1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
.. SPDX-License-Identifier: GPL-2.0
============
Rmnet Driver
============
1. Introduction
===============
rmnet driver is used for supporting the Multiplexing and aggregation
Protocol (MAP). This protocol is used by all recent chipsets using Qualcomm
Technologies, Inc. modems.
This driver can be used to register onto any physical network device in
IP mode. Physical transports include USB, HSIC, PCIe and IP accelerator.
Multiplexing allows for creation of logical netdevices (rmnet devices) to
handle multiple private data networks (PDN) like a default internet, tethering,
multimedia messaging service (MMS) or IP media subsystem (IMS). Hardware sends
packets with MAP headers to rmnet. Based on the multiplexer id, rmnet
routes to the appropriate PDN after removing the MAP header.
Aggregation is required to achieve high data rates. This involves hardware
sending aggregated bunch of MAP frames. rmnet driver will de-aggregate
these MAP frames and send them to appropriate PDN's.
2. Packet format
================
a. MAP packet v1 (data / control)
MAP header fields are in big endian format.
Packet format::
Bit 0 1 2-7 8-15 16-31
Function Command / Data Reserved Pad Multiplexer ID Payload length
Bit 32-x
Function Raw bytes
Command (1)/ Data (0) bit value is to indicate if the packet is a MAP command
or data packet. Command packet is used for transport level flow control. Data
packets are standard IP packets.
Reserved bits must be zero when sent and ignored when received.
Padding is the number of bytes to be appended to the payload to
ensure 4 byte alignment.
Multiplexer ID is to indicate the PDN on which data has to be sent.
Payload length includes the padding length but does not include MAP header
length.
b. Map packet v4 (data / control)
MAP header fields are in big endian format.
Packet format::
Bit 0 1 2-7 8-15 16-31
Function Command / Data Reserved Pad Multiplexer ID Payload length
Bit 32-(x-33) (x-32)-x
Function Raw bytes Checksum offload header
Command (1)/ Data (0) bit value is to indicate if the packet is a MAP command
or data packet. Command packet is used for transport level flow control. Data
packets are standard IP packets.
Reserved bits must be zero when sent and ignored when received.
Padding is the number of bytes to be appended to the payload to
ensure 4 byte alignment.
Multiplexer ID is to indicate the PDN on which data has to be sent.
Payload length includes the padding length but does not include MAP header
length.
Checksum offload header, has the information about the checksum processing done
by the hardware.Checksum offload header fields are in big endian format.
Packet format::
Bit 0-14 15 16-31
Function Reserved Valid Checksum start offset
Bit 31-47 48-64
Function Checksum length Checksum value
Reserved bits must be zero when sent and ignored when received.
Valid bit indicates whether the partial checksum is calculated and is valid.
Set to 1, if its is valid. Set to 0 otherwise.
Padding is the number of bytes to be appended to the payload to
ensure 4 byte alignment.
Checksum start offset, Indicates the offset in bytes from the beginning of the
IP header, from which modem computed checksum.
Checksum length is the Length in bytes starting from CKSUM_START_OFFSET,
over which checksum is computed.
Checksum value, indicates the checksum computed.
c. MAP packet v5 (data / control)
MAP header fields are in big endian format.
Packet format::
Bit 0 1 2-7 8-15 16-31
Function Command / Data Next header Pad Multiplexer ID Payload length
Bit 32-x
Function Raw bytes
Command (1)/ Data (0) bit value is to indicate if the packet is a MAP command
or data packet. Command packet is used for transport level flow control. Data
packets are standard IP packets.
Next header is used to indicate the presence of another header, currently is
limited to checksum header.
Padding is the number of bytes to be appended to the payload to
ensure 4 byte alignment.
Multiplexer ID is to indicate the PDN on which data has to be sent.
Payload length includes the padding length but does not include MAP header
length.
d. Checksum offload header v5
Checksum offload header fields are in big endian format.
Bit 0 - 6 7 8-15 16-31
Function Header Type Next Header Checksum Valid Reserved
Header Type is to indicate the type of header, this usually is set to CHECKSUM
Header types
= ==========================================
0 Reserved
1 Reserved
2 checksum header
Checksum Valid is to indicate whether the header checksum is valid. Value of 1
implies that checksum is calculated on this packet and is valid, value of 0
indicates that the calculated packet checksum is invalid.
Reserved bits must be zero when sent and ignored when received.
e. MAP packet v1/v5 (command specific)::
Bit 0 1 2-7 8 - 15 16 - 31
Function Command Reserved Pad Multiplexer ID Payload length
Bit 32 - 39 40 - 45 46 - 47 48 - 63
Function Command name Reserved Command Type Reserved
Bit 64 - 95
Function Transaction ID
Bit 96 - 127
Function Command data
Command 1 indicates disabling flow while 2 is enabling flow
Command types
= ==========================================
0 for MAP command request
1 is to acknowledge the receipt of a command
2 is for unsupported commands
3 is for error during processing of commands
= ==========================================
f. Aggregation
Aggregation is multiple MAP packets (can be data or command) delivered to
rmnet in a single linear skb. rmnet will process the individual
packets and either ACK the MAP command or deliver the IP packet to the
network stack as needed
MAP header|IP Packet|Optional padding|MAP header|IP Packet|Optional padding....
MAP header|IP Packet|Optional padding|MAP header|Command Packet|Optional pad...
3. Userspace configuration
==========================
rmnet userspace configuration is done through netlink library librmnetctl
and command line utility rmnetcli. Utility is hosted in codeaurora forum git.
The driver uses rtnl_link_ops for communication.
https://source.codeaurora.org/quic/la/platform/vendor/qcom-opensource/dataservices/tree/rmnetctl
|