summaryrefslogtreecommitdiffstats
path: root/gfx/angle/checkout/src/common/matrix_utils.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /gfx/angle/checkout/src/common/matrix_utils.h
parentInitial commit. (diff)
downloadthunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz
thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/angle/checkout/src/common/matrix_utils.h')
-rw-r--r--gfx/angle/checkout/src/common/matrix_utils.h424
1 files changed, 424 insertions, 0 deletions
diff --git a/gfx/angle/checkout/src/common/matrix_utils.h b/gfx/angle/checkout/src/common/matrix_utils.h
new file mode 100644
index 0000000000..7cca7a9461
--- /dev/null
+++ b/gfx/angle/checkout/src/common/matrix_utils.h
@@ -0,0 +1,424 @@
+//
+// Copyright 2015 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+// Matrix:
+// Utility class implementing various matrix operations.
+// Supports matrices with minimum 2 and maximum 4 number of rows/columns.
+//
+// TODO: Check if we can merge Matrix.h in sample_util with this and replace it with this
+// implementation.
+// TODO: Rename this file to Matrix.h once we remove Matrix.h in sample_util.
+
+#ifndef COMMON_MATRIX_UTILS_H_
+#define COMMON_MATRIX_UTILS_H_
+
+#include <vector>
+
+#include "common/debug.h"
+#include "common/mathutil.h"
+#include "common/vector_utils.h"
+
+namespace angle
+{
+
+template <typename T>
+class Matrix
+{
+ public:
+ Matrix(const std::vector<T> &elements, const unsigned int numRows, const unsigned int numCols)
+ : mElements(elements), mRows(numRows), mCols(numCols)
+ {
+ ASSERT(rows() >= 1 && rows() <= 4);
+ ASSERT(columns() >= 1 && columns() <= 4);
+ }
+
+ Matrix(const std::vector<T> &elements, const unsigned int size)
+ : mElements(elements), mRows(size), mCols(size)
+ {
+ ASSERT(rows() >= 1 && rows() <= 4);
+ ASSERT(columns() >= 1 && columns() <= 4);
+ }
+
+ Matrix(const T *elements, const unsigned int size) : mRows(size), mCols(size)
+ {
+ ASSERT(rows() >= 1 && rows() <= 4);
+ ASSERT(columns() >= 1 && columns() <= 4);
+ for (size_t i = 0; i < size * size; i++)
+ mElements.push_back(elements[i]);
+ }
+
+ const T &operator()(const unsigned int rowIndex, const unsigned int columnIndex) const
+ {
+ ASSERT(rowIndex < mRows);
+ ASSERT(columnIndex < mCols);
+ return mElements[rowIndex * columns() + columnIndex];
+ }
+
+ T &operator()(const unsigned int rowIndex, const unsigned int columnIndex)
+ {
+ ASSERT(rowIndex < mRows);
+ ASSERT(columnIndex < mCols);
+ return mElements[rowIndex * columns() + columnIndex];
+ }
+
+ const T &at(const unsigned int rowIndex, const unsigned int columnIndex) const
+ {
+ ASSERT(rowIndex < mRows);
+ ASSERT(columnIndex < mCols);
+ return operator()(rowIndex, columnIndex);
+ }
+
+ Matrix<T> operator*(const Matrix<T> &m)
+ {
+ ASSERT(columns() == m.rows());
+
+ unsigned int resultRows = rows();
+ unsigned int resultCols = m.columns();
+ Matrix<T> result(std::vector<T>(resultRows * resultCols), resultRows, resultCols);
+ for (unsigned int i = 0; i < resultRows; i++)
+ {
+ for (unsigned int j = 0; j < resultCols; j++)
+ {
+ T tmp = 0.0f;
+ for (unsigned int k = 0; k < columns(); k++)
+ tmp += at(i, k) * m(k, j);
+ result(i, j) = tmp;
+ }
+ }
+
+ return result;
+ }
+
+ void operator*=(const Matrix<T> &m)
+ {
+ ASSERT(columns() == m.rows());
+ Matrix<T> res = (*this) * m;
+ size_t numElts = res.elements().size();
+ mElements.resize(numElts);
+ memcpy(mElements.data(), res.data(), numElts * sizeof(float));
+ }
+
+ bool operator==(const Matrix<T> &m) const
+ {
+ ASSERT(columns() == m.columns());
+ ASSERT(rows() == m.rows());
+ return mElements == m.elements();
+ }
+
+ bool operator!=(const Matrix<T> &m) const { return !(mElements == m.elements()); }
+
+ bool nearlyEqual(T epsilon, const Matrix<T> &m) const
+ {
+ ASSERT(columns() == m.columns());
+ ASSERT(rows() == m.rows());
+ const auto &otherElts = m.elements();
+ for (size_t i = 0; i < otherElts.size(); i++)
+ {
+ if ((mElements[i] - otherElts[i] > epsilon) && (otherElts[i] - mElements[i] > epsilon))
+ return false;
+ }
+ return true;
+ }
+
+ unsigned int size() const
+ {
+ ASSERT(rows() == columns());
+ return rows();
+ }
+
+ unsigned int rows() const { return mRows; }
+
+ unsigned int columns() const { return mCols; }
+
+ std::vector<T> elements() const { return mElements; }
+ T *data() { return mElements.data(); }
+ const T *constData() const { return mElements.data(); }
+
+ Matrix<T> compMult(const Matrix<T> &mat1) const
+ {
+ Matrix result(std::vector<T>(mElements.size()), rows(), columns());
+ for (unsigned int i = 0; i < rows(); i++)
+ {
+ for (unsigned int j = 0; j < columns(); j++)
+ {
+ T lhs = at(i, j);
+ T rhs = mat1(i, j);
+ result(i, j) = rhs * lhs;
+ }
+ }
+
+ return result;
+ }
+
+ Matrix<T> outerProduct(const Matrix<T> &mat1) const
+ {
+ unsigned int cols = mat1.columns();
+ Matrix result(std::vector<T>(rows() * cols), rows(), cols);
+ for (unsigned int i = 0; i < rows(); i++)
+ for (unsigned int j = 0; j < cols; j++)
+ result(i, j) = at(i, 0) * mat1(0, j);
+
+ return result;
+ }
+
+ Matrix<T> transpose() const
+ {
+ Matrix result(std::vector<T>(mElements.size()), columns(), rows());
+ for (unsigned int i = 0; i < columns(); i++)
+ for (unsigned int j = 0; j < rows(); j++)
+ result(i, j) = at(j, i);
+
+ return result;
+ }
+
+ T determinant() const
+ {
+ ASSERT(rows() == columns());
+
+ switch (size())
+ {
+ case 2:
+ return at(0, 0) * at(1, 1) - at(0, 1) * at(1, 0);
+
+ case 3:
+ return at(0, 0) * at(1, 1) * at(2, 2) + at(0, 1) * at(1, 2) * at(2, 0) +
+ at(0, 2) * at(1, 0) * at(2, 1) - at(0, 2) * at(1, 1) * at(2, 0) -
+ at(0, 1) * at(1, 0) * at(2, 2) - at(0, 0) * at(1, 2) * at(2, 1);
+
+ case 4:
+ {
+ const float minorMatrices[4][3 * 3] = {{
+ at(1, 1),
+ at(2, 1),
+ at(3, 1),
+ at(1, 2),
+ at(2, 2),
+ at(3, 2),
+ at(1, 3),
+ at(2, 3),
+ at(3, 3),
+ },
+ {
+ at(1, 0),
+ at(2, 0),
+ at(3, 0),
+ at(1, 2),
+ at(2, 2),
+ at(3, 2),
+ at(1, 3),
+ at(2, 3),
+ at(3, 3),
+ },
+ {
+ at(1, 0),
+ at(2, 0),
+ at(3, 0),
+ at(1, 1),
+ at(2, 1),
+ at(3, 1),
+ at(1, 3),
+ at(2, 3),
+ at(3, 3),
+ },
+ {
+ at(1, 0),
+ at(2, 0),
+ at(3, 0),
+ at(1, 1),
+ at(2, 1),
+ at(3, 1),
+ at(1, 2),
+ at(2, 2),
+ at(3, 2),
+ }};
+ return at(0, 0) * Matrix<T>(minorMatrices[0], 3).determinant() -
+ at(0, 1) * Matrix<T>(minorMatrices[1], 3).determinant() +
+ at(0, 2) * Matrix<T>(minorMatrices[2], 3).determinant() -
+ at(0, 3) * Matrix<T>(minorMatrices[3], 3).determinant();
+ }
+
+ default:
+ UNREACHABLE();
+ break;
+ }
+
+ return T();
+ }
+
+ Matrix<T> inverse() const
+ {
+ ASSERT(rows() == columns());
+
+ Matrix<T> cof(std::vector<T>(mElements.size()), rows(), columns());
+ switch (size())
+ {
+ case 2:
+ cof(0, 0) = at(1, 1);
+ cof(0, 1) = -at(1, 0);
+ cof(1, 0) = -at(0, 1);
+ cof(1, 1) = at(0, 0);
+ break;
+
+ case 3:
+ cof(0, 0) = at(1, 1) * at(2, 2) - at(2, 1) * at(1, 2);
+ cof(0, 1) = -(at(1, 0) * at(2, 2) - at(2, 0) * at(1, 2));
+ cof(0, 2) = at(1, 0) * at(2, 1) - at(2, 0) * at(1, 1);
+ cof(1, 0) = -(at(0, 1) * at(2, 2) - at(2, 1) * at(0, 2));
+ cof(1, 1) = at(0, 0) * at(2, 2) - at(2, 0) * at(0, 2);
+ cof(1, 2) = -(at(0, 0) * at(2, 1) - at(2, 0) * at(0, 1));
+ cof(2, 0) = at(0, 1) * at(1, 2) - at(1, 1) * at(0, 2);
+ cof(2, 1) = -(at(0, 0) * at(1, 2) - at(1, 0) * at(0, 2));
+ cof(2, 2) = at(0, 0) * at(1, 1) - at(1, 0) * at(0, 1);
+ break;
+
+ case 4:
+ cof(0, 0) = at(1, 1) * at(2, 2) * at(3, 3) + at(2, 1) * at(3, 2) * at(1, 3) +
+ at(3, 1) * at(1, 2) * at(2, 3) - at(1, 1) * at(3, 2) * at(2, 3) -
+ at(2, 1) * at(1, 2) * at(3, 3) - at(3, 1) * at(2, 2) * at(1, 3);
+ cof(0, 1) = -(at(1, 0) * at(2, 2) * at(3, 3) + at(2, 0) * at(3, 2) * at(1, 3) +
+ at(3, 0) * at(1, 2) * at(2, 3) - at(1, 0) * at(3, 2) * at(2, 3) -
+ at(2, 0) * at(1, 2) * at(3, 3) - at(3, 0) * at(2, 2) * at(1, 3));
+ cof(0, 2) = at(1, 0) * at(2, 1) * at(3, 3) + at(2, 0) * at(3, 1) * at(1, 3) +
+ at(3, 0) * at(1, 1) * at(2, 3) - at(1, 0) * at(3, 1) * at(2, 3) -
+ at(2, 0) * at(1, 1) * at(3, 3) - at(3, 0) * at(2, 1) * at(1, 3);
+ cof(0, 3) = -(at(1, 0) * at(2, 1) * at(3, 2) + at(2, 0) * at(3, 1) * at(1, 2) +
+ at(3, 0) * at(1, 1) * at(2, 2) - at(1, 0) * at(3, 1) * at(2, 2) -
+ at(2, 0) * at(1, 1) * at(3, 2) - at(3, 0) * at(2, 1) * at(1, 2));
+ cof(1, 0) = -(at(0, 1) * at(2, 2) * at(3, 3) + at(2, 1) * at(3, 2) * at(0, 3) +
+ at(3, 1) * at(0, 2) * at(2, 3) - at(0, 1) * at(3, 2) * at(2, 3) -
+ at(2, 1) * at(0, 2) * at(3, 3) - at(3, 1) * at(2, 2) * at(0, 3));
+ cof(1, 1) = at(0, 0) * at(2, 2) * at(3, 3) + at(2, 0) * at(3, 2) * at(0, 3) +
+ at(3, 0) * at(0, 2) * at(2, 3) - at(0, 0) * at(3, 2) * at(2, 3) -
+ at(2, 0) * at(0, 2) * at(3, 3) - at(3, 0) * at(2, 2) * at(0, 3);
+ cof(1, 2) = -(at(0, 0) * at(2, 1) * at(3, 3) + at(2, 0) * at(3, 1) * at(0, 3) +
+ at(3, 0) * at(0, 1) * at(2, 3) - at(0, 0) * at(3, 1) * at(2, 3) -
+ at(2, 0) * at(0, 1) * at(3, 3) - at(3, 0) * at(2, 1) * at(0, 3));
+ cof(1, 3) = at(0, 0) * at(2, 1) * at(3, 2) + at(2, 0) * at(3, 1) * at(0, 2) +
+ at(3, 0) * at(0, 1) * at(2, 2) - at(0, 0) * at(3, 1) * at(2, 2) -
+ at(2, 0) * at(0, 1) * at(3, 2) - at(3, 0) * at(2, 1) * at(0, 2);
+ cof(2, 0) = at(0, 1) * at(1, 2) * at(3, 3) + at(1, 1) * at(3, 2) * at(0, 3) +
+ at(3, 1) * at(0, 2) * at(1, 3) - at(0, 1) * at(3, 2) * at(1, 3) -
+ at(1, 1) * at(0, 2) * at(3, 3) - at(3, 1) * at(1, 2) * at(0, 3);
+ cof(2, 1) = -(at(0, 0) * at(1, 2) * at(3, 3) + at(1, 0) * at(3, 2) * at(0, 3) +
+ at(3, 0) * at(0, 2) * at(1, 3) - at(0, 0) * at(3, 2) * at(1, 3) -
+ at(1, 0) * at(0, 2) * at(3, 3) - at(3, 0) * at(1, 2) * at(0, 3));
+ cof(2, 2) = at(0, 0) * at(1, 1) * at(3, 3) + at(1, 0) * at(3, 1) * at(0, 3) +
+ at(3, 0) * at(0, 1) * at(1, 3) - at(0, 0) * at(3, 1) * at(1, 3) -
+ at(1, 0) * at(0, 1) * at(3, 3) - at(3, 0) * at(1, 1) * at(0, 3);
+ cof(2, 3) = -(at(0, 0) * at(1, 1) * at(3, 2) + at(1, 0) * at(3, 1) * at(0, 2) +
+ at(3, 0) * at(0, 1) * at(1, 2) - at(0, 0) * at(3, 1) * at(1, 2) -
+ at(1, 0) * at(0, 1) * at(3, 2) - at(3, 0) * at(1, 1) * at(0, 2));
+ cof(3, 0) = -(at(0, 1) * at(1, 2) * at(2, 3) + at(1, 1) * at(2, 2) * at(0, 3) +
+ at(2, 1) * at(0, 2) * at(1, 3) - at(0, 1) * at(2, 2) * at(1, 3) -
+ at(1, 1) * at(0, 2) * at(2, 3) - at(2, 1) * at(1, 2) * at(0, 3));
+ cof(3, 1) = at(0, 0) * at(1, 2) * at(2, 3) + at(1, 0) * at(2, 2) * at(0, 3) +
+ at(2, 0) * at(0, 2) * at(1, 3) - at(0, 0) * at(2, 2) * at(1, 3) -
+ at(1, 0) * at(0, 2) * at(2, 3) - at(2, 0) * at(1, 2) * at(0, 3);
+ cof(3, 2) = -(at(0, 0) * at(1, 1) * at(2, 3) + at(1, 0) * at(2, 1) * at(0, 3) +
+ at(2, 0) * at(0, 1) * at(1, 3) - at(0, 0) * at(2, 1) * at(1, 3) -
+ at(1, 0) * at(0, 1) * at(2, 3) - at(2, 0) * at(1, 1) * at(0, 3));
+ cof(3, 3) = at(0, 0) * at(1, 1) * at(2, 2) + at(1, 0) * at(2, 1) * at(0, 2) +
+ at(2, 0) * at(0, 1) * at(1, 2) - at(0, 0) * at(2, 1) * at(1, 2) -
+ at(1, 0) * at(0, 1) * at(2, 2) - at(2, 0) * at(1, 1) * at(0, 2);
+ break;
+
+ default:
+ UNREACHABLE();
+ break;
+ }
+
+ // The inverse of A is the transpose of the cofactor matrix times the reciprocal of the
+ // determinant of A.
+ Matrix<T> adjugateMatrix(cof.transpose());
+ T det = determinant();
+ Matrix<T> result(std::vector<T>(mElements.size()), rows(), columns());
+ for (unsigned int i = 0; i < rows(); i++)
+ for (unsigned int j = 0; j < columns(); j++)
+ result(i, j) = (det != static_cast<T>(0)) ? adjugateMatrix(i, j) / det : T();
+
+ return result;
+ }
+
+ void setToIdentity()
+ {
+ ASSERT(rows() == columns());
+
+ const auto one = T(1);
+ const auto zero = T(0);
+
+ for (auto &e : mElements)
+ e = zero;
+
+ for (unsigned int i = 0; i < rows(); ++i)
+ {
+ const auto pos = i * columns() + (i % columns());
+ mElements[pos] = one;
+ }
+ }
+
+ template <unsigned int Size>
+ static void setToIdentity(T (&matrix)[Size])
+ {
+ static_assert(gl::iSquareRoot<Size>() != 0, "Matrix is not square.");
+
+ const auto cols = gl::iSquareRoot<Size>();
+ const auto one = T(1);
+ const auto zero = T(0);
+
+ for (auto &e : matrix)
+ e = zero;
+
+ for (unsigned int i = 0; i < cols; ++i)
+ {
+ const auto pos = i * cols + (i % cols);
+ matrix[pos] = one;
+ }
+ }
+
+ protected:
+ std::vector<T> mElements;
+ unsigned int mRows;
+ unsigned int mCols;
+};
+
+class Mat4 : public Matrix<float>
+{
+ public:
+ Mat4();
+ Mat4(const Matrix<float> generalMatrix);
+ Mat4(const std::vector<float> &elements);
+ Mat4(const float *elements);
+ Mat4(float m00,
+ float m01,
+ float m02,
+ float m03,
+ float m10,
+ float m11,
+ float m12,
+ float m13,
+ float m20,
+ float m21,
+ float m22,
+ float m23,
+ float m30,
+ float m31,
+ float m32,
+ float m33);
+
+ static Mat4 Rotate(float angle, const Vector3 &axis);
+ static Mat4 Translate(const Vector3 &t);
+ static Mat4 Scale(const Vector3 &s);
+ static Mat4 Frustum(float l, float r, float b, float t, float n, float f);
+ static Mat4 Perspective(float fov, float aspectRatio, float n, float f);
+ static Mat4 Ortho(float l, float r, float b, float t, float n, float f);
+
+ Mat4 product(const Mat4 &m);
+ Vector4 product(const Vector4 &b);
+ void dump();
+};
+
+} // namespace angle
+
+#endif // COMMON_MATRIX_UTILS_H_