diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
commit | 6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /gfx/angle/checkout/src/common/matrix_utils.h | |
parent | Initial commit. (diff) | |
download | thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/angle/checkout/src/common/matrix_utils.h')
-rw-r--r-- | gfx/angle/checkout/src/common/matrix_utils.h | 424 |
1 files changed, 424 insertions, 0 deletions
diff --git a/gfx/angle/checkout/src/common/matrix_utils.h b/gfx/angle/checkout/src/common/matrix_utils.h new file mode 100644 index 0000000000..7cca7a9461 --- /dev/null +++ b/gfx/angle/checkout/src/common/matrix_utils.h @@ -0,0 +1,424 @@ +// +// Copyright 2015 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// +// Matrix: +// Utility class implementing various matrix operations. +// Supports matrices with minimum 2 and maximum 4 number of rows/columns. +// +// TODO: Check if we can merge Matrix.h in sample_util with this and replace it with this +// implementation. +// TODO: Rename this file to Matrix.h once we remove Matrix.h in sample_util. + +#ifndef COMMON_MATRIX_UTILS_H_ +#define COMMON_MATRIX_UTILS_H_ + +#include <vector> + +#include "common/debug.h" +#include "common/mathutil.h" +#include "common/vector_utils.h" + +namespace angle +{ + +template <typename T> +class Matrix +{ + public: + Matrix(const std::vector<T> &elements, const unsigned int numRows, const unsigned int numCols) + : mElements(elements), mRows(numRows), mCols(numCols) + { + ASSERT(rows() >= 1 && rows() <= 4); + ASSERT(columns() >= 1 && columns() <= 4); + } + + Matrix(const std::vector<T> &elements, const unsigned int size) + : mElements(elements), mRows(size), mCols(size) + { + ASSERT(rows() >= 1 && rows() <= 4); + ASSERT(columns() >= 1 && columns() <= 4); + } + + Matrix(const T *elements, const unsigned int size) : mRows(size), mCols(size) + { + ASSERT(rows() >= 1 && rows() <= 4); + ASSERT(columns() >= 1 && columns() <= 4); + for (size_t i = 0; i < size * size; i++) + mElements.push_back(elements[i]); + } + + const T &operator()(const unsigned int rowIndex, const unsigned int columnIndex) const + { + ASSERT(rowIndex < mRows); + ASSERT(columnIndex < mCols); + return mElements[rowIndex * columns() + columnIndex]; + } + + T &operator()(const unsigned int rowIndex, const unsigned int columnIndex) + { + ASSERT(rowIndex < mRows); + ASSERT(columnIndex < mCols); + return mElements[rowIndex * columns() + columnIndex]; + } + + const T &at(const unsigned int rowIndex, const unsigned int columnIndex) const + { + ASSERT(rowIndex < mRows); + ASSERT(columnIndex < mCols); + return operator()(rowIndex, columnIndex); + } + + Matrix<T> operator*(const Matrix<T> &m) + { + ASSERT(columns() == m.rows()); + + unsigned int resultRows = rows(); + unsigned int resultCols = m.columns(); + Matrix<T> result(std::vector<T>(resultRows * resultCols), resultRows, resultCols); + for (unsigned int i = 0; i < resultRows; i++) + { + for (unsigned int j = 0; j < resultCols; j++) + { + T tmp = 0.0f; + for (unsigned int k = 0; k < columns(); k++) + tmp += at(i, k) * m(k, j); + result(i, j) = tmp; + } + } + + return result; + } + + void operator*=(const Matrix<T> &m) + { + ASSERT(columns() == m.rows()); + Matrix<T> res = (*this) * m; + size_t numElts = res.elements().size(); + mElements.resize(numElts); + memcpy(mElements.data(), res.data(), numElts * sizeof(float)); + } + + bool operator==(const Matrix<T> &m) const + { + ASSERT(columns() == m.columns()); + ASSERT(rows() == m.rows()); + return mElements == m.elements(); + } + + bool operator!=(const Matrix<T> &m) const { return !(mElements == m.elements()); } + + bool nearlyEqual(T epsilon, const Matrix<T> &m) const + { + ASSERT(columns() == m.columns()); + ASSERT(rows() == m.rows()); + const auto &otherElts = m.elements(); + for (size_t i = 0; i < otherElts.size(); i++) + { + if ((mElements[i] - otherElts[i] > epsilon) && (otherElts[i] - mElements[i] > epsilon)) + return false; + } + return true; + } + + unsigned int size() const + { + ASSERT(rows() == columns()); + return rows(); + } + + unsigned int rows() const { return mRows; } + + unsigned int columns() const { return mCols; } + + std::vector<T> elements() const { return mElements; } + T *data() { return mElements.data(); } + const T *constData() const { return mElements.data(); } + + Matrix<T> compMult(const Matrix<T> &mat1) const + { + Matrix result(std::vector<T>(mElements.size()), rows(), columns()); + for (unsigned int i = 0; i < rows(); i++) + { + for (unsigned int j = 0; j < columns(); j++) + { + T lhs = at(i, j); + T rhs = mat1(i, j); + result(i, j) = rhs * lhs; + } + } + + return result; + } + + Matrix<T> outerProduct(const Matrix<T> &mat1) const + { + unsigned int cols = mat1.columns(); + Matrix result(std::vector<T>(rows() * cols), rows(), cols); + for (unsigned int i = 0; i < rows(); i++) + for (unsigned int j = 0; j < cols; j++) + result(i, j) = at(i, 0) * mat1(0, j); + + return result; + } + + Matrix<T> transpose() const + { + Matrix result(std::vector<T>(mElements.size()), columns(), rows()); + for (unsigned int i = 0; i < columns(); i++) + for (unsigned int j = 0; j < rows(); j++) + result(i, j) = at(j, i); + + return result; + } + + T determinant() const + { + ASSERT(rows() == columns()); + + switch (size()) + { + case 2: + return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0); + + case 3: + return at(0, 0) * at(1, 1) * at(2, 2) + at(0, 1) * at(1, 2) * at(2, 0) + + at(0, 2) * at(1, 0) * at(2, 1) - at(0, 2) * at(1, 1) * at(2, 0) - + at(0, 1) * at(1, 0) * at(2, 2) - at(0, 0) * at(1, 2) * at(2, 1); + + case 4: + { + const float minorMatrices[4][3 * 3] = {{ + at(1, 1), + at(2, 1), + at(3, 1), + at(1, 2), + at(2, 2), + at(3, 2), + at(1, 3), + at(2, 3), + at(3, 3), + }, + { + at(1, 0), + at(2, 0), + at(3, 0), + at(1, 2), + at(2, 2), + at(3, 2), + at(1, 3), + at(2, 3), + at(3, 3), + }, + { + at(1, 0), + at(2, 0), + at(3, 0), + at(1, 1), + at(2, 1), + at(3, 1), + at(1, 3), + at(2, 3), + at(3, 3), + }, + { + at(1, 0), + at(2, 0), + at(3, 0), + at(1, 1), + at(2, 1), + at(3, 1), + at(1, 2), + at(2, 2), + at(3, 2), + }}; + return at(0, 0) * Matrix<T>(minorMatrices[0], 3).determinant() - + at(0, 1) * Matrix<T>(minorMatrices[1], 3).determinant() + + at(0, 2) * Matrix<T>(minorMatrices[2], 3).determinant() - + at(0, 3) * Matrix<T>(minorMatrices[3], 3).determinant(); + } + + default: + UNREACHABLE(); + break; + } + + return T(); + } + + Matrix<T> inverse() const + { + ASSERT(rows() == columns()); + + Matrix<T> cof(std::vector<T>(mElements.size()), rows(), columns()); + switch (size()) + { + case 2: + cof(0, 0) = at(1, 1); + cof(0, 1) = -at(1, 0); + cof(1, 0) = -at(0, 1); + cof(1, 1) = at(0, 0); + break; + + case 3: + cof(0, 0) = at(1, 1) * at(2, 2) - at(2, 1) * at(1, 2); + cof(0, 1) = -(at(1, 0) * at(2, 2) - at(2, 0) * at(1, 2)); + cof(0, 2) = at(1, 0) * at(2, 1) - at(2, 0) * at(1, 1); + cof(1, 0) = -(at(0, 1) * at(2, 2) - at(2, 1) * at(0, 2)); + cof(1, 1) = at(0, 0) * at(2, 2) - at(2, 0) * at(0, 2); + cof(1, 2) = -(at(0, 0) * at(2, 1) - at(2, 0) * at(0, 1)); + cof(2, 0) = at(0, 1) * at(1, 2) - at(1, 1) * at(0, 2); + cof(2, 1) = -(at(0, 0) * at(1, 2) - at(1, 0) * at(0, 2)); + cof(2, 2) = at(0, 0) * at(1, 1) - at(1, 0) * at(0, 1); + break; + + case 4: + cof(0, 0) = at(1, 1) * at(2, 2) * at(3, 3) + at(2, 1) * at(3, 2) * at(1, 3) + + at(3, 1) * at(1, 2) * at(2, 3) - at(1, 1) * at(3, 2) * at(2, 3) - + at(2, 1) * at(1, 2) * at(3, 3) - at(3, 1) * at(2, 2) * at(1, 3); + cof(0, 1) = -(at(1, 0) * at(2, 2) * at(3, 3) + at(2, 0) * at(3, 2) * at(1, 3) + + at(3, 0) * at(1, 2) * at(2, 3) - at(1, 0) * at(3, 2) * at(2, 3) - + at(2, 0) * at(1, 2) * at(3, 3) - at(3, 0) * at(2, 2) * at(1, 3)); + cof(0, 2) = at(1, 0) * at(2, 1) * at(3, 3) + at(2, 0) * at(3, 1) * at(1, 3) + + at(3, 0) * at(1, 1) * at(2, 3) - at(1, 0) * at(3, 1) * at(2, 3) - + at(2, 0) * at(1, 1) * at(3, 3) - at(3, 0) * at(2, 1) * at(1, 3); + cof(0, 3) = -(at(1, 0) * at(2, 1) * at(3, 2) + at(2, 0) * at(3, 1) * at(1, 2) + + at(3, 0) * at(1, 1) * at(2, 2) - at(1, 0) * at(3, 1) * at(2, 2) - + at(2, 0) * at(1, 1) * at(3, 2) - at(3, 0) * at(2, 1) * at(1, 2)); + cof(1, 0) = -(at(0, 1) * at(2, 2) * at(3, 3) + at(2, 1) * at(3, 2) * at(0, 3) + + at(3, 1) * at(0, 2) * at(2, 3) - at(0, 1) * at(3, 2) * at(2, 3) - + at(2, 1) * at(0, 2) * at(3, 3) - at(3, 1) * at(2, 2) * at(0, 3)); + cof(1, 1) = at(0, 0) * at(2, 2) * at(3, 3) + at(2, 0) * at(3, 2) * at(0, 3) + + at(3, 0) * at(0, 2) * at(2, 3) - at(0, 0) * at(3, 2) * at(2, 3) - + at(2, 0) * at(0, 2) * at(3, 3) - at(3, 0) * at(2, 2) * at(0, 3); + cof(1, 2) = -(at(0, 0) * at(2, 1) * at(3, 3) + at(2, 0) * at(3, 1) * at(0, 3) + + at(3, 0) * at(0, 1) * at(2, 3) - at(0, 0) * at(3, 1) * at(2, 3) - + at(2, 0) * at(0, 1) * at(3, 3) - at(3, 0) * at(2, 1) * at(0, 3)); + cof(1, 3) = at(0, 0) * at(2, 1) * at(3, 2) + at(2, 0) * at(3, 1) * at(0, 2) + + at(3, 0) * at(0, 1) * at(2, 2) - at(0, 0) * at(3, 1) * at(2, 2) - + at(2, 0) * at(0, 1) * at(3, 2) - at(3, 0) * at(2, 1) * at(0, 2); + cof(2, 0) = at(0, 1) * at(1, 2) * at(3, 3) + at(1, 1) * at(3, 2) * at(0, 3) + + at(3, 1) * at(0, 2) * at(1, 3) - at(0, 1) * at(3, 2) * at(1, 3) - + at(1, 1) * at(0, 2) * at(3, 3) - at(3, 1) * at(1, 2) * at(0, 3); + cof(2, 1) = -(at(0, 0) * at(1, 2) * at(3, 3) + at(1, 0) * at(3, 2) * at(0, 3) + + at(3, 0) * at(0, 2) * at(1, 3) - at(0, 0) * at(3, 2) * at(1, 3) - + at(1, 0) * at(0, 2) * at(3, 3) - at(3, 0) * at(1, 2) * at(0, 3)); + cof(2, 2) = at(0, 0) * at(1, 1) * at(3, 3) + at(1, 0) * at(3, 1) * at(0, 3) + + at(3, 0) * at(0, 1) * at(1, 3) - at(0, 0) * at(3, 1) * at(1, 3) - + at(1, 0) * at(0, 1) * at(3, 3) - at(3, 0) * at(1, 1) * at(0, 3); + cof(2, 3) = -(at(0, 0) * at(1, 1) * at(3, 2) + at(1, 0) * at(3, 1) * at(0, 2) + + at(3, 0) * at(0, 1) * at(1, 2) - at(0, 0) * at(3, 1) * at(1, 2) - + at(1, 0) * at(0, 1) * at(3, 2) - at(3, 0) * at(1, 1) * at(0, 2)); + cof(3, 0) = -(at(0, 1) * at(1, 2) * at(2, 3) + at(1, 1) * at(2, 2) * at(0, 3) + + at(2, 1) * at(0, 2) * at(1, 3) - at(0, 1) * at(2, 2) * at(1, 3) - + at(1, 1) * at(0, 2) * at(2, 3) - at(2, 1) * at(1, 2) * at(0, 3)); + cof(3, 1) = at(0, 0) * at(1, 2) * at(2, 3) + at(1, 0) * at(2, 2) * at(0, 3) + + at(2, 0) * at(0, 2) * at(1, 3) - at(0, 0) * at(2, 2) * at(1, 3) - + at(1, 0) * at(0, 2) * at(2, 3) - at(2, 0) * at(1, 2) * at(0, 3); + cof(3, 2) = -(at(0, 0) * at(1, 1) * at(2, 3) + at(1, 0) * at(2, 1) * at(0, 3) + + at(2, 0) * at(0, 1) * at(1, 3) - at(0, 0) * at(2, 1) * at(1, 3) - + at(1, 0) * at(0, 1) * at(2, 3) - at(2, 0) * at(1, 1) * at(0, 3)); + cof(3, 3) = at(0, 0) * at(1, 1) * at(2, 2) + at(1, 0) * at(2, 1) * at(0, 2) + + at(2, 0) * at(0, 1) * at(1, 2) - at(0, 0) * at(2, 1) * at(1, 2) - + at(1, 0) * at(0, 1) * at(2, 2) - at(2, 0) * at(1, 1) * at(0, 2); + break; + + default: + UNREACHABLE(); + break; + } + + // The inverse of A is the transpose of the cofactor matrix times the reciprocal of the + // determinant of A. + Matrix<T> adjugateMatrix(cof.transpose()); + T det = determinant(); + Matrix<T> result(std::vector<T>(mElements.size()), rows(), columns()); + for (unsigned int i = 0; i < rows(); i++) + for (unsigned int j = 0; j < columns(); j++) + result(i, j) = (det != static_cast<T>(0)) ? adjugateMatrix(i, j) / det : T(); + + return result; + } + + void setToIdentity() + { + ASSERT(rows() == columns()); + + const auto one = T(1); + const auto zero = T(0); + + for (auto &e : mElements) + e = zero; + + for (unsigned int i = 0; i < rows(); ++i) + { + const auto pos = i * columns() + (i % columns()); + mElements[pos] = one; + } + } + + template <unsigned int Size> + static void setToIdentity(T (&matrix)[Size]) + { + static_assert(gl::iSquareRoot<Size>() != 0, "Matrix is not square."); + + const auto cols = gl::iSquareRoot<Size>(); + const auto one = T(1); + const auto zero = T(0); + + for (auto &e : matrix) + e = zero; + + for (unsigned int i = 0; i < cols; ++i) + { + const auto pos = i * cols + (i % cols); + matrix[pos] = one; + } + } + + protected: + std::vector<T> mElements; + unsigned int mRows; + unsigned int mCols; +}; + +class Mat4 : public Matrix<float> +{ + public: + Mat4(); + Mat4(const Matrix<float> generalMatrix); + Mat4(const std::vector<float> &elements); + Mat4(const float *elements); + Mat4(float m00, + float m01, + float m02, + float m03, + float m10, + float m11, + float m12, + float m13, + float m20, + float m21, + float m22, + float m23, + float m30, + float m31, + float m32, + float m33); + + static Mat4 Rotate(float angle, const Vector3 &axis); + static Mat4 Translate(const Vector3 &t); + static Mat4 Scale(const Vector3 &s); + static Mat4 Frustum(float l, float r, float b, float t, float n, float f); + static Mat4 Perspective(float fov, float aspectRatio, float n, float f); + static Mat4 Ortho(float l, float r, float b, float t, float n, float f); + + Mat4 product(const Mat4 &m); + Vector4 product(const Vector4 &b); + void dump(); +}; + +} // namespace angle + +#endif // COMMON_MATRIX_UTILS_H_ |