summaryrefslogtreecommitdiffstats
path: root/kernel/sched/sched.h
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/sched.h')
-rw-r--r--kernel/sched/sched.h3231
1 files changed, 3231 insertions, 0 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
new file mode 100644
index 000000000..b62d53d7c
--- /dev/null
+++ b/kernel/sched/sched.h
@@ -0,0 +1,3231 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Scheduler internal types and methods:
+ */
+#ifndef _KERNEL_SCHED_SCHED_H
+#define _KERNEL_SCHED_SCHED_H
+
+#include <linux/sched/affinity.h>
+#include <linux/sched/autogroup.h>
+#include <linux/sched/cpufreq.h>
+#include <linux/sched/deadline.h>
+#include <linux/sched.h>
+#include <linux/sched/loadavg.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/rseq_api.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/smt.h>
+#include <linux/sched/stat.h>
+#include <linux/sched/sysctl.h>
+#include <linux/sched/task_flags.h>
+#include <linux/sched/task.h>
+#include <linux/sched/topology.h>
+
+#include <linux/atomic.h>
+#include <linux/bitmap.h>
+#include <linux/bug.h>
+#include <linux/capability.h>
+#include <linux/cgroup_api.h>
+#include <linux/cgroup.h>
+#include <linux/context_tracking.h>
+#include <linux/cpufreq.h>
+#include <linux/cpumask_api.h>
+#include <linux/ctype.h>
+#include <linux/file.h>
+#include <linux/fs_api.h>
+#include <linux/hrtimer_api.h>
+#include <linux/interrupt.h>
+#include <linux/irq_work.h>
+#include <linux/jiffies.h>
+#include <linux/kref_api.h>
+#include <linux/kthread.h>
+#include <linux/ktime_api.h>
+#include <linux/lockdep_api.h>
+#include <linux/lockdep.h>
+#include <linux/minmax.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/mutex_api.h>
+#include <linux/plist.h>
+#include <linux/poll.h>
+#include <linux/proc_fs.h>
+#include <linux/profile.h>
+#include <linux/psi.h>
+#include <linux/rcupdate.h>
+#include <linux/seq_file.h>
+#include <linux/seqlock.h>
+#include <linux/softirq.h>
+#include <linux/spinlock_api.h>
+#include <linux/static_key.h>
+#include <linux/stop_machine.h>
+#include <linux/syscalls_api.h>
+#include <linux/syscalls.h>
+#include <linux/tick.h>
+#include <linux/topology.h>
+#include <linux/types.h>
+#include <linux/u64_stats_sync_api.h>
+#include <linux/uaccess.h>
+#include <linux/wait_api.h>
+#include <linux/wait_bit.h>
+#include <linux/workqueue_api.h>
+
+#include <trace/events/power.h>
+#include <trace/events/sched.h>
+
+#include "../workqueue_internal.h"
+
+#ifdef CONFIG_CGROUP_SCHED
+#include <linux/cgroup.h>
+#include <linux/psi.h>
+#endif
+
+#ifdef CONFIG_SCHED_DEBUG
+# include <linux/static_key.h>
+#endif
+
+#ifdef CONFIG_PARAVIRT
+# include <asm/paravirt.h>
+# include <asm/paravirt_api_clock.h>
+#endif
+
+#include "cpupri.h"
+#include "cpudeadline.h"
+
+#ifdef CONFIG_SCHED_DEBUG
+# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
+#else
+# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
+#endif
+
+struct rq;
+struct cpuidle_state;
+
+/* task_struct::on_rq states: */
+#define TASK_ON_RQ_QUEUED 1
+#define TASK_ON_RQ_MIGRATING 2
+
+extern __read_mostly int scheduler_running;
+
+extern unsigned long calc_load_update;
+extern atomic_long_t calc_load_tasks;
+
+extern unsigned int sysctl_sched_child_runs_first;
+
+extern void calc_global_load_tick(struct rq *this_rq);
+extern long calc_load_fold_active(struct rq *this_rq, long adjust);
+
+extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
+
+extern unsigned int sysctl_sched_rt_period;
+extern int sysctl_sched_rt_runtime;
+extern int sched_rr_timeslice;
+
+/*
+ * Helpers for converting nanosecond timing to jiffy resolution
+ */
+#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
+
+/*
+ * Increase resolution of nice-level calculations for 64-bit architectures.
+ * The extra resolution improves shares distribution and load balancing of
+ * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
+ * hierarchies, especially on larger systems. This is not a user-visible change
+ * and does not change the user-interface for setting shares/weights.
+ *
+ * We increase resolution only if we have enough bits to allow this increased
+ * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
+ * are pretty high and the returns do not justify the increased costs.
+ *
+ * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
+ * increase coverage and consistency always enable it on 64-bit platforms.
+ */
+#ifdef CONFIG_64BIT
+# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
+# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
+# define scale_load_down(w) \
+({ \
+ unsigned long __w = (w); \
+ if (__w) \
+ __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
+ __w; \
+})
+#else
+# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
+# define scale_load(w) (w)
+# define scale_load_down(w) (w)
+#endif
+
+/*
+ * Task weight (visible to users) and its load (invisible to users) have
+ * independent resolution, but they should be well calibrated. We use
+ * scale_load() and scale_load_down(w) to convert between them. The
+ * following must be true:
+ *
+ * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
+ *
+ */
+#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
+
+/*
+ * Single value that decides SCHED_DEADLINE internal math precision.
+ * 10 -> just above 1us
+ * 9 -> just above 0.5us
+ */
+#define DL_SCALE 10
+
+/*
+ * Single value that denotes runtime == period, ie unlimited time.
+ */
+#define RUNTIME_INF ((u64)~0ULL)
+
+static inline int idle_policy(int policy)
+{
+ return policy == SCHED_IDLE;
+}
+static inline int fair_policy(int policy)
+{
+ return policy == SCHED_NORMAL || policy == SCHED_BATCH;
+}
+
+static inline int rt_policy(int policy)
+{
+ return policy == SCHED_FIFO || policy == SCHED_RR;
+}
+
+static inline int dl_policy(int policy)
+{
+ return policy == SCHED_DEADLINE;
+}
+static inline bool valid_policy(int policy)
+{
+ return idle_policy(policy) || fair_policy(policy) ||
+ rt_policy(policy) || dl_policy(policy);
+}
+
+static inline int task_has_idle_policy(struct task_struct *p)
+{
+ return idle_policy(p->policy);
+}
+
+static inline int task_has_rt_policy(struct task_struct *p)
+{
+ return rt_policy(p->policy);
+}
+
+static inline int task_has_dl_policy(struct task_struct *p)
+{
+ return dl_policy(p->policy);
+}
+
+#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
+
+static inline void update_avg(u64 *avg, u64 sample)
+{
+ s64 diff = sample - *avg;
+ *avg += diff / 8;
+}
+
+/*
+ * Shifting a value by an exponent greater *or equal* to the size of said value
+ * is UB; cap at size-1.
+ */
+#define shr_bound(val, shift) \
+ (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
+
+/*
+ * !! For sched_setattr_nocheck() (kernel) only !!
+ *
+ * This is actually gross. :(
+ *
+ * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
+ * tasks, but still be able to sleep. We need this on platforms that cannot
+ * atomically change clock frequency. Remove once fast switching will be
+ * available on such platforms.
+ *
+ * SUGOV stands for SchedUtil GOVernor.
+ */
+#define SCHED_FLAG_SUGOV 0x10000000
+
+#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
+
+static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
+{
+#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
+ return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
+#else
+ return false;
+#endif
+}
+
+/*
+ * Tells if entity @a should preempt entity @b.
+ */
+static inline bool
+dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
+{
+ return dl_entity_is_special(a) ||
+ dl_time_before(a->deadline, b->deadline);
+}
+
+/*
+ * This is the priority-queue data structure of the RT scheduling class:
+ */
+struct rt_prio_array {
+ DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
+ struct list_head queue[MAX_RT_PRIO];
+};
+
+struct rt_bandwidth {
+ /* nests inside the rq lock: */
+ raw_spinlock_t rt_runtime_lock;
+ ktime_t rt_period;
+ u64 rt_runtime;
+ struct hrtimer rt_period_timer;
+ unsigned int rt_period_active;
+};
+
+void __dl_clear_params(struct task_struct *p);
+
+struct dl_bandwidth {
+ raw_spinlock_t dl_runtime_lock;
+ u64 dl_runtime;
+ u64 dl_period;
+};
+
+static inline int dl_bandwidth_enabled(void)
+{
+ return sysctl_sched_rt_runtime >= 0;
+}
+
+/*
+ * To keep the bandwidth of -deadline tasks under control
+ * we need some place where:
+ * - store the maximum -deadline bandwidth of each cpu;
+ * - cache the fraction of bandwidth that is currently allocated in
+ * each root domain;
+ *
+ * This is all done in the data structure below. It is similar to the
+ * one used for RT-throttling (rt_bandwidth), with the main difference
+ * that, since here we are only interested in admission control, we
+ * do not decrease any runtime while the group "executes", neither we
+ * need a timer to replenish it.
+ *
+ * With respect to SMP, bandwidth is given on a per root domain basis,
+ * meaning that:
+ * - bw (< 100%) is the deadline bandwidth of each CPU;
+ * - total_bw is the currently allocated bandwidth in each root domain;
+ */
+struct dl_bw {
+ raw_spinlock_t lock;
+ u64 bw;
+ u64 total_bw;
+};
+
+extern void init_dl_bw(struct dl_bw *dl_b);
+extern int sched_dl_global_validate(void);
+extern void sched_dl_do_global(void);
+extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
+extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
+extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
+extern bool __checkparam_dl(const struct sched_attr *attr);
+extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
+extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
+extern int dl_bw_check_overflow(int cpu);
+
+#ifdef CONFIG_CGROUP_SCHED
+
+struct cfs_rq;
+struct rt_rq;
+
+extern struct list_head task_groups;
+
+struct cfs_bandwidth {
+#ifdef CONFIG_CFS_BANDWIDTH
+ raw_spinlock_t lock;
+ ktime_t period;
+ u64 quota;
+ u64 runtime;
+ u64 burst;
+ u64 runtime_snap;
+ s64 hierarchical_quota;
+
+ u8 idle;
+ u8 period_active;
+ u8 slack_started;
+ struct hrtimer period_timer;
+ struct hrtimer slack_timer;
+ struct list_head throttled_cfs_rq;
+
+ /* Statistics: */
+ int nr_periods;
+ int nr_throttled;
+ int nr_burst;
+ u64 throttled_time;
+ u64 burst_time;
+#endif
+};
+
+/* Task group related information */
+struct task_group {
+ struct cgroup_subsys_state css;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ /* schedulable entities of this group on each CPU */
+ struct sched_entity **se;
+ /* runqueue "owned" by this group on each CPU */
+ struct cfs_rq **cfs_rq;
+ unsigned long shares;
+
+ /* A positive value indicates that this is a SCHED_IDLE group. */
+ int idle;
+
+#ifdef CONFIG_SMP
+ /*
+ * load_avg can be heavily contended at clock tick time, so put
+ * it in its own cacheline separated from the fields above which
+ * will also be accessed at each tick.
+ */
+ atomic_long_t load_avg ____cacheline_aligned;
+#endif
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+ struct sched_rt_entity **rt_se;
+ struct rt_rq **rt_rq;
+
+ struct rt_bandwidth rt_bandwidth;
+#endif
+
+ struct rcu_head rcu;
+ struct list_head list;
+
+ struct task_group *parent;
+ struct list_head siblings;
+ struct list_head children;
+
+#ifdef CONFIG_SCHED_AUTOGROUP
+ struct autogroup *autogroup;
+#endif
+
+ struct cfs_bandwidth cfs_bandwidth;
+
+#ifdef CONFIG_UCLAMP_TASK_GROUP
+ /* The two decimal precision [%] value requested from user-space */
+ unsigned int uclamp_pct[UCLAMP_CNT];
+ /* Clamp values requested for a task group */
+ struct uclamp_se uclamp_req[UCLAMP_CNT];
+ /* Effective clamp values used for a task group */
+ struct uclamp_se uclamp[UCLAMP_CNT];
+#endif
+
+};
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
+
+/*
+ * A weight of 0 or 1 can cause arithmetics problems.
+ * A weight of a cfs_rq is the sum of weights of which entities
+ * are queued on this cfs_rq, so a weight of a entity should not be
+ * too large, so as the shares value of a task group.
+ * (The default weight is 1024 - so there's no practical
+ * limitation from this.)
+ */
+#define MIN_SHARES (1UL << 1)
+#define MAX_SHARES (1UL << 18)
+#endif
+
+typedef int (*tg_visitor)(struct task_group *, void *);
+
+extern int walk_tg_tree_from(struct task_group *from,
+ tg_visitor down, tg_visitor up, void *data);
+
+/*
+ * Iterate the full tree, calling @down when first entering a node and @up when
+ * leaving it for the final time.
+ *
+ * Caller must hold rcu_lock or sufficient equivalent.
+ */
+static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
+{
+ return walk_tg_tree_from(&root_task_group, down, up, data);
+}
+
+extern int tg_nop(struct task_group *tg, void *data);
+
+extern void free_fair_sched_group(struct task_group *tg);
+extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
+extern void online_fair_sched_group(struct task_group *tg);
+extern void unregister_fair_sched_group(struct task_group *tg);
+extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
+ struct sched_entity *se, int cpu,
+ struct sched_entity *parent);
+extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+
+extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
+extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
+
+extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
+ struct sched_rt_entity *rt_se, int cpu,
+ struct sched_rt_entity *parent);
+extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
+extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
+extern long sched_group_rt_runtime(struct task_group *tg);
+extern long sched_group_rt_period(struct task_group *tg);
+extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
+
+extern struct task_group *sched_create_group(struct task_group *parent);
+extern void sched_online_group(struct task_group *tg,
+ struct task_group *parent);
+extern void sched_destroy_group(struct task_group *tg);
+extern void sched_release_group(struct task_group *tg);
+
+extern void sched_move_task(struct task_struct *tsk);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
+
+extern int sched_group_set_idle(struct task_group *tg, long idle);
+
+#ifdef CONFIG_SMP
+extern void set_task_rq_fair(struct sched_entity *se,
+ struct cfs_rq *prev, struct cfs_rq *next);
+#else /* !CONFIG_SMP */
+static inline void set_task_rq_fair(struct sched_entity *se,
+ struct cfs_rq *prev, struct cfs_rq *next) { }
+#endif /* CONFIG_SMP */
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+#else /* CONFIG_CGROUP_SCHED */
+
+struct cfs_bandwidth { };
+
+#endif /* CONFIG_CGROUP_SCHED */
+
+extern void unregister_rt_sched_group(struct task_group *tg);
+extern void free_rt_sched_group(struct task_group *tg);
+extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
+
+/*
+ * u64_u32_load/u64_u32_store
+ *
+ * Use a copy of a u64 value to protect against data race. This is only
+ * applicable for 32-bits architectures.
+ */
+#ifdef CONFIG_64BIT
+# define u64_u32_load_copy(var, copy) var
+# define u64_u32_store_copy(var, copy, val) (var = val)
+#else
+# define u64_u32_load_copy(var, copy) \
+({ \
+ u64 __val, __val_copy; \
+ do { \
+ __val_copy = copy; \
+ /* \
+ * paired with u64_u32_store_copy(), ordering access \
+ * to var and copy. \
+ */ \
+ smp_rmb(); \
+ __val = var; \
+ } while (__val != __val_copy); \
+ __val; \
+})
+# define u64_u32_store_copy(var, copy, val) \
+do { \
+ typeof(val) __val = (val); \
+ var = __val; \
+ /* \
+ * paired with u64_u32_load_copy(), ordering access to var and \
+ * copy. \
+ */ \
+ smp_wmb(); \
+ copy = __val; \
+} while (0)
+#endif
+# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
+# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
+
+/* CFS-related fields in a runqueue */
+struct cfs_rq {
+ struct load_weight load;
+ unsigned int nr_running;
+ unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
+ unsigned int idle_nr_running; /* SCHED_IDLE */
+ unsigned int idle_h_nr_running; /* SCHED_IDLE */
+
+ u64 exec_clock;
+ u64 min_vruntime;
+#ifdef CONFIG_SCHED_CORE
+ unsigned int forceidle_seq;
+ u64 min_vruntime_fi;
+#endif
+
+#ifndef CONFIG_64BIT
+ u64 min_vruntime_copy;
+#endif
+
+ struct rb_root_cached tasks_timeline;
+
+ /*
+ * 'curr' points to currently running entity on this cfs_rq.
+ * It is set to NULL otherwise (i.e when none are currently running).
+ */
+ struct sched_entity *curr;
+ struct sched_entity *next;
+ struct sched_entity *last;
+ struct sched_entity *skip;
+
+#ifdef CONFIG_SCHED_DEBUG
+ unsigned int nr_spread_over;
+#endif
+
+#ifdef CONFIG_SMP
+ /*
+ * CFS load tracking
+ */
+ struct sched_avg avg;
+#ifndef CONFIG_64BIT
+ u64 last_update_time_copy;
+#endif
+ struct {
+ raw_spinlock_t lock ____cacheline_aligned;
+ int nr;
+ unsigned long load_avg;
+ unsigned long util_avg;
+ unsigned long runnable_avg;
+ } removed;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ unsigned long tg_load_avg_contrib;
+ long propagate;
+ long prop_runnable_sum;
+
+ /*
+ * h_load = weight * f(tg)
+ *
+ * Where f(tg) is the recursive weight fraction assigned to
+ * this group.
+ */
+ unsigned long h_load;
+ u64 last_h_load_update;
+ struct sched_entity *h_load_next;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
+
+ /*
+ * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
+ * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
+ * (like users, containers etc.)
+ *
+ * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
+ * This list is used during load balance.
+ */
+ int on_list;
+ struct list_head leaf_cfs_rq_list;
+ struct task_group *tg; /* group that "owns" this runqueue */
+
+ /* Locally cached copy of our task_group's idle value */
+ int idle;
+
+#ifdef CONFIG_CFS_BANDWIDTH
+ int runtime_enabled;
+ s64 runtime_remaining;
+
+ u64 throttled_pelt_idle;
+#ifndef CONFIG_64BIT
+ u64 throttled_pelt_idle_copy;
+#endif
+ u64 throttled_clock;
+ u64 throttled_clock_pelt;
+ u64 throttled_clock_pelt_time;
+ int throttled;
+ int throttle_count;
+ struct list_head throttled_list;
+#endif /* CONFIG_CFS_BANDWIDTH */
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+};
+
+static inline int rt_bandwidth_enabled(void)
+{
+ return sysctl_sched_rt_runtime >= 0;
+}
+
+/* RT IPI pull logic requires IRQ_WORK */
+#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
+# define HAVE_RT_PUSH_IPI
+#endif
+
+/* Real-Time classes' related field in a runqueue: */
+struct rt_rq {
+ struct rt_prio_array active;
+ unsigned int rt_nr_running;
+ unsigned int rr_nr_running;
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+ struct {
+ int curr; /* highest queued rt task prio */
+#ifdef CONFIG_SMP
+ int next; /* next highest */
+#endif
+ } highest_prio;
+#endif
+#ifdef CONFIG_SMP
+ unsigned int rt_nr_migratory;
+ unsigned int rt_nr_total;
+ int overloaded;
+ struct plist_head pushable_tasks;
+
+#endif /* CONFIG_SMP */
+ int rt_queued;
+
+ int rt_throttled;
+ u64 rt_time;
+ u64 rt_runtime;
+ /* Nests inside the rq lock: */
+ raw_spinlock_t rt_runtime_lock;
+
+#ifdef CONFIG_RT_GROUP_SCHED
+ unsigned int rt_nr_boosted;
+
+ struct rq *rq;
+ struct task_group *tg;
+#endif
+};
+
+static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
+{
+ return rt_rq->rt_queued && rt_rq->rt_nr_running;
+}
+
+/* Deadline class' related fields in a runqueue */
+struct dl_rq {
+ /* runqueue is an rbtree, ordered by deadline */
+ struct rb_root_cached root;
+
+ unsigned int dl_nr_running;
+
+#ifdef CONFIG_SMP
+ /*
+ * Deadline values of the currently executing and the
+ * earliest ready task on this rq. Caching these facilitates
+ * the decision whether or not a ready but not running task
+ * should migrate somewhere else.
+ */
+ struct {
+ u64 curr;
+ u64 next;
+ } earliest_dl;
+
+ unsigned int dl_nr_migratory;
+ int overloaded;
+
+ /*
+ * Tasks on this rq that can be pushed away. They are kept in
+ * an rb-tree, ordered by tasks' deadlines, with caching
+ * of the leftmost (earliest deadline) element.
+ */
+ struct rb_root_cached pushable_dl_tasks_root;
+#else
+ struct dl_bw dl_bw;
+#endif
+ /*
+ * "Active utilization" for this runqueue: increased when a
+ * task wakes up (becomes TASK_RUNNING) and decreased when a
+ * task blocks
+ */
+ u64 running_bw;
+
+ /*
+ * Utilization of the tasks "assigned" to this runqueue (including
+ * the tasks that are in runqueue and the tasks that executed on this
+ * CPU and blocked). Increased when a task moves to this runqueue, and
+ * decreased when the task moves away (migrates, changes scheduling
+ * policy, or terminates).
+ * This is needed to compute the "inactive utilization" for the
+ * runqueue (inactive utilization = this_bw - running_bw).
+ */
+ u64 this_bw;
+ u64 extra_bw;
+
+ /*
+ * Inverse of the fraction of CPU utilization that can be reclaimed
+ * by the GRUB algorithm.
+ */
+ u64 bw_ratio;
+};
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/* An entity is a task if it doesn't "own" a runqueue */
+#define entity_is_task(se) (!se->my_q)
+
+static inline void se_update_runnable(struct sched_entity *se)
+{
+ if (!entity_is_task(se))
+ se->runnable_weight = se->my_q->h_nr_running;
+}
+
+static inline long se_runnable(struct sched_entity *se)
+{
+ if (entity_is_task(se))
+ return !!se->on_rq;
+ else
+ return se->runnable_weight;
+}
+
+#else
+#define entity_is_task(se) 1
+
+static inline void se_update_runnable(struct sched_entity *se) {}
+
+static inline long se_runnable(struct sched_entity *se)
+{
+ return !!se->on_rq;
+}
+#endif
+
+#ifdef CONFIG_SMP
+/*
+ * XXX we want to get rid of these helpers and use the full load resolution.
+ */
+static inline long se_weight(struct sched_entity *se)
+{
+ return scale_load_down(se->load.weight);
+}
+
+
+static inline bool sched_asym_prefer(int a, int b)
+{
+ return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
+}
+
+struct perf_domain {
+ struct em_perf_domain *em_pd;
+ struct perf_domain *next;
+ struct rcu_head rcu;
+};
+
+/* Scheduling group status flags */
+#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
+#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
+
+/*
+ * We add the notion of a root-domain which will be used to define per-domain
+ * variables. Each exclusive cpuset essentially defines an island domain by
+ * fully partitioning the member CPUs from any other cpuset. Whenever a new
+ * exclusive cpuset is created, we also create and attach a new root-domain
+ * object.
+ *
+ */
+struct root_domain {
+ atomic_t refcount;
+ atomic_t rto_count;
+ struct rcu_head rcu;
+ cpumask_var_t span;
+ cpumask_var_t online;
+
+ /*
+ * Indicate pullable load on at least one CPU, e.g:
+ * - More than one runnable task
+ * - Running task is misfit
+ */
+ int overload;
+
+ /* Indicate one or more cpus over-utilized (tipping point) */
+ int overutilized;
+
+ /*
+ * The bit corresponding to a CPU gets set here if such CPU has more
+ * than one runnable -deadline task (as it is below for RT tasks).
+ */
+ cpumask_var_t dlo_mask;
+ atomic_t dlo_count;
+ struct dl_bw dl_bw;
+ struct cpudl cpudl;
+
+ /*
+ * Indicate whether a root_domain's dl_bw has been checked or
+ * updated. It's monotonously increasing value.
+ *
+ * Also, some corner cases, like 'wrap around' is dangerous, but given
+ * that u64 is 'big enough'. So that shouldn't be a concern.
+ */
+ u64 visit_gen;
+
+#ifdef HAVE_RT_PUSH_IPI
+ /*
+ * For IPI pull requests, loop across the rto_mask.
+ */
+ struct irq_work rto_push_work;
+ raw_spinlock_t rto_lock;
+ /* These are only updated and read within rto_lock */
+ int rto_loop;
+ int rto_cpu;
+ /* These atomics are updated outside of a lock */
+ atomic_t rto_loop_next;
+ atomic_t rto_loop_start;
+#endif
+ /*
+ * The "RT overload" flag: it gets set if a CPU has more than
+ * one runnable RT task.
+ */
+ cpumask_var_t rto_mask;
+ struct cpupri cpupri;
+
+ unsigned long max_cpu_capacity;
+
+ /*
+ * NULL-terminated list of performance domains intersecting with the
+ * CPUs of the rd. Protected by RCU.
+ */
+ struct perf_domain __rcu *pd;
+};
+
+extern void init_defrootdomain(void);
+extern int sched_init_domains(const struct cpumask *cpu_map);
+extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
+extern void sched_get_rd(struct root_domain *rd);
+extern void sched_put_rd(struct root_domain *rd);
+
+#ifdef HAVE_RT_PUSH_IPI
+extern void rto_push_irq_work_func(struct irq_work *work);
+#endif
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_UCLAMP_TASK
+/*
+ * struct uclamp_bucket - Utilization clamp bucket
+ * @value: utilization clamp value for tasks on this clamp bucket
+ * @tasks: number of RUNNABLE tasks on this clamp bucket
+ *
+ * Keep track of how many tasks are RUNNABLE for a given utilization
+ * clamp value.
+ */
+struct uclamp_bucket {
+ unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
+ unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
+};
+
+/*
+ * struct uclamp_rq - rq's utilization clamp
+ * @value: currently active clamp values for a rq
+ * @bucket: utilization clamp buckets affecting a rq
+ *
+ * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
+ * A clamp value is affecting a rq when there is at least one task RUNNABLE
+ * (or actually running) with that value.
+ *
+ * There are up to UCLAMP_CNT possible different clamp values, currently there
+ * are only two: minimum utilization and maximum utilization.
+ *
+ * All utilization clamping values are MAX aggregated, since:
+ * - for util_min: we want to run the CPU at least at the max of the minimum
+ * utilization required by its currently RUNNABLE tasks.
+ * - for util_max: we want to allow the CPU to run up to the max of the
+ * maximum utilization allowed by its currently RUNNABLE tasks.
+ *
+ * Since on each system we expect only a limited number of different
+ * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
+ * the metrics required to compute all the per-rq utilization clamp values.
+ */
+struct uclamp_rq {
+ unsigned int value;
+ struct uclamp_bucket bucket[UCLAMP_BUCKETS];
+};
+
+DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
+#endif /* CONFIG_UCLAMP_TASK */
+
+struct rq;
+struct balance_callback {
+ struct balance_callback *next;
+ void (*func)(struct rq *rq);
+};
+
+/*
+ * This is the main, per-CPU runqueue data structure.
+ *
+ * Locking rule: those places that want to lock multiple runqueues
+ * (such as the load balancing or the thread migration code), lock
+ * acquire operations must be ordered by ascending &runqueue.
+ */
+struct rq {
+ /* runqueue lock: */
+ raw_spinlock_t __lock;
+
+ /*
+ * nr_running and cpu_load should be in the same cacheline because
+ * remote CPUs use both these fields when doing load calculation.
+ */
+ unsigned int nr_running;
+#ifdef CONFIG_NUMA_BALANCING
+ unsigned int nr_numa_running;
+ unsigned int nr_preferred_running;
+ unsigned int numa_migrate_on;
+#endif
+#ifdef CONFIG_NO_HZ_COMMON
+#ifdef CONFIG_SMP
+ unsigned long last_blocked_load_update_tick;
+ unsigned int has_blocked_load;
+ call_single_data_t nohz_csd;
+#endif /* CONFIG_SMP */
+ unsigned int nohz_tick_stopped;
+ atomic_t nohz_flags;
+#endif /* CONFIG_NO_HZ_COMMON */
+
+#ifdef CONFIG_SMP
+ unsigned int ttwu_pending;
+#endif
+ u64 nr_switches;
+
+#ifdef CONFIG_UCLAMP_TASK
+ /* Utilization clamp values based on CPU's RUNNABLE tasks */
+ struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
+ unsigned int uclamp_flags;
+#define UCLAMP_FLAG_IDLE 0x01
+#endif
+
+ struct cfs_rq cfs;
+ struct rt_rq rt;
+ struct dl_rq dl;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ /* list of leaf cfs_rq on this CPU: */
+ struct list_head leaf_cfs_rq_list;
+ struct list_head *tmp_alone_branch;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+ /*
+ * This is part of a global counter where only the total sum
+ * over all CPUs matters. A task can increase this counter on
+ * one CPU and if it got migrated afterwards it may decrease
+ * it on another CPU. Always updated under the runqueue lock:
+ */
+ unsigned int nr_uninterruptible;
+
+ struct task_struct __rcu *curr;
+ struct task_struct *idle;
+ struct task_struct *stop;
+ unsigned long next_balance;
+ struct mm_struct *prev_mm;
+
+ unsigned int clock_update_flags;
+ u64 clock;
+ /* Ensure that all clocks are in the same cache line */
+ u64 clock_task ____cacheline_aligned;
+ u64 clock_pelt;
+ unsigned long lost_idle_time;
+ u64 clock_pelt_idle;
+ u64 clock_idle;
+#ifndef CONFIG_64BIT
+ u64 clock_pelt_idle_copy;
+ u64 clock_idle_copy;
+#endif
+
+ atomic_t nr_iowait;
+
+#ifdef CONFIG_SCHED_DEBUG
+ u64 last_seen_need_resched_ns;
+ int ticks_without_resched;
+#endif
+
+#ifdef CONFIG_MEMBARRIER
+ int membarrier_state;
+#endif
+
+#ifdef CONFIG_SMP
+ struct root_domain *rd;
+ struct sched_domain __rcu *sd;
+
+ unsigned long cpu_capacity;
+ unsigned long cpu_capacity_orig;
+
+ struct balance_callback *balance_callback;
+
+ unsigned char nohz_idle_balance;
+ unsigned char idle_balance;
+
+ unsigned long misfit_task_load;
+
+ /* For active balancing */
+ int active_balance;
+ int push_cpu;
+ struct cpu_stop_work active_balance_work;
+
+ /* CPU of this runqueue: */
+ int cpu;
+ int online;
+
+ struct list_head cfs_tasks;
+
+ struct sched_avg avg_rt;
+ struct sched_avg avg_dl;
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+ struct sched_avg avg_irq;
+#endif
+#ifdef CONFIG_SCHED_THERMAL_PRESSURE
+ struct sched_avg avg_thermal;
+#endif
+ u64 idle_stamp;
+ u64 avg_idle;
+
+ unsigned long wake_stamp;
+ u64 wake_avg_idle;
+
+ /* This is used to determine avg_idle's max value */
+ u64 max_idle_balance_cost;
+
+#ifdef CONFIG_HOTPLUG_CPU
+ struct rcuwait hotplug_wait;
+#endif
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+ u64 prev_irq_time;
+#endif
+#ifdef CONFIG_PARAVIRT
+ u64 prev_steal_time;
+#endif
+#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
+ u64 prev_steal_time_rq;
+#endif
+
+ /* calc_load related fields */
+ unsigned long calc_load_update;
+ long calc_load_active;
+
+#ifdef CONFIG_SCHED_HRTICK
+#ifdef CONFIG_SMP
+ call_single_data_t hrtick_csd;
+#endif
+ struct hrtimer hrtick_timer;
+ ktime_t hrtick_time;
+#endif
+
+#ifdef CONFIG_SCHEDSTATS
+ /* latency stats */
+ struct sched_info rq_sched_info;
+ unsigned long long rq_cpu_time;
+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
+
+ /* sys_sched_yield() stats */
+ unsigned int yld_count;
+
+ /* schedule() stats */
+ unsigned int sched_count;
+ unsigned int sched_goidle;
+
+ /* try_to_wake_up() stats */
+ unsigned int ttwu_count;
+ unsigned int ttwu_local;
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+ /* Must be inspected within a rcu lock section */
+ struct cpuidle_state *idle_state;
+#endif
+
+#ifdef CONFIG_SMP
+ unsigned int nr_pinned;
+#endif
+ unsigned int push_busy;
+ struct cpu_stop_work push_work;
+
+#ifdef CONFIG_SCHED_CORE
+ /* per rq */
+ struct rq *core;
+ struct task_struct *core_pick;
+ unsigned int core_enabled;
+ unsigned int core_sched_seq;
+ struct rb_root core_tree;
+
+ /* shared state -- careful with sched_core_cpu_deactivate() */
+ unsigned int core_task_seq;
+ unsigned int core_pick_seq;
+ unsigned long core_cookie;
+ unsigned int core_forceidle_count;
+ unsigned int core_forceidle_seq;
+ unsigned int core_forceidle_occupation;
+ u64 core_forceidle_start;
+#endif
+};
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* CPU runqueue to which this cfs_rq is attached */
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->rq;
+}
+
+#else
+
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+ return container_of(cfs_rq, struct rq, cfs);
+}
+#endif
+
+static inline int cpu_of(struct rq *rq)
+{
+#ifdef CONFIG_SMP
+ return rq->cpu;
+#else
+ return 0;
+#endif
+}
+
+#define MDF_PUSH 0x01
+
+static inline bool is_migration_disabled(struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+ return p->migration_disabled;
+#else
+ return false;
+#endif
+}
+
+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+
+#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
+#define this_rq() this_cpu_ptr(&runqueues)
+#define task_rq(p) cpu_rq(task_cpu(p))
+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
+#define raw_rq() raw_cpu_ptr(&runqueues)
+
+struct sched_group;
+#ifdef CONFIG_SCHED_CORE
+static inline struct cpumask *sched_group_span(struct sched_group *sg);
+
+DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
+
+static inline bool sched_core_enabled(struct rq *rq)
+{
+ return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
+}
+
+static inline bool sched_core_disabled(void)
+{
+ return !static_branch_unlikely(&__sched_core_enabled);
+}
+
+/*
+ * Be careful with this function; not for general use. The return value isn't
+ * stable unless you actually hold a relevant rq->__lock.
+ */
+static inline raw_spinlock_t *rq_lockp(struct rq *rq)
+{
+ if (sched_core_enabled(rq))
+ return &rq->core->__lock;
+
+ return &rq->__lock;
+}
+
+static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
+{
+ if (rq->core_enabled)
+ return &rq->core->__lock;
+
+ return &rq->__lock;
+}
+
+bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
+
+/*
+ * Helpers to check if the CPU's core cookie matches with the task's cookie
+ * when core scheduling is enabled.
+ * A special case is that the task's cookie always matches with CPU's core
+ * cookie if the CPU is in an idle core.
+ */
+static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
+{
+ /* Ignore cookie match if core scheduler is not enabled on the CPU. */
+ if (!sched_core_enabled(rq))
+ return true;
+
+ return rq->core->core_cookie == p->core_cookie;
+}
+
+static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
+{
+ bool idle_core = true;
+ int cpu;
+
+ /* Ignore cookie match if core scheduler is not enabled on the CPU. */
+ if (!sched_core_enabled(rq))
+ return true;
+
+ for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
+ if (!available_idle_cpu(cpu)) {
+ idle_core = false;
+ break;
+ }
+ }
+
+ /*
+ * A CPU in an idle core is always the best choice for tasks with
+ * cookies.
+ */
+ return idle_core || rq->core->core_cookie == p->core_cookie;
+}
+
+static inline bool sched_group_cookie_match(struct rq *rq,
+ struct task_struct *p,
+ struct sched_group *group)
+{
+ int cpu;
+
+ /* Ignore cookie match if core scheduler is not enabled on the CPU. */
+ if (!sched_core_enabled(rq))
+ return true;
+
+ for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
+ if (sched_core_cookie_match(cpu_rq(cpu), p))
+ return true;
+ }
+ return false;
+}
+
+static inline bool sched_core_enqueued(struct task_struct *p)
+{
+ return !RB_EMPTY_NODE(&p->core_node);
+}
+
+extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
+extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
+
+extern void sched_core_get(void);
+extern void sched_core_put(void);
+
+#else /* !CONFIG_SCHED_CORE */
+
+static inline bool sched_core_enabled(struct rq *rq)
+{
+ return false;
+}
+
+static inline bool sched_core_disabled(void)
+{
+ return true;
+}
+
+static inline raw_spinlock_t *rq_lockp(struct rq *rq)
+{
+ return &rq->__lock;
+}
+
+static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
+{
+ return &rq->__lock;
+}
+
+static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
+{
+ return true;
+}
+
+static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
+{
+ return true;
+}
+
+static inline bool sched_group_cookie_match(struct rq *rq,
+ struct task_struct *p,
+ struct sched_group *group)
+{
+ return true;
+}
+#endif /* CONFIG_SCHED_CORE */
+
+static inline void lockdep_assert_rq_held(struct rq *rq)
+{
+ lockdep_assert_held(__rq_lockp(rq));
+}
+
+extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
+extern bool raw_spin_rq_trylock(struct rq *rq);
+extern void raw_spin_rq_unlock(struct rq *rq);
+
+static inline void raw_spin_rq_lock(struct rq *rq)
+{
+ raw_spin_rq_lock_nested(rq, 0);
+}
+
+static inline void raw_spin_rq_lock_irq(struct rq *rq)
+{
+ local_irq_disable();
+ raw_spin_rq_lock(rq);
+}
+
+static inline void raw_spin_rq_unlock_irq(struct rq *rq)
+{
+ raw_spin_rq_unlock(rq);
+ local_irq_enable();
+}
+
+static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
+{
+ unsigned long flags;
+ local_irq_save(flags);
+ raw_spin_rq_lock(rq);
+ return flags;
+}
+
+static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
+{
+ raw_spin_rq_unlock(rq);
+ local_irq_restore(flags);
+}
+
+#define raw_spin_rq_lock_irqsave(rq, flags) \
+do { \
+ flags = _raw_spin_rq_lock_irqsave(rq); \
+} while (0)
+
+#ifdef CONFIG_SCHED_SMT
+extern void __update_idle_core(struct rq *rq);
+
+static inline void update_idle_core(struct rq *rq)
+{
+ if (static_branch_unlikely(&sched_smt_present))
+ __update_idle_core(rq);
+}
+
+#else
+static inline void update_idle_core(struct rq *rq) { }
+#endif
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+ SCHED_WARN_ON(!entity_is_task(se));
+ return container_of(se, struct task_struct, se);
+}
+
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+ return p->se.cfs_rq;
+}
+
+/* runqueue on which this entity is (to be) queued */
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+ return se->cfs_rq;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+ return grp->my_q;
+}
+
+#else
+
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+ return container_of(se, struct task_struct, se);
+}
+
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+ return &task_rq(p)->cfs;
+}
+
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+ struct task_struct *p = task_of(se);
+ struct rq *rq = task_rq(p);
+
+ return &rq->cfs;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+ return NULL;
+}
+#endif
+
+extern void update_rq_clock(struct rq *rq);
+
+/*
+ * rq::clock_update_flags bits
+ *
+ * %RQCF_REQ_SKIP - will request skipping of clock update on the next
+ * call to __schedule(). This is an optimisation to avoid
+ * neighbouring rq clock updates.
+ *
+ * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
+ * in effect and calls to update_rq_clock() are being ignored.
+ *
+ * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
+ * made to update_rq_clock() since the last time rq::lock was pinned.
+ *
+ * If inside of __schedule(), clock_update_flags will have been
+ * shifted left (a left shift is a cheap operation for the fast path
+ * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
+ *
+ * if (rq-clock_update_flags >= RQCF_UPDATED)
+ *
+ * to check if %RQCF_UPDATED is set. It'll never be shifted more than
+ * one position though, because the next rq_unpin_lock() will shift it
+ * back.
+ */
+#define RQCF_REQ_SKIP 0x01
+#define RQCF_ACT_SKIP 0x02
+#define RQCF_UPDATED 0x04
+
+static inline void assert_clock_updated(struct rq *rq)
+{
+ /*
+ * The only reason for not seeing a clock update since the
+ * last rq_pin_lock() is if we're currently skipping updates.
+ */
+ SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
+}
+
+static inline u64 rq_clock(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+ assert_clock_updated(rq);
+
+ return rq->clock;
+}
+
+static inline u64 rq_clock_task(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+ assert_clock_updated(rq);
+
+ return rq->clock_task;
+}
+
+/**
+ * By default the decay is the default pelt decay period.
+ * The decay shift can change the decay period in
+ * multiples of 32.
+ * Decay shift Decay period(ms)
+ * 0 32
+ * 1 64
+ * 2 128
+ * 3 256
+ * 4 512
+ */
+extern int sched_thermal_decay_shift;
+
+static inline u64 rq_clock_thermal(struct rq *rq)
+{
+ return rq_clock_task(rq) >> sched_thermal_decay_shift;
+}
+
+static inline void rq_clock_skip_update(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+ rq->clock_update_flags |= RQCF_REQ_SKIP;
+}
+
+/*
+ * See rt task throttling, which is the only time a skip
+ * request is canceled.
+ */
+static inline void rq_clock_cancel_skipupdate(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+ rq->clock_update_flags &= ~RQCF_REQ_SKIP;
+}
+
+struct rq_flags {
+ unsigned long flags;
+ struct pin_cookie cookie;
+#ifdef CONFIG_SCHED_DEBUG
+ /*
+ * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
+ * current pin context is stashed here in case it needs to be
+ * restored in rq_repin_lock().
+ */
+ unsigned int clock_update_flags;
+#endif
+};
+
+extern struct balance_callback balance_push_callback;
+
+/*
+ * Lockdep annotation that avoids accidental unlocks; it's like a
+ * sticky/continuous lockdep_assert_held().
+ *
+ * This avoids code that has access to 'struct rq *rq' (basically everything in
+ * the scheduler) from accidentally unlocking the rq if they do not also have a
+ * copy of the (on-stack) 'struct rq_flags rf'.
+ *
+ * Also see Documentation/locking/lockdep-design.rst.
+ */
+static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
+{
+ rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
+
+#ifdef CONFIG_SCHED_DEBUG
+ rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
+ rf->clock_update_flags = 0;
+#ifdef CONFIG_SMP
+ SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
+#endif
+#endif
+}
+
+static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
+{
+#ifdef CONFIG_SCHED_DEBUG
+ if (rq->clock_update_flags > RQCF_ACT_SKIP)
+ rf->clock_update_flags = RQCF_UPDATED;
+#endif
+
+ lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
+}
+
+static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
+{
+ lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
+
+#ifdef CONFIG_SCHED_DEBUG
+ /*
+ * Restore the value we stashed in @rf for this pin context.
+ */
+ rq->clock_update_flags |= rf->clock_update_flags;
+#endif
+}
+
+struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
+ __acquires(rq->lock);
+
+struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
+ __acquires(p->pi_lock)
+ __acquires(rq->lock);
+
+static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
+ __releases(rq->lock)
+{
+ rq_unpin_lock(rq, rf);
+ raw_spin_rq_unlock(rq);
+}
+
+static inline void
+task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
+ __releases(rq->lock)
+ __releases(p->pi_lock)
+{
+ rq_unpin_lock(rq, rf);
+ raw_spin_rq_unlock(rq);
+ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
+}
+
+static inline void
+rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
+ __acquires(rq->lock)
+{
+ raw_spin_rq_lock_irqsave(rq, rf->flags);
+ rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_lock_irq(struct rq *rq, struct rq_flags *rf)
+ __acquires(rq->lock)
+{
+ raw_spin_rq_lock_irq(rq);
+ rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_lock(struct rq *rq, struct rq_flags *rf)
+ __acquires(rq->lock)
+{
+ raw_spin_rq_lock(rq);
+ rq_pin_lock(rq, rf);
+}
+
+static inline void
+rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
+ __releases(rq->lock)
+{
+ rq_unpin_lock(rq, rf);
+ raw_spin_rq_unlock_irqrestore(rq, rf->flags);
+}
+
+static inline void
+rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
+ __releases(rq->lock)
+{
+ rq_unpin_lock(rq, rf);
+ raw_spin_rq_unlock_irq(rq);
+}
+
+static inline void
+rq_unlock(struct rq *rq, struct rq_flags *rf)
+ __releases(rq->lock)
+{
+ rq_unpin_lock(rq, rf);
+ raw_spin_rq_unlock(rq);
+}
+
+static inline struct rq *
+this_rq_lock_irq(struct rq_flags *rf)
+ __acquires(rq->lock)
+{
+ struct rq *rq;
+
+ local_irq_disable();
+ rq = this_rq();
+ rq_lock(rq, rf);
+ return rq;
+}
+
+#ifdef CONFIG_NUMA
+enum numa_topology_type {
+ NUMA_DIRECT,
+ NUMA_GLUELESS_MESH,
+ NUMA_BACKPLANE,
+};
+extern enum numa_topology_type sched_numa_topology_type;
+extern int sched_max_numa_distance;
+extern bool find_numa_distance(int distance);
+extern void sched_init_numa(int offline_node);
+extern void sched_update_numa(int cpu, bool online);
+extern void sched_domains_numa_masks_set(unsigned int cpu);
+extern void sched_domains_numa_masks_clear(unsigned int cpu);
+extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
+#else
+static inline void sched_init_numa(int offline_node) { }
+static inline void sched_update_numa(int cpu, bool online) { }
+static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
+static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
+static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
+{
+ return nr_cpu_ids;
+}
+#endif
+
+#ifdef CONFIG_NUMA_BALANCING
+/* The regions in numa_faults array from task_struct */
+enum numa_faults_stats {
+ NUMA_MEM = 0,
+ NUMA_CPU,
+ NUMA_MEMBUF,
+ NUMA_CPUBUF
+};
+extern void sched_setnuma(struct task_struct *p, int node);
+extern int migrate_task_to(struct task_struct *p, int cpu);
+extern int migrate_swap(struct task_struct *p, struct task_struct *t,
+ int cpu, int scpu);
+extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
+#else
+static inline void
+init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
+{
+}
+#endif /* CONFIG_NUMA_BALANCING */
+
+#ifdef CONFIG_SMP
+
+static inline void
+queue_balance_callback(struct rq *rq,
+ struct balance_callback *head,
+ void (*func)(struct rq *rq))
+{
+ lockdep_assert_rq_held(rq);
+
+ /*
+ * Don't (re)queue an already queued item; nor queue anything when
+ * balance_push() is active, see the comment with
+ * balance_push_callback.
+ */
+ if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
+ return;
+
+ head->func = func;
+ head->next = rq->balance_callback;
+ rq->balance_callback = head;
+}
+
+#define rcu_dereference_check_sched_domain(p) \
+ rcu_dereference_check((p), \
+ lockdep_is_held(&sched_domains_mutex))
+
+/*
+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
+ * See destroy_sched_domains: call_rcu for details.
+ *
+ * The domain tree of any CPU may only be accessed from within
+ * preempt-disabled sections.
+ */
+#define for_each_domain(cpu, __sd) \
+ for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
+ __sd; __sd = __sd->parent)
+
+/**
+ * highest_flag_domain - Return highest sched_domain containing flag.
+ * @cpu: The CPU whose highest level of sched domain is to
+ * be returned.
+ * @flag: The flag to check for the highest sched_domain
+ * for the given CPU.
+ *
+ * Returns the highest sched_domain of a CPU which contains the given flag.
+ */
+static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
+{
+ struct sched_domain *sd, *hsd = NULL;
+
+ for_each_domain(cpu, sd) {
+ if (!(sd->flags & flag))
+ break;
+ hsd = sd;
+ }
+
+ return hsd;
+}
+
+static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
+{
+ struct sched_domain *sd;
+
+ for_each_domain(cpu, sd) {
+ if (sd->flags & flag)
+ break;
+ }
+
+ return sd;
+}
+
+DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
+DECLARE_PER_CPU(int, sd_llc_size);
+DECLARE_PER_CPU(int, sd_llc_id);
+DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
+DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
+DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
+DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
+extern struct static_key_false sched_asym_cpucapacity;
+
+static __always_inline bool sched_asym_cpucap_active(void)
+{
+ return static_branch_unlikely(&sched_asym_cpucapacity);
+}
+
+struct sched_group_capacity {
+ atomic_t ref;
+ /*
+ * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
+ * for a single CPU.
+ */
+ unsigned long capacity;
+ unsigned long min_capacity; /* Min per-CPU capacity in group */
+ unsigned long max_capacity; /* Max per-CPU capacity in group */
+ unsigned long next_update;
+ int imbalance; /* XXX unrelated to capacity but shared group state */
+
+#ifdef CONFIG_SCHED_DEBUG
+ int id;
+#endif
+
+ unsigned long cpumask[]; /* Balance mask */
+};
+
+struct sched_group {
+ struct sched_group *next; /* Must be a circular list */
+ atomic_t ref;
+
+ unsigned int group_weight;
+ struct sched_group_capacity *sgc;
+ int asym_prefer_cpu; /* CPU of highest priority in group */
+ int flags;
+
+ /*
+ * The CPUs this group covers.
+ *
+ * NOTE: this field is variable length. (Allocated dynamically
+ * by attaching extra space to the end of the structure,
+ * depending on how many CPUs the kernel has booted up with)
+ */
+ unsigned long cpumask[];
+};
+
+static inline struct cpumask *sched_group_span(struct sched_group *sg)
+{
+ return to_cpumask(sg->cpumask);
+}
+
+/*
+ * See build_balance_mask().
+ */
+static inline struct cpumask *group_balance_mask(struct sched_group *sg)
+{
+ return to_cpumask(sg->sgc->cpumask);
+}
+
+extern int group_balance_cpu(struct sched_group *sg);
+
+#ifdef CONFIG_SCHED_DEBUG
+void update_sched_domain_debugfs(void);
+void dirty_sched_domain_sysctl(int cpu);
+#else
+static inline void update_sched_domain_debugfs(void)
+{
+}
+static inline void dirty_sched_domain_sysctl(int cpu)
+{
+}
+#endif
+
+extern int sched_update_scaling(void);
+#endif /* CONFIG_SMP */
+
+#include "stats.h"
+
+#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
+
+extern void __sched_core_account_forceidle(struct rq *rq);
+
+static inline void sched_core_account_forceidle(struct rq *rq)
+{
+ if (schedstat_enabled())
+ __sched_core_account_forceidle(rq);
+}
+
+extern void __sched_core_tick(struct rq *rq);
+
+static inline void sched_core_tick(struct rq *rq)
+{
+ if (sched_core_enabled(rq) && schedstat_enabled())
+ __sched_core_tick(rq);
+}
+
+#else
+
+static inline void sched_core_account_forceidle(struct rq *rq) {}
+
+static inline void sched_core_tick(struct rq *rq) {}
+
+#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
+
+#ifdef CONFIG_CGROUP_SCHED
+
+/*
+ * Return the group to which this tasks belongs.
+ *
+ * We cannot use task_css() and friends because the cgroup subsystem
+ * changes that value before the cgroup_subsys::attach() method is called,
+ * therefore we cannot pin it and might observe the wrong value.
+ *
+ * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
+ * core changes this before calling sched_move_task().
+ *
+ * Instead we use a 'copy' which is updated from sched_move_task() while
+ * holding both task_struct::pi_lock and rq::lock.
+ */
+static inline struct task_group *task_group(struct task_struct *p)
+{
+ return p->sched_task_group;
+}
+
+/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
+static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
+{
+#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
+ struct task_group *tg = task_group(p);
+#endif
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
+ p->se.cfs_rq = tg->cfs_rq[cpu];
+ p->se.parent = tg->se[cpu];
+ p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
+#endif
+
+#ifdef CONFIG_RT_GROUP_SCHED
+ p->rt.rt_rq = tg->rt_rq[cpu];
+ p->rt.parent = tg->rt_se[cpu];
+#endif
+}
+
+#else /* CONFIG_CGROUP_SCHED */
+
+static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
+static inline struct task_group *task_group(struct task_struct *p)
+{
+ return NULL;
+}
+
+#endif /* CONFIG_CGROUP_SCHED */
+
+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+ set_task_rq(p, cpu);
+#ifdef CONFIG_SMP
+ /*
+ * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
+ * successfully executed on another CPU. We must ensure that updates of
+ * per-task data have been completed by this moment.
+ */
+ smp_wmb();
+ WRITE_ONCE(task_thread_info(p)->cpu, cpu);
+ p->wake_cpu = cpu;
+#endif
+}
+
+/*
+ * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
+ */
+#ifdef CONFIG_SCHED_DEBUG
+# define const_debug __read_mostly
+#else
+# define const_debug const
+#endif
+
+#define SCHED_FEAT(name, enabled) \
+ __SCHED_FEAT_##name ,
+
+enum {
+#include "features.h"
+ __SCHED_FEAT_NR,
+};
+
+#undef SCHED_FEAT
+
+#ifdef CONFIG_SCHED_DEBUG
+
+/*
+ * To support run-time toggling of sched features, all the translation units
+ * (but core.c) reference the sysctl_sched_features defined in core.c.
+ */
+extern const_debug unsigned int sysctl_sched_features;
+
+#ifdef CONFIG_JUMP_LABEL
+#define SCHED_FEAT(name, enabled) \
+static __always_inline bool static_branch_##name(struct static_key *key) \
+{ \
+ return static_key_##enabled(key); \
+}
+
+#include "features.h"
+#undef SCHED_FEAT
+
+extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
+#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
+
+#else /* !CONFIG_JUMP_LABEL */
+
+#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
+
+#endif /* CONFIG_JUMP_LABEL */
+
+#else /* !SCHED_DEBUG */
+
+/*
+ * Each translation unit has its own copy of sysctl_sched_features to allow
+ * constants propagation at compile time and compiler optimization based on
+ * features default.
+ */
+#define SCHED_FEAT(name, enabled) \
+ (1UL << __SCHED_FEAT_##name) * enabled |
+static const_debug __maybe_unused unsigned int sysctl_sched_features =
+#include "features.h"
+ 0;
+#undef SCHED_FEAT
+
+#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
+
+#endif /* SCHED_DEBUG */
+
+extern struct static_key_false sched_numa_balancing;
+extern struct static_key_false sched_schedstats;
+
+static inline u64 global_rt_period(void)
+{
+ return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
+}
+
+static inline u64 global_rt_runtime(void)
+{
+ if (sysctl_sched_rt_runtime < 0)
+ return RUNTIME_INF;
+
+ return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
+}
+
+static inline int task_current(struct rq *rq, struct task_struct *p)
+{
+ return rq->curr == p;
+}
+
+static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
+{
+#ifdef CONFIG_SMP
+ return p->on_cpu;
+#else
+ return task_current(rq, p);
+#endif
+}
+
+static inline int task_on_rq_queued(struct task_struct *p)
+{
+ return p->on_rq == TASK_ON_RQ_QUEUED;
+}
+
+static inline int task_on_rq_migrating(struct task_struct *p)
+{
+ return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
+}
+
+/* Wake flags. The first three directly map to some SD flag value */
+#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
+#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
+#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
+
+#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
+#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
+
+#ifdef CONFIG_SMP
+static_assert(WF_EXEC == SD_BALANCE_EXEC);
+static_assert(WF_FORK == SD_BALANCE_FORK);
+static_assert(WF_TTWU == SD_BALANCE_WAKE);
+#endif
+
+/*
+ * To aid in avoiding the subversion of "niceness" due to uneven distribution
+ * of tasks with abnormal "nice" values across CPUs the contribution that
+ * each task makes to its run queue's load is weighted according to its
+ * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
+ * scaled version of the new time slice allocation that they receive on time
+ * slice expiry etc.
+ */
+
+#define WEIGHT_IDLEPRIO 3
+#define WMULT_IDLEPRIO 1431655765
+
+extern const int sched_prio_to_weight[40];
+extern const u32 sched_prio_to_wmult[40];
+
+/*
+ * {de,en}queue flags:
+ *
+ * DEQUEUE_SLEEP - task is no longer runnable
+ * ENQUEUE_WAKEUP - task just became runnable
+ *
+ * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
+ * are in a known state which allows modification. Such pairs
+ * should preserve as much state as possible.
+ *
+ * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
+ * in the runqueue.
+ *
+ * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
+ * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
+ * ENQUEUE_MIGRATED - the task was migrated during wakeup
+ *
+ */
+
+#define DEQUEUE_SLEEP 0x01
+#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
+#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
+#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
+
+#define ENQUEUE_WAKEUP 0x01
+#define ENQUEUE_RESTORE 0x02
+#define ENQUEUE_MOVE 0x04
+#define ENQUEUE_NOCLOCK 0x08
+
+#define ENQUEUE_HEAD 0x10
+#define ENQUEUE_REPLENISH 0x20
+#ifdef CONFIG_SMP
+#define ENQUEUE_MIGRATED 0x40
+#else
+#define ENQUEUE_MIGRATED 0x00
+#endif
+
+#define RETRY_TASK ((void *)-1UL)
+
+struct sched_class {
+
+#ifdef CONFIG_UCLAMP_TASK
+ int uclamp_enabled;
+#endif
+
+ void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
+ void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
+ void (*yield_task) (struct rq *rq);
+ bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
+
+ void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
+
+ struct task_struct *(*pick_next_task)(struct rq *rq);
+
+ void (*put_prev_task)(struct rq *rq, struct task_struct *p);
+ void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
+
+#ifdef CONFIG_SMP
+ int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
+ int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
+
+ struct task_struct * (*pick_task)(struct rq *rq);
+
+ void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
+
+ void (*task_woken)(struct rq *this_rq, struct task_struct *task);
+
+ void (*set_cpus_allowed)(struct task_struct *p,
+ const struct cpumask *newmask,
+ u32 flags);
+
+ void (*rq_online)(struct rq *rq);
+ void (*rq_offline)(struct rq *rq);
+
+ struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
+#endif
+
+ void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
+ void (*task_fork)(struct task_struct *p);
+ void (*task_dead)(struct task_struct *p);
+
+ /*
+ * The switched_from() call is allowed to drop rq->lock, therefore we
+ * cannot assume the switched_from/switched_to pair is serialized by
+ * rq->lock. They are however serialized by p->pi_lock.
+ */
+ void (*switched_from)(struct rq *this_rq, struct task_struct *task);
+ void (*switched_to) (struct rq *this_rq, struct task_struct *task);
+ void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
+ int oldprio);
+
+ unsigned int (*get_rr_interval)(struct rq *rq,
+ struct task_struct *task);
+
+ void (*update_curr)(struct rq *rq);
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ void (*task_change_group)(struct task_struct *p);
+#endif
+};
+
+static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
+{
+ WARN_ON_ONCE(rq->curr != prev);
+ prev->sched_class->put_prev_task(rq, prev);
+}
+
+static inline void set_next_task(struct rq *rq, struct task_struct *next)
+{
+ next->sched_class->set_next_task(rq, next, false);
+}
+
+
+/*
+ * Helper to define a sched_class instance; each one is placed in a separate
+ * section which is ordered by the linker script:
+ *
+ * include/asm-generic/vmlinux.lds.h
+ *
+ * *CAREFUL* they are laid out in *REVERSE* order!!!
+ *
+ * Also enforce alignment on the instance, not the type, to guarantee layout.
+ */
+#define DEFINE_SCHED_CLASS(name) \
+const struct sched_class name##_sched_class \
+ __aligned(__alignof__(struct sched_class)) \
+ __section("__" #name "_sched_class")
+
+/* Defined in include/asm-generic/vmlinux.lds.h */
+extern struct sched_class __sched_class_highest[];
+extern struct sched_class __sched_class_lowest[];
+
+#define for_class_range(class, _from, _to) \
+ for (class = (_from); class < (_to); class++)
+
+#define for_each_class(class) \
+ for_class_range(class, __sched_class_highest, __sched_class_lowest)
+
+#define sched_class_above(_a, _b) ((_a) < (_b))
+
+extern const struct sched_class stop_sched_class;
+extern const struct sched_class dl_sched_class;
+extern const struct sched_class rt_sched_class;
+extern const struct sched_class fair_sched_class;
+extern const struct sched_class idle_sched_class;
+
+static inline bool sched_stop_runnable(struct rq *rq)
+{
+ return rq->stop && task_on_rq_queued(rq->stop);
+}
+
+static inline bool sched_dl_runnable(struct rq *rq)
+{
+ return rq->dl.dl_nr_running > 0;
+}
+
+static inline bool sched_rt_runnable(struct rq *rq)
+{
+ return rq->rt.rt_queued > 0;
+}
+
+static inline bool sched_fair_runnable(struct rq *rq)
+{
+ return rq->cfs.nr_running > 0;
+}
+
+extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
+extern struct task_struct *pick_next_task_idle(struct rq *rq);
+
+#define SCA_CHECK 0x01
+#define SCA_MIGRATE_DISABLE 0x02
+#define SCA_MIGRATE_ENABLE 0x04
+#define SCA_USER 0x08
+
+#ifdef CONFIG_SMP
+
+extern void update_group_capacity(struct sched_domain *sd, int cpu);
+
+extern void trigger_load_balance(struct rq *rq);
+
+extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
+
+static inline struct task_struct *get_push_task(struct rq *rq)
+{
+ struct task_struct *p = rq->curr;
+
+ lockdep_assert_rq_held(rq);
+
+ if (rq->push_busy)
+ return NULL;
+
+ if (p->nr_cpus_allowed == 1)
+ return NULL;
+
+ if (p->migration_disabled)
+ return NULL;
+
+ rq->push_busy = true;
+ return get_task_struct(p);
+}
+
+extern int push_cpu_stop(void *arg);
+
+#endif
+
+#ifdef CONFIG_CPU_IDLE
+static inline void idle_set_state(struct rq *rq,
+ struct cpuidle_state *idle_state)
+{
+ rq->idle_state = idle_state;
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+ SCHED_WARN_ON(!rcu_read_lock_held());
+
+ return rq->idle_state;
+}
+#else
+static inline void idle_set_state(struct rq *rq,
+ struct cpuidle_state *idle_state)
+{
+}
+
+static inline struct cpuidle_state *idle_get_state(struct rq *rq)
+{
+ return NULL;
+}
+#endif
+
+extern void schedule_idle(void);
+
+extern void sysrq_sched_debug_show(void);
+extern void sched_init_granularity(void);
+extern void update_max_interval(void);
+
+extern void init_sched_dl_class(void);
+extern void init_sched_rt_class(void);
+extern void init_sched_fair_class(void);
+
+extern void reweight_task(struct task_struct *p, int prio);
+
+extern void resched_curr(struct rq *rq);
+extern void resched_cpu(int cpu);
+
+extern struct rt_bandwidth def_rt_bandwidth;
+extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
+extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
+
+extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
+extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
+extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
+
+#define BW_SHIFT 20
+#define BW_UNIT (1 << BW_SHIFT)
+#define RATIO_SHIFT 8
+#define MAX_BW_BITS (64 - BW_SHIFT)
+#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
+unsigned long to_ratio(u64 period, u64 runtime);
+
+extern void init_entity_runnable_average(struct sched_entity *se);
+extern void post_init_entity_util_avg(struct task_struct *p);
+
+#ifdef CONFIG_NO_HZ_FULL
+extern bool sched_can_stop_tick(struct rq *rq);
+extern int __init sched_tick_offload_init(void);
+
+/*
+ * Tick may be needed by tasks in the runqueue depending on their policy and
+ * requirements. If tick is needed, lets send the target an IPI to kick it out of
+ * nohz mode if necessary.
+ */
+static inline void sched_update_tick_dependency(struct rq *rq)
+{
+ int cpu = cpu_of(rq);
+
+ if (!tick_nohz_full_cpu(cpu))
+ return;
+
+ if (sched_can_stop_tick(rq))
+ tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
+ else
+ tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
+}
+#else
+static inline int sched_tick_offload_init(void) { return 0; }
+static inline void sched_update_tick_dependency(struct rq *rq) { }
+#endif
+
+static inline void add_nr_running(struct rq *rq, unsigned count)
+{
+ unsigned prev_nr = rq->nr_running;
+
+ rq->nr_running = prev_nr + count;
+ if (trace_sched_update_nr_running_tp_enabled()) {
+ call_trace_sched_update_nr_running(rq, count);
+ }
+
+#ifdef CONFIG_SMP
+ if (prev_nr < 2 && rq->nr_running >= 2) {
+ if (!READ_ONCE(rq->rd->overload))
+ WRITE_ONCE(rq->rd->overload, 1);
+ }
+#endif
+
+ sched_update_tick_dependency(rq);
+}
+
+static inline void sub_nr_running(struct rq *rq, unsigned count)
+{
+ rq->nr_running -= count;
+ if (trace_sched_update_nr_running_tp_enabled()) {
+ call_trace_sched_update_nr_running(rq, -count);
+ }
+
+ /* Check if we still need preemption */
+ sched_update_tick_dependency(rq);
+}
+
+extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
+extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
+
+extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
+
+#ifdef CONFIG_PREEMPT_RT
+#define SCHED_NR_MIGRATE_BREAK 8
+#else
+#define SCHED_NR_MIGRATE_BREAK 32
+#endif
+
+extern const_debug unsigned int sysctl_sched_nr_migrate;
+extern const_debug unsigned int sysctl_sched_migration_cost;
+
+#ifdef CONFIG_SCHED_DEBUG
+extern unsigned int sysctl_sched_latency;
+extern unsigned int sysctl_sched_min_granularity;
+extern unsigned int sysctl_sched_idle_min_granularity;
+extern unsigned int sysctl_sched_wakeup_granularity;
+extern int sysctl_resched_latency_warn_ms;
+extern int sysctl_resched_latency_warn_once;
+
+extern unsigned int sysctl_sched_tunable_scaling;
+
+extern unsigned int sysctl_numa_balancing_scan_delay;
+extern unsigned int sysctl_numa_balancing_scan_period_min;
+extern unsigned int sysctl_numa_balancing_scan_period_max;
+extern unsigned int sysctl_numa_balancing_scan_size;
+extern unsigned int sysctl_numa_balancing_hot_threshold;
+#endif
+
+#ifdef CONFIG_SCHED_HRTICK
+
+/*
+ * Use hrtick when:
+ * - enabled by features
+ * - hrtimer is actually high res
+ */
+static inline int hrtick_enabled(struct rq *rq)
+{
+ if (!cpu_active(cpu_of(rq)))
+ return 0;
+ return hrtimer_is_hres_active(&rq->hrtick_timer);
+}
+
+static inline int hrtick_enabled_fair(struct rq *rq)
+{
+ if (!sched_feat(HRTICK))
+ return 0;
+ return hrtick_enabled(rq);
+}
+
+static inline int hrtick_enabled_dl(struct rq *rq)
+{
+ if (!sched_feat(HRTICK_DL))
+ return 0;
+ return hrtick_enabled(rq);
+}
+
+void hrtick_start(struct rq *rq, u64 delay);
+
+#else
+
+static inline int hrtick_enabled_fair(struct rq *rq)
+{
+ return 0;
+}
+
+static inline int hrtick_enabled_dl(struct rq *rq)
+{
+ return 0;
+}
+
+static inline int hrtick_enabled(struct rq *rq)
+{
+ return 0;
+}
+
+#endif /* CONFIG_SCHED_HRTICK */
+
+#ifndef arch_scale_freq_tick
+static __always_inline
+void arch_scale_freq_tick(void)
+{
+}
+#endif
+
+#ifndef arch_scale_freq_capacity
+/**
+ * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
+ * @cpu: the CPU in question.
+ *
+ * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
+ *
+ * f_curr
+ * ------ * SCHED_CAPACITY_SCALE
+ * f_max
+ */
+static __always_inline
+unsigned long arch_scale_freq_capacity(int cpu)
+{
+ return SCHED_CAPACITY_SCALE;
+}
+#endif
+
+#ifdef CONFIG_SCHED_DEBUG
+/*
+ * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
+ * acquire rq lock instead of rq_lock(). So at the end of these two functions
+ * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
+ * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
+ */
+static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
+{
+ rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
+ /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
+#ifdef CONFIG_SMP
+ rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
+#endif
+}
+#else
+static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
+#endif
+
+#ifdef CONFIG_SMP
+
+static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
+{
+#ifdef CONFIG_SCHED_CORE
+ /*
+ * In order to not have {0,2},{1,3} turn into into an AB-BA,
+ * order by core-id first and cpu-id second.
+ *
+ * Notably:
+ *
+ * double_rq_lock(0,3); will take core-0, core-1 lock
+ * double_rq_lock(1,2); will take core-1, core-0 lock
+ *
+ * when only cpu-id is considered.
+ */
+ if (rq1->core->cpu < rq2->core->cpu)
+ return true;
+ if (rq1->core->cpu > rq2->core->cpu)
+ return false;
+
+ /*
+ * __sched_core_flip() relies on SMT having cpu-id lock order.
+ */
+#endif
+ return rq1->cpu < rq2->cpu;
+}
+
+extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
+
+#ifdef CONFIG_PREEMPTION
+
+/*
+ * fair double_lock_balance: Safely acquires both rq->locks in a fair
+ * way at the expense of forcing extra atomic operations in all
+ * invocations. This assures that the double_lock is acquired using the
+ * same underlying policy as the spinlock_t on this architecture, which
+ * reduces latency compared to the unfair variant below. However, it
+ * also adds more overhead and therefore may reduce throughput.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+ __releases(this_rq->lock)
+ __acquires(busiest->lock)
+ __acquires(this_rq->lock)
+{
+ raw_spin_rq_unlock(this_rq);
+ double_rq_lock(this_rq, busiest);
+
+ return 1;
+}
+
+#else
+/*
+ * Unfair double_lock_balance: Optimizes throughput at the expense of
+ * latency by eliminating extra atomic operations when the locks are
+ * already in proper order on entry. This favors lower CPU-ids and will
+ * grant the double lock to lower CPUs over higher ids under contention,
+ * regardless of entry order into the function.
+ */
+static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
+ __releases(this_rq->lock)
+ __acquires(busiest->lock)
+ __acquires(this_rq->lock)
+{
+ if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
+ likely(raw_spin_rq_trylock(busiest))) {
+ double_rq_clock_clear_update(this_rq, busiest);
+ return 0;
+ }
+
+ if (rq_order_less(this_rq, busiest)) {
+ raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
+ double_rq_clock_clear_update(this_rq, busiest);
+ return 0;
+ }
+
+ raw_spin_rq_unlock(this_rq);
+ double_rq_lock(this_rq, busiest);
+
+ return 1;
+}
+
+#endif /* CONFIG_PREEMPTION */
+
+/*
+ * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
+ */
+static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
+{
+ lockdep_assert_irqs_disabled();
+
+ return _double_lock_balance(this_rq, busiest);
+}
+
+static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
+ __releases(busiest->lock)
+{
+ if (__rq_lockp(this_rq) != __rq_lockp(busiest))
+ raw_spin_rq_unlock(busiest);
+ lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
+}
+
+static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
+{
+ if (l1 > l2)
+ swap(l1, l2);
+
+ spin_lock(l1);
+ spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
+{
+ if (l1 > l2)
+ swap(l1, l2);
+
+ spin_lock_irq(l1);
+ spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
+{
+ if (l1 > l2)
+ swap(l1, l2);
+
+ raw_spin_lock(l1);
+ raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+ __releases(rq1->lock)
+ __releases(rq2->lock)
+{
+ if (__rq_lockp(rq1) != __rq_lockp(rq2))
+ raw_spin_rq_unlock(rq2);
+ else
+ __release(rq2->lock);
+ raw_spin_rq_unlock(rq1);
+}
+
+extern void set_rq_online (struct rq *rq);
+extern void set_rq_offline(struct rq *rq);
+extern bool sched_smp_initialized;
+
+#else /* CONFIG_SMP */
+
+/*
+ * double_rq_lock - safely lock two runqueues
+ *
+ * Note this does not disable interrupts like task_rq_lock,
+ * you need to do so manually before calling.
+ */
+static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
+ __acquires(rq1->lock)
+ __acquires(rq2->lock)
+{
+ WARN_ON_ONCE(!irqs_disabled());
+ WARN_ON_ONCE(rq1 != rq2);
+ raw_spin_rq_lock(rq1);
+ __acquire(rq2->lock); /* Fake it out ;) */
+ double_rq_clock_clear_update(rq1, rq2);
+}
+
+/*
+ * double_rq_unlock - safely unlock two runqueues
+ *
+ * Note this does not restore interrupts like task_rq_unlock,
+ * you need to do so manually after calling.
+ */
+static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
+ __releases(rq1->lock)
+ __releases(rq2->lock)
+{
+ WARN_ON_ONCE(rq1 != rq2);
+ raw_spin_rq_unlock(rq1);
+ __release(rq2->lock);
+}
+
+#endif
+
+extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
+extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
+
+#ifdef CONFIG_SCHED_DEBUG
+extern bool sched_debug_verbose;
+
+extern void print_cfs_stats(struct seq_file *m, int cpu);
+extern void print_rt_stats(struct seq_file *m, int cpu);
+extern void print_dl_stats(struct seq_file *m, int cpu);
+extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
+extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
+extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
+
+extern void resched_latency_warn(int cpu, u64 latency);
+#ifdef CONFIG_NUMA_BALANCING
+extern void
+show_numa_stats(struct task_struct *p, struct seq_file *m);
+extern void
+print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
+ unsigned long tpf, unsigned long gsf, unsigned long gpf);
+#endif /* CONFIG_NUMA_BALANCING */
+#else
+static inline void resched_latency_warn(int cpu, u64 latency) {}
+#endif /* CONFIG_SCHED_DEBUG */
+
+extern void init_cfs_rq(struct cfs_rq *cfs_rq);
+extern void init_rt_rq(struct rt_rq *rt_rq);
+extern void init_dl_rq(struct dl_rq *dl_rq);
+
+extern void cfs_bandwidth_usage_inc(void);
+extern void cfs_bandwidth_usage_dec(void);
+
+#ifdef CONFIG_NO_HZ_COMMON
+#define NOHZ_BALANCE_KICK_BIT 0
+#define NOHZ_STATS_KICK_BIT 1
+#define NOHZ_NEWILB_KICK_BIT 2
+#define NOHZ_NEXT_KICK_BIT 3
+
+/* Run rebalance_domains() */
+#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
+/* Update blocked load */
+#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
+/* Update blocked load when entering idle */
+#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
+/* Update nohz.next_balance */
+#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
+
+#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
+
+#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
+
+extern void nohz_balance_exit_idle(struct rq *rq);
+#else
+static inline void nohz_balance_exit_idle(struct rq *rq) { }
+#endif
+
+#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+extern void nohz_run_idle_balance(int cpu);
+#else
+static inline void nohz_run_idle_balance(int cpu) { }
+#endif
+
+#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+struct irqtime {
+ u64 total;
+ u64 tick_delta;
+ u64 irq_start_time;
+ struct u64_stats_sync sync;
+};
+
+DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
+
+/*
+ * Returns the irqtime minus the softirq time computed by ksoftirqd.
+ * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
+ * and never move forward.
+ */
+static inline u64 irq_time_read(int cpu)
+{
+ struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
+ unsigned int seq;
+ u64 total;
+
+ do {
+ seq = __u64_stats_fetch_begin(&irqtime->sync);
+ total = irqtime->total;
+ } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
+
+ return total;
+}
+#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+
+#ifdef CONFIG_CPU_FREQ
+DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
+
+/**
+ * cpufreq_update_util - Take a note about CPU utilization changes.
+ * @rq: Runqueue to carry out the update for.
+ * @flags: Update reason flags.
+ *
+ * This function is called by the scheduler on the CPU whose utilization is
+ * being updated.
+ *
+ * It can only be called from RCU-sched read-side critical sections.
+ *
+ * The way cpufreq is currently arranged requires it to evaluate the CPU
+ * performance state (frequency/voltage) on a regular basis to prevent it from
+ * being stuck in a completely inadequate performance level for too long.
+ * That is not guaranteed to happen if the updates are only triggered from CFS
+ * and DL, though, because they may not be coming in if only RT tasks are
+ * active all the time (or there are RT tasks only).
+ *
+ * As a workaround for that issue, this function is called periodically by the
+ * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
+ * but that really is a band-aid. Going forward it should be replaced with
+ * solutions targeted more specifically at RT tasks.
+ */
+static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
+{
+ struct update_util_data *data;
+
+ data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
+ cpu_of(rq)));
+ if (data)
+ data->func(data, rq_clock(rq), flags);
+}
+#else
+static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
+#endif /* CONFIG_CPU_FREQ */
+
+#ifdef arch_scale_freq_capacity
+# ifndef arch_scale_freq_invariant
+# define arch_scale_freq_invariant() true
+# endif
+#else
+# define arch_scale_freq_invariant() false
+#endif
+
+#ifdef CONFIG_SMP
+static inline unsigned long capacity_orig_of(int cpu)
+{
+ return cpu_rq(cpu)->cpu_capacity_orig;
+}
+
+/**
+ * enum cpu_util_type - CPU utilization type
+ * @FREQUENCY_UTIL: Utilization used to select frequency
+ * @ENERGY_UTIL: Utilization used during energy calculation
+ *
+ * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
+ * need to be aggregated differently depending on the usage made of them. This
+ * enum is used within effective_cpu_util() to differentiate the types of
+ * utilization expected by the callers, and adjust the aggregation accordingly.
+ */
+enum cpu_util_type {
+ FREQUENCY_UTIL,
+ ENERGY_UTIL,
+};
+
+unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
+ enum cpu_util_type type,
+ struct task_struct *p);
+
+/*
+ * Verify the fitness of task @p to run on @cpu taking into account the
+ * CPU original capacity and the runtime/deadline ratio of the task.
+ *
+ * The function will return true if the original capacity of @cpu is
+ * greater than or equal to task's deadline density right shifted by
+ * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
+ */
+static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
+{
+ unsigned long cap = arch_scale_cpu_capacity(cpu);
+
+ return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
+}
+
+static inline unsigned long cpu_bw_dl(struct rq *rq)
+{
+ return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
+}
+
+static inline unsigned long cpu_util_dl(struct rq *rq)
+{
+ return READ_ONCE(rq->avg_dl.util_avg);
+}
+
+/**
+ * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
+ * @cpu: the CPU to get the utilization for.
+ *
+ * The unit of the return value must be the same as the one of CPU capacity
+ * so that CPU utilization can be compared with CPU capacity.
+ *
+ * CPU utilization is the sum of running time of runnable tasks plus the
+ * recent utilization of currently non-runnable tasks on that CPU.
+ * It represents the amount of CPU capacity currently used by CFS tasks in
+ * the range [0..max CPU capacity] with max CPU capacity being the CPU
+ * capacity at f_max.
+ *
+ * The estimated CPU utilization is defined as the maximum between CPU
+ * utilization and sum of the estimated utilization of the currently
+ * runnable tasks on that CPU. It preserves a utilization "snapshot" of
+ * previously-executed tasks, which helps better deduce how busy a CPU will
+ * be when a long-sleeping task wakes up. The contribution to CPU utilization
+ * of such a task would be significantly decayed at this point of time.
+ *
+ * CPU utilization can be higher than the current CPU capacity
+ * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
+ * of rounding errors as well as task migrations or wakeups of new tasks.
+ * CPU utilization has to be capped to fit into the [0..max CPU capacity]
+ * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
+ * could be seen as over-utilized even though CPU1 has 20% of spare CPU
+ * capacity. CPU utilization is allowed to overshoot current CPU capacity
+ * though since this is useful for predicting the CPU capacity required
+ * after task migrations (scheduler-driven DVFS).
+ *
+ * Return: (Estimated) utilization for the specified CPU.
+ */
+static inline unsigned long cpu_util_cfs(int cpu)
+{
+ struct cfs_rq *cfs_rq;
+ unsigned long util;
+
+ cfs_rq = &cpu_rq(cpu)->cfs;
+ util = READ_ONCE(cfs_rq->avg.util_avg);
+
+ if (sched_feat(UTIL_EST)) {
+ util = max_t(unsigned long, util,
+ READ_ONCE(cfs_rq->avg.util_est.enqueued));
+ }
+
+ return min(util, capacity_orig_of(cpu));
+}
+
+static inline unsigned long cpu_util_rt(struct rq *rq)
+{
+ return READ_ONCE(rq->avg_rt.util_avg);
+}
+#endif
+
+#ifdef CONFIG_UCLAMP_TASK
+unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
+
+static inline unsigned long uclamp_rq_get(struct rq *rq,
+ enum uclamp_id clamp_id)
+{
+ return READ_ONCE(rq->uclamp[clamp_id].value);
+}
+
+static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
+ unsigned int value)
+{
+ WRITE_ONCE(rq->uclamp[clamp_id].value, value);
+}
+
+static inline bool uclamp_rq_is_idle(struct rq *rq)
+{
+ return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
+}
+
+/**
+ * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
+ * @rq: The rq to clamp against. Must not be NULL.
+ * @util: The util value to clamp.
+ * @p: The task to clamp against. Can be NULL if you want to clamp
+ * against @rq only.
+ *
+ * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
+ *
+ * If sched_uclamp_used static key is disabled, then just return the util
+ * without any clamping since uclamp aggregation at the rq level in the fast
+ * path is disabled, rendering this operation a NOP.
+ *
+ * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
+ * will return the correct effective uclamp value of the task even if the
+ * static key is disabled.
+ */
+static __always_inline
+unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
+ struct task_struct *p)
+{
+ unsigned long min_util = 0;
+ unsigned long max_util = 0;
+
+ if (!static_branch_likely(&sched_uclamp_used))
+ return util;
+
+ if (p) {
+ min_util = uclamp_eff_value(p, UCLAMP_MIN);
+ max_util = uclamp_eff_value(p, UCLAMP_MAX);
+
+ /*
+ * Ignore last runnable task's max clamp, as this task will
+ * reset it. Similarly, no need to read the rq's min clamp.
+ */
+ if (uclamp_rq_is_idle(rq))
+ goto out;
+ }
+
+ min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
+ max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
+out:
+ /*
+ * Since CPU's {min,max}_util clamps are MAX aggregated considering
+ * RUNNABLE tasks with _different_ clamps, we can end up with an
+ * inversion. Fix it now when the clamps are applied.
+ */
+ if (unlikely(min_util >= max_util))
+ return min_util;
+
+ return clamp(util, min_util, max_util);
+}
+
+/* Is the rq being capped/throttled by uclamp_max? */
+static inline bool uclamp_rq_is_capped(struct rq *rq)
+{
+ unsigned long rq_util;
+ unsigned long max_util;
+
+ if (!static_branch_likely(&sched_uclamp_used))
+ return false;
+
+ rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
+ max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
+
+ return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
+}
+
+/*
+ * When uclamp is compiled in, the aggregation at rq level is 'turned off'
+ * by default in the fast path and only gets turned on once userspace performs
+ * an operation that requires it.
+ *
+ * Returns true if userspace opted-in to use uclamp and aggregation at rq level
+ * hence is active.
+ */
+static inline bool uclamp_is_used(void)
+{
+ return static_branch_likely(&sched_uclamp_used);
+}
+#else /* CONFIG_UCLAMP_TASK */
+static inline unsigned long uclamp_eff_value(struct task_struct *p,
+ enum uclamp_id clamp_id)
+{
+ if (clamp_id == UCLAMP_MIN)
+ return 0;
+
+ return SCHED_CAPACITY_SCALE;
+}
+
+static inline
+unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
+ struct task_struct *p)
+{
+ return util;
+}
+
+static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
+
+static inline bool uclamp_is_used(void)
+{
+ return false;
+}
+
+static inline unsigned long uclamp_rq_get(struct rq *rq,
+ enum uclamp_id clamp_id)
+{
+ if (clamp_id == UCLAMP_MIN)
+ return 0;
+
+ return SCHED_CAPACITY_SCALE;
+}
+
+static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
+ unsigned int value)
+{
+}
+
+static inline bool uclamp_rq_is_idle(struct rq *rq)
+{
+ return false;
+}
+#endif /* CONFIG_UCLAMP_TASK */
+
+#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+static inline unsigned long cpu_util_irq(struct rq *rq)
+{
+ return rq->avg_irq.util_avg;
+}
+
+static inline
+unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
+{
+ util *= (max - irq);
+ util /= max;
+
+ return util;
+
+}
+#else
+static inline unsigned long cpu_util_irq(struct rq *rq)
+{
+ return 0;
+}
+
+static inline
+unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
+{
+ return util;
+}
+#endif
+
+#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+
+#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
+
+DECLARE_STATIC_KEY_FALSE(sched_energy_present);
+
+static inline bool sched_energy_enabled(void)
+{
+ return static_branch_unlikely(&sched_energy_present);
+}
+
+#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
+
+#define perf_domain_span(pd) NULL
+static inline bool sched_energy_enabled(void) { return false; }
+
+#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
+
+#ifdef CONFIG_MEMBARRIER
+/*
+ * The scheduler provides memory barriers required by membarrier between:
+ * - prior user-space memory accesses and store to rq->membarrier_state,
+ * - store to rq->membarrier_state and following user-space memory accesses.
+ * In the same way it provides those guarantees around store to rq->curr.
+ */
+static inline void membarrier_switch_mm(struct rq *rq,
+ struct mm_struct *prev_mm,
+ struct mm_struct *next_mm)
+{
+ int membarrier_state;
+
+ if (prev_mm == next_mm)
+ return;
+
+ membarrier_state = atomic_read(&next_mm->membarrier_state);
+ if (READ_ONCE(rq->membarrier_state) == membarrier_state)
+ return;
+
+ WRITE_ONCE(rq->membarrier_state, membarrier_state);
+}
+#else
+static inline void membarrier_switch_mm(struct rq *rq,
+ struct mm_struct *prev_mm,
+ struct mm_struct *next_mm)
+{
+}
+#endif
+
+#ifdef CONFIG_SMP
+static inline bool is_per_cpu_kthread(struct task_struct *p)
+{
+ if (!(p->flags & PF_KTHREAD))
+ return false;
+
+ if (p->nr_cpus_allowed != 1)
+ return false;
+
+ return true;
+}
+#endif
+
+extern void swake_up_all_locked(struct swait_queue_head *q);
+extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
+
+#ifdef CONFIG_PREEMPT_DYNAMIC
+extern int preempt_dynamic_mode;
+extern int sched_dynamic_mode(const char *str);
+extern void sched_dynamic_update(int mode);
+#endif
+
+static inline void update_current_exec_runtime(struct task_struct *curr,
+ u64 now, u64 delta_exec)
+{
+ curr->se.sum_exec_runtime += delta_exec;
+ account_group_exec_runtime(curr, delta_exec);
+
+ curr->se.exec_start = now;
+ cgroup_account_cputime(curr, delta_exec);
+}
+
+#endif /* _KERNEL_SCHED_SCHED_H */