1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2018 Intel Corporation. */
#include <linux/if_ether.h>
#include <linux/delay.h>
#include "e1000_mac.h"
#include "e1000_nvm.h"
/**
* igb_raise_eec_clk - Raise EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Enable/Raise the EEPROM clock bit.
**/
static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
*eecd = *eecd | E1000_EECD_SK;
wr32(E1000_EECD, *eecd);
wrfl();
udelay(hw->nvm.delay_usec);
}
/**
* igb_lower_eec_clk - Lower EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Clear/Lower the EEPROM clock bit.
**/
static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
*eecd = *eecd & ~E1000_EECD_SK;
wr32(E1000_EECD, *eecd);
wrfl();
udelay(hw->nvm.delay_usec);
}
/**
* igb_shift_out_eec_bits - Shift data bits our to the EEPROM
* @hw: pointer to the HW structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
*
* We need to shift 'count' bits out to the EEPROM. So, the value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
**/
static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = rd32(E1000_EECD);
u32 mask;
mask = 1u << (count - 1);
if (nvm->type == e1000_nvm_eeprom_spi)
eecd |= E1000_EECD_DO;
do {
eecd &= ~E1000_EECD_DI;
if (data & mask)
eecd |= E1000_EECD_DI;
wr32(E1000_EECD, eecd);
wrfl();
udelay(nvm->delay_usec);
igb_raise_eec_clk(hw, &eecd);
igb_lower_eec_clk(hw, &eecd);
mask >>= 1;
} while (mask);
eecd &= ~E1000_EECD_DI;
wr32(E1000_EECD, eecd);
}
/**
* igb_shift_in_eec_bits - Shift data bits in from the EEPROM
* @hw: pointer to the HW structure
* @count: number of bits to shift in
*
* In order to read a register from the EEPROM, we need to shift 'count' bits
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
* the EEPROM (setting the SK bit), and then reading the value of the data out
* "DO" bit. During this "shifting in" process the data in "DI" bit should
* always be clear.
**/
static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
{
u32 eecd;
u32 i;
u16 data;
eecd = rd32(E1000_EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for (i = 0; i < count; i++) {
data <<= 1;
igb_raise_eec_clk(hw, &eecd);
eecd = rd32(E1000_EECD);
eecd &= ~E1000_EECD_DI;
if (eecd & E1000_EECD_DO)
data |= 1;
igb_lower_eec_clk(hw, &eecd);
}
return data;
}
/**
* igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
* @hw: pointer to the HW structure
* @ee_reg: EEPROM flag for polling
*
* Polls the EEPROM status bit for either read or write completion based
* upon the value of 'ee_reg'.
**/
static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
u32 attempts = 100000;
u32 i, reg = 0;
s32 ret_val = -E1000_ERR_NVM;
for (i = 0; i < attempts; i++) {
if (ee_reg == E1000_NVM_POLL_READ)
reg = rd32(E1000_EERD);
else
reg = rd32(E1000_EEWR);
if (reg & E1000_NVM_RW_REG_DONE) {
ret_val = 0;
break;
}
udelay(5);
}
return ret_val;
}
/**
* igb_acquire_nvm - Generic request for access to EEPROM
* @hw: pointer to the HW structure
*
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -E1000_ERR_NVM (-1).
**/
s32 igb_acquire_nvm(struct e1000_hw *hw)
{
u32 eecd = rd32(E1000_EECD);
s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
s32 ret_val = 0;
wr32(E1000_EECD, eecd | E1000_EECD_REQ);
eecd = rd32(E1000_EECD);
while (timeout) {
if (eecd & E1000_EECD_GNT)
break;
udelay(5);
eecd = rd32(E1000_EECD);
timeout--;
}
if (!timeout) {
eecd &= ~E1000_EECD_REQ;
wr32(E1000_EECD, eecd);
hw_dbg("Could not acquire NVM grant\n");
ret_val = -E1000_ERR_NVM;
}
return ret_val;
}
/**
* igb_standby_nvm - Return EEPROM to standby state
* @hw: pointer to the HW structure
*
* Return the EEPROM to a standby state.
**/
static void igb_standby_nvm(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = rd32(E1000_EECD);
if (nvm->type == e1000_nvm_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
wr32(E1000_EECD, eecd);
wrfl();
udelay(nvm->delay_usec);
eecd &= ~E1000_EECD_CS;
wr32(E1000_EECD, eecd);
wrfl();
udelay(nvm->delay_usec);
}
}
/**
* e1000_stop_nvm - Terminate EEPROM command
* @hw: pointer to the HW structure
*
* Terminates the current command by inverting the EEPROM's chip select pin.
**/
static void e1000_stop_nvm(struct e1000_hw *hw)
{
u32 eecd;
eecd = rd32(E1000_EECD);
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
/* Pull CS high */
eecd |= E1000_EECD_CS;
igb_lower_eec_clk(hw, &eecd);
}
}
/**
* igb_release_nvm - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
**/
void igb_release_nvm(struct e1000_hw *hw)
{
u32 eecd;
e1000_stop_nvm(hw);
eecd = rd32(E1000_EECD);
eecd &= ~E1000_EECD_REQ;
wr32(E1000_EECD, eecd);
}
/**
* igb_ready_nvm_eeprom - Prepares EEPROM for read/write
* @hw: pointer to the HW structure
*
* Setups the EEPROM for reading and writing.
**/
static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = rd32(E1000_EECD);
s32 ret_val = 0;
u16 timeout = 0;
u8 spi_stat_reg;
if (nvm->type == e1000_nvm_eeprom_spi) {
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
wr32(E1000_EECD, eecd);
wrfl();
udelay(1);
timeout = NVM_MAX_RETRY_SPI;
/* Read "Status Register" repeatedly until the LSB is cleared.
* The EEPROM will signal that the command has been completed
* by clearing bit 0 of the internal status register. If it's
* not cleared within 'timeout', then error out.
*/
while (timeout) {
igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
hw->nvm.opcode_bits);
spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
break;
udelay(5);
igb_standby_nvm(hw);
timeout--;
}
if (!timeout) {
hw_dbg("SPI NVM Status error\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
}
out:
return ret_val;
}
/**
* igb_read_nvm_spi - Read EEPROM's using SPI
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM.
**/
s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i = 0;
s32 ret_val;
u16 word_in;
u8 read_opcode = NVM_READ_OPCODE_SPI;
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
hw_dbg("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
goto out;
ret_val = igb_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
igb_standby_nvm(hw);
if ((nvm->address_bits == 8) && (offset >= 128))
read_opcode |= NVM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
/* Read the data. SPI NVMs increment the address with each byte
* read and will roll over if reading beyond the end. This allows
* us to read the whole NVM from any offset
*/
for (i = 0; i < words; i++) {
word_in = igb_shift_in_eec_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
release:
nvm->ops.release(hw);
out:
return ret_val;
}
/**
* igb_read_nvm_eerd - Reads EEPROM using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
**/
s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i, eerd = 0;
s32 ret_val = 0;
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
hw_dbg("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
for (i = 0; i < words; i++) {
eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
E1000_NVM_RW_REG_START;
wr32(E1000_EERD, eerd);
ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
if (ret_val)
break;
data[i] = (rd32(E1000_EERD) >>
E1000_NVM_RW_REG_DATA);
}
out:
return ret_val;
}
/**
* igb_write_nvm_spi - Write to EEPROM using SPI
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* Writes data to EEPROM at offset using SPI interface.
*
* If e1000_update_nvm_checksum is not called after this function , the
* EEPROM will most likley contain an invalid checksum.
**/
s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val = -E1000_ERR_NVM;
u16 widx = 0;
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
hw_dbg("nvm parameter(s) out of bounds\n");
return ret_val;
}
while (widx < words) {
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
ret_val = nvm->ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igb_ready_nvm_eeprom(hw);
if (ret_val) {
nvm->ops.release(hw);
return ret_val;
}
igb_standby_nvm(hw);
/* Send the WRITE ENABLE command (8 bit opcode) */
igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
nvm->opcode_bits);
igb_standby_nvm(hw);
/* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((nvm->address_bits == 8) && (offset >= 128))
write_opcode |= NVM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
nvm->address_bits);
/* Loop to allow for up to whole page write of eeprom */
while (widx < words) {
u16 word_out = data[widx];
word_out = (word_out >> 8) | (word_out << 8);
igb_shift_out_eec_bits(hw, word_out, 16);
widx++;
if ((((offset + widx) * 2) % nvm->page_size) == 0) {
igb_standby_nvm(hw);
break;
}
}
usleep_range(1000, 2000);
nvm->ops.release(hw);
}
return ret_val;
}
/**
* igb_read_part_string - Read device part number
* @hw: pointer to the HW structure
* @part_num: pointer to device part number
* @part_num_size: size of part number buffer
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in part_num.
**/
s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
{
s32 ret_val;
u16 nvm_data;
u16 pointer;
u16 offset;
u16 length;
if (part_num == NULL) {
hw_dbg("PBA string buffer was null\n");
ret_val = E1000_ERR_INVALID_ARGUMENT;
goto out;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
/* if nvm_data is not ptr guard the PBA must be in legacy format which
* means pointer is actually our second data word for the PBA number
* and we can decode it into an ascii string
*/
if (nvm_data != NVM_PBA_PTR_GUARD) {
hw_dbg("NVM PBA number is not stored as string\n");
/* we will need 11 characters to store the PBA */
if (part_num_size < 11) {
hw_dbg("PBA string buffer too small\n");
return E1000_ERR_NO_SPACE;
}
/* extract hex string from data and pointer */
part_num[0] = (nvm_data >> 12) & 0xF;
part_num[1] = (nvm_data >> 8) & 0xF;
part_num[2] = (nvm_data >> 4) & 0xF;
part_num[3] = nvm_data & 0xF;
part_num[4] = (pointer >> 12) & 0xF;
part_num[5] = (pointer >> 8) & 0xF;
part_num[6] = '-';
part_num[7] = 0;
part_num[8] = (pointer >> 4) & 0xF;
part_num[9] = pointer & 0xF;
/* put a null character on the end of our string */
part_num[10] = '\0';
/* switch all the data but the '-' to hex char */
for (offset = 0; offset < 10; offset++) {
if (part_num[offset] < 0xA)
part_num[offset] += '0';
else if (part_num[offset] < 0x10)
part_num[offset] += 'A' - 0xA;
}
goto out;
}
ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
if (length == 0xFFFF || length == 0) {
hw_dbg("NVM PBA number section invalid length\n");
ret_val = E1000_ERR_NVM_PBA_SECTION;
goto out;
}
/* check if part_num buffer is big enough */
if (part_num_size < (((u32)length * 2) - 1)) {
hw_dbg("PBA string buffer too small\n");
ret_val = E1000_ERR_NO_SPACE;
goto out;
}
/* trim pba length from start of string */
pointer++;
length--;
for (offset = 0; offset < length; offset++) {
ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
part_num[offset * 2] = (u8)(nvm_data >> 8);
part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
}
part_num[offset * 2] = '\0';
out:
return ret_val;
}
/**
* igb_read_mac_addr - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the EEPROM and stores the value.
* Since devices with two ports use the same EEPROM, we increment the
* last bit in the MAC address for the second port.
**/
s32 igb_read_mac_addr(struct e1000_hw *hw)
{
u32 rar_high;
u32 rar_low;
u16 i;
rar_high = rd32(E1000_RAH(0));
rar_low = rd32(E1000_RAL(0));
for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
for (i = 0; i < ETH_ALEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
return 0;
}
/**
* igb_validate_nvm_checksum - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
**/
s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 checksum = 0;
u16 i, nvm_data;
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error\n");
goto out;
}
checksum += nvm_data;
}
if (checksum != (u16) NVM_SUM) {
hw_dbg("NVM Checksum Invalid\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
out:
return ret_val;
}
/**
* igb_update_nvm_checksum - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
**/
s32 igb_update_nvm_checksum(struct e1000_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
hw_dbg("NVM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (u16) NVM_SUM - checksum;
ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
if (ret_val)
hw_dbg("NVM Write Error while updating checksum.\n");
out:
return ret_val;
}
/**
* igb_get_fw_version - Get firmware version information
* @hw: pointer to the HW structure
* @fw_vers: pointer to output structure
*
* unsupported MAC types will return all 0 version structure
**/
void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
{
u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
u8 q, hval, rem, result;
u16 comb_verh, comb_verl, comb_offset;
memset(fw_vers, 0, sizeof(struct e1000_fw_version));
/* basic eeprom version numbers and bits used vary by part and by tool
* used to create the nvm images. Check which data format we have.
*/
hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
switch (hw->mac.type) {
case e1000_i211:
igb_read_invm_version(hw, fw_vers);
return;
case e1000_82575:
case e1000_82576:
case e1000_82580:
/* Use this format, unless EETRACK ID exists,
* then use alternate format
*/
if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
>> NVM_MAJOR_SHIFT;
fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
>> NVM_MINOR_SHIFT;
fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
goto etrack_id;
}
break;
case e1000_i210:
if (!(igb_get_flash_presence_i210(hw))) {
igb_read_invm_version(hw, fw_vers);
return;
}
fallthrough;
case e1000_i350:
/* find combo image version */
hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
if ((comb_offset != 0x0) &&
(comb_offset != NVM_VER_INVALID)) {
hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
+ 1), 1, &comb_verh);
hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1, &comb_verl);
/* get Option Rom version if it exists and is valid */
if ((comb_verh && comb_verl) &&
((comb_verh != NVM_VER_INVALID) &&
(comb_verl != NVM_VER_INVALID))) {
fw_vers->or_valid = true;
fw_vers->or_major =
comb_verl >> NVM_COMB_VER_SHFT;
fw_vers->or_build =
(comb_verl << NVM_COMB_VER_SHFT)
| (comb_verh >> NVM_COMB_VER_SHFT);
fw_vers->or_patch =
comb_verh & NVM_COMB_VER_MASK;
}
}
break;
default:
return;
}
hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
>> NVM_MAJOR_SHIFT;
/* check for old style version format in newer images*/
if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
} else {
eeprom_verl = (fw_version & NVM_MINOR_MASK)
>> NVM_MINOR_SHIFT;
}
/* Convert minor value to hex before assigning to output struct
* Val to be converted will not be higher than 99, per tool output
*/
q = eeprom_verl / NVM_HEX_CONV;
hval = q * NVM_HEX_TENS;
rem = eeprom_verl % NVM_HEX_CONV;
result = hval + rem;
fw_vers->eep_minor = result;
etrack_id:
if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
| eeprom_verl;
}
}
|