summaryrefslogtreecommitdiffstats
path: root/spa/plugins/audioconvert/benchmark-fmt-ops.c
blob: 2a0d4e80b0f5f1168d8152b8390561389d55281f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/* Spa
 *
 * Copyright © 2019 Wim Taymans
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "config.h"

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>

#include "test-helper.h"
#include "fmt-ops.h"

static uint32_t cpu_flags;

typedef void (*convert_func_t) (struct convert *conv, void * SPA_RESTRICT dst[],
		const void * SPA_RESTRICT src[], uint32_t n_samples);

struct stats {
	uint32_t n_samples;
	uint32_t n_channels;
	uint64_t perf;
	const char *name;
	const char *impl;
};

#define MAX_SAMPLES	4096
#define MAX_CHANNELS	11

#define MAX_COUNT 100

static uint8_t samp_in[MAX_SAMPLES * MAX_CHANNELS * 4];
static uint8_t samp_out[MAX_SAMPLES * MAX_CHANNELS * 4];

static const int sample_sizes[] = { 0, 1, 128, 513, 4096 };
static const int channel_counts[] = { 1, 2, 4, 6, 8, 11 };

#define MAX_RESULTS	SPA_N_ELEMENTS(sample_sizes) * SPA_N_ELEMENTS(channel_counts) * 70

static uint32_t n_results = 0;
static struct stats results[MAX_RESULTS];

static void run_test1(const char *name, const char *impl, bool in_packed, bool out_packed,
		convert_func_t func, int n_channels, int n_samples)
{
	int i, j;
	const void *ip[n_channels];
	void *op[n_channels];
	struct timespec ts;
	uint64_t count, t1, t2;
	struct convert conv;

	conv.n_channels = n_channels;

	for (j = 0; j < n_channels; j++) {
		ip[j] = &samp_in[j * n_samples * 4];
		op[j] = &samp_out[j * n_samples * 4];
	}

	clock_gettime(CLOCK_MONOTONIC, &ts);
	t1 = SPA_TIMESPEC_TO_NSEC(&ts);

	count = 0;
	for (i = 0; i < MAX_COUNT; i++) {
		func(&conv, op, ip, n_samples);
		count++;
	}
	clock_gettime(CLOCK_MONOTONIC, &ts);
	t2 = SPA_TIMESPEC_TO_NSEC(&ts);

	spa_assert(n_results < MAX_RESULTS);

	results[n_results++] = (struct stats) {
		.n_samples = n_samples,
		.n_channels = n_channels,
		.perf = count * (uint64_t)SPA_NSEC_PER_SEC / (t2 - t1),
		.name = name,
		.impl = impl
	};
}

static void run_testc(const char *name, const char *impl, bool in_packed, bool out_packed, convert_func_t func,
		int channel_count)
{
	SPA_FOR_EACH_ELEMENT_VAR(sample_sizes, s) {
		run_test1(name, impl, in_packed, out_packed, func, channel_count,
				(*s + (channel_count -1)) / channel_count);
	}
}

static void run_test(const char *name, const char *impl, bool in_packed, bool out_packed, convert_func_t func)
{
	SPA_FOR_EACH_ELEMENT_VAR(sample_sizes, s) {
		SPA_FOR_EACH_ELEMENT_VAR(channel_counts, c) {
			run_test1(name, impl, in_packed, out_packed, func, *c, (*s + (*c -1)) / *c);
		}
	}
}

static void test_f32_u8(void)
{
	run_test("test_f32_u8", "c", true, true, conv_f32_to_u8_c);
	run_test("test_f32d_u8", "c", false, true, conv_f32d_to_u8_c);
	run_test("test_f32_u8d", "c", true, false, conv_f32_to_u8d_c);
	run_test("test_f32d_u8d", "c", false, false, conv_f32d_to_u8d_c);
}

static void test_u8_f32(void)
{
	run_test("test_u8_f32", "c", true, true, conv_u8_to_f32_c);
	run_test("test_u8d_f32", "c", false, true, conv_u8d_to_f32_c);
	run_test("test_u8_f32d", "c", true, false, conv_u8_to_f32d_c);
	run_test("test_u8d_f32d", "c", false, false, conv_u8d_to_f32d_c);
}

static void test_f32_s16(void)
{
	run_test("test_f32_s16", "c", true, true, conv_f32_to_s16_c);
	run_test("test_f32d_s16", "c", false, true, conv_f32d_to_s16_c);
#if defined (HAVE_SSE2)
	if (cpu_flags & SPA_CPU_FLAG_SSE2) {
		run_test("test_f32d_s16", "sse2", false, true, conv_f32d_to_s16_sse2);
		run_testc("test_f32d_s16_2", "sse2", false, true, conv_f32d_to_s16_2_sse2, 2);
	}
#endif
#if defined (HAVE_AVX2)
	if (cpu_flags & SPA_CPU_FLAG_AVX2) {
		run_test("test_f32d_s16", "avx2", false, true, conv_f32d_to_s16_avx2);
		run_testc("test_f32d_s16_2", "avx2", false, true, conv_f32d_to_s16_2_avx2, 2);
		run_testc("test_f32d_s16_4", "avx2", false, true, conv_f32d_to_s16_4_avx2, 4);
	}
#endif
	run_test("test_f32_s16d", "c", true, false, conv_f32_to_s16d_c);
	run_test("test_f32d_s16d", "c", false, false, conv_f32d_to_s16d_c);
}

static void test_s16_f32(void)
{
	run_test("test_s16_f32", "c", true, true, conv_s16_to_f32_c);
	run_test("test_s16d_f32", "c", false, true, conv_s16d_to_f32_c);
	run_test("test_s16_f32d", "c", true, false, conv_s16_to_f32d_c);
#if defined (HAVE_SSE2)
	if (cpu_flags & SPA_CPU_FLAG_SSE2) {
		run_test("test_s16_f32d", "sse2", true, false, conv_s16_to_f32d_sse2);
		run_testc("test_s16_f32d_2", "sse2", true, false, conv_s16_to_f32d_2_sse2, 2);
	}
#endif
#if defined (HAVE_AVX2)
	if (cpu_flags & SPA_CPU_FLAG_AVX2) {
		run_test("test_s16_f32d", "avx2", true, false, conv_s16_to_f32d_avx2);
		run_testc("test_s16_f32d_2", "avx2", true, false, conv_s16_to_f32d_2_avx2, 2);
	}
#endif
	run_test("test_s16d_f32d", "c", false, false, conv_s16d_to_f32d_c);
}

static void test_f32_s32(void)
{
	run_test("test_f32_s32", "c", true, true, conv_f32_to_s32_c);
	run_test("test_f32d_s32", "c", false, true, conv_f32d_to_s32_c);
#if defined (HAVE_SSE2)
	if (cpu_flags & SPA_CPU_FLAG_SSE2) {
		run_test("test_f32d_s32", "sse2", false, true, conv_f32d_to_s32_sse2);
	}
#endif
#if defined (HAVE_AVX2)
	if (cpu_flags & SPA_CPU_FLAG_AVX2) {
		run_test("test_f32d_s32", "avx2", false, true, conv_f32d_to_s32_avx2);
	}
#endif
	run_test("test_f32_s32d", "c", true, false, conv_f32_to_s32d_c);
	run_test("test_f32d_s32d", "c", false, false, conv_f32d_to_s32d_c);
}

static void test_s32_f32(void)
{
	run_test("test_s32_f32", "c", true, true, conv_s32_to_f32_c);
	run_test("test_s32d_f32", "c", false, true, conv_s32d_to_f32_c);
#if defined (HAVE_SSE2)
	if (cpu_flags & SPA_CPU_FLAG_SSE2) {
		run_test("test_s32_f32d", "sse2", true, false, conv_s32_to_f32d_sse2);
	}
#endif
#if defined (HAVE_AVX2)
	if (cpu_flags & SPA_CPU_FLAG_AVX2) {
		run_test("test_s32_f32d", "avx2", true, false, conv_s32_to_f32d_avx2);
	}
#endif
	run_test("test_s32_f32d", "c", true, false, conv_s32_to_f32d_c);
	run_test("test_s32d_f32d", "c", false, false, conv_s32d_to_f32d_c);
}

static void test_f32_s24(void)
{
	run_test("test_f32_s24", "c", true, true, conv_f32_to_s24_c);
	run_test("test_f32d_s24", "c", false, true, conv_f32d_to_s24_c);
	run_test("test_f32_s24d", "c", true, false, conv_f32_to_s24d_c);
	run_test("test_f32d_s24d", "c", false, false, conv_f32d_to_s24d_c);
}

static void test_s24_f32(void)
{
	run_test("test_s24_f32", "c", true, true, conv_s24_to_f32_c);
	run_test("test_s24d_f32", "c", false, true, conv_s24d_to_f32_c);
	run_test("test_s24_f32d", "c", true, false, conv_s24_to_f32d_c);
#if defined (HAVE_SSE2)
	if (cpu_flags & SPA_CPU_FLAG_SSE2) {
		run_test("test_s24_f32d", "sse2", true, false, conv_s24_to_f32d_sse2);
	}
#endif
#if defined (HAVE_AVX2)
	if (cpu_flags & SPA_CPU_FLAG_AVX2) {
		run_test("test_s24_f32d", "avx2", true, false, conv_s24_to_f32d_avx2);
	}
#endif
#if defined (HAVE_SSSE3)
	if (cpu_flags & SPA_CPU_FLAG_SSSE3) {
		run_test("test_s24_f32d", "ssse3", true, false, conv_s24_to_f32d_ssse3);
	}
#endif
#if defined (HAVE_SSE41)
	if (cpu_flags & SPA_CPU_FLAG_SSE41) {
		run_test("test_s24_f32d", "sse41", true, false, conv_s24_to_f32d_sse41);
	}
#endif
	run_test("test_s24d_f32d", "c", false, false, conv_s24d_to_f32d_c);
}

static void test_f32_s24_32(void)
{
	run_test("test_f32_s24_32", "c", true, true, conv_f32_to_s24_32_c);
	run_test("test_f32d_s24_32", "c", false, true, conv_f32d_to_s24_32_c);
	run_test("test_f32_s24_32d", "c", true, false, conv_f32_to_s24_32d_c);
	run_test("test_f32d_s24_32d", "c", false, false, conv_f32d_to_s24_32d_c);
}

static void test_s24_32_f32(void)
{
	run_test("test_s24_32_f32", "c", true, true, conv_s24_32_to_f32_c);
	run_test("test_s24_32d_f32", "c", false, true, conv_s24_32d_to_f32_c);
	run_test("test_s24_32_f32d", "c", true, false, conv_s24_32_to_f32d_c);
	run_test("test_s24_32d_f32d", "c", false, false, conv_s24_32d_to_f32d_c);
}

static void test_interleave(void)
{
	run_test("test_8d_to_8", "c", false, true, conv_8d_to_8_c);
	run_test("test_16d_to_16", "c", false, true, conv_16d_to_16_c);
	run_test("test_24d_to_24", "c", false, true, conv_24d_to_24_c);
	run_test("test_32d_to_32", "c", false, true, conv_32d_to_32_c);
}

static void test_deinterleave(void)
{
	run_test("test_8_to_8d", "c", true, false, conv_8_to_8d_c);
	run_test("test_16_to_16d", "c", true, false, conv_16_to_16d_c);
	run_test("test_24_to_24d", "c", true, false, conv_24_to_24d_c);
	run_test("test_32_to_32d", "c", true, false, conv_32_to_32d_c);
}

static int compare_func(const void *_a, const void *_b)
{
	const struct stats *a = _a, *b = _b;
	int diff;
	if ((diff = strcmp(a->name, b->name)) != 0) return diff;
	if ((diff = a->n_samples - b->n_samples) != 0) return diff;
	if ((diff = a->n_channels - b->n_channels) != 0) return diff;
	if ((diff = b->perf - a->perf) != 0) return diff;
	return 0;
}

int main(int argc, char *argv[])
{
	uint32_t i;

	cpu_flags = get_cpu_flags();
	printf("got get CPU flags %d\n", cpu_flags);

	test_f32_u8();
	test_u8_f32();
	test_f32_s16();
	test_s16_f32();
	test_f32_s32();
	test_s32_f32();
	test_f32_s24();
	test_s24_f32();
	test_f32_s24_32();
	test_s24_32_f32();
	test_interleave();
	test_deinterleave();

	qsort(results, n_results, sizeof(struct stats), compare_func);

	for (i = 0; i < n_results; i++) {
		struct stats *s = &results[i];
		fprintf(stderr, "%-12."PRIu64" \t%-32.32s %s \t samples %d, channels %d\n",
				s->perf, s->name, s->impl, s->n_samples, s->n_channels);
	}
	return 0;
}