summaryrefslogtreecommitdiffstats
path: root/net/core/request_sock.c
diff options
context:
space:
mode:
Diffstat (limited to 'net/core/request_sock.c')
-rw-r--r--net/core/request_sock.c129
1 files changed, 129 insertions, 0 deletions
diff --git a/net/core/request_sock.c b/net/core/request_sock.c
new file mode 100644
index 000000000..63de5c635
--- /dev/null
+++ b/net/core/request_sock.c
@@ -0,0 +1,129 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * NET Generic infrastructure for Network protocols.
+ *
+ * Authors: Arnaldo Carvalho de Melo <acme@conectiva.com.br>
+ *
+ * From code originally in include/net/tcp.h
+ */
+
+#include <linux/module.h>
+#include <linux/random.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/tcp.h>
+#include <linux/vmalloc.h>
+
+#include <net/request_sock.h>
+
+/*
+ * Maximum number of SYN_RECV sockets in queue per LISTEN socket.
+ * One SYN_RECV socket costs about 80bytes on a 32bit machine.
+ * It would be better to replace it with a global counter for all sockets
+ * but then some measure against one socket starving all other sockets
+ * would be needed.
+ *
+ * The minimum value of it is 128. Experiments with real servers show that
+ * it is absolutely not enough even at 100conn/sec. 256 cures most
+ * of problems.
+ * This value is adjusted to 128 for low memory machines,
+ * and it will increase in proportion to the memory of machine.
+ * Note : Dont forget somaxconn that may limit backlog too.
+ */
+
+void reqsk_queue_alloc(struct request_sock_queue *queue)
+{
+ queue->fastopenq.rskq_rst_head = NULL;
+ queue->fastopenq.rskq_rst_tail = NULL;
+ queue->fastopenq.qlen = 0;
+
+ queue->rskq_accept_head = NULL;
+}
+
+/*
+ * This function is called to set a Fast Open socket's "fastopen_rsk" field
+ * to NULL when a TFO socket no longer needs to access the request_sock.
+ * This happens only after 3WHS has been either completed or aborted (e.g.,
+ * RST is received).
+ *
+ * Before TFO, a child socket is created only after 3WHS is completed,
+ * hence it never needs to access the request_sock. things get a lot more
+ * complex with TFO. A child socket, accepted or not, has to access its
+ * request_sock for 3WHS processing, e.g., to retransmit SYN-ACK pkts,
+ * until 3WHS is either completed or aborted. Afterwards the req will stay
+ * until either the child socket is accepted, or in the rare case when the
+ * listener is closed before the child is accepted.
+ *
+ * In short, a request socket is only freed after BOTH 3WHS has completed
+ * (or aborted) and the child socket has been accepted (or listener closed).
+ * When a child socket is accepted, its corresponding req->sk is set to
+ * NULL since it's no longer needed. More importantly, "req->sk == NULL"
+ * will be used by the code below to determine if a child socket has been
+ * accepted or not, and the check is protected by the fastopenq->lock
+ * described below.
+ *
+ * Note that fastopen_rsk is only accessed from the child socket's context
+ * with its socket lock held. But a request_sock (req) can be accessed by
+ * both its child socket through fastopen_rsk, and a listener socket through
+ * icsk_accept_queue.rskq_accept_head. To protect the access a simple spin
+ * lock per listener "icsk->icsk_accept_queue.fastopenq->lock" is created.
+ * only in the rare case when both the listener and the child locks are held,
+ * e.g., in inet_csk_listen_stop() do we not need to acquire the lock.
+ * The lock also protects other fields such as fastopenq->qlen, which is
+ * decremented by this function when fastopen_rsk is no longer needed.
+ *
+ * Note that another solution was to simply use the existing socket lock
+ * from the listener. But first socket lock is difficult to use. It is not
+ * a simple spin lock - one must consider sock_owned_by_user() and arrange
+ * to use sk_add_backlog() stuff. But what really makes it infeasible is the
+ * locking hierarchy violation. E.g., inet_csk_listen_stop() may try to
+ * acquire a child's lock while holding listener's socket lock. A corner
+ * case might also exist in tcp_v4_hnd_req() that will trigger this locking
+ * order.
+ *
+ * This function also sets "treq->tfo_listener" to false.
+ * treq->tfo_listener is used by the listener so it is protected by the
+ * fastopenq->lock in this function.
+ */
+void reqsk_fastopen_remove(struct sock *sk, struct request_sock *req,
+ bool reset)
+{
+ struct sock *lsk = req->rsk_listener;
+ struct fastopen_queue *fastopenq;
+
+ fastopenq = &inet_csk(lsk)->icsk_accept_queue.fastopenq;
+
+ RCU_INIT_POINTER(tcp_sk(sk)->fastopen_rsk, NULL);
+ spin_lock_bh(&fastopenq->lock);
+ fastopenq->qlen--;
+ tcp_rsk(req)->tfo_listener = false;
+ if (req->sk) /* the child socket hasn't been accepted yet */
+ goto out;
+
+ if (!reset || lsk->sk_state != TCP_LISTEN) {
+ /* If the listener has been closed don't bother with the
+ * special RST handling below.
+ */
+ spin_unlock_bh(&fastopenq->lock);
+ reqsk_put(req);
+ return;
+ }
+ /* Wait for 60secs before removing a req that has triggered RST.
+ * This is a simple defense against TFO spoofing attack - by
+ * counting the req against fastopen.max_qlen, and disabling
+ * TFO when the qlen exceeds max_qlen.
+ *
+ * For more details see CoNext'11 "TCP Fast Open" paper.
+ */
+ req->rsk_timer.expires = jiffies + 60*HZ;
+ if (fastopenq->rskq_rst_head == NULL)
+ fastopenq->rskq_rst_head = req;
+ else
+ fastopenq->rskq_rst_tail->dl_next = req;
+
+ req->dl_next = NULL;
+ fastopenq->rskq_rst_tail = req;
+ fastopenq->qlen++;
+out:
+ spin_unlock_bh(&fastopenq->lock);
+}