summaryrefslogtreecommitdiffstats
path: root/net/netfilter/ipvs/Kconfig
diff options
context:
space:
mode:
Diffstat (limited to 'net/netfilter/ipvs/Kconfig')
-rw-r--r--net/netfilter/ipvs/Kconfig352
1 files changed, 352 insertions, 0 deletions
diff --git a/net/netfilter/ipvs/Kconfig b/net/netfilter/ipvs/Kconfig
new file mode 100644
index 000000000..2a3017b9c
--- /dev/null
+++ b/net/netfilter/ipvs/Kconfig
@@ -0,0 +1,352 @@
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# IP Virtual Server configuration
+#
+menuconfig IP_VS
+ tristate "IP virtual server support"
+ depends on INET && NETFILTER
+ depends on (NF_CONNTRACK || NF_CONNTRACK=n)
+ help
+ IP Virtual Server support will let you build a high-performance
+ virtual server based on cluster of two or more real servers. This
+ option must be enabled for at least one of the clustered computers
+ that will take care of intercepting incoming connections to a
+ single IP address and scheduling them to real servers.
+
+ Three request dispatching techniques are implemented, they are
+ virtual server via NAT, virtual server via tunneling and virtual
+ server via direct routing. The several scheduling algorithms can
+ be used to choose which server the connection is directed to,
+ thus load balancing can be achieved among the servers. For more
+ information and its administration program, please visit the
+ following URL: <http://www.linuxvirtualserver.org/>.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+if IP_VS
+
+config IP_VS_IPV6
+ bool "IPv6 support for IPVS"
+ depends on IPV6 = y || IP_VS = IPV6
+ select NF_DEFRAG_IPV6
+ help
+ Add IPv6 support to IPVS.
+
+ Say Y if unsure.
+
+config IP_VS_DEBUG
+ bool "IP virtual server debugging"
+ help
+ Say Y here if you want to get additional messages useful in
+ debugging the IP virtual server code. You can change the debug
+ level in /proc/sys/net/ipv4/vs/debug_level
+
+config IP_VS_TAB_BITS
+ int "IPVS connection table size (the Nth power of 2)"
+ range 8 20 if !64BIT
+ range 8 27 if 64BIT
+ default 12
+ help
+ The IPVS connection hash table uses the chaining scheme to handle
+ hash collisions. Using a big IPVS connection hash table will greatly
+ reduce conflicts when there are hundreds of thousands of connections
+ in the hash table.
+
+ Note the table size must be power of 2. The table size will be the
+ value of 2 to the your input number power. The number to choose is
+ from 8 to 27 for 64BIT(20 otherwise), the default number is 12,
+ which means the table size is 4096. Don't input the number too
+ small, otherwise you will lose performance on it. You can adapt the
+ table size yourself, according to your virtual server application.
+ It is good to set the table size not far less than the number of
+ connections per second multiplying average lasting time of
+ connection in the table. For example, your virtual server gets 200
+ connections per second, the connection lasts for 200 seconds in
+ average in the connection table, the table size should be not far
+ less than 200x200, it is good to set the table size 32768 (2**15).
+
+ Another note that each connection occupies 128 bytes effectively and
+ each hash entry uses 8 bytes, so you can estimate how much memory is
+ needed for your box.
+
+ You can overwrite this number setting conn_tab_bits module parameter
+ or by appending ip_vs.conn_tab_bits=? to the kernel command line if
+ IP VS was compiled built-in.
+
+comment "IPVS transport protocol load balancing support"
+
+config IP_VS_PROTO_TCP
+ bool "TCP load balancing support"
+ help
+ This option enables support for load balancing TCP transport
+ protocol. Say Y if unsure.
+
+config IP_VS_PROTO_UDP
+ bool "UDP load balancing support"
+ help
+ This option enables support for load balancing UDP transport
+ protocol. Say Y if unsure.
+
+config IP_VS_PROTO_AH_ESP
+ def_bool IP_VS_PROTO_ESP || IP_VS_PROTO_AH
+
+config IP_VS_PROTO_ESP
+ bool "ESP load balancing support"
+ help
+ This option enables support for load balancing ESP (Encapsulation
+ Security Payload) transport protocol. Say Y if unsure.
+
+config IP_VS_PROTO_AH
+ bool "AH load balancing support"
+ help
+ This option enables support for load balancing AH (Authentication
+ Header) transport protocol. Say Y if unsure.
+
+config IP_VS_PROTO_SCTP
+ bool "SCTP load balancing support"
+ select LIBCRC32C
+ help
+ This option enables support for load balancing SCTP transport
+ protocol. Say Y if unsure.
+
+comment "IPVS scheduler"
+
+config IP_VS_RR
+ tristate "round-robin scheduling"
+ help
+ The robin-robin scheduling algorithm simply directs network
+ connections to different real servers in a round-robin manner.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_WRR
+ tristate "weighted round-robin scheduling"
+ help
+ The weighted robin-robin scheduling algorithm directs network
+ connections to different real servers based on server weights
+ in a round-robin manner. Servers with higher weights receive
+ new connections first than those with less weights, and servers
+ with higher weights get more connections than those with less
+ weights and servers with equal weights get equal connections.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_LC
+ tristate "least-connection scheduling"
+ help
+ The least-connection scheduling algorithm directs network
+ connections to the server with the least number of active
+ connections.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_WLC
+ tristate "weighted least-connection scheduling"
+ help
+ The weighted least-connection scheduling algorithm directs network
+ connections to the server with the least active connections
+ normalized by the server weight.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_FO
+ tristate "weighted failover scheduling"
+ help
+ The weighted failover scheduling algorithm directs network
+ connections to the server with the highest weight that is
+ currently available.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_OVF
+ tristate "weighted overflow scheduling"
+ help
+ The weighted overflow scheduling algorithm directs network
+ connections to the server with the highest weight that is
+ currently available and overflows to the next when active
+ connections exceed the node's weight.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_LBLC
+ tristate "locality-based least-connection scheduling"
+ help
+ The locality-based least-connection scheduling algorithm is for
+ destination IP load balancing. It is usually used in cache cluster.
+ This algorithm usually directs packet destined for an IP address to
+ its server if the server is alive and under load. If the server is
+ overloaded (its active connection numbers is larger than its weight)
+ and there is a server in its half load, then allocate the weighted
+ least-connection server to this IP address.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_LBLCR
+ tristate "locality-based least-connection with replication scheduling"
+ help
+ The locality-based least-connection with replication scheduling
+ algorithm is also for destination IP load balancing. It is
+ usually used in cache cluster. It differs from the LBLC scheduling
+ as follows: the load balancer maintains mappings from a target
+ to a set of server nodes that can serve the target. Requests for
+ a target are assigned to the least-connection node in the target's
+ server set. If all the node in the server set are over loaded,
+ it picks up a least-connection node in the cluster and adds it
+ in the sever set for the target. If the server set has not been
+ modified for the specified time, the most loaded node is removed
+ from the server set, in order to avoid high degree of replication.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_DH
+ tristate "destination hashing scheduling"
+ help
+ The destination hashing scheduling algorithm assigns network
+ connections to the servers through looking up a statically assigned
+ hash table by their destination IP addresses.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_SH
+ tristate "source hashing scheduling"
+ help
+ The source hashing scheduling algorithm assigns network
+ connections to the servers through looking up a statically assigned
+ hash table by their source IP addresses.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_MH
+ tristate "maglev hashing scheduling"
+ help
+ The maglev consistent hashing scheduling algorithm provides the
+ Google's Maglev hashing algorithm as a IPVS scheduler. It assigns
+ network connections to the servers through looking up a statically
+ assigned special hash table called the lookup table. Maglev hashing
+ is to assign a preference list of all the lookup table positions
+ to each destination.
+
+ Through this operation, The maglev hashing gives an almost equal
+ share of the lookup table to each of the destinations and provides
+ minimal disruption by using the lookup table. When the set of
+ destinations changes, a connection will likely be sent to the same
+ destination as it was before.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_SED
+ tristate "shortest expected delay scheduling"
+ help
+ The shortest expected delay scheduling algorithm assigns network
+ connections to the server with the shortest expected delay. The
+ expected delay that the job will experience is (Ci + 1) / Ui if
+ sent to the ith server, in which Ci is the number of connections
+ on the ith server and Ui is the fixed service rate (weight)
+ of the ith server.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_NQ
+ tristate "never queue scheduling"
+ help
+ The never queue scheduling algorithm adopts a two-speed model.
+ When there is an idle server available, the job will be sent to
+ the idle server, instead of waiting for a fast one. When there
+ is no idle server available, the job will be sent to the server
+ that minimize its expected delay (The Shortest Expected Delay
+ scheduling algorithm).
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_TWOS
+ tristate "weighted random twos choice least-connection scheduling"
+ help
+ The weighted random twos choice least-connection scheduling
+ algorithm picks two random real servers and directs network
+ connections to the server with the least active connections
+ normalized by the server weight.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+comment 'IPVS SH scheduler'
+
+config IP_VS_SH_TAB_BITS
+ int "IPVS source hashing table size (the Nth power of 2)"
+ range 4 20
+ default 8
+ help
+ The source hashing scheduler maps source IPs to destinations
+ stored in a hash table. This table is tiled by each destination
+ until all slots in the table are filled. When using weights to
+ allow destinations to receive more connections, the table is
+ tiled an amount proportional to the weights specified. The table
+ needs to be large enough to effectively fit all the destinations
+ multiplied by their respective weights.
+
+comment 'IPVS MH scheduler'
+
+config IP_VS_MH_TAB_INDEX
+ int "IPVS maglev hashing table index of size (the prime numbers)"
+ range 8 17
+ default 12
+ help
+ The maglev hashing scheduler maps source IPs to destinations
+ stored in a hash table. This table is assigned by a preference
+ list of the positions to each destination until all slots in
+ the table are filled. The index determines the prime for size of
+ the table as 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
+ 65521 or 131071. When using weights to allow destinations to
+ receive more connections, the table is assigned an amount
+ proportional to the weights specified. The table needs to be large
+ enough to effectively fit all the destinations multiplied by their
+ respective weights.
+
+comment 'IPVS application helper'
+
+config IP_VS_FTP
+ tristate "FTP protocol helper"
+ depends on IP_VS_PROTO_TCP && NF_CONNTRACK && NF_NAT && \
+ NF_CONNTRACK_FTP
+ select IP_VS_NFCT
+ help
+ FTP is a protocol that transfers IP address and/or port number in
+ the payload. In the virtual server via Network Address Translation,
+ the IP address and port number of real servers cannot be sent to
+ clients in ftp connections directly, so FTP protocol helper is
+ required for tracking the connection and mangling it back to that of
+ virtual service.
+
+ If you want to compile it in kernel, say Y. To compile it as a
+ module, choose M here. If unsure, say N.
+
+config IP_VS_NFCT
+ bool "Netfilter connection tracking"
+ depends on NF_CONNTRACK
+ help
+ The Netfilter connection tracking support allows the IPVS
+ connection state to be exported to the Netfilter framework
+ for filtering purposes.
+
+config IP_VS_PE_SIP
+ tristate "SIP persistence engine"
+ depends on IP_VS_PROTO_UDP
+ depends on NF_CONNTRACK_SIP
+ help
+ Allow persistence based on the SIP Call-ID
+
+endif # IP_VS