reg);
+ int err, min_off, max_off, i, j, slot, spi;
+ char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
+ enum bpf_access_type bounds_check_type;
+ /* Some accesses can write anything into the stack, others are
+ * read-only.
+ */
+ bool clobber = false;
+
+ if (access_size == 0 && !zero_size_allowed) {
+ verbose(env, "invalid zero-sized read\n");
+ return -EACCES;
+ }
+
+ if (type == ACCESS_HELPER) {
+ /* The bounds checks for writes are more permissive than for
+ * reads. However, if raw_mode is not set, we'll do extra
+ * checks below.
+ */
+ bounds_check_type = BPF_WRITE;
+ clobber = true;
+ } else {
+ bounds_check_type = BPF_READ;
+ }
+ err = check_stack_access_within_bounds(env, regno, off, access_size,
+ type, bounds_check_type);
+ if (err)
+ return err;
+
+
+ if (tnum_is_const(reg->var_off)) {
+ min_off = max_off = reg->var_off.value + off;
+ } else {
+ /* Variable offset is prohibited for unprivileged mode for
+ * simplicity since it requires corresponding support in
+ * Spectre masking for stack ALU.
+ * See also retrieve_ptr_limit().
+ */
+ if (!env->bypass_spec_v1) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
+ regno, err_extra, tn_buf);
+ return -EACCES;
+ }
+ /* Only initialized buffer on stack is allowed to be accessed
+ * with variable offset. With uninitialized buffer it's hard to
+ * guarantee that whole memory is marked as initialized on
+ * helper return since specific bounds are unknown what may
+ * cause uninitialized stack leaking.
+ */
+ if (meta && meta->raw_mode)
+ meta = NULL;
+
+ min_off = reg->smin_value + off;
+ max_off = reg->smax_value + off;
+ }
+
+ if (meta && meta->raw_mode) {
+ meta->access_size = access_size;
+ meta->regno = regno;
+ return 0;
+ }
+
+ for (i = min_off; i < max_off + access_size; i++) {
+ u8 *stype;
+
+ slot = -i - 1;
+ spi = slot / BPF_REG_SIZE;
+ if (state->allocated_stack <= slot)
+ goto err;
+ stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
+ if (*stype == STACK_MISC)
+ goto mark;
+ if (*stype == STACK_ZERO) {
+ if (clobber) {
+ /* helper can write anything into the stack */
+ *stype = STACK_MISC;
+ }
+ goto mark;
+ }
+
+ if (is_spilled_reg(&state->stack[spi]) &&
+ (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
+ env->allow_ptr_leaks)) {
+ if (clobber) {
+ __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
+ for (j = 0; j < BPF_REG_SIZE; j++)
+ scrub_spilled_slot(&state->stack[spi].slot_type[j]);
+ }
+ goto mark;
+ }
+
+err:
+ if (tnum_is_const(reg->var_off)) {
+ verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
+ err_extra, regno, min_off, i - min_off, access_size);
+ } else {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
+ err_extra, regno, tn_buf, i - min_off, access_size);
+ }
+ return -EACCES;
+mark:
+ /* reading any byte out of 8-byte 'spill_slot' will cause
+ * the whole slot to be marked as 'read'
+ */
+ mark_reg_read(env, &state->stack[spi].spilled_ptr,
+ state->stack[spi].spilled_ptr.parent,
+ REG_LIVE_READ64);
+ /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
+ * be sure that whether stack slot is written to or not. Hence,
+ * we must still conservatively propagate reads upwards even if
+ * helper may write to the entire memory range.
+ */
+ }
+ return update_stack_depth(env, state, min_off);
+}
+
+static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
+ int access_size, bool zero_size_allowed,
+ struct bpf_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ u32 *max_access;
+
+ switch (base_type(reg->type)) {
+ case PTR_TO_PACKET:
+ case PTR_TO_PACKET_META:
+ return check_packet_access(env, regno, reg->off, access_size,
+ zero_size_allowed);
+ case PTR_TO_MAP_KEY:
+ if (meta && meta->raw_mode) {
+ verbose(env, "R%d cannot write into %s\n", regno,
+ reg_type_str(env, reg->type));
+ return -EACCES;
+ }
+ return check_mem_region_access(env, regno, reg->off, access_size,
+ reg->map_ptr->key_size, false);
+ case PTR_TO_MAP_VALUE:
+ if (check_map_access_type(env, regno, reg->off, access_size,
+ meta && meta->raw_mode ? BPF_WRITE :
+ BPF_READ))
+ return -EACCES;
+ return check_map_access(env, regno, reg->off, access_size,
+ zero_size_allowed, ACCESS_HELPER);
+ case PTR_TO_MEM:
+ if (type_is_rdonly_mem(reg->type)) {
+ if (meta && meta->raw_mode) {
+ verbose(env, "R%d cannot write into %s\n", regno,
+ reg_type_str(env, reg->type));
+ return -EACCES;
+ }
+ }
+ return check_mem_region_access(env, regno, reg->off,
+ access_size, reg->mem_size,
+ zero_size_allowed);
+ case PTR_TO_BUF:
+ if (type_is_rdonly_mem(reg->type)) {
+ if (meta && meta->raw_mode) {
+ verbose(env, "R%d cannot write into %s\n", regno,
+ reg_type_str(env, reg->type));
+ return -EACCES;
+ }
+
+ max_access = &env->prog->aux->max_rdonly_access;
+ } else {
+ max_access = &env->prog->aux->max_rdwr_access;
+ }
+ return check_buffer_access(env, reg, regno, reg->off,
+ access_size, zero_size_allowed,
+ max_access);
+ case PTR_TO_STACK:
+ return check_stack_range_initialized(
+ env,
+ regno, reg->off, access_size,
+ zero_size_allowed, ACCESS_HELPER, meta);
+ case PTR_TO_CTX:
+ /* in case the function doesn't know how to access the context,
+ * (because we are in a program of type SYSCALL for example), we
+ * can not statically check its size.
+ * Dynamically check it now.
+ */
+ if (!env->ops->convert_ctx_access) {
+ enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
+ int offset = access_size - 1;
+
+ /* Allow zero-byte read from PTR_TO_CTX */
+ if (access_size == 0)
+ return zero_size_allowed ? 0 : -EACCES;
+
+ return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
+ atype, -1, false);
+ }
+
+ fallthrough;
+ default: /* scalar_value or invalid ptr */
+ /* Allow zero-byte read from NULL, regardless of pointer type */
+ if (zero_size_allowed && access_size == 0 &&
+ register_is_null(reg))
+ return 0;
+
+ verbose(env, "R%d type=%s ", regno,
+ reg_type_str(env, reg->type));
+ verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
+ return -EACCES;
+ }
+}
+
+static int check_mem_size_reg(struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg, u32 regno,
+ bool zero_size_allowed,
+ struct bpf_call_arg_meta *meta)
+{
+ int err;
+
+ /* This is used to refine r0 return value bounds for helpers
+ * that enforce this value as an upper bound on return values.
+ * See do_refine_retval_range() for helpers that can refine
+ * the return value. C type of helper is u32 so we pull register
+ * bound from umax_value however, if negative verifier errors
+ * out. Only upper bounds can be learned because retval is an
+ * int type and negative retvals are allowed.
+ */
+ meta->msize_max_value = reg->umax_value;
+
+ /* The register is SCALAR_VALUE; the access check
+ * happens using its boundaries.
+ */
+ if (!tnum_is_const(reg->var_off))
+ /* For unprivileged variable accesses, disable raw
+ * mode so that the program is required to
+ * initialize all the memory that the helper could
+ * just partially fill up.
+ */
+ meta = NULL;
+
+ if (reg->smin_value < 0) {
+ verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
+ regno);
+ return -EACCES;
+ }
+
+ if (reg->umin_value == 0) {
+ err = check_helper_mem_access(env, regno - 1, 0,
+ zero_size_allowed,
+ meta);
+ if (err)
+ return err;
+ }
+
+ if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
+ verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
+ regno);
+ return -EACCES;
+ }
+ err = check_helper_mem_access(env, regno - 1,
+ reg->umax_value,
+ zero_size_allowed, meta);
+ if (!err)
+ err = mark_chain_precision(env, regno);
+ return err;
+}
+
+int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
+ u32 regno, u32 mem_size)
+{
+ bool may_be_null = type_may_be_null(reg->type);
+ struct bpf_reg_state saved_reg;
+ struct bpf_call_arg_meta meta;
+ int err;
+
+ if (register_is_null(reg))
+ return 0;
+
+ memset(&meta, 0, sizeof(meta));
+ /* Assuming that the register contains a value check if the memory
+ * access is safe. Temporarily save and restore the register's state as
+ * the conversion shouldn't be visible to a caller.
+ */
+ if (may_be_null) {
+ saved_reg = *reg;
+ mark_ptr_not_null_reg(reg);
+ }
+
+ err = check_helper_mem_access(env, regno, mem_size, true, &meta);
+ /* Check access for BPF_WRITE */
+ meta.raw_mode = true;
+ err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
+
+ if (may_be_null)
+ *reg = saved_reg;
+
+ return err;
+}
+
+int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
+ u32 regno)
+{
+ struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
+ bool may_be_null = type_may_be_null(mem_reg->type);
+ struct bpf_reg_state saved_reg;
+ struct bpf_call_arg_meta meta;
+ int err;
+
+ WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
+
+ memset(&meta, 0, sizeof(meta));
+
+ if (may_be_null) {
+ saved_reg = *mem_reg;
+ mark_ptr_not_null_reg(mem_reg);
+ }
+
+ err = check_mem_size_reg(env, reg, regno, true, &meta);
+ /* Check access for BPF_WRITE */
+ meta.raw_mode = true;
+ err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
+
+ if (may_be_null)
+ *mem_reg = saved_reg;
+ return err;
+}
+
+/* Implementation details:
+ * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
+ * Two bpf_map_lookups (even with the same key) will have different reg->id.
+ * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
+ * value_or_null->value transition, since the verifier only cares about
+ * the range of access to valid map value pointer and doesn't care about actual
+ * address of the map element.
+ * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
+ * reg->id > 0 after value_or_null->value transition. By doing so
+ * two bpf_map_lookups will be considered two different pointers that
+ * point to different bpf_spin_locks.
+ * The verifier allows taking only one bpf_spin_lock at a time to avoid
+ * dead-locks.
+ * Since only one bpf_spin_lock is allowed the checks are simpler than
+ * reg_is_refcounted() logic. The verifier needs to remember only
+ * one spin_lock instead of array of acquired_refs.
+ * cur_state->active_spin_lock remembers which map value element got locked
+ * and clears it after bpf_spin_unlock.
+ */
+static int process_spin_lock(struct bpf_verifier_env *env, int regno,
+ bool is_lock)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ struct bpf_verifier_state *cur = env->cur_state;
+ bool is_const = tnum_is_const(reg->var_off);
+ struct bpf_map *map = reg->map_ptr;
+ u64 val = reg->var_off.value;
+
+ if (!is_const) {
+ verbose(env,
+ "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
+ regno);
+ return -EINVAL;
+ }
+ if (!map->btf) {
+ verbose(env,
+ "map '%s' has to have BTF in order to use bpf_spin_lock\n",
+ map->name);
+ return -EINVAL;
+ }
+ if (!map_value_has_spin_lock(map)) {
+ if (map->spin_lock_off == -E2BIG)
+ verbose(env,
+ "map '%s' has more than one 'struct bpf_spin_lock'\n",
+ map->name);
+ else if (map->spin_lock_off == -ENOENT)
+ verbose(env,
+ "map '%s' doesn't have 'struct bpf_spin_lock'\n",
+ map->name);
+ else
+ verbose(env,
+ "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
+ map->name);
+ return -EINVAL;
+ }
+ if (map->spin_lock_off != val + reg->off) {
+ verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
+ val + reg->off);
+ return -EINVAL;
+ }
+ if (is_lock) {
+ if (cur->active_spin_lock) {
+ verbose(env,
+ "Locking two bpf_spin_locks are not allowed\n");
+ return -EINVAL;
+ }
+ cur->active_spin_lock = reg->id;
+ } else {
+ if (!cur->active_spin_lock) {
+ verbose(env, "bpf_spin_unlock without taking a lock\n");
+ return -EINVAL;
+ }
+ if (cur->active_spin_lock != reg->id) {
+ verbose(env, "bpf_spin_unlock of different lock\n");
+ return -EINVAL;
+ }
+ cur->active_spin_lock = 0;
+ }
+ return 0;
+}
+
+static int process_timer_func(struct bpf_verifier_env *env, int regno,
+ struct bpf_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ bool is_const = tnum_is_const(reg->var_off);
+ struct bpf_map *map = reg->map_ptr;
+ u64 val = reg->var_off.value;
+
+ if (!is_const) {
+ verbose(env,
+ "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
+ regno);
+ return -EINVAL;
+ }
+ if (!map->btf) {
+ verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
+ map->name);
+ return -EINVAL;
+ }
+ if (!map_value_has_timer(map)) {
+ if (map->timer_off == -E2BIG)
+ verbose(env,
+ "map '%s' has more than one 'struct bpf_timer'\n",
+ map->name);
+ else if (map->timer_off == -ENOENT)
+ verbose(env,
+ "map '%s' doesn't have 'struct bpf_timer'\n",
+ map->name);
+ else
+ verbose(env,
+ "map '%s' is not a struct type or bpf_timer is mangled\n",
+ map->name);
+ return -EINVAL;
+ }
+ if (map->timer_off != val + reg->off) {
+ verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
+ val + reg->off, map->timer_off);
+ return -EINVAL;
+ }
+ if (meta->map_ptr) {
+ verbose(env, "verifier bug. Two map pointers in a timer helper\n");
+ return -EFAULT;
+ }
+ meta->map_uid = reg->map_uid;
+ meta->map_ptr = map;
+ return 0;
+}
+
+static int process_kptr_func(struct bpf_verifier_env *env, int regno,
+ struct bpf_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ struct bpf_map_value_off_desc *off_desc;
+ struct bpf_map *map_ptr = reg->map_ptr;
+ u32 kptr_off;
+ int ret;
+
+ if (!tnum_is_const(reg->var_off)) {
+ verbose(env,
+ "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
+ regno);
+ return -EINVAL;
+ }
+ if (!map_ptr->btf) {
+ verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
+ map_ptr->name);
+ return -EINVAL;
+ }
+ if (!map_value_has_kptrs(map_ptr)) {
+ ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab);
+ if (ret == -E2BIG)
+ verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
+ BPF_MAP_VALUE_OFF_MAX);
+ else if (ret == -EEXIST)
+ verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
+ else
+ verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
+ return -EINVAL;
+ }
+
+ meta->map_ptr = map_ptr;
+ kptr_off = reg->off + reg->var_off.value;
+ off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
+ if (!off_desc) {
+ verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
+ return -EACCES;
+ }
+ if (off_desc->type != BPF_KPTR_REF) {
+ verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
+ return -EACCES;
+ }
+ meta->kptr_off_desc = off_desc;
+ return 0;
+}
+
+static bool arg_type_is_mem_size(enum bpf_arg_type type)
+{
+ return type == ARG_CONST_SIZE ||
+ type == ARG_CONST_SIZE_OR_ZERO;
+}
+
+static bool arg_type_is_release(enum bpf_arg_type type)
+{
+ return type & OBJ_RELEASE;
+}
+
+static bool arg_type_is_dynptr(enum bpf_arg_type type)
+{
+ return base_type(type) == ARG_PTR_TO_DYNPTR;
+}
+
+static int int_ptr_type_to_size(enum bpf_arg_type type)
+{
+ if (type == ARG_PTR_TO_INT)
+ return sizeof(u32);
+ else if (type == ARG_PTR_TO_LONG)
+ return sizeof(u64);
+
+ return -EINVAL;
+}
+
+static int resolve_map_arg_type(struct bpf_verifier_env *env,
+ const struct bpf_call_arg_meta *meta,
+ enum bpf_arg_type *arg_type)
+{
+ if (!meta->map_ptr) {
+ /* kernel subsystem misconfigured verifier */
+ verbose(env, "invalid map_ptr to access map->type\n");
+ return -EACCES;
+ }
+
+ switch (meta->map_ptr->map_type) {
+ case BPF_MAP_TYPE_SOCKMAP:
+ case BPF_MAP_TYPE_SOCKHASH:
+ if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
+ *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
+ } else {
+ verbose(env, "invalid arg_type for sockmap/sockhash\n");
+ return -EINVAL;
+ }
+ break;
+ case BPF_MAP_TYPE_BLOOM_FILTER:
+ if (meta->func_id == BPF_FUNC_map_peek_elem)
+ *arg_type = ARG_PTR_TO_MAP_VALUE;
+ break;
+ default:
+ break;
+ }
+ return 0;
+}
+
+struct bpf_reg_types {
+ const enum bpf_reg_type types[10];
+ u32 *btf_id;
+};
+
+static const struct bpf_reg_types map_key_value_types = {
+ .types = {
+ PTR_TO_STACK,
+ PTR_TO_PACKET,
+ PTR_TO_PACKET_META,
+ PTR_TO_MAP_KEY,
+ PTR_TO_MAP_VALUE,
+ },
+};
+
+static const struct bpf_reg_types sock_types = {
+ .types = {
+ PTR_TO_SOCK_COMMON,
+ PTR_TO_SOCKET,
+ PTR_TO_TCP_SOCK,
+ PTR_TO_XDP_SOCK,
+ },
+};
+
+#ifdef CONFIG_NET
+static const struct bpf_reg_types btf_id_sock_common_types = {
+ .types = {
+ PTR_TO_SOCK_COMMON,
+ PTR_TO_SOCKET,
+ PTR_TO_TCP_SOCK,
+ PTR_TO_XDP_SOCK,
+ PTR_TO_BTF_ID,
+ },
+ .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
+};
+#endif
+
+static const struct bpf_reg_types mem_types = {
+ .types = {
+ PTR_TO_STACK,
+ PTR_TO_PACKET,
+ PTR_TO_PACKET_META,
+ PTR_TO_MAP_KEY,
+ PTR_TO_MAP_VALUE,
+ PTR_TO_MEM,
+ PTR_TO_MEM | MEM_ALLOC,
+ PTR_TO_BUF,
+ },
+};
+
+static const struct bpf_reg_types int_ptr_types = {
+ .types = {
+ PTR_TO_STACK,
+ PTR_TO_PACKET,
+ PTR_TO_PACKET_META,
+ PTR_TO_MAP_KEY,
+ PTR_TO_MAP_VALUE,
+ },
+};
+
+static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
+static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
+static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
+static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
+static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
+static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
+static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
+static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
+static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
+static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
+static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
+static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
+static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
+static const struct bpf_reg_types dynptr_types = {
+ .types = {
+ PTR_TO_STACK,
+ PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
+ }
+};
+
+static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
+ [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
+ [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
+ [ARG_CONST_SIZE] = &scalar_types,
+ [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
+ [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
+ [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
+ [ARG_PTR_TO_CTX] = &context_types,
+ [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
+#ifdef CONFIG_NET
+ [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
+#endif
+ [ARG_PTR_TO_SOCKET] = &fullsock_types,
+ [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
+ [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
+ [ARG_PTR_TO_MEM] = &mem_types,
+ [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
+ [ARG_PTR_TO_INT] = &int_ptr_types,
+ [ARG_PTR_TO_LONG] = &int_ptr_types,
+ [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
+ [ARG_PTR_TO_FUNC] = &func_ptr_types,
+ [ARG_PTR_TO_STACK] = &stack_ptr_types,
+ [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
+ [ARG_PTR_TO_TIMER] = &timer_types,
+ [ARG_PTR_TO_KPTR] = &kptr_types,
+ [ARG_PTR_TO_DYNPTR] = &dynptr_types,
+};
+
+static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
+ enum bpf_arg_type arg_type,
+ const u32 *arg_btf_id,
+ struct bpf_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ enum bpf_reg_type expected, type = reg->type;
+ const struct bpf_reg_types *compatible;
+ int i, j;
+
+ compatible = compatible_reg_types[base_type(arg_type)];
+ if (!compatible) {
+ verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
+ return -EFAULT;
+ }
+
+ /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
+ * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
+ *
+ * Same for MAYBE_NULL:
+ *
+ * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
+ * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
+ *
+ * Therefore we fold these flags depending on the arg_type before comparison.
+ */
+ if (arg_type & MEM_RDONLY)
+ type &= ~MEM_RDONLY;
+ if (arg_type & PTR_MAYBE_NULL)
+ type &= ~PTR_MAYBE_NULL;
+
+ for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
+ expected = compatible->types[i];
+ if (expected == NOT_INIT)
+ break;
+
+ if (type == expected)
+ goto found;
+ }
+
+ verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
+ for (j = 0; j + 1 < i; j++)
+ verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
+ verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
+ return -EACCES;
+
+found:
+ if (reg->type == PTR_TO_BTF_ID) {
+ /* For bpf_sk_release, it needs to match against first member
+ * 'struct sock_common', hence make an exception for it. This
+ * allows bpf_sk_release to work for multiple socket types.
+ */
+ bool strict_type_match = arg_type_is_release(arg_type) &&
+ meta->func_id != BPF_FUNC_sk_release;
+
+ if (!arg_btf_id) {
+ if (!compatible->btf_id) {
+ verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
+ return -EFAULT;
+ }
+ arg_btf_id = compatible->btf_id;
+ }
+
+ if (meta->func_id == BPF_FUNC_kptr_xchg) {
+ if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
+ return -EACCES;
+ } else {
+ if (arg_btf_id == BPF_PTR_POISON) {
+ verbose(env, "verifier internal error:");
+ verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
+ regno);
+ return -EACCES;
+ }
+
+ if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
+ btf_vmlinux, *arg_btf_id,
+ strict_type_match)) {
+ verbose(env, "R%d is of type %s but %s is expected\n",
+ regno, kernel_type_name(reg->btf, reg->btf_id),
+ kernel_type_name(btf_vmlinux, *arg_btf_id));
+ return -EACCES;
+ }
+ }
+ }
+
+ return 0;
+}
+
+int check_func_arg_reg_off(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg, int regno,
+ enum bpf_arg_type arg_type)
+{
+ enum bpf_reg_type type = reg->type;
+ bool fixed_off_ok = false;
+
+ switch ((u32)type) {
+ /* Pointer types where reg offset is explicitly allowed: */
+ case PTR_TO_STACK:
+ if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
+ verbose(env, "cannot pass in dynptr at an offset\n");
+ return -EINVAL;
+ }
+ fallthrough;
+ case PTR_TO_PACKET:
+ case PTR_TO_PACKET_META:
+ case PTR_TO_MAP_KEY:
+ case PTR_TO_MAP_VALUE:
+ case PTR_TO_MEM:
+ case PTR_TO_MEM | MEM_RDONLY:
+ case PTR_TO_MEM | MEM_ALLOC:
+ case PTR_TO_BUF:
+ case PTR_TO_BUF | MEM_RDONLY:
+ case SCALAR_VALUE:
+ /* Some of the argument types nevertheless require a
+ * zero register offset.
+ */
+ if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
+ return 0;
+ break;
+ /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
+ * fixed offset.
+ */
+ case PTR_TO_BTF_ID:
+ /* When referenced PTR_TO_BTF_ID is passed to release function,
+ * it's fixed offset must be 0. In the other cases, fixed offset
+ * can be non-zero.
+ */
+ if (arg_type_is_release(arg_type) && reg->off) {
+ verbose(env, "R%d must have zero offset when passed to release func\n",
+ regno);
+ return -EINVAL;
+ }
+ /* For arg is release pointer, fixed_off_ok must be false, but
+ * we already checked and rejected reg->off != 0 above, so set
+ * to true to allow fixed offset for all other cases.
+ */
+ fixed_off_ok = true;
+ break;
+ default:
+ break;
+ }
+ return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
+}
+
+static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
+{
+ struct bpf_func_state *state = func(env, reg);
+ int spi = get_spi(reg->off);
+
+ return state->stack[spi].spilled_ptr.id;
+}
+
+static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
+ struct bpf_call_arg_meta *meta,
+ const struct bpf_func_proto *fn)
+{
+ u32 regno = BPF_REG_1 + arg;
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ enum bpf_arg_type arg_type = fn->arg_type[arg];
+ enum bpf_reg_type type = reg->type;
+ u32 *arg_btf_id = NULL;
+ int err = 0;
+
+ if (arg_type == ARG_DONTCARE)
+ return 0;
+
+ err = check_reg_arg(env, regno, SRC_OP);
+ if (err)
+ return err;
+
+ if (arg_type == ARG_ANYTHING) {
+ if (is_pointer_value(env, regno)) {
+ verbose(env, "R%d leaks addr into helper function\n",
+ regno);
+ return -EACCES;
+ }
+ return 0;
+ }
+
+ if (type_is_pkt_pointer(type) &&
+ !may_access_direct_pkt_data(env, meta, BPF_READ)) {
+ verbose(env, "helper access to the packet is not allowed\n");
+ return -EACCES;
+ }
+
+ if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
+ err = resolve_map_arg_type(env, meta, &arg_type);
+ if (err)
+ return err;
+ }
+
+ if (register_is_null(reg) && type_may_be_null(arg_type))
+ /* A NULL register has a SCALAR_VALUE type, so skip
+ * type checking.
+ */
+ goto skip_type_check;
+
+ /* arg_btf_id and arg_size are in a union. */
+ if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
+ arg_btf_id = fn->arg_btf_id[arg];
+
+ err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
+ if (err)
+ return err;
+
+ err = check_func_arg_reg_off(env, reg, regno, arg_type);
+ if (err)
+ return err;
+
+skip_type_check:
+ if (arg_type_is_release(arg_type)) {
+ if (arg_type_is_dynptr(arg_type)) {
+ struct bpf_func_state *state = func(env, reg);
+ int spi = get_spi(reg->off);
+
+ if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
+ !state->stack[spi].spilled_ptr.id) {
+ verbose(env, "arg %d is an unacquired reference\n", regno);
+ return -EINVAL;
+ }
+ } else if (!reg->ref_obj_id && !register_is_null(reg)) {
+ verbose(env, "R%d must be referenced when passed to release function\n",
+ regno);
+ return -EINVAL;
+ }
+ if (meta->release_regno) {
+ verbose(env, "verifier internal error: more than one release argument\n");
+ return -EFAULT;
+ }
+ meta->release_regno = regno;
+ }
+
+ if (reg->ref_obj_id) {
+ if (meta->ref_obj_id) {
+ verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
+ regno, reg->ref_obj_id,
+ meta->ref_obj_id);
+ return -EFAULT;
+ }
+ meta->ref_obj_id = reg->ref_obj_id;
+ }
+
+ switch (base_type(arg_type)) {
+ case ARG_CONST_MAP_PTR:
+ /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
+ if (meta->map_ptr) {
+ /* Use map_uid (which is unique id of inner map) to reject:
+ * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
+ * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
+ * if (inner_map1 && inner_map2) {
+ * timer = bpf_map_lookup_elem(inner_map1);
+ * if (timer)
+ * // mismatch would have been allowed
+ * bpf_timer_init(timer, inner_map2);
+ * }
+ *
+ * Comparing map_ptr is enough to distinguish normal and outer maps.
+ */
+ if (meta->map_ptr != reg->map_ptr ||
+ meta->map_uid != reg->map_uid) {
+ verbose(env,
+ "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
+ meta->map_uid, reg->map_uid);
+ return -EINVAL;
+ }
+ }
+ meta->map_ptr = reg->map_ptr;
+ meta->map_uid = reg->map_uid;
+ break;
+ case ARG_PTR_TO_MAP_KEY:
+ /* bpf_map_xxx(..., map_ptr, ..., key) call:
+ * check that [key, key + map->key_size) are within
+ * stack limits and initialized
+ */
+ if (!meta->map_ptr) {
+ /* in function declaration map_ptr must come before
+ * map_key, so that it's verified and known before
+ * we have to check map_key here. Otherwise it means
+ * that kernel subsystem misconfigured verifier
+ */
+ verbose(env, "invalid map_ptr to access map->key\n");
+ return -EACCES;
+ }
+ err = check_helper_mem_access(env, regno,
+ meta->map_ptr->key_size, false,
+ NULL);
+ break;
+ case ARG_PTR_TO_MAP_VALUE:
+ if (type_may_be_null(arg_type) && register_is_null(reg))
+ return 0;
+
+ /* bpf_map_xxx(..., map_ptr, ..., value) call:
+ * check [value, value + map->value_size) validity
+ */
+ if (!meta->map_ptr) {
+ /* kernel subsystem misconfigured verifier */
+ verbose(env, "invalid map_ptr to access map->value\n");
+ return -EACCES;
+ }
+ meta->raw_mode = arg_type & MEM_UNINIT;
+ err = check_helper_mem_access(env, regno,
+ meta->map_ptr->value_size, false,
+ meta);
+ break;
+ case ARG_PTR_TO_PERCPU_BTF_ID:
+ if (!reg->btf_id) {
+ verbose(env, "Helper has invalid btf_id in R%d\n", regno);
+ return -EACCES;
+ }
+ meta->ret_btf = reg->btf;
+ meta->ret_btf_id = reg->btf_id;
+ break;
+ case ARG_PTR_TO_SPIN_LOCK:
+ if (meta->func_id == BPF_FUNC_spin_lock) {
+ if (process_spin_lock(env, regno, true))
+ return -EACCES;
+ } else if (meta->func_id == BPF_FUNC_spin_unlock) {
+ if (process_spin_lock(env, regno, false))
+ return -EACCES;
+ } else {
+ verbose(env, "verifier internal error\n");
+ return -EFAULT;
+ }
+ break;
+ case ARG_PTR_TO_TIMER:
+ if (process_timer_func(env, regno, meta))
+ return -EACCES;
+ break;
+ case ARG_PTR_TO_FUNC:
+ meta->subprogno = reg->subprogno;
+ break;
+ case ARG_PTR_TO_MEM:
+ /* The access to this pointer is only checked when we hit the
+ * next is_mem_size argument below.
+ */
+ meta->raw_mode = arg_type & MEM_UNINIT;
+ if (arg_type & MEM_FIXED_SIZE) {
+ err = check_helper_mem_access(env, regno,
+ fn->arg_size[arg], false,
+ meta);
+ }
+ break;
+ case ARG_CONST_SIZE:
+ err = check_mem_size_reg(env, reg, regno, false, meta);
+ break;
+ case ARG_CONST_SIZE_OR_ZERO:
+ err = check_mem_size_reg(env, reg, regno, true, meta);
+ break;
+ case ARG_PTR_TO_DYNPTR:
+ /* We only need to check for initialized / uninitialized helper
+ * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
+ * assumption is that if it is, that a helper function
+ * initialized the dynptr on behalf of the BPF program.
+ */
+ if (base_type(reg->type) == PTR_TO_DYNPTR)
+ break;
+ if (arg_type & MEM_UNINIT) {
+ if (!is_dynptr_reg_valid_uninit(env, reg)) {
+ verbose(env, "Dynptr has to be an uninitialized dynptr\n");
+ return -EINVAL;
+ }
+
+ /* We only support one dynptr being uninitialized at the moment,
+ * which is sufficient for the helper functions we have right now.
+ */
+ if (meta->uninit_dynptr_regno) {
+ verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
+ return -EFAULT;
+ }
+
+ meta->uninit_dynptr_regno = regno;
+ } else if (!is_dynptr_reg_valid_init(env, reg)) {
+ verbose(env,
+ "Expected an initialized dynptr as arg #%d\n",
+ arg + 1);
+ return -EINVAL;
+ } else if (!is_dynptr_type_expected(env, reg, arg_type)) {
+ const char *err_extra = "";
+
+ switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
+ case DYNPTR_TYPE_LOCAL:
+ err_extra = "local";
+ break;
+ case DYNPTR_TYPE_RINGBUF:
+ err_extra = "ringbuf";
+ break;
+ default:
+ err_extra = "<unknown>";
+ break;
+ }
+ verbose(env,
+ "Expected a dynptr of type %s as arg #%d\n",
+ err_extra, arg + 1);
+ return -EINVAL;
+ }
+ break;
+ case ARG_CONST_ALLOC_SIZE_OR_ZERO:
+ if (!tnum_is_const(reg->var_off)) {
+ verbose(env, "R%d is not a known constant'\n",
+ regno);
+ return -EACCES;
+ }
+ meta->mem_size = reg->var_off.value;
+ err = mark_chain_precision(env, regno);
+ if (err)
+ return err;
+ break;
+ case ARG_PTR_TO_INT:
+ case ARG_PTR_TO_LONG:
+ {
+ int size = int_ptr_type_to_size(arg_type);
+
+ err = check_helper_mem_access(env, regno, size, false, meta);
+ if (err)
+ return err;
+ err = check_ptr_alignment(env, reg, 0, size, true);
+ break;
+ }
+ case ARG_PTR_TO_CONST_STR:
+ {
+ struct bpf_map *map = reg->map_ptr;
+ int map_off;
+ u64 map_addr;
+ char *str_ptr;
+
+ if (!bpf_map_is_rdonly(map)) {
+ verbose(env, "R%d does not point to a readonly map'\n", regno);
+ return -EACCES;
+ }
+
+ if (!tnum_is_const(reg->var_off)) {
+ verbose(env, "R%d is not a constant address'\n", regno);
+ return -EACCES;
+ }
+
+ if (!map->ops->map_direct_value_addr) {
+ verbose(env, "no direct value access support for this map type\n");
+ return -EACCES;
+ }
+
+ err = check_map_access(env, regno, reg->off,
+ map->value_size - reg->off, false,
+ ACCESS_HELPER);
+ if (err)
+ return err;
+
+ map_off = reg->off + reg->var_off.value;
+ err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
+ if (err) {
+ verbose(env, "direct value access on string failed\n");
+ return err;
+ }
+
+ str_ptr = (char *)(long)(map_addr);
+ if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
+ verbose(env, "string is not zero-terminated\n");
+ return -EINVAL;
+ }
+ break;
+ }
+ case ARG_PTR_TO_KPTR:
+ if (process_kptr_func(env, regno, meta))
+ return -EACCES;
+ break;
+ }
+
+ return err;
+}
+
+static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
+{
+ enum bpf_attach_type eatype = env->prog->expected_attach_type;
+ enum bpf_prog_type type = resolve_prog_type(env->prog);
+
+ if (func_id != BPF_FUNC_map_update_elem)
+ return false;
+
+ /* It's not possible to get access to a locked struct sock in these
+ * contexts, so updating is safe.
+ */
+ switch (type) {
+ case BPF_PROG_TYPE_TRACING:
+ if (eatype == BPF_TRACE_ITER)
+ return true;
+ break;
+ case BPF_PROG_TYPE_SOCKET_FILTER:
+ case BPF_PROG_TYPE_SCHED_CLS:
+ case BPF_PROG_TYPE_SCHED_ACT:
+ case BPF_PROG_TYPE_XDP:
+ case BPF_PROG_TYPE_SK_REUSEPORT:
+ case BPF_PROG_TYPE_FLOW_DISSECTOR:
+ case BPF_PROG_TYPE_SK_LOOKUP:
+ return true;
+ default:
+ break;
+ }
+
+ verbose(env, "cannot update sockmap in this context\n");
+ return false;
+}
+
+static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
+{
+ return env->prog->jit_requested &&
+ bpf_jit_supports_subprog_tailcalls();
+}
+
+static int check_map_func_compatibility(struct bpf_verifier_env *env,
+ struct bpf_map *map, int func_id)
+{
+ if (!map)
+ return 0;
+
+ /* We need a two way check, first is from map perspective ... */
+ switch (map->map_type) {
+ case BPF_MAP_TYPE_PROG_ARRAY:
+ if (func_id != BPF_FUNC_tail_call)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
+ if (func_id != BPF_FUNC_perf_event_read &&
+ func_id != BPF_FUNC_perf_event_output &&
+ func_id != BPF_FUNC_skb_output &&
+ func_id != BPF_FUNC_perf_event_read_value &&
+ func_id != BPF_FUNC_xdp_output)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_RINGBUF:
+ if (func_id != BPF_FUNC_ringbuf_output &&
+ func_id != BPF_FUNC_ringbuf_reserve &&
+ func_id != BPF_FUNC_ringbuf_query &&
+ func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
+ func_id != BPF_FUNC_ringbuf_submit_dynptr &&
+ func_id != BPF_FUNC_ringbuf_discard_dynptr)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_USER_RINGBUF:
+ if (func_id != BPF_FUNC_user_ringbuf_drain)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_STACK_TRACE:
+ if (func_id != BPF_FUNC_get_stackid)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_CGROUP_ARRAY:
+ if (func_id != BPF_FUNC_skb_under_cgroup &&
+ func_id != BPF_FUNC_current_task_under_cgroup)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_CGROUP_STORAGE:
+ case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
+ if (func_id != BPF_FUNC_get_local_storage)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_DEVMAP:
+ case BPF_MAP_TYPE_DEVMAP_HASH:
+ if (func_id != BPF_FUNC_redirect_map &&
+ func_id != BPF_FUNC_map_lookup_elem)
+ goto error;
+ break;
+ /* Restrict bpf side of cpumap and xskmap, open when use-cases
+ * appear.
+ */
+ case BPF_MAP_TYPE_CPUMAP:
+ if (func_id != BPF_FUNC_redirect_map)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_XSKMAP:
+ if (func_id != BPF_FUNC_redirect_map &&
+ func_id != BPF_FUNC_map_lookup_elem)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_ARRAY_OF_MAPS:
+ case BPF_MAP_TYPE_HASH_OF_MAPS:
+ if (func_id != BPF_FUNC_map_lookup_elem)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_SOCKMAP:
+ if (func_id != BPF_FUNC_sk_redirect_map &&
+ func_id != BPF_FUNC_sock_map_update &&
+ func_id != BPF_FUNC_map_delete_elem &&
+ func_id != BPF_FUNC_msg_redirect_map &&
+ func_id != BPF_FUNC_sk_select_reuseport &&
+ func_id != BPF_FUNC_map_lookup_elem &&
+ !may_update_sockmap(env, func_id))
+ goto error;
+ break;
+ case BPF_MAP_TYPE_SOCKHASH:
+ if (func_id != BPF_FUNC_sk_redirect_hash &&
+ func_id != BPF_FUNC_sock_hash_update &&
+ func_id != BPF_FUNC_map_delete_elem &&
+ func_id != BPF_FUNC_msg_redirect_hash &&
+ func_id != BPF_FUNC_sk_select_reuseport &&
+ func_id != BPF_FUNC_map_lookup_elem &&
+ !may_update_sockmap(env, func_id))
+ goto error;
+ break;
+ case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
+ if (func_id != BPF_FUNC_sk_select_reuseport)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_QUEUE:
+ case BPF_MAP_TYPE_STACK:
+ if (func_id != BPF_FUNC_map_peek_elem &&
+ func_id != BPF_FUNC_map_pop_elem &&
+ func_id != BPF_FUNC_map_push_elem)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_SK_STORAGE:
+ if (func_id != BPF_FUNC_sk_storage_get &&
+ func_id != BPF_FUNC_sk_storage_delete)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_INODE_STORAGE:
+ if (func_id != BPF_FUNC_inode_storage_get &&
+ func_id != BPF_FUNC_inode_storage_delete)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_TASK_STORAGE:
+ if (func_id != BPF_FUNC_task_storage_get &&
+ func_id != BPF_FUNC_task_storage_delete)
+ goto error;
+ break;
+ case BPF_MAP_TYPE_BLOOM_FILTER:
+ if (func_id != BPF_FUNC_map_peek_elem &&
+ func_id != BPF_FUNC_map_push_elem)
+ goto error;
+ break;
+ default:
+ break;
+ }
+
+ /* ... and second from the function itself. */
+ switch (func_id) {
+ case BPF_FUNC_tail_call:
+ if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
+ goto error;
+ if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
+ verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
+ return -EINVAL;
+ }
+ break;
+ case BPF_FUNC_perf_event_read:
+ case BPF_FUNC_perf_event_output:
+ case BPF_FUNC_perf_event_read_value:
+ case BPF_FUNC_skb_output:
+ case BPF_FUNC_xdp_output:
+ if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
+ goto error;
+ break;
+ case BPF_FUNC_ringbuf_output:
+ case BPF_FUNC_ringbuf_reserve:
+ case BPF_FUNC_ringbuf_query:
+ case BPF_FUNC_ringbuf_reserve_dynptr:
+ case BPF_FUNC_ringbuf_submit_dynptr:
+ case BPF_FUNC_ringbuf_discard_dynptr:
+ if (map->map_type != BPF_MAP_TYPE_RINGBUF)
+ goto error;
+ break;
+ case BPF_FUNC_user_ringbuf_drain:
+ if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
+ goto error;
+ break;
+ case BPF_FUNC_get_stackid:
+ if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
+ goto error;
+ break;
+ case BPF_FUNC_current_task_under_cgroup:
+ case BPF_FUNC_skb_under_cgroup:
+ if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
+ goto error;
+ break;
+ case BPF_FUNC_redirect_map:
+ if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
+ map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
+ map->map_type != BPF_MAP_TYPE_CPUMAP &&
+ map->map_type != BPF_MAP_TYPE_XSKMAP)
+ goto error;
+ break;
+ case BPF_FUNC_sk_redirect_map:
+ case BPF_FUNC_msg_redirect_map:
+ case BPF_FUNC_sock_map_update:
+ if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
+ goto error;
+ break;
+ case BPF_FUNC_sk_redirect_hash:
+ case BPF_FUNC_msg_redirect_hash:
+ case BPF_FUNC_sock_hash_update:
+ if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
+ goto error;
+ break;
+ case BPF_FUNC_get_local_storage:
+ if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
+ map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
+ goto error;
+ break;
+ case BPF_FUNC_sk_select_reuseport:
+ if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
+ map->map_type != BPF_MAP_TYPE_SOCKMAP &&
+ map->map_type != BPF_MAP_TYPE_SOCKHASH)
+ goto error;
+ break;
+ case BPF_FUNC_map_pop_elem:
+ if (map->map_type != BPF_MAP_TYPE_QUEUE &&
+ map->map_type != BPF_MAP_TYPE_STACK)
+ goto error;
+ break;
+ case BPF_FUNC_map_peek_elem:
+ case BPF_FUNC_map_push_elem:
+ if (map->map_type != BPF_MAP_TYPE_QUEUE &&
+ map->map_type != BPF_MAP_TYPE_STACK &&
+ map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
+ goto error;
+ break;
+ case BPF_FUNC_map_lookup_percpu_elem:
+ if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
+ map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
+ map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
+ goto error;
+ break;
+ case BPF_FUNC_sk_storage_get:
+ case BPF_FUNC_sk_storage_delete:
+ if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
+ goto error;
+ break;
+ case BPF_FUNC_inode_storage_get:
+ case BPF_FUNC_inode_storage_delete:
+ if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
+ goto error;
+ break;
+ case BPF_FUNC_task_storage_get:
+ case BPF_FUNC_task_storage_delete:
+ if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
+ goto error;
+ break;
+ default:
+ break;
+ }
+
+ return 0;
+error:
+ verbose(env, "cannot pass map_type %d into func %s#%d\n",
+ map->map_type, func_id_name(func_id), func_id);
+ return -EINVAL;
+}
+
+static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
+{
+ int count = 0;
+
+ if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
+ count++;
+ if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
+ count++;
+ if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
+ count++;
+ if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
+ count++;
+ if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
+ count++;
+
+ /* We only support one arg being in raw mode at the moment,
+ * which is sufficient for the helper functions we have
+ * right now.
+ */
+ return count <= 1;
+}
+
+static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
+{
+ bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
+ bool has_size = fn->arg_size[arg] != 0;
+ bool is_next_size = false;
+
+ if (arg + 1 < ARRAY_SIZE(fn->arg_type))
+ is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
+
+ if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
+ return is_next_size;
+
+ return has_size == is_next_size || is_next_size == is_fixed;
+}
+
+static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
+{
+ /* bpf_xxx(..., buf, len) call will access 'len'
+ * bytes from memory 'buf'. Both arg types need
+ * to be paired, so make sure there's no buggy
+ * helper function specification.
+ */
+ if (arg_type_is_mem_size(fn->arg1_type) ||
+ check_args_pair_invalid(fn, 0) ||
+ check_args_pair_invalid(fn, 1) ||
+ check_args_pair_invalid(fn, 2) ||
+ check_args_pair_invalid(fn, 3) ||
+ check_args_pair_invalid(fn, 4))
+ return false;
+
+ return true;
+}
+
+static bool check_btf_id_ok(const struct bpf_func_proto *fn)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
+ if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
+ return false;
+
+ if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
+ /* arg_btf_id and arg_size are in a union. */
+ (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
+ !(fn->arg_type[i] & MEM_FIXED_SIZE)))
+ return false;
+ }
+
+ return true;
+}
+
+static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
+{
+ return check_raw_mode_ok(fn) &&
+ check_arg_pair_ok(fn) &&
+ check_btf_id_ok(fn) ? 0 : -EINVAL;
+}
+
+/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
+ * are now invalid, so turn them into unknown SCALAR_VALUE.
+ */
+static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
+{
+ struct bpf_func_state *state;
+ struct bpf_reg_state *reg;
+
+ bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
+ if (reg_is_pkt_pointer_any(reg))
+ __mark_reg_unknown(env, reg);
+ }));
+}
+
+enum {
+ AT_PKT_END = -1,
+ BEYOND_PKT_END = -2,
+};
+
+static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
+{
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ struct bpf_reg_state *reg = &state->regs[regn];
+
+ if (reg->type != PTR_TO_PACKET)
+ /* PTR_TO_PACKET_META is not supported yet */
+ return;
+
+ /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
+ * How far beyond pkt_end it goes is unknown.
+ * if (!range_open) it's the case of pkt >= pkt_end
+ * if (range_open) it's the case of pkt > pkt_end
+ * hence this pointer is at least 1 byte bigger than pkt_end
+ */
+ if (range_open)
+ reg->range = BEYOND_PKT_END;
+ else
+ reg->range = AT_PKT_END;
+}
+
+/* The pointer with the specified id has released its reference to kernel
+ * resources. Identify all copies of the same pointer and clear the reference.
+ */
+static int release_reference(struct bpf_verifier_env *env,
+ int ref_obj_id)
+{
+ struct bpf_func_state *state;
+ struct bpf_reg_state *reg;
+ int err;
+
+ err = release_reference_state(cur_func(env), ref_obj_id);
+ if (err)
+ return err;
+
+ bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
+ if (reg->ref_obj_id == ref_obj_id) {
+ if (!env->allow_ptr_leaks)
+ __mark_reg_not_init(env, reg);
+ else
+ __mark_reg_unknown(env, reg);
+ }
+ }));
+
+ return 0;
+}
+
+static void clear_caller_saved_regs(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs)
+{
+ int i;
+
+ /* after the call registers r0 - r5 were scratched */
+ for (i = 0; i < CALLER_SAVED_REGS; i++) {
+ mark_reg_not_init(env, regs, caller_saved[i]);
+ check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
+ }
+}
+
+typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee,
+ int insn_idx);
+
+static int set_callee_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee, int insn_idx);
+
+static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
+ int *insn_idx, int subprog,
+ set_callee_state_fn set_callee_state_cb)
+{
+ struct bpf_verifier_state *state = env->cur_state;
+ struct bpf_func_info_aux *func_info_aux;
+ struct bpf_func_state *caller, *callee;
+ int err;
+ bool is_global = false;
+
+ if (state->curframe + 1 >= MAX_CALL_FRAMES) {
+ verbose(env, "the call stack of %d frames is too deep\n",
+ state->curframe + 2);
+ return -E2BIG;
+ }
+
+ caller = state->frame[state->curframe];
+ if (state->frame[state->curframe + 1]) {
+ verbose(env, "verifier bug. Frame %d already allocated\n",
+ state->curframe + 1);
+ return -EFAULT;
+ }
+
+ func_info_aux = env->prog->aux->func_info_aux;
+ if (func_info_aux)
+ is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
+ err = btf_check_subprog_call(env, subprog, caller->regs);
+ if (err == -EFAULT)
+ return err;
+ if (is_global) {
+ if (err) {
+ verbose(env, "Caller passes invalid args into func#%d\n",
+ subprog);
+ return err;
+ } else {
+ if (env->log.level & BPF_LOG_LEVEL)
+ verbose(env,
+ "Func#%d is global and valid. Skipping.\n",
+ subprog);
+ clear_caller_saved_regs(env, caller->regs);
+
+ /* All global functions return a 64-bit SCALAR_VALUE */
+ mark_reg_unknown(env, caller->regs, BPF_REG_0);
+ caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
+
+ /* continue with next insn after call */
+ return 0;
+ }
+ }
+
+ /* set_callee_state is used for direct subprog calls, but we are
+ * interested in validating only BPF helpers that can call subprogs as
+ * callbacks
+ */
+ if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
+ verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
+ func_id_name(insn->imm), insn->imm);
+ return -EFAULT;
+ }
+
+ if (insn->code == (BPF_JMP | BPF_CALL) &&
+ insn->src_reg == 0 &&
+ insn->imm == BPF_FUNC_timer_set_callback) {
+ struct bpf_verifier_state *async_cb;
+
+ /* there is no real recursion here. timer callbacks are async */
+ env->subprog_info[subprog].is_async_cb = true;
+ async_cb = push_async_cb(env, env->subprog_info[subprog].start,
+ *insn_idx, subprog);
+ if (!async_cb)
+ return -EFAULT;
+ callee = async_cb->frame[0];
+ callee->async_entry_cnt = caller->async_entry_cnt + 1;
+
+ /* Convert bpf_timer_set_callback() args into timer callback args */
+ err = set_callee_state_cb(env, caller, callee, *insn_idx);
+ if (err)
+ return err;
+
+ clear_caller_saved_regs(env, caller->regs);
+ mark_reg_unknown(env, caller->regs, BPF_REG_0);
+ caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
+ /* continue with next insn after call */
+ return 0;
+ }
+
+ callee = kzalloc(sizeof(*callee), GFP_KERNEL);
+ if (!callee)
+ return -ENOMEM;
+ state->frame[state->curframe + 1] = callee;
+
+ /* callee cannot access r0, r6 - r9 for reading and has to write
+ * into its own stack before reading from it.
+ * callee can read/write into caller's stack
+ */
+ init_func_state(env, callee,
+ /* remember the callsite, it will be used by bpf_exit */
+ *insn_idx /* callsite */,
+ state->curframe + 1 /* frameno within this callchain */,
+ subprog /* subprog number within this prog */);
+
+ /* Transfer references to the callee */
+ err = copy_reference_state(callee, caller);
+ if (err)
+ goto err_out;
+
+ err = set_callee_state_cb(env, caller, callee, *insn_idx);
+ if (err)
+ goto err_out;
+
+ clear_caller_saved_regs(env, caller->regs);
+
+ /* only increment it after check_reg_arg() finished */
+ state->curframe++;
+
+ /* and go analyze first insn of the callee */
+ *insn_idx = env->subprog_info[subprog].start - 1;
+
+ if (env->log.level & BPF_LOG_LEVEL) {
+ verbose(env, "caller:\n");
+ print_verifier_state(env, caller, true);
+ verbose(env, "callee:\n");
+ print_verifier_state(env, callee, true);
+ }
+ return 0;
+
+err_out:
+ free_func_state(callee);
+ state->frame[state->curframe + 1] = NULL;
+ return err;
+}
+
+int map_set_for_each_callback_args(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee)
+{
+ /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
+ * void *callback_ctx, u64 flags);
+ * callback_fn(struct bpf_map *map, void *key, void *value,
+ * void *callback_ctx);
+ */
+ callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
+
+ callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
+ callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
+
+ callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
+ callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
+
+ /* pointer to stack or null */
+ callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
+
+ /* unused */
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
+ return 0;
+}
+
+static int set_callee_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee, int insn_idx)
+{
+ int i;
+
+ /* copy r1 - r5 args that callee can access. The copy includes parent
+ * pointers, which connects us up to the liveness chain
+ */
+ for (i = BPF_REG_1; i <= BPF_REG_5; i++)
+ callee->regs[i] = caller->regs[i];
+ return 0;
+}
+
+static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
+ int *insn_idx)
+{
+ int subprog, target_insn;
+
+ target_insn = *insn_idx + insn->imm + 1;
+ subprog = find_subprog(env, target_insn);
+ if (subprog < 0) {
+ verbose(env, "verifier bug. No program starts at insn %d\n",
+ target_insn);
+ return -EFAULT;
+ }
+
+ return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
+}
+
+static int set_map_elem_callback_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee,
+ int insn_idx)
+{
+ struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
+ struct bpf_map *map;
+ int err;
+
+ if (bpf_map_ptr_poisoned(insn_aux)) {
+ verbose(env, "tail_call abusing map_ptr\n");
+ return -EINVAL;
+ }
+
+ map = BPF_MAP_PTR(insn_aux->map_ptr_state);
+ if (!map->ops->map_set_for_each_callback_args ||
+ !map->ops->map_for_each_callback) {
+ verbose(env, "callback function not allowed for map\n");
+ return -ENOTSUPP;
+ }
+
+ err = map->ops->map_set_for_each_callback_args(env, caller, callee);
+ if (err)
+ return err;
+
+ callee->in_callback_fn = true;
+ callee->callback_ret_range = tnum_range(0, 1);
+ return 0;
+}
+
+static int set_loop_callback_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee,
+ int insn_idx)
+{
+ /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
+ * u64 flags);
+ * callback_fn(u32 index, void *callback_ctx);
+ */
+ callee->regs[BPF_REG_1].type = SCALAR_VALUE;
+ callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
+
+ /* unused */
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
+
+ callee->in_callback_fn = true;
+ callee->callback_ret_range = tnum_range(0, 1);
+ return 0;
+}
+
+static int set_timer_callback_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee,
+ int insn_idx)
+{
+ struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
+
+ /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
+ * callback_fn(struct bpf_map *map, void *key, void *value);
+ */
+ callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
+ callee->regs[BPF_REG_1].map_ptr = map_ptr;
+
+ callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
+ callee->regs[BPF_REG_2].map_ptr = map_ptr;
+
+ callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
+ callee->regs[BPF_REG_3].map_ptr = map_ptr;
+
+ /* unused */
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
+ callee->in_async_callback_fn = true;
+ callee->callback_ret_range = tnum_range(0, 1);
+ return 0;
+}
+
+static int set_find_vma_callback_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee,
+ int insn_idx)
+{
+ /* bpf_find_vma(struct task_struct *task, u64 addr,
+ * void *callback_fn, void *callback_ctx, u64 flags)
+ * (callback_fn)(struct task_struct *task,
+ * struct vm_area_struct *vma, void *callback_ctx);
+ */
+ callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
+
+ callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
+ callee->regs[BPF_REG_2].btf = btf_vmlinux;
+ callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
+
+ /* pointer to stack or null */
+ callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
+
+ /* unused */
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
+ callee->in_callback_fn = true;
+ callee->callback_ret_range = tnum_range(0, 1);
+ return 0;
+}
+
+static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee,
+ int insn_idx)
+{
+ /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
+ * callback_ctx, u64 flags);
+ * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
+ */
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
+ callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
+ callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
+
+ /* unused */
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
+
+ callee->in_callback_fn = true;
+ callee->callback_ret_range = tnum_range(0, 1);
+ return 0;
+}
+
+static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
+{
+ struct bpf_verifier_state *state = env->cur_state;
+ struct bpf_func_state *caller, *callee;
+ struct bpf_reg_state *r0;
+ int err;
+
+ callee = state->frame[state->curframe];
+ r0 = &callee->regs[BPF_REG_0];
+ if (r0->type == PTR_TO_STACK) {
+ /* technically it's ok to return caller's stack pointer
+ * (or caller's caller's pointer) back to the caller,
+ * since these pointers are valid. Only current stack
+ * pointer will be invalid as soon as function exits,
+ * but let's be conservative
+ */
+ verbose(env, "cannot return stack pointer to the caller\n");
+ return -EINVAL;
+ }
+
+ caller = state->frame[state->curframe - 1];
+ if (callee->in_callback_fn) {
+ /* enforce R0 return value range [0, 1]. */
+ struct tnum range = callee->callback_ret_range;
+
+ if (r0->type != SCALAR_VALUE) {
+ verbose(env, "R0 not a scalar value\n");
+ return -EACCES;
+ }
+
+ /* we are going to rely on register's precise value */
+ err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
+ err = err ?: mark_chain_precision(env, BPF_REG_0);
+ if (err)
+ return err;
+
+ if (!tnum_in(range, r0->var_off)) {
+ verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
+ return -EINVAL;
+ }
+ } else {
+ /* return to the caller whatever r0 had in the callee */
+ caller->regs[BPF_REG_0] = *r0;
+ }
+
+ /* callback_fn frame should have released its own additions to parent's
+ * reference state at this point, or check_reference_leak would
+ * complain, hence it must be the same as the caller. There is no need
+ * to copy it back.
+ */
+ if (!callee->in_callback_fn) {
+ /* Transfer references to the caller */
+ err = copy_reference_state(caller, callee);
+ if (err)
+ return err;
+ }
+
+ *insn_idx = callee->callsite + 1;
+ if (env->log.level & BPF_LOG_LEVEL) {
+ verbose(env, "returning from callee:\n");
+ print_verifier_state(env, callee, true);
+ verbose(env, "to caller at %d:\n", *insn_idx);
+ print_verifier_state(env, caller, true);
+ }
+ /* clear everything in the callee */
+ free_func_state(callee);
+ state->frame[state->curframe--] = NULL;
+ return 0;
+}
+
+static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
+ int func_id,
+ struct bpf_call_arg_meta *meta)
+{
+ struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
+
+ if (ret_type != RET_INTEGER ||
+ (func_id != BPF_FUNC_get_stack &&
+ func_id != BPF_FUNC_get_task_stack &&
+ func_id != BPF_FUNC_probe_read_str &&
+ func_id != BPF_FUNC_probe_read_kernel_str &&
+ func_id != BPF_FUNC_probe_read_user_str))
+ return;
+
+ ret_reg->smax_value = meta->msize_max_value;
+ ret_reg->s32_max_value = meta->msize_max_value;
+ ret_reg->smin_value = -MAX_ERRNO;
+ ret_reg->s32_min_value = -MAX_ERRNO;
+ reg_bounds_sync(ret_reg);
+}
+
+static int
+record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
+ int func_id, int insn_idx)
+{
+ struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
+ struct bpf_map *map = meta->map_ptr;
+
+ if (func_id != BPF_FUNC_tail_call &&
+ func_id != BPF_FUNC_map_lookup_elem &&
+ func_id != BPF_FUNC_map_update_elem &&
+ func_id != BPF_FUNC_map_delete_elem &&
+ func_id != BPF_FUNC_map_push_elem &&
+ func_id != BPF_FUNC_map_pop_elem &&
+ func_id != BPF_FUNC_map_peek_elem &&
+ func_id != BPF_FUNC_for_each_map_elem &&
+ func_id != BPF_FUNC_redirect_map &&
+ func_id != BPF_FUNC_map_lookup_percpu_elem)
+ return 0;
+
+ if (map == NULL) {
+ verbose(env, "kernel subsystem misconfigured verifier\n");
+ return -EINVAL;
+ }
+
+ /* In case of read-only, some additional restrictions
+ * need to be applied in order to prevent altering the
+ * state of the map from program side.
+ */
+ if ((map->map_flags & BPF_F_RDONLY_PROG) &&
+ (func_id == BPF_FUNC_map_delete_elem ||
+ func_id == BPF_FUNC_map_update_elem ||
+ func_id == BPF_FUNC_map_push_elem ||
+ func_id == BPF_FUNC_map_pop_elem)) {
+ verbose(env, "write into map forbidden\n");
+ return -EACCES;
+ }
+
+ if (!BPF_MAP_PTR(aux->map_ptr_state))
+ bpf_map_ptr_store(aux, meta->map_ptr,
+ !meta->map_ptr->bypass_spec_v1);
+ else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
+ bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
+ !meta->map_ptr->bypass_spec_v1);
+ return 0;
+}
+
+static int
+record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
+ int func_id, int insn_idx)
+{
+ struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
+ struct bpf_reg_state *regs = cur_regs(env), *reg;
+ struct bpf_map *map = meta->map_ptr;
+ u64 val, max;
+ int err;
+
+ if (func_id != BPF_FUNC_tail_call)
+ return 0;
+ if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
+ verbose(env, "kernel subsystem misconfigured verifier\n");
+ return -EINVAL;
+ }
+
+ reg = &regs[BPF_REG_3];
+ val = reg->var_off.value;
+ max = map->max_entries;
+
+ if (!(register_is_const(reg) && val < max)) {
+ bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
+ return 0;
+ }
+
+ err = mark_chain_precision(env, BPF_REG_3);
+ if (err)
+ return err;
+ if (bpf_map_key_unseen(aux))
+ bpf_map_key_store(aux, val);
+ else if (!bpf_map_key_poisoned(aux) &&
+ bpf_map_key_immediate(aux) != val)
+ bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
+ return 0;
+}
+
+static int check_reference_leak(struct bpf_verifier_env *env)
+{
+ struct bpf_func_state *state = cur_func(env);
+ bool refs_lingering = false;
+ int i;
+
+ if (state->frameno && !state->in_callback_fn)
+ return 0;
+
+ for (i = 0; i < state->acquired_refs; i++) {
+ if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
+ continue;
+ verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
+ state->refs[i].id, state->refs[i].insn_idx);
+ refs_lingering = true;
+ }
+ return refs_lingering ? -EINVAL : 0;
+}
+
+static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs)
+{
+ struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
+ struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
+ struct bpf_map *fmt_map = fmt_reg->map_ptr;
+ int err, fmt_map_off, num_args;
+ u64 fmt_addr;
+ char *fmt;
+
+ /* data must be an array of u64 */
+ if (data_len_reg->var_off.value % 8)
+ return -EINVAL;
+ num_args = data_len_reg->var_off.value / 8;
+
+ /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
+ * and map_direct_value_addr is set.
+ */
+ fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
+ err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
+ fmt_map_off);
+ if (err) {
+ verbose(env, "verifier bug\n");
+ return -EFAULT;
+ }
+ fmt = (char *)(long)fmt_addr + fmt_map_off;
+
+ /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
+ * can focus on validating the format specifiers.
+ */
+ err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
+ if (err < 0)
+ verbose(env, "Invalid format string\n");
+
+ return err;
+}
+
+static int check_get_func_ip(struct bpf_verifier_env *env)
+{
+ enum bpf_prog_type type = resolve_prog_type(env->prog);
+ int func_id = BPF_FUNC_get_func_ip;
+
+ if (type == BPF_PROG_TYPE_TRACING) {
+ if (!bpf_prog_has_trampoline(env->prog)) {
+ verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
+ func_id_name(func_id), func_id);
+ return -ENOTSUPP;
+ }
+ return 0;
+ } else if (type == BPF_PROG_TYPE_KPROBE) {
+ return 0;
+ }
+
+ verbose(env, "func %s#%d not supported for program type %d\n",
+ func_id_name(func_id), func_id, type);
+ return -ENOTSUPP;
+}
+
+static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
+{
+ return &env->insn_aux_data[env->insn_idx];
+}
+
+static bool loop_flag_is_zero(struct bpf_verifier_env *env)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ struct bpf_reg_state *reg = &regs[BPF_REG_4];
+ bool reg_is_null = register_is_null(reg);
+
+ if (reg_is_null)
+ mark_chain_precision(env, BPF_REG_4);
+
+ return reg_is_null;
+}
+
+static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
+{
+ struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
+
+ if (!state->initialized) {
+ state->initialized = 1;
+ state->fit_for_inline = loop_flag_is_zero(env);
+ state->callback_subprogno = subprogno;
+ return;
+ }
+
+ if (!state->fit_for_inline)
+ return;
+
+ state->fit_for_inline = (loop_flag_is_zero(env) &&
+ state->callback_subprogno == subprogno);
+}
+
+static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
+ int *insn_idx_p)
+{
+ enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
+ const struct bpf_func_proto *fn = NULL;
+ enum bpf_return_type ret_type;
+ enum bpf_type_flag ret_flag;
+ struct bpf_reg_state *regs;
+ struct bpf_call_arg_meta meta;
+ int insn_idx = *insn_idx_p;
+ bool changes_data;
+ int i, err, func_id;
+
+ /* find function prototype */
+ func_id = insn->imm;
+ if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
+ verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
+ func_id);
+ return -EINVAL;
+ }
+
+ if (env->ops->get_func_proto)
+ fn = env->ops->get_func_proto(func_id, env->prog);
+ if (!fn) {
+ verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
+ func_id);
+ return -EINVAL;
+ }
+
+ /* eBPF programs must be GPL compatible to use GPL-ed functions */
+ if (!env->prog->gpl_compatible && fn->gpl_only) {
+ verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
+ return -EINVAL;
+ }
+
+ if (fn->allowed && !fn->allowed(env->prog)) {
+ verbose(env, "helper call is not allowed in probe\n");
+ return -EINVAL;
+ }
+
+ /* With LD_ABS/IND some JITs save/restore skb from r1. */
+ changes_data = bpf_helper_changes_pkt_data(fn->func);
+ if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
+ verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
+ func_id_name(func_id), func_id);
+ return -EINVAL;
+ }
+
+ memset(&meta, 0, sizeof(meta));
+ meta.pkt_access = fn->pkt_access;
+
+ err = check_func_proto(fn, func_id);
+ if (err) {
+ verbose(env, "kernel subsystem misconfigured func %s#%d\n",
+ func_id_name(func_id), func_id);
+ return err;
+ }
+
+ meta.func_id = func_id;
+ /* check args */
+ for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
+ err = check_func_arg(env, i, &meta, fn);
+ if (err)
+ return err;
+ }
+
+ err = record_func_map(env, &meta, func_id, insn_idx);
+ if (err)
+ return err;
+
+ err = record_func_key(env, &meta, func_id, insn_idx);
+ if (err)
+ return err;
+
+ /* Mark slots with STACK_MISC in case of raw mode, stack offset
+ * is inferred from register state.
+ */
+ for (i = 0; i < meta.access_size; i++) {
+ err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
+ BPF_WRITE, -1, false);
+ if (err)
+ return err;
+ }
+
+ regs = cur_regs(env);
+
+ if (meta.uninit_dynptr_regno) {
+ /* we write BPF_DW bits (8 bytes) at a time */
+ for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
+ err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
+ i, BPF_DW, BPF_WRITE, -1, false);
+ if (err)
+ return err;
+ }
+
+ err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
+ fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
+ insn_idx);
+ if (err)
+ return err;
+ }
+
+ if (meta.release_regno) {
+ err = -EINVAL;
+ if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
+ err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
+ else if (meta.ref_obj_id)
+ err = release_reference(env, meta.ref_obj_id);
+ /* meta.ref_obj_id can only be 0 if register that is meant to be
+ * released is NULL, which must be > R0.
+ */
+ else if (register_is_null(&regs[meta.release_regno]))
+ err = 0;
+ if (err) {
+ verbose(env, "func %s#%d reference has not been acquired before\n",
+ func_id_name(func_id), func_id);
+ return err;
+ }
+ }
+
+ switch (func_id) {
+ case BPF_FUNC_tail_call:
+ err = check_reference_leak(env);
+ if (err) {
+ verbose(env, "tail_call would lead to reference leak\n");
+ return err;
+ }
+ break;
+ case BPF_FUNC_get_local_storage:
+ /* check that flags argument in get_local_storage(map, flags) is 0,
+ * this is required because get_local_storage() can't return an error.
+ */
+ if (!register_is_null(&regs[BPF_REG_2])) {
+ verbose(env, "get_local_storage() doesn't support non-zero flags\n");
+ return -EINVAL;
+ }
+ break;
+ case BPF_FUNC_for_each_map_elem:
+ err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
+ set_map_elem_callback_state);
+ break;
+ case BPF_FUNC_timer_set_callback:
+ err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
+ set_timer_callback_state);
+ break;
+ case BPF_FUNC_find_vma:
+ err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
+ set_find_vma_callback_state);
+ break;
+ case BPF_FUNC_snprintf:
+ err = check_bpf_snprintf_call(env, regs);
+ break;
+ case BPF_FUNC_loop:
+ update_loop_inline_state(env, meta.subprogno);
+ err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
+ set_loop_callback_state);
+ break;
+ case BPF_FUNC_dynptr_from_mem:
+ if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
+ verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
+ reg_type_str(env, regs[BPF_REG_1].type));
+ return -EACCES;
+ }
+ break;
+ case BPF_FUNC_set_retval:
+ if (prog_type == BPF_PROG_TYPE_LSM &&
+ env->prog->expected_attach_type == BPF_LSM_CGROUP) {
+ if (!env->prog->aux->attach_func_proto->type) {
+ /* Make sure programs that attach to void
+ * hooks don't try to modify return value.
+ */
+ verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
+ return -EINVAL;
+ }
+ }
+ break;
+ case BPF_FUNC_dynptr_data:
+ for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
+ if (arg_type_is_dynptr(fn->arg_type[i])) {
+ struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
+
+ if (meta.ref_obj_id) {
+ verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
+ return -EFAULT;
+ }
+
+ if (base_type(reg->type) != PTR_TO_DYNPTR)
+ /* Find the id of the dynptr we're
+ * tracking the reference of
+ */
+ meta.ref_obj_id = stack_slot_get_id(env, reg);
+ break;
+ }
+ }
+ if (i == MAX_BPF_FUNC_REG_ARGS) {
+ verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
+ return -EFAULT;
+ }
+ break;
+ case BPF_FUNC_user_ringbuf_drain:
+ err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
+ set_user_ringbuf_callback_state);
+ break;
+ }
+
+ if (err)
+ return err;
+
+ /* reset caller saved regs */
+ for (i = 0; i < CALLER_SAVED_REGS; i++) {
+ mark_reg_not_init(env, regs, caller_saved[i]);
+ check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
+ }
+
+ /* helper call returns 64-bit value. */
+ regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
+
+ /* update return register (already marked as written above) */
+ ret_type = fn->ret_type;
+ ret_flag = type_flag(ret_type);
+
+ switch (base_type(ret_type)) {
+ case RET_INTEGER:
+ /* sets type to SCALAR_VALUE */
+ mark_reg_unknown(env, regs, BPF_REG_0);
+ break;
+ case RET_VOID:
+ regs[BPF_REG_0].type = NOT_INIT;
+ break;
+ case RET_PTR_TO_MAP_VALUE:
+ /* There is no offset yet applied, variable or fixed */
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ /* remember map_ptr, so that check_map_access()
+ * can check 'value_size' boundary of memory access
+ * to map element returned from bpf_map_lookup_elem()
+ */
+ if (meta.map_ptr == NULL) {
+ verbose(env,
+ "kernel subsystem misconfigured verifier\n");
+ return -EINVAL;
+ }
+ regs[BPF_REG_0].map_ptr = meta.map_ptr;
+ regs[BPF_REG_0].map_uid = meta.map_uid;
+ regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
+ if (!type_may_be_null(ret_type) &&
+ map_value_has_spin_lock(meta.map_ptr)) {
+ regs[BPF_REG_0].id = ++env->id_gen;
+ }
+ break;
+ case RET_PTR_TO_SOCKET:
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
+ break;
+ case RET_PTR_TO_SOCK_COMMON:
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
+ break;
+ case RET_PTR_TO_TCP_SOCK:
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
+ break;
+ case RET_PTR_TO_ALLOC_MEM:
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
+ regs[BPF_REG_0].mem_size = meta.mem_size;
+ break;
+ case RET_PTR_TO_MEM_OR_BTF_ID:
+ {
+ const struct btf_type *t;
+
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
+ if (!btf_type_is_struct(t)) {
+ u32 tsize;
+ const struct btf_type *ret;
+ const char *tname;
+
+ /* resolve the type size of ksym. */
+ ret = btf_resolve_size(meta.ret_btf, t, &tsize);
+ if (IS_ERR(ret)) {
+ tname = btf_name_by_offset(meta.ret_btf, t->name_off);
+ verbose(env, "unable to resolve the size of type '%s': %ld\n",
+ tname, PTR_ERR(ret));
+ return -EINVAL;
+ }
+ regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
+ regs[BPF_REG_0].mem_size = tsize;
+ } else {
+ /* MEM_RDONLY may be carried from ret_flag, but it
+ * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
+ * it will confuse the check of PTR_TO_BTF_ID in
+ * check_mem_access().
+ */
+ ret_flag &= ~MEM_RDONLY;
+
+ regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
+ regs[BPF_REG_0].btf = meta.ret_btf;
+ regs[BPF_REG_0].btf_id = meta.ret_btf_id;
+ }
+ break;
+ }
+ case RET_PTR_TO_BTF_ID:
+ {
+ struct btf *ret_btf;
+ int ret_btf_id;
+
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
+ if (func_id == BPF_FUNC_kptr_xchg) {
+ ret_btf = meta.kptr_off_desc->kptr.btf;
+ ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
+ } else {
+ if (fn->ret_btf_id == BPF_PTR_POISON) {
+ verbose(env, "verifier internal error:");
+ verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
+ func_id_name(func_id));
+ return -EINVAL;
+ }
+ ret_btf = btf_vmlinux;
+ ret_btf_id = *fn->ret_btf_id;
+ }
+ if (ret_btf_id == 0) {
+ verbose(env, "invalid return type %u of func %s#%d\n",
+ base_type(ret_type), func_id_name(func_id),
+ func_id);
+ return -EINVAL;
+ }
+ regs[BPF_REG_0].btf = ret_btf;
+ regs[BPF_REG_0].btf_id = ret_btf_id;
+ break;
+ }
+ default:
+ verbose(env, "unknown return type %u of func %s#%d\n",
+ base_type(ret_type), func_id_name(func_id), func_id);
+ return -EINVAL;
+ }
+
+ if (type_may_be_null(regs[BPF_REG_0].type))
+ regs[BPF_REG_0].id = ++env->id_gen;
+
+ if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
+ verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
+ func_id_name(func_id), func_id);
+ return -EFAULT;
+ }
+
+ if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
+ /* For release_reference() */
+ regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
+ } else if (is_acquire_function(func_id, meta.map_ptr)) {
+ int id = acquire_reference_state(env, insn_idx);
+
+ if (id < 0)
+ return id;
+ /* For mark_ptr_or_null_reg() */
+ regs[BPF_REG_0].id = id;
+ /* For release_reference() */
+ regs[BPF_REG_0].ref_obj_id = id;
+ }
+
+ do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
+
+ err = check_map_func_compatibility(env, meta.map_ptr, func_id);
+ if (err)
+ return err;
+
+ if ((func_id == BPF_FUNC_get_stack ||
+ func_id == BPF_FUNC_get_task_stack) &&
+ !env->prog->has_callchain_buf) {
+ const char *err_str;
+
+#ifdef CONFIG_PERF_EVENTS
+ err = get_callchain_buffers(sysctl_perf_event_max_stack);
+ err_str = "cannot get callchain buffer for func %s#%d\n";
+#else
+ err = -ENOTSUPP;
+ err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
+#endif
+ if (err) {
+ verbose(env, err_str, func_id_name(func_id), func_id);
+ return err;
+ }
+
+ env->prog->has_callchain_buf = true;
+ }
+
+ if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
+ env->prog->call_get_stack = true;
+
+ if (func_id == BPF_FUNC_get_func_ip) {
+ if (check_get_func_ip(env))
+ return -ENOTSUPP;
+ env->prog->call_get_func_ip = true;
+ }
+
+ if (changes_data)
+ clear_all_pkt_pointers(env);
+ return 0;
+}
+
+/* mark_btf_func_reg_size() is used when the reg size is determined by
+ * the BTF func_proto's return value size and argument.
+ */
+static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
+ size_t reg_size)
+{
+ struct bpf_reg_state *reg = &cur_regs(env)[regno];
+
+ if (regno == BPF_REG_0) {
+ /* Function return value */
+ reg->live |= REG_LIVE_WRITTEN;
+ reg->subreg_def = reg_size == sizeof(u64) ?
+ DEF_NOT_SUBREG : env->insn_idx + 1;
+ } else {
+ /* Function argument */
+ if (reg_size == sizeof(u64)) {
+ mark_insn_zext(env, reg);
+ mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
+ } else {
+ mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
+ }
+ }
+}
+
+static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
+ int *insn_idx_p)
+{
+ const struct btf_type *t, *func, *func_proto, *ptr_type;
+ struct bpf_reg_state *regs = cur_regs(env);
+ struct bpf_kfunc_arg_meta meta = { 0 };
+ const char *func_name, *ptr_type_name;
+ u32 i, nargs, func_id, ptr_type_id;
+ int err, insn_idx = *insn_idx_p;
+ const struct btf_param *args;
+ struct btf *desc_btf;
+ u32 *kfunc_flags;
+ bool acq;
+
+ /* skip for now, but return error when we find this in fixup_kfunc_call */
+ if (!insn->imm)
+ return 0;
+
+ desc_btf = find_kfunc_desc_btf(env, insn->off);
+ if (IS_ERR(desc_btf))
+ return PTR_ERR(desc_btf);
+
+ func_id = insn->imm;
+ func = btf_type_by_id(desc_btf, func_id);
+ func_name = btf_name_by_offset(desc_btf, func->name_off);
+ func_proto = btf_type_by_id(desc_btf, func->type);
+
+ kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
+ if (!kfunc_flags) {
+ verbose(env, "calling kernel function %s is not allowed\n",
+ func_name);
+ return -EACCES;
+ }
+ if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) {
+ verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n");
+ return -EACCES;
+ }
+
+ acq = *kfunc_flags & KF_ACQUIRE;
+
+ meta.flags = *kfunc_flags;
+
+ /* Check the arguments */
+ err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, &meta);
+ if (err < 0)
+ return err;
+ /* In case of release function, we get register number of refcounted
+ * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
+ */
+ if (err) {
+ err = release_reference(env, regs[err].ref_obj_id);
+ if (err) {
+ verbose(env, "kfunc %s#%d reference has not been acquired before\n",
+ func_name, func_id);
+ return err;
+ }
+ }
+
+ for (i = 0; i < CALLER_SAVED_REGS; i++)
+ mark_reg_not_init(env, regs, caller_saved[i]);
+
+ /* Check return type */
+ t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
+
+ if (acq && !btf_type_is_struct_ptr(desc_btf, t)) {
+ verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
+ return -EINVAL;
+ }
+
+ if (btf_type_is_scalar(t)) {
+ mark_reg_unknown(env, regs, BPF_REG_0);
+ mark_btf_func_reg_size(env, BPF_REG_0, t->size);
+ } else if (btf_type_is_ptr(t)) {
+ ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
+ &ptr_type_id);
+ if (!btf_type_is_struct(ptr_type)) {
+ if (!meta.r0_size) {
+ ptr_type_name = btf_name_by_offset(desc_btf,
+ ptr_type->name_off);
+ verbose(env,
+ "kernel function %s returns pointer type %s %s is not supported\n",
+ func_name,
+ btf_type_str(ptr_type),
+ ptr_type_name);
+ return -EINVAL;
+ }
+
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_MEM;
+ regs[BPF_REG_0].mem_size = meta.r0_size;
+
+ if (meta.r0_rdonly)
+ regs[BPF_REG_0].type |= MEM_RDONLY;
+
+ /* Ensures we don't access the memory after a release_reference() */
+ if (meta.ref_obj_id)
+ regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
+ } else {
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].btf = desc_btf;
+ regs[BPF_REG_0].type = PTR_TO_BTF_ID;
+ regs[BPF_REG_0].btf_id = ptr_type_id;
+ }
+ if (*kfunc_flags & KF_RET_NULL) {
+ regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
+ /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
+ regs[BPF_REG_0].id = ++env->id_gen;
+ }
+ mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
+ if (acq) {
+ int id = acquire_reference_state(env, insn_idx);
+
+ if (id < 0)
+ return id;
+ regs[BPF_REG_0].id = id;
+ regs[BPF_REG_0].ref_obj_id = id;
+ }
+ } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
+
+ nargs = btf_type_vlen(func_proto);
+ args = (const struct btf_param *)(func_proto + 1);
+ for (i = 0; i < nargs; i++) {
+ u32 regno = i + 1;
+
+ t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
+ if (btf_type_is_ptr(t))
+ mark_btf_func_reg_size(env, regno, sizeof(void *));
+ else
+ /* scalar. ensured by btf_check_kfunc_arg_match() */
+ mark_btf_func_reg_size(env, regno, t->size);
+ }
+
+ return 0;
+}
+
+static bool signed_add_overflows(s64 a, s64 b)
+{
+ /* Do the add in u64, where overflow is well-defined */
+ s64 res = (s64)((u64)a + (u64)b);
+
+ if (b < 0)
+ return res > a;
+ return res < a;
+}
+
+static bool signed_add32_overflows(s32 a, s32 b)
+{
+ /* Do the add in u32, where overflow is well-defined */
+ s32 res = (s32)((u32)a + (u32)b);
+
+ if (b < 0)
+ return res > a;
+ return res < a;
+}
+
+static bool signed_sub_overflows(s64 a, s64 b)
+{
+ /* Do the sub in u64, where overflow is well-defined */
+ s64 res = (s64)((u64)a - (u64)b);
+
+ if (b < 0)
+ return res < a;
+ return res > a;
+}
+
+static bool signed_sub32_overflows(s32 a, s32 b)
+{
+ /* Do the sub in u32, where overflow is well-defined */
+ s32 res = (s32)((u32)a - (u32)b);
+
+ if (b < 0)
+ return res < a;
+ return res > a;
+}
+
+static bool check_reg_sane_offset(struct bpf_verifier_env *env,
+ const struct bpf_reg_state *reg,
+ enum bpf_reg_type type)
+{
+ bool known = tnum_is_const(reg->var_off);
+ s64 val = reg->var_off.value;
+ s64 smin = reg->smin_value;
+
+ if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
+ verbose(env, "math between %s pointer and %lld is not allowed\n",
+ reg_type_str(env, type), val);
+ return false;
+ }
+
+ if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
+ verbose(env, "%s pointer offset %d is not allowed\n",
+ reg_type_str(env, type), reg->off);
+ return false;
+ }
+
+ if (smin == S64_MIN) {
+ verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
+ reg_type_str(env, type));
+ return false;
+ }
+
+ if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
+ verbose(env, "value %lld makes %s pointer be out of bounds\n",
+ smin, reg_type_str(env, type));
+ return false;
+ }
+
+ return true;
+}
+
+enum {
+ REASON_BOUNDS = -1,
+ REASON_TYPE = -2,
+ REASON_PATHS = -3,
+ REASON_LIMIT = -4,
+ REASON_STACK = -5,
+};
+
+static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
+ u32 *alu_limit, bool mask_to_left)
+{
+ u32 max = 0, ptr_limit = 0;
+
+ switch (ptr_reg->type) {
+ case PTR_TO_STACK:
+ /* Offset 0 is out-of-bounds, but acceptable start for the
+ * left direction, see BPF_REG_FP. Also, unknown scalar
+ * offset where we would need to deal with min/max bounds is
+ * currently prohibited for unprivileged.
+ */
+ max = MAX_BPF_STACK + mask_to_left;
+ ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
+ break;
+ case PTR_TO_MAP_VALUE:
+ max = ptr_reg->map_ptr->value_size;
+ ptr_limit = (mask_to_left ?
+ ptr_reg->smin_value :
+ ptr_reg->umax_value) + ptr_reg->off;
+ break;
+ default:
+ return REASON_TYPE;
+ }
+
+ if (ptr_limit >= max)
+ return REASON_LIMIT;
+ *alu_limit = ptr_limit;
+ return 0;
+}
+
+static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
+ const struct bpf_insn *insn)
+{
+ return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
+}
+
+static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
+ u32 alu_state, u32 alu_limit)
+{
+ /* If we arrived here from different branches with different
+ * state or limits to sanitize, then this won't work.
+ */
+ if (aux->alu_state &&
+ (aux->alu_state != alu_state ||
+ aux->alu_limit != alu_limit))
+ return REASON_PATHS;
+
+ /* Corresponding fixup done in do_misc_fixups(). */
+ aux->alu_state = alu_state;
+ aux->alu_limit = alu_limit;
+ return 0;
+}
+
+static int sanitize_val_alu(struct bpf_verifier_env *env,
+ struct bpf_insn *insn)
+{
+ struct bpf_insn_aux_data *aux = cur_aux(env);
+
+ if (can_skip_alu_sanitation(env, insn))
+ return 0;
+
+ return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
+}
+
+static bool sanitize_needed(u8 opcode)
+{
+ return opcode == BPF_ADD || opcode == BPF_SUB;
+}
+
+struct bpf_sanitize_info {
+ struct bpf_insn_aux_data aux;
+ bool mask_to_left;
+};
+
+static struct bpf_verifier_state *
+sanitize_speculative_path(struct bpf_verifier_env *env,
+ const struct bpf_insn *insn,
+ u32 next_idx, u32 curr_idx)
+{
+ struct bpf_verifier_state *branch;
+ struct bpf_reg_state *regs;
+
+ branch = push_stack(env, next_idx, curr_idx, true);
+ if (branch && insn) {
+ regs = branch->frame[branch->curframe]->regs;
+ if (BPF_SRC(insn->code) == BPF_K) {
+ mark_reg_unknown(env, regs, insn->dst_reg);
+ } else if (BPF_SRC(insn->code) == BPF_X) {
+ mark_reg_unknown(env, regs, insn->dst_reg);
+ mark_reg_unknown(env, regs, insn->src_reg);
+ }
+ }
+ return branch;
+}
+
+static int sanitize_ptr_alu(struct bpf_verifier_env *env,
+ struct bpf_insn *insn,
+ const struct bpf_reg_state *ptr_reg,
+ const struct bpf_reg_state *off_reg,
+ struct bpf_reg_state *dst_reg,
+ struct bpf_sanitize_info *info,
+ const bool commit_window)
+{
+ struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
+ struct bpf_verifier_state *vstate = env->cur_state;
+ bool off_is_imm = tnum_is_const(off_reg->var_off);
+ bool off_is_neg = off_reg->smin_value < 0;
+ bool ptr_is_dst_reg = ptr_reg == dst_reg;
+ u8 opcode = BPF_OP(insn->code);
+ u32 alu_state, alu_limit;
+ struct bpf_reg_state tmp;
+ bool ret;
+ int err;
+
+ if (can_skip_alu_sanitation(env, insn))
+ return 0;
+
+ /* We already marked aux for masking from non-speculative
+ * paths, thus we got here in the first place. We only care
+ * to explore bad access from here.
+ */
+ if (vstate->speculative)
+ goto do_sim;
+
+ if (!commit_window) {
+ if (!tnum_is_const(off_reg->var_off) &&
+ (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
+ return REASON_BOUNDS;
+
+ info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
+ (opcode == BPF_SUB && !off_is_neg);
+ }
+
+ err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
+ if (err < 0)
+ return err;
+
+ if (commit_window) {
+ /* In commit phase we narrow the masking window based on
+ * the observed pointer move after the simulated operation.
+ */
+ alu_state = info->aux.alu_state;
+ alu_limit = abs(info->aux.alu_limit - alu_limit);
+ } else {
+ alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
+ alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
+ alu_state |= ptr_is_dst_reg ?
+ BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
+
+ /* Limit pruning on unknown scalars to enable deep search for
+ * potential masking differences from other program paths.
+ */
+ if (!off_is_imm)
+ env->explore_alu_limits = true;
+ }
+
+ err = update_alu_sanitation_state(aux, alu_state, alu_limit);
+ if (err < 0)
+ return err;
+do_sim:
+ /* If we're in commit phase, we're done here given we already
+ * pushed the truncated dst_reg into the speculative verification
+ * stack.
+ *
+ * Also, when register is a known constant, we rewrite register-based
+ * operation to immediate-based, and thus do not need masking (and as
+ * a consequence, do not need to simulate the zero-truncation either).
+ */
+ if (commit_window || off_is_imm)
+ return 0;
+
+ /* Simulate and find potential out-of-bounds access under
+ * speculative execution from truncation as a result of
+ * masking when off was not within expected range. If off
+ * sits in dst, then we temporarily need to move ptr there
+ * to simulate dst (== 0) +/-= ptr. Needed, for example,
+ * for cases where we use K-based arithmetic in one direction
+ * and truncated reg-based in the other in order to explore
+ * bad access.
+ */
+ if (!ptr_is_dst_reg) {
+ tmp = *dst_reg;
+ copy_register_state(dst_reg, ptr_reg);
+ }
+ ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
+ env->insn_idx);
+ if (!ptr_is_dst_reg && ret)
+ *dst_reg = tmp;
+ return !ret ? REASON_STACK : 0;
+}
+
+static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
+{
+ struct bpf_verifier_state *vstate = env->cur_state;
+
+ /* If we simulate paths under speculation, we don't update the
+ * insn as 'seen' such that when we verify unreachable paths in
+ * the non-speculative domain, sanitize_dead_code() can still
+ * rewrite/sanitize them.
+ */
+ if (!vstate->speculative)
+ env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
+}
+
+static int sanitize_err(struct bpf_verifier_env *env,
+ const struct bpf_insn *insn, int reason,
+ const struct bpf_reg_state *off_reg,
+ const struct bpf_reg_state *dst_reg)
+{
+ static const char *err = "pointer arithmetic with it prohibited for !root";
+ const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
+ u32 dst = insn->dst_reg, src = insn->src_reg;
+
+ switch (reason) {
+ case REASON_BOUNDS:
+ verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
+ off_reg == dst_reg ? dst : src, err);
+ break;
+ case REASON_TYPE:
+ verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
+ off_reg == dst_reg ? src : dst, err);
+ break;
+ case REASON_PATHS:
+ verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
+ dst, op, err);
+ break;
+ case REASON_LIMIT:
+ verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
+ dst, op, err);
+ break;
+ case REASON_STACK:
+ verbose(env, "R%d could not be pushed for speculative verification, %s\n",
+ dst, err);
+ break;
+ default:
+ verbose(env, "verifier internal error: unknown reason (%d)\n",
+ reason);
+ break;
+ }
+
+ return -EACCES;
+}
+
+/* check that stack access falls within stack limits and that 'reg' doesn't
+ * have a variable offset.
+ *
+ * Variable offset is prohibited for unprivileged mode for simplicity since it
+ * requires corresponding support in Spectre masking for stack ALU. See also
+ * retrieve_ptr_limit().
+ *
+ *
+ * 'off' includes 'reg->off'.
+ */
+static int check_stack_access_for_ptr_arithmetic(
+ struct bpf_verifier_env *env,
+ int regno,
+ const struct bpf_reg_state *reg,
+ int off)
+{
+ if (!tnum_is_const(reg->var_off)) {
+ char tn_buf[48];
+
+ tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
+ verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
+ regno, tn_buf, off);
+ return -EACCES;
+ }
+
+ if (off >= 0 || off < -MAX_BPF_STACK) {
+ verbose(env, "R%d stack pointer arithmetic goes out of range, "
+ "prohibited for !root; off=%d\n", regno, off);
+ return -EACCES;
+ }
+
+ return 0;
+}
+
+static int sanitize_check_bounds(struct bpf_verifier_env *env,
+ const struct bpf_insn *insn,
+ const struct bpf_reg_state *dst_reg)
+{
+ u32 dst = insn->dst_reg;
+
+ /* For unprivileged we require that resulting offset must be in bounds
+ * in order to be able to sanitize access later on.
+ */
+ if (env->bypass_spec_v1)
+ return 0;
+
+ switch (dst_reg->type) {
+ case PTR_TO_STACK:
+ if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
+ dst_reg->off + dst_reg->var_off.value))
+ return -EACCES;
+ break;
+ case PTR_TO_MAP_VALUE:
+ if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
+ verbose(env, "R%d pointer arithmetic of map value goes out of range, "
+ "prohibited for !root\n", dst);
+ return -EACCES;
+ }
+ break;
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
+ * Caller should also handle BPF_MOV case separately.
+ * If we return -EACCES, caller may want to try again treating pointer as a
+ * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
+ */
+static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
+ struct bpf_insn *insn,
+ const struct bpf_reg_state *ptr_reg,
+ const struct bpf_reg_state *off_reg)
+{
+ struct bpf_verifier_state *vstate = env->cur_state;
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ struct bpf_reg_state *regs = state->regs, *dst_reg;
+ bool known = tnum_is_const(off_reg->var_off);
+ s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
+ smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
+ u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
+ umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
+ struct bpf_sanitize_info info = {};
+ u8 opcode = BPF_OP(insn->code);
+ u32 dst = insn->dst_reg;
+ int ret;
+
+ dst_reg = &regs[dst];
+
+ if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
+ smin_val > smax_val || umin_val > umax_val) {
+ /* Taint dst register if offset had invalid bounds derived from
+ * e.g. dead branches.
+ */
+ __mark_reg_unknown(env, dst_reg);
+ return 0;
+ }
+
+ if (BPF_CLASS(insn->code) != BPF_ALU64) {
+ /* 32-bit ALU ops on pointers produce (meaningless) scalars */
+ if (opcode == BPF_SUB && env->allow_ptr_leaks) {
+ __mark_reg_unknown(env, dst_reg);
+ return 0;
+ }
+
+ verbose(env,
+ "R%d 32-bit pointer arithmetic prohibited\n",
+ dst);
+ return -EACCES;
+ }
+
+ if (ptr_reg->type & PTR_MAYBE_NULL) {
+ verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
+ dst, reg_type_str(env, ptr_reg->type));
+ return -EACCES;
+ }
+
+ switch (base_type(ptr_reg->type)) {
+ case PTR_TO_FLOW_KEYS:
+ if (known)
+ break;
+ fallthrough;
+ case CONST_PTR_TO_MAP:
+ /* smin_val represents the known value */
+ if (known && smin_val == 0 && opcode == BPF_ADD)
+ break;
+ fallthrough;
+ case PTR_TO_PACKET_END:
+ case PTR_TO_SOCKET:
+ case PTR_TO_SOCK_COMMON:
+ case PTR_TO_TCP_SOCK:
+ case PTR_TO_XDP_SOCK:
+ verbose(env, "R%d pointer arithmetic on %s prohibited\n",
+ dst, reg_type_str(env, ptr_reg->type));
+ return -EACCES;
+ default:
+ break;
+ }
+
+ /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
+ * The id may be overwritten later if we create a new variable offset.
+ */
+ dst_reg->type = ptr_reg->type;
+ dst_reg->id = ptr_reg->id;
+
+ if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
+ !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
+ return -EINVAL;
+
+ /* pointer types do not carry 32-bit bounds at the moment. */
+ __mark_reg32_unbounded(dst_reg);
+
+ if (sanitize_needed(opcode)) {
+ ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
+ &info, false);
+ if (ret < 0)
+ return sanitize_err(env, insn, ret, off_reg, dst_reg);
+ }
+
+ switch (opcode) {
+ case BPF_ADD:
+ /* We can take a fixed offset as long as it doesn't overflow
+ * the s32 'off' field
+ */
+ if (known && (ptr_reg->off + smin_val ==
+ (s64)(s32)(ptr_reg->off + smin_val))) {
+ /* pointer += K. Accumulate it into fixed offset */
+ dst_reg->smin_value = smin_ptr;
+ dst_reg->smax_value = smax_ptr;
+ dst_reg->umin_value = umin_ptr;
+ dst_reg->umax_value = umax_ptr;
+ dst_reg->var_off = ptr_reg->var_off;
+ dst_reg->off = ptr_reg->off + smin_val;
+ dst_reg->raw = ptr_reg->raw;
+ break;
+ }
+ /* A new variable offset is created. Note that off_reg->off
+ * == 0, since it's a scalar.
+ * dst_reg gets the pointer type and since some positive
+ * integer value was added to the pointer, give it a new 'id'
+ * if it's a PTR_TO_PACKET.
+ * this creates a new 'base' pointer, off_reg (variable) gets
+ * added into the variable offset, and we copy the fixed offset
+ * from ptr_reg.
+ */
+ if (signed_add_overflows(smin_ptr, smin_val) ||
+ signed_add_overflows(smax_ptr, smax_val)) {
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ } else {
+ dst_reg->smin_value = smin_ptr + smin_val;
+ dst_reg->smax_value = smax_ptr + smax_val;
+ }
+ if (umin_ptr + umin_val < umin_ptr ||
+ umax_ptr + umax_val < umax_ptr) {
+ dst_reg->umin_value = 0;
+ dst_reg->umax_value = U64_MAX;
+ } else {
+ dst_reg->umin_value = umin_ptr + umin_val;
+ dst_reg->umax_value = umax_ptr + umax_val;
+ }
+ dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
+ dst_reg->off = ptr_reg->off;
+ dst_reg->raw = ptr_reg->raw;
+ if (reg_is_pkt_pointer(ptr_reg)) {
+ dst_reg->id = ++env->id_gen;
+ /* something was added to pkt_ptr, set range to zero */
+ memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
+ }
+ break;
+ case BPF_SUB:
+ if (dst_reg == off_reg) {
+ /* scalar -= pointer. Creates an unknown scalar */
+ verbose(env, "R%d tried to subtract pointer from scalar\n",
+ dst);
+ return -EACCES;
+ }
+ /* We don't allow subtraction from FP, because (according to
+ * test_verifier.c test "invalid fp arithmetic", JITs might not
+ * be able to deal with it.
+ */
+ if (ptr_reg->type == PTR_TO_STACK) {
+ verbose(env, "R%d subtraction from stack pointer prohibited\n",
+ dst);
+ return -EACCES;
+ }
+ if (known && (ptr_reg->off - smin_val ==
+ (s64)(s32)(ptr_reg->off - smin_val))) {
+ /* pointer -= K. Subtract it from fixed offset */
+ dst_reg->smin_value = smin_ptr;
+ dst_reg->smax_value = smax_ptr;
+ dst_reg->umin_value = umin_ptr;
+ dst_reg->umax_value = umax_ptr;
+ dst_reg->var_off = ptr_reg->var_off;
+ dst_reg->id = ptr_reg->id;
+ dst_reg->off = ptr_reg->off - smin_val;
+ dst_reg->raw = ptr_reg->raw;
+ break;
+ }
+ /* A new variable offset is created. If the subtrahend is known
+ * nonnegative, then any reg->range we had before is still good.
+ */
+ if (signed_sub_overflows(smin_ptr, smax_val) ||
+ signed_sub_overflows(smax_ptr, smin_val)) {
+ /* Overflow possible, we know nothing */
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ } else {
+ dst_reg->smin_value = smin_ptr - smax_val;
+ dst_reg->smax_value = smax_ptr - smin_val;
+ }
+ if (umin_ptr < umax_val) {
+ /* Overflow possible, we know nothing */
+ dst_reg->umin_value = 0;
+ dst_reg->umax_value = U64_MAX;
+ } else {
+ /* Cannot overflow (as long as bounds are consistent) */
+ dst_reg->umin_value = umin_ptr - umax_val;
+ dst_reg->umax_value = umax_ptr - umin_val;
+ }
+ dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
+ dst_reg->off = ptr_reg->off;
+ dst_reg->raw = ptr_reg->raw;
+ if (reg_is_pkt_pointer(ptr_reg)) {
+ dst_reg->id = ++env->id_gen;
+ /* something was added to pkt_ptr, set range to zero */
+ if (smin_val < 0)
+ memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
+ }
+ break;
+ case BPF_AND:
+ case BPF_OR:
+ case BPF_XOR:
+ /* bitwise ops on pointers are troublesome, prohibit. */
+ verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
+ dst, bpf_alu_string[opcode >> 4]);
+ return -EACCES;
+ default:
+ /* other operators (e.g. MUL,LSH) produce non-pointer results */
+ verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
+ dst, bpf_alu_string[opcode >> 4]);
+ return -EACCES;
+ }
+
+ if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
+ return -EINVAL;
+ reg_bounds_sync(dst_reg);
+ if (sanitize_check_bounds(env, insn, dst_reg) < 0)
+ return -EACCES;
+ if (sanitize_needed(opcode)) {
+ ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
+ &info, true);
+ if (ret < 0)
+ return sanitize_err(env, insn, ret, off_reg, dst_reg);
+ }
+
+ return 0;
+}
+
+static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ s32 smin_val = src_reg->s32_min_value;
+ s32 smax_val = src_reg->s32_max_value;
+ u32 umin_val = src_reg->u32_min_value;
+ u32 umax_val = src_reg->u32_max_value;
+
+ if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
+ signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
+ } else {
+ dst_reg->s32_min_value += smin_val;
+ dst_reg->s32_max_value += smax_val;
+ }
+ if (dst_reg->u32_min_value + umin_val < umin_val ||
+ dst_reg->u32_max_value + umax_val < umax_val) {
+ dst_reg->u32_min_value = 0;
+ dst_reg->u32_max_value = U32_MAX;
+ } else {
+ dst_reg->u32_min_value += umin_val;
+ dst_reg->u32_max_value += umax_val;
+ }
+}
+
+static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ s64 smin_val = src_reg->smin_value;
+ s64 smax_val = src_reg->smax_value;
+ u64 umin_val = src_reg->umin_value;
+ u64 umax_val = src_reg->umax_value;
+
+ if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
+ signed_add_overflows(dst_reg->smax_value, smax_val)) {
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ } else {
+ dst_reg->smin_value += smin_val;
+ dst_reg->smax_value += smax_val;
+ }
+ if (dst_reg->umin_value + umin_val < umin_val ||
+ dst_reg->umax_value + umax_val < umax_val) {
+ dst_reg->umin_value = 0;
+ dst_reg->umax_value = U64_MAX;
+ } else {
+ dst_reg->umin_value += umin_val;
+ dst_reg->umax_value += umax_val;
+ }
+}
+
+static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ s32 smin_val = src_reg->s32_min_value;
+ s32 smax_val = src_reg->s32_max_value;
+ u32 umin_val = src_reg->u32_min_value;
+ u32 umax_val = src_reg->u32_max_value;
+
+ if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
+ signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
+ /* Overflow possible, we know nothing */
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
+ } else {
+ dst_reg->s32_min_value -= smax_val;
+ dst_reg->s32_max_value -= smin_val;
+ }
+ if (dst_reg->u32_min_value < umax_val) {
+ /* Overflow possible, we know nothing */
+ dst_reg->u32_min_value = 0;
+ dst_reg->u32_max_value = U32_MAX;
+ } else {
+ /* Cannot overflow (as long as bounds are consistent) */
+ dst_reg->u32_min_value -= umax_val;
+ dst_reg->u32_max_value -= umin_val;
+ }
+}
+
+static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ s64 smin_val = src_reg->smin_value;
+ s64 smax_val = src_reg->smax_value;
+ u64 umin_val = src_reg->umin_value;
+ u64 umax_val = src_reg->umax_value;
+
+ if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
+ signed_sub_overflows(dst_reg->smax_value, smin_val)) {
+ /* Overflow possible, we know nothing */
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ } else {
+ dst_reg->smin_value -= smax_val;
+ dst_reg->smax_value -= smin_val;
+ }
+ if (dst_reg->umin_value < umax_val) {
+ /* Overflow possible, we know nothing */
+ dst_reg->umin_value = 0;
+ dst_reg->umax_value = U64_MAX;
+ } else {
+ /* Cannot overflow (as long as bounds are consistent) */
+ dst_reg->umin_value -= umax_val;
+ dst_reg->umax_value -= umin_val;
+ }
+}
+
+static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ s32 smin_val = src_reg->s32_min_value;
+ u32 umin_val = src_reg->u32_min_value;
+ u32 umax_val = src_reg->u32_max_value;
+
+ if (smin_val < 0 || dst_reg->s32_min_value < 0) {
+ /* Ain't nobody got time to multiply that sign */
+ __mark_reg32_unbounded(dst_reg);
+ return;
+ }
+ /* Both values are positive, so we can work with unsigned and
+ * copy the result to signed (unless it exceeds S32_MAX).
+ */
+ if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
+ /* Potential overflow, we know nothing */
+ __mark_reg32_unbounded(dst_reg);
+ return;
+ }
+ dst_reg->u32_min_value *= umin_val;
+ dst_reg->u32_max_value *= umax_val;
+ if (dst_reg->u32_max_value > S32_MAX) {
+ /* Overflow possible, we know nothing */
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
+ } else {
+ dst_reg->s32_min_value = dst_reg->u32_min_value;
+ dst_reg->s32_max_value = dst_reg->u32_max_value;
+ }
+}
+
+static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ s64 smin_val = src_reg->smin_value;
+ u64 umin_val = src_reg->umin_value;
+ u64 umax_val = src_reg->umax_value;
+
+ if (smin_val < 0 || dst_reg->smin_value < 0) {
+ /* Ain't nobody got time to multiply that sign */
+ __mark_reg64_unbounded(dst_reg);
+ return;
+ }
+ /* Both values are positive, so we can work with unsigned and
+ * copy the result to signed (unless it exceeds S64_MAX).
+ */
+ if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
+ /* Potential overflow, we know nothing */
+ __mark_reg64_unbounded(dst_reg);
+ return;
+ }
+ dst_reg->umin_value *= umin_val;
+ dst_reg->umax_value *= umax_val;
+ if (dst_reg->umax_value > S64_MAX) {
+ /* Overflow possible, we know nothing */
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ } else {
+ dst_reg->smin_value = dst_reg->umin_value;
+ dst_reg->smax_value = dst_reg->umax_value;
+ }
+}
+
+static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ bool src_known = tnum_subreg_is_const(src_reg->var_off);
+ bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
+ struct tnum var32_off = tnum_subreg(dst_reg->var_off);
+ s32 smin_val = src_reg->s32_min_value;
+ u32 umax_val = src_reg->u32_max_value;
+
+ if (src_known && dst_known) {
+ __mark_reg32_known(dst_reg, var32_off.value);
+ return;
+ }
+
+ /* We get our minimum from the var_off, since that's inherently
+ * bitwise. Our maximum is the minimum of the operands' maxima.
+ */
+ dst_reg->u32_min_value = var32_off.value;
+ dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
+ if (dst_reg->s32_min_value < 0 || smin_val < 0) {
+ /* Lose signed bounds when ANDing negative numbers,
+ * ain't nobody got time for that.
+ */
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
+ } else {
+ /* ANDing two positives gives a positive, so safe to
+ * cast result into s64.
+ */
+ dst_reg->s32_min_value = dst_reg->u32_min_value;
+ dst_reg->s32_max_value = dst_reg->u32_max_value;
+ }
+}
+
+static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ bool src_known = tnum_is_const(src_reg->var_off);
+ bool dst_known = tnum_is_const(dst_reg->var_off);
+ s64 smin_val = src_reg->smin_value;
+ u64 umax_val = src_reg->umax_value;
+
+ if (src_known && dst_known) {
+ __mark_reg_known(dst_reg, dst_reg->var_off.value);
+ return;
+ }
+
+ /* We get our minimum from the var_off, since that's inherently
+ * bitwise. Our maximum is the minimum of the operands' maxima.
+ */
+ dst_reg->umin_value = dst_reg->var_off.value;
+ dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
+ if (dst_reg->smin_value < 0 || smin_val < 0) {
+ /* Lose signed bounds when ANDing negative numbers,
+ * ain't nobody got time for that.
+ */
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ } else {
+ /* ANDing two positives gives a positive, so safe to
+ * cast result into s64.
+ */
+ dst_reg->smin_value = dst_reg->umin_value;
+ dst_reg->smax_value = dst_reg->umax_value;
+ }
+ /* We may learn something more from the var_off */
+ __update_reg_bounds(dst_reg);
+}
+
+static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ bool src_known = tnum_subreg_is_const(src_reg->var_off);
+ bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
+ struct tnum var32_off = tnum_subreg(dst_reg->var_off);
+ s32 smin_val = src_reg->s32_min_value;
+ u32 umin_val = src_reg->u32_min_value;
+
+ if (src_known && dst_known) {
+ __mark_reg32_known(dst_reg, var32_off.value);
+ return;
+ }
+
+ /* We get our maximum from the var_off, and our minimum is the
+ * maximum of the operands' minima
+ */
+ dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
+ dst_reg->u32_max_value = var32_off.value | var32_off.mask;
+ if (dst_reg->s32_min_value < 0 || smin_val < 0) {
+ /* Lose signed bounds when ORing negative numbers,
+ * ain't nobody got time for that.
+ */
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
+ } else {
+ /* ORing two positives gives a positive, so safe to
+ * cast result into s64.
+ */
+ dst_reg->s32_min_value = dst_reg->u32_min_value;
+ dst_reg->s32_max_value = dst_reg->u32_max_value;
+ }
+}
+
+static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ bool src_known = tnum_is_const(src_reg->var_off);
+ bool dst_known = tnum_is_const(dst_reg->var_off);
+ s64 smin_val = src_reg->smin_value;
+ u64 umin_val = src_reg->umin_value;
+
+ if (src_known && dst_known) {
+ __mark_reg_known(dst_reg, dst_reg->var_off.value);
+ return;
+ }
+
+ /* We get our maximum from the var_off, and our minimum is the
+ * maximum of the operands' minima
+ */
+ dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
+ dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
+ if (dst_reg->smin_value < 0 || smin_val < 0) {
+ /* Lose signed bounds when ORing negative numbers,
+ * ain't nobody got time for that.
+ */
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ } else {
+ /* ORing two positives gives a positive, so safe to
+ * cast result into s64.
+ */
+ dst_reg->smin_value = dst_reg->umin_value;
+ dst_reg->smax_value = dst_reg->umax_value;
+ }
+ /* We may learn something more from the var_off */
+ __update_reg_bounds(dst_reg);
+}
+
+static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ bool src_known = tnum_subreg_is_const(src_reg->var_off);
+ bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
+ struct tnum var32_off = tnum_subreg(dst_reg->var_off);
+ s32 smin_val = src_reg->s32_min_value;
+
+ if (src_known && dst_known) {
+ __mark_reg32_known(dst_reg, var32_off.value);
+ return;
+ }
+
+ /* We get both minimum and maximum from the var32_off. */
+ dst_reg->u32_min_value = var32_off.value;
+ dst_reg->u32_max_value = var32_off.value | var32_off.mask;
+
+ if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
+ /* XORing two positive sign numbers gives a positive,
+ * so safe to cast u32 result into s32.
+ */
+ dst_reg->s32_min_value = dst_reg->u32_min_value;
+ dst_reg->s32_max_value = dst_reg->u32_max_value;
+ } else {
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
+ }
+}
+
+static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ bool src_known = tnum_is_const(src_reg->var_off);
+ bool dst_known = tnum_is_const(dst_reg->var_off);
+ s64 smin_val = src_reg->smin_value;
+
+ if (src_known && dst_known) {
+ /* dst_reg->var_off.value has been updated earlier */
+ __mark_reg_known(dst_reg, dst_reg->var_off.value);
+ return;
+ }
+
+ /* We get both minimum and maximum from the var_off. */
+ dst_reg->umin_value = dst_reg->var_off.value;
+ dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
+
+ if (dst_reg->smin_value >= 0 && smin_val >= 0) {
+ /* XORing two positive sign numbers gives a positive,
+ * so safe to cast u64 result into s64.
+ */
+ dst_reg->smin_value = dst_reg->umin_value;
+ dst_reg->smax_value = dst_reg->umax_value;
+ } else {
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ }
+
+ __update_reg_bounds(dst_reg);
+}
+
+static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
+ u64 umin_val, u64 umax_val)
+{
+ /* We lose all sign bit information (except what we can pick
+ * up from var_off)
+ */
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
+ /* If we might shift our top bit out, then we know nothing */
+ if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
+ dst_reg->u32_min_value = 0;
+ dst_reg->u32_max_value = U32_MAX;
+ } else {
+ dst_reg->u32_min_value <<= umin_val;
+ dst_reg->u32_max_value <<= umax_val;
+ }
+}
+
+static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ u32 umax_val = src_reg->u32_max_value;
+ u32 umin_val = src_reg->u32_min_value;
+ /* u32 alu operation will zext upper bits */
+ struct tnum subreg = tnum_subreg(dst_reg->var_off);
+
+ __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
+ dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
+ /* Not required but being careful mark reg64 bounds as unknown so
+ * that we are forced to pick them up from tnum and zext later and
+ * if some path skips this step we are still safe.
+ */
+ __mark_reg64_unbounded(dst_reg);
+ __update_reg32_bounds(dst_reg);
+}
+
+static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
+ u64 umin_val, u64 umax_val)
+{
+ /* Special case <<32 because it is a common compiler pattern to sign
+ * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
+ * positive we know this shift will also be positive so we can track
+ * bounds correctly. Otherwise we lose all sign bit information except
+ * what we can pick up from var_off. Perhaps we can generalize this
+ * later to shifts of any length.
+ */
+ if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
+ dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
+ else
+ dst_reg->smax_value = S64_MAX;
+
+ if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
+ dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
+ else
+ dst_reg->smin_value = S64_MIN;
+
+ /* If we might shift our top bit out, then we know nothing */
+ if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
+ dst_reg->umin_value = 0;
+ dst_reg->umax_value = U64_MAX;
+ } else {
+ dst_reg->umin_value <<= umin_val;
+ dst_reg->umax_value <<= umax_val;
+ }
+}
+
+static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ u64 umax_val = src_reg->umax_value;
+ u64 umin_val = src_reg->umin_value;
+
+ /* scalar64 calc uses 32bit unshifted bounds so must be called first */
+ __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
+ __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
+
+ dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
+ /* We may learn something more from the var_off */
+ __update_reg_bounds(dst_reg);
+}
+
+static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ struct tnum subreg = tnum_subreg(dst_reg->var_off);
+ u32 umax_val = src_reg->u32_max_value;
+ u32 umin_val = src_reg->u32_min_value;
+
+ /* BPF_RSH is an unsigned shift. If the value in dst_reg might
+ * be negative, then either:
+ * 1) src_reg might be zero, so the sign bit of the result is
+ * unknown, so we lose our signed bounds
+ * 2) it's known negative, thus the unsigned bounds capture the
+ * signed bounds
+ * 3) the signed bounds cross zero, so they tell us nothing
+ * about the result
+ * If the value in dst_reg is known nonnegative, then again the
+ * unsigned bounds capture the signed bounds.
+ * Thus, in all cases it suffices to blow away our signed bounds
+ * and rely on inferring new ones from the unsigned bounds and
+ * var_off of the result.
+ */
+ dst_reg->s32_min_value = S32_MIN;
+ dst_reg->s32_max_value = S32_MAX;
+
+ dst_reg->var_off = tnum_rshift(subreg, umin_val);
+ dst_reg->u32_min_value >>= umax_val;
+ dst_reg->u32_max_value >>= umin_val;
+
+ __mark_reg64_unbounded(dst_reg);
+ __update_reg32_bounds(dst_reg);
+}
+
+static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ u64 umax_val = src_reg->umax_value;
+ u64 umin_val = src_reg->umin_value;
+
+ /* BPF_RSH is an unsigned shift. If the value in dst_reg might
+ * be negative, then either:
+ * 1) src_reg might be zero, so the sign bit of the result is
+ * unknown, so we lose our signed bounds
+ * 2) it's known negative, thus the unsigned bounds capture the
+ * signed bounds
+ * 3) the signed bounds cross zero, so they tell us nothing
+ * about the result
+ * If the value in dst_reg is known nonnegative, then again the
+ * unsigned bounds capture the signed bounds.
+ * Thus, in all cases it suffices to blow away our signed bounds
+ * and rely on inferring new ones from the unsigned bounds and
+ * var_off of the result.
+ */
+ dst_reg->smin_value = S64_MIN;
+ dst_reg->smax_value = S64_MAX;
+ dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
+ dst_reg->umin_value >>= umax_val;
+ dst_reg->umax_value >>= umin_val;
+
+ /* Its not easy to operate on alu32 bounds here because it depends
+ * on bits being shifted in. Take easy way out and mark unbounded
+ * so we can recalculate later from tnum.
+ */
+ __mark_reg32_unbounded(dst_reg);
+ __update_reg_bounds(dst_reg);
+}
+
+static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ u64 umin_val = src_reg->u32_min_value;
+
+ /* Upon reaching here, src_known is true and
+ * umax_val is equal to umin_val.
+ */
+ dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
+ dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
+
+ dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
+
+ /* blow away the dst_reg umin_value/umax_value and rely on
+ * dst_reg var_off to refine the result.
+ */
+ dst_reg->u32_min_value = 0;
+ dst_reg->u32_max_value = U32_MAX;
+
+ __mark_reg64_unbounded(dst_reg);
+ __update_reg32_bounds(dst_reg);
+}
+
+static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg)
+{
+ u64 umin_val = src_reg->umin_value;
+
+ /* Upon reaching here, src_known is true and umax_val is equal
+ * to umin_val.
+ */
+ dst_reg->smin_value >>= umin_val;
+ dst_reg->smax_value >>= umin_val;
+
+ dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
+
+ /* blow away the dst_reg umin_value/umax_value and rely on
+ * dst_reg var_off to refine the result.
+ */
+ dst_reg->umin_value = 0;
+ dst_reg->umax_value = U64_MAX;
+
+ /* Its not easy to operate on alu32 bounds here because it depends
+ * on bits being shifted in from upper 32-bits. Take easy way out
+ * and mark unbounded so we can recalculate later from tnum.
+ */
+ __mark_reg32_unbounded(dst_reg);
+ __update_reg_bounds(dst_reg);
+}
+
+/* WARNING: This function does calculations on 64-bit values, but the actual
+ * execution may occur on 32-bit values. Therefore, things like bitshifts
+ * need extra checks in the 32-bit case.
+ */
+static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
+ struct bpf_insn *insn,
+ struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state src_reg)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ u8 opcode = BPF_OP(insn->code);
+ bool src_known;
+ s64 smin_val, smax_val;
+ u64 umin_val, umax_val;
+ s32 s32_min_val, s32_max_val;
+ u32 u32_min_val, u32_max_val;
+ u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
+ bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
+ int ret;
+
+ smin_val = src_reg.smin_value;
+ smax_val = src_reg.smax_value;
+ umin_val = src_reg.umin_value;
+ umax_val = src_reg.umax_value;
+
+ s32_min_val = src_reg.s32_min_value;
+ s32_max_val = src_reg.s32_max_value;
+ u32_min_val = src_reg.u32_min_value;
+ u32_max_val = src_reg.u32_max_value;
+
+ if (alu32) {
+ src_known = tnum_subreg_is_const(src_reg.var_off);
+ if ((src_known &&
+ (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
+ s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
+ /* Taint dst register if offset had invalid bounds
+ * derived from e.g. dead branches.
+ */
+ __mark_reg_unknown(env, dst_reg);
+ return 0;
+ }
+ } else {
+ src_known = tnum_is_const(src_reg.var_off);
+ if ((src_known &&
+ (smin_val != smax_val || umin_val != umax_val)) ||
+ smin_val > smax_val || umin_val > umax_val) {
+ /* Taint dst register if offset had invalid bounds
+ * derived from e.g. dead branches.
+ */
+ __mark_reg_unknown(env, dst_reg);
+ return 0;
+ }
+ }
+
+ if (!src_known &&
+ opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
+ __mark_reg_unknown(env, dst_reg);
+ return 0;
+ }
+
+ if (sanitize_needed(opcode)) {
+ ret = sanitize_val_alu(env, insn);
+ if (ret < 0)
+ return sanitize_err(env, insn, ret, NULL, NULL);
+ }
+
+ /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
+ * There are two classes of instructions: The first class we track both
+ * alu32 and alu64 sign/unsigned bounds independently this provides the
+ * greatest amount of precision when alu operations are mixed with jmp32
+ * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
+ * and BPF_OR. This is possible because these ops have fairly easy to
+ * understand and calculate behavior in both 32-bit and 64-bit alu ops.
+ * See alu32 verifier tests for examples. The second class of
+ * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
+ * with regards to tracking sign/unsigned bounds because the bits may
+ * cross subreg boundaries in the alu64 case. When this happens we mark
+ * the reg unbounded in the subreg bound space and use the resulting
+ * tnum to calculate an approximation of the sign/unsigned bounds.
+ */
+ switch (opcode) {
+ case BPF_ADD:
+ scalar32_min_max_add(dst_reg, &src_reg);
+ scalar_min_max_add(dst_reg, &src_reg);
+ dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
+ break;
+ case BPF_SUB:
+ scalar32_min_max_sub(dst_reg, &src_reg);
+ scalar_min_max_sub(dst_reg, &src_reg);
+ dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
+ break;
+ case BPF_MUL:
+ dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
+ scalar32_min_max_mul(dst_reg, &src_reg);
+ scalar_min_max_mul(dst_reg, &src_reg);
+ break;
+ case BPF_AND:
+ dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
+ scalar32_min_max_and(dst_reg, &src_reg);
+ scalar_min_max_and(dst_reg, &src_reg);
+ break;
+ case BPF_OR:
+ dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
+ scalar32_min_max_or(dst_reg, &src_reg);
+ scalar_min_max_or(dst_reg, &src_reg);
+ break;
+ case BPF_XOR:
+ dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
+ scalar32_min_max_xor(dst_reg, &src_reg);
+ scalar_min_max_xor(dst_reg, &src_reg);
+ break;
+ case BPF_LSH:
+ if (umax_val >= insn_bitness) {
+ /* Shifts greater than 31 or 63 are undefined.
+ * This includes shifts by a negative number.
+ */
+ mark_reg_unknown(env, regs, insn->dst_reg);
+ break;
+ }
+ if (alu32)
+ scalar32_min_max_lsh(dst_reg, &src_reg);
+ else
+ scalar_min_max_lsh(dst_reg, &src_reg);
+ break;
+ case BPF_RSH:
+ if (umax_val >= insn_bitness) {
+ /* Shifts greater than 31 or 63 are undefined.
+ * This includes shifts by a negative number.
+ */
+ mark_reg_unknown(env, regs, insn->dst_reg);
+ break;
+ }
+ if (alu32)
+ scalar32_min_max_rsh(dst_reg, &src_reg);
+ else
+ scalar_min_max_rsh(dst_reg, &src_reg);
+ break;
+ case BPF_ARSH:
+ if (umax_val >= insn_bitness) {
+ /* Shifts greater than 31 or 63 are undefined.
+ * This includes shifts by a negative number.
+ */
+ mark_reg_unknown(env, regs, insn->dst_reg);
+ break;
+ }
+ if (alu32)
+ scalar32_min_max_arsh(dst_reg, &src_reg);
+ else
+ scalar_min_max_arsh(dst_reg, &src_reg);
+ break;
+ default:
+ mark_reg_unknown(env, regs, insn->dst_reg);
+ break;
+ }
+
+ /* ALU32 ops are zero extended into 64bit register */
+ if (alu32)
+ zext_32_to_64(dst_reg);
+ reg_bounds_sync(dst_reg);
+ return 0;
+}
+
+/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
+ * and var_off.
+ */
+static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
+ struct bpf_insn *insn)
+{
+ struct bpf_verifier_state *vstate = env->cur_state;
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
+ struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
+ u8 opcode = BPF_OP(insn->code);
+ int err;
+
+ dst_reg = &regs[insn->dst_reg];
+ src_reg = NULL;
+ if (dst_reg->type != SCALAR_VALUE)
+ ptr_reg = dst_reg;
+ else
+ /* Make sure ID is cleared otherwise dst_reg min/max could be
+ * incorrectly propagated into other registers by find_equal_scalars()
+ */
+ dst_reg->id = 0;
+ if (BPF_SRC(insn->code) == BPF_X) {
+ src_reg = &regs[insn->src_reg];
+ if (src_reg->type != SCALAR_VALUE) {
+ if (dst_reg->type != SCALAR_VALUE) {
+ /* Combining two pointers by any ALU op yields
+ * an arbitrary scalar. Disallow all math except
+ * pointer subtraction
+ */
+ if (opcode == BPF_SUB && env->allow_ptr_leaks) {
+ mark_reg_unknown(env, regs, insn->dst_reg);
+ return 0;
+ }
+ verbose(env, "R%d pointer %s pointer prohibited\n",
+ insn->dst_reg,
+ bpf_alu_string[opcode >> 4]);
+ return -EACCES;
+ } else {
+ /* scalar += pointer
+ * This is legal, but we have to reverse our
+ * src/dest handling in computing the range
+ */
+ err = mark_chain_precision(env, insn->dst_reg);
+ if (err)
+ return err;
+ return adjust_ptr_min_max_vals(env, insn,
+ src_reg, dst_reg);
+ }
+ } else if (ptr_reg) {
+ /* pointer += scalar */
+ err = mark_chain_precision(env, insn->src_reg);
+ if (err)
+ return err;
+ return adjust_ptr_min_max_vals(env, insn,
+ dst_reg, src_reg);
+ } else if (dst_reg->precise) {
+ /* if dst_reg is precise, src_reg should be precise as well */
+ err = mark_chain_precision(env, insn->src_reg);
+ if (err)
+ return err;
+ }
+ } else {
+ /* Pretend the src is a reg with a known value, since we only
+ * need to be able to read from this state.
+ */
+ off_reg.type = SCALAR_VALUE;
+ __mark_reg_known(&off_reg, insn->imm);
+ src_reg = &off_reg;
+ if (ptr_reg) /* pointer += K */
+ return adjust_ptr_min_max_vals(env, insn,
+ ptr_reg, src_reg);
+ }
+
+ /* Got here implies adding two SCALAR_VALUEs */
+ if (WARN_ON_ONCE(ptr_reg)) {
+ print_verifier_state(env, state, true);
+ verbose(env, "verifier internal error: unexpected ptr_reg\n");
+ return -EINVAL;
+ }
+ if (WARN_ON(!src_reg)) {
+ print_verifier_state(env, state, true);
+ verbose(env, "verifier internal error: no src_reg\n");
+ return -EINVAL;
+ }
+ return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
+}
+
+/* check validity of 32-bit and 64-bit arithmetic operations */
+static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ u8 opcode = BPF_OP(insn->code);
+ int err;
+
+ if (opcode == BPF_END || opcode == BPF_NEG) {
+ if (opcode == BPF_NEG) {
+ if (BPF_SRC(insn->code) != BPF_K ||
+ insn->src_reg != BPF_REG_0 ||
+ insn->off != 0 || insn->imm != 0) {
+ verbose(env, "BPF_NEG uses reserved fields\n");
+ return -EINVAL;
+ }
+ } else {
+ if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
+ (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
+ BPF_CLASS(insn->code) == BPF_ALU64) {
+ verbose(env, "BPF_END uses reserved fields\n");
+ return -EINVAL;
+ }
+ }
+
+ /* check src operand */
+ err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+ if (err)
+ return err;
+
+ if (is_pointer_value(env, insn->dst_reg)) {
+ verbose(env, "R%d pointer arithmetic prohibited\n",
+ insn->dst_reg);
+ return -EACCES;
+ }
+
+ /* check dest operand */
+ err = check_reg_arg(env, insn->dst_reg, DST_OP);
+ if (err)
+ return err;
+
+ } else if (opcode == BPF_MOV) {
+
+ if (BPF_SRC(insn->code) == BPF_X) {
+ if (insn->imm != 0 || insn->off != 0) {
+ verbose(env, "BPF_MOV uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ /* check src operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+ } else {
+ if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
+ verbose(env, "BPF_MOV uses reserved fields\n");
+ return -EINVAL;
+ }
+ }
+
+ /* check dest operand, mark as required later */
+ err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
+ if (err)
+ return err;
+
+ if (BPF_SRC(insn->code) == BPF_X) {
+ struct bpf_reg_state *src_reg = regs + insn->src_reg;
+ struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
+
+ if (BPF_CLASS(insn->code) == BPF_ALU64) {
+ /* case: R1 = R2
+ * copy register state to dest reg
+ */
+ if (src_reg->type == SCALAR_VALUE && !src_reg->id)
+ /* Assign src and dst registers the same ID
+ * that will be used by find_equal_scalars()
+ * to propagate min/max range.
+ */
+ src_reg->id = ++env->id_gen;
+ copy_register_state(dst_reg, src_reg);
+ dst_reg->live |= REG_LIVE_WRITTEN;
+ dst_reg->subreg_def = DEF_NOT_SUBREG;
+ } else {
+ /* R1 = (u32) R2 */
+ if (is_pointer_value(env, insn->src_reg)) {
+ verbose(env,
+ "R%d partial copy of pointer\n",
+ insn->src_reg);
+ return -EACCES;
+ } else if (src_reg->type == SCALAR_VALUE) {
+ copy_register_state(dst_reg, src_reg);
+ /* Make sure ID is cleared otherwise
+ * dst_reg min/max could be incorrectly
+ * propagated into src_reg by find_equal_scalars()
+ */
+ dst_reg->id = 0;
+ dst_reg->live |= REG_LIVE_WRITTEN;
+ dst_reg->subreg_def = env->insn_idx + 1;
+ } else {
+ mark_reg_unknown(env, regs,
+ insn->dst_reg);
+ }
+ zext_32_to_64(dst_reg);
+ reg_bounds_sync(dst_reg);
+ }
+ } else {
+ /* case: R = imm
+ * remember the value we stored into this reg
+ */
+ /* clear any state __mark_reg_known doesn't set */
+ mark_reg_unknown(env, regs, insn->dst_reg);
+ regs[insn->dst_reg].type = SCALAR_VALUE;
+ if (BPF_CLASS(insn->code) == BPF_ALU64) {
+ __mark_reg_known(regs + insn->dst_reg,
+ insn->imm);
+ } else {
+ __mark_reg_known(regs + insn->dst_reg,
+ (u32)insn->imm);
+ }
+ }
+
+ } else if (opcode > BPF_END) {
+ verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
+ return -EINVAL;
+
+ } else { /* all other ALU ops: and, sub, xor, add, ... */
+
+ if (BPF_SRC(insn->code) == BPF_X) {
+ if (insn->imm != 0 || insn->off != 0) {
+ verbose(env, "BPF_ALU uses reserved fields\n");
+ return -EINVAL;
+ }
+ /* check src1 operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+ } else {
+ if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
+ verbose(env, "BPF_ALU uses reserved fields\n");
+ return -EINVAL;
+ }
+ }
+
+ /* check src2 operand */
+ err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+ if (err)
+ return err;
+
+ if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
+ BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
+ verbose(env, "div by zero\n");
+ return -EINVAL;
+ }
+
+ if ((opcode == BPF_LSH || opcode == BPF_RSH ||
+ opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
+ int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
+
+ if (insn->imm < 0 || insn->imm >= size) {
+ verbose(env, "invalid shift %d\n", insn->imm);
+ return -EINVAL;
+ }
+ }
+
+ /* check dest operand */
+ err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
+ if (err)
+ return err;
+
+ return adjust_reg_min_max_vals(env, insn);
+ }
+
+ return 0;
+}
+
+static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
+ struct bpf_reg_state *dst_reg,
+ enum bpf_reg_type type,
+ bool range_right_open)
+{
+ struct bpf_func_state *state;
+ struct bpf_reg_state *reg;
+ int new_range;
+
+ if (dst_reg->off < 0 ||
+ (dst_reg->off == 0 && range_right_open))
+ /* This doesn't give us any range */
+ return;
+
+ if (dst_reg->umax_value > MAX_PACKET_OFF ||
+ dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
+ /* Risk of overflow. For instance, ptr + (1<<63) may be less
+ * than pkt_end, but that's because it's also less than pkt.
+ */
+ return;
+
+ new_range = dst_reg->off;
+ if (range_right_open)
+ new_range++;
+
+ /* Examples for register markings:
+ *
+ * pkt_data in dst register:
+ *
+ * r2 = r3;
+ * r2 += 8;
+ * if (r2 > pkt_end) goto <handle exception>
+ * <access okay>
+ *
+ * r2 = r3;
+ * r2 += 8;
+ * if (r2 < pkt_end) goto <access okay>
+ * <handle exception>
+ *
+ * Where:
+ * r2 == dst_reg, pkt_end == src_reg
+ * r2=pkt(id=n,off=8,r=0)
+ * r3=pkt(id=n,off=0,r=0)
+ *
+ * pkt_data in src register:
+ *
+ * r2 = r3;
+ * r2 += 8;
+ * if (pkt_end >= r2) goto <access okay>
+ * <handle exception>
+ *
+ * r2 = r3;
+ * r2 += 8;
+ * if (pkt_end <= r2) goto <handle exception>
+ * <access okay>
+ *
+ * Where:
+ * pkt_end == dst_reg, r2 == src_reg
+ * r2=pkt(id=n,off=8,r=0)
+ * r3=pkt(id=n,off=0,r=0)
+ *
+ * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
+ * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
+ * and [r3, r3 + 8-1) respectively is safe to access depending on
+ * the check.
+ */
+
+ /* If our ids match, then we must have the same max_value. And we
+ * don't care about the other reg's fixed offset, since if it's too big
+ * the range won't allow anything.
+ * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
+ */
+ bpf_for_each_reg_in_vstate(vstate, state, reg, ({
+ if (reg->type == type && reg->id == dst_reg->id)
+ /* keep the maximum range already checked */
+ reg->range = max(reg->range, new_range);
+ }));
+}
+
+static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
+{
+ struct tnum subreg = tnum_subreg(reg->var_off);
+ s32 sval = (s32)val;
+
+ switch (opcode) {
+ case BPF_JEQ:
+ if (tnum_is_const(subreg))
+ return !!tnum_equals_const(subreg, val);
+ break;
+ case BPF_JNE:
+ if (tnum_is_const(subreg))
+ return !tnum_equals_const(subreg, val);
+ break;
+ case BPF_JSET:
+ if ((~subreg.mask & subreg.value) & val)
+ return 1;
+ if (!((subreg.mask | subreg.value) & val))
+ return 0;
+ break;
+ case BPF_JGT:
+ if (reg->u32_min_value > val)
+ return 1;
+ else if (reg->u32_max_value <= val)
+ return 0;
+ break;
+ case BPF_JSGT:
+ if (reg->s32_min_value > sval)
+ return 1;
+ else if (reg->s32_max_value <= sval)
+ return 0;
+ break;
+ case BPF_JLT:
+ if (reg->u32_max_value < val)
+ return 1;
+ else if (reg->u32_min_value >= val)
+ return 0;
+ break;
+ case BPF_JSLT:
+ if (reg->s32_max_value < sval)
+ return 1;
+ else if (reg->s32_min_value >= sval)
+ return 0;
+ break;
+ case BPF_JGE:
+ if (reg->u32_min_value >= val)
+ return 1;
+ else if (reg->u32_max_value < val)
+ return 0;
+ break;
+ case BPF_JSGE:
+ if (reg->s32_min_value >= sval)
+ return 1;
+ else if (reg->s32_max_value < sval)
+ return 0;
+ break;
+ case BPF_JLE:
+ if (reg->u32_max_value <= val)
+ return 1;
+ else if (reg->u32_min_value > val)
+ return 0;
+ break;
+ case BPF_JSLE:
+ if (reg->s32_max_value <= sval)
+ return 1;
+ else if (reg->s32_min_value > sval)
+ return 0;
+ break;
+ }
+
+ return -1;
+}
+
+
+static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
+{
+ s64 sval = (s64)val;
+
+ switch (opcode) {
+ case BPF_JEQ:
+ if (tnum_is_const(reg->var_off))
+ return !!tnum_equals_const(reg->var_off, val);
+ break;
+ case BPF_JNE:
+ if (tnum_is_const(reg->var_off))
+ return !tnum_equals_const(reg->var_off, val);
+ break;
+ case BPF_JSET:
+ if ((~reg->var_off.mask & reg->var_off.value) & val)
+ return 1;
+ if (!((reg->var_off.mask | reg->var_off.value) & val))
+ return 0;
+ break;
+ case BPF_JGT:
+ if (reg->umin_value > val)
+ return 1;
+ else if (reg->umax_value <= val)
+ return 0;
+ break;
+ case BPF_JSGT:
+ if (reg->smin_value > sval)
+ return 1;
+ else if (reg->smax_value <= sval)
+ return 0;
+ break;
+ case BPF_JLT:
+ if (reg->umax_value < val)
+ return 1;
+ else if (reg->umin_value >= val)
+ return 0;
+ break;
+ case BPF_JSLT:
+ if (reg->smax_value < sval)
+ return 1;
+ else if (reg->smin_value >= sval)
+ return 0;
+ break;
+ case BPF_JGE:
+ if (reg->umin_value >= val)
+ return 1;
+ else if (reg->umax_value < val)
+ return 0;
+ break;
+ case BPF_JSGE:
+ if (reg->smin_value >= sval)
+ return 1;
+ else if (reg->smax_value < sval)
+ return 0;
+ break;
+ case BPF_JLE:
+ if (reg->umax_value <= val)
+ return 1;
+ else if (reg->umin_value > val)
+ return 0;
+ break;
+ case BPF_JSLE:
+ if (reg->smax_value <= sval)
+ return 1;
+ else if (reg->smin_value > sval)
+ return 0;
+ break;
+ }
+
+ return -1;
+}
+
+/* compute branch direction of the expression "if (reg opcode val) goto target;"
+ * and return:
+ * 1 - branch will be taken and "goto target" will be executed
+ * 0 - branch will not be taken and fall-through to next insn
+ * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
+ * range [0,10]
+ */
+static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
+ bool is_jmp32)
+{
+ if (__is_pointer_value(false, reg)) {
+ if (!reg_type_not_null(reg->type))
+ return -1;
+
+ /* If pointer is valid tests against zero will fail so we can
+ * use this to direct branch taken.
+ */
+ if (val != 0)
+ return -1;
+
+ switch (opcode) {
+ case BPF_JEQ:
+ return 0;
+ case BPF_JNE:
+ return 1;
+ default:
+ return -1;
+ }
+ }
+
+ if (is_jmp32)
+ return is_branch32_taken(reg, val, opcode);
+ return is_branch64_taken(reg, val, opcode);
+}
+
+static int flip_opcode(u32 opcode)
+{
+ /* How can we transform "a <op> b" into "b <op> a"? */
+ static const u8 opcode_flip[16] = {
+ /* these stay the same */
+ [BPF_JEQ >> 4] = BPF_JEQ,
+ [BPF_JNE >> 4] = BPF_JNE,
+ [BPF_JSET >> 4] = BPF_JSET,
+ /* these swap "lesser" and "greater" (L and G in the opcodes) */
+ [BPF_JGE >> 4] = BPF_JLE,
+ [BPF_JGT >> 4] = BPF_JLT,
+ [BPF_JLE >> 4] = BPF_JGE,
+ [BPF_JLT >> 4] = BPF_JGT,
+ [BPF_JSGE >> 4] = BPF_JSLE,
+ [BPF_JSGT >> 4] = BPF_JSLT,
+ [BPF_JSLE >> 4] = BPF_JSGE,
+ [BPF_JSLT >> 4] = BPF_JSGT
+ };
+ return opcode_flip[opcode >> 4];
+}
+
+static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg,
+ u8 opcode)
+{
+ struct bpf_reg_state *pkt;
+
+ if (src_reg->type == PTR_TO_PACKET_END) {
+ pkt = dst_reg;
+ } else if (dst_reg->type == PTR_TO_PACKET_END) {
+ pkt = src_reg;
+ opcode = flip_opcode(opcode);
+ } else {
+ return -1;
+ }
+
+ if (pkt->range >= 0)
+ return -1;
+
+ switch (opcode) {
+ case BPF_JLE:
+ /* pkt <= pkt_end */
+ fallthrough;
+ case BPF_JGT:
+ /* pkt > pkt_end */
+ if (pkt->range == BEYOND_PKT_END)
+ /* pkt has at last one extra byte beyond pkt_end */
+ return opcode == BPF_JGT;
+ break;
+ case BPF_JLT:
+ /* pkt < pkt_end */
+ fallthrough;
+ case BPF_JGE:
+ /* pkt >= pkt_end */
+ if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
+ return opcode == BPF_JGE;
+ break;
+ }
+ return -1;
+}
+
+/* Adjusts the register min/max values in the case that the dst_reg is the
+ * variable register that we are working on, and src_reg is a constant or we're
+ * simply doing a BPF_K check.
+ * In JEQ/JNE cases we also adjust the var_off values.
+ */
+static void reg_set_min_max(struct bpf_reg_state *true_reg,
+ struct bpf_reg_state *false_reg,
+ u64 val, u32 val32,
+ u8 opcode, bool is_jmp32)
+{
+ struct tnum false_32off = tnum_subreg(false_reg->var_off);
+ struct tnum false_64off = false_reg->var_off;
+ struct tnum true_32off = tnum_subreg(true_reg->var_off);
+ struct tnum true_64off = true_reg->var_off;
+ s64 sval = (s64)val;
+ s32 sval32 = (s32)val32;
+
+ /* If the dst_reg is a pointer, we can't learn anything about its
+ * variable offset from the compare (unless src_reg were a pointer into
+ * the same object, but we don't bother with that.
+ * Since false_reg and true_reg have the same type by construction, we
+ * only need to check one of them for pointerness.
+ */
+ if (__is_pointer_value(false, false_reg))
+ return;
+
+ switch (opcode) {
+ /* JEQ/JNE comparison doesn't change the register equivalence.
+ *
+ * r1 = r2;
+ * if (r1 == 42) goto label;
+ * ...
+ * label: // here both r1 and r2 are known to be 42.
+ *
+ * Hence when marking register as known preserve it's ID.
+ */
+ case BPF_JEQ:
+ if (is_jmp32) {
+ __mark_reg32_known(true_reg, val32);
+ true_32off = tnum_subreg(true_reg->var_off);
+ } else {
+ ___mark_reg_known(true_reg, val);
+ true_64off = true_reg->var_off;
+ }
+ break;
+ case BPF_JNE:
+ if (is_jmp32) {
+ __mark_reg32_known(false_reg, val32);
+ false_32off = tnum_subreg(false_reg->var_off);
+ } else {
+ ___mark_reg_known(false_reg, val);
+ false_64off = false_reg->var_off;
+ }
+ break;
+ case BPF_JSET:
+ if (is_jmp32) {
+ false_32off = tnum_and(false_32off, tnum_const(~val32));
+ if (is_power_of_2(val32))
+ true_32off = tnum_or(true_32off,
+ tnum_const(val32));
+ } else {
+ false_64off = tnum_and(false_64off, tnum_const(~val));
+ if (is_power_of_2(val))
+ true_64off = tnum_or(true_64off,
+ tnum_const(val));
+ }
+ break;
+ case BPF_JGE:
+ case BPF_JGT:
+ {
+ if (is_jmp32) {
+ u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
+ u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
+
+ false_reg->u32_max_value = min(false_reg->u32_max_value,
+ false_umax);
+ true_reg->u32_min_value = max(true_reg->u32_min_value,
+ true_umin);
+ } else {
+ u64 false_umax = opcode == BPF_JGT ? val : val - 1;
+ u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
+
+ false_reg->umax_value = min(false_reg->umax_value, false_umax);
+ true_reg->umin_value = max(true_reg->umin_value, true_umin);
+ }
+ break;
+ }
+ case BPF_JSGE:
+ case BPF_JSGT:
+ {
+ if (is_jmp32) {
+ s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
+ s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
+
+ false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
+ true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
+ } else {
+ s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
+ s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
+
+ false_reg->smax_value = min(false_reg->smax_value, false_smax);
+ true_reg->smin_value = max(true_reg->smin_value, true_smin);
+ }
+ break;
+ }
+ case BPF_JLE:
+ case BPF_JLT:
+ {
+ if (is_jmp32) {
+ u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
+ u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
+
+ false_reg->u32_min_value = max(false_reg->u32_min_value,
+ false_umin);
+ true_reg->u32_max_value = min(true_reg->u32_max_value,
+ true_umax);
+ } else {
+ u64 false_umin = opcode == BPF_JLT ? val : val + 1;
+ u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
+
+ false_reg->umin_value = max(false_reg->umin_value, false_umin);
+ true_reg->umax_value = min(true_reg->umax_value, true_umax);
+ }
+ break;
+ }
+ case BPF_JSLE:
+ case BPF_JSLT:
+ {
+ if (is_jmp32) {
+ s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
+ s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
+
+ false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
+ true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
+ } else {
+ s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
+ s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
+
+ false_reg->smin_value = max(false_reg->smin_value, false_smin);
+ true_reg->smax_value = min(true_reg->smax_value, true_smax);
+ }
+ break;
+ }
+ default:
+ return;
+ }
+
+ if (is_jmp32) {
+ false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
+ tnum_subreg(false_32off));
+ true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
+ tnum_subreg(true_32off));
+ __reg_combine_32_into_64(false_reg);
+ __reg_combine_32_into_64(true_reg);
+ } else {
+ false_reg->var_off = false_64off;
+ true_reg->var_off = true_64off;
+ __reg_combine_64_into_32(false_reg);
+ __reg_combine_64_into_32(true_reg);
+ }
+}
+
+/* Same as above, but for the case that dst_reg holds a constant and src_reg is
+ * the variable reg.
+ */
+static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
+ struct bpf_reg_state *false_reg,
+ u64 val, u32 val32,
+ u8 opcode, bool is_jmp32)
+{
+ opcode = flip_opcode(opcode);
+ /* This uses zero as "not present in table"; luckily the zero opcode,
+ * BPF_JA, can't get here.
+ */
+ if (opcode)
+ reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
+}
+
+/* Regs are known to be equal, so intersect their min/max/var_off */
+static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
+ struct bpf_reg_state *dst_reg)
+{
+ src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
+ dst_reg->umin_value);
+ src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
+ dst_reg->umax_value);
+ src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
+ dst_reg->smin_value);
+ src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
+ dst_reg->smax_value);
+ src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
+ dst_reg->var_off);
+ reg_bounds_sync(src_reg);
+ reg_bounds_sync(dst_reg);
+}
+
+static void reg_combine_min_max(struct bpf_reg_state *true_src,
+ struct bpf_reg_state *true_dst,
+ struct bpf_reg_state *false_src,
+ struct bpf_reg_state *false_dst,
+ u8 opcode)
+{
+ switch (opcode) {
+ case BPF_JEQ:
+ __reg_combine_min_max(true_src, true_dst);
+ break;
+ case BPF_JNE:
+ __reg_combine_min_max(false_src, false_dst);
+ break;
+ }
+}
+
+static void mark_ptr_or_null_reg(struct bpf_func_state *state,
+ struct bpf_reg_state *reg, u32 id,
+ bool is_null)
+{
+ if (type_may_be_null(reg->type) && reg->id == id &&
+ !WARN_ON_ONCE(!reg->id)) {
+ if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
+ !tnum_equals_const(reg->var_off, 0) ||
+ reg->off)) {
+ /* Old offset (both fixed and variable parts) should
+ * have been known-zero, because we don't allow pointer
+ * arithmetic on pointers that might be NULL. If we
+ * see this happening, don't convert the register.
+ */
+ return;
+ }
+ if (is_null) {
+ reg->type = SCALAR_VALUE;
+ /* We don't need id and ref_obj_id from this point
+ * onwards anymore, thus we should better reset it,
+ * so that state pruning has chances to take effect.
+ */
+ reg->id = 0;
+ reg->ref_obj_id = 0;
+
+ return;
+ }
+
+ mark_ptr_not_null_reg(reg);
+
+ if (!reg_may_point_to_spin_lock(reg)) {
+ /* For not-NULL ptr, reg->ref_obj_id will be reset
+ * in release_reference().
+ *
+ * reg->id is still used by spin_lock ptr. Other
+ * than spin_lock ptr type, reg->id can be reset.
+ */
+ reg->id = 0;
+ }
+ }
+}
+
+/* The logic is similar to find_good_pkt_pointers(), both could eventually
+ * be folded together at some point.
+ */
+static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
+ bool is_null)
+{
+ struct bpf_func_state *state = vstate->frame[vstate->curframe];
+ struct bpf_reg_state *regs = state->regs, *reg;
+ u32 ref_obj_id = regs[regno].ref_obj_id;
+ u32 id = regs[regno].id;
+
+ if (ref_obj_id && ref_obj_id == id && is_null)
+ /* regs[regno] is in the " == NULL" branch.
+ * No one could have freed the reference state before
+ * doing the NULL check.
+ */
+ WARN_ON_ONCE(release_reference_state(state, id));
+
+ bpf_for_each_reg_in_vstate(vstate, state, reg, ({
+ mark_ptr_or_null_reg(state, reg, id, is_null);
+ }));
+}
+
+static bool try_match_pkt_pointers(const struct bpf_insn *insn,
+ struct bpf_reg_state *dst_reg,
+ struct bpf_reg_state *src_reg,
+ struct bpf_verifier_state *this_branch,
+ struct bpf_verifier_state *other_branch)
+{
+ if (BPF_SRC(insn->code) != BPF_X)
+ return false;
+
+ /* Pointers are always 64-bit. */
+ if (BPF_CLASS(insn->code) == BPF_JMP32)
+ return false;
+
+ switch (BPF_OP(insn->code)) {
+ case BPF_JGT:
+ if ((dst_reg->type == PTR_TO_PACKET &&
+ src_reg->type == PTR_TO_PACKET_END) ||
+ (dst_reg->type == PTR_TO_PACKET_META &&
+ reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
+ /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
+ find_good_pkt_pointers(this_branch, dst_reg,
+ dst_reg->type, false);
+ mark_pkt_end(other_branch, insn->dst_reg, true);
+ } else if ((dst_reg->type == PTR_TO_PACKET_END &&
+ src_reg->type == PTR_TO_PACKET) ||
+ (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
+ src_reg->type == PTR_TO_PACKET_META)) {
+ /* pkt_end > pkt_data', pkt_data > pkt_meta' */
+ find_good_pkt_pointers(other_branch, src_reg,
+ src_reg->type, true);
+ mark_pkt_end(this_branch, insn->src_reg, false);
+ } else {
+ return false;
+ }
+ break;
+ case BPF_JLT:
+ if ((dst_reg->type == PTR_TO_PACKET &&
+ src_reg->type == PTR_TO_PACKET_END) ||
+ (dst_reg->type == PTR_TO_PACKET_META &&
+ reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
+ /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
+ find_good_pkt_pointers(other_branch, dst_reg,
+ dst_reg->type, true);
+ mark_pkt_end(this_branch, insn->dst_reg, false);
+ } else if ((dst_reg->type == PTR_TO_PACKET_END &&
+ src_reg->type == PTR_TO_PACKET) ||
+ (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
+ src_reg->type == PTR_TO_PACKET_META)) {
+ /* pkt_end < pkt_data', pkt_data > pkt_meta' */
+ find_good_pkt_pointers(this_branch, src_reg,
+ src_reg->type, false);
+ mark_pkt_end(other_branch, insn->src_reg, true);
+ } else {
+ return false;
+ }
+ break;
+ case BPF_JGE:
+ if ((dst_reg->type == PTR_TO_PACKET &&
+ src_reg->type == PTR_TO_PACKET_END) ||
+ (dst_reg->type == PTR_TO_PACKET_META &&
+ reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
+ /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
+ find_good_pkt_pointers(this_branch, dst_reg,
+ dst_reg->type, true);
+ mark_pkt_end(other_branch, insn->dst_reg, false);
+ } else if ((dst_reg->type == PTR_TO_PACKET_END &&
+ src_reg->type == PTR_TO_PACKET) ||
+ (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
+ src_reg->type == PTR_TO_PACKET_META)) {
+ /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
+ find_good_pkt_pointers(other_branch, src_reg,
+ src_reg->type, false);
+ mark_pkt_end(this_branch, insn->src_reg, true);
+ } else {
+ return false;
+ }
+ break;
+ case BPF_JLE:
+ if ((dst_reg->type == PTR_TO_PACKET &&
+ src_reg->type == PTR_TO_PACKET_END) ||
+ (dst_reg->type == PTR_TO_PACKET_META &&
+ reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
+ /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
+ find_good_pkt_pointers(other_branch, dst_reg,
+ dst_reg->type, false);
+ mark_pkt_end(this_branch, insn->dst_reg, true);
+ } else if ((dst_reg->type == PTR_TO_PACKET_END &&
+ src_reg->type == PTR_TO_PACKET) ||
+ (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
+ src_reg->type == PTR_TO_PACKET_META)) {
+ /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
+ find_good_pkt_pointers(this_branch, src_reg,
+ src_reg->type, true);
+ mark_pkt_end(other_branch, insn->src_reg, false);
+ } else {
+ return false;
+ }
+ break;
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+static void find_equal_scalars(struct bpf_verifier_state *vstate,
+ struct bpf_reg_state *known_reg)
+{
+ struct bpf_func_state *state;
+ struct bpf_reg_state *reg;
+
+ bpf_for_each_reg_in_vstate(vstate, state, reg, ({
+ if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
+ copy_register_state(reg, known_reg);
+ }));
+}
+
+static int check_cond_jmp_op(struct bpf_verifier_env *env,
+ struct bpf_insn *insn, int *insn_idx)
+{
+ struct bpf_verifier_state *this_branch = env->cur_state;
+ struct bpf_verifier_state *other_branch;
+ struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
+ struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
+ u8 opcode = BPF_OP(insn->code);
+ bool is_jmp32;
+ int pred = -1;
+ int err;
+
+ /* Only conditional jumps are expected to reach here. */
+ if (opcode == BPF_JA || opcode > BPF_JSLE) {
+ verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
+ return -EINVAL;
+ }
+
+ /* check src2 operand */
+ err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+ if (err)
+ return err;
+
+ dst_reg = &regs[insn->dst_reg];
+ if (BPF_SRC(insn->code) == BPF_X) {
+ if (insn->imm != 0) {
+ verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ /* check src1 operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+
+ src_reg = &regs[insn->src_reg];
+ if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
+ is_pointer_value(env, insn->src_reg)) {
+ verbose(env, "R%d pointer comparison prohibited\n",
+ insn->src_reg);
+ return -EACCES;
+ }
+ } else {
+ if (insn->src_reg != BPF_REG_0) {
+ verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
+ return -EINVAL;
+ }
+ }
+
+ is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
+
+ if (BPF_SRC(insn->code) == BPF_K) {
+ pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
+ } else if (src_reg->type == SCALAR_VALUE &&
+ is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
+ pred = is_branch_taken(dst_reg,
+ tnum_subreg(src_reg->var_off).value,
+ opcode,
+ is_jmp32);
+ } else if (src_reg->type == SCALAR_VALUE &&
+ !is_jmp32 && tnum_is_const(src_reg->var_off)) {
+ pred = is_branch_taken(dst_reg,
+ src_reg->var_off.value,
+ opcode,
+ is_jmp32);
+ } else if (reg_is_pkt_pointer_any(dst_reg) &&
+ reg_is_pkt_pointer_any(src_reg) &&
+ !is_jmp32) {
+ pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
+ }
+
+ if (pred >= 0) {
+ /* If we get here with a dst_reg pointer type it is because
+ * above is_branch_taken() special cased the 0 comparison.
+ */
+ if (!__is_pointer_value(false, dst_reg))
+ err = mark_chain_precision(env, insn->dst_reg);
+ if (BPF_SRC(insn->code) == BPF_X && !err &&
+ !__is_pointer_value(false, src_reg))
+ err = mark_chain_precision(env, insn->src_reg);
+ if (err)
+ return err;
+ }
+
+ if (pred == 1) {
+ /* Only follow the goto, ignore fall-through. If needed, push
+ * the fall-through branch for simulation under speculative
+ * execution.
+ */
+ if (!env->bypass_spec_v1 &&
+ !sanitize_speculative_path(env, insn, *insn_idx + 1,
+ *insn_idx))
+ return -EFAULT;
+ if (env->log.level & BPF_LOG_LEVEL)
+ print_insn_state(env, this_branch->frame[this_branch->curframe]);
+ *insn_idx += insn->off;
+ return 0;
+ } else if (pred == 0) {
+ /* Only follow the fall-through branch, since that's where the
+ * program will go. If needed, push the goto branch for
+ * simulation under speculative execution.
+ */
+ if (!env->bypass_spec_v1 &&
+ !sanitize_speculative_path(env, insn,
+ *insn_idx + insn->off + 1,
+ *insn_idx))
+ return -EFAULT;
+ if (env->log.level & BPF_LOG_LEVEL)
+ print_insn_state(env, this_branch->frame[this_branch->curframe]);
+ return 0;
+ }
+
+ other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
+ false);
+ if (!other_branch)
+ return -EFAULT;
+ other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
+
+ /* detect if we are comparing against a constant value so we can adjust
+ * our min/max values for our dst register.
+ * this is only legit if both are scalars (or pointers to the same
+ * object, I suppose, but we don't support that right now), because
+ * otherwise the different base pointers mean the offsets aren't
+ * comparable.
+ */
+ if (BPF_SRC(insn->code) == BPF_X) {
+ struct bpf_reg_state *src_reg = &regs[insn->src_reg];
+
+ if (dst_reg->type == SCALAR_VALUE &&
+ src_reg->type == SCALAR_VALUE) {
+ if (tnum_is_const(src_reg->var_off) ||
+ (is_jmp32 &&
+ tnum_is_const(tnum_subreg(src_reg->var_off))))
+ reg_set_min_max(&other_branch_regs[insn->dst_reg],
+ dst_reg,
+ src_reg->var_off.value,
+ tnum_subreg(src_reg->var_off).value,
+ opcode, is_jmp32);
+ else if (tnum_is_const(dst_reg->var_off) ||
+ (is_jmp32 &&
+ tnum_is_const(tnum_subreg(dst_reg->var_off))))
+ reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
+ src_reg,
+ dst_reg->var_off.value,
+ tnum_subreg(dst_reg->var_off).value,
+ opcode, is_jmp32);
+ else if (!is_jmp32 &&
+ (opcode == BPF_JEQ || opcode == BPF_JNE))
+ /* Comparing for equality, we can combine knowledge */
+ reg_combine_min_max(&other_branch_regs[insn->src_reg],
+ &other_branch_regs[insn->dst_reg],
+ src_reg, dst_reg, opcode);
+ if (src_reg->id &&
+ !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
+ find_equal_scalars(this_branch, src_reg);
+ find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
+ }
+
+ }
+ } else if (dst_reg->type == SCALAR_VALUE) {
+ reg_set_min_max(&other_branch_regs[insn->dst_reg],
+ dst_reg, insn->imm, (u32)insn->imm,
+ opcode, is_jmp32);
+ }
+
+ if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
+ !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
+ find_equal_scalars(this_branch, dst_reg);
+ find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
+ }
+
+ /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
+ * NOTE: these optimizations below are related with pointer comparison
+ * which will never be JMP32.
+ */
+ if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
+ insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
+ type_may_be_null(dst_reg->type)) {
+ /* Mark all identical registers in each branch as either
+ * safe or unknown depending R == 0 or R != 0 conditional.
+ */
+ mark_ptr_or_null_regs(this_branch, insn->dst_reg,
+ opcode == BPF_JNE);
+ mark_ptr_or_null_regs(other_branch, insn->dst_reg,
+ opcode == BPF_JEQ);
+ } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
+ this_branch, other_branch) &&
+ is_pointer_value(env, insn->dst_reg)) {
+ verbose(env, "R%d pointer comparison prohibited\n",
+ insn->dst_reg);
+ return -EACCES;
+ }
+ if (env->log.level & BPF_LOG_LEVEL)
+ print_insn_state(env, this_branch->frame[this_branch->curframe]);
+ return 0;
+}
+
+/* verify BPF_LD_IMM64 instruction */
+static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+ struct bpf_insn_aux_data *aux = cur_aux(env);
+ struct bpf_reg_state *regs = cur_regs(env);
+ struct bpf_reg_state *dst_reg;
+ struct bpf_map *map;
+ int err;
+
+ if (BPF_SIZE(insn->code) != BPF_DW) {
+ verbose(env, "invalid BPF_LD_IMM insn\n");
+ return -EINVAL;
+ }
+ if (insn->off != 0) {
+ verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ err = check_reg_arg(env, insn->dst_reg, DST_OP);
+ if (err)
+ return err;
+
+ dst_reg = &regs[insn->dst_reg];
+ if (insn->src_reg == 0) {
+ u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
+
+ dst_reg->type = SCALAR_VALUE;
+ __mark_reg_known(&regs[insn->dst_reg], imm);
+ return 0;
+ }
+
+ /* All special src_reg cases are listed below. From this point onwards
+ * we either succeed and assign a corresponding dst_reg->type after
+ * zeroing the offset, or fail and reject the program.
+ */
+ mark_reg_known_zero(env, regs, insn->dst_reg);
+
+ if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
+ dst_reg->type = aux->btf_var.reg_type;
+ switch (base_type(dst_reg->type)) {
+ case PTR_TO_MEM:
+ dst_reg->mem_size = aux->btf_var.mem_size;
+ break;
+ case PTR_TO_BTF_ID:
+ dst_reg->btf = aux->btf_var.btf;
+ dst_reg->btf_id = aux->btf_var.btf_id;
+ break;
+ default:
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EFAULT;
+ }
+ return 0;
+ }
+
+ if (insn->src_reg == BPF_PSEUDO_FUNC) {
+ struct bpf_prog_aux *aux = env->prog->aux;
+ u32 subprogno = find_subprog(env,
+ env->insn_idx + insn->imm + 1);
+
+ if (!aux->func_info) {
+ verbose(env, "missing btf func_info\n");
+ return -EINVAL;
+ }
+ if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
+ verbose(env, "callback function not static\n");
+ return -EINVAL;
+ }
+
+ dst_reg->type = PTR_TO_FUNC;
+ dst_reg->subprogno = subprogno;
+ return 0;
+ }
+
+ map = env->used_maps[aux->map_index];
+ dst_reg->map_ptr = map;
+
+ if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
+ insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
+ dst_reg->type = PTR_TO_MAP_VALUE;
+ dst_reg->off = aux->map_off;
+ if (map_value_has_spin_lock(map))
+ dst_reg->id = ++env->id_gen;
+ } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
+ insn->src_reg == BPF_PSEUDO_MAP_IDX) {
+ dst_reg->type = CONST_PTR_TO_MAP;
+ } else {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static bool may_access_skb(enum bpf_prog_type type)
+{
+ switch (type) {
+ case BPF_PROG_TYPE_SOCKET_FILTER:
+ case BPF_PROG_TYPE_SCHED_CLS:
+ case BPF_PROG_TYPE_SCHED_ACT:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* verify safety of LD_ABS|LD_IND instructions:
+ * - they can only appear in the programs where ctx == skb
+ * - since they are wrappers of function calls, they scratch R1-R5 registers,
+ * preserve R6-R9, and store return value into R0
+ *
+ * Implicit input:
+ * ctx == skb == R6 == CTX
+ *
+ * Explicit input:
+ * SRC == any register
+ * IMM == 32-bit immediate
+ *
+ * Output:
+ * R0 - 8/16/32-bit skb data converted to cpu endianness
+ */
+static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ static const int ctx_reg = BPF_REG_6;
+ u8 mode = BPF_MODE(insn->code);
+ int i, err;
+
+ if (!may_access_skb(resolve_prog_type(env->prog))) {
+ verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
+ return -EINVAL;
+ }
+
+ if (!env->ops->gen_ld_abs) {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ }
+
+ if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
+ BPF_SIZE(insn->code) == BPF_DW ||
+ (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
+ verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ /* check whether implicit source operand (register R6) is readable */
+ err = check_reg_arg(env, ctx_reg, SRC_OP);
+ if (err)
+ return err;
+
+ /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
+ * gen_ld_abs() may terminate the program at runtime, leading to
+ * reference leak.
+ */
+ err = check_reference_leak(env);
+ if (err) {
+ verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
+ return err;
+ }
+
+ if (env->cur_state->active_spin_lock) {
+ verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
+ return -EINVAL;
+ }
+
+ if (regs[ctx_reg].type != PTR_TO_CTX) {
+ verbose(env,
+ "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
+ return -EINVAL;
+ }
+
+ if (mode == BPF_IND) {
+ /* check explicit source operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+ }
+
+ err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
+ if (err < 0)
+ return err;
+
+ /* reset caller saved regs to unreadable */
+ for (i = 0; i < CALLER_SAVED_REGS; i++) {
+ mark_reg_not_init(env, regs, caller_saved[i]);
+ check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
+ }
+
+ /* mark destination R0 register as readable, since it contains
+ * the value fetched from the packet.
+ * Already marked as written above.
+ */
+ mark_reg_unknown(env, regs, BPF_REG_0);
+ /* ld_abs load up to 32-bit skb data. */
+ regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
+ return 0;
+}
+
+static int check_return_code(struct bpf_verifier_env *env)
+{
+ struct tnum enforce_attach_type_range = tnum_unknown;
+ const struct bpf_prog *prog = env->prog;
+ struct bpf_reg_state *reg;
+ struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
+ enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
+ int err;
+ struct bpf_func_state *frame = env->cur_state->frame[0];
+ const bool is_subprog = frame->subprogno;
+
+ /* LSM and struct_ops func-ptr's return type could be "void" */
+ if (!is_subprog) {
+ switch (prog_type) {
+ case BPF_PROG_TYPE_LSM:
+ if (prog->expected_attach_type == BPF_LSM_CGROUP)
+ /* See below, can be 0 or 0-1 depending on hook. */
+ break;
+ fallthrough;
+ case BPF_PROG_TYPE_STRUCT_OPS:
+ if (!prog->aux->attach_func_proto->type)
+ return 0;
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* eBPF calling convention is such that R0 is used
+ * to return the value from eBPF program.
+ * Make sure that it's readable at this time
+ * of bpf_exit, which means that program wrote
+ * something into it earlier
+ */
+ err = check_reg_arg(env, BPF_REG_0, SRC_OP);
+ if (err)
+ return err;
+
+ if (is_pointer_value(env, BPF_REG_0)) {
+ verbose(env, "R0 leaks addr as return value\n");
+ return -EACCES;
+ }
+
+ reg = cur_regs(env) + BPF_REG_0;
+
+ if (frame->in_async_callback_fn) {
+ /* enforce return zero from async callbacks like timer */
+ if (reg->type != SCALAR_VALUE) {
+ verbose(env, "In async callback the register R0 is not a known value (%s)\n",
+ reg_type_str(env, reg->type));
+ return -EINVAL;
+ }
+
+ if (!tnum_in(const_0, reg->var_off)) {
+ verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
+ return -EINVAL;
+ }
+ return 0;
+ }
+
+ if (is_subprog) {
+ if (reg->type != SCALAR_VALUE) {
+ verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
+ reg_type_str(env, reg->type));
+ return -EINVAL;
+ }
+ return 0;
+ }
+
+ switch (prog_type) {
+ case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
+ if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
+ env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
+ env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
+ env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
+ env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
+ env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
+ range = tnum_range(1, 1);
+ if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
+ env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
+ range = tnum_range(0, 3);
+ break;
+ case BPF_PROG_TYPE_CGROUP_SKB:
+ if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
+ range = tnum_range(0, 3);
+ enforce_attach_type_range = tnum_range(2, 3);
+ }
+ break;
+ case BPF_PROG_TYPE_CGROUP_SOCK:
+ case BPF_PROG_TYPE_SOCK_OPS:
+ case BPF_PROG_TYPE_CGROUP_DEVICE:
+ case BPF_PROG_TYPE_CGROUP_SYSCTL:
+ case BPF_PROG_TYPE_CGROUP_SOCKOPT:
+ break;
+ case BPF_PROG_TYPE_RAW_TRACEPOINT:
+ if (!env->prog->aux->attach_btf_id)
+ return 0;
+ range = tnum_const(0);
+ break;
+ case BPF_PROG_TYPE_TRACING:
+ switch (env->prog->expected_attach_type) {
+ case BPF_TRACE_FENTRY:
+ case BPF_TRACE_FEXIT:
+ range = tnum_const(0);
+ break;
+ case BPF_TRACE_RAW_TP:
+ case BPF_MODIFY_RETURN:
+ return 0;
+ case BPF_TRACE_ITER:
+ break;
+ default:
+ return -ENOTSUPP;
+ }
+ break;
+ case BPF_PROG_TYPE_SK_LOOKUP:
+ range = tnum_range(SK_DROP, SK_PASS);
+ break;
+
+ case BPF_PROG_TYPE_LSM:
+ if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
+ /* Regular BPF_PROG_TYPE_LSM programs can return
+ * any value.
+ */
+ return 0;
+ }
+ if (!env->prog->aux->attach_func_proto->type) {
+ /* Make sure programs that attach to void
+ * hooks don't try to modify return value.
+ */
+ range = tnum_range(1, 1);
+ }
+ break;
+
+ case BPF_PROG_TYPE_EXT:
+ /* freplace program can return anything as its return value
+ * depends on the to-be-replaced kernel func or bpf program.
+ */
+ default:
+ return 0;
+ }
+
+ if (reg->type != SCALAR_VALUE) {
+ verbose(env, "At program exit the register R0 is not a known value (%s)\n",
+ reg_type_str(env, reg->type));
+ return -EINVAL;
+ }
+
+ if (!tnum_in(range, reg->var_off)) {
+ verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
+ if (prog->expected_attach_type == BPF_LSM_CGROUP &&
+ prog_type == BPF_PROG_TYPE_LSM &&
+ !prog->aux->attach_func_proto->type)
+ verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
+ return -EINVAL;
+ }
+
+ if (!tnum_is_unknown(enforce_attach_type_range) &&
+ tnum_in(enforce_attach_type_range, reg->var_off))
+ env->prog->enforce_expected_attach_type = 1;
+ return 0;
+}
+
+/* non-recursive DFS pseudo code
+ * 1 procedure DFS-iterative(G,v):
+ * 2 label v as discovered
+ * 3 let S be a stack
+ * 4 S.push(v)
+ * 5 while S is not empty
+ * 6 t <- S.pop()
+ * 7 if t is what we're looking for:
+ * 8 return t
+ * 9 for all edges e in G.adjacentEdges(t) do
+ * 10 if edge e is already labelled
+ * 11 continue with the next edge
+ * 12 w <- G.adjacentVertex(t,e)
+ * 13 if vertex w is not discovered and not explored
+ * 14 label e as tree-edge
+ * 15 label w as discovered
+ * 16 S.push(w)
+ * 17 continue at 5
+ * 18 else if vertex w is discovered
+ * 19 label e as back-edge
+ * 20 else
+ * 21 // vertex w is explored
+ * 22 label e as forward- or cross-edge
+ * 23 label t as explored
+ * 24 S.pop()
+ *
+ * convention:
+ * 0x10 - discovered
+ * 0x11 - discovered and fall-through edge labelled
+ * 0x12 - discovered and fall-through and branch edges labelled
+ * 0x20 - explored
+ */
+
+enum {
+ DISCOVERED = 0x10,
+ EXPLORED = 0x20,
+ FALLTHROUGH = 1,
+ BRANCH = 2,
+};
+
+static u32 state_htab_size(struct bpf_verifier_env *env)
+{
+ return env->prog->len;
+}
+
+static struct bpf_verifier_state_list **explored_state(
+ struct bpf_verifier_env *env,
+ int idx)
+{
+ struct bpf_verifier_state *cur = env->cur_state;
+ struct bpf_func_state *state = cur->frame[cur->curframe];
+
+ return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
+}
+
+static void mark_prune_point(struct bpf_verifier_env *env, int idx)
+{
+ env->insn_aux_data[idx].prune_point = true;
+}
+
+static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
+{
+ return env->insn_aux_data[insn_idx].prune_point;
+}
+
+enum {
+ DONE_EXPLORING = 0,
+ KEEP_EXPLORING = 1,
+};
+
+/* t, w, e - match pseudo-code above:
+ * t - index of current instruction
+ * w - next instruction
+ * e - edge
+ */
+static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
+ bool loop_ok)
+{
+ int *insn_stack = env->cfg.insn_stack;
+ int *insn_state = env->cfg.insn_state;
+
+ if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
+ return DONE_EXPLORING;
+
+ if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
+ return DONE_EXPLORING;
+
+ if (w < 0 || w >= env->prog->len) {
+ verbose_linfo(env, t, "%d: ", t);
+ verbose(env, "jump out of range from insn %d to %d\n", t, w);
+ return -EINVAL;
+ }
+
+ if (e == BRANCH) {
+ /* mark branch target for state pruning */
+ mark_prune_point(env, w);
+ mark_jmp_point(env, w);
+ }
+
+ if (insn_state[w] == 0) {
+ /* tree-edge */
+ insn_state[t] = DISCOVERED | e;
+ insn_state[w] = DISCOVERED;
+ if (env->cfg.cur_stack >= env->prog->len)
+ return -E2BIG;
+ insn_stack[env->cfg.cur_stack++] = w;
+ return KEEP_EXPLORING;
+ } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
+ if (loop_ok && env->bpf_capable)
+ return DONE_EXPLORING;
+ verbose_linfo(env, t, "%d: ", t);
+ verbose_linfo(env, w, "%d: ", w);
+ verbose(env, "back-edge from insn %d to %d\n", t, w);
+ return -EINVAL;
+ } else if (insn_state[w] == EXPLORED) {
+ /* forward- or cross-edge */
+ insn_state[t] = DISCOVERED | e;
+ } else {
+ verbose(env, "insn state internal bug\n");
+ return -EFAULT;
+ }
+ return DONE_EXPLORING;
+}
+
+static int visit_func_call_insn(int t, struct bpf_insn *insns,
+ struct bpf_verifier_env *env,
+ bool visit_callee)
+{
+ int ret, insn_sz;
+
+ insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
+ ret = push_insn(t, t + insn_sz, FALLTHROUGH, env, false);
+ if (ret)
+ return ret;
+
+ mark_prune_point(env, t + insn_sz);
+ /* when we exit from subprog, we need to record non-linear history */
+ mark_jmp_point(env, t + insn_sz);
+
+ if (visit_callee) {
+ mark_prune_point(env, t);
+ ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
+ /* It's ok to allow recursion from CFG point of
+ * view. __check_func_call() will do the actual
+ * check.
+ */
+ bpf_pseudo_func(insns + t));
+ }
+ return ret;
+}
+
+/* Visits the instruction at index t and returns one of the following:
+ * < 0 - an error occurred
+ * DONE_EXPLORING - the instruction was fully explored
+ * KEEP_EXPLORING - there is still work to be done before it is fully explored
+ */
+static int visit_insn(int t, struct bpf_verifier_env *env)
+{
+ struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
+ int ret, off, insn_sz;
+
+ if (bpf_pseudo_func(insn))
+ return visit_func_call_insn(t, insns, env, true);
+
+ /* All non-branch instructions have a single fall-through edge. */
+ if (BPF_CLASS(insn->code) != BPF_JMP &&
+ BPF_CLASS(insn->code) != BPF_JMP32) {
+ insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
+ return push_insn(t, t + insn_sz, FALLTHROUGH, env, false);
+ }
+
+ switch (BPF_OP(insn->code)) {
+ case BPF_EXIT:
+ return DONE_EXPLORING;
+
+ case BPF_CALL:
+ if (insn->imm == BPF_FUNC_timer_set_callback)
+ /* Mark this call insn as a prune point to trigger
+ * is_state_visited() check before call itself is
+ * processed by __check_func_call(). Otherwise new
+ * async state will be pushed for further exploration.
+ */
+ mark_prune_point(env, t);
+ return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
+
+ case BPF_JA:
+ if (BPF_SRC(insn->code) != BPF_K)
+ return -EINVAL;
+
+ if (BPF_CLASS(insn->code) == BPF_JMP)
+ off = insn->off;
+ else
+ off = insn->imm;
+
+ /* unconditional jump with single edge */
+ ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
+ true);
+ if (ret)
+ return ret;
+
+ mark_prune_point(env, t + off + 1);
+ mark_jmp_point(env, t + off + 1);
+
+ return ret;
+
+ default:
+ /* conditional jump with two edges */
+ mark_prune_point(env, t);
+
+ ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
+ if (ret)
+ return ret;
+
+ return push_insn(t, t + insn->off + 1, BRANCH, env, true);
+ }
+}
+
+/* non-recursive depth-first-search to detect loops in BPF program
+ * loop == back-edge in directed graph
+ */
+static int check_cfg(struct bpf_verifier_env *env)
+{
+ int insn_cnt = env->prog->len;
+ int *insn_stack, *insn_state;
+ int ret = 0;
+ int i;
+
+ insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
+ if (!insn_state)
+ return -ENOMEM;
+
+ insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
+ if (!insn_stack) {
+ kvfree(insn_state);
+ return -ENOMEM;
+ }
+
+ insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
+ insn_stack[0] = 0; /* 0 is the first instruction */
+ env->cfg.cur_stack = 1;
+
+ while (env->cfg.cur_stack > 0) {
+ int t = insn_stack[env->cfg.cur_stack - 1];
+
+ ret = visit_insn(t, env);
+ switch (ret) {
+ case DONE_EXPLORING:
+ insn_state[t] = EXPLORED;
+ env->cfg.cur_stack--;
+ break;
+ case KEEP_EXPLORING:
+ break;
+ default:
+ if (ret > 0) {
+ verbose(env, "visit_insn internal bug\n");
+ ret = -EFAULT;
+ }
+ goto err_free;
+ }
+ }
+
+ if (env->cfg.cur_stack < 0) {
+ verbose(env, "pop stack internal bug\n");
+ ret = -EFAULT;
+ goto err_free;
+ }
+
+ for (i = 0; i < insn_cnt; i++) {
+ struct bpf_insn *insn = &env->prog->insnsi[i];
+
+ if (insn_state[i] != EXPLORED) {
+ verbose(env, "unreachable insn %d\n", i);
+ ret = -EINVAL;
+ goto err_free;
+ }
+ if (bpf_is_ldimm64(insn)) {
+ if (insn_state[i + 1] != 0) {
+ verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
+ ret = -EINVAL;
+ goto err_free;
+ }
+ i++; /* skip second half of ldimm64 */
+ }
+ }
+ ret = 0; /* cfg looks good */
+
+err_free:
+ kvfree(insn_state);
+ kvfree(insn_stack);
+ env->cfg.insn_state = env->cfg.insn_stack = NULL;
+ return ret;
+}
+
+static int check_abnormal_return(struct bpf_verifier_env *env)
+{
+ int i;
+
+ for (i = 1; i < env->subprog_cnt; i++) {
+ if (env->subprog_info[i].has_ld_abs) {
+ verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
+ return -EINVAL;
+ }
+ if (env->subprog_info[i].has_tail_call) {
+ verbose(env, "tail_call is not allowed in subprogs without BTF\n");
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+/* The minimum supported BTF func info size */
+#define MIN_BPF_FUNCINFO_SIZE 8
+#define MAX_FUNCINFO_REC_SIZE 252
+
+static int check_btf_func(struct bpf_verifier_env *env,
+ const union bpf_attr *attr,
+ bpfptr_t uattr)
+{
+ const struct btf_type *type, *func_proto, *ret_type;
+ u32 i, nfuncs, urec_size, min_size;
+ u32 krec_size = sizeof(struct bpf_func_info);
+ struct bpf_func_info *krecord;
+ struct bpf_func_info_aux *info_aux = NULL;
+ struct bpf_prog *prog;
+ const struct btf *btf;
+ bpfptr_t urecord;
+ u32 prev_offset = 0;
+ bool scalar_return;
+ int ret = -ENOMEM;
+
+ nfuncs = attr->func_info_cnt;
+ if (!nfuncs) {
+ if (check_abnormal_return(env))
+ return -EINVAL;
+ return 0;
+ }
+
+ if (nfuncs != env->subprog_cnt) {
+ verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
+ return -EINVAL;
+ }
+
+ urec_size = attr->func_info_rec_size;
+ if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
+ urec_size > MAX_FUNCINFO_REC_SIZE ||
+ urec_size % sizeof(u32)) {
+ verbose(env, "invalid func info rec size %u\n", urec_size);
+ return -EINVAL;
+ }
+
+ prog = env->prog;
+ btf = prog->aux->btf;
+
+ urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
+ min_size = min_t(u32, krec_size, urec_size);
+
+ krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
+ if (!krecord)
+ return -ENOMEM;
+ info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
+ if (!info_aux)
+ goto err_free;
+
+ for (i = 0; i < nfuncs; i++) {
+ ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
+ if (ret) {
+ if (ret == -E2BIG) {
+ verbose(env, "nonzero tailing record in func info");
+ /* set the size kernel expects so loader can zero
+ * out the rest of the record.
+ */
+ if (copy_to_bpfptr_offset(uattr,
+ offsetof(union bpf_attr, func_info_rec_size),
+ &min_size, sizeof(min_size)))
+ ret = -EFAULT;
+ }
+ goto err_free;
+ }
+
+ if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
+ ret = -EFAULT;
+ goto err_free;
+ }
+
+ /* check insn_off */
+ ret = -EINVAL;
+ if (i == 0) {
+ if (krecord[i].insn_off) {
+ verbose(env,
+ "nonzero insn_off %u for the first func info record",
+ krecord[i].insn_off);
+ goto err_free;
+ }
+ } else if (krecord[i].insn_off <= prev_offset) {
+ verbose(env,
+ "same or smaller insn offset (%u) than previous func info record (%u)",
+ krecord[i].insn_off, prev_offset);
+ goto err_free;
+ }
+
+ if (env->subprog_info[i].start != krecord[i].insn_off) {
+ verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
+ goto err_free;
+ }
+
+ /* check type_id */
+ type = btf_type_by_id(btf, krecord[i].type_id);
+ if (!type || !btf_type_is_func(type)) {
+ verbose(env, "invalid type id %d in func info",
+ krecord[i].type_id);
+ goto err_free;
+ }
+ info_aux[i].linkage = BTF_INFO_VLEN(type->info);
+
+ func_proto = btf_type_by_id(btf, type->type);
+ if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
+ /* btf_func_check() already verified it during BTF load */
+ goto err_free;
+ ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
+ scalar_return =
+ btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
+ if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
+ verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
+ goto err_free;
+ }
+ if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
+ verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
+ goto err_free;
+ }
+
+ prev_offset = krecord[i].insn_off;
+ bpfptr_add(&urecord, urec_size);
+ }
+
+ prog->aux->func_info = krecord;
+ prog->aux->func_info_cnt = nfuncs;
+ prog->aux->func_info_aux = info_aux;
+ return 0;
+
+err_free:
+ kvfree(krecord);
+ kfree(info_aux);
+ return ret;
+}
+
+static void adjust_btf_func(struct bpf_verifier_env *env)
+{
+ struct bpf_prog_aux *aux = env->prog->aux;
+ int i;
+
+ if (!aux->func_info)
+ return;
+
+ for (i = 0; i < env->subprog_cnt; i++)
+ aux->func_info[i].insn_off = env->subprog_info[i].start;
+}
+
+#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
+#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
+
+static int check_btf_line(struct bpf_verifier_env *env,
+ const union bpf_attr *attr,
+ bpfptr_t uattr)
+{
+ u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
+ struct bpf_subprog_info *sub;
+ struct bpf_line_info *linfo;
+ struct bpf_prog *prog;
+ const struct btf *btf;
+ bpfptr_t ulinfo;
+ int err;
+
+ nr_linfo = attr->line_info_cnt;
+ if (!nr_linfo)
+ return 0;
+ if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
+ return -EINVAL;
+
+ rec_size = attr->line_info_rec_size;
+ if (rec_size < MIN_BPF_LINEINFO_SIZE ||
+ rec_size > MAX_LINEINFO_REC_SIZE ||
+ rec_size & (sizeof(u32) - 1))
+ return -EINVAL;
+
+ /* Need to zero it in case the userspace may
+ * pass in a smaller bpf_line_info object.
+ */
+ linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!linfo)
+ return -ENOMEM;
+
+ prog = env->prog;
+ btf = prog->aux->btf;
+
+ s = 0;
+ sub = env->subprog_info;
+ ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
+ expected_size = sizeof(struct bpf_line_info);
+ ncopy = min_t(u32, expected_size, rec_size);
+ for (i = 0; i < nr_linfo; i++) {
+ err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
+ if (err) {
+ if (err == -E2BIG) {
+ verbose(env, "nonzero tailing record in line_info");
+ if (copy_to_bpfptr_offset(uattr,
+ offsetof(union bpf_attr, line_info_rec_size),
+ &expected_size, sizeof(expected_size)))
+ err = -EFAULT;
+ }
+ goto err_free;
+ }
+
+ if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
+ err = -EFAULT;
+ goto err_free;
+ }
+
+ /*
+ * Check insn_off to ensure
+ * 1) strictly increasing AND
+ * 2) bounded by prog->len
+ *
+ * The linfo[0].insn_off == 0 check logically falls into
+ * the later "missing bpf_line_info for func..." case
+ * because the first linfo[0].insn_off must be the
+ * first sub also and the first sub must have
+ * subprog_info[0].start == 0.
+ */
+ if ((i && linfo[i].insn_off <= prev_offset) ||
+ linfo[i].insn_off >= prog->len) {
+ verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
+ i, linfo[i].insn_off, prev_offset,
+ prog->len);
+ err = -EINVAL;
+ goto err_free;
+ }
+
+ if (!prog->insnsi[linfo[i].insn_off].code) {
+ verbose(env,
+ "Invalid insn code at line_info[%u].insn_off\n",
+ i);
+ err = -EINVAL;
+ goto err_free;
+ }
+
+ if (!btf_name_by_offset(btf, linfo[i].line_off) ||
+ !btf_name_by_offset(btf, linfo[i].file_name_off)) {
+ verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
+ err = -EINVAL;
+ goto err_free;
+ }
+
+ if (s != env->subprog_cnt) {
+ if (linfo[i].insn_off == sub[s].start) {
+ sub[s].linfo_idx = i;
+ s++;
+ } else if (sub[s].start < linfo[i].insn_off) {
+ verbose(env, "missing bpf_line_info for func#%u\n", s);
+ err = -EINVAL;
+ goto err_free;
+ }
+ }
+
+ prev_offset = linfo[i].insn_off;
+ bpfptr_add(&ulinfo, rec_size);
+ }
+
+ if (s != env->subprog_cnt) {
+ verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
+ env->subprog_cnt - s, s);
+ err = -EINVAL;
+ goto err_free;
+ }
+
+ prog->aux->linfo = linfo;
+ prog->aux->nr_linfo = nr_linfo;
+
+ return 0;
+
+err_free:
+ kvfree(linfo);
+ return err;
+}
+
+#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
+#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
+
+static int check_core_relo(struct bpf_verifier_env *env,
+ const union bpf_attr *attr,
+ bpfptr_t uattr)
+{
+ u32 i, nr_core_relo, ncopy, expected_size, rec_size;
+ struct bpf_core_relo core_relo = {};
+ struct bpf_prog *prog = env->prog;
+ const struct btf *btf = prog->aux->btf;
+ struct bpf_core_ctx ctx = {
+ .log = &env->log,
+ .btf = btf,
+ };
+ bpfptr_t u_core_relo;
+ int err;
+
+ nr_core_relo = attr->core_relo_cnt;
+ if (!nr_core_relo)
+ return 0;
+ if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
+ return -EINVAL;
+
+ rec_size = attr->core_relo_rec_size;
+ if (rec_size < MIN_CORE_RELO_SIZE ||
+ rec_size > MAX_CORE_RELO_SIZE ||
+ rec_size % sizeof(u32))
+ return -EINVAL;
+
+ u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
+ expected_size = sizeof(struct bpf_core_relo);
+ ncopy = min_t(u32, expected_size, rec_size);
+
+ /* Unlike func_info and line_info, copy and apply each CO-RE
+ * relocation record one at a time.
+ */
+ for (i = 0; i < nr_core_relo; i++) {
+ /* future proofing when sizeof(bpf_core_relo) changes */
+ err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
+ if (err) {
+ if (err == -E2BIG) {
+ verbose(env, "nonzero tailing record in core_relo");
+ if (copy_to_bpfptr_offset(uattr,
+ offsetof(union bpf_attr, core_relo_rec_size),
+ &expected_size, sizeof(expected_size)))
+ err = -EFAULT;
+ }
+ break;
+ }
+
+ if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
+ err = -EFAULT;
+ break;
+ }
+
+ if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
+ verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
+ i, core_relo.insn_off, prog->len);
+ err = -EINVAL;
+ break;
+ }
+
+ err = bpf_core_apply(&ctx, &core_relo, i,
+ &prog->insnsi[core_relo.insn_off / 8]);
+ if (err)
+ break;
+ bpfptr_add(&u_core_relo, rec_size);
+ }
+ return err;
+}
+
+static int check_btf_info(struct bpf_verifier_env *env,
+ const union bpf_attr *attr,
+ bpfptr_t uattr)
+{
+ struct btf *btf;
+ int err;
+
+ if (!attr->func_info_cnt && !attr->line_info_cnt) {
+ if (check_abnormal_return(env))
+ return -EINVAL;
+ return 0;
+ }
+
+ btf = btf_get_by_fd(attr->prog_btf_fd);
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+ if (btf_is_kernel(btf)) {
+ btf_put(btf);
+ return -EACCES;
+ }
+ env->prog->aux->btf = btf;
+
+ err = check_btf_func(env, attr, uattr);
+ if (err)
+ return err;
+
+ err = check_btf_line(env, attr, uattr);
+ if (err)
+ return err;
+
+ err = check_core_relo(env, attr, uattr);
+ if (err)
+ return err;
+
+ return 0;
+}
+
+/* check %cur's range satisfies %old's */
+static bool range_within(struct bpf_reg_state *old,
+ struct bpf_reg_state *cur)
+{
+ return old->umin_value <= cur->umin_value &&
+ old->umax_value >= cur->umax_value &&
+ old->smin_value <= cur->smin_value &&
+ old->smax_value >= cur->smax_value &&
+ old->u32_min_value <= cur->u32_min_value &&
+ old->u32_max_value >= cur->u32_max_value &&
+ old->s32_min_value <= cur->s32_min_value &&
+ old->s32_max_value >= cur->s32_max_value;
+}
+
+/* If in the old state two registers had the same id, then they need to have
+ * the same id in the new state as well. But that id could be different from
+ * the old state, so we need to track the mapping from old to new ids.
+ * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
+ * regs with old id 5 must also have new id 9 for the new state to be safe. But
+ * regs with a different old id could still have new id 9, we don't care about
+ * that.
+ * So we look through our idmap to see if this old id has been seen before. If
+ * so, we require the new id to match; otherwise, we add the id pair to the map.
+ */
+static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
+{
+ unsigned int i;
+
+ for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
+ if (!idmap[i].old) {
+ /* Reached an empty slot; haven't seen this id before */
+ idmap[i].old = old_id;
+ idmap[i].cur = cur_id;
+ return true;
+ }
+ if (idmap[i].old == old_id)
+ return idmap[i].cur == cur_id;
+ }
+ /* We ran out of idmap slots, which should be impossible */
+ WARN_ON_ONCE(1);
+ return false;
+}
+
+static void clean_func_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *st)
+{
+ enum bpf_reg_liveness live;
+ int i, j;
+
+ for (i = 0; i < BPF_REG_FP; i++) {
+ live = st->regs[i].live;
+ /* liveness must not touch this register anymore */
+ st->regs[i].live |= REG_LIVE_DONE;
+ if (!(live & REG_LIVE_READ))
+ /* since the register is unused, clear its state
+ * to make further comparison simpler
+ */
+ __mark_reg_not_init(env, &st->regs[i]);
+ }
+
+ for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
+ live = st->stack[i].spilled_ptr.live;
+ /* liveness must not touch this stack slot anymore */
+ st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
+ if (!(live & REG_LIVE_READ)) {
+ __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
+ for (j = 0; j < BPF_REG_SIZE; j++)
+ st->stack[i].slot_type[j] = STACK_INVALID;
+ }
+ }
+}
+
+static void clean_verifier_state(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *st)
+{
+ int i;
+
+ if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
+ /* all regs in this state in all frames were already marked */
+ return;
+
+ for (i = 0; i <= st->curframe; i++)
+ clean_func_state(env, st->frame[i]);
+}
+
+/* the parentage chains form a tree.
+ * the verifier states are added to state lists at given insn and
+ * pushed into state stack for future exploration.
+ * when the verifier reaches bpf_exit insn some of the verifer states
+ * stored in the state lists have their final liveness state already,
+ * but a lot of states will get revised from liveness point of view when
+ * the verifier explores other branches.
+ * Example:
+ * 1: r0 = 1
+ * 2: if r1 == 100 goto pc+1
+ * 3: r0 = 2
+ * 4: exit
+ * when the verifier reaches exit insn the register r0 in the state list of
+ * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
+ * of insn 2 and goes exploring further. At the insn 4 it will walk the
+ * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
+ *
+ * Since the verifier pushes the branch states as it sees them while exploring
+ * the program the condition of walking the branch instruction for the second
+ * time means that all states below this branch were already explored and
+ * their final liveness marks are already propagated.
+ * Hence when the verifier completes the search of state list in is_state_visited()
+ * we can call this clean_live_states() function to mark all liveness states
+ * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
+ * will not be used.
+ * This function also clears the registers and stack for states that !READ
+ * to simplify state merging.
+ *
+ * Important note here that walking the same branch instruction in the callee
+ * doesn't meant that the states are DONE. The verifier has to compare
+ * the callsites
+ */
+static void clean_live_states(struct bpf_verifier_env *env, int insn,
+ struct bpf_verifier_state *cur)
+{
+ struct bpf_verifier_state_list *sl;
+ int i;
+
+ sl = *explored_state(env, insn);
+ while (sl) {
+ if (sl->state.branches)
+ goto next;
+ if (sl->state.insn_idx != insn ||
+ sl->state.curframe != cur->curframe)
+ goto next;
+ for (i = 0; i <= cur->curframe; i++)
+ if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
+ goto next;
+ clean_verifier_state(env, &sl->state);
+next:
+ sl = sl->next;
+ }
+}
+
+/* Returns true if (rold safe implies rcur safe) */
+static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
+ struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
+{
+ bool equal;
+
+ if (!(rold->live & REG_LIVE_READ))
+ /* explored state didn't use this */
+ return true;
+
+ equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
+
+ if (rold->type == PTR_TO_STACK)
+ /* two stack pointers are equal only if they're pointing to
+ * the same stack frame, since fp-8 in foo != fp-8 in bar
+ */
+ return equal && rold->frameno == rcur->frameno;
+
+ if (equal)
+ return true;
+
+ if (rold->type == NOT_INIT)
+ /* explored state can't have used this */
+ return true;
+ if (rcur->type == NOT_INIT)
+ return false;
+ switch (base_type(rold->type)) {
+ case SCALAR_VALUE:
+ if (env->explore_alu_limits)
+ return false;
+ if (rcur->type == SCALAR_VALUE) {
+ if (!rold->precise)
+ return true;
+ /* new val must satisfy old val knowledge */
+ return range_within(rold, rcur) &&
+ tnum_in(rold->var_off, rcur->var_off);
+ } else {
+ /* We're trying to use a pointer in place of a scalar.
+ * Even if the scalar was unbounded, this could lead to
+ * pointer leaks because scalars are allowed to leak
+ * while pointers are not. We could make this safe in
+ * special cases if root is calling us, but it's
+ * probably not worth the hassle.
+ */
+ return false;
+ }
+ case PTR_TO_MAP_KEY:
+ case PTR_TO_MAP_VALUE:
+ /* a PTR_TO_MAP_VALUE could be safe to use as a
+ * PTR_TO_MAP_VALUE_OR_NULL into the same map.
+ * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
+ * checked, doing so could have affected others with the same
+ * id, and we can't check for that because we lost the id when
+ * we converted to a PTR_TO_MAP_VALUE.
+ */
+ if (type_may_be_null(rold->type)) {
+ if (!type_may_be_null(rcur->type))
+ return false;
+ if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
+ return false;
+ /* Check our ids match any regs they're supposed to */
+ return check_ids(rold->id, rcur->id, idmap);
+ }
+
+ /* If the new min/max/var_off satisfy the old ones and
+ * everything else matches, we are OK.
+ * 'id' is not compared, since it's only used for maps with
+ * bpf_spin_lock inside map element and in such cases if
+ * the rest of the prog is valid for one map element then
+ * it's valid for all map elements regardless of the key
+ * used in bpf_map_lookup()
+ */
+ return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
+ range_within(rold, rcur) &&
+ tnum_in(rold->var_off, rcur->var_off);
+ case PTR_TO_PACKET_META:
+ case PTR_TO_PACKET:
+ if (rcur->type != rold->type)
+ return false;
+ /* We must have at least as much range as the old ptr
+ * did, so that any accesses which were safe before are
+ * still safe. This is true even if old range < old off,
+ * since someone could have accessed through (ptr - k), or
+ * even done ptr -= k in a register, to get a safe access.
+ */
+ if (rold->range > rcur->range)
+ return false;
+ /* If the offsets don't match, we can't trust our alignment;
+ * nor can we be sure that we won't fall out of range.
+ */
+ if (rold->off != rcur->off)
+ return false;
+ /* id relations must be preserved */
+ if (rold->id && !check_ids(rold->id, rcur->id, idmap))
+ return false;
+ /* new val must satisfy old val knowledge */
+ return range_within(rold, rcur) &&
+ tnum_in(rold->var_off, rcur->var_off);
+ case PTR_TO_CTX:
+ case CONST_PTR_TO_MAP:
+ case PTR_TO_PACKET_END:
+ case PTR_TO_FLOW_KEYS:
+ case PTR_TO_SOCKET:
+ case PTR_TO_SOCK_COMMON:
+ case PTR_TO_TCP_SOCK:
+ case PTR_TO_XDP_SOCK:
+ /* Only valid matches are exact, which memcmp() above
+ * would have accepted
+ */
+ default:
+ /* Don't know what's going on, just say it's not safe */
+ return false;
+ }
+
+ /* Shouldn't get here; if we do, say it's not safe */
+ WARN_ON_ONCE(1);
+ return false;
+}
+
+static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
+ struct bpf_func_state *cur, struct bpf_id_pair *idmap)
+{
+ int i, spi;
+
+ /* walk slots of the explored stack and ignore any additional
+ * slots in the current stack, since explored(safe) state
+ * didn't use them
+ */
+ for (i = 0; i < old->allocated_stack; i++) {
+ spi = i / BPF_REG_SIZE;
+
+ if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
+ i += BPF_REG_SIZE - 1;
+ /* explored state didn't use this */
+ continue;
+ }
+
+ if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
+ continue;
+
+ /* explored stack has more populated slots than current stack
+ * and these slots were used
+ */
+ if (i >= cur->allocated_stack)
+ return false;
+
+ /* if old state was safe with misc data in the stack
+ * it will be safe with zero-initialized stack.
+ * The opposite is not true
+ */
+ if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
+ cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
+ continue;
+ if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
+ cur->stack[spi].slot_type[i % BPF_REG_SIZE])
+ /* Ex: old explored (safe) state has STACK_SPILL in
+ * this stack slot, but current has STACK_MISC ->
+ * this verifier states are not equivalent,
+ * return false to continue verification of this path
+ */
+ return false;
+ if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
+ continue;
+ if (!is_spilled_reg(&old->stack[spi]))
+ continue;
+ if (!regsafe(env, &old->stack[spi].spilled_ptr,
+ &cur->stack[spi].spilled_ptr, idmap))
+ /* when explored and current stack slot are both storing
+ * spilled registers, check that stored pointers types
+ * are the same as well.
+ * Ex: explored safe path could have stored
+ * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
+ * but current path has stored:
+ * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
+ * such verifier states are not equivalent.
+ * return false to continue verification of this path
+ */
+ return false;
+ }
+ return true;
+}
+
+static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
+{
+ if (old->acquired_refs != cur->acquired_refs)
+ return false;
+ return !memcmp(old->refs, cur->refs,
+ sizeof(*old->refs) * old->acquired_refs);
+}
+
+/* compare two verifier states
+ *
+ * all states stored in state_list are known to be valid, since
+ * verifier reached 'bpf_exit' instruction through them
+ *
+ * this function is called when verifier exploring different branches of
+ * execution popped from the state stack. If it sees an old state that has
+ * more strict register state and more strict stack state then this execution
+ * branch doesn't need to be explored further, since verifier already
+ * concluded that more strict state leads to valid finish.
+ *
+ * Therefore two states are equivalent if register state is more conservative
+ * and explored stack state is more conservative than the current one.
+ * Example:
+ * explored current
+ * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
+ * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
+ *
+ * In other words if current stack state (one being explored) has more
+ * valid slots than old one that already passed validation, it means
+ * the verifier can stop exploring and conclude that current state is valid too
+ *
+ * Similarly with registers. If explored state has register type as invalid
+ * whereas register type in current state is meaningful, it means that
+ * the current state will reach 'bpf_exit' instruction safely
+ */
+static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
+ struct bpf_func_state *cur)
+{
+ int i;
+
+ memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
+ for (i = 0; i < MAX_BPF_REG; i++)
+ if (!regsafe(env, &old->regs[i], &cur->regs[i],
+ env->idmap_scratch))
+ return false;
+
+ if (!stacksafe(env, old, cur, env->idmap_scratch))
+ return false;
+
+ if (!refsafe(old, cur))
+ return false;
+
+ return true;
+}
+
+static bool states_equal(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *old,
+ struct bpf_verifier_state *cur)
+{
+ int i;
+
+ if (old->curframe != cur->curframe)
+ return false;
+
+ /* Verification state from speculative execution simulation
+ * must never prune a non-speculative execution one.
+ */
+ if (old->speculative && !cur->speculative)
+ return false;
+
+ if (old->active_spin_lock != cur->active_spin_lock)
+ return false;
+
+ /* for states to be equal callsites have to be the same
+ * and all frame states need to be equivalent
+ */
+ for (i = 0; i <= old->curframe; i++) {
+ if (old->frame[i]->callsite != cur->frame[i]->callsite)
+ return false;
+ if (!func_states_equal(env, old->frame[i], cur->frame[i]))
+ return false;
+ }
+ return true;
+}
+
+/* Return 0 if no propagation happened. Return negative error code if error
+ * happened. Otherwise, return the propagated bit.
+ */
+static int propagate_liveness_reg(struct bpf_verifier_env *env,
+ struct bpf_reg_state *reg,
+ struct bpf_reg_state *parent_reg)
+{
+ u8 parent_flag = parent_reg->live & REG_LIVE_READ;
+ u8 flag = reg->live & REG_LIVE_READ;
+ int err;
+
+ /* When comes here, read flags of PARENT_REG or REG could be any of
+ * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
+ * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
+ */
+ if (parent_flag == REG_LIVE_READ64 ||
+ /* Or if there is no read flag from REG. */
+ !flag ||
+ /* Or if the read flag from REG is the same as PARENT_REG. */
+ parent_flag == flag)
+ return 0;
+
+ err = mark_reg_read(env, reg, parent_reg, flag);
+ if (err)
+ return err;
+
+ return flag;
+}
+
+/* A write screens off any subsequent reads; but write marks come from the
+ * straight-line code between a state and its parent. When we arrive at an
+ * equivalent state (jump target or such) we didn't arrive by the straight-line
+ * code, so read marks in the state must propagate to the parent regardless
+ * of the state's write marks. That's what 'parent == state->parent' comparison
+ * in mark_reg_read() is for.
+ */
+static int propagate_liveness(struct bpf_verifier_env *env,
+ const struct bpf_verifier_state *vstate,
+ struct bpf_verifier_state *vparent)
+{
+ struct bpf_reg_state *state_reg, *parent_reg;
+ struct bpf_func_state *state, *parent;
+ int i, frame, err = 0;
+
+ if (vparent->curframe != vstate->curframe) {
+ WARN(1, "propagate_live: parent frame %d current frame %d\n",
+ vparent->curframe, vstate->curframe);
+ return -EFAULT;
+ }
+ /* Propagate read liveness of registers... */
+ BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
+ for (frame = 0; frame <= vstate->curframe; frame++) {
+ parent = vparent->frame[frame];
+ state = vstate->frame[frame];
+ parent_reg = parent->regs;
+ state_reg = state->regs;
+ /* We don't need to worry about FP liveness, it's read-only */
+ for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
+ err = propagate_liveness_reg(env, &state_reg[i],
+ &parent_reg[i]);
+ if (err < 0)
+ return err;
+ if (err == REG_LIVE_READ64)
+ mark_insn_zext(env, &parent_reg[i]);
+ }
+
+ /* Propagate stack slots. */
+ for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
+ i < parent->allocated_stack / BPF_REG_SIZE; i++) {
+ parent_reg = &parent->stack[i].spilled_ptr;
+ state_reg = &state->stack[i].spilled_ptr;
+ err = propagate_liveness_reg(env, state_reg,
+ parent_reg);
+ if (err < 0)
+ return err;
+ }
+ }
+ return 0;
+}
+
+/* find precise scalars in the previous equivalent state and
+ * propagate them into the current state
+ */
+static int propagate_precision(struct bpf_verifier_env *env,
+ const struct bpf_verifier_state *old)
+{
+ struct bpf_reg_state *state_reg;
+ struct bpf_func_state *state;
+ int i, err = 0, fr;
+
+ for (fr = old->curframe; fr >= 0; fr--) {
+ state = old->frame[fr];
+ state_reg = state->regs;
+ for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
+ if (state_reg->type != SCALAR_VALUE ||
+ !state_reg->precise ||
+ !(state_reg->live & REG_LIVE_READ))
+ continue;
+ if (env->log.level & BPF_LOG_LEVEL2)
+ verbose(env, "frame %d: propagating r%d\n", fr, i);
+ err = mark_chain_precision_frame(env, fr, i);
+ if (err < 0)
+ return err;
+ }
+
+ for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
+ if (!is_spilled_reg(&state->stack[i]))
+ continue;
+ state_reg = &state->stack[i].spilled_ptr;
+ if (state_reg->type != SCALAR_VALUE ||
+ !state_reg->precise ||
+ !(state_reg->live & REG_LIVE_READ))
+ continue;
+ if (env->log.level & BPF_LOG_LEVEL2)
+ verbose(env, "frame %d: propagating fp%d\n",
+ fr, (-i - 1) * BPF_REG_SIZE);
+ err = mark_chain_precision_stack_frame(env, fr, i);
+ if (err < 0)
+ return err;
+ }
+ }
+ return 0;
+}
+
+static bool states_maybe_looping(struct bpf_verifier_state *old,
+ struct bpf_verifier_state *cur)
+{
+ struct bpf_func_state *fold, *fcur;
+ int i, fr = cur->curframe;
+
+ if (old->curframe != fr)
+ return false;
+
+ fold = old->frame[fr];
+ fcur = cur->frame[fr];
+ for (i = 0; i < MAX_BPF_REG; i++)
+ if (memcmp(&fold->regs[i], &fcur->regs[i],
+ offsetof(struct bpf_reg_state, parent)))
+ return false;
+ return true;
+}
+
+
+static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
+{
+ struct bpf_verifier_state_list *new_sl;
+ struct bpf_verifier_state_list *sl, **pprev;
+ struct bpf_verifier_state *cur = env->cur_state, *new;
+ int i, j, err, states_cnt = 0;
+ bool add_new_state = env->test_state_freq ? true : false;
+
+ cur->last_insn_idx = env->prev_insn_idx;
+ if (!is_prune_point(env, insn_idx))
+ /* this 'insn_idx' instruction wasn't marked, so we will not
+ * be doing state search here
+ */
+ return push_jmp_history(env, cur);
+
+ /* bpf progs typically have pruning point every 4 instructions
+ * http://vger.kernel.org/bpfconf2019.html#session-1
+ * Do not add new state for future pruning if the verifier hasn't seen
+ * at least 2 jumps and at least 8 instructions.
+ * This heuristics helps decrease 'total_states' and 'peak_states' metric.
+ * In tests that amounts to up to 50% reduction into total verifier
+ * memory consumption and 20% verifier time speedup.
+ */
+ if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
+ env->insn_processed - env->prev_insn_processed >= 8)
+ add_new_state = true;
+
+ pprev = explored_state(env, insn_idx);
+ sl = *pprev;
+
+ clean_live_states(env, insn_idx, cur);
+
+ while (sl) {
+ states_cnt++;
+ if (sl->state.insn_idx != insn_idx)
+ goto next;
+
+ if (sl->state.branches) {
+ struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
+
+ if (frame->in_async_callback_fn &&
+ frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
+ /* Different async_entry_cnt means that the verifier is
+ * processing another entry into async callback.
+ * Seeing the same state is not an indication of infinite
+ * loop or infinite recursion.
+ * But finding the same state doesn't mean that it's safe
+ * to stop processing the current state. The previous state
+ * hasn't yet reached bpf_exit, since state.branches > 0.
+ * Checking in_async_callback_fn alone is not enough either.
+ * Since the verifier still needs to catch infinite loops
+ * inside async callbacks.
+ */
+ } else if (states_maybe_looping(&sl->state, cur) &&
+ states_equal(env, &sl->state, cur)) {
+ verbose_linfo(env, insn_idx, "; ");
+ verbose(env, "infinite loop detected at insn %d\n", insn_idx);
+ return -EINVAL;
+ }
+ /* if the verifier is processing a loop, avoid adding new state
+ * too often, since different loop iterations have distinct
+ * states and may not help future pruning.
+ * This threshold shouldn't be too low to make sure that
+ * a loop with large bound will be rejected quickly.
+ * The most abusive loop will be:
+ * r1 += 1
+ * if r1 < 1000000 goto pc-2
+ * 1M insn_procssed limit / 100 == 10k peak states.
+ * This threshold shouldn't be too high either, since states
+ * at the end of the loop are likely to be useful in pruning.
+ */
+ if (env->jmps_processed - env->prev_jmps_processed < 20 &&
+ env->insn_processed - env->prev_insn_processed < 100)
+ add_new_state = false;
+ goto miss;
+ }
+ if (states_equal(env, &sl->state, cur)) {
+ sl->hit_cnt++;
+ /* reached equivalent register/stack state,
+ * prune the search.
+ * Registers read by the continuation are read by us.
+ * If we have any write marks in env->cur_state, they
+ * will prevent corresponding reads in the continuation
+ * from reaching our parent (an explored_state). Our
+ * own state will get the read marks recorded, but
+ * they'll be immediately forgotten as we're pruning
+ * this state and will pop a new one.
+ */
+ err = propagate_liveness(env, &sl->state, cur);
+
+ /* if previous state reached the exit with precision and
+ * current state is equivalent to it (except precsion marks)
+ * the precision needs to be propagated back in
+ * the current state.
+ */
+ err = err ? : push_jmp_history(env, cur);
+ err = err ? : propagate_precision(env, &sl->state);
+ if (err)
+ return err;
+ return 1;
+ }
+miss:
+ /* when new state is not going to be added do not increase miss count.
+ * Otherwise several loop iterations will remove the state
+ * recorded earlier. The goal of these heuristics is to have
+ * states from some iterations of the loop (some in the beginning
+ * and some at the end) to help pruning.
+ */
+ if (add_new_state)
+ sl->miss_cnt++;
+ /* heuristic to determine whether this state is beneficial
+ * to keep checking from state equivalence point of view.
+ * Higher numbers increase max_states_per_insn and verification time,
+ * but do not meaningfully decrease insn_processed.
+ */
+ if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
+ /* the state is unlikely to be useful. Remove it to
+ * speed up verification
+ */
+ *pprev = sl->next;
+ if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
+ u32 br = sl->state.branches;
+
+ WARN_ONCE(br,
+ "BUG live_done but branches_to_explore %d\n",
+ br);
+ free_verifier_state(&sl->state, false);
+ kfree(sl);
+ env->peak_states--;
+ } else {
+ /* cannot free this state, since parentage chain may
+ * walk it later. Add it for free_list instead to
+ * be freed at the end of verification
+ */
+ sl->next = env->free_list;
+ env->free_list = sl;
+ }
+ sl = *pprev;
+ continue;
+ }
+next:
+ pprev = &sl->next;
+ sl = *pprev;
+ }
+
+ if (env->max_states_per_insn < states_cnt)
+ env->max_states_per_insn = states_cnt;
+
+ if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
+ return push_jmp_history(env, cur);
+
+ if (!add_new_state)
+ return push_jmp_history(env, cur);
+
+ /* There were no equivalent states, remember the current one.
+ * Technically the current state is not proven to be safe yet,
+ * but it will either reach outer most bpf_exit (which means it's safe)
+ * or it will be rejected. When there are no loops the verifier won't be
+ * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
+ * again on the way to bpf_exit.
+ * When looping the sl->state.branches will be > 0 and this state
+ * will not be considered for equivalence until branches == 0.
+ */
+ new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
+ if (!new_sl)
+ return -ENOMEM;
+ env->total_states++;
+ env->peak_states++;
+ env->prev_jmps_processed = env->jmps_processed;
+ env->prev_insn_processed = env->insn_processed;
+
+ /* forget precise markings we inherited, see __mark_chain_precision */
+ if (env->bpf_capable)
+ mark_all_scalars_imprecise(env, cur);
+
+ /* add new state to the head of linked list */
+ new = &new_sl->state;
+ err = copy_verifier_state(new, cur);
+ if (err) {
+ free_verifier_state(new, false);
+ kfree(new_sl);
+ return err;
+ }
+ new->insn_idx = insn_idx;
+ WARN_ONCE(new->branches != 1,
+ "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
+
+ cur->parent = new;
+ cur->first_insn_idx = insn_idx;
+ clear_jmp_history(cur);
+ new_sl->next = *explored_state(env, insn_idx);
+ *explored_state(env, insn_idx) = new_sl;
+ /* connect new state to parentage chain. Current frame needs all
+ * registers connected. Only r6 - r9 of the callers are alive (pushed
+ * to the stack implicitly by JITs) so in callers' frames connect just
+ * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
+ * the state of the call instruction (with WRITTEN set), and r0 comes
+ * from callee with its full parentage chain, anyway.
+ */
+ /* clear write marks in current state: the writes we did are not writes
+ * our child did, so they don't screen off its reads from us.
+ * (There are no read marks in current state, because reads always mark
+ * their parent and current state never has children yet. Only
+ * explored_states can get read marks.)
+ */
+ for (j = 0; j <= cur->curframe; j++) {
+ for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
+ cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
+ for (i = 0; i < BPF_REG_FP; i++)
+ cur->frame[j]->regs[i].live = REG_LIVE_NONE;
+ }
+
+ /* all stack frames are accessible from callee, clear them all */
+ for (j = 0; j <= cur->curframe; j++) {
+ struct bpf_func_state *frame = cur->frame[j];
+ struct bpf_func_state *newframe = new->frame[j];
+
+ for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
+ frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
+ frame->stack[i].spilled_ptr.parent =
+ &newframe->stack[i].spilled_ptr;
+ }
+ }
+ return 0;
+}
+
+/* Return true if it's OK to have the same insn return a different type. */
+static bool reg_type_mismatch_ok(enum bpf_reg_type type)
+{
+ switch (base_type(type)) {
+ case PTR_TO_CTX:
+ case PTR_TO_SOCKET:
+ case PTR_TO_SOCK_COMMON:
+ case PTR_TO_TCP_SOCK:
+ case PTR_TO_XDP_SOCK:
+ case PTR_TO_BTF_ID:
+ return false;
+ default:
+ return true;
+ }
+}
+
+/* If an instruction was previously used with particular pointer types, then we
+ * need to be careful to avoid cases such as the below, where it may be ok
+ * for one branch accessing the pointer, but not ok for the other branch:
+ *
+ * R1 = sock_ptr
+ * goto X;
+ * ...
+ * R1 = some_other_valid_ptr;
+ * goto X;
+ * ...
+ * R2 = *(u32 *)(R1 + 0);
+ */
+static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
+{
+ return src != prev && (!reg_type_mismatch_ok(src) ||
+ !reg_type_mismatch_ok(prev));
+}
+
+static int do_check(struct bpf_verifier_env *env)
+{
+ bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
+ struct bpf_verifier_state *state = env->cur_state;
+ struct bpf_insn *insns = env->prog->insnsi;
+ struct bpf_reg_state *regs;
+ int insn_cnt = env->prog->len;
+ bool do_print_state = false;
+ int prev_insn_idx = -1;
+
+ for (;;) {
+ struct bpf_insn *insn;
+ u8 class;
+ int err;
+
+ env->prev_insn_idx = prev_insn_idx;
+ if (env->insn_idx >= insn_cnt) {
+ verbose(env, "invalid insn idx %d insn_cnt %d\n",
+ env->insn_idx, insn_cnt);
+ return -EFAULT;
+ }
+
+ insn = &insns[env->insn_idx];
+ class = BPF_CLASS(insn->code);
+
+ if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
+ verbose(env,
+ "BPF program is too large. Processed %d insn\n",
+ env->insn_processed);
+ return -E2BIG;
+ }
+
+ err = is_state_visited(env, env->insn_idx);
+ if (err < 0)
+ return err;
+ if (err == 1) {
+ /* found equivalent state, can prune the search */
+ if (env->log.level & BPF_LOG_LEVEL) {
+ if (do_print_state)
+ verbose(env, "\nfrom %d to %d%s: safe\n",
+ env->prev_insn_idx, env->insn_idx,
+ env->cur_state->speculative ?
+ " (speculative execution)" : "");
+ else
+ verbose(env, "%d: safe\n", env->insn_idx);
+ }
+ goto process_bpf_exit;
+ }
+
+ if (signal_pending(current))
+ return -EAGAIN;
+
+ if (need_resched())
+ cond_resched();
+
+ if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
+ verbose(env, "\nfrom %d to %d%s:",
+ env->prev_insn_idx, env->insn_idx,
+ env->cur_state->speculative ?
+ " (speculative execution)" : "");
+ print_verifier_state(env, state->frame[state->curframe], true);
+ do_print_state = false;
+ }
+
+ if (env->log.level & BPF_LOG_LEVEL) {
+ const struct bpf_insn_cbs cbs = {
+ .cb_call = disasm_kfunc_name,
+ .cb_print = verbose,
+ .private_data = env,
+ };
+
+ if (verifier_state_scratched(env))
+ print_insn_state(env, state->frame[state->curframe]);
+
+ verbose_linfo(env, env->insn_idx, "; ");
+ env->prev_log_len = env->log.len_used;
+ verbose(env, "%d: ", env->insn_idx);
+ print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
+ env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
+ env->prev_log_len = env->log.len_used;
+ }
+
+ if (bpf_prog_is_dev_bound(env->prog->aux)) {
+ err = bpf_prog_offload_verify_insn(env, env->insn_idx,
+ env->prev_insn_idx);
+ if (err)
+ return err;
+ }
+
+ regs = cur_regs(env);
+ sanitize_mark_insn_seen(env);
+ prev_insn_idx = env->insn_idx;
+
+ if (class == BPF_ALU || class == BPF_ALU64) {
+ err = check_alu_op(env, insn);
+ if (err)
+ return err;
+
+ } else if (class == BPF_LDX) {
+ enum bpf_reg_type *prev_src_type, src_reg_type;
+
+ /* check for reserved fields is already done */
+
+ /* check src operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+
+ err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
+ if (err)
+ return err;
+
+ src_reg_type = regs[insn->src_reg].type;
+
+ /* check that memory (src_reg + off) is readable,
+ * the state of dst_reg will be updated by this func
+ */
+ err = check_mem_access(env, env->insn_idx, insn->src_reg,
+ insn->off, BPF_SIZE(insn->code),
+ BPF_READ, insn->dst_reg, false);
+ if (err)
+ return err;
+
+ prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
+
+ if (*prev_src_type == NOT_INIT) {
+ /* saw a valid insn
+ * dst_reg = *(u32 *)(src_reg + off)
+ * save type to validate intersecting paths
+ */
+ *prev_src_type = src_reg_type;
+
+ } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
+ /* ABuser program is trying to use the same insn
+ * dst_reg = *(u32*) (src_reg + off)
+ * with different pointer types:
+ * src_reg == ctx in one branch and
+ * src_reg == stack|map in some other branch.
+ * Reject it.
+ */
+ verbose(env, "same insn cannot be used with different pointers\n");
+ return -EINVAL;
+ }
+
+ } else if (class == BPF_STX) {
+ enum bpf_reg_type *prev_dst_type, dst_reg_type;
+
+ if (BPF_MODE(insn->code) == BPF_ATOMIC) {
+ err = check_atomic(env, env->insn_idx, insn);
+ if (err)
+ return err;
+ env->insn_idx++;
+ continue;
+ }
+
+ if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
+ verbose(env, "BPF_STX uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ /* check src1 operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+ /* check src2 operand */
+ err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+ if (err)
+ return err;
+
+ dst_reg_type = regs[insn->dst_reg].type;
+
+ /* check that memory (dst_reg + off) is writeable */
+ err = check_mem_access(env, env->insn_idx, insn->dst_reg,
+ insn->off, BPF_SIZE(insn->code),
+ BPF_WRITE, insn->src_reg, false);
+ if (err)
+ return err;
+
+ prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
+
+ if (*prev_dst_type == NOT_INIT) {
+ *prev_dst_type = dst_reg_type;
+ } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
+ verbose(env, "same insn cannot be used with different pointers\n");
+ return -EINVAL;
+ }
+
+ } else if (class == BPF_ST) {
+ if (BPF_MODE(insn->code) != BPF_MEM ||
+ insn->src_reg != BPF_REG_0) {
+ verbose(env, "BPF_ST uses reserved fields\n");
+ return -EINVAL;
+ }
+ /* check src operand */
+ err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+ if (err)
+ return err;
+
+ if (is_ctx_reg(env, insn->dst_reg)) {
+ verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
+ insn->dst_reg,
+ reg_type_str(env, reg_state(env, insn->dst_reg)->type));
+ return -EACCES;
+ }
+
+ /* check that memory (dst_reg + off) is writeable */
+ err = check_mem_access(env, env->insn_idx, insn->dst_reg,
+ insn->off, BPF_SIZE(insn->code),
+ BPF_WRITE, -1, false);
+ if (err)
+ return err;
+
+ } else if (class == BPF_JMP || class == BPF_JMP32) {
+ u8 opcode = BPF_OP(insn->code);
+
+ env->jmps_processed++;
+ if (opcode == BPF_CALL) {
+ if (BPF_SRC(insn->code) != BPF_K ||
+ (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
+ && insn->off != 0) ||
+ (insn->src_reg != BPF_REG_0 &&
+ insn->src_reg != BPF_PSEUDO_CALL &&
+ insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
+ insn->dst_reg != BPF_REG_0 ||
+ class == BPF_JMP32) {
+ verbose(env, "BPF_CALL uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ if (env->cur_state->active_spin_lock &&
+ (insn->src_reg == BPF_PSEUDO_CALL ||
+ insn->imm != BPF_FUNC_spin_unlock)) {
+ verbose(env, "function calls are not allowed while holding a lock\n");
+ return -EINVAL;
+ }
+ if (insn->src_reg == BPF_PSEUDO_CALL)
+ err = check_func_call(env, insn, &env->insn_idx);
+ else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
+ err = check_kfunc_call(env, insn, &env->insn_idx);
+ else
+ err = check_helper_call(env, insn, &env->insn_idx);
+ if (err)
+ return err;
+ } else if (opcode == BPF_JA) {
+ if (BPF_SRC(insn->code) != BPF_K ||
+ insn->src_reg != BPF_REG_0 ||
+ insn->dst_reg != BPF_REG_0 ||
+ (class == BPF_JMP && insn->imm != 0) ||
+ (class == BPF_JMP32 && insn->off != 0)) {
+ verbose(env, "BPF_JA uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ if (class == BPF_JMP)
+ env->insn_idx += insn->off + 1;
+ else
+ env->insn_idx += insn->imm + 1;
+ continue;
+
+ } else if (opcode == BPF_EXIT) {
+ if (BPF_SRC(insn->code) != BPF_K ||
+ insn->imm != 0 ||
+ insn->src_reg != BPF_REG_0 ||
+ insn->dst_reg != BPF_REG_0 ||
+ class == BPF_JMP32) {
+ verbose(env, "BPF_EXIT uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ if (env->cur_state->active_spin_lock) {
+ verbose(env, "bpf_spin_unlock is missing\n");
+ return -EINVAL;
+ }
+
+ /* We must do check_reference_leak here before
+ * prepare_func_exit to handle the case when
+ * state->curframe > 0, it may be a callback
+ * function, for which reference_state must
+ * match caller reference state when it exits.
+ */
+ err = check_reference_leak(env);
+ if (err)
+ return err;
+
+ if (state->curframe) {
+ /* exit from nested function */
+ err = prepare_func_exit(env, &env->insn_idx);
+ if (err)
+ return err;
+ do_print_state = true;
+ continue;
+ }
+
+ err = check_return_code(env);
+ if (err)
+ return err;
+process_bpf_exit:
+ mark_verifier_state_scratched(env);
+ update_branch_counts(env, env->cur_state);
+ err = pop_stack(env, &prev_insn_idx,
+ &env->insn_idx, pop_log);
+ if (err < 0) {
+ if (err != -ENOENT)
+ return err;
+ break;
+ } else {
+ do_print_state = true;
+ continue;
+ }
+ } else {
+ err = check_cond_jmp_op(env, insn, &env->insn_idx);
+ if (err)
+ return err;
+ }
+ } else if (class == BPF_LD) {
+ u8 mode = BPF_MODE(insn->code);
+
+ if (mode == BPF_ABS || mode == BPF_IND) {
+ err = check_ld_abs(env, insn);
+ if (err)
+ return err;
+
+ } else if (mode == BPF_IMM) {
+ err = check_ld_imm(env, insn);
+ if (err)
+ return err;
+
+ env->insn_idx++;
+ sanitize_mark_insn_seen(env);
+ } else {
+ verbose(env, "invalid BPF_LD mode\n");
+ return -EINVAL;
+ }
+ } else {
+ verbose(env, "unknown insn class %d\n", class);
+ return -EINVAL;
+ }
+
+ env->insn_idx++;
+ }
+
+ return 0;
+}
+
+static int find_btf_percpu_datasec(struct btf *btf)
+{
+ const struct btf_type *t;
+ const char *tname;
+ int i, n;
+
+ /*
+ * Both vmlinux and module each have their own ".data..percpu"
+ * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
+ * types to look at only module's own BTF types.
+ */
+ n = btf_nr_types(btf);
+ if (btf_is_module(btf))
+ i = btf_nr_types(btf_vmlinux);
+ else
+ i = 1;
+
+ for(; i < n; i++) {
+ t = btf_type_by_id(btf, i);
+ if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
+ continue;
+
+ tname = btf_name_by_offset(btf, t->name_off);
+ if (!strcmp(tname, ".data..percpu"))
+ return i;
+ }
+
+ return -ENOENT;
+}
+
+/* replace pseudo btf_id with kernel symbol address */
+static int check_pseudo_btf_id(struct bpf_verifier_env *env,
+ struct bpf_insn *insn,
+ struct bpf_insn_aux_data *aux)
+{
+ const struct btf_var_secinfo *vsi;
+ const struct btf_type *datasec;
+ struct btf_mod_pair *btf_mod;
+ const struct btf_type *t;
+ const char *sym_name;
+ bool percpu = false;
+ u32 type, id = insn->imm;
+ struct btf *btf;
+ s32 datasec_id;
+ u64 addr;
+ int i, btf_fd, err;
+
+ btf_fd = insn[1].imm;
+ if (btf_fd) {
+ btf = btf_get_by_fd(btf_fd);
+ if (IS_ERR(btf)) {
+ verbose(env, "invalid module BTF object FD specified.\n");
+ return -EINVAL;
+ }
+ } else {
+ if (!btf_vmlinux) {
+ verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
+ return -EINVAL;
+ }
+ btf = btf_vmlinux;
+ btf_get(btf);
+ }
+
+ t = btf_type_by_id(btf, id);
+ if (!t) {
+ verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
+ err = -ENOENT;
+ goto err_put;
+ }
+
+ if (!btf_type_is_var(t)) {
+ verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
+ err = -EINVAL;
+ goto err_put;
+ }
+
+ sym_name = btf_name_by_offset(btf, t->name_off);
+ addr = kallsyms_lookup_name(sym_name);
+ if (!addr) {
+ verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
+ sym_name);
+ err = -ENOENT;
+ goto err_put;
+ }
+
+ datasec_id = find_btf_percpu_datasec(btf);
+ if (datasec_id > 0) {
+ datasec = btf_type_by_id(btf, datasec_id);
+ for_each_vsi(i, datasec, vsi) {
+ if (vsi->type == id) {
+ percpu = true;
+ break;
+ }
+ }
+ }
+
+ insn[0].imm = (u32)addr;
+ insn[1].imm = addr >> 32;
+
+ type = t->type;
+ t = btf_type_skip_modifiers(btf, type, NULL);
+ if (percpu) {
+ aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
+ aux->btf_var.btf = btf;
+ aux->btf_var.btf_id = type;
+ } else if (!btf_type_is_struct(t)) {
+ const struct btf_type *ret;
+ const char *tname;
+ u32 tsize;
+
+ /* resolve the type size of ksym. */
+ ret = btf_resolve_size(btf, t, &tsize);
+ if (IS_ERR(ret)) {
+ tname = btf_name_by_offset(btf, t->name_off);
+ verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
+ tname, PTR_ERR(ret));
+ err = -EINVAL;
+ goto err_put;
+ }
+ aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
+ aux->btf_var.mem_size = tsize;
+ } else {
+ aux->btf_var.reg_type = PTR_TO_BTF_ID;
+ aux->btf_var.btf = btf;
+ aux->btf_var.btf_id = type;
+ }
+
+ /* check whether we recorded this BTF (and maybe module) already */
+ for (i = 0; i < env->used_btf_cnt; i++) {
+ if (env->used_btfs[i].btf == btf) {
+ btf_put(btf);
+ return 0;
+ }
+ }
+
+ if (env->used_btf_cnt >= MAX_USED_BTFS) {
+ err = -E2BIG;
+ goto err_put;
+ }
+
+ btf_mod = &env->used_btfs[env->used_btf_cnt];
+ btf_mod->btf = btf;
+ btf_mod->module = NULL;
+
+ /* if we reference variables from kernel module, bump its refcount */
+ if (btf_is_module(btf)) {
+ btf_mod->module = btf_try_get_module(btf);
+ if (!btf_mod->module) {
+ err = -ENXIO;
+ goto err_put;
+ }
+ }
+
+ env->used_btf_cnt++;
+
+ return 0;
+err_put:
+ btf_put(btf);
+ return err;
+}
+
+static bool is_tracing_prog_type(enum bpf_prog_type type)
+{
+ switch (type) {
+ case BPF_PROG_TYPE_KPROBE:
+ case BPF_PROG_TYPE_TRACEPOINT:
+ case BPF_PROG_TYPE_PERF_EVENT:
+ case BPF_PROG_TYPE_RAW_TRACEPOINT:
+ case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static int check_map_prog_compatibility(struct bpf_verifier_env *env,
+ struct bpf_map *map,
+ struct bpf_prog *prog)
+
+{
+ enum bpf_prog_type prog_type = resolve_prog_type(prog);
+
+ if (map_value_has_spin_lock(map)) {
+ if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
+ verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
+ return -EINVAL;
+ }
+
+ if (is_tracing_prog_type(prog_type)) {
+ verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
+ return -EINVAL;
+ }
+
+ if (prog->aux->sleepable) {
+ verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
+ return -EINVAL;
+ }
+ }
+
+ if (map_value_has_timer(map)) {
+ if (is_tracing_prog_type(prog_type)) {
+ verbose(env, "tracing progs cannot use bpf_timer yet\n");
+ return -EINVAL;
+ }
+ }
+
+ if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
+ !bpf_offload_prog_map_match(prog, map)) {
+ verbose(env, "offload device mismatch between prog and map\n");
+ return -EINVAL;
+ }
+
+ if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
+ verbose(env, "bpf_struct_ops map cannot be used in prog\n");
+ return -EINVAL;
+ }
+
+ if (prog->aux->sleepable)
+ switch (map->map_type) {
+ case BPF_MAP_TYPE_HASH:
+ case BPF_MAP_TYPE_LRU_HASH:
+ case BPF_MAP_TYPE_ARRAY:
+ case BPF_MAP_TYPE_PERCPU_HASH:
+ case BPF_MAP_TYPE_PERCPU_ARRAY:
+ case BPF_MAP_TYPE_LRU_PERCPU_HASH:
+ case BPF_MAP_TYPE_ARRAY_OF_MAPS:
+ case BPF_MAP_TYPE_HASH_OF_MAPS:
+ case BPF_MAP_TYPE_RINGBUF:
+ case BPF_MAP_TYPE_USER_RINGBUF:
+ case BPF_MAP_TYPE_INODE_STORAGE:
+ case BPF_MAP_TYPE_SK_STORAGE:
+ case BPF_MAP_TYPE_TASK_STORAGE:
+ break;
+ default:
+ verbose(env,
+ "Sleepable programs can only use array, hash, and ringbuf maps\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
+{
+ return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
+ map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
+}
+
+/* find and rewrite pseudo imm in ld_imm64 instructions:
+ *
+ * 1. if it accesses map FD, replace it with actual map pointer.
+ * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
+ *
+ * NOTE: btf_vmlinux is required for converting pseudo btf_id.
+ */
+static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
+{
+ struct bpf_insn *insn = env->prog->insnsi;
+ int insn_cnt = env->prog->len;
+ int i, j, err;
+
+ err = bpf_prog_calc_tag(env->prog);
+ if (err)
+ return err;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ if (BPF_CLASS(insn->code) == BPF_LDX &&
+ (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
+ verbose(env, "BPF_LDX uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
+ struct bpf_insn_aux_data *aux;
+ struct bpf_map *map;
+ struct fd f;
+ u64 addr;
+ u32 fd;
+
+ if (i == insn_cnt - 1 || insn[1].code != 0 ||
+ insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
+ insn[1].off != 0) {
+ verbose(env, "invalid bpf_ld_imm64 insn\n");
+ return -EINVAL;
+ }
+
+ if (insn[0].src_reg == 0)
+ /* valid generic load 64-bit imm */
+ goto next_insn;
+
+ if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
+ aux = &env->insn_aux_data[i];
+ err = check_pseudo_btf_id(env, insn, aux);
+ if (err)
+ return err;
+ goto next_insn;
+ }
+
+ if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
+ aux = &env->insn_aux_data[i];
+ aux->ptr_type = PTR_TO_FUNC;
+ goto next_insn;
+ }
+
+ /* In final convert_pseudo_ld_imm64() step, this is
+ * converted into regular 64-bit imm load insn.
+ */
+ switch (insn[0].src_reg) {
+ case BPF_PSEUDO_MAP_VALUE:
+ case BPF_PSEUDO_MAP_IDX_VALUE:
+ break;
+ case BPF_PSEUDO_MAP_FD:
+ case BPF_PSEUDO_MAP_IDX:
+ if (insn[1].imm == 0)
+ break;
+ fallthrough;
+ default:
+ verbose(env, "unrecognized bpf_ld_imm64 insn\n");
+ return -EINVAL;
+ }
+
+ switch (insn[0].src_reg) {
+ case BPF_PSEUDO_MAP_IDX_VALUE:
+ case BPF_PSEUDO_MAP_IDX:
+ if (bpfptr_is_null(env->fd_array)) {
+ verbose(env, "fd_idx without fd_array is invalid\n");
+ return -EPROTO;
+ }
+ if (copy_from_bpfptr_offset(&fd, env->fd_array,
+ insn[0].imm * sizeof(fd),
+ sizeof(fd)))
+ return -EFAULT;
+ break;
+ default:
+ fd = insn[0].imm;
+ break;
+ }
+
+ f = fdget(fd);
+ map = __bpf_map_get(f);
+ if (IS_ERR(map)) {
+ verbose(env, "fd %d is not pointing to valid bpf_map\n",
+ insn[0].imm);
+ return PTR_ERR(map);
+ }
+
+ err = check_map_prog_compatibility(env, map, env->prog);
+ if (err) {
+ fdput(f);
+ return err;
+ }
+
+ aux = &env->insn_aux_data[i];
+ if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
+ insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
+ addr = (unsigned long)map;
+ } else {
+ u32 off = insn[1].imm;
+
+ if (off >= BPF_MAX_VAR_OFF) {
+ verbose(env, "direct value offset of %u is not allowed\n", off);
+ fdput(f);
+ return -EINVAL;
+ }
+
+ if (!map->ops->map_direct_value_addr) {
+ verbose(env, "no direct value access support for this map type\n");
+ fdput(f);
+ return -EINVAL;
+ }
+
+ err = map->ops->map_direct_value_addr(map, &addr, off);
+ if (err) {
+ verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
+ map->value_size, off);
+ fdput(f);
+ return err;
+ }
+
+ aux->map_off = off;
+ addr += off;
+ }
+
+ insn[0].imm = (u32)addr;
+ insn[1].imm = addr >> 32;
+
+ /* check whether we recorded this map already */
+ for (j = 0; j < env->used_map_cnt; j++) {
+ if (env->used_maps[j] == map) {
+ aux->map_index = j;
+ fdput(f);
+ goto next_insn;
+ }
+ }
+
+ if (env->used_map_cnt >= MAX_USED_MAPS) {
+ fdput(f);
+ return -E2BIG;
+ }
+
+ /* hold the map. If the program is rejected by verifier,
+ * the map will be released by release_maps() or it
+ * will be used by the valid program until it's unloaded
+ * and all maps are released in free_used_maps()
+ */
+ bpf_map_inc(map);
+
+ aux->map_index = env->used_map_cnt;
+ env->used_maps[env->used_map_cnt++] = map;
+
+ if (bpf_map_is_cgroup_storage(map) &&
+ bpf_cgroup_storage_assign(env->prog->aux, map)) {
+ verbose(env, "only one cgroup storage of each type is allowed\n");
+ fdput(f);
+ return -EBUSY;
+ }
+
+ fdput(f);
+next_insn:
+ insn++;
+ i++;
+ continue;
+ }
+
+ /* Basic sanity check before we invest more work here. */
+ if (!bpf_opcode_in_insntable(insn->code)) {
+ verbose(env, "unknown opcode %02x\n", insn->code);
+ return -EINVAL;
+ }
+ }
+
+ /* now all pseudo BPF_LD_IMM64 instructions load valid
+ * 'struct bpf_map *' into a register instead of user map_fd.
+ * These pointers will be used later by verifier to validate map access.
+ */
+ return 0;
+}
+
+/* drop refcnt of maps used by the rejected program */
+static void release_maps(struct bpf_verifier_env *env)
+{
+ __bpf_free_used_maps(env->prog->aux, env->used_maps,
+ env->used_map_cnt);
+}
+
+/* drop refcnt of maps used by the rejected program */
+static void release_btfs(struct bpf_verifier_env *env)
+{
+ __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
+ env->used_btf_cnt);
+}
+
+/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
+static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
+{
+ struct bpf_insn *insn = env->prog->insnsi;
+ int insn_cnt = env->prog->len;
+ int i;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
+ continue;
+ if (insn->src_reg == BPF_PSEUDO_FUNC)
+ continue;
+ insn->src_reg = 0;
+ }
+}
+
+/* single env->prog->insni[off] instruction was replaced with the range
+ * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
+ * [0, off) and [off, end) to new locations, so the patched range stays zero
+ */
+static void adjust_insn_aux_data(struct bpf_verifier_env *env,
+ struct bpf_insn_aux_data *new_data,
+ struct bpf_prog *new_prog, u32 off, u32 cnt)
+{
+ struct bpf_insn_aux_data *old_data = env->insn_aux_data;
+ struct bpf_insn *insn = new_prog->insnsi;
+ u32 old_seen = old_data[off].seen;
+ u32 prog_len;
+ int i;
+
+ /* aux info at OFF always needs adjustment, no matter fast path
+ * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
+ * original insn at old prog.
+ */
+ old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
+
+ if (cnt == 1)
+ return;
+ prog_len = new_prog->len;
+
+ memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
+ memcpy(new_data + off + cnt - 1, old_data + off,
+ sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
+ for (i = off; i < off + cnt - 1; i++) {
+ /* Expand insni[off]'s seen count to the patched range. */
+ new_data[i].seen = old_seen;
+ new_data[i].zext_dst = insn_has_def32(env, insn + i);
+ }
+ env->insn_aux_data = new_data;
+ vfree(old_data);
+}
+
+static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
+{
+ int i;
+
+ if (len == 1)
+ return;
+ /* NOTE: fake 'exit' subprog should be updated as well. */
+ for (i = 0; i <= env->subprog_cnt; i++) {
+ if (env->subprog_info[i].start <= off)
+ continue;
+ env->subprog_info[i].start += len - 1;
+ }
+}
+
+static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
+{
+ struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
+ int i, sz = prog->aux->size_poke_tab;
+ struct bpf_jit_poke_descriptor *desc;
+
+ for (i = 0; i < sz; i++) {
+ desc = &tab[i];
+ if (desc->insn_idx <= off)
+ continue;
+ desc->insn_idx += len - 1;
+ }
+}
+
+static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
+ const struct bpf_insn *patch, u32 len)
+{
+ struct bpf_prog *new_prog;
+ struct bpf_insn_aux_data *new_data = NULL;
+
+ if (len > 1) {
+ new_data = vzalloc(array_size(env->prog->len + len - 1,
+ sizeof(struct bpf_insn_aux_data)));
+ if (!new_data)
+ return NULL;
+ }
+
+ new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
+ if (IS_ERR(new_prog)) {
+ if (PTR_ERR(new_prog) == -ERANGE)
+ verbose(env,
+ "insn %d cannot be patched due to 16-bit range\n",
+ env->insn_aux_data[off].orig_idx);
+ vfree(new_data);
+ return NULL;
+ }
+ adjust_insn_aux_data(env, new_data, new_prog, off, len);
+ adjust_subprog_starts(env, off, len);
+ adjust_poke_descs(new_prog, off, len);
+ return new_prog;
+}
+
+static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
+ u32 off, u32 cnt)
+{
+ int i, j;
+
+ /* find first prog starting at or after off (first to remove) */
+ for (i = 0; i < env->subprog_cnt; i++)
+ if (env->subprog_info[i].start >= off)
+ break;
+ /* find first prog starting at or after off + cnt (first to stay) */
+ for (j = i; j < env->subprog_cnt; j++)
+ if (env->subprog_info[j].start >= off + cnt)
+ break;
+ /* if j doesn't start exactly at off + cnt, we are just removing
+ * the front of previous prog
+ */
+ if (env->subprog_info[j].start != off + cnt)
+ j--;
+
+ if (j > i) {
+ struct bpf_prog_aux *aux = env->prog->aux;
+ int move;
+
+ /* move fake 'exit' subprog as well */
+ move = env->subprog_cnt + 1 - j;
+
+ memmove(env->subprog_info + i,
+ env->subprog_info + j,
+ sizeof(*env->subprog_info) * move);
+ env->subprog_cnt -= j - i;
+
+ /* remove func_info */
+ if (aux->func_info) {
+ move = aux->func_info_cnt - j;
+
+ memmove(aux->func_info + i,
+ aux->func_info + j,
+ sizeof(*aux->func_info) * move);
+ aux->func_info_cnt -= j - i;
+ /* func_info->insn_off is set after all code rewrites,
+ * in adjust_btf_func() - no need to adjust
+ */
+ }
+ } else {
+ /* convert i from "first prog to remove" to "first to adjust" */
+ if (env->subprog_info[i].start == off)
+ i++;
+ }
+
+ /* update fake 'exit' subprog as well */
+ for (; i <= env->subprog_cnt; i++)
+ env->subprog_info[i].start -= cnt;
+
+ return 0;
+}
+
+static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
+ u32 cnt)
+{
+ struct bpf_prog *prog = env->prog;
+ u32 i, l_off, l_cnt, nr_linfo;
+ struct bpf_line_info *linfo;
+
+ nr_linfo = prog->aux->nr_linfo;
+ if (!nr_linfo)
+ return 0;
+
+ linfo = prog->aux->linfo;
+
+ /* find first line info to remove, count lines to be removed */
+ for (i = 0; i < nr_linfo; i++)
+ if (linfo[i].insn_off >= off)
+ break;
+
+ l_off = i;
+ l_cnt = 0;
+ for (; i < nr_linfo; i++)
+ if (linfo[i].insn_off < off + cnt)
+ l_cnt++;
+ else
+ break;
+
+ /* First live insn doesn't match first live linfo, it needs to "inherit"
+ * last removed linfo. prog is already modified, so prog->len == off
+ * means no live instructions after (tail of the program was removed).
+ */
+ if (prog->len != off && l_cnt &&
+ (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
+ l_cnt--;
+ linfo[--i].insn_off = off + cnt;
+ }
+
+ /* remove the line info which refer to the removed instructions */
+ if (l_cnt) {
+ memmove(linfo + l_off, linfo + i,
+ sizeof(*linfo) * (nr_linfo - i));
+
+ prog->aux->nr_linfo -= l_cnt;
+ nr_linfo = prog->aux->nr_linfo;
+ }
+
+ /* pull all linfo[i].insn_off >= off + cnt in by cnt */
+ for (i = l_off; i < nr_linfo; i++)
+ linfo[i].insn_off -= cnt;
+
+ /* fix up all subprogs (incl. 'exit') which start >= off */
+ for (i = 0; i <= env->subprog_cnt; i++)
+ if (env->subprog_info[i].linfo_idx > l_off) {
+ /* program may have started in the removed region but
+ * may not be fully removed
+ */
+ if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
+ env->subprog_info[i].linfo_idx -= l_cnt;
+ else
+ env->subprog_info[i].linfo_idx = l_off;
+ }
+
+ return 0;
+}
+
+static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
+{
+ struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
+ unsigned int orig_prog_len = env->prog->len;
+ int err;
+
+ if (bpf_prog_is_dev_bound(env->prog->aux))
+ bpf_prog_offload_remove_insns(env, off, cnt);
+
+ err = bpf_remove_insns(env->prog, off, cnt);
+ if (err)
+ return err;
+
+ err = adjust_subprog_starts_after_remove(env, off, cnt);
+ if (err)
+ return err;
+
+ err = bpf_adj_linfo_after_remove(env, off, cnt);
+ if (err)
+ return err;
+
+ memmove(aux_data + off, aux_data + off + cnt,
+ sizeof(*aux_data) * (orig_prog_len - off - cnt));
+
+ return 0;
+}
+
+/* The verifier does more data flow analysis than llvm and will not
+ * explore branches that are dead at run time. Malicious programs can
+ * have dead code too. Therefore replace all dead at-run-time code
+ * with 'ja -1'.
+ *
+ * Just nops are not optimal, e.g. if they would sit at the end of the
+ * program and through another bug we would manage to jump there, then
+ * we'd execute beyond program memory otherwise. Returning exception
+ * code also wouldn't work since we can have subprogs where the dead
+ * code could be located.
+ */
+static void sanitize_dead_code(struct bpf_verifier_env *env)
+{
+ struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
+ struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
+ struct bpf_insn *insn = env->prog->insnsi;
+ const int insn_cnt = env->prog->len;
+ int i;
+
+ for (i = 0; i < insn_cnt; i++) {
+ if (aux_data[i].seen)
+ continue;
+ memcpy(insn + i, &trap, sizeof(trap));
+ aux_data[i].zext_dst = false;
+ }
+}
+
+static bool insn_is_cond_jump(u8 code)
+{
+ u8 op;
+
+ op = BPF_OP(code);
+ if (BPF_CLASS(code) == BPF_JMP32)
+ return op != BPF_JA;
+
+ if (BPF_CLASS(code) != BPF_JMP)
+ return false;
+
+ return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
+}
+
+static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
+{
+ struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
+ struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
+ struct bpf_insn *insn = env->prog->insnsi;
+ const int insn_cnt = env->prog->len;
+ int i;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ if (!insn_is_cond_jump(insn->code))
+ continue;
+
+ if (!aux_data[i + 1].seen)
+ ja.off = insn->off;
+ else if (!aux_data[i + 1 + insn->off].seen)
+ ja.off = 0;
+ else
+ continue;
+
+ if (bpf_prog_is_dev_bound(env->prog->aux))
+ bpf_prog_offload_replace_insn(env, i, &ja);
+
+ memcpy(insn, &ja, sizeof(ja));
+ }
+}
+
+static int opt_remove_dead_code(struct bpf_verifier_env *env)
+{
+ struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
+ int insn_cnt = env->prog->len;
+ int i, err;
+
+ for (i = 0; i < insn_cnt; i++) {
+ int j;
+
+ j = 0;
+ while (i + j < insn_cnt && !aux_data[i + j].seen)
+ j++;
+ if (!j)
+ continue;
+
+ err = verifier_remove_insns(env, i, j);
+ if (err)
+ return err;
+ insn_cnt = env->prog->len;
+ }
+
+ return 0;
+}
+
+static int opt_remove_nops(struct bpf_verifier_env *env)
+{
+ const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
+ struct bpf_insn *insn = env->prog->insnsi;
+ int insn_cnt = env->prog->len;
+ int i, err;
+
+ for (i = 0; i < insn_cnt; i++) {
+ if (memcmp(&insn[i], &ja, sizeof(ja)))
+ continue;
+
+ err = verifier_remove_insns(env, i, 1);
+ if (err)
+ return err;
+ insn_cnt--;
+ i--;
+ }
+
+ return 0;
+}
+
+static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
+ const union bpf_attr *attr)
+{
+ struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
+ struct bpf_insn_aux_data *aux = env->insn_aux_data;
+ int i, patch_len, delta = 0, len = env->prog->len;
+ struct bpf_insn *insns = env->prog->insnsi;
+ struct bpf_prog *new_prog;
+ bool rnd_hi32;
+
+ rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
+ zext_patch[1] = BPF_ZEXT_REG(0);
+ rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
+ rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
+ rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
+ for (i = 0; i < len; i++) {
+ int adj_idx = i + delta;
+ struct bpf_insn insn;
+ int load_reg;
+
+ insn = insns[adj_idx];
+ load_reg = insn_def_regno(&insn);
+ if (!aux[adj_idx].zext_dst) {
+ u8 code, class;
+ u32 imm_rnd;
+
+ if (!rnd_hi32)
+ continue;
+
+ code = insn.code;
+ class = BPF_CLASS(code);
+ if (load_reg == -1)
+ continue;
+
+ /* NOTE: arg "reg" (the fourth one) is only used for
+ * BPF_STX + SRC_OP, so it is safe to pass NULL
+ * here.
+ */
+ if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
+ if (class == BPF_LD &&
+ BPF_MODE(code) == BPF_IMM)
+ i++;
+ continue;
+ }
+
+ /* ctx load could be transformed into wider load. */
+ if (class == BPF_LDX &&
+ aux[adj_idx].ptr_type == PTR_TO_CTX)
+ continue;
+
+ imm_rnd = get_random_u32();
+ rnd_hi32_patch[0] = insn;
+ rnd_hi32_patch[1].imm = imm_rnd;
+ rnd_hi32_patch[3].dst_reg = load_reg;
+ patch = rnd_hi32_patch;
+ patch_len = 4;
+ goto apply_patch_buffer;
+ }
+
+ /* Add in an zero-extend instruction if a) the JIT has requested
+ * it or b) it's a CMPXCHG.
+ *
+ * The latter is because: BPF_CMPXCHG always loads a value into
+ * R0, therefore always zero-extends. However some archs'
+ * equivalent instruction only does this load when the
+ * comparison is successful. This detail of CMPXCHG is
+ * orthogonal to the general zero-extension behaviour of the
+ * CPU, so it's treated independently of bpf_jit_needs_zext.
+ */
+ if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
+ continue;
+
+ /* Zero-extension is done by the caller. */
+ if (bpf_pseudo_kfunc_call(&insn))
+ continue;
+
+ if (WARN_ON(load_reg == -1)) {
+ verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
+ return -EFAULT;
+ }
+
+ zext_patch[0] = insn;
+ zext_patch[1].dst_reg = load_reg;
+ zext_patch[1].src_reg = load_reg;
+ patch = zext_patch;
+ patch_len = 2;
+apply_patch_buffer:
+ new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
+ if (!new_prog)
+ return -ENOMEM;
+ env->prog = new_prog;
+ insns = new_prog->insnsi;
+ aux = env->insn_aux_data;
+ delta += patch_len - 1;
+ }
+
+ return 0;
+}
+
+/* convert load instructions that access fields of a context type into a
+ * sequence of instructions that access fields of the underlying structure:
+ * struct __sk_buff -> struct sk_buff
+ * struct bpf_sock_ops -> struct sock
+ */
+static int convert_ctx_accesses(struct bpf_verifier_env *env)
+{
+ const struct bpf_verifier_ops *ops = env->ops;
+ int i, cnt, size, ctx_field_size, delta = 0;
+ const int insn_cnt = env->prog->len;
+ struct bpf_insn insn_buf[16], *insn;
+ u32 target_size, size_default, off;
+ struct bpf_prog *new_prog;
+ enum bpf_access_type type;
+ bool is_narrower_load;
+
+ if (ops->gen_prologue || env->seen_direct_write) {
+ if (!ops->gen_prologue) {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ }
+ cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
+ env->prog);
+ if (cnt >= ARRAY_SIZE(insn_buf)) {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ } else if (cnt) {
+ new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ env->prog = new_prog;
+ delta += cnt - 1;
+ }
+ }
+
+ if (bpf_prog_is_dev_bound(env->prog->aux))
+ return 0;
+
+ insn = env->prog->insnsi + delta;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ bpf_convert_ctx_access_t convert_ctx_access;
+ bool ctx_access;
+
+ if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
+ insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
+ insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
+ insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
+ type = BPF_READ;
+ ctx_access = true;
+ } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
+ insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
+ insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
+ insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
+ insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
+ insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
+ insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
+ insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
+ type = BPF_WRITE;
+ ctx_access = BPF_CLASS(insn->code) == BPF_STX;
+ } else {
+ continue;
+ }
+
+ if (type == BPF_WRITE &&
+ env->insn_aux_data[i + delta].sanitize_stack_spill) {
+ struct bpf_insn patch[] = {
+ *insn,
+ BPF_ST_NOSPEC(),
+ };
+
+ cnt = ARRAY_SIZE(patch);
+ new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ if (!ctx_access)
+ continue;
+
+ switch ((int)env->insn_aux_data[i + delta].ptr_type) {
+ case PTR_TO_CTX:
+ if (!ops->convert_ctx_access)
+ continue;
+ convert_ctx_access = ops->convert_ctx_access;
+ break;
+ case PTR_TO_SOCKET:
+ case PTR_TO_SOCK_COMMON:
+ convert_ctx_access = bpf_sock_convert_ctx_access;
+ break;
+ case PTR_TO_TCP_SOCK:
+ convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
+ break;
+ case PTR_TO_XDP_SOCK:
+ convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
+ break;
+ case PTR_TO_BTF_ID:
+ case PTR_TO_BTF_ID | PTR_UNTRUSTED:
+ if (type == BPF_READ) {
+ insn->code = BPF_LDX | BPF_PROBE_MEM |
+ BPF_SIZE((insn)->code);
+ env->prog->aux->num_exentries++;
+ }
+ continue;
+ default:
+ continue;
+ }
+
+ ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
+ size = BPF_LDST_BYTES(insn);
+
+ /* If the read access is a narrower load of the field,
+ * convert to a 4/8-byte load, to minimum program type specific
+ * convert_ctx_access changes. If conversion is successful,
+ * we will apply proper mask to the result.
+ */
+ is_narrower_load = size < ctx_field_size;
+ size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
+ off = insn->off;
+ if (is_narrower_load) {
+ u8 size_code;
+
+ if (type == BPF_WRITE) {
+ verbose(env, "bpf verifier narrow ctx access misconfigured\n");
+ return -EINVAL;
+ }
+
+ size_code = BPF_H;
+ if (ctx_field_size == 4)
+ size_code = BPF_W;
+ else if (ctx_field_size == 8)
+ size_code = BPF_DW;
+
+ insn->off = off & ~(size_default - 1);
+ insn->code = BPF_LDX | BPF_MEM | size_code;
+ }
+
+ target_size = 0;
+ cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
+ &target_size);
+ if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
+ (ctx_field_size && !target_size)) {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ }
+
+ if (is_narrower_load && size < target_size) {
+ u8 shift = bpf_ctx_narrow_access_offset(
+ off, size, size_default) * 8;
+ if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
+ verbose(env, "bpf verifier narrow ctx load misconfigured\n");
+ return -EINVAL;
+ }
+ if (ctx_field_size <= 4) {
+ if (shift)
+ insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
+ insn->dst_reg,
+ shift);
+ insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
+ (1 << size * 8) - 1);
+ } else {
+ if (shift)
+ insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
+ insn->dst_reg,
+ shift);
+ insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
+ (1ULL << size * 8) - 1);
+ }
+ }
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+
+ /* keep walking new program and skip insns we just inserted */
+ env->prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ }
+
+ return 0;
+}
+
+static int jit_subprogs(struct bpf_verifier_env *env)
+{
+ struct bpf_prog *prog = env->prog, **func, *tmp;
+ int i, j, subprog_start, subprog_end = 0, len, subprog;
+ struct bpf_map *map_ptr;
+ struct bpf_insn *insn;
+ void *old_bpf_func;
+ int err, num_exentries;
+
+ if (env->subprog_cnt <= 1)
+ return 0;
+
+ for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
+ if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
+ continue;
+
+ /* Upon error here we cannot fall back to interpreter but
+ * need a hard reject of the program. Thus -EFAULT is
+ * propagated in any case.
+ */
+ subprog = find_subprog(env, i + insn->imm + 1);
+ if (subprog < 0) {
+ WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
+ i + insn->imm + 1);
+ return -EFAULT;
+ }
+ /* temporarily remember subprog id inside insn instead of
+ * aux_data, since next loop will split up all insns into funcs
+ */
+ insn->off = subprog;
+ /* remember original imm in case JIT fails and fallback
+ * to interpreter will be needed
+ */
+ env->insn_aux_data[i].call_imm = insn->imm;
+ /* point imm to __bpf_call_base+1 from JITs point of view */
+ insn->imm = 1;
+ if (bpf_pseudo_func(insn))
+ /* jit (e.g. x86_64) may emit fewer instructions
+ * if it learns a u32 imm is the same as a u64 imm.
+ * Force a non zero here.
+ */
+ insn[1].imm = 1;
+ }
+
+ err = bpf_prog_alloc_jited_linfo(prog);
+ if (err)
+ goto out_undo_insn;
+
+ err = -ENOMEM;
+ func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
+ if (!func)
+ goto out_undo_insn;
+
+ for (i = 0; i < env->subprog_cnt; i++) {
+ subprog_start = subprog_end;
+ subprog_end = env->subprog_info[i + 1].start;
+
+ len = subprog_end - subprog_start;
+ /* bpf_prog_run() doesn't call subprogs directly,
+ * hence main prog stats include the runtime of subprogs.
+ * subprogs don't have IDs and not reachable via prog_get_next_id
+ * func[i]->stats will never be accessed and stays NULL
+ */
+ func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
+ if (!func[i])
+ goto out_free;
+ memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
+ len * sizeof(struct bpf_insn));
+ func[i]->type = prog->type;
+ func[i]->len = len;
+ if (bpf_prog_calc_tag(func[i]))
+ goto out_free;
+ func[i]->is_func = 1;
+ func[i]->aux->func_idx = i;
+ /* Below members will be freed only at prog->aux */
+ func[i]->aux->btf = prog->aux->btf;
+ func[i]->aux->func_info = prog->aux->func_info;
+ func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
+ func[i]->aux->poke_tab = prog->aux->poke_tab;
+ func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
+
+ for (j = 0; j < prog->aux->size_poke_tab; j++) {
+ struct bpf_jit_poke_descriptor *poke;
+
+ poke = &prog->aux->poke_tab[j];
+ if (poke->insn_idx < subprog_end &&
+ poke->insn_idx >= subprog_start)
+ poke->aux = func[i]->aux;
+ }
+
+ func[i]->aux->name[0] = 'F';
+ func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
+ func[i]->jit_requested = 1;
+ func[i]->blinding_requested = prog->blinding_requested;
+ func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
+ func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
+ func[i]->aux->linfo = prog->aux->linfo;
+ func[i]->aux->nr_linfo = prog->aux->nr_linfo;
+ func[i]->aux->jited_linfo = prog->aux->jited_linfo;
+ func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
+ num_exentries = 0;
+ insn = func[i]->insnsi;
+ for (j = 0; j < func[i]->len; j++, insn++) {
+ if (BPF_CLASS(insn->code) == BPF_LDX &&
+ BPF_MODE(insn->code) == BPF_PROBE_MEM)
+ num_exentries++;
+ }
+ func[i]->aux->num_exentries = num_exentries;
+ func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
+ func[i] = bpf_int_jit_compile(func[i]);
+ if (!func[i]->jited) {
+ err = -ENOTSUPP;
+ goto out_free;
+ }
+ cond_resched();
+ }
+
+ /* at this point all bpf functions were successfully JITed
+ * now populate all bpf_calls with correct addresses and
+ * run last pass of JIT
+ */
+ for (i = 0; i < env->subprog_cnt; i++) {
+ insn = func[i]->insnsi;
+ for (j = 0; j < func[i]->len; j++, insn++) {
+ if (bpf_pseudo_func(insn)) {
+ subprog = insn->off;
+ insn[0].imm = (u32)(long)func[subprog]->bpf_func;
+ insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
+ continue;
+ }
+ if (!bpf_pseudo_call(insn))
+ continue;
+ subprog = insn->off;
+ insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
+ }
+
+ /* we use the aux data to keep a list of the start addresses
+ * of the JITed images for each function in the program
+ *
+ * for some architectures, such as powerpc64, the imm field
+ * might not be large enough to hold the offset of the start
+ * address of the callee's JITed image from __bpf_call_base
+ *
+ * in such cases, we can lookup the start address of a callee
+ * by using its subprog id, available from the off field of
+ * the call instruction, as an index for this list
+ */
+ func[i]->aux->func = func;
+ func[i]->aux->func_cnt = env->subprog_cnt;
+ }
+ for (i = 0; i < env->subprog_cnt; i++) {
+ old_bpf_func = func[i]->bpf_func;
+ tmp = bpf_int_jit_compile(func[i]);
+ if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
+ verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
+ err = -ENOTSUPP;
+ goto out_free;
+ }
+ cond_resched();
+ }
+
+ /* finally lock prog and jit images for all functions and
+ * populate kallsysm. Begin at the first subprogram, since
+ * bpf_prog_load will add the kallsyms for the main program.
+ */
+ for (i = 1; i < env->subprog_cnt; i++) {
+ bpf_prog_lock_ro(func[i]);
+ bpf_prog_kallsyms_add(func[i]);
+ }
+
+ /* Last step: make now unused interpreter insns from main
+ * prog consistent for later dump requests, so they can
+ * later look the same as if they were interpreted only.
+ */
+ for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
+ if (bpf_pseudo_func(insn)) {
+ insn[0].imm = env->insn_aux_data[i].call_imm;
+ insn[1].imm = insn->off;
+ insn->off = 0;
+ continue;
+ }
+ if (!bpf_pseudo_call(insn))
+ continue;
+ insn->off = env->insn_aux_data[i].call_imm;
+ subprog = find_subprog(env, i + insn->off + 1);
+ insn->imm = subprog;
+ }
+
+ prog->jited = 1;
+ prog->bpf_func = func[0]->bpf_func;
+ prog->jited_len = func[0]->jited_len;
+ prog->aux->extable = func[0]->aux->extable;
+ prog->aux->num_exentries = func[0]->aux->num_exentries;
+ prog->aux->func = func;
+ prog->aux->func_cnt = env->subprog_cnt;
+ bpf_prog_jit_attempt_done(prog);
+ return 0;
+out_free:
+ /* We failed JIT'ing, so at this point we need to unregister poke
+ * descriptors from subprogs, so that kernel is not attempting to
+ * patch it anymore as we're freeing the subprog JIT memory.
+ */
+ for (i = 0; i < prog->aux->size_poke_tab; i++) {
+ map_ptr = prog->aux->poke_tab[i].tail_call.map;
+ map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
+ }
+ /* At this point we're guaranteed that poke descriptors are not
+ * live anymore. We can just unlink its descriptor table as it's
+ * released with the main prog.
+ */
+ for (i = 0; i < env->subprog_cnt; i++) {
+ if (!func[i])
+ continue;
+ func[i]->aux->poke_tab = NULL;
+ bpf_jit_free(func[i]);
+ }
+ kfree(func);
+out_undo_insn:
+ /* cleanup main prog to be interpreted */
+ prog->jit_requested = 0;
+ prog->blinding_requested = 0;
+ for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
+ if (!bpf_pseudo_call(insn))
+ continue;
+ insn->off = 0;
+ insn->imm = env->insn_aux_data[i].call_imm;
+ }
+ bpf_prog_jit_attempt_done(prog);
+ return err;
+}
+
+static int fixup_call_args(struct bpf_verifier_env *env)
+{
+#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+ struct bpf_prog *prog = env->prog;
+ struct bpf_insn *insn = prog->insnsi;
+ bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
+ int i, depth;
+#endif
+ int err = 0;
+
+ if (env->prog->jit_requested &&
+ !bpf_prog_is_dev_bound(env->prog->aux)) {
+ err = jit_subprogs(env);
+ if (err == 0)
+ return 0;
+ if (err == -EFAULT)
+ return err;
+ }
+#ifndef CONFIG_BPF_JIT_ALWAYS_ON
+ if (has_kfunc_call) {
+ verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
+ return -EINVAL;
+ }
+ if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
+ /* When JIT fails the progs with bpf2bpf calls and tail_calls
+ * have to be rejected, since interpreter doesn't support them yet.
+ */
+ verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
+ return -EINVAL;
+ }
+ for (i = 0; i < prog->len; i++, insn++) {
+ if (bpf_pseudo_func(insn)) {
+ /* When JIT fails the progs with callback calls
+ * have to be rejected, since interpreter doesn't support them yet.
+ */
+ verbose(env, "callbacks are not allowed in non-JITed programs\n");
+ return -EINVAL;
+ }
+
+ if (!bpf_pseudo_call(insn))
+ continue;
+ depth = get_callee_stack_depth(env, insn, i);
+ if (depth < 0)
+ return depth;
+ bpf_patch_call_args(insn, depth);
+ }
+ err = 0;
+#endif
+ return err;
+}
+
+static int fixup_kfunc_call(struct bpf_verifier_env *env,
+ struct bpf_insn *insn)
+{
+ const struct bpf_kfunc_desc *desc;
+
+ if (!insn->imm) {
+ verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
+ return -EINVAL;
+ }
+
+ /* insn->imm has the btf func_id. Replace it with
+ * an address (relative to __bpf_base_call).
+ */
+ desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
+ if (!desc) {
+ verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
+ insn->imm);
+ return -EFAULT;
+ }
+
+ insn->imm = desc->imm;
+
+ return 0;
+}
+
+/* Do various post-verification rewrites in a single program pass.
+ * These rewrites simplify JIT and interpreter implementations.
+ */
+static int do_misc_fixups(struct bpf_verifier_env *env)
+{
+ struct bpf_prog *prog = env->prog;
+ enum bpf_attach_type eatype = prog->expected_attach_type;
+ enum bpf_prog_type prog_type = resolve_prog_type(prog);
+ struct bpf_insn *insn = prog->insnsi;
+ const struct bpf_func_proto *fn;
+ const int insn_cnt = prog->len;
+ const struct bpf_map_ops *ops;
+ struct bpf_insn_aux_data *aux;
+ struct bpf_insn insn_buf[16];
+ struct bpf_prog *new_prog;
+ struct bpf_map *map_ptr;
+ int i, ret, cnt, delta = 0;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ /* Make divide-by-zero exceptions impossible. */
+ if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
+ insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
+ insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
+ insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
+ bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
+ bool isdiv = BPF_OP(insn->code) == BPF_DIV;
+ struct bpf_insn *patchlet;
+ struct bpf_insn chk_and_div[] = {
+ /* [R,W]x div 0 -> 0 */
+ BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
+ BPF_JNE | BPF_K, insn->src_reg,
+ 0, 2, 0),
+ BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
+ BPF_JMP_IMM(BPF_JA, 0, 0, 1),
+ *insn,
+ };
+ struct bpf_insn chk_and_mod[] = {
+ /* [R,W]x mod 0 -> [R,W]x */
+ BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
+ BPF_JEQ | BPF_K, insn->src_reg,
+ 0, 1 + (is64 ? 0 : 1), 0),
+ *insn,
+ BPF_JMP_IMM(BPF_JA, 0, 0, 1),
+ BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
+ };
+
+ patchlet = isdiv ? chk_and_div : chk_and_mod;
+ cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
+ ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
+
+ new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
+ if (BPF_CLASS(insn->code) == BPF_LD &&
+ (BPF_MODE(insn->code) == BPF_ABS ||
+ BPF_MODE(insn->code) == BPF_IND)) {
+ cnt = env->ops->gen_ld_abs(insn, insn_buf);
+ if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ }
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ /* Rewrite pointer arithmetic to mitigate speculation attacks. */
+ if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
+ insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
+ const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
+ const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
+ struct bpf_insn *patch = &insn_buf[0];
+ bool issrc, isneg, isimm;
+ u32 off_reg;
+
+ aux = &env->insn_aux_data[i + delta];
+ if (!aux->alu_state ||
+ aux->alu_state == BPF_ALU_NON_POINTER)
+ continue;
+
+ isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
+ issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
+ BPF_ALU_SANITIZE_SRC;
+ isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
+
+ off_reg = issrc ? insn->src_reg : insn->dst_reg;
+ if (isimm) {
+ *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
+ } else {
+ if (isneg)
+ *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
+ *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
+ *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
+ *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
+ *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
+ *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
+ *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
+ }
+ if (!issrc)
+ *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
+ insn->src_reg = BPF_REG_AX;
+ if (isneg)
+ insn->code = insn->code == code_add ?
+ code_sub : code_add;
+ *patch++ = *insn;
+ if (issrc && isneg && !isimm)
+ *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
+ cnt = patch - insn_buf;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ if (insn->code != (BPF_JMP | BPF_CALL))
+ continue;
+ if (insn->src_reg == BPF_PSEUDO_CALL)
+ continue;
+ if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
+ ret = fixup_kfunc_call(env, insn);
+ if (ret)
+ return ret;
+ continue;
+ }
+
+ if (insn->imm == BPF_FUNC_get_route_realm)
+ prog->dst_needed = 1;
+ if (insn->imm == BPF_FUNC_get_prandom_u32)
+ bpf_user_rnd_init_once();
+ if (insn->imm == BPF_FUNC_override_return)
+ prog->kprobe_override = 1;
+ if (insn->imm == BPF_FUNC_tail_call) {
+ /* If we tail call into other programs, we
+ * cannot make any assumptions since they can
+ * be replaced dynamically during runtime in
+ * the program array.
+ */
+ prog->cb_access = 1;
+ if (!allow_tail_call_in_subprogs(env))
+ prog->aux->stack_depth = MAX_BPF_STACK;
+ prog->aux->max_pkt_offset = MAX_PACKET_OFF;
+
+ /* mark bpf_tail_call as different opcode to avoid
+ * conditional branch in the interpreter for every normal
+ * call and to prevent accidental JITing by JIT compiler
+ * that doesn't support bpf_tail_call yet
+ */
+ insn->imm = 0;
+ insn->code = BPF_JMP | BPF_TAIL_CALL;
+
+ aux = &env->insn_aux_data[i + delta];
+ if (env->bpf_capable && !prog->blinding_requested &&
+ prog->jit_requested &&
+ !bpf_map_key_poisoned(aux) &&
+ !bpf_map_ptr_poisoned(aux) &&
+ !bpf_map_ptr_unpriv(aux)) {
+ struct bpf_jit_poke_descriptor desc = {
+ .reason = BPF_POKE_REASON_TAIL_CALL,
+ .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
+ .tail_call.key = bpf_map_key_immediate(aux),
+ .insn_idx = i + delta,
+ };
+
+ ret = bpf_jit_add_poke_descriptor(prog, &desc);
+ if (ret < 0) {
+ verbose(env, "adding tail call poke descriptor failed\n");
+ return ret;
+ }
+
+ insn->imm = ret + 1;
+ continue;
+ }
+
+ if (!bpf_map_ptr_unpriv(aux))
+ continue;
+
+ /* instead of changing every JIT dealing with tail_call
+ * emit two extra insns:
+ * if (index >= max_entries) goto out;
+ * index &= array->index_mask;
+ * to avoid out-of-bounds cpu speculation
+ */
+ if (bpf_map_ptr_poisoned(aux)) {
+ verbose(env, "tail_call abusing map_ptr\n");
+ return -EINVAL;
+ }
+
+ map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
+ insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
+ map_ptr->max_entries, 2);
+ insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
+ container_of(map_ptr,
+ struct bpf_array,
+ map)->index_mask);
+ insn_buf[2] = *insn;
+ cnt = 3;
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ if (insn->imm == BPF_FUNC_timer_set_callback) {
+ /* The verifier will process callback_fn as many times as necessary
+ * with different maps and the register states prepared by
+ * set_timer_callback_state will be accurate.
+ *
+ * The following use case is valid:
+ * map1 is shared by prog1, prog2, prog3.
+ * prog1 calls bpf_timer_init for some map1 elements
+ * prog2 calls bpf_timer_set_callback for some map1 elements.
+ * Those that were not bpf_timer_init-ed will return -EINVAL.
+ * prog3 calls bpf_timer_start for some map1 elements.
+ * Those that were not both bpf_timer_init-ed and
+ * bpf_timer_set_callback-ed will return -EINVAL.
+ */
+ struct bpf_insn ld_addrs[2] = {
+ BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
+ };
+
+ insn_buf[0] = ld_addrs[0];
+ insn_buf[1] = ld_addrs[1];
+ insn_buf[2] = *insn;
+ cnt = 3;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ goto patch_call_imm;
+ }
+
+ if (insn->imm == BPF_FUNC_task_storage_get ||
+ insn->imm == BPF_FUNC_sk_storage_get ||
+ insn->imm == BPF_FUNC_inode_storage_get) {
+ if (env->prog->aux->sleepable)
+ insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
+ else
+ insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
+ insn_buf[1] = *insn;
+ cnt = 2;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ goto patch_call_imm;
+ }
+
+ /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
+ * and other inlining handlers are currently limited to 64 bit
+ * only.
+ */
+ if (prog->jit_requested && BITS_PER_LONG == 64 &&
+ (insn->imm == BPF_FUNC_map_lookup_elem ||
+ insn->imm == BPF_FUNC_map_update_elem ||
+ insn->imm == BPF_FUNC_map_delete_elem ||
+ insn->imm == BPF_FUNC_map_push_elem ||
+ insn->imm == BPF_FUNC_map_pop_elem ||
+ insn->imm == BPF_FUNC_map_peek_elem ||
+ insn->imm == BPF_FUNC_redirect_map ||
+ insn->imm == BPF_FUNC_for_each_map_elem ||
+ insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
+ aux = &env->insn_aux_data[i + delta];
+ if (bpf_map_ptr_poisoned(aux))
+ goto patch_call_imm;
+
+ map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
+ ops = map_ptr->ops;
+ if (insn->imm == BPF_FUNC_map_lookup_elem &&
+ ops->map_gen_lookup) {
+ cnt = ops->map_gen_lookup(map_ptr, insn_buf);
+ if (cnt == -EOPNOTSUPP)
+ goto patch_map_ops_generic;
+ if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ }
+
+ new_prog = bpf_patch_insn_data(env, i + delta,
+ insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
+ (void *(*)(struct bpf_map *map, void *key))NULL));
+ BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
+ (int (*)(struct bpf_map *map, void *key))NULL));
+ BUILD_BUG_ON(!__same_type(ops->map_update_elem,
+ (int (*)(struct bpf_map *map, void *key, void *value,
+ u64 flags))NULL));
+ BUILD_BUG_ON(!__same_type(ops->map_push_elem,
+ (int (*)(struct bpf_map *map, void *value,
+ u64 flags))NULL));
+ BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
+ (int (*)(struct bpf_map *map, void *value))NULL));
+ BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
+ (int (*)(struct bpf_map *map, void *value))NULL));
+ BUILD_BUG_ON(!__same_type(ops->map_redirect,
+ (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
+ BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
+ (int (*)(struct bpf_map *map,
+ bpf_callback_t callback_fn,
+ void *callback_ctx,
+ u64 flags))NULL));
+ BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
+ (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
+
+patch_map_ops_generic:
+ switch (insn->imm) {
+ case BPF_FUNC_map_lookup_elem:
+ insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
+ continue;
+ case BPF_FUNC_map_update_elem:
+ insn->imm = BPF_CALL_IMM(ops->map_update_elem);
+ continue;
+ case BPF_FUNC_map_delete_elem:
+ insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
+ continue;
+ case BPF_FUNC_map_push_elem:
+ insn->imm = BPF_CALL_IMM(ops->map_push_elem);
+ continue;
+ case BPF_FUNC_map_pop_elem:
+ insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
+ continue;
+ case BPF_FUNC_map_peek_elem:
+ insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
+ continue;
+ case BPF_FUNC_redirect_map:
+ insn->imm = BPF_CALL_IMM(ops->map_redirect);
+ continue;
+ case BPF_FUNC_for_each_map_elem:
+ insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
+ continue;
+ case BPF_FUNC_map_lookup_percpu_elem:
+ insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
+ continue;
+ }
+
+ goto patch_call_imm;
+ }
+
+ /* Implement bpf_jiffies64 inline. */
+ if (prog->jit_requested && BITS_PER_LONG == 64 &&
+ insn->imm == BPF_FUNC_jiffies64) {
+ struct bpf_insn ld_jiffies_addr[2] = {
+ BPF_LD_IMM64(BPF_REG_0,
+ (unsigned long)&jiffies),
+ };
+
+ insn_buf[0] = ld_jiffies_addr[0];
+ insn_buf[1] = ld_jiffies_addr[1];
+ insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
+ BPF_REG_0, 0);
+ cnt = 3;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
+ cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ /* Implement bpf_get_func_arg inline. */
+ if (prog_type == BPF_PROG_TYPE_TRACING &&
+ insn->imm == BPF_FUNC_get_func_arg) {
+ /* Load nr_args from ctx - 8 */
+ insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
+ insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
+ insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
+ insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
+ insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
+ insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
+ insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
+ insn_buf[7] = BPF_JMP_A(1);
+ insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
+ cnt = 9;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ /* Implement bpf_get_func_ret inline. */
+ if (prog_type == BPF_PROG_TYPE_TRACING &&
+ insn->imm == BPF_FUNC_get_func_ret) {
+ if (eatype == BPF_TRACE_FEXIT ||
+ eatype == BPF_MODIFY_RETURN) {
+ /* Load nr_args from ctx - 8 */
+ insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
+ insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
+ insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
+ insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
+ insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
+ insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
+ cnt = 6;
+ } else {
+ insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
+ cnt = 1;
+ }
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ /* Implement get_func_arg_cnt inline. */
+ if (prog_type == BPF_PROG_TYPE_TRACING &&
+ insn->imm == BPF_FUNC_get_func_arg_cnt) {
+ /* Load nr_args from ctx - 8 */
+ insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
+ if (!new_prog)
+ return -ENOMEM;
+
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+ /* Implement bpf_get_func_ip inline. */
+ if (prog_type == BPF_PROG_TYPE_TRACING &&
+ insn->imm == BPF_FUNC_get_func_ip) {
+ /* Load IP address from ctx - 16 */
+ insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
+ if (!new_prog)
+ return -ENOMEM;
+
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ continue;
+ }
+
+patch_call_imm:
+ fn = env->ops->get_func_proto(insn->imm, env->prog);
+ /* all functions that have prototype and verifier allowed
+ * programs to call them, must be real in-kernel functions
+ */
+ if (!fn->func) {
+ verbose(env,
+ "kernel subsystem misconfigured func %s#%d\n",
+ func_id_name(insn->imm), insn->imm);
+ return -EFAULT;
+ }
+ insn->imm = fn->func - __bpf_call_base;
+ }
+
+ /* Since poke tab is now finalized, publish aux to tracker. */
+ for (i = 0; i < prog->aux->size_poke_tab; i++) {
+ map_ptr = prog->aux->poke_tab[i].tail_call.map;
+ if (!map_ptr->ops->map_poke_track ||
+ !map_ptr->ops->map_poke_untrack ||
+ !map_ptr->ops->map_poke_run) {
+ verbose(env, "bpf verifier is misconfigured\n");
+ return -EINVAL;
+ }
+
+ ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
+ if (ret < 0) {
+ verbose(env, "tracking tail call prog failed\n");
+ return ret;
+ }
+ }
+
+ sort_kfunc_descs_by_imm(env->prog);
+
+ return 0;
+}
+
+static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
+ int position,
+ s32 stack_base,
+ u32 callback_subprogno,
+ u32 *cnt)
+{
+ s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
+ s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
+ s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
+ int reg_loop_max = BPF_REG_6;
+ int reg_loop_cnt = BPF_REG_7;
+ int reg_loop_ctx = BPF_REG_8;
+
+ struct bpf_prog *new_prog;
+ u32 callback_start;
+ u32 call_insn_offset;
+ s32 callback_offset;
+
+ /* This represents an inlined version of bpf_iter.c:bpf_loop,
+ * be careful to modify this code in sync.
+ */
+ struct bpf_insn insn_buf[] = {
+ /* Return error and jump to the end of the patch if
+ * expected number of iterations is too big.
+ */
+ BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
+ BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
+ BPF_JMP_IMM(BPF_JA, 0, 0, 16),
+ /* spill R6, R7, R8 to use these as loop vars */
+ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
+ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
+ BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
+ /* initialize loop vars */
+ BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
+ BPF_MOV32_IMM(reg_loop_cnt, 0),
+ BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
+ /* loop header,
+ * if reg_loop_cnt >= reg_loop_max skip the loop body
+ */
+ BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
+ /* callback call,
+ * correct callback offset would be set after patching
+ */
+ BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
+ BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
+ BPF_CALL_REL(0),
+ /* increment loop counter */
+ BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
+ /* jump to loop header if callback returned 0 */
+ BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
+ /* return value of bpf_loop,
+ * set R0 to the number of iterations
+ */
+ BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
+ /* restore original values of R6, R7, R8 */
+ BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
+ BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
+ BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
+ };
+
+ *cnt = ARRAY_SIZE(insn_buf);
+ new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
+ if (!new_prog)
+ return new_prog;
+
+ /* callback start is known only after patching */
+ callback_start = env->subprog_info[callback_subprogno].start;
+ /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
+ call_insn_offset = position + 12;
+ callback_offset = callback_start - call_insn_offset - 1;
+ new_prog->insnsi[call_insn_offset].imm = callback_offset;
+
+ return new_prog;
+}
+
+static bool is_bpf_loop_call(struct bpf_insn *insn)
+{
+ return insn->code == (BPF_JMP | BPF_CALL) &&
+ insn->src_reg == 0 &&
+ insn->imm == BPF_FUNC_loop;
+}
+
+/* For all sub-programs in the program (including main) check
+ * insn_aux_data to see if there are bpf_loop calls that require
+ * inlining. If such calls are found the calls are replaced with a
+ * sequence of instructions produced by `inline_bpf_loop` function and
+ * subprog stack_depth is increased by the size of 3 registers.
+ * This stack space is used to spill values of the R6, R7, R8. These
+ * registers are used to store the loop bound, counter and context
+ * variables.
+ */
+static int optimize_bpf_loop(struct bpf_verifier_env *env)
+{
+ struct bpf_subprog_info *subprogs = env->subprog_info;
+ int i, cur_subprog = 0, cnt, delta = 0;
+ struct bpf_insn *insn = env->prog->insnsi;
+ int insn_cnt = env->prog->len;
+ u16 stack_depth = subprogs[cur_subprog].stack_depth;
+ u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
+ u16 stack_depth_extra = 0;
+
+ for (i = 0; i < insn_cnt; i++, insn++) {
+ struct bpf_loop_inline_state *inline_state =
+ &env->insn_aux_data[i + delta].loop_inline_state;
+
+ if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
+ struct bpf_prog *new_prog;
+
+ stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
+ new_prog = inline_bpf_loop(env,
+ i + delta,
+ -(stack_depth + stack_depth_extra),
+ inline_state->callback_subprogno,
+ &cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ }
+
+ if (subprogs[cur_subprog + 1].start == i + delta + 1) {
+ subprogs[cur_subprog].stack_depth += stack_depth_extra;
+ cur_subprog++;
+ stack_depth = subprogs[cur_subprog].stack_depth;
+ stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
+ stack_depth_extra = 0;
+ }
+ }
+
+ env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
+
+ return 0;
+}
+
+static void free_states(struct bpf_verifier_env *env)
+{
+ struct bpf_verifier_state_list *sl, *sln;
+ int i;
+
+ sl = env->free_list;
+ while (sl) {
+ sln = sl->next;
+ free_verifier_state(&sl->state, false);
+ kfree(sl);
+ sl = sln;
+ }
+ env->free_list = NULL;
+
+ if (!env->explored_states)
+ return;
+
+ for (i = 0; i < state_htab_size(env); i++) {
+ sl = env->explored_states[i];
+
+ while (sl) {
+ sln = sl->next;
+ free_verifier_state(&sl->state, false);
+ kfree(sl);
+ sl = sln;
+ }
+ env->explored_states[i] = NULL;
+ }
+}
+
+static int do_check_common(struct bpf_verifier_env *env, int subprog)
+{
+ bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
+ struct bpf_verifier_state *state;
+ struct bpf_reg_state *regs;
+ int ret, i;
+
+ env->prev_linfo = NULL;
+ env->pass_cnt++;
+
+ state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
+ if (!state)
+ return -ENOMEM;
+ state->curframe = 0;
+ state->speculative = false;
+ state->branches = 1;
+ state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
+ if (!state->frame[0]) {
+ kfree(state);
+ return -ENOMEM;
+ }
+ env->cur_state = state;
+ init_func_state(env, state->frame[0],
+ BPF_MAIN_FUNC /* callsite */,
+ 0 /* frameno */,
+ subprog);
+ state->first_insn_idx = env->subprog_info[subprog].start;
+ state->last_insn_idx = -1;
+
+ regs = state->frame[state->curframe]->regs;
+ if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
+ ret = btf_prepare_func_args(env, subprog, regs);
+ if (ret)
+ goto out;
+ for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
+ if (regs[i].type == PTR_TO_CTX)
+ mark_reg_known_zero(env, regs, i);
+ else if (regs[i].type == SCALAR_VALUE)
+ mark_reg_unknown(env, regs, i);
+ else if (base_type(regs[i].type) == PTR_TO_MEM) {
+ const u32 mem_size = regs[i].mem_size;
+
+ mark_reg_known_zero(env, regs, i);
+ regs[i].mem_size = mem_size;
+ regs[i].id = ++env->id_gen;
+ }
+ }
+ } else {
+ /* 1st arg to a function */
+ regs[BPF_REG_1].type = PTR_TO_CTX;
+ mark_reg_known_zero(env, regs, BPF_REG_1);
+ ret = btf_check_subprog_arg_match(env, subprog, regs);
+ if (ret == -EFAULT)
+ /* unlikely verifier bug. abort.
+ * ret == 0 and ret < 0 are sadly acceptable for
+ * main() function due to backward compatibility.
+ * Like socket filter program may be written as:
+ * int bpf_prog(struct pt_regs *ctx)
+ * and never dereference that ctx in the program.
+ * 'struct pt_regs' is a type mismatch for socket
+ * filter that should be using 'struct __sk_buff'.
+ */
+ goto out;
+ }
+
+ ret = do_check(env);
+out:
+ /* check for NULL is necessary, since cur_state can be freed inside
+ * do_check() under memory pressure.
+ */
+ if (env->cur_state) {
+ free_verifier_state(env->cur_state, true);
+ env->cur_state = NULL;
+ }
+ while (!pop_stack(env, NULL, NULL, false));
+ if (!ret && pop_log)
+ bpf_vlog_reset(&env->log, 0);
+ free_states(env);
+ return ret;
+}
+
+/* Verify all global functions in a BPF program one by one based on their BTF.
+ * All global functions must pass verification. Otherwise the whole program is rejected.
+ * Consider:
+ * int bar(int);
+ * int foo(int f)
+ * {
+ * return bar(f);
+ * }
+ * int bar(int b)
+ * {
+ * ...
+ * }
+ * foo() will be verified first for R1=any_scalar_value. During verification it
+ * will be assumed that bar() already verified successfully and call to bar()
+ * from foo() will be checked for type match only. Later bar() will be verified
+ * independently to check that it's safe for R1=any_scalar_value.
+ */
+static int do_check_subprogs(struct bpf_verifier_env *env)
+{
+ struct bpf_prog_aux *aux = env->prog->aux;
+ int i, ret;
+
+ if (!aux->func_info)
+ return 0;
+
+ for (i = 1; i < env->subprog_cnt; i++) {
+ if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
+ continue;
+ env->insn_idx = env->subprog_info[i].start;
+ WARN_ON_ONCE(env->insn_idx == 0);
+ ret = do_check_common(env, i);
+ if (ret) {
+ return ret;
+ } else if (env->log.level & BPF_LOG_LEVEL) {
+ verbose(env,
+ "Func#%d is safe for any args that match its prototype\n",
+ i);
+ }
+ }
+ return 0;
+}
+
+static int do_check_main(struct bpf_verifier_env *env)
+{
+ int ret;
+
+ env->insn_idx = 0;
+ ret = do_check_common(env, 0);
+ if (!ret)
+ env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
+ return ret;
+}
+
+
+static void print_verification_stats(struct bpf_verifier_env *env)
+{
+ int i;
+
+ if (env->log.level & BPF_LOG_STATS) {
+ verbose(env, "verification time %lld usec\n",
+ div_u64(env->verification_time, 1000));
+ verbose(env, "stack depth ");
+ for (i = 0; i < env->subprog_cnt; i++) {
+ u32 depth = env->subprog_info[i].stack_depth;
+
+ verbose(env, "%d", depth);
+ if (i + 1 < env->subprog_cnt)
+ verbose(env, "+");
+ }
+ verbose(env, "\n");
+ }
+ verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
+ "total_states %d peak_states %d mark_read %d\n",
+ env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
+ env->max_states_per_insn, env->total_states,
+ env->peak_states, env->longest_mark_read_walk);
+}
+
+static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
+{
+ const struct btf_type *t, *func_proto;
+ const struct bpf_struct_ops *st_ops;
+ const struct btf_member *member;
+ struct bpf_prog *prog = env->prog;
+ u32 btf_id, member_idx;
+ const char *mname;
+
+ if (!prog->gpl_compatible) {
+ verbose(env, "struct ops programs must have a GPL compatible license\n");
+ return -EINVAL;
+ }
+
+ btf_id = prog->aux->attach_btf_id;
+ st_ops = bpf_struct_ops_find(btf_id);
+ if (!st_ops) {
+ verbose(env, "attach_btf_id %u is not a supported struct\n",
+ btf_id);
+ return -ENOTSUPP;
+ }
+
+ t = st_ops->type;
+ member_idx = prog->expected_attach_type;
+ if (member_idx >= btf_type_vlen(t)) {
+ verbose(env, "attach to invalid member idx %u of struct %s\n",
+ member_idx, st_ops->name);
+ return -EINVAL;
+ }
+
+ member = &btf_type_member(t)[member_idx];
+ mname = btf_name_by_offset(btf_vmlinux, member->name_off);
+ func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
+ NULL);
+ if (!func_proto) {
+ verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
+ mname, member_idx, st_ops->name);
+ return -EINVAL;
+ }
+
+ if (st_ops->check_member) {
+ int err = st_ops->check_member(t, member);
+
+ if (err) {
+ verbose(env, "attach to unsupported member %s of struct %s\n",
+ mname, st_ops->name);
+ return err;
+ }
+ }
+
+ prog->aux->attach_func_proto = func_proto;
+ prog->aux->attach_func_name = mname;
+ env->ops = st_ops->verifier_ops;
+
+ return 0;
+}
+#define SECURITY_PREFIX "security_"
+
+static int check_attach_modify_return(unsigned long addr, const char *func_name)
+{
+ if (within_error_injection_list(addr) ||
+ !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
+ return 0;
+
+ return -EINVAL;
+}
+
+/* list of non-sleepable functions that are otherwise on
+ * ALLOW_ERROR_INJECTION list
+ */
+BTF_SET_START(btf_non_sleepable_error_inject)
+/* Three functions below can be called from sleepable and non-sleepable context.
+ * Assume non-sleepable from bpf safety point of view.
+ */
+BTF_ID(func, __filemap_add_folio)
+BTF_ID(func, should_fail_alloc_page)
+BTF_ID(func, should_failslab)
+BTF_SET_END(btf_non_sleepable_error_inject)
+
+static int check_non_sleepable_error_inject(u32 btf_id)
+{
+ return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
+}
+
+int bpf_check_attach_target(struct bpf_verifier_log *log,
+ const struct bpf_prog *prog,
+ const struct bpf_prog *tgt_prog,
+ u32 btf_id,
+ struct bpf_attach_target_info *tgt_info)
+{
+ bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
+ const char prefix[] = "btf_trace_";
+ int ret = 0, subprog = -1, i;
+ const struct btf_type *t;
+ bool conservative = true;
+ const char *tname;
+ struct btf *btf;
+ long addr = 0;
+
+ if (!btf_id) {
+ bpf_log(log, "Tracing programs must provide btf_id\n");
+ return -EINVAL;
+ }
+ btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
+ if (!btf) {
+ bpf_log(log,
+ "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
+ return -EINVAL;
+ }
+ t = btf_type_by_id(btf, btf_id);
+ if (!t) {
+ bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
+ return -EINVAL;
+ }
+ tname = btf_name_by_offset(btf, t->name_off);
+ if (!tname) {
+ bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
+ return -EINVAL;
+ }
+ if (tgt_prog) {
+ struct bpf_prog_aux *aux = tgt_prog->aux;
+
+ for (i = 0; i < aux->func_info_cnt; i++)
+ if (aux->func_info[i].type_id == btf_id) {
+ subprog = i;
+ break;
+ }
+ if (subprog == -1) {
+ bpf_log(log, "Subprog %s doesn't exist\n", tname);
+ return -EINVAL;
+ }
+ conservative = aux->func_info_aux[subprog].unreliable;
+ if (prog_extension) {
+ if (conservative) {
+ bpf_log(log,
+ "Cannot replace static functions\n");
+ return -EINVAL;
+ }
+ if (!prog->jit_requested) {
+ bpf_log(log,
+ "Extension programs should be JITed\n");
+ return -EINVAL;
+ }
+ }
+ if (!tgt_prog->jited) {
+ bpf_log(log, "Can attach to only JITed progs\n");
+ return -EINVAL;
+ }
+ if (tgt_prog->type == prog->type) {
+ /* Cannot fentry/fexit another fentry/fexit program.
+ * Cannot attach program extension to another extension.
+ * It's ok to attach fentry/fexit to extension program.
+ */
+ bpf_log(log, "Cannot recursively attach\n");
+ return -EINVAL;
+ }
+ if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
+ prog_extension &&
+ (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
+ tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
+ /* Program extensions can extend all program types
+ * except fentry/fexit. The reason is the following.
+ * The fentry/fexit programs are used for performance
+ * analysis, stats and can be attached to any program
+ * type except themselves. When extension program is
+ * replacing XDP function it is necessary to allow
+ * performance analysis of all functions. Both original
+ * XDP program and its program extension. Hence
+ * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
+ * allowed. If extending of fentry/fexit was allowed it
+ * would be possible to create long call chain
+ * fentry->extension->fentry->extension beyond
+ * reasonable stack size. Hence extending fentry is not
+ * allowed.
+ */
+ bpf_log(log, "Cannot extend fentry/fexit\n");
+ return -EINVAL;
+ }
+ } else {
+ if (prog_extension) {
+ bpf_log(log, "Cannot replace kernel functions\n");
+ return -EINVAL;
+ }
+ }
+
+ switch (prog->expected_attach_type) {
+ case BPF_TRACE_RAW_TP:
+ if (tgt_prog) {
+ bpf_log(log,
+ "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
+ return -EINVAL;
+ }
+ if (!btf_type_is_typedef(t)) {
+ bpf_log(log, "attach_btf_id %u is not a typedef\n",
+ btf_id);
+ return -EINVAL;
+ }
+ if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
+ bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
+ btf_id, tname);
+ return -EINVAL;
+ }
+ tname += sizeof(prefix) - 1;
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_ptr(t))
+ /* should never happen in valid vmlinux build */
+ return -EINVAL;
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_func_proto(t))
+ /* should never happen in valid vmlinux build */
+ return -EINVAL;
+
+ break;
+ case BPF_TRACE_ITER:
+ if (!btf_type_is_func(t)) {
+ bpf_log(log, "attach_btf_id %u is not a function\n",
+ btf_id);
+ return -EINVAL;
+ }
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_func_proto(t))
+ return -EINVAL;
+ ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
+ if (ret)
+ return ret;
+ break;
+ default:
+ if (!prog_extension)
+ return -EINVAL;
+ fallthrough;
+ case BPF_MODIFY_RETURN:
+ case BPF_LSM_MAC:
+ case BPF_LSM_CGROUP:
+ case BPF_TRACE_FENTRY:
+ case BPF_TRACE_FEXIT:
+ if (!btf_type_is_func(t)) {
+ bpf_log(log, "attach_btf_id %u is not a function\n",
+ btf_id);
+ return -EINVAL;
+ }
+ if (prog_extension &&
+ btf_check_type_match(log, prog, btf, t))
+ return -EINVAL;
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_func_proto(t))
+ return -EINVAL;
+
+ if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
+ (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
+ prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
+ return -EINVAL;
+
+ if (tgt_prog && conservative)
+ t = NULL;
+
+ ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
+ if (ret < 0)
+ return ret;
+
+ if (tgt_prog) {
+ if (subprog == 0)
+ addr = (long) tgt_prog->bpf_func;
+ else
+ addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
+ } else {
+ addr = kallsyms_lookup_name(tname);
+ if (!addr) {
+ bpf_log(log,
+ "The address of function %s cannot be found\n",
+ tname);
+ return -ENOENT;
+ }
+ }
+
+ if (prog->aux->sleepable) {
+ ret = -EINVAL;
+ switch (prog->type) {
+ case BPF_PROG_TYPE_TRACING:
+ /* fentry/fexit/fmod_ret progs can be sleepable only if they are
+ * attached to ALLOW_ERROR_INJECTION and are not in denylist.
+ */
+ if (!check_non_sleepable_error_inject(btf_id) &&
+ within_error_injection_list(addr))
+ ret = 0;
+ break;
+ case BPF_PROG_TYPE_LSM:
+ /* LSM progs check that they are attached to bpf_lsm_*() funcs.
+ * Only some of them are sleepable.
+ */
+ if (bpf_lsm_is_sleepable_hook(btf_id))
+ ret = 0;
+ break;
+ default:
+ break;
+ }
+ if (ret) {
+ bpf_log(log, "%s is not sleepable\n", tname);
+ return ret;
+ }
+ } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
+ if (tgt_prog) {
+ bpf_log(log, "can't modify return codes of BPF programs\n");
+ return -EINVAL;
+ }
+ ret = check_attach_modify_return(addr, tname);
+ if (ret) {
+ bpf_log(log, "%s() is not modifiable\n", tname);
+ return ret;
+ }
+ }
+
+ break;
+ }
+ tgt_info->tgt_addr = addr;
+ tgt_info->tgt_name = tname;
+ tgt_info->tgt_type = t;
+ return 0;
+}
+
+BTF_SET_START(btf_id_deny)
+BTF_ID_UNUSED
+#ifdef CONFIG_SMP
+BTF_ID(func, migrate_disable)
+BTF_ID(func, migrate_enable)
+#endif
+#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
+BTF_ID(func, rcu_read_unlock_strict)
+#endif
+#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
+BTF_ID(func, preempt_count_add)
+BTF_ID(func, preempt_count_sub)
+#endif
+BTF_SET_END(btf_id_deny)
+
+static int check_attach_btf_id(struct bpf_verifier_env *env)
+{
+ struct bpf_prog *prog = env->prog;
+ struct bpf_prog *tgt_prog = prog->aux->dst_prog;
+ struct bpf_attach_target_info tgt_info = {};
+ u32 btf_id = prog->aux->attach_btf_id;
+ struct bpf_trampoline *tr;
+ int ret;
+ u64 key;
+
+ if (prog->type == BPF_PROG_TYPE_SYSCALL) {
+ if (prog->aux->sleepable)
+ /* attach_btf_id checked to be zero already */
+ return 0;
+ verbose(env, "Syscall programs can only be sleepable\n");
+ return -EINVAL;
+ }
+
+ if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
+ prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
+ verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
+ return -EINVAL;
+ }
+
+ if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
+ return check_struct_ops_btf_id(env);
+
+ if (prog->type != BPF_PROG_TYPE_TRACING &&
+ prog->type != BPF_PROG_TYPE_LSM &&
+ prog->type != BPF_PROG_TYPE_EXT)
+ return 0;
+
+ ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
+ if (ret)
+ return ret;
+
+ if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
+ /* to make freplace equivalent to their targets, they need to
+ * inherit env->ops and expected_attach_type for the rest of the
+ * verification
+ */
+ env->ops = bpf_verifier_ops[tgt_prog->type];
+ prog->expected_attach_type = tgt_prog->expected_attach_type;
+ }
+
+ /* store info about the attachment target that will be used later */
+ prog->aux->attach_func_proto = tgt_info.tgt_type;
+ prog->aux->attach_func_name = tgt_info.tgt_name;
+
+ if (tgt_prog) {
+ prog->aux->saved_dst_prog_type = tgt_prog->type;
+ prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
+ }
+
+ if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
+ prog->aux->attach_btf_trace = true;
+ return 0;
+ } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
+ if (!bpf_iter_prog_supported(prog))
+ return -EINVAL;
+ return 0;
+ }
+
+ if (prog->type == BPF_PROG_TYPE_LSM) {
+ ret = bpf_lsm_verify_prog(&env->log, prog);
+ if (ret < 0)
+ return ret;
+ } else if (prog->type == BPF_PROG_TYPE_TRACING &&
+ btf_id_set_contains(&btf_id_deny, btf_id)) {
+ return -EINVAL;
+ }
+
+ key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
+ tr = bpf_trampoline_get(key, &tgt_info);
+ if (!tr)
+ return -ENOMEM;
+
+ if (tgt_prog && tgt_prog->aux->tail_call_reachable)
+ tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
+
+ prog->aux->dst_trampoline = tr;
+ return 0;
+}
+
+struct btf *bpf_get_btf_vmlinux(void)
+{
+ if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
+ mutex_lock(&bpf_verifier_lock);
+ if (!btf_vmlinux)
+ btf_vmlinux = btf_parse_vmlinux();
+ mutex_unlock(&bpf_verifier_lock);
+ }
+ return btf_vmlinux;
+}
+
+int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
+{
+ u64 start_time = ktime_get_ns();
+ struct bpf_verifier_env *env;
+ struct bpf_verifier_log *log;
+ int i, len, ret = -EINVAL;
+ bool is_priv;
+
+ /* no program is valid */
+ if (ARRAY_SIZE(bpf_verifier_ops) == 0)
+ return -EINVAL;
+
+ /* 'struct bpf_verifier_env' can be global, but since it's not small,
+ * allocate/free it every time bpf_check() is called
+ */
+ env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
+ if (!env)
+ return -ENOMEM;
+ log = &env->log;
+
+ len = (*prog)->len;
+ env->insn_aux_data =
+ vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
+ ret = -ENOMEM;
+ if (!env->insn_aux_data)
+ goto err_free_env;
+ for (i = 0; i < len; i++)
+ env->insn_aux_data[i].orig_idx = i;
+ env->prog = *prog;
+ env->ops = bpf_verifier_ops[env->prog->type];
+ env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
+ is_priv = bpf_capable();
+
+ bpf_get_btf_vmlinux();
+
+ /* grab the mutex to protect few globals used by verifier */
+ if (!is_priv)
+ mutex_lock(&bpf_verifier_lock);
+
+ if (attr->log_level || attr->log_buf || attr->log_size) {
+ /* user requested verbose verifier output
+ * and supplied buffer to store the verification trace
+ */
+ log->level = attr->log_level;
+ log->ubuf = (char __user *) (unsigned long) attr->log_buf;
+ log->len_total = attr->log_size;
+
+ /* log attributes have to be sane */
+ if (!bpf_verifier_log_attr_valid(log)) {
+ ret = -EINVAL;
+ goto err_unlock;
+ }
+ }
+
+ mark_verifier_state_clean(env);
+
+ if (IS_ERR(btf_vmlinux)) {
+ /* Either gcc or pahole or kernel are broken. */
+ verbose(env, "in-kernel BTF is malformed\n");
+ ret = PTR_ERR(btf_vmlinux);
+ goto skip_full_check;
+ }
+
+ env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
+ if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
+ env->strict_alignment = true;
+ if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
+ env->strict_alignment = false;
+
+ env->allow_ptr_leaks = bpf_allow_ptr_leaks();
+ env->allow_uninit_stack = bpf_allow_uninit_stack();
+ env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
+ env->bypass_spec_v1 = bpf_bypass_spec_v1();
+ env->bypass_spec_v4 = bpf_bypass_spec_v4();
+ env->bpf_capable = bpf_capable();
+
+ if (is_priv)
+ env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
+
+ env->explored_states = kvcalloc(state_htab_size(env),
+ sizeof(struct bpf_verifier_state_list *),
+ GFP_USER);
+ ret = -ENOMEM;
+ if (!env->explored_states)
+ goto skip_full_check;
+
+ ret = add_subprog_and_kfunc(env);
+ if (ret < 0)
+ goto skip_full_check;
+
+ ret = check_subprogs(env);
+ if (ret < 0)
+ goto skip_full_check;
+
+ ret = check_btf_info(env, attr, uattr);
+ if (ret < 0)
+ goto skip_full_check;
+
+ ret = check_attach_btf_id(env);
+ if (ret)
+ goto skip_full_check;
+
+ ret = resolve_pseudo_ldimm64(env);
+ if (ret < 0)
+ goto skip_full_check;
+
+ if (bpf_prog_is_dev_bound(env->prog->aux)) {
+ ret = bpf_prog_offload_verifier_prep(env->prog);
+ if (ret)
+ goto skip_full_check;
+ }
+
+ ret = check_cfg(env);
+ if (ret < 0)
+ goto skip_full_check;
+
+ ret = do_check_subprogs(env);
+ ret = ret ?: do_check_main(env);
+
+ if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
+ ret = bpf_prog_offload_finalize(env);
+
+skip_full_check:
+ kvfree(env->explored_states);
+
+ if (ret == 0)
+ ret = check_max_stack_depth(env);
+
+ /* instruction rewrites happen after this point */
+ if (ret == 0)
+ ret = optimize_bpf_loop(env);
+
+ if (is_priv) {
+ if (ret == 0)
+ opt_hard_wire_dead_code_branches(env);
+ if (ret == 0)
+ ret = opt_remove_dead_code(env);
+ if (ret == 0)
+ ret = opt_remove_nops(env);
+ } else {
+ if (ret == 0)
+ sanitize_dead_code(env);
+ }
+
+ if (ret == 0)
+ /* program is valid, convert *(u32*)(ctx + off) accesses */
+ ret = convert_ctx_accesses(env);
+
+ if (ret == 0)
+ ret = do_misc_fixups(env);
+
+ /* do 32-bit optimization after insn patching has done so those patched
+ * insns could be handled correctly.
+ */
+ if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
+ ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
+ env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
+ : false;
+ }
+
+ if (ret == 0)
+ ret = fixup_call_args(env);
+
+ env->verification_time = ktime_get_ns() - start_time;
+ print_verification_stats(env);
+ env->prog->aux->verified_insns = env->insn_processed;
+
+ if (log->level && bpf_verifier_log_full(log))
+ ret = -ENOSPC;
+ if (log->level && !log->ubuf) {
+ ret = -EFAULT;
+ goto err_release_maps;
+ }
+
+ if (ret)
+ goto err_release_maps;
+
+ if (env->used_map_cnt) {
+ /* if program passed verifier, update used_maps in bpf_prog_info */
+ env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
+ sizeof(env->used_maps[0]),
+ GFP_KERNEL);
+
+ if (!env->prog->aux->used_maps) {
+ ret = -ENOMEM;
+ goto err_release_maps;
+ }
+
+ memcpy(env->prog->aux->used_maps, env->used_maps,
+ sizeof(env->used_maps[0]) * env->used_map_cnt);
+ env->prog->aux->used_map_cnt = env->used_map_cnt;
+ }
+ if (env->used_btf_cnt) {
+ /* if program passed verifier, update used_btfs in bpf_prog_aux */
+ env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
+ sizeof(env->used_btfs[0]),
+ GFP_KERNEL);
+ if (!env->prog->aux->used_btfs) {
+ ret = -ENOMEM;
+ goto err_release_maps;
+ }
+
+ memcpy(env->prog->aux->used_btfs, env->used_btfs,
+ sizeof(env->used_btfs[0]) * env->used_btf_cnt);
+ env->prog->aux->used_btf_cnt = env->used_btf_cnt;
+ }
+ if (env->used_map_cnt || env->used_btf_cnt) {
+ /* program is valid. Convert pseudo bpf_ld_imm64 into generic
+ * bpf_ld_imm64 instructions
+ */
+ convert_pseudo_ld_imm64(env);
+ }
+
+ adjust_btf_func(env);
+
+err_release_maps:
+ if (!env->prog->aux->used_maps)
+ /* if we didn't copy map pointers into bpf_prog_info, release
+ * them now. Otherwise free_used_maps() will release them.
+ */
+ release_maps(env);
+ if (!env->prog->aux->used_btfs)
+ release_btfs(env);
+
+ /* extension progs temporarily inherit the attach_type of their targets
+ for verification purposes, so set it back to zero before returning
+ */
+ if (env->prog->type == BPF_PROG_TYPE_EXT)
+ env->prog->expected_attach_type = 0;
+
+ *prog = env->prog;
+err_unlock:
+ if (!is_priv)
+ mutex_unlock(&bpf_verifier_lock);
+ vfree(env->insn_aux_data);
+err_free_env:
+ kfree(env);
+ return ret;
+}