summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/vm/protection_keys.c
diff options
context:
space:
mode:
Diffstat (limited to 'tools/testing/selftests/vm/protection_keys.c')
-rw-r--r--tools/testing/selftests/vm/protection_keys.c1788
1 files changed, 1788 insertions, 0 deletions
diff --git a/tools/testing/selftests/vm/protection_keys.c b/tools/testing/selftests/vm/protection_keys.c
new file mode 100644
index 000000000..95f403a0c
--- /dev/null
+++ b/tools/testing/selftests/vm/protection_keys.c
@@ -0,0 +1,1788 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
+ *
+ * There are examples in here of:
+ * * how to set protection keys on memory
+ * * how to set/clear bits in pkey registers (the rights register)
+ * * how to handle SEGV_PKUERR signals and extract pkey-relevant
+ * information from the siginfo
+ *
+ * Things to add:
+ * make sure KSM and KSM COW breaking works
+ * prefault pages in at malloc, or not
+ * protect MPX bounds tables with protection keys?
+ * make sure VMA splitting/merging is working correctly
+ * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
+ * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
+ * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
+ *
+ * Compile like this:
+ * gcc -mxsave -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
+ * gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
+ */
+#define _GNU_SOURCE
+#define __SANE_USERSPACE_TYPES__
+#include <errno.h>
+#include <linux/elf.h>
+#include <linux/futex.h>
+#include <time.h>
+#include <sys/time.h>
+#include <sys/syscall.h>
+#include <string.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdbool.h>
+#include <signal.h>
+#include <assert.h>
+#include <stdlib.h>
+#include <ucontext.h>
+#include <sys/mman.h>
+#include <sys/types.h>
+#include <sys/wait.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <sys/ptrace.h>
+#include <setjmp.h>
+
+#include "pkey-helpers.h"
+
+int iteration_nr = 1;
+int test_nr;
+
+u64 shadow_pkey_reg;
+int dprint_in_signal;
+char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
+
+void cat_into_file(char *str, char *file)
+{
+ int fd = open(file, O_RDWR);
+ int ret;
+
+ dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
+ /*
+ * these need to be raw because they are called under
+ * pkey_assert()
+ */
+ if (fd < 0) {
+ fprintf(stderr, "error opening '%s'\n", str);
+ perror("error: ");
+ exit(__LINE__);
+ }
+
+ ret = write(fd, str, strlen(str));
+ if (ret != strlen(str)) {
+ perror("write to file failed");
+ fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
+ exit(__LINE__);
+ }
+ close(fd);
+}
+
+#if CONTROL_TRACING > 0
+static int warned_tracing;
+int tracing_root_ok(void)
+{
+ if (geteuid() != 0) {
+ if (!warned_tracing)
+ fprintf(stderr, "WARNING: not run as root, "
+ "can not do tracing control\n");
+ warned_tracing = 1;
+ return 0;
+ }
+ return 1;
+}
+#endif
+
+void tracing_on(void)
+{
+#if CONTROL_TRACING > 0
+#define TRACEDIR "/sys/kernel/debug/tracing"
+ char pidstr[32];
+
+ if (!tracing_root_ok())
+ return;
+
+ sprintf(pidstr, "%d", getpid());
+ cat_into_file("0", TRACEDIR "/tracing_on");
+ cat_into_file("\n", TRACEDIR "/trace");
+ if (1) {
+ cat_into_file("function_graph", TRACEDIR "/current_tracer");
+ cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
+ } else {
+ cat_into_file("nop", TRACEDIR "/current_tracer");
+ }
+ cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
+ cat_into_file("1", TRACEDIR "/tracing_on");
+ dprintf1("enabled tracing\n");
+#endif
+}
+
+void tracing_off(void)
+{
+#if CONTROL_TRACING > 0
+ if (!tracing_root_ok())
+ return;
+ cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
+#endif
+}
+
+void abort_hooks(void)
+{
+ fprintf(stderr, "running %s()...\n", __func__);
+ tracing_off();
+#ifdef SLEEP_ON_ABORT
+ sleep(SLEEP_ON_ABORT);
+#endif
+}
+
+/*
+ * This attempts to have roughly a page of instructions followed by a few
+ * instructions that do a write, and another page of instructions. That
+ * way, we are pretty sure that the write is in the second page of
+ * instructions and has at least a page of padding behind it.
+ *
+ * *That* lets us be sure to madvise() away the write instruction, which
+ * will then fault, which makes sure that the fault code handles
+ * execute-only memory properly.
+ */
+#ifdef __powerpc64__
+/* This way, both 4K and 64K alignment are maintained */
+__attribute__((__aligned__(65536)))
+#else
+__attribute__((__aligned__(PAGE_SIZE)))
+#endif
+void lots_o_noops_around_write(int *write_to_me)
+{
+ dprintf3("running %s()\n", __func__);
+ __page_o_noops();
+ /* Assume this happens in the second page of instructions: */
+ *write_to_me = __LINE__;
+ /* pad out by another page: */
+ __page_o_noops();
+ dprintf3("%s() done\n", __func__);
+}
+
+void dump_mem(void *dumpme, int len_bytes)
+{
+ char *c = (void *)dumpme;
+ int i;
+
+ for (i = 0; i < len_bytes; i += sizeof(u64)) {
+ u64 *ptr = (u64 *)(c + i);
+ dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
+ }
+}
+
+static u32 hw_pkey_get(int pkey, unsigned long flags)
+{
+ u64 pkey_reg = __read_pkey_reg();
+
+ dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
+ __func__, pkey, flags, 0, 0);
+ dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
+
+ return (u32) get_pkey_bits(pkey_reg, pkey);
+}
+
+static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
+{
+ u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
+ u64 old_pkey_reg = __read_pkey_reg();
+ u64 new_pkey_reg;
+
+ /* make sure that 'rights' only contains the bits we expect: */
+ assert(!(rights & ~mask));
+
+ /* modify bits accordingly in old pkey_reg and assign it */
+ new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
+
+ __write_pkey_reg(new_pkey_reg);
+
+ dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
+ " pkey_reg now: %016llx old_pkey_reg: %016llx\n",
+ __func__, pkey, rights, flags, 0, __read_pkey_reg(),
+ old_pkey_reg);
+ return 0;
+}
+
+void pkey_disable_set(int pkey, int flags)
+{
+ unsigned long syscall_flags = 0;
+ int ret;
+ int pkey_rights;
+ u64 orig_pkey_reg = read_pkey_reg();
+
+ dprintf1("START->%s(%d, 0x%x)\n", __func__,
+ pkey, flags);
+ pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
+
+ pkey_rights = hw_pkey_get(pkey, syscall_flags);
+
+ dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
+ pkey, pkey, pkey_rights);
+
+ pkey_assert(pkey_rights >= 0);
+
+ pkey_rights |= flags;
+
+ ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
+ assert(!ret);
+ /* pkey_reg and flags have the same format */
+ shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
+ dprintf1("%s(%d) shadow: 0x%016llx\n",
+ __func__, pkey, shadow_pkey_reg);
+
+ pkey_assert(ret >= 0);
+
+ pkey_rights = hw_pkey_get(pkey, syscall_flags);
+ dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
+ pkey, pkey, pkey_rights);
+
+ dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
+ __func__, pkey, read_pkey_reg());
+ if (flags)
+ pkey_assert(read_pkey_reg() >= orig_pkey_reg);
+ dprintf1("END<---%s(%d, 0x%x)\n", __func__,
+ pkey, flags);
+}
+
+void pkey_disable_clear(int pkey, int flags)
+{
+ unsigned long syscall_flags = 0;
+ int ret;
+ int pkey_rights = hw_pkey_get(pkey, syscall_flags);
+ u64 orig_pkey_reg = read_pkey_reg();
+
+ pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
+
+ dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
+ pkey, pkey, pkey_rights);
+ pkey_assert(pkey_rights >= 0);
+
+ pkey_rights &= ~flags;
+
+ ret = hw_pkey_set(pkey, pkey_rights, 0);
+ shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
+ pkey_assert(ret >= 0);
+
+ pkey_rights = hw_pkey_get(pkey, syscall_flags);
+ dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
+ pkey, pkey, pkey_rights);
+
+ dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
+ pkey, read_pkey_reg());
+ if (flags)
+ assert(read_pkey_reg() <= orig_pkey_reg);
+}
+
+void pkey_write_allow(int pkey)
+{
+ pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
+}
+void pkey_write_deny(int pkey)
+{
+ pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
+}
+void pkey_access_allow(int pkey)
+{
+ pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
+}
+void pkey_access_deny(int pkey)
+{
+ pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
+}
+
+/* Failed address bound checks: */
+#ifndef SEGV_BNDERR
+# define SEGV_BNDERR 3
+#endif
+
+#ifndef SEGV_PKUERR
+# define SEGV_PKUERR 4
+#endif
+
+static char *si_code_str(int si_code)
+{
+ if (si_code == SEGV_MAPERR)
+ return "SEGV_MAPERR";
+ if (si_code == SEGV_ACCERR)
+ return "SEGV_ACCERR";
+ if (si_code == SEGV_BNDERR)
+ return "SEGV_BNDERR";
+ if (si_code == SEGV_PKUERR)
+ return "SEGV_PKUERR";
+ return "UNKNOWN";
+}
+
+int pkey_faults;
+int last_si_pkey = -1;
+void signal_handler(int signum, siginfo_t *si, void *vucontext)
+{
+ ucontext_t *uctxt = vucontext;
+ int trapno;
+ unsigned long ip;
+ char *fpregs;
+#if defined(__i386__) || defined(__x86_64__) /* arch */
+ u32 *pkey_reg_ptr;
+ int pkey_reg_offset;
+#endif /* arch */
+ u64 siginfo_pkey;
+ u32 *si_pkey_ptr;
+
+ dprint_in_signal = 1;
+ dprintf1(">>>>===============SIGSEGV============================\n");
+ dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
+ __func__, __LINE__,
+ __read_pkey_reg(), shadow_pkey_reg);
+
+ trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
+ ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
+ fpregs = (char *) uctxt->uc_mcontext.fpregs;
+
+ dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
+ __func__, trapno, ip, si_code_str(si->si_code),
+ si->si_code);
+
+#if defined(__i386__) || defined(__x86_64__) /* arch */
+#ifdef __i386__
+ /*
+ * 32-bit has some extra padding so that userspace can tell whether
+ * the XSTATE header is present in addition to the "legacy" FPU
+ * state. We just assume that it is here.
+ */
+ fpregs += 0x70;
+#endif /* i386 */
+ pkey_reg_offset = pkey_reg_xstate_offset();
+ pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
+
+ /*
+ * If we got a PKEY fault, we *HAVE* to have at least one bit set in
+ * here.
+ */
+ dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
+ if (DEBUG_LEVEL > 4)
+ dump_mem(pkey_reg_ptr - 128, 256);
+ pkey_assert(*pkey_reg_ptr);
+#endif /* arch */
+
+ dprintf1("siginfo: %p\n", si);
+ dprintf1(" fpregs: %p\n", fpregs);
+
+ if ((si->si_code == SEGV_MAPERR) ||
+ (si->si_code == SEGV_ACCERR) ||
+ (si->si_code == SEGV_BNDERR)) {
+ printf("non-PK si_code, exiting...\n");
+ exit(4);
+ }
+
+ si_pkey_ptr = siginfo_get_pkey_ptr(si);
+ dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
+ dump_mem((u8 *)si_pkey_ptr - 8, 24);
+ siginfo_pkey = *si_pkey_ptr;
+ pkey_assert(siginfo_pkey < NR_PKEYS);
+ last_si_pkey = siginfo_pkey;
+
+ /*
+ * need __read_pkey_reg() version so we do not do shadow_pkey_reg
+ * checking
+ */
+ dprintf1("signal pkey_reg from pkey_reg: %016llx\n",
+ __read_pkey_reg());
+ dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
+#if defined(__i386__) || defined(__x86_64__) /* arch */
+ dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
+ *(u64 *)pkey_reg_ptr = 0x00000000;
+ dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
+#elif defined(__powerpc64__) /* arch */
+ /* restore access and let the faulting instruction continue */
+ pkey_access_allow(siginfo_pkey);
+#endif /* arch */
+ pkey_faults++;
+ dprintf1("<<<<==================================================\n");
+ dprint_in_signal = 0;
+}
+
+int wait_all_children(void)
+{
+ int status;
+ return waitpid(-1, &status, 0);
+}
+
+void sig_chld(int x)
+{
+ dprint_in_signal = 1;
+ dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
+ dprint_in_signal = 0;
+}
+
+void setup_sigsegv_handler(void)
+{
+ int r, rs;
+ struct sigaction newact;
+ struct sigaction oldact;
+
+ /* #PF is mapped to sigsegv */
+ int signum = SIGSEGV;
+
+ newact.sa_handler = 0;
+ newact.sa_sigaction = signal_handler;
+
+ /*sigset_t - signals to block while in the handler */
+ /* get the old signal mask. */
+ rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
+ pkey_assert(rs == 0);
+
+ /* call sa_sigaction, not sa_handler*/
+ newact.sa_flags = SA_SIGINFO;
+
+ newact.sa_restorer = 0; /* void(*)(), obsolete */
+ r = sigaction(signum, &newact, &oldact);
+ r = sigaction(SIGALRM, &newact, &oldact);
+ pkey_assert(r == 0);
+}
+
+void setup_handlers(void)
+{
+ signal(SIGCHLD, &sig_chld);
+ setup_sigsegv_handler();
+}
+
+pid_t fork_lazy_child(void)
+{
+ pid_t forkret;
+
+ forkret = fork();
+ pkey_assert(forkret >= 0);
+ dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
+
+ if (!forkret) {
+ /* in the child */
+ while (1) {
+ dprintf1("child sleeping...\n");
+ sleep(30);
+ }
+ }
+ return forkret;
+}
+
+int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
+ unsigned long pkey)
+{
+ int sret;
+
+ dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
+ ptr, size, orig_prot, pkey);
+
+ errno = 0;
+ sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
+ if (errno) {
+ dprintf2("SYS_mprotect_key sret: %d\n", sret);
+ dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
+ dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
+ if (DEBUG_LEVEL >= 2)
+ perror("SYS_mprotect_pkey");
+ }
+ return sret;
+}
+
+int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
+{
+ int ret = syscall(SYS_pkey_alloc, flags, init_val);
+ dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
+ __func__, flags, init_val, ret, errno);
+ return ret;
+}
+
+int alloc_pkey(void)
+{
+ int ret;
+ unsigned long init_val = 0x0;
+
+ dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
+ __func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
+ ret = sys_pkey_alloc(0, init_val);
+ /*
+ * pkey_alloc() sets PKEY register, so we need to reflect it in
+ * shadow_pkey_reg:
+ */
+ dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n",
+ __func__, __LINE__, ret, __read_pkey_reg(),
+ shadow_pkey_reg);
+ if (ret > 0) {
+ /* clear both the bits: */
+ shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
+ ~PKEY_MASK);
+ dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n",
+ __func__,
+ __LINE__, ret, __read_pkey_reg(),
+ shadow_pkey_reg);
+ /*
+ * move the new state in from init_val
+ * (remember, we cheated and init_val == pkey_reg format)
+ */
+ shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
+ init_val);
+ }
+ dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n",
+ __func__, __LINE__, ret, __read_pkey_reg(),
+ shadow_pkey_reg);
+ dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
+ /* for shadow checking: */
+ read_pkey_reg();
+ dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n",
+ __func__, __LINE__, ret, __read_pkey_reg(),
+ shadow_pkey_reg);
+ return ret;
+}
+
+int sys_pkey_free(unsigned long pkey)
+{
+ int ret = syscall(SYS_pkey_free, pkey);
+ dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
+ return ret;
+}
+
+/*
+ * I had a bug where pkey bits could be set by mprotect() but
+ * not cleared. This ensures we get lots of random bit sets
+ * and clears on the vma and pte pkey bits.
+ */
+int alloc_random_pkey(void)
+{
+ int max_nr_pkey_allocs;
+ int ret;
+ int i;
+ int alloced_pkeys[NR_PKEYS];
+ int nr_alloced = 0;
+ int random_index;
+ memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
+
+ /* allocate every possible key and make a note of which ones we got */
+ max_nr_pkey_allocs = NR_PKEYS;
+ for (i = 0; i < max_nr_pkey_allocs; i++) {
+ int new_pkey = alloc_pkey();
+ if (new_pkey < 0)
+ break;
+ alloced_pkeys[nr_alloced++] = new_pkey;
+ }
+
+ pkey_assert(nr_alloced > 0);
+ /* select a random one out of the allocated ones */
+ random_index = rand() % nr_alloced;
+ ret = alloced_pkeys[random_index];
+ /* now zero it out so we don't free it next */
+ alloced_pkeys[random_index] = 0;
+
+ /* go through the allocated ones that we did not want and free them */
+ for (i = 0; i < nr_alloced; i++) {
+ int free_ret;
+ if (!alloced_pkeys[i])
+ continue;
+ free_ret = sys_pkey_free(alloced_pkeys[i]);
+ pkey_assert(!free_ret);
+ }
+ dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n", __func__,
+ __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
+ return ret;
+}
+
+int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
+ unsigned long pkey)
+{
+ int nr_iterations = random() % 100;
+ int ret;
+
+ while (0) {
+ int rpkey = alloc_random_pkey();
+ ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
+ dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
+ ptr, size, orig_prot, pkey, ret);
+ if (nr_iterations-- < 0)
+ break;
+
+ dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n",
+ __func__, __LINE__, ret, __read_pkey_reg(),
+ shadow_pkey_reg);
+ sys_pkey_free(rpkey);
+ dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n",
+ __func__, __LINE__, ret, __read_pkey_reg(),
+ shadow_pkey_reg);
+ }
+ pkey_assert(pkey < NR_PKEYS);
+
+ ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
+ dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
+ ptr, size, orig_prot, pkey, ret);
+ pkey_assert(!ret);
+ dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n", __func__,
+ __LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
+ return ret;
+}
+
+struct pkey_malloc_record {
+ void *ptr;
+ long size;
+ int prot;
+};
+struct pkey_malloc_record *pkey_malloc_records;
+struct pkey_malloc_record *pkey_last_malloc_record;
+long nr_pkey_malloc_records;
+void record_pkey_malloc(void *ptr, long size, int prot)
+{
+ long i;
+ struct pkey_malloc_record *rec = NULL;
+
+ for (i = 0; i < nr_pkey_malloc_records; i++) {
+ rec = &pkey_malloc_records[i];
+ /* find a free record */
+ if (rec)
+ break;
+ }
+ if (!rec) {
+ /* every record is full */
+ size_t old_nr_records = nr_pkey_malloc_records;
+ size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
+ size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
+ dprintf2("new_nr_records: %zd\n", new_nr_records);
+ dprintf2("new_size: %zd\n", new_size);
+ pkey_malloc_records = realloc(pkey_malloc_records, new_size);
+ pkey_assert(pkey_malloc_records != NULL);
+ rec = &pkey_malloc_records[nr_pkey_malloc_records];
+ /*
+ * realloc() does not initialize memory, so zero it from
+ * the first new record all the way to the end.
+ */
+ for (i = 0; i < new_nr_records - old_nr_records; i++)
+ memset(rec + i, 0, sizeof(*rec));
+ }
+ dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
+ (int)(rec - pkey_malloc_records), rec, ptr, size);
+ rec->ptr = ptr;
+ rec->size = size;
+ rec->prot = prot;
+ pkey_last_malloc_record = rec;
+ nr_pkey_malloc_records++;
+}
+
+void free_pkey_malloc(void *ptr)
+{
+ long i;
+ int ret;
+ dprintf3("%s(%p)\n", __func__, ptr);
+ for (i = 0; i < nr_pkey_malloc_records; i++) {
+ struct pkey_malloc_record *rec = &pkey_malloc_records[i];
+ dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
+ ptr, i, rec, rec->ptr, rec->size);
+ if ((ptr < rec->ptr) ||
+ (ptr >= rec->ptr + rec->size))
+ continue;
+
+ dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
+ ptr, i, rec, rec->ptr, rec->size);
+ nr_pkey_malloc_records--;
+ ret = munmap(rec->ptr, rec->size);
+ dprintf3("munmap ret: %d\n", ret);
+ pkey_assert(!ret);
+ dprintf3("clearing rec->ptr, rec: %p\n", rec);
+ rec->ptr = NULL;
+ dprintf3("done clearing rec->ptr, rec: %p\n", rec);
+ return;
+ }
+ pkey_assert(false);
+}
+
+
+void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
+{
+ void *ptr;
+ int ret;
+
+ read_pkey_reg();
+ dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
+ size, prot, pkey);
+ pkey_assert(pkey < NR_PKEYS);
+ ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
+ pkey_assert(ptr != (void *)-1);
+ ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
+ pkey_assert(!ret);
+ record_pkey_malloc(ptr, size, prot);
+ read_pkey_reg();
+
+ dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
+ return ptr;
+}
+
+void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
+{
+ int ret;
+ void *ptr;
+
+ dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
+ size, prot, pkey);
+ /*
+ * Guarantee we can fit at least one huge page in the resulting
+ * allocation by allocating space for 2:
+ */
+ size = ALIGN_UP(size, HPAGE_SIZE * 2);
+ ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
+ pkey_assert(ptr != (void *)-1);
+ record_pkey_malloc(ptr, size, prot);
+ mprotect_pkey(ptr, size, prot, pkey);
+
+ dprintf1("unaligned ptr: %p\n", ptr);
+ ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
+ dprintf1(" aligned ptr: %p\n", ptr);
+ ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
+ dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
+ ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
+ dprintf1("MADV_WILLNEED ret: %d\n", ret);
+ memset(ptr, 0, HPAGE_SIZE);
+
+ dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
+ return ptr;
+}
+
+int hugetlb_setup_ok;
+#define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
+#define GET_NR_HUGE_PAGES 10
+void setup_hugetlbfs(void)
+{
+ int err;
+ int fd;
+ char buf[256];
+ long hpagesz_kb;
+ long hpagesz_mb;
+
+ if (geteuid() != 0) {
+ fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
+ return;
+ }
+
+ cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
+
+ /*
+ * Now go make sure that we got the pages and that they
+ * are PMD-level pages. Someone might have made PUD-level
+ * pages the default.
+ */
+ hpagesz_kb = HPAGE_SIZE / 1024;
+ hpagesz_mb = hpagesz_kb / 1024;
+ sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
+ fd = open(buf, O_RDONLY);
+ if (fd < 0) {
+ fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
+ hpagesz_mb, strerror(errno));
+ return;
+ }
+
+ /* -1 to guarantee leaving the trailing \0 */
+ err = read(fd, buf, sizeof(buf)-1);
+ close(fd);
+ if (err <= 0) {
+ fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
+ hpagesz_mb, strerror(errno));
+ return;
+ }
+
+ if (atoi(buf) != GET_NR_HUGE_PAGES) {
+ fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
+ hpagesz_mb, buf, GET_NR_HUGE_PAGES);
+ return;
+ }
+
+ hugetlb_setup_ok = 1;
+}
+
+void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
+{
+ void *ptr;
+ int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
+
+ if (!hugetlb_setup_ok)
+ return PTR_ERR_ENOTSUP;
+
+ dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
+ size = ALIGN_UP(size, HPAGE_SIZE * 2);
+ pkey_assert(pkey < NR_PKEYS);
+ ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
+ pkey_assert(ptr != (void *)-1);
+ mprotect_pkey(ptr, size, prot, pkey);
+
+ record_pkey_malloc(ptr, size, prot);
+
+ dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
+ return ptr;
+}
+
+void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
+{
+ void *ptr;
+ int fd;
+
+ dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
+ size, prot, pkey);
+ pkey_assert(pkey < NR_PKEYS);
+ fd = open("/dax/foo", O_RDWR);
+ pkey_assert(fd >= 0);
+
+ ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
+ pkey_assert(ptr != (void *)-1);
+
+ mprotect_pkey(ptr, size, prot, pkey);
+
+ record_pkey_malloc(ptr, size, prot);
+
+ dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
+ close(fd);
+ return ptr;
+}
+
+void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
+
+ malloc_pkey_with_mprotect,
+ malloc_pkey_with_mprotect_subpage,
+ malloc_pkey_anon_huge,
+ malloc_pkey_hugetlb
+/* can not do direct with the pkey_mprotect() API:
+ malloc_pkey_mmap_direct,
+ malloc_pkey_mmap_dax,
+*/
+};
+
+void *malloc_pkey(long size, int prot, u16 pkey)
+{
+ void *ret;
+ static int malloc_type;
+ int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
+
+ pkey_assert(pkey < NR_PKEYS);
+
+ while (1) {
+ pkey_assert(malloc_type < nr_malloc_types);
+
+ ret = pkey_malloc[malloc_type](size, prot, pkey);
+ pkey_assert(ret != (void *)-1);
+
+ malloc_type++;
+ if (malloc_type >= nr_malloc_types)
+ malloc_type = (random()%nr_malloc_types);
+
+ /* try again if the malloc_type we tried is unsupported */
+ if (ret == PTR_ERR_ENOTSUP)
+ continue;
+
+ break;
+ }
+
+ dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
+ size, prot, pkey, ret);
+ return ret;
+}
+
+int last_pkey_faults;
+#define UNKNOWN_PKEY -2
+void expected_pkey_fault(int pkey)
+{
+ dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
+ __func__, last_pkey_faults, pkey_faults);
+ dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
+ pkey_assert(last_pkey_faults + 1 == pkey_faults);
+
+ /*
+ * For exec-only memory, we do not know the pkey in
+ * advance, so skip this check.
+ */
+ if (pkey != UNKNOWN_PKEY)
+ pkey_assert(last_si_pkey == pkey);
+
+#if defined(__i386__) || defined(__x86_64__) /* arch */
+ /*
+ * The signal handler shold have cleared out PKEY register to let the
+ * test program continue. We now have to restore it.
+ */
+ if (__read_pkey_reg() != 0)
+#else /* arch */
+ if (__read_pkey_reg() != shadow_pkey_reg)
+#endif /* arch */
+ pkey_assert(0);
+
+ __write_pkey_reg(shadow_pkey_reg);
+ dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
+ "nuked it\n", __func__, shadow_pkey_reg);
+ last_pkey_faults = pkey_faults;
+ last_si_pkey = -1;
+}
+
+#define do_not_expect_pkey_fault(msg) do { \
+ if (last_pkey_faults != pkey_faults) \
+ dprintf0("unexpected PKey fault: %s\n", msg); \
+ pkey_assert(last_pkey_faults == pkey_faults); \
+} while (0)
+
+int test_fds[10] = { -1 };
+int nr_test_fds;
+void __save_test_fd(int fd)
+{
+ pkey_assert(fd >= 0);
+ pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
+ test_fds[nr_test_fds] = fd;
+ nr_test_fds++;
+}
+
+int get_test_read_fd(void)
+{
+ int test_fd = open("/etc/passwd", O_RDONLY);
+ __save_test_fd(test_fd);
+ return test_fd;
+}
+
+void close_test_fds(void)
+{
+ int i;
+
+ for (i = 0; i < nr_test_fds; i++) {
+ if (test_fds[i] < 0)
+ continue;
+ close(test_fds[i]);
+ test_fds[i] = -1;
+ }
+ nr_test_fds = 0;
+}
+
+#define barrier() __asm__ __volatile__("": : :"memory")
+__attribute__((noinline)) int read_ptr(int *ptr)
+{
+ /*
+ * Keep GCC from optimizing this away somehow
+ */
+ barrier();
+ return *ptr;
+}
+
+void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
+{
+ int i, err;
+ int max_nr_pkey_allocs;
+ int alloced_pkeys[NR_PKEYS];
+ int nr_alloced = 0;
+ long size;
+
+ pkey_assert(pkey_last_malloc_record);
+ size = pkey_last_malloc_record->size;
+ /*
+ * This is a bit of a hack. But mprotect() requires
+ * huge-page-aligned sizes when operating on hugetlbfs.
+ * So, make sure that we use something that's a multiple
+ * of a huge page when we can.
+ */
+ if (size >= HPAGE_SIZE)
+ size = HPAGE_SIZE;
+
+ /* allocate every possible key and make sure key-0 never got allocated */
+ max_nr_pkey_allocs = NR_PKEYS;
+ for (i = 0; i < max_nr_pkey_allocs; i++) {
+ int new_pkey = alloc_pkey();
+ pkey_assert(new_pkey != 0);
+
+ if (new_pkey < 0)
+ break;
+ alloced_pkeys[nr_alloced++] = new_pkey;
+ }
+ /* free all the allocated keys */
+ for (i = 0; i < nr_alloced; i++) {
+ int free_ret;
+
+ if (!alloced_pkeys[i])
+ continue;
+ free_ret = sys_pkey_free(alloced_pkeys[i]);
+ pkey_assert(!free_ret);
+ }
+
+ /* attach key-0 in various modes */
+ err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
+ pkey_assert(!err);
+ err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
+ pkey_assert(!err);
+ err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
+ pkey_assert(!err);
+ err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
+ pkey_assert(!err);
+ err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
+ pkey_assert(!err);
+}
+
+void test_read_of_write_disabled_region(int *ptr, u16 pkey)
+{
+ int ptr_contents;
+
+ dprintf1("disabling write access to PKEY[1], doing read\n");
+ pkey_write_deny(pkey);
+ ptr_contents = read_ptr(ptr);
+ dprintf1("*ptr: %d\n", ptr_contents);
+ dprintf1("\n");
+}
+void test_read_of_access_disabled_region(int *ptr, u16 pkey)
+{
+ int ptr_contents;
+
+ dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
+ read_pkey_reg();
+ pkey_access_deny(pkey);
+ ptr_contents = read_ptr(ptr);
+ dprintf1("*ptr: %d\n", ptr_contents);
+ expected_pkey_fault(pkey);
+}
+
+void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
+ u16 pkey)
+{
+ int ptr_contents;
+
+ dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
+ pkey, ptr);
+ ptr_contents = read_ptr(ptr);
+ dprintf1("reading ptr before disabling the read : %d\n",
+ ptr_contents);
+ read_pkey_reg();
+ pkey_access_deny(pkey);
+ ptr_contents = read_ptr(ptr);
+ dprintf1("*ptr: %d\n", ptr_contents);
+ expected_pkey_fault(pkey);
+}
+
+void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
+ u16 pkey)
+{
+ *ptr = __LINE__;
+ dprintf1("disabling write access; after accessing the page, "
+ "to PKEY[%02d], doing write\n", pkey);
+ pkey_write_deny(pkey);
+ *ptr = __LINE__;
+ expected_pkey_fault(pkey);
+}
+
+void test_write_of_write_disabled_region(int *ptr, u16 pkey)
+{
+ dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
+ pkey_write_deny(pkey);
+ *ptr = __LINE__;
+ expected_pkey_fault(pkey);
+}
+void test_write_of_access_disabled_region(int *ptr, u16 pkey)
+{
+ dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
+ pkey_access_deny(pkey);
+ *ptr = __LINE__;
+ expected_pkey_fault(pkey);
+}
+
+void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
+ u16 pkey)
+{
+ *ptr = __LINE__;
+ dprintf1("disabling access; after accessing the page, "
+ " to PKEY[%02d], doing write\n", pkey);
+ pkey_access_deny(pkey);
+ *ptr = __LINE__;
+ expected_pkey_fault(pkey);
+}
+
+void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
+{
+ int ret;
+ int test_fd = get_test_read_fd();
+
+ dprintf1("disabling access to PKEY[%02d], "
+ "having kernel read() to buffer\n", pkey);
+ pkey_access_deny(pkey);
+ ret = read(test_fd, ptr, 1);
+ dprintf1("read ret: %d\n", ret);
+ pkey_assert(ret);
+}
+void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
+{
+ int ret;
+ int test_fd = get_test_read_fd();
+
+ pkey_write_deny(pkey);
+ ret = read(test_fd, ptr, 100);
+ dprintf1("read ret: %d\n", ret);
+ if (ret < 0 && (DEBUG_LEVEL > 0))
+ perror("verbose read result (OK for this to be bad)");
+ pkey_assert(ret);
+}
+
+void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
+{
+ int pipe_ret, vmsplice_ret;
+ struct iovec iov;
+ int pipe_fds[2];
+
+ pipe_ret = pipe(pipe_fds);
+
+ pkey_assert(pipe_ret == 0);
+ dprintf1("disabling access to PKEY[%02d], "
+ "having kernel vmsplice from buffer\n", pkey);
+ pkey_access_deny(pkey);
+ iov.iov_base = ptr;
+ iov.iov_len = PAGE_SIZE;
+ vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
+ dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
+ pkey_assert(vmsplice_ret == -1);
+
+ close(pipe_fds[0]);
+ close(pipe_fds[1]);
+}
+
+void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
+{
+ int ignored = 0xdada;
+ int futex_ret;
+ int some_int = __LINE__;
+
+ dprintf1("disabling write to PKEY[%02d], "
+ "doing futex gunk in buffer\n", pkey);
+ *ptr = some_int;
+ pkey_write_deny(pkey);
+ futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
+ &ignored, ignored);
+ if (DEBUG_LEVEL > 0)
+ perror("futex");
+ dprintf1("futex() ret: %d\n", futex_ret);
+}
+
+/* Assumes that all pkeys other than 'pkey' are unallocated */
+void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
+{
+ int err;
+ int i;
+
+ /* Note: 0 is the default pkey, so don't mess with it */
+ for (i = 1; i < NR_PKEYS; i++) {
+ if (pkey == i)
+ continue;
+
+ dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
+ err = sys_pkey_free(i);
+ pkey_assert(err);
+
+ err = sys_pkey_free(i);
+ pkey_assert(err);
+
+ err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
+ pkey_assert(err);
+ }
+}
+
+/* Assumes that all pkeys other than 'pkey' are unallocated */
+void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
+{
+ int err;
+ int bad_pkey = NR_PKEYS+99;
+
+ /* pass a known-invalid pkey in: */
+ err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
+ pkey_assert(err);
+}
+
+void become_child(void)
+{
+ pid_t forkret;
+
+ forkret = fork();
+ pkey_assert(forkret >= 0);
+ dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
+
+ if (!forkret) {
+ /* in the child */
+ return;
+ }
+ exit(0);
+}
+
+/* Assumes that all pkeys other than 'pkey' are unallocated */
+void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
+{
+ int err;
+ int allocated_pkeys[NR_PKEYS] = {0};
+ int nr_allocated_pkeys = 0;
+ int i;
+
+ for (i = 0; i < NR_PKEYS*3; i++) {
+ int new_pkey;
+ dprintf1("%s() alloc loop: %d\n", __func__, i);
+ new_pkey = alloc_pkey();
+ dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
+ " shadow: 0x%016llx\n",
+ __func__, __LINE__, err, __read_pkey_reg(),
+ shadow_pkey_reg);
+ read_pkey_reg(); /* for shadow checking */
+ dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
+ if ((new_pkey == -1) && (errno == ENOSPC)) {
+ dprintf2("%s() failed to allocate pkey after %d tries\n",
+ __func__, nr_allocated_pkeys);
+ } else {
+ /*
+ * Ensure the number of successes never
+ * exceeds the number of keys supported
+ * in the hardware.
+ */
+ pkey_assert(nr_allocated_pkeys < NR_PKEYS);
+ allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
+ }
+
+ /*
+ * Make sure that allocation state is properly
+ * preserved across fork().
+ */
+ if (i == NR_PKEYS*2)
+ become_child();
+ }
+
+ dprintf3("%s()::%d\n", __func__, __LINE__);
+
+ /*
+ * On x86:
+ * There are 16 pkeys supported in hardware. Three are
+ * allocated by the time we get here:
+ * 1. The default key (0)
+ * 2. One possibly consumed by an execute-only mapping.
+ * 3. One allocated by the test code and passed in via
+ * 'pkey' to this function.
+ * Ensure that we can allocate at least another 13 (16-3).
+ *
+ * On powerpc:
+ * There are either 5, 28, 29 or 32 pkeys supported in
+ * hardware depending on the page size (4K or 64K) and
+ * platform (powernv or powervm). Four are allocated by
+ * the time we get here. These include pkey-0, pkey-1,
+ * exec-only pkey and the one allocated by the test code.
+ * Ensure that we can allocate the remaining.
+ */
+ pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
+
+ for (i = 0; i < nr_allocated_pkeys; i++) {
+ err = sys_pkey_free(allocated_pkeys[i]);
+ pkey_assert(!err);
+ read_pkey_reg(); /* for shadow checking */
+ }
+}
+
+void arch_force_pkey_reg_init(void)
+{
+#if defined(__i386__) || defined(__x86_64__) /* arch */
+ u64 *buf;
+
+ /*
+ * All keys should be allocated and set to allow reads and
+ * writes, so the register should be all 0. If not, just
+ * skip the test.
+ */
+ if (read_pkey_reg())
+ return;
+
+ /*
+ * Just allocate an absurd about of memory rather than
+ * doing the XSAVE size enumeration dance.
+ */
+ buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
+
+ /* These __builtins require compiling with -mxsave */
+
+ /* XSAVE to build a valid buffer: */
+ __builtin_ia32_xsave(buf, XSTATE_PKEY);
+ /* Clear XSTATE_BV[PKRU]: */
+ buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
+ /* XRSTOR will likely get PKRU back to the init state: */
+ __builtin_ia32_xrstor(buf, XSTATE_PKEY);
+
+ munmap(buf, 1*MB);
+#endif
+}
+
+
+/*
+ * This is mostly useless on ppc for now. But it will not
+ * hurt anything and should give some better coverage as
+ * a long-running test that continually checks the pkey
+ * register.
+ */
+void test_pkey_init_state(int *ptr, u16 pkey)
+{
+ int err;
+ int allocated_pkeys[NR_PKEYS] = {0};
+ int nr_allocated_pkeys = 0;
+ int i;
+
+ for (i = 0; i < NR_PKEYS; i++) {
+ int new_pkey = alloc_pkey();
+
+ if (new_pkey < 0)
+ continue;
+ allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
+ }
+
+ dprintf3("%s()::%d\n", __func__, __LINE__);
+
+ arch_force_pkey_reg_init();
+
+ /*
+ * Loop for a bit, hoping to get exercise the kernel
+ * context switch code.
+ */
+ for (i = 0; i < 1000000; i++)
+ read_pkey_reg();
+
+ for (i = 0; i < nr_allocated_pkeys; i++) {
+ err = sys_pkey_free(allocated_pkeys[i]);
+ pkey_assert(!err);
+ read_pkey_reg(); /* for shadow checking */
+ }
+}
+
+/*
+ * pkey 0 is special. It is allocated by default, so you do not
+ * have to call pkey_alloc() to use it first. Make sure that it
+ * is usable.
+ */
+void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
+{
+ long size;
+ int prot;
+
+ assert(pkey_last_malloc_record);
+ size = pkey_last_malloc_record->size;
+ /*
+ * This is a bit of a hack. But mprotect() requires
+ * huge-page-aligned sizes when operating on hugetlbfs.
+ * So, make sure that we use something that's a multiple
+ * of a huge page when we can.
+ */
+ if (size >= HPAGE_SIZE)
+ size = HPAGE_SIZE;
+ prot = pkey_last_malloc_record->prot;
+
+ /* Use pkey 0 */
+ mprotect_pkey(ptr, size, prot, 0);
+
+ /* Make sure that we can set it back to the original pkey. */
+ mprotect_pkey(ptr, size, prot, pkey);
+}
+
+void test_ptrace_of_child(int *ptr, u16 pkey)
+{
+ __attribute__((__unused__)) int peek_result;
+ pid_t child_pid;
+ void *ignored = 0;
+ long ret;
+ int status;
+ /*
+ * This is the "control" for our little expermient. Make sure
+ * we can always access it when ptracing.
+ */
+ int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
+ int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
+
+ /*
+ * Fork a child which is an exact copy of this process, of course.
+ * That means we can do all of our tests via ptrace() and then plain
+ * memory access and ensure they work differently.
+ */
+ child_pid = fork_lazy_child();
+ dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
+
+ ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
+ if (ret)
+ perror("attach");
+ dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
+ pkey_assert(ret != -1);
+ ret = waitpid(child_pid, &status, WUNTRACED);
+ if ((ret != child_pid) || !(WIFSTOPPED(status))) {
+ fprintf(stderr, "weird waitpid result %ld stat %x\n",
+ ret, status);
+ pkey_assert(0);
+ }
+ dprintf2("waitpid ret: %ld\n", ret);
+ dprintf2("waitpid status: %d\n", status);
+
+ pkey_access_deny(pkey);
+ pkey_write_deny(pkey);
+
+ /* Write access, untested for now:
+ ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
+ pkey_assert(ret != -1);
+ dprintf1("poke at %p: %ld\n", peek_at, ret);
+ */
+
+ /*
+ * Try to access the pkey-protected "ptr" via ptrace:
+ */
+ ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
+ /* expect it to work, without an error: */
+ pkey_assert(ret != -1);
+ /* Now access from the current task, and expect an exception: */
+ peek_result = read_ptr(ptr);
+ expected_pkey_fault(pkey);
+
+ /*
+ * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
+ */
+ ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
+ /* expect it to work, without an error: */
+ pkey_assert(ret != -1);
+ /* Now access from the current task, and expect NO exception: */
+ peek_result = read_ptr(plain_ptr);
+ do_not_expect_pkey_fault("read plain pointer after ptrace");
+
+ ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
+ pkey_assert(ret != -1);
+
+ ret = kill(child_pid, SIGKILL);
+ pkey_assert(ret != -1);
+
+ wait(&status);
+
+ free(plain_ptr_unaligned);
+}
+
+void *get_pointer_to_instructions(void)
+{
+ void *p1;
+
+ p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
+ dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
+ /* lots_o_noops_around_write should be page-aligned already */
+ assert(p1 == &lots_o_noops_around_write);
+
+ /* Point 'p1' at the *second* page of the function: */
+ p1 += PAGE_SIZE;
+
+ /*
+ * Try to ensure we fault this in on next touch to ensure
+ * we get an instruction fault as opposed to a data one
+ */
+ madvise(p1, PAGE_SIZE, MADV_DONTNEED);
+
+ return p1;
+}
+
+void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
+{
+ void *p1;
+ int scratch;
+ int ptr_contents;
+ int ret;
+
+ p1 = get_pointer_to_instructions();
+ lots_o_noops_around_write(&scratch);
+ ptr_contents = read_ptr(p1);
+ dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
+
+ ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
+ pkey_assert(!ret);
+ pkey_access_deny(pkey);
+
+ dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
+
+ /*
+ * Make sure this is an *instruction* fault
+ */
+ madvise(p1, PAGE_SIZE, MADV_DONTNEED);
+ lots_o_noops_around_write(&scratch);
+ do_not_expect_pkey_fault("executing on PROT_EXEC memory");
+ expect_fault_on_read_execonly_key(p1, pkey);
+}
+
+void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
+{
+ void *p1;
+ int scratch;
+ int ptr_contents;
+ int ret;
+
+ dprintf1("%s() start\n", __func__);
+
+ p1 = get_pointer_to_instructions();
+ lots_o_noops_around_write(&scratch);
+ ptr_contents = read_ptr(p1);
+ dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
+
+ /* Use a *normal* mprotect(), not mprotect_pkey(): */
+ ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
+ pkey_assert(!ret);
+
+ /*
+ * Reset the shadow, assuming that the above mprotect()
+ * correctly changed PKRU, but to an unknown value since
+ * the actual allocated pkey is unknown.
+ */
+ shadow_pkey_reg = __read_pkey_reg();
+
+ dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
+
+ /* Make sure this is an *instruction* fault */
+ madvise(p1, PAGE_SIZE, MADV_DONTNEED);
+ lots_o_noops_around_write(&scratch);
+ do_not_expect_pkey_fault("executing on PROT_EXEC memory");
+ expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
+
+ /*
+ * Put the memory back to non-PROT_EXEC. Should clear the
+ * exec-only pkey off the VMA and allow it to be readable
+ * again. Go to PROT_NONE first to check for a kernel bug
+ * that did not clear the pkey when doing PROT_NONE.
+ */
+ ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
+ pkey_assert(!ret);
+
+ ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
+ pkey_assert(!ret);
+ ptr_contents = read_ptr(p1);
+ do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
+}
+
+#if defined(__i386__) || defined(__x86_64__)
+void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
+{
+ u32 new_pkru;
+ pid_t child;
+ int status, ret;
+ int pkey_offset = pkey_reg_xstate_offset();
+ size_t xsave_size = cpu_max_xsave_size();
+ void *xsave;
+ u32 *pkey_register;
+ u64 *xstate_bv;
+ struct iovec iov;
+
+ new_pkru = ~read_pkey_reg();
+ /* Don't make PROT_EXEC mappings inaccessible */
+ new_pkru &= ~3;
+
+ child = fork();
+ pkey_assert(child >= 0);
+ dprintf3("[%d] fork() ret: %d\n", getpid(), child);
+ if (!child) {
+ ptrace(PTRACE_TRACEME, 0, 0, 0);
+ /* Stop and allow the tracer to modify PKRU directly */
+ raise(SIGSTOP);
+
+ /*
+ * need __read_pkey_reg() version so we do not do shadow_pkey_reg
+ * checking
+ */
+ if (__read_pkey_reg() != new_pkru)
+ exit(1);
+
+ /* Stop and allow the tracer to clear XSTATE_BV for PKRU */
+ raise(SIGSTOP);
+
+ if (__read_pkey_reg() != 0)
+ exit(1);
+
+ /* Stop and allow the tracer to examine PKRU */
+ raise(SIGSTOP);
+
+ exit(0);
+ }
+
+ pkey_assert(child == waitpid(child, &status, 0));
+ dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
+ pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
+
+ xsave = (void *)malloc(xsave_size);
+ pkey_assert(xsave > 0);
+
+ /* Modify the PKRU register directly */
+ iov.iov_base = xsave;
+ iov.iov_len = xsave_size;
+ ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
+ pkey_assert(ret == 0);
+
+ pkey_register = (u32 *)(xsave + pkey_offset);
+ pkey_assert(*pkey_register == read_pkey_reg());
+
+ *pkey_register = new_pkru;
+
+ ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
+ pkey_assert(ret == 0);
+
+ /* Test that the modification is visible in ptrace before any execution */
+ memset(xsave, 0xCC, xsave_size);
+ ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
+ pkey_assert(ret == 0);
+ pkey_assert(*pkey_register == new_pkru);
+
+ /* Execute the tracee */
+ ret = ptrace(PTRACE_CONT, child, 0, 0);
+ pkey_assert(ret == 0);
+
+ /* Test that the tracee saw the PKRU value change */
+ pkey_assert(child == waitpid(child, &status, 0));
+ dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
+ pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
+
+ /* Test that the modification is visible in ptrace after execution */
+ memset(xsave, 0xCC, xsave_size);
+ ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
+ pkey_assert(ret == 0);
+ pkey_assert(*pkey_register == new_pkru);
+
+ /* Clear the PKRU bit from XSTATE_BV */
+ xstate_bv = (u64 *)(xsave + 512);
+ *xstate_bv &= ~(1 << 9);
+
+ ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
+ pkey_assert(ret == 0);
+
+ /* Test that the modification is visible in ptrace before any execution */
+ memset(xsave, 0xCC, xsave_size);
+ ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
+ pkey_assert(ret == 0);
+ pkey_assert(*pkey_register == 0);
+
+ ret = ptrace(PTRACE_CONT, child, 0, 0);
+ pkey_assert(ret == 0);
+
+ /* Test that the tracee saw the PKRU value go to 0 */
+ pkey_assert(child == waitpid(child, &status, 0));
+ dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
+ pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
+
+ /* Test that the modification is visible in ptrace after execution */
+ memset(xsave, 0xCC, xsave_size);
+ ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
+ pkey_assert(ret == 0);
+ pkey_assert(*pkey_register == 0);
+
+ ret = ptrace(PTRACE_CONT, child, 0, 0);
+ pkey_assert(ret == 0);
+ pkey_assert(child == waitpid(child, &status, 0));
+ dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
+ pkey_assert(WIFEXITED(status));
+ pkey_assert(WEXITSTATUS(status) == 0);
+ free(xsave);
+}
+#endif
+
+void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
+{
+ int size = PAGE_SIZE;
+ int sret;
+
+ if (cpu_has_pkeys()) {
+ dprintf1("SKIP: %s: no CPU support\n", __func__);
+ return;
+ }
+
+ sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
+ pkey_assert(sret < 0);
+}
+
+void (*pkey_tests[])(int *ptr, u16 pkey) = {
+ test_read_of_write_disabled_region,
+ test_read_of_access_disabled_region,
+ test_read_of_access_disabled_region_with_page_already_mapped,
+ test_write_of_write_disabled_region,
+ test_write_of_write_disabled_region_with_page_already_mapped,
+ test_write_of_access_disabled_region,
+ test_write_of_access_disabled_region_with_page_already_mapped,
+ test_kernel_write_of_access_disabled_region,
+ test_kernel_write_of_write_disabled_region,
+ test_kernel_gup_of_access_disabled_region,
+ test_kernel_gup_write_to_write_disabled_region,
+ test_executing_on_unreadable_memory,
+ test_implicit_mprotect_exec_only_memory,
+ test_mprotect_with_pkey_0,
+ test_ptrace_of_child,
+ test_pkey_init_state,
+ test_pkey_syscalls_on_non_allocated_pkey,
+ test_pkey_syscalls_bad_args,
+ test_pkey_alloc_exhaust,
+ test_pkey_alloc_free_attach_pkey0,
+#if defined(__i386__) || defined(__x86_64__)
+ test_ptrace_modifies_pkru,
+#endif
+};
+
+void run_tests_once(void)
+{
+ int *ptr;
+ int prot = PROT_READ|PROT_WRITE;
+
+ for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
+ int pkey;
+ int orig_pkey_faults = pkey_faults;
+
+ dprintf1("======================\n");
+ dprintf1("test %d preparing...\n", test_nr);
+
+ tracing_on();
+ pkey = alloc_random_pkey();
+ dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
+ ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
+ dprintf1("test %d starting...\n", test_nr);
+ pkey_tests[test_nr](ptr, pkey);
+ dprintf1("freeing test memory: %p\n", ptr);
+ free_pkey_malloc(ptr);
+ sys_pkey_free(pkey);
+
+ dprintf1("pkey_faults: %d\n", pkey_faults);
+ dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
+
+ tracing_off();
+ close_test_fds();
+
+ printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
+ dprintf1("======================\n\n");
+ }
+ iteration_nr++;
+}
+
+void pkey_setup_shadow(void)
+{
+ shadow_pkey_reg = __read_pkey_reg();
+}
+
+int main(void)
+{
+ int nr_iterations = 22;
+ int pkeys_supported = is_pkeys_supported();
+
+ srand((unsigned int)time(NULL));
+
+ setup_handlers();
+
+ printf("has pkeys: %d\n", pkeys_supported);
+
+ if (!pkeys_supported) {
+ int size = PAGE_SIZE;
+ int *ptr;
+
+ printf("running PKEY tests for unsupported CPU/OS\n");
+
+ ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
+ assert(ptr != (void *)-1);
+ test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
+ exit(0);
+ }
+
+ pkey_setup_shadow();
+ printf("startup pkey_reg: %016llx\n", read_pkey_reg());
+ setup_hugetlbfs();
+
+ while (nr_iterations-- > 0)
+ run_tests_once();
+
+ printf("done (all tests OK)\n");
+ return 0;
+}