diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
commit | 6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /gfx/angle/checkout/src/compiler/translator/ParseContext.cpp | |
parent | Initial commit. (diff) | |
download | thunderbird-upstream.tar.xz thunderbird-upstream.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/angle/checkout/src/compiler/translator/ParseContext.cpp')
-rw-r--r-- | gfx/angle/checkout/src/compiler/translator/ParseContext.cpp | 7538 |
1 files changed, 7538 insertions, 0 deletions
diff --git a/gfx/angle/checkout/src/compiler/translator/ParseContext.cpp b/gfx/angle/checkout/src/compiler/translator/ParseContext.cpp new file mode 100644 index 0000000000..4312c2c966 --- /dev/null +++ b/gfx/angle/checkout/src/compiler/translator/ParseContext.cpp @@ -0,0 +1,7538 @@ +// +// Copyright 2002 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// + +#include "compiler/translator/ParseContext.h" + +#include <stdarg.h> +#include <stdio.h> + +#include "common/mathutil.h" +#include "common/utilities.h" +#include "compiler/preprocessor/SourceLocation.h" +#include "compiler/translator/Declarator.h" +#include "compiler/translator/StaticType.h" +#include "compiler/translator/ValidateGlobalInitializer.h" +#include "compiler/translator/ValidateSwitch.h" +#include "compiler/translator/glslang.h" +#include "compiler/translator/tree_util/IntermNode_util.h" +#include "compiler/translator/util.h" + +namespace sh +{ + +/////////////////////////////////////////////////////////////////////// +// +// Sub- vector and matrix fields +// +//////////////////////////////////////////////////////////////////////// + +namespace +{ + +const int kWebGLMaxStructNesting = 4; + +bool ContainsSampler(const TStructure *structType); + +bool ContainsSampler(const TType &type) +{ + if (IsSampler(type.getBasicType())) + { + return true; + } + if (type.getBasicType() == EbtStruct) + { + return ContainsSampler(type.getStruct()); + } + + return false; +} + +bool ContainsSampler(const TStructure *structType) +{ + for (const auto &field : structType->fields()) + { + if (ContainsSampler(*field->type())) + return true; + } + return false; +} + +// Get a token from an image argument to use as an error message token. +const char *GetImageArgumentToken(TIntermTyped *imageNode) +{ + ASSERT(IsImage(imageNode->getBasicType())); + while (imageNode->getAsBinaryNode() && + (imageNode->getAsBinaryNode()->getOp() == EOpIndexIndirect || + imageNode->getAsBinaryNode()->getOp() == EOpIndexDirect)) + { + imageNode = imageNode->getAsBinaryNode()->getLeft(); + } + TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode(); + if (imageSymbol) + { + return imageSymbol->getName().data(); + } + return "image"; +} + +bool CanSetDefaultPrecisionOnType(const TPublicType &type) +{ + if (!SupportsPrecision(type.getBasicType())) + { + return false; + } + if (type.getBasicType() == EbtUInt) + { + // ESSL 3.00.4 section 4.5.4 + return false; + } + if (type.isAggregate()) + { + // Not allowed to set for aggregate types + return false; + } + return true; +} + +// Map input primitive types to input array sizes in a geometry shader. +GLuint GetGeometryShaderInputArraySize(TLayoutPrimitiveType primitiveType) +{ + switch (primitiveType) + { + case EptPoints: + return 1u; + case EptLines: + return 2u; + case EptTriangles: + return 3u; + case EptLinesAdjacency: + return 4u; + case EptTrianglesAdjacency: + return 6u; + default: + UNREACHABLE(); + return 0u; + } +} + +bool IsBufferOrSharedVariable(TIntermTyped *var) +{ + if (var->isInterfaceBlock() || var->getQualifier() == EvqBuffer || + var->getQualifier() == EvqShared) + { + return true; + } + return false; +} + +TIntermTyped *FindLValueBase(TIntermTyped *node) +{ + do + { + const TIntermBinary *binary = node->getAsBinaryNode(); + if (binary == nullptr) + { + return node; + } + + TOperator op = binary->getOp(); + if (op != EOpIndexDirect && op != EOpIndexIndirect) + { + return static_cast<TIntermTyped *>(nullptr); + } + + node = binary->getLeft(); + } while (true); +} + +void AddAdvancedBlendEquation(gl::BlendEquationType eq, TLayoutQualifier *qualifier) +{ + qualifier->advancedBlendEquations.set(static_cast<uint32_t>(eq)); +} + +constexpr bool IsValidWithPixelLocalStorage(TLayoutImageInternalFormat internalFormat) +{ + switch (internalFormat) + { + case EiifRGBA8: + case EiifRGBA8I: + case EiifRGBA8UI: + case EiifR32F: + case EiifR32UI: + return true; + default: + return false; + } +} +} // namespace + +// This tracks each binding point's current default offset for inheritance of subsequent +// variables using the same binding, and keeps offsets unique and non overlapping. +// See GLSL ES 3.1, section 4.4.6. +class TParseContext::AtomicCounterBindingState +{ + public: + AtomicCounterBindingState() : mDefaultOffset(0) {} + // Inserts a new span and returns -1 if overlapping, else returns the starting offset of + // newly inserted span. + int insertSpan(int start, size_t length) + { + gl::RangeI newSpan(start, start + static_cast<int>(length)); + for (const auto &span : mSpans) + { + if (newSpan.intersects(span)) + { + return -1; + } + } + mSpans.push_back(newSpan); + mDefaultOffset = newSpan.high(); + return start; + } + // Inserts a new span starting from the default offset. + int appendSpan(size_t length) { return insertSpan(mDefaultOffset, length); } + void setDefaultOffset(int offset) { mDefaultOffset = offset; } + + private: + int mDefaultOffset; + std::vector<gl::RangeI> mSpans; +}; + +TParseContext::TParseContext(TSymbolTable &symt, + TExtensionBehavior &ext, + sh::GLenum type, + ShShaderSpec spec, + const ShCompileOptions &options, + bool checksPrecErrors, + TDiagnostics *diagnostics, + const ShBuiltInResources &resources, + ShShaderOutput outputType) + : symbolTable(symt), + mDeferredNonEmptyDeclarationErrorCheck(false), + mShaderType(type), + mShaderSpec(spec), + mCompileOptions(options), + mShaderVersion(100), + mTreeRoot(nullptr), + mLoopNestingLevel(0), + mStructNestingLevel(0), + mSwitchNestingLevel(0), + mCurrentFunctionType(nullptr), + mFunctionReturnsValue(false), + mChecksPrecisionErrors(checksPrecErrors), + mFragmentPrecisionHighOnESSL1(false), + mEarlyFragmentTestsSpecified(false), + mHasDiscard(false), + mSampleQualifierSpecified(false), + mDefaultUniformMatrixPacking(EmpColumnMajor), + mDefaultUniformBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared), + mDefaultBufferMatrixPacking(EmpColumnMajor), + mDefaultBufferBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared), + mDiagnostics(diagnostics), + mDirectiveHandler(ext, *mDiagnostics, mShaderVersion, mShaderType), + mPreprocessor(mDiagnostics, &mDirectiveHandler, angle::pp::PreprocessorSettings(spec)), + mScanner(nullptr), + mMinProgramTexelOffset(resources.MinProgramTexelOffset), + mMaxProgramTexelOffset(resources.MaxProgramTexelOffset), + mMinProgramTextureGatherOffset(resources.MinProgramTextureGatherOffset), + mMaxProgramTextureGatherOffset(resources.MaxProgramTextureGatherOffset), + mComputeShaderLocalSizeDeclared(false), + mComputeShaderLocalSize(-1), + mNumViews(-1), + mMaxNumViews(resources.MaxViewsOVR), + mMaxImageUnits(resources.MaxImageUnits), + mMaxCombinedTextureImageUnits(resources.MaxCombinedTextureImageUnits), + mMaxUniformLocations(resources.MaxUniformLocations), + mMaxUniformBufferBindings(resources.MaxUniformBufferBindings), + mMaxVertexAttribs(resources.MaxVertexAttribs), + mMaxAtomicCounterBindings(resources.MaxAtomicCounterBindings), + mMaxShaderStorageBufferBindings(resources.MaxShaderStorageBufferBindings), + mDeclaringFunction(false), + mGeometryShaderInputPrimitiveType(EptUndefined), + mGeometryShaderOutputPrimitiveType(EptUndefined), + mGeometryShaderInvocations(0), + mGeometryShaderMaxVertices(-1), + mMaxGeometryShaderInvocations(resources.MaxGeometryShaderInvocations), + mMaxGeometryShaderMaxVertices(resources.MaxGeometryOutputVertices), + mGeometryInputArraySize(0), + mMaxPatchVertices(resources.MaxPatchVertices), + mTessControlShaderOutputVertices(0), + mTessEvaluationShaderInputPrimitiveType(EtetUndefined), + mTessEvaluationShaderInputVertexSpacingType(EtetUndefined), + mTessEvaluationShaderInputOrderingType(EtetUndefined), + mTessEvaluationShaderInputPointType(EtetUndefined), + mHasAnyPreciseType(false), + mAdvancedBlendEquations(0), + mFunctionBodyNewScope(false), + mOutputType(outputType) +{} + +TParseContext::~TParseContext() {} + +bool TParseContext::anyMultiviewExtensionAvailable() +{ + return isExtensionEnabled(TExtension::OVR_multiview) || + isExtensionEnabled(TExtension::OVR_multiview2); +} + +bool TParseContext::parseVectorFields(const TSourceLoc &line, + const ImmutableString &compString, + int vecSize, + TVector<int> *fieldOffsets) +{ + ASSERT(fieldOffsets); + size_t fieldCount = compString.length(); + if (fieldCount > 4u) + { + error(line, "illegal vector field selection", compString); + return false; + } + fieldOffsets->resize(fieldCount); + + enum + { + exyzw, + ergba, + estpq + } fieldSet[4]; + + for (unsigned int i = 0u; i < fieldOffsets->size(); ++i) + { + switch (compString[i]) + { + case 'x': + (*fieldOffsets)[i] = 0; + fieldSet[i] = exyzw; + break; + case 'r': + (*fieldOffsets)[i] = 0; + fieldSet[i] = ergba; + break; + case 's': + (*fieldOffsets)[i] = 0; + fieldSet[i] = estpq; + break; + case 'y': + (*fieldOffsets)[i] = 1; + fieldSet[i] = exyzw; + break; + case 'g': + (*fieldOffsets)[i] = 1; + fieldSet[i] = ergba; + break; + case 't': + (*fieldOffsets)[i] = 1; + fieldSet[i] = estpq; + break; + case 'z': + (*fieldOffsets)[i] = 2; + fieldSet[i] = exyzw; + break; + case 'b': + (*fieldOffsets)[i] = 2; + fieldSet[i] = ergba; + break; + case 'p': + (*fieldOffsets)[i] = 2; + fieldSet[i] = estpq; + break; + + case 'w': + (*fieldOffsets)[i] = 3; + fieldSet[i] = exyzw; + break; + case 'a': + (*fieldOffsets)[i] = 3; + fieldSet[i] = ergba; + break; + case 'q': + (*fieldOffsets)[i] = 3; + fieldSet[i] = estpq; + break; + default: + error(line, "illegal vector field selection", compString); + return false; + } + } + + for (unsigned int i = 0u; i < fieldOffsets->size(); ++i) + { + if ((*fieldOffsets)[i] >= vecSize) + { + error(line, "vector field selection out of range", compString); + return false; + } + + if (i > 0) + { + if (fieldSet[i] != fieldSet[i - 1]) + { + error(line, "illegal - vector component fields not from the same set", compString); + return false; + } + } + } + + return true; +} + +/////////////////////////////////////////////////////////////////////// +// +// Errors +// +//////////////////////////////////////////////////////////////////////// + +// +// Used by flex/bison to output all syntax and parsing errors. +// +void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token) +{ + mDiagnostics->error(loc, reason, token); +} + +void TParseContext::error(const TSourceLoc &loc, const char *reason, const ImmutableString &token) +{ + mDiagnostics->error(loc, reason, token.data()); +} + +void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token) +{ + mDiagnostics->warning(loc, reason, token); +} + +void TParseContext::errorIfPLSDeclared(const TSourceLoc &loc, PLSIllegalOperations op) +{ + if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage)) + { + return; + } + if (mPLSBindings.empty()) + { + // No pixel local storage uniforms have been declared yet. Remember this potential error in + // case PLS gets declared later. + mPLSPotentialErrors.emplace_back(loc, op); + return; + } + switch (op) + { + case PLSIllegalOperations::Discard: + error(loc, "illegal discard when pixel local storage is declared", "discard"); + break; + case PLSIllegalOperations::ReturnFromMain: + error(loc, "illegal return from main when pixel local storage is declared", "return"); + break; + case PLSIllegalOperations::AssignFragDepth: + error(loc, "value not assignable when pixel local storage is declared", "gl_FragDepth"); + break; + case PLSIllegalOperations::AssignSampleMask: + error(loc, "value not assignable when pixel local storage is declared", + "gl_SampleMask"); + break; + } +} + +void TParseContext::outOfRangeError(bool isError, + const TSourceLoc &loc, + const char *reason, + const char *token) +{ + if (isError) + { + error(loc, reason, token); + } + else + { + warning(loc, reason, token); + } +} + +void TParseContext::setTreeRoot(TIntermBlock *treeRoot) +{ + mTreeRoot = treeRoot; + mTreeRoot->setIsTreeRoot(); +} + +// +// Same error message for all places assignments don't work. +// +void TParseContext::assignError(const TSourceLoc &line, + const char *op, + const TType &left, + const TType &right) +{ + TInfoSinkBase reasonStream; + reasonStream << "cannot convert from '" << right << "' to '" << left << "'"; + error(line, reasonStream.c_str(), op); +} + +// +// Same error message for all places unary operations don't work. +// +void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, const TType &operand) +{ + TInfoSinkBase reasonStream; + reasonStream << "wrong operand type - no operation '" << op + << "' exists that takes an operand of type " << operand + << " (or there is no acceptable conversion)"; + error(line, reasonStream.c_str(), op); +} + +// +// Same error message for all binary operations don't work. +// +void TParseContext::binaryOpError(const TSourceLoc &line, + const char *op, + const TType &left, + const TType &right) +{ + TInfoSinkBase reasonStream; + reasonStream << "wrong operand types - no operation '" << op + << "' exists that takes a left-hand operand of type '" << left + << "' and a right operand of type '" << right + << "' (or there is no acceptable conversion)"; + error(line, reasonStream.c_str(), op); +} + +void TParseContext::checkPrecisionSpecified(const TSourceLoc &line, + TPrecision precision, + TBasicType type) +{ + if (!mChecksPrecisionErrors) + return; + + if (precision != EbpUndefined && !SupportsPrecision(type)) + { + error(line, "illegal type for precision qualifier", getBasicString(type)); + } + + if (precision == EbpUndefined) + { + switch (type) + { + case EbtFloat: + error(line, "No precision specified for (float)", ""); + return; + case EbtInt: + case EbtUInt: + UNREACHABLE(); // there's always a predeclared qualifier + error(line, "No precision specified (int)", ""); + return; + default: + if (IsOpaqueType(type)) + { + error(line, "No precision specified", getBasicString(type)); + return; + } + } + } +} + +void TParseContext::markStaticReadIfSymbol(TIntermNode *node) +{ + TIntermSwizzle *swizzleNode = node->getAsSwizzleNode(); + if (swizzleNode) + { + markStaticReadIfSymbol(swizzleNode->getOperand()); + return; + } + TIntermBinary *binaryNode = node->getAsBinaryNode(); + if (binaryNode) + { + switch (binaryNode->getOp()) + { + case EOpIndexDirect: + case EOpIndexIndirect: + case EOpIndexDirectStruct: + case EOpIndexDirectInterfaceBlock: + markStaticReadIfSymbol(binaryNode->getLeft()); + return; + default: + return; + } + } + TIntermSymbol *symbolNode = node->getAsSymbolNode(); + if (symbolNode) + { + symbolTable.markStaticRead(symbolNode->variable()); + } +} + +// Both test and if necessary, spit out an error, to see if the node is really +// an l-value that can be operated on this way. +bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node) +{ + TIntermSwizzle *swizzleNode = node->getAsSwizzleNode(); + if (swizzleNode) + { + bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand()); + if (ok && swizzleNode->hasDuplicateOffsets()) + { + error(line, " l-value of swizzle cannot have duplicate components", op); + return false; + } + return ok; + } + + TIntermBinary *binaryNode = node->getAsBinaryNode(); + if (binaryNode) + { + switch (binaryNode->getOp()) + { + case EOpIndexDirect: + case EOpIndexIndirect: + case EOpIndexDirectStruct: + case EOpIndexDirectInterfaceBlock: + if (node->getMemoryQualifier().readonly) + { + error(line, "can't modify a readonly variable", op); + return false; + } + return checkCanBeLValue(line, op, binaryNode->getLeft()); + default: + break; + } + error(line, " l-value required", op); + return false; + } + + std::string message; + switch (node->getQualifier()) + { + case EvqConst: + message = "can't modify a const"; + break; + case EvqParamConst: + message = "can't modify a const"; + break; + case EvqAttribute: + message = "can't modify an attribute"; + break; + case EvqFragmentIn: + case EvqVertexIn: + case EvqGeometryIn: + case EvqTessControlIn: + case EvqTessEvaluationIn: + case EvqFlatIn: + case EvqNoPerspectiveIn: + case EvqSmoothIn: + case EvqCentroidIn: + case EvqSampleIn: + message = "can't modify an input"; + break; + case EvqUniform: + message = "can't modify a uniform"; + break; + case EvqVaryingIn: + message = "can't modify a varying"; + break; + case EvqFragCoord: + message = "can't modify gl_FragCoord"; + break; + case EvqFrontFacing: + message = "can't modify gl_FrontFacing"; + break; + case EvqHelperInvocation: + message = "can't modify gl_HelperInvocation"; + break; + case EvqPointCoord: + message = "can't modify gl_PointCoord"; + break; + case EvqNumWorkGroups: + message = "can't modify gl_NumWorkGroups"; + break; + case EvqWorkGroupSize: + message = "can't modify gl_WorkGroupSize"; + break; + case EvqWorkGroupID: + message = "can't modify gl_WorkGroupID"; + break; + case EvqLocalInvocationID: + message = "can't modify gl_LocalInvocationID"; + break; + case EvqGlobalInvocationID: + message = "can't modify gl_GlobalInvocationID"; + break; + case EvqLocalInvocationIndex: + message = "can't modify gl_LocalInvocationIndex"; + break; + case EvqViewIDOVR: + message = "can't modify gl_ViewID_OVR"; + break; + case EvqComputeIn: + message = "can't modify work group size variable"; + break; + case EvqPerVertexIn: + message = "can't modify any member in gl_in"; + break; + case EvqPrimitiveIDIn: + message = "can't modify gl_PrimitiveIDIn"; + break; + case EvqInvocationID: + message = "can't modify gl_InvocationID"; + break; + case EvqPrimitiveID: + if (mShaderType == GL_FRAGMENT_SHADER) + { + message = "can't modify gl_PrimitiveID in a fragment shader"; + } + break; + case EvqLayerIn: + message = "can't modify gl_Layer in a fragment shader"; + break; + case EvqSampleID: + message = "can't modify gl_SampleID"; + break; + case EvqSampleMaskIn: + message = "can't modify gl_SampleMaskIn"; + break; + case EvqSamplePosition: + message = "can't modify gl_SamplePosition"; + break; + case EvqClipDistance: + if (mShaderType == GL_FRAGMENT_SHADER) + { + message = "can't modify gl_ClipDistance in a fragment shader"; + } + break; + case EvqCullDistance: + if (mShaderType == GL_FRAGMENT_SHADER) + { + message = "can't modify gl_CullDistance in a fragment shader"; + } + break; + case EvqFragDepth: + errorIfPLSDeclared(line, PLSIllegalOperations::AssignFragDepth); + break; + case EvqSampleMask: + errorIfPLSDeclared(line, PLSIllegalOperations::AssignSampleMask); + break; + default: + // + // Type that can't be written to? + // + if (node->getBasicType() == EbtVoid) + { + message = "can't modify void"; + } + if (IsOpaqueType(node->getBasicType())) + { + message = "can't modify a variable with type "; + message += getBasicString(node->getBasicType()); + } + else if (node->getMemoryQualifier().readonly) + { + message = "can't modify a readonly variable"; + } + } + + ASSERT(binaryNode == nullptr && swizzleNode == nullptr); + TIntermSymbol *symNode = node->getAsSymbolNode(); + if (message.empty() && symNode != nullptr) + { + symbolTable.markStaticWrite(symNode->variable()); + return true; + } + + std::stringstream reasonStream = sh::InitializeStream<std::stringstream>(); + reasonStream << "l-value required"; + if (!message.empty()) + { + if (symNode) + { + // Symbol inside an expression can't be nameless. + ASSERT(symNode->variable().symbolType() != SymbolType::Empty); + const ImmutableString &symbol = symNode->getName(); + reasonStream << " (" << message << " \"" << symbol << "\")"; + } + else + { + reasonStream << " (" << message << ")"; + } + } + std::string reason = reasonStream.str(); + error(line, reason.c_str(), op); + + return false; +} + +// Both test, and if necessary spit out an error, to see if the node is really +// a constant. +void TParseContext::checkIsConst(TIntermTyped *node) +{ + if (node->getQualifier() != EvqConst) + { + error(node->getLine(), "constant expression required", ""); + } +} + +// Both test, and if necessary spit out an error, to see if the node is really +// an integer. +void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token) +{ + if (!node->isScalarInt()) + { + error(node->getLine(), "integer expression required", token); + } +} + +// Both test, and if necessary spit out an error, to see if we are currently +// globally scoped. +bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token) +{ + if (!symbolTable.atGlobalLevel()) + { + error(line, "only allowed at global scope", token); + return false; + } + return true; +} + +// ESSL 3.00.5 sections 3.8 and 3.9. +// If it starts "gl_" or contains two consecutive underscores, it's reserved. +// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a webgl shader. +bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const ImmutableString &identifier) +{ + static const char *reservedErrMsg = "reserved built-in name"; + if (gl::IsBuiltInName(identifier.data())) + { + error(line, reservedErrMsg, "gl_"); + return false; + } + if (sh::IsWebGLBasedSpec(mShaderSpec)) + { + if (identifier.beginsWith("webgl_")) + { + error(line, reservedErrMsg, "webgl_"); + return false; + } + if (identifier.beginsWith("_webgl_")) + { + error(line, reservedErrMsg, "_webgl_"); + return false; + } + } + if (identifier.contains("__")) + { + if (sh::IsWebGLBasedSpec(mShaderSpec)) + { + error(line, + "identifiers containing two consecutive underscores (__) are reserved as " + "possible future keywords", + identifier); + return false; + } + else + { + // Using double underscores is allowed, but may result in unintended behaviors, so a + // warning is issued. + // OpenGL ES Shader Language 3.2 specification: + // > 3.7. Keywords + // > ... + // > In addition, all identifiers containing two consecutive underscores (__) are + // > reserved for use by underlying software layers. Defining such a name in a shader + // > does not itself result in an error, but may result in unintended behaviors that + // > stem from having multiple definitions of the same name. + warning(line, + "all identifiers containing two consecutive underscores (__) are reserved - " + "unintented behaviors are possible", + identifier.data()); + } + } + return true; +} + +// Make sure the argument types are correct for constructing a specific type. +bool TParseContext::checkConstructorArguments(const TSourceLoc &line, + const TIntermSequence &arguments, + const TType &type) +{ + if (arguments.empty()) + { + error(line, "constructor does not have any arguments", "constructor"); + return false; + } + + for (TIntermNode *arg : arguments) + { + markStaticReadIfSymbol(arg); + const TIntermTyped *argTyped = arg->getAsTyped(); + ASSERT(argTyped != nullptr); + if (type.getBasicType() != EbtStruct && IsOpaqueType(argTyped->getBasicType())) + { + std::string reason("cannot convert a variable with type "); + reason += getBasicString(argTyped->getBasicType()); + error(line, reason.c_str(), "constructor"); + return false; + } + else if (argTyped->getMemoryQualifier().writeonly) + { + error(line, "cannot convert a variable with writeonly", "constructor"); + return false; + } + if (argTyped->getBasicType() == EbtVoid) + { + error(line, "cannot convert a void", "constructor"); + return false; + } + } + + if (type.isArray()) + { + // The size of an unsized constructor should already have been determined. + ASSERT(!type.isUnsizedArray()); + if (static_cast<size_t>(type.getOutermostArraySize()) != arguments.size()) + { + error(line, "array constructor needs one argument per array element", "constructor"); + return false; + } + // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of + // the array. + for (TIntermNode *const &argNode : arguments) + { + const TType &argType = argNode->getAsTyped()->getType(); + if (mShaderVersion < 310 && argType.isArray()) + { + error(line, "constructing from a non-dereferenced array", "constructor"); + return false; + } + if (!argType.isElementTypeOf(type)) + { + error(line, "Array constructor argument has an incorrect type", "constructor"); + return false; + } + } + } + else if (type.getBasicType() == EbtStruct) + { + const TFieldList &fields = type.getStruct()->fields(); + if (fields.size() != arguments.size()) + { + error(line, + "Number of constructor parameters does not match the number of structure fields", + "constructor"); + return false; + } + + for (size_t i = 0; i < fields.size(); i++) + { + if (i >= arguments.size() || + arguments[i]->getAsTyped()->getType() != *fields[i]->type()) + { + error(line, "Structure constructor arguments do not match structure fields", + "constructor"); + return false; + } + } + } + else + { + // We're constructing a scalar, vector, or matrix. + + // Note: It's okay to have too many components available, but not okay to have unused + // arguments. 'full' will go to true when enough args have been seen. If we loop again, + // there is an extra argument, so 'overFull' will become true. + + size_t size = 0; + bool full = false; + bool overFull = false; + bool matrixArg = false; + for (TIntermNode *arg : arguments) + { + const TIntermTyped *argTyped = arg->getAsTyped(); + ASSERT(argTyped != nullptr); + + if (argTyped->getBasicType() == EbtStruct) + { + error(line, "a struct cannot be used as a constructor argument for this type", + "constructor"); + return false; + } + if (argTyped->getType().isArray()) + { + error(line, "constructing from a non-dereferenced array", "constructor"); + return false; + } + if (argTyped->getType().isMatrix()) + { + matrixArg = true; + } + + size += argTyped->getType().getObjectSize(); + if (full) + { + overFull = true; + } + if (size >= type.getObjectSize()) + { + full = true; + } + } + + if (type.isMatrix() && matrixArg) + { + if (arguments.size() != 1) + { + error(line, "constructing matrix from matrix can only take one argument", + "constructor"); + return false; + } + } + else + { + if (size != 1 && size < type.getObjectSize()) + { + error(line, "not enough data provided for construction", "constructor"); + return false; + } + if (overFull) + { + error(line, "too many arguments", "constructor"); + return false; + } + } + } + + return true; +} + +// This function checks to see if a void variable has been declared and raise an error message for +// such a case +// +// returns true in case of an error +// +bool TParseContext::checkIsNonVoid(const TSourceLoc &line, + const ImmutableString &identifier, + const TBasicType &type) +{ + if (type == EbtVoid) + { + error(line, "illegal use of type 'void'", identifier); + return false; + } + + return true; +} + +// This function checks to see if the node (for the expression) contains a scalar boolean expression +// or not. +bool TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type) +{ + if (type->getBasicType() != EbtBool || !type->isScalar()) + { + error(line, "boolean expression expected", ""); + return false; + } + return true; +} + +// This function checks to see if the node (for the expression) contains a scalar boolean expression +// or not. +void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType) +{ + if (pType.getBasicType() != EbtBool || pType.isAggregate()) + { + error(line, "boolean expression expected", ""); + } +} + +bool TParseContext::checkIsNotOpaqueType(const TSourceLoc &line, + const TTypeSpecifierNonArray &pType, + const char *reason) +{ + if (pType.type == EbtStruct) + { + if (ContainsSampler(pType.userDef)) + { + std::stringstream reasonStream = sh::InitializeStream<std::stringstream>(); + reasonStream << reason << " (structure contains a sampler)"; + std::string reasonStr = reasonStream.str(); + error(line, reasonStr.c_str(), getBasicString(pType.type)); + return false; + } + // only samplers need to be checked from structs, since other opaque types can't be struct + // members. + return true; + } + else if (IsOpaqueType(pType.type)) + { + error(line, reason, getBasicString(pType.type)); + return false; + } + + return true; +} + +void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line, + const TPublicType &pType) +{ + if (pType.layoutQualifier.location != -1) + { + error(line, "location must only be specified for a single input or output variable", + "location"); + } +} + +void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location, + const TLayoutQualifier &layoutQualifier) +{ + if (layoutQualifier.location != -1) + { + const char *errorMsg = "invalid layout qualifier: only valid on program inputs and outputs"; + if (mShaderVersion >= 310) + { + errorMsg = + "invalid layout qualifier: only valid on shader inputs, outputs, and uniforms"; + } + error(location, errorMsg, "location"); + } +} + +void TParseContext::checkStd430IsForShaderStorageBlock(const TSourceLoc &location, + const TLayoutBlockStorage &blockStorage, + const TQualifier &qualifier) +{ + if (blockStorage == EbsStd430 && qualifier != EvqBuffer) + { + error(location, "The std430 layout is supported only for shader storage blocks.", "std430"); + } +} + +void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line, + TQualifier qualifier, + const TType &type) +{ + ASSERT(qualifier == EvqParamOut || qualifier == EvqParamInOut); + if (IsOpaqueType(type.getBasicType())) + { + error(line, "opaque types cannot be output parameters", type.getBasicString()); + } +} + +// Do size checking for an array type's size. +unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr) +{ + TIntermConstantUnion *constant = expr->getAsConstantUnion(); + + // ANGLE should be able to fold any EvqConst expressions resulting in an integer - but to be + // safe against corner cases we still check for constant folding. Some interpretations of the + // spec have allowed constant expressions with side effects - like array length() method on a + // non-constant array. + if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt()) + { + error(line, "array size must be a constant integer expression", ""); + return 1u; + } + + unsigned int size = 0u; + + if (constant->getBasicType() == EbtUInt) + { + size = constant->getUConst(0); + } + else + { + int signedSize = constant->getIConst(0); + + if (signedSize < 0) + { + error(line, "array size must be non-negative", ""); + return 1u; + } + + size = static_cast<unsigned int>(signedSize); + } + + if (size == 0u) + { + error(line, "array size must be greater than zero", ""); + return 1u; + } + + if (IsOutputHLSL(getOutputType())) + { + // The size of arrays is restricted here to prevent issues further down the + // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to + // 4096 registers so this should be reasonable even for aggressively optimizable code. + const unsigned int sizeLimit = 65536; + + if (size > sizeLimit) + { + error(line, "array size too large", ""); + return 1u; + } + } + + return size; +} + +// See if this qualifier can be an array. +bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line, + const TPublicType &elementQualifier) +{ + if ((elementQualifier.qualifier == EvqAttribute) || + (elementQualifier.qualifier == EvqVertexIn) || + (elementQualifier.qualifier == EvqConst && mShaderVersion < 300)) + { + error(line, "cannot declare arrays of this qualifier", + TType(elementQualifier).getQualifierString()); + return false; + } + + return true; +} + +// See if this element type can be formed into an array. +bool TParseContext::checkArrayElementIsNotArray(const TSourceLoc &line, + const TPublicType &elementType) +{ + if (mShaderVersion < 310 && elementType.isArray()) + { + TInfoSinkBase typeString; + typeString << TType(elementType); + error(line, "cannot declare arrays of arrays", typeString.c_str()); + return false; + } + return true; +} + +// Check for array-of-arrays being used as non-allowed shader inputs/outputs. +bool TParseContext::checkArrayOfArraysInOut(const TSourceLoc &line, + const TPublicType &elementType, + const TType &arrayType) +{ + if (arrayType.isArrayOfArrays()) + { + if (elementType.qualifier == EvqVertexOut) + { + error(line, "vertex shader output cannot be an array of arrays", + TType(elementType).getQualifierString()); + return false; + } + if (elementType.qualifier == EvqFragmentIn) + { + error(line, "fragment shader input cannot be an array of arrays", + TType(elementType).getQualifierString()); + return false; + } + if (elementType.qualifier == EvqFragmentOut || elementType.qualifier == EvqFragmentInOut) + { + error(line, "fragment shader output cannot be an array of arrays", + TType(elementType).getQualifierString()); + return false; + } + } + return true; +} + +// Check if this qualified element type can be formed into an array. This is only called when array +// brackets are associated with an identifier in a declaration, like this: +// float a[2]; +// Similar checks are done in addFullySpecifiedType for array declarations where the array brackets +// are associated with the type, like this: +// float[2] a; +bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation, + const TPublicType &elementType) +{ + if (!checkArrayElementIsNotArray(indexLocation, elementType)) + { + return false; + } + // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. + // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section + // 4.3.4). + // Geometry shader requires each user-defined input be declared as arrays or inside input + // blocks declared as arrays (GL_EXT_geometry_shader section 11.1gs.4.3). For the purposes of + // interface matching, such variables and blocks are treated as though they were not declared + // as arrays (GL_EXT_geometry_shader section 7.4.1). + if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct && + sh::IsVarying(elementType.qualifier) && + !IsGeometryShaderInput(mShaderType, elementType.qualifier) && + !IsTessellationControlShaderInput(mShaderType, elementType.qualifier) && + !IsTessellationEvaluationShaderInput(mShaderType, elementType.qualifier) && + !IsTessellationControlShaderOutput(mShaderType, elementType.qualifier)) + { + TInfoSinkBase typeString; + typeString << TType(elementType); + error(indexLocation, "cannot declare arrays of structs of this qualifier", + typeString.c_str()); + return false; + } + return checkIsValidQualifierForArray(indexLocation, elementType); +} + +// Enforce non-initializer type/qualifier rules. +void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line, + const ImmutableString &identifier, + TType *type) +{ + ASSERT(type != nullptr); + if (type->getQualifier() == EvqConst) + { + // Make the qualifier make sense. + type->setQualifier(EvqTemporary); + + // Generate informative error messages for ESSL1. + // In ESSL3 arrays and structures containing arrays can be constant. + if (mShaderVersion < 300 && type->isStructureContainingArrays()) + { + error(line, + "structures containing arrays may not be declared constant since they cannot be " + "initialized", + identifier); + } + else + { + error(line, "variables with qualifier 'const' must be initialized", identifier); + } + } + + // Implicitly declared arrays are only allowed with tessellation or geometry shader inputs + if (type->isArray() && + ((mShaderType != GL_TESS_CONTROL_SHADER && mShaderType != GL_TESS_EVALUATION_SHADER && + mShaderType != GL_GEOMETRY_SHADER) || + (mShaderType == GL_GEOMETRY_SHADER && type->getQualifier() == EvqGeometryOut))) + { + const TSpan<const unsigned int> &arraySizes = type->getArraySizes(); + for (unsigned int size : arraySizes) + { + if (size == 0) + { + error(line, + "implicitly sized arrays only allowed for tessellation shaders " + "or geometry shader inputs", + identifier); + } + } + } +} + +// Do some simple checks that are shared between all variable declarations, +// and update the symbol table. +// +// Returns true if declaring the variable succeeded. +// +bool TParseContext::declareVariable(const TSourceLoc &line, + const ImmutableString &identifier, + const TType *type, + TVariable **variable) +{ + ASSERT((*variable) == nullptr); + + SymbolType symbolType = SymbolType::UserDefined; + switch (type->getQualifier()) + { + case EvqClipDistance: + case EvqCullDistance: + case EvqLastFragData: + symbolType = SymbolType::BuiltIn; + break; + default: + break; + } + + (*variable) = new TVariable(&symbolTable, identifier, type, symbolType); + + ASSERT(type->getLayoutQualifier().index == -1 || + (isExtensionEnabled(TExtension::EXT_blend_func_extended) && + mShaderType == GL_FRAGMENT_SHADER && mShaderVersion >= 300)); + if (type->getQualifier() == EvqFragmentOut) + { + if (type->getLayoutQualifier().index != -1 && type->getLayoutQualifier().location == -1) + { + error(line, + "If index layout qualifier is specified for a fragment output, location must " + "also be specified.", + "index"); + return false; + } + } + else + { + checkIndexIsNotSpecified(line, type->getLayoutQualifier().index); + } + + if (!((identifier.beginsWith("gl_LastFragData") || type->getQualifier() == EvqFragmentInOut) && + (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) || + isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent)))) + { + checkNoncoherentIsNotSpecified(line, type->getLayoutQualifier().noncoherent); + } + else if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent) && + !isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch)) + { + checkNoncoherentIsSpecified(line, type->getLayoutQualifier().noncoherent); + } + + checkBindingIsValid(line, *type); + + bool needsReservedCheck = true; + + // gl_LastFragData may be redeclared with a new precision qualifier + if (type->isArray() && identifier.beginsWith("gl_LastFragData")) + { + const TVariable *maxDrawBuffers = static_cast<const TVariable *>( + symbolTable.findBuiltIn(ImmutableString("gl_MaxDrawBuffers"), mShaderVersion)); + if (type->isArrayOfArrays()) + { + error(line, "redeclaration of gl_LastFragData as an array of arrays", identifier); + return false; + } + else if (static_cast<int>(type->getOutermostArraySize()) == + maxDrawBuffers->getConstPointer()->getIConst()) + { + if (const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) + { + needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions()); + } + } + else + { + error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", + identifier); + return false; + } + } + else if (type->isArray() && identifier == "gl_ClipDistance") + { + // gl_ClipDistance can be redeclared with smaller size than gl_MaxClipDistances + const TVariable *maxClipDistances = static_cast<const TVariable *>( + symbolTable.findBuiltIn(ImmutableString("gl_MaxClipDistances"), mShaderVersion)); + if (!maxClipDistances) + { + // Unsupported extension + needsReservedCheck = true; + } + else if (type->isArrayOfArrays()) + { + error(line, "redeclaration of gl_ClipDistance as an array of arrays", identifier); + return false; + } + else if (static_cast<int>(type->getOutermostArraySize()) <= + maxClipDistances->getConstPointer()->getIConst()) + { + const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion); + if (builtInSymbol) + { + needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions()); + } + } + else + { + error(line, "redeclaration of gl_ClipDistance with size > gl_MaxClipDistances", + identifier); + return false; + } + } + else if (type->isArray() && identifier == "gl_CullDistance") + { + // gl_CullDistance can be redeclared with smaller size than gl_MaxCullDistances + const TVariable *maxCullDistances = static_cast<const TVariable *>( + symbolTable.findBuiltIn(ImmutableString("gl_MaxCullDistances"), mShaderVersion)); + if (!maxCullDistances) + { + // Unsupported extension + needsReservedCheck = true; + } + else if (type->isArrayOfArrays()) + { + error(line, "redeclaration of gl_CullDistance as an array of arrays", identifier); + return false; + } + else if (static_cast<int>(type->getOutermostArraySize()) <= + maxCullDistances->getConstPointer()->getIConst()) + { + if (const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) + { + needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions()); + } + } + else + { + error(line, "redeclaration of gl_CullDistance with size > gl_MaxCullDistances", + identifier); + return false; + } + } + + if (needsReservedCheck && !checkIsNotReserved(line, identifier)) + return false; + + if (!symbolTable.declare(*variable)) + { + error(line, "redefinition", identifier); + return false; + } + + if (!checkIsNonVoid(line, identifier, type->getBasicType())) + return false; + + return true; +} + +void TParseContext::checkIsParameterQualifierValid( + const TSourceLoc &line, + const TTypeQualifierBuilder &typeQualifierBuilder, + TType *type) +{ + // The only parameter qualifiers a parameter can have are in, out, inout or const. + TTypeQualifier typeQualifier = + typeQualifierBuilder.getParameterTypeQualifier(type->getBasicType(), mDiagnostics); + + if (typeQualifier.qualifier == EvqParamOut || typeQualifier.qualifier == EvqParamInOut) + { + checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type); + } + + if (!IsImage(type->getBasicType())) + { + checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, line); + } + else + { + type->setMemoryQualifier(typeQualifier.memoryQualifier); + } + + type->setQualifier(typeQualifier.qualifier); + + if (typeQualifier.precision != EbpUndefined) + { + type->setPrecision(typeQualifier.precision); + } + + if (typeQualifier.precise) + { + type->setPrecise(true); + } +} + +template <size_t size> +bool TParseContext::checkCanUseOneOfExtensions(const TSourceLoc &line, + const std::array<TExtension, size> &extensions) +{ + ASSERT(!extensions.empty()); + const TExtensionBehavior &extBehavior = extensionBehavior(); + + bool canUseWithWarning = false; + bool canUseWithoutWarning = false; + + const char *errorMsgString = ""; + TExtension errorMsgExtension = TExtension::UNDEFINED; + + for (TExtension extension : extensions) + { + auto extIter = extBehavior.find(extension); + if (canUseWithWarning) + { + // We already have an extension that we can use, but with a warning. + // See if we can use the alternative extension without a warning. + if (extIter == extBehavior.end()) + { + continue; + } + if (extIter->second == EBhEnable || extIter->second == EBhRequire) + { + canUseWithoutWarning = true; + break; + } + continue; + } + if (extension == TExtension::UNDEFINED) + { + continue; + } + else if (extIter == extBehavior.end()) + { + errorMsgString = "extension is not supported"; + errorMsgExtension = extension; + } + else if (extIter->second == EBhUndefined || extIter->second == EBhDisable) + { + errorMsgString = "extension is disabled"; + errorMsgExtension = extension; + } + else if (extIter->second == EBhWarn) + { + errorMsgExtension = extension; + canUseWithWarning = true; + } + else + { + ASSERT(extIter->second == EBhEnable || extIter->second == EBhRequire); + canUseWithoutWarning = true; + break; + } + } + + if (canUseWithoutWarning) + { + return true; + } + if (canUseWithWarning) + { + warning(line, "extension is being used", GetExtensionNameString(errorMsgExtension)); + return true; + } + error(line, errorMsgString, GetExtensionNameString(errorMsgExtension)); + return false; +} + +template bool TParseContext::checkCanUseOneOfExtensions( + const TSourceLoc &line, + const std::array<TExtension, 1> &extensions); +template bool TParseContext::checkCanUseOneOfExtensions( + const TSourceLoc &line, + const std::array<TExtension, 2> &extensions); +template bool TParseContext::checkCanUseOneOfExtensions( + const TSourceLoc &line, + const std::array<TExtension, 3> &extensions); + +bool TParseContext::checkCanUseExtension(const TSourceLoc &line, TExtension extension) +{ + ASSERT(extension != TExtension::UNDEFINED); + return checkCanUseOneOfExtensions(line, std::array<TExtension, 1u>{{extension}}); +} + +// ESSL 3.00.6 section 4.8 Empty Declarations: "The combinations of qualifiers that cause +// compile-time or link-time errors are the same whether or not the declaration is empty". +// This function implements all the checks that are done on qualifiers regardless of if the +// declaration is empty. +void TParseContext::declarationQualifierErrorCheck(const sh::TQualifier qualifier, + const sh::TLayoutQualifier &layoutQualifier, + const TSourceLoc &location) +{ + if (qualifier == EvqShared && !layoutQualifier.isEmpty()) + { + error(location, "Shared memory declarations cannot have layout specified", "layout"); + } + + if (layoutQualifier.matrixPacking != EmpUnspecified) + { + error(location, "layout qualifier only valid for interface blocks", + getMatrixPackingString(layoutQualifier.matrixPacking)); + return; + } + + if (layoutQualifier.blockStorage != EbsUnspecified) + { + error(location, "layout qualifier only valid for interface blocks", + getBlockStorageString(layoutQualifier.blockStorage)); + return; + } + + if (qualifier == EvqFragmentOut) + { + if (layoutQualifier.location != -1 && layoutQualifier.yuv == true) + { + error(location, "invalid layout qualifier combination", "yuv"); + return; + } + } + else + { + checkYuvIsNotSpecified(location, layoutQualifier.yuv); + } + + if (qualifier != EvqFragmentIn) + { + checkEarlyFragmentTestsIsNotSpecified(location, layoutQualifier.earlyFragmentTests); + } + + // If multiview extension is enabled, "in" qualifier is allowed in the vertex shader in previous + // parsing steps. So it needs to be checked here. + if (anyMultiviewExtensionAvailable() && mShaderVersion < 300 && qualifier == EvqVertexIn) + { + error(location, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); + } + + bool canHaveLocation = qualifier == EvqVertexIn || qualifier == EvqFragmentOut; + if (mShaderVersion >= 300 && + (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) || + isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent))) + { + // In the case of EXT_shader_framebuffer_fetch or EXT_shader_framebuffer_fetch_non_coherent + // extension, the location of inout qualifier is used to set the input attachment index + canHaveLocation = canHaveLocation || qualifier == EvqFragmentInOut; + } + if (mShaderVersion >= 310) + { + canHaveLocation = canHaveLocation || qualifier == EvqUniform || IsVarying(qualifier); + // We're not checking whether the uniform location is in range here since that depends on + // the type of the variable. + // The type can only be fully determined for non-empty declarations. + } + if (!canHaveLocation) + { + checkLocationIsNotSpecified(location, layoutQualifier); + } +} + +void TParseContext::atomicCounterQualifierErrorCheck(const TPublicType &publicType, + const TSourceLoc &location) +{ + if (publicType.precision != EbpHigh) + { + error(location, "Can only be highp", "atomic counter"); + } + // dEQP enforces compile error if location is specified. See uniform_location.test. + if (publicType.layoutQualifier.location != -1) + { + error(location, "location must not be set for atomic_uint", "layout"); + } + if (publicType.layoutQualifier.binding == -1) + { + error(location, "no binding specified", "atomic counter"); + } +} + +void TParseContext::emptyDeclarationErrorCheck(const TType &type, const TSourceLoc &location) +{ + if (type.isUnsizedArray()) + { + // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an + // error. It is assumed that this applies to empty declarations as well. + error(location, "empty array declaration needs to specify a size", ""); + } + + if (type.getQualifier() != EvqFragmentOut) + { + checkIndexIsNotSpecified(location, type.getLayoutQualifier().index); + } +} + +// These checks are done for all declarations that are non-empty. They're done for non-empty +// declarations starting a declarator list, and declarators that follow an empty declaration. +void TParseContext::nonEmptyDeclarationErrorCheck(const TPublicType &publicType, + const TSourceLoc &identifierLocation) +{ + switch (publicType.qualifier) + { + case EvqVaryingIn: + case EvqVaryingOut: + case EvqAttribute: + case EvqVertexIn: + case EvqFragmentOut: + case EvqFragmentInOut: + case EvqComputeIn: + if (publicType.getBasicType() == EbtStruct) + { + error(identifierLocation, "cannot be used with a structure", + getQualifierString(publicType.qualifier)); + return; + } + break; + case EvqBuffer: + if (publicType.getBasicType() != EbtInterfaceBlock) + { + error(identifierLocation, + "cannot declare buffer variables at global scope(outside a block)", + getQualifierString(publicType.qualifier)); + return; + } + break; + default: + break; + } + std::string reason(getBasicString(publicType.getBasicType())); + reason += "s must be uniform"; + if (publicType.qualifier != EvqUniform && + !checkIsNotOpaqueType(identifierLocation, publicType.typeSpecifierNonArray, reason.c_str())) + { + return; + } + + if ((publicType.qualifier != EvqTemporary && publicType.qualifier != EvqGlobal && + publicType.qualifier != EvqConst) && + publicType.getBasicType() == EbtYuvCscStandardEXT) + { + error(identifierLocation, "cannot be used with a yuvCscStandardEXT", + getQualifierString(publicType.qualifier)); + return; + } + + if (mShaderVersion >= 310 && publicType.qualifier == EvqUniform) + { + // Valid uniform declarations can't be unsized arrays since uniforms can't be initialized. + // But invalid shaders may still reach here with an unsized array declaration. + TType type(publicType); + if (!type.isUnsizedArray()) + { + checkUniformLocationInRange(identifierLocation, type.getLocationCount(), + publicType.layoutQualifier); + } + } + + if (mShaderVersion >= 300 && publicType.qualifier == EvqVertexIn) + { + // Valid vertex input declarations can't be unsized arrays since they can't be initialized. + // But invalid shaders may still reach here with an unsized array declaration. + TType type(publicType); + if (!type.isUnsizedArray()) + { + checkAttributeLocationInRange(identifierLocation, type.getLocationCount(), + publicType.layoutQualifier); + } + } + + // check for layout qualifier issues + const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; + + if (IsImage(publicType.getBasicType())) + { + + switch (layoutQualifier.imageInternalFormat) + { + case EiifRGBA32F: + case EiifRGBA16F: + case EiifR32F: + case EiifRGBA8: + case EiifRGBA8_SNORM: + if (!IsFloatImage(publicType.getBasicType())) + { + error(identifierLocation, + "internal image format requires a floating image type", + getBasicString(publicType.getBasicType())); + return; + } + break; + case EiifRGBA32I: + case EiifRGBA16I: + case EiifRGBA8I: + case EiifR32I: + if (!IsIntegerImage(publicType.getBasicType())) + { + error(identifierLocation, + "internal image format requires an integer image type", + getBasicString(publicType.getBasicType())); + return; + } + break; + case EiifRGBA32UI: + case EiifRGBA16UI: + case EiifRGBA8UI: + case EiifR32UI: + if (!IsUnsignedImage(publicType.getBasicType())) + { + error(identifierLocation, + "internal image format requires an unsigned image type", + getBasicString(publicType.getBasicType())); + return; + } + break; + case EiifUnspecified: + error(identifierLocation, "layout qualifier", "No image internal format specified"); + return; + default: + error(identifierLocation, "layout qualifier", "unrecognized token"); + return; + } + + // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers + switch (layoutQualifier.imageInternalFormat) + { + case EiifR32F: + case EiifR32I: + case EiifR32UI: + break; + default: + if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly) + { + error(identifierLocation, "layout qualifier", + "Except for images with the r32f, r32i and r32ui format qualifiers, " + "image variables must be qualified readonly and/or writeonly"); + return; + } + break; + } + } + else if (IsPixelLocal(publicType.getBasicType())) + { + if (getShaderType() != GL_FRAGMENT_SHADER) + { + error(identifierLocation, + "undefined use of pixel local storage outside a fragment shader", + getBasicString(publicType.getBasicType())); + return; + } + switch (layoutQualifier.imageInternalFormat) + { + case EiifR32F: + case EiifRGBA8: + if (publicType.getBasicType() != EbtPixelLocalANGLE) + { + error(identifierLocation, "pixel local storage format requires pixelLocalANGLE", + getImageInternalFormatString(layoutQualifier.imageInternalFormat)); + } + break; + case EiifRGBA8I: + if (publicType.getBasicType() != EbtIPixelLocalANGLE) + { + error(identifierLocation, + "pixel local storage format requires ipixelLocalANGLE", + getImageInternalFormatString(layoutQualifier.imageInternalFormat)); + } + break; + case EiifR32UI: + case EiifRGBA8UI: + if (publicType.getBasicType() != EbtUPixelLocalANGLE) + { + error(identifierLocation, + "pixel local storage format requires upixelLocalANGLE", + getImageInternalFormatString(layoutQualifier.imageInternalFormat)); + } + break; + case EiifR32I: + case EiifRGBA8_SNORM: + case EiifRGBA16F: + case EiifRGBA32F: + case EiifRGBA16I: + case EiifRGBA32I: + case EiifRGBA16UI: + case EiifRGBA32UI: + default: + ASSERT(!IsValidWithPixelLocalStorage(layoutQualifier.imageInternalFormat)); + error(identifierLocation, "illegal pixel local storage format", + getImageInternalFormatString(layoutQualifier.imageInternalFormat)); + break; + case EiifUnspecified: + error(identifierLocation, "pixel local storage requires a format specifier", + "layout qualifier"); + break; + } + checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation); + checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); + } + else + { + checkInternalFormatIsNotSpecified(identifierLocation, layoutQualifier.imageInternalFormat); + checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation); + } + + if (IsAtomicCounter(publicType.getBasicType())) + { + atomicCounterQualifierErrorCheck(publicType, identifierLocation); + } + else + { + checkOffsetIsNotSpecified(identifierLocation, layoutQualifier.offset); + } +} + +void TParseContext::checkBindingIsValid(const TSourceLoc &identifierLocation, const TType &type) +{ + TLayoutQualifier layoutQualifier = type.getLayoutQualifier(); + // Note that the ESSL 3.10 section 4.4.5 is not particularly clear on how the binding qualifier + // on arrays of arrays should be handled. We interpret the spec so that the binding value is + // incremented for each element of the innermost nested arrays. This is in line with how arrays + // of arrays of blocks are specified to behave in GLSL 4.50 and a conservative interpretation + // when it comes to which shaders are accepted by the compiler. + int arrayTotalElementCount = type.getArraySizeProduct(); + if (IsPixelLocal(type.getBasicType())) + { + checkPixelLocalStorageBindingIsValid(identifierLocation, type); + } + else if (mShaderVersion < 310) + { + checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding); + } + else if (IsImage(type.getBasicType())) + { + checkImageBindingIsValid(identifierLocation, layoutQualifier.binding, + arrayTotalElementCount); + } + else if (IsSampler(type.getBasicType())) + { + checkSamplerBindingIsValid(identifierLocation, layoutQualifier.binding, + arrayTotalElementCount); + } + else if (IsAtomicCounter(type.getBasicType())) + { + checkAtomicCounterBindingIsValid(identifierLocation, layoutQualifier.binding); + } + else + { + ASSERT(!IsOpaqueType(type.getBasicType())); + checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding); + } +} + +void TParseContext::checkCanUseLayoutQualifier(const TSourceLoc &location) +{ + constexpr std::array<TExtension, 4u> extensions{ + {TExtension::EXT_shader_framebuffer_fetch, + TExtension::EXT_shader_framebuffer_fetch_non_coherent, + TExtension::KHR_blend_equation_advanced, TExtension::ANGLE_shader_pixel_local_storage}}; + if (getShaderVersion() < 300 && !checkCanUseOneOfExtensions(location, extensions)) + { + error(location, "qualifier supported in GLSL ES 3.00 and above only", "layout"); + } +} + +bool TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location, + const ImmutableString &layoutQualifierName, + int versionRequired) +{ + + if (mShaderVersion < versionRequired) + { + error(location, "invalid layout qualifier: not supported", layoutQualifierName); + return false; + } + return true; +} + +bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location, + const TLayoutQualifier &layoutQualifier) +{ + const sh::WorkGroupSize &localSize = layoutQualifier.localSize; + for (size_t i = 0u; i < localSize.size(); ++i) + { + if (localSize[i] != -1) + { + error(location, + "invalid layout qualifier: only valid when used with 'in' in a compute shader " + "global layout declaration", + getWorkGroupSizeString(i)); + return false; + } + } + + return true; +} + +void TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location, + TLayoutImageInternalFormat internalFormat) +{ + if (internalFormat != EiifUnspecified) + { + if (mShaderVersion < 310) + { + if (IsValidWithPixelLocalStorage(internalFormat)) + { + error(location, + "invalid layout qualifier: not supported before GLSL ES 3.10, except pixel " + "local storage", + getImageInternalFormatString(internalFormat)); + } + else + { + error(location, "invalid layout qualifier: not supported before GLSL ES 3.10", + getImageInternalFormatString(internalFormat)); + } + } + else + { + if (IsValidWithPixelLocalStorage(internalFormat)) + { + error(location, + "invalid layout qualifier: only valid when used with images or pixel local " + "storage ", + getImageInternalFormatString(internalFormat)); + } + else + { + error(location, "invalid layout qualifier: only valid when used with images", + getImageInternalFormatString(internalFormat)); + } + } + } +} + +void TParseContext::checkIndexIsNotSpecified(const TSourceLoc &location, int index) +{ + if (index != -1) + { + error(location, + "invalid layout qualifier: only valid when used with a fragment shader output in " + "ESSL version >= 3.00 and EXT_blend_func_extended is enabled", + "index"); + } +} + +void TParseContext::checkBindingIsNotSpecified(const TSourceLoc &location, int binding) +{ + if (binding != -1) + { + if (mShaderVersion < 310) + { + error(location, + "invalid layout qualifier: only valid when used with pixel local storage", + "binding"); + } + else + { + error(location, + "invalid layout qualifier: only valid when used with opaque types or blocks", + "binding"); + } + } +} + +void TParseContext::checkOffsetIsNotSpecified(const TSourceLoc &location, int offset) +{ + if (offset != -1) + { + error(location, "invalid layout qualifier: only valid when used with atomic counters", + "offset"); + } +} + +void TParseContext::checkImageBindingIsValid(const TSourceLoc &location, + int binding, + int arrayTotalElementCount) +{ + // Expects arraySize to be 1 when setting binding for only a single variable. + if (binding >= 0 && binding + arrayTotalElementCount > mMaxImageUnits) + { + error(location, "image binding greater than gl_MaxImageUnits", "binding"); + } +} + +void TParseContext::checkSamplerBindingIsValid(const TSourceLoc &location, + int binding, + int arrayTotalElementCount) +{ + // Expects arraySize to be 1 when setting binding for only a single variable. + if (binding >= 0 && binding + arrayTotalElementCount > mMaxCombinedTextureImageUnits) + { + error(location, "sampler binding greater than maximum texture units", "binding"); + } +} + +void TParseContext::checkBlockBindingIsValid(const TSourceLoc &location, + const TQualifier &qualifier, + int binding, + int arraySize) +{ + int size = (arraySize == 0 ? 1 : arraySize); + if (qualifier == EvqUniform) + { + if (binding + size > mMaxUniformBufferBindings) + { + error(location, "uniform block binding greater than MAX_UNIFORM_BUFFER_BINDINGS", + "binding"); + } + } + else if (qualifier == EvqBuffer) + { + if (binding + size > mMaxShaderStorageBufferBindings) + { + error(location, + "shader storage block binding greater than MAX_SHADER_STORAGE_BUFFER_BINDINGS", + "binding"); + } + } +} +void TParseContext::checkAtomicCounterBindingIsValid(const TSourceLoc &location, int binding) +{ + if (binding >= mMaxAtomicCounterBindings) + { + error(location, "atomic counter binding greater than gl_MaxAtomicCounterBindings", + "binding"); + } +} + +void TParseContext::checkPixelLocalStorageBindingIsValid(const TSourceLoc &location, + const TType &type) +{ + TLayoutQualifier layoutQualifier = type.getLayoutQualifier(); + if (type.isArray()) + { + // PLS is not allowed in arrays. + // TODO(anglebug.com/7279): Consider allowing this once more backends are implemented. + error(location, "pixel local storage handles cannot be aggregated in arrays", "array"); + } + else if (layoutQualifier.binding < 0) + { + error(location, "pixel local storage requires a binding index", "layout qualifier"); + } + // TODO(anglebug.com/7279): + // else if (binding >= GL_MAX_LOCAL_STORAGE_PLANES_ANGLE) + // { + // } + else if (mPLSBindings.find(layoutQualifier.binding) != mPLSBindings.end()) + { + error(location, "duplicate pixel local storage binding index", + std::to_string(layoutQualifier.binding).c_str()); + } + else + { + mPLSBindings[layoutQualifier.binding] = layoutQualifier.imageInternalFormat; + // "mPLSBindings" is how we know whether pixel local storage uniforms have been declared, so + // flush the queue of potential errors once mPLSBindings isn't empty. + if (!mPLSPotentialErrors.empty()) + { + for (const auto &[loc, op] : mPLSPotentialErrors) + { + errorIfPLSDeclared(loc, op); + } + mPLSPotentialErrors.clear(); + } + } +} + +void TParseContext::checkUniformLocationInRange(const TSourceLoc &location, + int objectLocationCount, + const TLayoutQualifier &layoutQualifier) +{ + int loc = layoutQualifier.location; + if (loc >= 0) // Shader-specified location + { + if (loc >= mMaxUniformLocations || objectLocationCount > mMaxUniformLocations || + static_cast<unsigned int>(loc) + static_cast<unsigned int>(objectLocationCount) > + static_cast<unsigned int>(mMaxUniformLocations)) + { + error(location, "Uniform location out of range", "location"); + } + } +} + +void TParseContext::checkAttributeLocationInRange(const TSourceLoc &location, + int objectLocationCount, + const TLayoutQualifier &layoutQualifier) +{ + int loc = layoutQualifier.location; + if (loc >= 0) // Shader-specified location + { + if (loc >= mMaxVertexAttribs || objectLocationCount > mMaxVertexAttribs || + static_cast<unsigned int>(loc) + static_cast<unsigned int>(objectLocationCount) > + static_cast<unsigned int>(mMaxVertexAttribs)) + { + error(location, "Attribute location out of range", "location"); + } + } +} + +void TParseContext::checkYuvIsNotSpecified(const TSourceLoc &location, bool yuv) +{ + if (yuv != false) + { + error(location, "invalid layout qualifier: only valid on program outputs", "yuv"); + } +} + +void TParseContext::checkEarlyFragmentTestsIsNotSpecified(const TSourceLoc &location, + bool earlyFragmentTests) +{ + if (earlyFragmentTests != false) + { + error(location, + "invalid layout qualifier: only valid when used with 'in' in a fragment shader", + "early_fragment_tests"); + } +} + +void TParseContext::checkNoncoherentIsSpecified(const TSourceLoc &location, bool noncoherent) +{ + if (noncoherent == false) + { + error(location, + "'noncoherent' qualifier must be used when " + "GL_EXT_shader_framebuffer_fetch_non_coherent extension is used", + "noncoherent"); + } +} + +void TParseContext::checkNoncoherentIsNotSpecified(const TSourceLoc &location, bool noncoherent) +{ + if (noncoherent != false) + { + error(location, + "invalid layout qualifier: only valid when used with 'gl_LastFragData' or the " + "variable decorated with 'inout' in a fragment shader", + "noncoherent"); + } +} + +void TParseContext::checkTCSOutVarIndexIsValid(TIntermBinary *binaryExpression, + const TSourceLoc &location) +{ + ASSERT(binaryExpression->getOp() == EOpIndexIndirect || + binaryExpression->getOp() == EOpIndexDirect); + const TIntermSymbol *intermSymbol = binaryExpression->getRight()->getAsSymbolNode(); + if ((intermSymbol == nullptr) || (intermSymbol->getName() != "gl_InvocationID")) + { + error(location, + "tessellation-control per-vertex output l-value must be indexed with " + "gl_InvocationID", + "["); + } +} + +void TParseContext::functionCallRValueLValueErrorCheck(const TFunction *fnCandidate, + TIntermAggregate *fnCall) +{ + for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) + { + TQualifier qual = fnCandidate->getParam(i)->getType().getQualifier(); + TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped(); + bool argumentIsRead = (IsQualifierUnspecified(qual) || qual == EvqParamIn || + qual == EvqParamInOut || qual == EvqParamConst); + if (argumentIsRead) + { + markStaticReadIfSymbol(argument); + if (!IsImage(argument->getBasicType())) + { + if (argument->getMemoryQualifier().writeonly) + { + error(argument->getLine(), + "Writeonly value cannot be passed for 'in' or 'inout' parameters.", + fnCall->functionName()); + return; + } + } + } + if (qual == EvqParamOut || qual == EvqParamInOut) + { + if (!checkCanBeLValue(argument->getLine(), "assign", argument)) + { + error(argument->getLine(), + "Constant value cannot be passed for 'out' or 'inout' parameters.", + fnCall->functionName()); + return; + } + } + } +} + +void TParseContext::checkInvariantVariableQualifier(bool invariant, + const TQualifier qualifier, + const TSourceLoc &invariantLocation) +{ + if (!invariant) + return; + + if (mShaderVersion < 300) + { + // input variables in the fragment shader can be also qualified as invariant + if (!sh::CanBeInvariantESSL1(qualifier)) + { + error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); + } + } + else + { + if (!sh::CanBeInvariantESSL3OrGreater(qualifier)) + { + error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); + } + } +} + +void TParseContext::checkAdvancedBlendEquationsNotSpecified( + const TSourceLoc &location, + const AdvancedBlendEquations &advancedBlendEquations, + const TQualifier &qualifier) +{ + if (advancedBlendEquations.any() && qualifier != EvqFragmentOut) + { + error(location, + "invalid layout qualifier: blending equation qualifiers are only permitted on the " + "fragment 'out' qualifier ", + "blend_support_qualifier"); + } +} + +bool TParseContext::isExtensionEnabled(TExtension extension) const +{ + return IsExtensionEnabled(extensionBehavior(), extension); +} + +void TParseContext::handleExtensionDirective(const TSourceLoc &loc, + const char *extName, + const char *behavior) +{ + angle::pp::SourceLocation srcLoc; + srcLoc.file = loc.first_file; + srcLoc.line = loc.first_line; + mDirectiveHandler.handleExtension(srcLoc, extName, behavior); +} + +void TParseContext::handlePragmaDirective(const TSourceLoc &loc, + const char *name, + const char *value, + bool stdgl) +{ + angle::pp::SourceLocation srcLoc; + srcLoc.file = loc.first_file; + srcLoc.line = loc.first_line; + mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl); +} + +sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const +{ + sh::WorkGroupSize result(-1); + for (size_t i = 0u; i < result.size(); ++i) + { + if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1) + { + result[i] = 1; + } + else + { + result[i] = mComputeShaderLocalSize[i]; + } + } + return result; +} + +TIntermConstantUnion *TParseContext::addScalarLiteral(const TConstantUnion *constantUnion, + const TSourceLoc &line) +{ + TIntermConstantUnion *node = new TIntermConstantUnion( + constantUnion, TType(constantUnion->getType(), EbpUndefined, EvqConst)); + node->setLine(line); + return node; +} + +///////////////////////////////////////////////////////////////////////////////// +// +// Non-Errors. +// +///////////////////////////////////////////////////////////////////////////////// + +const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, + const ImmutableString &name, + const TSymbol *symbol) +{ + if (!symbol) + { + error(location, "undeclared identifier", name); + return nullptr; + } + + if (!symbol->isVariable()) + { + error(location, "variable expected", name); + return nullptr; + } + + const TVariable *variable = static_cast<const TVariable *>(symbol); + + if (!variable->extensions().empty() && variable->extensions()[0] != TExtension::UNDEFINED) + { + checkCanUseOneOfExtensions(location, variable->extensions()); + } + + // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables + if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared && + variable->getType().getQualifier() == EvqWorkGroupSize) + { + error(location, + "It is an error to use gl_WorkGroupSize before declaring the local group size", + "gl_WorkGroupSize"); + } + + // If EXT_shader_framebuffer_fetch_non_coherent is used, gl_LastFragData should be decorated + // with 'layout(noncoherent)' EXT_shader_framebuffer_fetch_non_coherent spec: "Unless the + // GL_EXT_shader_framebuffer_fetch extension has been enabled in addition, it's an error to use + // gl_LastFragData if it hasn't been explicitly redeclared with layout(noncoherent)." + if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent) && + !isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) && + variable->getType().getQualifier() == EvqLastFragData) + { + checkNoncoherentIsSpecified(location, variable->getType().getLayoutQualifier().noncoherent); + } + return variable; +} + +TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location, + const ImmutableString &name, + const TSymbol *symbol) +{ + const TVariable *variable = getNamedVariable(location, name, symbol); + + if (!variable) + { + TIntermTyped *node = CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); + node->setLine(location); + return node; + } + + const TType &variableType = variable->getType(); + TIntermTyped *node = nullptr; + + if (variable->getConstPointer() && variableType.canReplaceWithConstantUnion()) + { + const TConstantUnion *constArray = variable->getConstPointer(); + node = new TIntermConstantUnion(constArray, variableType); + } + else if (variableType.getQualifier() == EvqWorkGroupSize && mComputeShaderLocalSizeDeclared) + { + // gl_WorkGroupSize can be used to size arrays according to the ESSL 3.10.4 spec, so it + // needs to be added to the AST as a constant and not as a symbol. + sh::WorkGroupSize workGroupSize = getComputeShaderLocalSize(); + TConstantUnion *constArray = new TConstantUnion[3]; + for (size_t i = 0; i < 3; ++i) + { + constArray[i].setUConst(static_cast<unsigned int>(workGroupSize[i])); + } + + ASSERT(variableType.getBasicType() == EbtUInt); + ASSERT(variableType.getObjectSize() == 3); + + TType type(variableType); + type.setQualifier(EvqConst); + node = new TIntermConstantUnion(constArray, type); + } + else if ((mGeometryShaderInputPrimitiveType != EptUndefined) && + (variableType.getQualifier() == EvqPerVertexIn)) + { + ASSERT(symbolTable.getGlInVariableWithArraySize() != nullptr); + node = new TIntermSymbol(symbolTable.getGlInVariableWithArraySize()); + } + else + { + node = new TIntermSymbol(variable); + } + ASSERT(node != nullptr); + node->setLine(location); + return node; +} + +void TParseContext::adjustRedeclaredBuiltInType(const ImmutableString &identifier, TType *type) +{ + if (identifier == "gl_ClipDistance") + { + type->setQualifier(EvqClipDistance); + } + else if (identifier == "gl_CullDistance") + { + type->setQualifier(EvqCullDistance); + } + else if (identifier == "gl_LastFragData") + { + type->setQualifier(EvqLastFragData); + } +} + +// Initializers show up in several places in the grammar. Have one set of +// code to handle them here. +// +// Returns true on success. +bool TParseContext::executeInitializer(const TSourceLoc &line, + const ImmutableString &identifier, + TType *type, + TIntermTyped *initializer, + TIntermBinary **initNode) +{ + ASSERT(initNode != nullptr); + ASSERT(*initNode == nullptr); + + if (type->isUnsizedArray()) + { + // In case initializer is not an array or type has more dimensions than initializer, this + // will default to setting array sizes to 1. We have not checked yet whether the initializer + // actually is an array or not. Having a non-array initializer for an unsized array will + // result in an error later, so we don't generate an error message here. + type->sizeUnsizedArrays(initializer->getType().getArraySizes()); + } + + const TQualifier qualifier = type->getQualifier(); + + bool constError = false; + if (qualifier == EvqConst) + { + if (EvqConst != initializer->getType().getQualifier()) + { + TInfoSinkBase reasonStream; + reasonStream << "assigning non-constant to '" << *type << "'"; + error(line, reasonStream.c_str(), "="); + + // We're still going to declare the variable to avoid extra error messages. + type->setQualifier(EvqTemporary); + constError = true; + } + } + + TVariable *variable = nullptr; + if (!declareVariable(line, identifier, type, &variable)) + { + return false; + } + + if (constError) + { + return false; + } + + bool nonConstGlobalInitializers = + IsExtensionEnabled(mDirectiveHandler.extensionBehavior(), + TExtension::EXT_shader_non_constant_global_initializers); + bool globalInitWarning = false; + if (symbolTable.atGlobalLevel() && + !ValidateGlobalInitializer(initializer, mShaderVersion, sh::IsWebGLBasedSpec(mShaderSpec), + nonConstGlobalInitializers, &globalInitWarning)) + { + // Error message does not completely match behavior with ESSL 1.00, but + // we want to steer developers towards only using constant expressions. + error(line, "global variable initializers must be constant expressions", "="); + return false; + } + if (globalInitWarning) + { + warning( + line, + "global variable initializers should be constant expressions " + "(uniforms and globals are allowed in global initializers for legacy compatibility)", + "="); + } + + // identifier must be of type constant, a global, or a temporary + if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) + { + error(line, " cannot initialize this type of qualifier ", + variable->getType().getQualifierString()); + return false; + } + + TIntermSymbol *intermSymbol = new TIntermSymbol(variable); + intermSymbol->setLine(line); + + if (!binaryOpCommonCheck(EOpInitialize, intermSymbol, initializer, line)) + { + assignError(line, "=", variable->getType(), initializer->getType()); + return false; + } + + if (qualifier == EvqConst) + { + // Save the constant folded value to the variable if possible. + const TConstantUnion *constArray = initializer->getConstantValue(); + if (constArray) + { + variable->shareConstPointer(constArray); + if (initializer->getType().canReplaceWithConstantUnion()) + { + ASSERT(*initNode == nullptr); + return true; + } + } + } + + *initNode = new TIntermBinary(EOpInitialize, intermSymbol, initializer); + markStaticReadIfSymbol(initializer); + (*initNode)->setLine(line); + return true; +} + +TIntermNode *TParseContext::addConditionInitializer(const TPublicType &pType, + const ImmutableString &identifier, + TIntermTyped *initializer, + const TSourceLoc &loc) +{ + checkIsScalarBool(loc, pType); + TIntermBinary *initNode = nullptr; + TType *type = new TType(pType); + if (executeInitializer(loc, identifier, type, initializer, &initNode)) + { + // The initializer is valid. The init condition needs to have a node - either the + // initializer node, or a constant node in case the initialized variable is const and won't + // be recorded in the AST. + if (initNode == nullptr) + { + return initializer; + } + else + { + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->appendDeclarator(initNode); + return declaration; + } + } + return nullptr; +} + +TIntermNode *TParseContext::addLoop(TLoopType type, + TIntermNode *init, + TIntermNode *cond, + TIntermTyped *expr, + TIntermNode *body, + const TSourceLoc &line) +{ + TIntermNode *node = nullptr; + TIntermTyped *typedCond = nullptr; + if (cond) + { + markStaticReadIfSymbol(cond); + typedCond = cond->getAsTyped(); + } + if (expr) + { + markStaticReadIfSymbol(expr); + } + // In case the loop body was not parsed as a block and contains a statement that simply refers + // to a variable, we need to mark it as statically used. + if (body) + { + markStaticReadIfSymbol(body); + } + if (cond == nullptr || typedCond) + { + if (type == ELoopDoWhile && typedCond) + { + checkIsScalarBool(line, typedCond); + } + // In the case of other loops, it was checked before that the condition is a scalar boolean. + ASSERT(mDiagnostics->numErrors() > 0 || typedCond == nullptr || + (typedCond->getBasicType() == EbtBool && !typedCond->isArray() && + !typedCond->isVector())); + + node = new TIntermLoop(type, init, typedCond, expr, EnsureBlock(body)); + node->setLine(line); + return node; + } + + ASSERT(type != ELoopDoWhile); + + TIntermDeclaration *declaration = cond->getAsDeclarationNode(); + ASSERT(declaration); + TIntermBinary *declarator = declaration->getSequence()->front()->getAsBinaryNode(); + ASSERT(declarator->getLeft()->getAsSymbolNode()); + + // The condition is a declaration. In the AST representation we don't support declarations as + // loop conditions. Wrap the loop to a block that declares the condition variable and contains + // the loop. + TIntermBlock *block = new TIntermBlock(); + + TIntermDeclaration *declareCondition = new TIntermDeclaration(); + declareCondition->appendDeclarator(declarator->getLeft()->deepCopy()); + block->appendStatement(declareCondition); + + TIntermBinary *conditionInit = new TIntermBinary(EOpAssign, declarator->getLeft()->deepCopy(), + declarator->getRight()->deepCopy()); + TIntermLoop *loop = new TIntermLoop(type, init, conditionInit, expr, EnsureBlock(body)); + block->appendStatement(loop); + loop->setLine(line); + block->setLine(line); + return block; +} + +TIntermNode *TParseContext::addIfElse(TIntermTyped *cond, + TIntermNodePair code, + const TSourceLoc &loc) +{ + bool isScalarBool = checkIsScalarBool(loc, cond); + // In case the conditional statements were not parsed as blocks and contain a statement that + // simply refers to a variable, we need to mark them as statically used. + if (code.node1) + { + markStaticReadIfSymbol(code.node1); + } + if (code.node2) + { + markStaticReadIfSymbol(code.node2); + } + + // For compile time constant conditions, prune the code now. + if (isScalarBool && cond->getAsConstantUnion()) + { + if (cond->getAsConstantUnion()->getBConst(0) == true) + { + return EnsureBlock(code.node1); + } + else + { + return EnsureBlock(code.node2); + } + } + + TIntermIfElse *node = new TIntermIfElse(cond, EnsureBlock(code.node1), EnsureBlock(code.node2)); + markStaticReadIfSymbol(cond); + node->setLine(loc); + + return node; +} + +void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier) +{ + checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision, + typeSpecifier->getBasicType()); + + if (mShaderVersion < 300 && typeSpecifier->isArray()) + { + error(typeSpecifier->getLine(), "not supported", "first-class array"); + typeSpecifier->clearArrayness(); + } +} + +TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder, + const TPublicType &typeSpecifier) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); + + TPublicType returnType = typeSpecifier; + returnType.qualifier = typeQualifier.qualifier; + returnType.invariant = typeQualifier.invariant; + returnType.precise = typeQualifier.precise; + returnType.layoutQualifier = typeQualifier.layoutQualifier; + returnType.memoryQualifier = typeQualifier.memoryQualifier; + returnType.precision = typeSpecifier.precision; + + if (typeQualifier.precision != EbpUndefined) + { + returnType.precision = typeQualifier.precision; + } + + checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision, + typeSpecifier.getBasicType()); + + checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier, + typeSpecifier.getLine()); + + checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier); + + checkEarlyFragmentTestsIsNotSpecified(typeSpecifier.getLine(), + returnType.layoutQualifier.earlyFragmentTests); + + if (returnType.qualifier == EvqSampleIn || returnType.qualifier == EvqSampleOut) + { + mSampleQualifierSpecified = true; + } + + if (mShaderVersion < 300) + { + if (typeSpecifier.isArray()) + { + error(typeSpecifier.getLine(), "not supported", "first-class array"); + returnType.clearArrayness(); + } + + if (returnType.qualifier == EvqAttribute && + (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) + { + error(typeSpecifier.getLine(), "cannot be bool or int", + getQualifierString(returnType.qualifier)); + } + + if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) && + (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) + { + error(typeSpecifier.getLine(), "cannot be bool or int", + getQualifierString(returnType.qualifier)); + } + } + else + { + if (!returnType.layoutQualifier.isEmpty()) + { + checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout"); + } + if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || + returnType.qualifier == EvqFragmentOut || returnType.qualifier == EvqFragmentInOut) + { + checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, + typeSpecifier.getLine()); + } + if (returnType.qualifier == EvqComputeIn) + { + error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size", + "in"); + } + } + + return returnType; +} + +void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, + const TPublicType &type, + const TSourceLoc &qualifierLocation) +{ + // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. + if (type.getBasicType() == EbtBool) + { + error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); + } + + // Specific restrictions apply for vertex shader inputs and fragment shader outputs. + switch (qualifier) + { + case EvqVertexIn: + // ESSL 3.00 section 4.3.4 + if (type.isArray()) + { + error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); + } + // Vertex inputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck + return; + case EvqFragmentOut: + case EvqFragmentInOut: + // ESSL 3.00 section 4.3.6 + if (type.typeSpecifierNonArray.isMatrix()) + { + error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); + } + // Fragment outputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck + return; + default: + break; + } + + // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of + // restrictions. + bool typeContainsIntegers = + (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt || + type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt)); + bool extendedShaderTypes = mShaderVersion >= 320 || + isExtensionEnabled(TExtension::EXT_geometry_shader) || + isExtensionEnabled(TExtension::OES_geometry_shader) || + isExtensionEnabled(TExtension::EXT_tessellation_shader); + if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut && + (!extendedShaderTypes || mShaderType == GL_FRAGMENT_SHADER)) + { + error(qualifierLocation, "must use 'flat' interpolation here", + getQualifierString(qualifier)); + } + + if (type.getBasicType() == EbtStruct) + { + // ESSL 3.00 sections 4.3.4 and 4.3.6. + // These restrictions are only implied by the ESSL 3.00 spec, but + // the ESSL 3.10 spec lists these restrictions explicitly. + if (type.isArray()) + { + error(qualifierLocation, "cannot be an array of structures", + getQualifierString(qualifier)); + } + if (type.isStructureContainingArrays()) + { + error(qualifierLocation, "cannot be a structure containing an array", + getQualifierString(qualifier)); + } + if (type.isStructureContainingType(EbtStruct)) + { + error(qualifierLocation, "cannot be a structure containing a structure", + getQualifierString(qualifier)); + } + if (type.isStructureContainingType(EbtBool)) + { + error(qualifierLocation, "cannot be a structure containing a bool", + getQualifierString(qualifier)); + } + } +} + +void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier) +{ + if (qualifier.getType() == QtStorage) + { + const TStorageQualifierWrapper &storageQualifier = + static_cast<const TStorageQualifierWrapper &>(qualifier); + if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst && + !symbolTable.atGlobalLevel()) + { + error(storageQualifier.getLine(), + "Local variables can only use the const storage qualifier.", + storageQualifier.getQualifierString()); + } + } +} + +void TParseContext::checkMemoryQualifierIsNotSpecified(const TMemoryQualifier &memoryQualifier, + const TSourceLoc &location) +{ + const std::string reason( + "Only allowed with shader storage blocks, variables declared within shader storage blocks " + "and variables declared as image types."); + if (memoryQualifier.readonly) + { + error(location, reason.c_str(), "readonly"); + } + if (memoryQualifier.writeonly) + { + error(location, reason.c_str(), "writeonly"); + } + if (memoryQualifier.coherent) + { + error(location, reason.c_str(), "coherent"); + } + if (memoryQualifier.restrictQualifier) + { + error(location, reason.c_str(), "restrict"); + } + if (memoryQualifier.volatileQualifier) + { + error(location, reason.c_str(), "volatile"); + } +} + +// Make sure there is no offset overlapping, and store the newly assigned offset to "type" in +// intermediate tree. +void TParseContext::checkAtomicCounterOffsetDoesNotOverlap(bool forceAppend, + const TSourceLoc &loc, + TType *type) +{ + const size_t size = type->isArray() ? kAtomicCounterArrayStride * type->getArraySizeProduct() + : kAtomicCounterSize; + TLayoutQualifier layoutQualifier = type->getLayoutQualifier(); + auto &bindingState = mAtomicCounterBindingStates[layoutQualifier.binding]; + int offset; + if (layoutQualifier.offset == -1 || forceAppend) + { + offset = bindingState.appendSpan(size); + } + else + { + offset = bindingState.insertSpan(layoutQualifier.offset, size); + } + if (offset == -1) + { + error(loc, "Offset overlapping", "atomic counter"); + return; + } + layoutQualifier.offset = offset; + type->setLayoutQualifier(layoutQualifier); +} + +void TParseContext::checkAtomicCounterOffsetAlignment(const TSourceLoc &location, const TType &type) +{ + TLayoutQualifier layoutQualifier = type.getLayoutQualifier(); + + // OpenGL ES 3.1 Table 6.5, Atomic counter offset must be a multiple of 4 + if (layoutQualifier.offset % 4 != 0) + { + error(location, "Offset must be multiple of 4", "atomic counter"); + } +} + +void TParseContext::checkGeometryShaderInputAndSetArraySize(const TSourceLoc &location, + const ImmutableString &token, + TType *type) +{ + if (IsGeometryShaderInput(mShaderType, type->getQualifier())) + { + if (type->isArray() && type->getOutermostArraySize() == 0u) + { + // Set size for the unsized geometry shader inputs if they are declared after a valid + // input primitive declaration. + if (mGeometryShaderInputPrimitiveType != EptUndefined) + { + ASSERT(symbolTable.getGlInVariableWithArraySize() != nullptr); + type->sizeOutermostUnsizedArray( + symbolTable.getGlInVariableWithArraySize()->getType().getOutermostArraySize()); + } + else + { + // [GLSL ES 3.2 SPEC Chapter 4.4.1.2] + // An input can be declared without an array size if there is a previous layout + // which specifies the size. + warning(location, + "Missing a valid input primitive declaration before declaring an unsized " + "array input", + "Deferred"); + mDeferredArrayTypesToSize.push_back(type); + } + } + else if (type->isArray()) + { + setGeometryShaderInputArraySize(type->getOutermostArraySize(), location); + } + else + { + error(location, "Geometry shader input variable must be declared as an array", token); + } + } +} + +void TParseContext::checkTessellationShaderUnsizedArraysAndSetSize(const TSourceLoc &location, + const ImmutableString &token, + TType *type) +{ + TQualifier qualifier = type->getQualifier(); + if (!IsTessellationControlShaderOutput(mShaderType, qualifier) && + !IsTessellationControlShaderInput(mShaderType, qualifier) && + !IsTessellationEvaluationShaderInput(mShaderType, qualifier)) + { + return; + } + + // Such variables must be declared as arrays or inside output blocks declared as arrays. + if (!type->isArray()) + { + error(location, "Tessellation interface variables must be declared as an array", token); + return; + } + + // If a size is specified, it must match the maximum patch size. + unsigned int outermostSize = type->getOutermostArraySize(); + if (outermostSize == 0u) + { + switch (qualifier) + { + case EvqTessControlIn: + case EvqTessEvaluationIn: + case EvqFlatIn: + case EvqCentroidIn: + case EvqSmoothIn: + case EvqSampleIn: + // Declaring an array size is optional. If no size is specified, it will be taken + // from the implementation-dependent maximum patch size (gl_MaxPatchVertices). + ASSERT(mMaxPatchVertices > 0); + type->sizeOutermostUnsizedArray(mMaxPatchVertices); + break; + case EvqTessControlOut: + case EvqFlatOut: + case EvqCentroidOut: + case EvqSmoothOut: + case EvqSampleOut: + // Declaring an array size is optional. If no size is specified, it will be taken + // from output patch size declared in the shader. If the patch size is not yet + // declared, this is deferred until such time as it does. + if (mTessControlShaderOutputVertices == 0) + { + mDeferredArrayTypesToSize.push_back(type); + } + else + { + type->sizeOutermostUnsizedArray(mTessControlShaderOutputVertices); + } + break; + default: + UNREACHABLE(); + break; + } + return; + } + + if (IsTessellationControlShaderInput(mShaderType, qualifier) || + IsTessellationEvaluationShaderInput(mShaderType, qualifier)) + { + if (outermostSize != static_cast<unsigned int>(mMaxPatchVertices)) + { + error(location, + "If a size is specified for a tessellation control or evaluation user-defined " + "input variable, it must match the maximum patch size (gl_MaxPatchVertices).", + token); + } + } + else if (IsTessellationControlShaderOutput(mShaderType, qualifier)) + { + if (outermostSize != static_cast<unsigned int>(mTessControlShaderOutputVertices) && + mTessControlShaderOutputVertices != 0) + { + error(location, + "If a size is specified for a tessellation control user-defined per-vertex " + "output variable, it must match the the number of vertices in the output " + "patch.", + token); + } + } +} + +TIntermDeclaration *TParseContext::parseSingleDeclaration( + TPublicType &publicType, + const TSourceLoc &identifierOrTypeLocation, + const ImmutableString &identifier) +{ + TType *type = new TType(publicType); + if (mCompileOptions.flattenPragmaSTDGLInvariantAll && + mDirectiveHandler.pragma().stdgl.invariantAll) + { + TQualifier qualifier = type->getQualifier(); + + // The directive handler has already taken care of rejecting invalid uses of this pragma + // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all + // affected variable declarations: + // + // 1. Built-in special variables which are inputs to the fragment shader. (These are handled + // elsewhere, in TranslatorGLSL.) + // + // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It + // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but + // the way this is currently implemented we have to enable this compiler option before + // parsing the shader and determining the shading language version it uses. If this were + // implemented as a post-pass, the workaround could be more targeted. + if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut) + { + type->setInvariant(true); + } + } + + checkGeometryShaderInputAndSetArraySize(identifierOrTypeLocation, identifier, type); + checkTessellationShaderUnsizedArraysAndSetSize(identifierOrTypeLocation, identifier, type); + + declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, + identifierOrTypeLocation); + + bool emptyDeclaration = (identifier == ""); + mDeferredNonEmptyDeclarationErrorCheck = emptyDeclaration; + + TIntermSymbol *symbol = nullptr; + if (emptyDeclaration) + { + emptyDeclarationErrorCheck(*type, identifierOrTypeLocation); + // In most cases we don't need to create a symbol node for an empty declaration. + // But if the empty declaration is declaring a struct type, the symbol node will store that. + if (type->getBasicType() == EbtStruct) + { + TVariable *emptyVariable = + new TVariable(&symbolTable, kEmptyImmutableString, type, SymbolType::Empty); + symbol = new TIntermSymbol(emptyVariable); + } + else if (IsAtomicCounter(publicType.getBasicType())) + { + setAtomicCounterBindingDefaultOffset(publicType, identifierOrTypeLocation); + } + } + else + { + nonEmptyDeclarationErrorCheck(publicType, identifierOrTypeLocation); + + checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, type); + + if (IsAtomicCounter(type->getBasicType())) + { + checkAtomicCounterOffsetDoesNotOverlap(false, identifierOrTypeLocation, type); + + checkAtomicCounterOffsetAlignment(identifierOrTypeLocation, *type); + } + + TVariable *variable = nullptr; + if (declareVariable(identifierOrTypeLocation, identifier, type, &variable)) + { + symbol = new TIntermSymbol(variable); + } + } + + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->setLine(identifierOrTypeLocation); + if (symbol) + { + symbol->setLine(identifierOrTypeLocation); + declaration->appendDeclarator(symbol); + } + return declaration; +} + +TIntermDeclaration *TParseContext::parseSingleArrayDeclaration( + TPublicType &elementType, + const TSourceLoc &identifierLocation, + const ImmutableString &identifier, + const TSourceLoc &indexLocation, + const TVector<unsigned int> &arraySizes) +{ + mDeferredNonEmptyDeclarationErrorCheck = false; + + declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier, + identifierLocation); + + nonEmptyDeclarationErrorCheck(elementType, identifierLocation); + + checkIsValidTypeAndQualifierForArray(indexLocation, elementType); + + TType *arrayType = new TType(elementType); + arrayType->makeArrays(arraySizes); + + checkArrayOfArraysInOut(indexLocation, elementType, *arrayType); + + checkGeometryShaderInputAndSetArraySize(indexLocation, identifier, arrayType); + checkTessellationShaderUnsizedArraysAndSetSize(indexLocation, identifier, arrayType); + + checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, arrayType); + + if (IsAtomicCounter(arrayType->getBasicType())) + { + checkAtomicCounterOffsetDoesNotOverlap(false, identifierLocation, arrayType); + + checkAtomicCounterOffsetAlignment(identifierLocation, *arrayType); + } + + adjustRedeclaredBuiltInType(identifier, arrayType); + + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->setLine(identifierLocation); + + TVariable *variable = nullptr; + if (declareVariable(identifierLocation, identifier, arrayType, &variable)) + { + TIntermSymbol *symbol = new TIntermSymbol(variable); + symbol->setLine(identifierLocation); + declaration->appendDeclarator(symbol); + } + + return declaration; +} + +TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, + const TSourceLoc &identifierLocation, + const ImmutableString &identifier, + const TSourceLoc &initLocation, + TIntermTyped *initializer) +{ + mDeferredNonEmptyDeclarationErrorCheck = false; + + declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, + identifierLocation); + + nonEmptyDeclarationErrorCheck(publicType, identifierLocation); + + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->setLine(identifierLocation); + + TIntermBinary *initNode = nullptr; + TType *type = new TType(publicType); + if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode)) + { + if (initNode) + { + declaration->appendDeclarator(initNode); + } + else if (publicType.isStructSpecifier()) + { + // The initialization got constant folded. If it's a struct, declare the struct anyway. + TVariable *emptyVariable = + new TVariable(&symbolTable, kEmptyImmutableString, type, SymbolType::Empty); + TIntermSymbol *symbol = new TIntermSymbol(emptyVariable); + symbol->setLine(publicType.getLine()); + declaration->appendDeclarator(symbol); + } + } + return declaration; +} + +TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration( + TPublicType &elementType, + const TSourceLoc &identifierLocation, + const ImmutableString &identifier, + const TSourceLoc &indexLocation, + const TVector<unsigned int> &arraySizes, + const TSourceLoc &initLocation, + TIntermTyped *initializer) +{ + mDeferredNonEmptyDeclarationErrorCheck = false; + + declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier, + identifierLocation); + + nonEmptyDeclarationErrorCheck(elementType, identifierLocation); + + checkIsValidTypeAndQualifierForArray(indexLocation, elementType); + + TType *arrayType = new TType(elementType); + arrayType->makeArrays(arraySizes); + + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->setLine(identifierLocation); + + // initNode will correspond to the whole of "type b[n] = initializer". + TIntermBinary *initNode = nullptr; + if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) + { + if (initNode) + { + declaration->appendDeclarator(initNode); + } + } + + return declaration; +} + +TIntermGlobalQualifierDeclaration *TParseContext::parseGlobalQualifierDeclaration( + const TTypeQualifierBuilder &typeQualifierBuilder, + const TSourceLoc &identifierLoc, + const ImmutableString &identifier, + const TSymbol *symbol) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); + + if (!typeQualifier.invariant && !typeQualifier.precise) + { + error(identifierLoc, "Expected invariant or precise", identifier); + return nullptr; + } + if (typeQualifier.invariant && !checkIsAtGlobalLevel(identifierLoc, "invariant varying")) + { + return nullptr; + } + if (!symbol) + { + error(identifierLoc, "undeclared identifier declared as invariant or precise", identifier); + return nullptr; + } + if (!IsQualifierUnspecified(typeQualifier.qualifier)) + { + error(identifierLoc, "invariant or precise declaration specifies qualifier", + getQualifierString(typeQualifier.qualifier)); + } + if (typeQualifier.precision != EbpUndefined) + { + error(identifierLoc, "invariant or precise declaration specifies precision", + getPrecisionString(typeQualifier.precision)); + } + if (!typeQualifier.layoutQualifier.isEmpty()) + { + error(identifierLoc, "invariant or precise declaration specifies layout", "'layout'"); + } + + const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); + if (!variable) + { + return nullptr; + } + const TType &type = variable->getType(); + + checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(), + typeQualifier.line); + checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); + + symbolTable.addInvariantVarying(*variable); + + TIntermSymbol *intermSymbol = new TIntermSymbol(variable); + intermSymbol->setLine(identifierLoc); + + return new TIntermGlobalQualifierDeclaration(intermSymbol, typeQualifier.precise, + identifierLoc); +} + +void TParseContext::parseDeclarator(TPublicType &publicType, + const TSourceLoc &identifierLocation, + const ImmutableString &identifier, + TIntermDeclaration *declarationOut) +{ + // If the declaration starting this declarator list was empty (example: int,), some checks were + // not performed. + if (mDeferredNonEmptyDeclarationErrorCheck) + { + nonEmptyDeclarationErrorCheck(publicType, identifierLocation); + mDeferredNonEmptyDeclarationErrorCheck = false; + } + + checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); + + TType *type = new TType(publicType); + + checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier, type); + checkTessellationShaderUnsizedArraysAndSetSize(identifierLocation, identifier, type); + + checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, type); + + if (IsAtomicCounter(type->getBasicType())) + { + checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, type); + + checkAtomicCounterOffsetAlignment(identifierLocation, *type); + } + + adjustRedeclaredBuiltInType(identifier, type); + + TVariable *variable = nullptr; + if (declareVariable(identifierLocation, identifier, type, &variable)) + { + TIntermSymbol *symbol = new TIntermSymbol(variable); + symbol->setLine(identifierLocation); + declarationOut->appendDeclarator(symbol); + } +} + +void TParseContext::parseArrayDeclarator(TPublicType &elementType, + const TSourceLoc &identifierLocation, + const ImmutableString &identifier, + const TSourceLoc &arrayLocation, + const TVector<unsigned int> &arraySizes, + TIntermDeclaration *declarationOut) +{ + // If the declaration starting this declarator list was empty (example: int,), some checks were + // not performed. + if (mDeferredNonEmptyDeclarationErrorCheck) + { + nonEmptyDeclarationErrorCheck(elementType, identifierLocation); + mDeferredNonEmptyDeclarationErrorCheck = false; + } + + checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType); + + if (checkIsValidTypeAndQualifierForArray(arrayLocation, elementType)) + { + TType *arrayType = new TType(elementType); + arrayType->makeArrays(arraySizes); + + checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier, arrayType); + checkTessellationShaderUnsizedArraysAndSetSize(identifierLocation, identifier, arrayType); + + checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, arrayType); + + if (IsAtomicCounter(arrayType->getBasicType())) + { + checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, arrayType); + + checkAtomicCounterOffsetAlignment(identifierLocation, *arrayType); + } + + adjustRedeclaredBuiltInType(identifier, arrayType); + + TVariable *variable = nullptr; + if (declareVariable(identifierLocation, identifier, arrayType, &variable)) + { + TIntermSymbol *symbol = new TIntermSymbol(variable); + symbol->setLine(identifierLocation); + declarationOut->appendDeclarator(symbol); + } + } +} + +void TParseContext::parseInitDeclarator(const TPublicType &publicType, + const TSourceLoc &identifierLocation, + const ImmutableString &identifier, + const TSourceLoc &initLocation, + TIntermTyped *initializer, + TIntermDeclaration *declarationOut) +{ + // If the declaration starting this declarator list was empty (example: int,), some checks were + // not performed. + if (mDeferredNonEmptyDeclarationErrorCheck) + { + nonEmptyDeclarationErrorCheck(publicType, identifierLocation); + mDeferredNonEmptyDeclarationErrorCheck = false; + } + + checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); + + TIntermBinary *initNode = nullptr; + TType *type = new TType(publicType); + if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode)) + { + // + // build the intermediate representation + // + if (initNode) + { + declarationOut->appendDeclarator(initNode); + } + } +} + +void TParseContext::parseArrayInitDeclarator(const TPublicType &elementType, + const TSourceLoc &identifierLocation, + const ImmutableString &identifier, + const TSourceLoc &indexLocation, + const TVector<unsigned int> &arraySizes, + const TSourceLoc &initLocation, + TIntermTyped *initializer, + TIntermDeclaration *declarationOut) +{ + // If the declaration starting this declarator list was empty (example: int,), some checks were + // not performed. + if (mDeferredNonEmptyDeclarationErrorCheck) + { + nonEmptyDeclarationErrorCheck(elementType, identifierLocation); + mDeferredNonEmptyDeclarationErrorCheck = false; + } + + checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType); + + checkIsValidTypeAndQualifierForArray(indexLocation, elementType); + + TType *arrayType = new TType(elementType); + arrayType->makeArrays(arraySizes); + + // initNode will correspond to the whole of "b[n] = initializer". + TIntermBinary *initNode = nullptr; + if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) + { + if (initNode) + { + declarationOut->appendDeclarator(initNode); + } + } +} + +TIntermNode *TParseContext::addEmptyStatement(const TSourceLoc &location) +{ + // It's simpler to parse an empty statement as a constant expression rather than having a + // different type of node just for empty statements, that will be pruned from the AST anyway. + TIntermNode *node = CreateZeroNode(TType(EbtInt, EbpMedium)); + node->setLine(location); + return node; +} + +void TParseContext::setAtomicCounterBindingDefaultOffset(const TPublicType &publicType, + const TSourceLoc &location) +{ + const TLayoutQualifier &layoutQualifier = publicType.layoutQualifier; + checkAtomicCounterBindingIsValid(location, layoutQualifier.binding); + if (layoutQualifier.binding == -1 || layoutQualifier.offset == -1) + { + error(location, "Requires both binding and offset", "layout"); + return; + } + mAtomicCounterBindingStates[layoutQualifier.binding].setDefaultOffset(layoutQualifier.offset); +} + +void TParseContext::parseDefaultPrecisionQualifier(const TPrecision precision, + const TPublicType &type, + const TSourceLoc &loc) +{ + if ((precision == EbpHigh) && (getShaderType() == GL_FRAGMENT_SHADER) && + !getFragmentPrecisionHigh()) + { + error(loc, "precision is not supported in fragment shader", "highp"); + } + + if (!CanSetDefaultPrecisionOnType(type)) + { + error(loc, "illegal type argument for default precision qualifier", + getBasicString(type.getBasicType())); + return; + } + symbolTable.setDefaultPrecision(type.getBasicType(), precision); +} + +bool TParseContext::checkPrimitiveTypeMatchesTypeQualifier(const TTypeQualifier &typeQualifier) +{ + switch (typeQualifier.layoutQualifier.primitiveType) + { + case EptLines: + case EptLinesAdjacency: + case EptTriangles: + case EptTrianglesAdjacency: + return typeQualifier.qualifier == EvqGeometryIn; + + case EptLineStrip: + case EptTriangleStrip: + return typeQualifier.qualifier == EvqGeometryOut; + + case EptPoints: + return true; + + default: + UNREACHABLE(); + return false; + } +} + +void TParseContext::setGeometryShaderInputArraySize(unsigned int inputArraySize, + const TSourceLoc &line) +{ + if (!symbolTable.setGlInArraySize(inputArraySize)) + { + error(line, + "Array size or input primitive declaration doesn't match the size of earlier sized " + "array inputs.", + "layout"); + } + mGeometryInputArraySize = inputArraySize; +} + +bool TParseContext::parseGeometryShaderInputLayoutQualifier(const TTypeQualifier &typeQualifier) +{ + ASSERT(typeQualifier.qualifier == EvqGeometryIn); + + const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier; + + if (layoutQualifier.maxVertices != -1) + { + error(typeQualifier.line, + "max_vertices can only be declared in 'out' layout in a geometry shader", "layout"); + return false; + } + + // Set mGeometryInputPrimitiveType if exists + if (layoutQualifier.primitiveType != EptUndefined) + { + if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier)) + { + error(typeQualifier.line, "invalid primitive type for 'in' layout", "layout"); + return false; + } + + if (mGeometryShaderInputPrimitiveType == EptUndefined) + { + mGeometryShaderInputPrimitiveType = layoutQualifier.primitiveType; + setGeometryShaderInputArraySize( + GetGeometryShaderInputArraySize(mGeometryShaderInputPrimitiveType), + typeQualifier.line); + } + else if (mGeometryShaderInputPrimitiveType != layoutQualifier.primitiveType) + { + error(typeQualifier.line, "primitive doesn't match earlier input primitive declaration", + "layout"); + return false; + } + + // Size any implicitly sized arrays that have already been declared. + for (TType *type : mDeferredArrayTypesToSize) + { + type->sizeOutermostUnsizedArray( + symbolTable.getGlInVariableWithArraySize()->getType().getOutermostArraySize()); + } + mDeferredArrayTypesToSize.clear(); + } + + // Set mGeometryInvocations if exists + if (layoutQualifier.invocations > 0) + { + if (mGeometryShaderInvocations == 0) + { + mGeometryShaderInvocations = layoutQualifier.invocations; + } + else if (mGeometryShaderInvocations != layoutQualifier.invocations) + { + error(typeQualifier.line, "invocations contradicts to the earlier declaration", + "layout"); + return false; + } + } + + return true; +} + +bool TParseContext::parseGeometryShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier) +{ + ASSERT(typeQualifier.qualifier == EvqGeometryOut); + + const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier; + + if (layoutQualifier.invocations > 0) + { + error(typeQualifier.line, + "invocations can only be declared in 'in' layout in a geometry shader", "layout"); + return false; + } + + // Set mGeometryOutputPrimitiveType if exists + if (layoutQualifier.primitiveType != EptUndefined) + { + if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier)) + { + error(typeQualifier.line, "invalid primitive type for 'out' layout", "layout"); + return false; + } + + if (mGeometryShaderOutputPrimitiveType == EptUndefined) + { + mGeometryShaderOutputPrimitiveType = layoutQualifier.primitiveType; + } + else if (mGeometryShaderOutputPrimitiveType != layoutQualifier.primitiveType) + { + error(typeQualifier.line, + "primitive doesn't match earlier output primitive declaration", "layout"); + return false; + } + } + + // Set mGeometryMaxVertices if exists + if (layoutQualifier.maxVertices > -1) + { + if (mGeometryShaderMaxVertices == -1) + { + mGeometryShaderMaxVertices = layoutQualifier.maxVertices; + } + else if (mGeometryShaderMaxVertices != layoutQualifier.maxVertices) + { + error(typeQualifier.line, "max_vertices contradicts to the earlier declaration", + "layout"); + return false; + } + } + + return true; +} + +bool TParseContext::parseTessControlShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier) +{ + ASSERT(typeQualifier.qualifier == EvqTessControlOut); + + const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier; + + if (layoutQualifier.vertices == 0) + { + error(typeQualifier.line, "No vertices specified", "layout"); + return false; + } + + // Set mTessControlShaderOutputVertices if exists + if (mTessControlShaderOutputVertices == 0) + { + mTessControlShaderOutputVertices = layoutQualifier.vertices; + + // Size any implicitly sized arrays that have already been declared. + for (TType *type : mDeferredArrayTypesToSize) + { + type->sizeOutermostUnsizedArray(mTessControlShaderOutputVertices); + } + mDeferredArrayTypesToSize.clear(); + } + else + { + error(typeQualifier.line, "Duplicated vertices specified", "layout"); + } + return true; +} + +bool TParseContext::parseTessEvaluationShaderInputLayoutQualifier( + const TTypeQualifier &typeQualifier) +{ + ASSERT(typeQualifier.qualifier == EvqTessEvaluationIn); + + const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier; + + // Set mTessEvaluationShaderInputPrimitiveType if exists + if (layoutQualifier.tesPrimitiveType != EtetUndefined) + { + if (mTessEvaluationShaderInputPrimitiveType == EtetUndefined) + { + mTessEvaluationShaderInputPrimitiveType = layoutQualifier.tesPrimitiveType; + } + else + { + error(typeQualifier.line, "Duplicated primitive type declaration", "layout"); + } + } + // Set mTessEvaluationShaderVertexSpacingType if exists + if (layoutQualifier.tesVertexSpacingType != EtetUndefined) + { + if (mTessEvaluationShaderInputVertexSpacingType == EtetUndefined) + { + mTessEvaluationShaderInputVertexSpacingType = layoutQualifier.tesVertexSpacingType; + } + else + { + error(typeQualifier.line, "Duplicated vertex spacing declaration", "layout"); + } + } + // Set mTessEvaluationShaderInputOrderingType if exists + if (layoutQualifier.tesOrderingType != EtetUndefined) + { + if (mTessEvaluationShaderInputOrderingType == EtetUndefined) + { + mTessEvaluationShaderInputOrderingType = layoutQualifier.tesOrderingType; + } + else + { + error(typeQualifier.line, "Duplicated ordering declaration", "layout"); + } + } + // Set mTessEvaluationShaderInputPointType if exists + if (layoutQualifier.tesPointType != EtetUndefined) + { + if (mTessEvaluationShaderInputPointType == EtetUndefined) + { + mTessEvaluationShaderInputPointType = layoutQualifier.tesPointType; + } + else + { + error(typeQualifier.line, "Duplicated point type declaration", "layout"); + } + } + + return true; +} + +void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); + const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; + + checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier, + typeQualifier.line); + + // It should never be the case, but some strange parser errors can send us here. + if (layoutQualifier.isEmpty()) + { + error(typeQualifier.line, "Error during layout qualifier parsing.", "?"); + return; + } + + if (!layoutQualifier.isCombinationValid()) + { + error(typeQualifier.line, "invalid layout qualifier combination", "layout"); + return; + } + + checkIndexIsNotSpecified(typeQualifier.line, layoutQualifier.index); + + checkBindingIsNotSpecified(typeQualifier.line, layoutQualifier.binding); + + checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); + + checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat); + + checkYuvIsNotSpecified(typeQualifier.line, layoutQualifier.yuv); + + checkOffsetIsNotSpecified(typeQualifier.line, layoutQualifier.offset); + + checkStd430IsForShaderStorageBlock(typeQualifier.line, layoutQualifier.blockStorage, + typeQualifier.qualifier); + + checkAdvancedBlendEquationsNotSpecified( + typeQualifier.line, layoutQualifier.advancedBlendEquations, typeQualifier.qualifier); + + if (typeQualifier.qualifier != EvqFragmentIn) + { + checkEarlyFragmentTestsIsNotSpecified(typeQualifier.line, + layoutQualifier.earlyFragmentTests); + } + + if (typeQualifier.qualifier == EvqComputeIn) + { + if (mComputeShaderLocalSizeDeclared && + !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize)) + { + error(typeQualifier.line, "Work group size does not match the previous declaration", + "layout"); + return; + } + + if (mShaderVersion < 310) + { + error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); + return; + } + + if (!layoutQualifier.localSize.isAnyValueSet()) + { + error(typeQualifier.line, "No local work group size specified", "layout"); + return; + } + + const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>( + symbolTable.findBuiltIn(ImmutableString("gl_MaxComputeWorkGroupSize"), mShaderVersion)); + + const TConstantUnion *maxComputeWorkGroupSizeData = + maxComputeWorkGroupSize->getConstPointer(); + + for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i) + { + if (layoutQualifier.localSize[i] != -1) + { + mComputeShaderLocalSize[i] = layoutQualifier.localSize[i]; + const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst(); + if (mComputeShaderLocalSize[i] < 1 || + mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue) + { + std::stringstream reasonStream = sh::InitializeStream<std::stringstream>(); + reasonStream << "invalid value: Value must be at least 1 and no greater than " + << maxComputeWorkGroupSizeValue; + const std::string &reason = reasonStream.str(); + + error(typeQualifier.line, reason.c_str(), getWorkGroupSizeString(i)); + return; + } + } + } + + mComputeShaderLocalSizeDeclared = true; + } + else if (typeQualifier.qualifier == EvqGeometryIn) + { + if (mShaderVersion < 310) + { + error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); + return; + } + + if (!parseGeometryShaderInputLayoutQualifier(typeQualifier)) + { + return; + } + } + else if (typeQualifier.qualifier == EvqGeometryOut) + { + if (mShaderVersion < 310) + { + error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 only", + "layout"); + return; + } + + if (!parseGeometryShaderOutputLayoutQualifier(typeQualifier)) + { + return; + } + } + else if (anyMultiviewExtensionAvailable() && typeQualifier.qualifier == EvqVertexIn) + { + // This error is only specified in WebGL, but tightens unspecified behavior in the native + // specification. + if (mNumViews != -1 && layoutQualifier.numViews != mNumViews) + { + error(typeQualifier.line, "Number of views does not match the previous declaration", + "layout"); + return; + } + + if (layoutQualifier.numViews == -1) + { + error(typeQualifier.line, "No num_views specified", "layout"); + return; + } + + if (layoutQualifier.numViews > mMaxNumViews) + { + error(typeQualifier.line, "num_views greater than the value of GL_MAX_VIEWS_OVR", + "layout"); + return; + } + + mNumViews = layoutQualifier.numViews; + } + else if (typeQualifier.qualifier == EvqFragmentIn) + { + if (mShaderVersion < 310) + { + error(typeQualifier.line, + "in type qualifier without variable declaration supported in GLSL ES 3.10 and " + "after", + "layout"); + return; + } + + if (!layoutQualifier.earlyFragmentTests) + { + error(typeQualifier.line, + "only early_fragment_tests is allowed as layout qualifier when not declaring a " + "variable", + "layout"); + return; + } + + mEarlyFragmentTestsSpecified = true; + } + else if (typeQualifier.qualifier == EvqFragmentOut) + { + if (mShaderVersion < 320 && !isExtensionEnabled(TExtension::KHR_blend_equation_advanced)) + { + error(typeQualifier.line, + "out type qualifier without variable declaration is supported in GLSL ES 3.20," + " or if GL_KHR_blend_equation_advanced is enabled", + "layout"); + return; + } + + if (!layoutQualifier.advancedBlendEquations.any()) + { + error(typeQualifier.line, + "only blend equations are allowed as layout qualifier when not declaring a " + "variable", + "layout"); + return; + } + + mAdvancedBlendEquations |= layoutQualifier.advancedBlendEquations; + } + else if (typeQualifier.qualifier == EvqTessControlOut) + { + if (mShaderVersion < 310) + { + error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 and after", + "layout"); + return; + } + + if (!parseTessControlShaderOutputLayoutQualifier(typeQualifier)) + { + return; + } + } + else if (typeQualifier.qualifier == EvqTessEvaluationIn) + { + if (mShaderVersion < 310) + { + error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 and after", + "layout"); + return; + } + + if (!parseTessEvaluationShaderInputLayoutQualifier(typeQualifier)) + { + return; + } + } + else + { + if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, layoutQualifier)) + { + return; + } + + if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer) + { + error(typeQualifier.line, "invalid qualifier: global layout can only be set for blocks", + getQualifierString(typeQualifier.qualifier)); + return; + } + + if (mShaderVersion < 300) + { + error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and after", + "layout"); + return; + } + + checkLocationIsNotSpecified(typeQualifier.line, layoutQualifier); + + if (layoutQualifier.matrixPacking != EmpUnspecified) + { + if (typeQualifier.qualifier == EvqUniform) + { + mDefaultUniformMatrixPacking = layoutQualifier.matrixPacking; + } + else if (typeQualifier.qualifier == EvqBuffer) + { + mDefaultBufferMatrixPacking = layoutQualifier.matrixPacking; + } + } + + if (layoutQualifier.blockStorage != EbsUnspecified) + { + if (typeQualifier.qualifier == EvqUniform) + { + mDefaultUniformBlockStorage = layoutQualifier.blockStorage; + } + else if (typeQualifier.qualifier == EvqBuffer) + { + mDefaultBufferBlockStorage = layoutQualifier.blockStorage; + } + } + } +} + +TIntermFunctionPrototype *TParseContext::createPrototypeNodeFromFunction( + const TFunction &function, + const TSourceLoc &location, + bool insertParametersToSymbolTable) +{ + checkIsNotReserved(location, function.name()); + + TIntermFunctionPrototype *prototype = new TIntermFunctionPrototype(&function); + prototype->setLine(location); + + for (size_t i = 0; i < function.getParamCount(); i++) + { + const TVariable *param = function.getParam(i); + + // If the parameter has no name, it's not an error, just don't add it to symbol table (could + // be used for unused args). + if (param->symbolType() != SymbolType::Empty) + { + if (insertParametersToSymbolTable) + { + if (!symbolTable.declare(const_cast<TVariable *>(param))) + { + error(location, "redefinition", param->name()); + } + } + // Unsized type of a named parameter should have already been checked and sanitized. + ASSERT(!param->getType().isUnsizedArray()); + } + else + { + if (param->getType().isUnsizedArray()) + { + error(location, "function parameter array must be sized at compile time", "[]"); + // We don't need to size the arrays since the parameter is unnamed and hence + // inaccessible. + } + } + } + return prototype; +} + +TIntermFunctionPrototype *TParseContext::addFunctionPrototypeDeclaration( + const TFunction &parsedFunction, + const TSourceLoc &location) +{ + // Note: function found from the symbol table could be the same as parsedFunction if this is the + // first declaration. Either way the instance in the symbol table is used to track whether the + // function is declared multiple times. + bool hadPrototypeDeclaration = false; + const TFunction *function = symbolTable.markFunctionHasPrototypeDeclaration( + parsedFunction.getMangledName(), &hadPrototypeDeclaration); + + if (hadPrototypeDeclaration && mShaderVersion == 100) + { + // ESSL 1.00.17 section 4.2.7. + // Doesn't apply to ESSL 3.00.4: see section 4.2.3. + error(location, "duplicate function prototype declarations are not allowed", "function"); + } + + TIntermFunctionPrototype *prototype = + createPrototypeNodeFromFunction(*function, location, false); + + symbolTable.pop(); + + if (!symbolTable.atGlobalLevel()) + { + // ESSL 3.00.4 section 4.2.4. + error(location, "local function prototype declarations are not allowed", "function"); + } + + return prototype; +} + +TIntermFunctionDefinition *TParseContext::addFunctionDefinition( + TIntermFunctionPrototype *functionPrototype, + TIntermBlock *functionBody, + const TSourceLoc &location) +{ + // Undo push at end of parseFunctionDefinitionHeader() below for ESSL1.00 case + if (mFunctionBodyNewScope) + { + mFunctionBodyNewScope = false; + symbolTable.pop(); + } + + // Check that non-void functions have at least one return statement. + if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) + { + error(location, + "function does not return a value:", functionPrototype->getFunction()->name()); + } + + if (functionBody == nullptr) + { + functionBody = new TIntermBlock(); + functionBody->setLine(location); + } + TIntermFunctionDefinition *functionNode = + new TIntermFunctionDefinition(functionPrototype, functionBody); + functionNode->setLine(location); + + symbolTable.pop(); + return functionNode; +} + +void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location, + const TFunction *function, + TIntermFunctionPrototype **prototypeOut) +{ + ASSERT(function); + + bool wasDefined = false; + function = symbolTable.setFunctionParameterNamesFromDefinition(function, &wasDefined); + if (wasDefined) + { + error(location, "function already has a body", function->name()); + } + + // Remember the return type for later checking for return statements. + mCurrentFunctionType = &(function->getReturnType()); + mFunctionReturnsValue = false; + + *prototypeOut = createPrototypeNodeFromFunction(*function, location, true); + setLoopNestingLevel(0); + + // ESSL 1.00 spec allows for variable in function body to redefine parameter + if (IsSpecWithFunctionBodyNewScope(mShaderSpec, mShaderVersion)) + { + mFunctionBodyNewScope = true; + symbolTable.push(); + } +} + +TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) +{ + // + // We don't know at this point whether this is a function definition or a prototype. + // The definition production code will check for redefinitions. + // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. + // + + for (size_t i = 0u; i < function->getParamCount(); ++i) + { + const TVariable *param = function->getParam(i); + const TType ¶mType = param->getType(); + + if (paramType.isStructSpecifier()) + { + // ESSL 3.00.6 section 12.10. + error(location, "Function parameter type cannot be a structure definition", + function->name()); + } + + checkPrecisionSpecified(location, paramType.getPrecision(), paramType.getBasicType()); + } + + if (getShaderVersion() >= 300) + { + if (symbolTable.isUnmangledBuiltInName(function->name(), getShaderVersion(), + extensionBehavior())) + { + // With ESSL 3.00 and above, names of built-in functions cannot be redeclared as + // functions. Therefore overloading or redefining builtin functions is an error. + error(location, "Name of a built-in function cannot be redeclared as function", + function->name()); + } + } + else + { + // ESSL 1.00.17 section 4.2.6: built-ins can be overloaded but not redefined. We assume that + // this applies to redeclarations as well. + const TSymbol *builtIn = + symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion()); + if (builtIn) + { + error(location, "built-in functions cannot be redefined", function->name()); + } + } + + // Return types and parameter qualifiers must match in all redeclarations, so those are checked + // here. + const TFunction *prevDec = + static_cast<const TFunction *>(symbolTable.findGlobal(function->getMangledName())); + if (prevDec) + { + if (prevDec->getReturnType() != function->getReturnType()) + { + error(location, "function must have the same return type in all of its declarations", + function->getReturnType().getBasicString()); + } + for (size_t i = 0; i < prevDec->getParamCount(); ++i) + { + if (prevDec->getParam(i)->getType().getQualifier() != + function->getParam(i)->getType().getQualifier()) + { + error(location, + "function must have the same parameter qualifiers in all of its declarations", + function->getParam(i)->getType().getQualifierString()); + } + } + } + + // Check for previously declared variables using the same name. + const TSymbol *prevSym = symbolTable.find(function->name(), getShaderVersion()); + bool insertUnmangledName = true; + if (prevSym) + { + if (!prevSym->isFunction()) + { + error(location, "redefinition of a function", function->name()); + } + insertUnmangledName = false; + } + // Parsing is at the inner scope level of the function's arguments and body statement at this + // point, but declareUserDefinedFunction takes care of declaring the function at the global + // scope. + symbolTable.declareUserDefinedFunction(function, insertUnmangledName); + + // Raise error message if main function takes any parameters or return anything other than void + if (function->isMain()) + { + if (function->getParamCount() > 0) + { + error(location, "function cannot take any parameter(s)", "main"); + } + if (function->getReturnType().getBasicType() != EbtVoid) + { + error(location, "main function cannot return a value", + function->getReturnType().getBasicString()); + } + } + + mDeclaringMain = function->isMain(); + + // + // If this is a redeclaration, it could also be a definition, in which case, we want to use the + // variable names from this one, and not the one that's + // being redeclared. So, pass back up this declaration, not the one in the symbol table. + // + return function; +} + +TFunction *TParseContext::parseFunctionHeader(const TPublicType &type, + const ImmutableString &name, + const TSourceLoc &location) +{ + if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary) + { + error(location, "no qualifiers allowed for function return", + getQualifierString(type.qualifier)); + } + if (!type.layoutQualifier.isEmpty()) + { + error(location, "no qualifiers allowed for function return", "layout"); + } + // make sure an opaque type is not involved as well... + std::string reason(getBasicString(type.getBasicType())); + reason += "s can't be function return values"; + checkIsNotOpaqueType(location, type.typeSpecifierNonArray, reason.c_str()); + if (mShaderVersion < 300) + { + // Array return values are forbidden, but there's also no valid syntax for declaring array + // return values in ESSL 1.00. + ASSERT(!type.isArray() || mDiagnostics->numErrors() > 0); + + if (type.isStructureContainingArrays()) + { + // ESSL 1.00.17 section 6.1 Function Definitions + TInfoSinkBase typeString; + typeString << TType(type); + error(location, "structures containing arrays can't be function return values", + typeString.c_str()); + } + } + + // Add the function as a prototype after parsing it (we do not support recursion) + return new TFunction(&symbolTable, name, SymbolType::UserDefined, new TType(type), false); +} + +TFunctionLookup *TParseContext::addNonConstructorFunc(const ImmutableString &name, + const TSymbol *symbol) +{ + return TFunctionLookup::CreateFunctionCall(name, symbol); +} + +TFunctionLookup *TParseContext::addConstructorFunc(const TPublicType &publicType) +{ + if (mShaderVersion < 300 && publicType.isArray()) + { + error(publicType.getLine(), "array constructor supported in GLSL ES 3.00 and above only", + "[]"); + } + if (publicType.isStructSpecifier()) + { + error(publicType.getLine(), "constructor can't be a structure definition", + getBasicString(publicType.getBasicType())); + } + + TType *type = new TType(publicType); + if (!type->canBeConstructed()) + { + error(publicType.getLine(), "cannot construct this type", + getBasicString(publicType.getBasicType())); + type->setBasicType(EbtFloat); + } + return TFunctionLookup::CreateConstructor(type); +} + +void TParseContext::checkIsNotUnsizedArray(const TSourceLoc &line, + const char *errorMessage, + const ImmutableString &token, + TType *arrayType) +{ + if (arrayType->isUnsizedArray()) + { + error(line, errorMessage, token); + arrayType->sizeUnsizedArrays(TSpan<const unsigned int>()); + } +} + +TParameter TParseContext::parseParameterDeclarator(TType *type, + const ImmutableString &name, + const TSourceLoc &nameLoc) +{ + ASSERT(type); + checkIsNotUnsizedArray(nameLoc, "function parameter array must specify a size", name, type); + if (type->getBasicType() == EbtVoid) + { + error(nameLoc, "illegal use of type 'void'", name); + } + checkIsNotReserved(nameLoc, name); + TParameter param = {name.data(), type}; + return param; +} + +TParameter TParseContext::parseParameterDeclarator(const TPublicType &publicType, + const ImmutableString &name, + const TSourceLoc &nameLoc) +{ + TType *type = new TType(publicType); + return parseParameterDeclarator(type, name, nameLoc); +} + +TParameter TParseContext::parseParameterArrayDeclarator(const ImmutableString &name, + const TSourceLoc &nameLoc, + const TVector<unsigned int> &arraySizes, + const TSourceLoc &arrayLoc, + TPublicType *elementType) +{ + checkArrayElementIsNotArray(arrayLoc, *elementType); + TType *arrayType = new TType(*elementType); + arrayType->makeArrays(arraySizes); + return parseParameterDeclarator(arrayType, name, nameLoc); +} + +bool TParseContext::checkUnsizedArrayConstructorArgumentDimensionality( + const TIntermSequence &arguments, + TType type, + const TSourceLoc &line) +{ + if (arguments.empty()) + { + error(line, "implicitly sized array constructor must have at least one argument", "[]"); + return false; + } + for (TIntermNode *arg : arguments) + { + const TIntermTyped *element = arg->getAsTyped(); + ASSERT(element); + size_t dimensionalityFromElement = element->getType().getNumArraySizes() + 1u; + if (dimensionalityFromElement > type.getNumArraySizes()) + { + error(line, "constructing from a non-dereferenced array", "constructor"); + return false; + } + else if (dimensionalityFromElement < type.getNumArraySizes()) + { + if (dimensionalityFromElement == 1u) + { + error(line, "implicitly sized array of arrays constructor argument is not an array", + "constructor"); + } + else + { + error(line, + "implicitly sized array of arrays constructor argument dimensionality is too " + "low", + "constructor"); + } + return false; + } + } + return true; +} + +// This function is used to test for the correctness of the parameters passed to various constructor +// functions and also convert them to the right datatype if it is allowed and required. +// +// Returns a node to add to the tree regardless of if an error was generated or not. +// +TIntermTyped *TParseContext::addConstructor(TFunctionLookup *fnCall, const TSourceLoc &line) +{ + TType type = fnCall->constructorType(); + TIntermSequence &arguments = fnCall->arguments(); + if (type.isUnsizedArray()) + { + if (!checkUnsizedArrayConstructorArgumentDimensionality(arguments, type, line)) + { + type.sizeUnsizedArrays(TSpan<const unsigned int>()); + return CreateZeroNode(type); + } + TIntermTyped *firstElement = arguments.at(0)->getAsTyped(); + ASSERT(firstElement); + if (type.getOutermostArraySize() == 0u) + { + type.sizeOutermostUnsizedArray(static_cast<unsigned int>(arguments.size())); + } + for (size_t i = 0; i < firstElement->getType().getNumArraySizes(); ++i) + { + if (type.getArraySizes()[i] == 0u) + { + type.setArraySize(i, firstElement->getType().getArraySizes()[i]); + } + } + ASSERT(!type.isUnsizedArray()); + } + + if (!checkConstructorArguments(line, arguments, type)) + { + return CreateZeroNode(type); + } + + TIntermAggregate *constructorNode = TIntermAggregate::CreateConstructor(type, &arguments); + constructorNode->setLine(line); + + return constructorNode->fold(mDiagnostics); +} + +// +// Interface/uniform blocks +TIntermDeclaration *TParseContext::addInterfaceBlock( + const TTypeQualifierBuilder &typeQualifierBuilder, + const TSourceLoc &nameLine, + const ImmutableString &blockName, + TFieldList *fieldList, + const ImmutableString &instanceName, + const TSourceLoc &instanceLine, + const TVector<unsigned int> *arraySizes, + const TSourceLoc &arraySizesLine) +{ + const bool isGLPerVertex = blockName == "gl_PerVertex"; + // gl_PerVertex is allowed to be redefined and therefore not reserved + if (!isGLPerVertex) + { + checkIsNotReserved(nameLine, blockName); + } + + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); + + const bool isUniformOrBuffer = + typeQualifier.qualifier == EvqUniform || typeQualifier.qualifier == EvqBuffer; + const bool isShaderIoBlock = IsShaderIoBlock(typeQualifier.qualifier); + + if (mShaderVersion < 310 && typeQualifier.qualifier != EvqUniform) + { + error(typeQualifier.line, + "invalid qualifier: interface blocks must be uniform in version lower than GLSL ES " + "3.10", + getQualifierString(typeQualifier.qualifier)); + } + else if (typeQualifier.qualifier == EvqPatchOut) + { + if ((!isExtensionEnabled(TExtension::EXT_tessellation_shader) && mShaderVersion < 320) || + mShaderType != GL_TESS_CONTROL_SHADER) + { + error(typeQualifier.line, + "invalid qualifier: 'patch out' requires a tessellation control shader", + getQualifierString(typeQualifier.qualifier)); + } + } + else if (typeQualifier.qualifier == EvqPatchIn) + { + if ((!isExtensionEnabled(TExtension::EXT_tessellation_shader) && mShaderVersion < 320) || + mShaderType != GL_TESS_EVALUATION_SHADER) + { + error(typeQualifier.line, + "invalid qualifier: 'patch in' requires a tessellation evaluation shader", + getQualifierString(typeQualifier.qualifier)); + } + } + else if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer) + { + if (isShaderIoBlock) + { + if (!isExtensionEnabled(TExtension::OES_shader_io_blocks) && + !isExtensionEnabled(TExtension::EXT_shader_io_blocks) && + !isExtensionEnabled(TExtension::OES_geometry_shader) && + !isExtensionEnabled(TExtension::EXT_geometry_shader) && mShaderVersion < 320) + { + error(typeQualifier.line, + "invalid qualifier: shader IO blocks need shader io block extension", + getQualifierString(typeQualifier.qualifier)); + } + + // Both inputs and outputs of tessellation control shaders must be arrays. + // For tessellation evaluation shaders, only inputs must necessarily be arrays. + const bool isTCS = mShaderType == GL_TESS_CONTROL_SHADER; + const bool isTESIn = + mShaderType == GL_TESS_EVALUATION_SHADER && IsShaderIn(typeQualifier.qualifier); + if (arraySizes == nullptr && (isTCS || isTESIn)) + { + error(typeQualifier.line, "type must be an array", blockName); + } + } + else + { + error(typeQualifier.line, + "invalid qualifier: interface blocks must be uniform or buffer", + getQualifierString(typeQualifier.qualifier)); + } + } + + if (typeQualifier.invariant) + { + error(typeQualifier.line, "invalid qualifier on interface block", "invariant"); + } + + if (typeQualifier.qualifier != EvqBuffer) + { + checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); + } + + // Verify array sizes + if (arraySizes) + { + if (isUniformOrBuffer) + { + if (arraySizes->size() == 0) + { + error(arraySizesLine, "unsized arrays are not allowed with interface blocks", ""); + } + if (arraySizes->size() > 1) + { + error(arraySizesLine, "array of arrays are not allowed with interface blocks", ""); + } + } + else if (isShaderIoBlock) + { + size_t arrayDimensions = arraySizes->size(); + + // Geometry shader inputs have a level arrayness that must be ignored. + if (mShaderType == GL_GEOMETRY_SHADER_EXT && IsVaryingIn(typeQualifier.qualifier)) + { + ASSERT(arrayDimensions > 0); + --arrayDimensions; + + // Validate that the array size of input matches the geometry layout + // declaration, if not automatic (specified as []). + const unsigned int geometryDim = arraySizes->back(); + if (geometryDim > 0 && geometryDim != mGeometryInputArraySize) + { + error(arraySizesLine, + "geometry shader input block array size inconsistent " + "with primitive", + ""); + } + } + + if (arrayDimensions > 1) + { + error(arraySizesLine, "array of arrays are not allowed with I/O blocks", ""); + } + } + } + else if (isShaderIoBlock && mShaderType == GL_GEOMETRY_SHADER_EXT && + IsVaryingIn(typeQualifier.qualifier)) + { + error(arraySizesLine, "geometry shader input blocks must be an array", ""); + } + + checkIndexIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.index); + + if (mShaderVersion < 310) + { + checkBindingIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.binding); + } + else + { + unsigned int arraySize = + arraySizes == nullptr || arraySizes->empty() ? 0 : (*arraySizes)[0]; + checkBlockBindingIsValid(typeQualifier.line, typeQualifier.qualifier, + typeQualifier.layoutQualifier.binding, arraySize); + } + + checkYuvIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.yuv); + checkEarlyFragmentTestsIsNotSpecified(typeQualifier.line, + typeQualifier.layoutQualifier.earlyFragmentTests); + checkNoncoherentIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.noncoherent); + + TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; + if (!IsShaderIoBlock(typeQualifier.qualifier) && typeQualifier.qualifier != EvqPatchIn && + typeQualifier.qualifier != EvqPatchOut) + { + checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier); + } + checkStd430IsForShaderStorageBlock(typeQualifier.line, blockLayoutQualifier.blockStorage, + typeQualifier.qualifier); + + if (blockLayoutQualifier.matrixPacking == EmpUnspecified) + { + if (typeQualifier.qualifier == EvqUniform) + { + blockLayoutQualifier.matrixPacking = mDefaultUniformMatrixPacking; + } + else if (typeQualifier.qualifier == EvqBuffer) + { + blockLayoutQualifier.matrixPacking = mDefaultBufferMatrixPacking; + } + } + + if (blockLayoutQualifier.blockStorage == EbsUnspecified) + { + if (typeQualifier.qualifier == EvqUniform) + { + blockLayoutQualifier.blockStorage = mDefaultUniformBlockStorage; + } + else if (typeQualifier.qualifier == EvqBuffer) + { + blockLayoutQualifier.blockStorage = mDefaultBufferBlockStorage; + } + } + + checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier); + + checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat); + + // check for sampler types and apply layout qualifiers + for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) + { + TField *field = (*fieldList)[memberIndex]; + TType *fieldType = field->type(); + if (IsOpaqueType(fieldType->getBasicType())) + { + std::string reason("unsupported type - "); + reason += fieldType->getBasicString(); + reason += " types are not allowed in interface blocks"; + error(field->line(), reason.c_str(), fieldType->getBasicString()); + } + + const TQualifier qualifier = fieldType->getQualifier(); + switch (qualifier) + { + case EvqGlobal: + break; + case EvqUniform: + if (typeQualifier.qualifier == EvqBuffer) + { + error(field->line(), "invalid qualifier on shader storage block member", + getQualifierString(qualifier)); + } + break; + case EvqBuffer: + if (typeQualifier.qualifier == EvqUniform) + { + error(field->line(), "invalid qualifier on uniform block member", + getQualifierString(qualifier)); + } + break; + // a member variable in io block may have different interpolation. + case EvqFlatIn: + case EvqFlatOut: + case EvqNoPerspectiveIn: + case EvqNoPerspectiveOut: + case EvqSmoothIn: + case EvqSmoothOut: + case EvqCentroidIn: + case EvqCentroidOut: + break; + // a member variable can have an incomplete qualifier because shader io block has either + // in or out. + case EvqSmooth: + case EvqFlat: + case EvqNoPerspective: + case EvqCentroid: + case EvqGeometryIn: + case EvqGeometryOut: + if (!IsShaderIoBlock(typeQualifier.qualifier) && + typeQualifier.qualifier != EvqPatchIn && + typeQualifier.qualifier != EvqPatchOut && + typeQualifier.qualifier != EvqGeometryIn && + typeQualifier.qualifier != EvqGeometryOut) + { + error(field->line(), "invalid qualifier on interface block member", + getQualifierString(qualifier)); + } + break; + default: + error(field->line(), "invalid qualifier on interface block member", + getQualifierString(qualifier)); + break; + } + + // On interface block members, invariant is only applicable to output I/O blocks. + const bool isOutputShaderIoBlock = isShaderIoBlock && IsShaderOut(typeQualifier.qualifier); + if (fieldType->isInvariant() && !isOutputShaderIoBlock) + { + error(field->line(), "invalid qualifier on interface block member", "invariant"); + } + + // check layout qualifiers + TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); + checkIndexIsNotSpecified(field->line(), fieldLayoutQualifier.index); + checkBindingIsNotSpecified(field->line(), fieldLayoutQualifier.binding); + + if (fieldLayoutQualifier.blockStorage != EbsUnspecified) + { + error(field->line(), "invalid layout qualifier: cannot be used here", + getBlockStorageString(fieldLayoutQualifier.blockStorage)); + } + + if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) + { + fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; + } + else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct) + { + warning(field->line(), + "extraneous layout qualifier: only has an effect on matrix types", + getMatrixPackingString(fieldLayoutQualifier.matrixPacking)); + } + + fieldType->setLayoutQualifier(fieldLayoutQualifier); + + if (mShaderVersion < 310 || memberIndex != fieldList->size() - 1u || + typeQualifier.qualifier != EvqBuffer) + { + // ESSL 3.10 spec section 4.1.9 allows for runtime-sized arrays. + checkIsNotUnsizedArray(field->line(), + "array members of interface blocks must specify a size", + field->name(), field->type()); + } + + if (typeQualifier.qualifier == EvqBuffer) + { + // set memory qualifiers + // GLSL ES 3.10 session 4.9 [Memory Access Qualifiers]. When a block declaration is + // qualified with a memory qualifier, it is as if all of its members were declared with + // the same memory qualifier. + const TMemoryQualifier &blockMemoryQualifier = typeQualifier.memoryQualifier; + TMemoryQualifier fieldMemoryQualifier = fieldType->getMemoryQualifier(); + fieldMemoryQualifier.readonly |= blockMemoryQualifier.readonly; + fieldMemoryQualifier.writeonly |= blockMemoryQualifier.writeonly; + fieldMemoryQualifier.coherent |= blockMemoryQualifier.coherent; + fieldMemoryQualifier.restrictQualifier |= blockMemoryQualifier.restrictQualifier; + fieldMemoryQualifier.volatileQualifier |= blockMemoryQualifier.volatileQualifier; + // TODO(jiajia.qin@intel.com): Decide whether if readonly and writeonly buffer variable + // is legal. See bug https://github.com/KhronosGroup/OpenGL-API/issues/7 + fieldType->setMemoryQualifier(fieldMemoryQualifier); + } + } + + SymbolType instanceSymbolType = SymbolType::UserDefined; + if (isGLPerVertex) + { + instanceSymbolType = SymbolType::BuiltIn; + } + TInterfaceBlock *interfaceBlock = new TInterfaceBlock(&symbolTable, blockName, fieldList, + blockLayoutQualifier, instanceSymbolType); + if (!symbolTable.declare(interfaceBlock) && isUniformOrBuffer) + { + error(nameLine, "redefinition of an interface block name", blockName); + } + + TType *interfaceBlockType = + new TType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier); + if (arraySizes) + { + interfaceBlockType->makeArrays(*arraySizes); + + checkGeometryShaderInputAndSetArraySize(instanceLine, instanceName, interfaceBlockType); + checkTessellationShaderUnsizedArraysAndSetSize(instanceLine, instanceName, + interfaceBlockType); + } + + // The instance variable gets created to refer to the interface block type from the AST + // regardless of if there's an instance name. It's created as an empty symbol if there is no + // instance name. + TVariable *instanceVariable = + new TVariable(&symbolTable, instanceName, interfaceBlockType, + instanceName.empty() ? SymbolType::Empty : SymbolType::UserDefined); + + if (instanceVariable->symbolType() == SymbolType::Empty) + { + // define symbols for the members of the interface block + for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) + { + TField *field = (*fieldList)[memberIndex]; + TType *fieldType = new TType(*field->type()); + + // set parent pointer of the field variable + fieldType->setInterfaceBlockField(interfaceBlock, memberIndex); + + fieldType->setQualifier(typeQualifier.qualifier); + + SymbolType symbolType = SymbolType::UserDefined; + if (field->name() == "gl_Position" || field->name() == "gl_PointSize" || + field->name() == "gl_ClipDistance" || field->name() == "gl_CullDistance") + { + // These builtins can be redifined only when used within a redefiend gl_PerVertex + // block + if (interfaceBlock->name() != "gl_PerVertex") + { + error(field->line(), "redefinition in an invalid interface block", + field->name()); + } + symbolType = SymbolType::BuiltIn; + } + TVariable *fieldVariable = + new TVariable(&symbolTable, field->name(), fieldType, symbolType); + if (!symbolTable.declare(fieldVariable)) + { + error(field->line(), "redefinition of an interface block member name", + field->name()); + } + } + } + else + { + checkIsNotReserved(instanceLine, instanceName); + + // add a symbol for this interface block + if (!symbolTable.declare(instanceVariable)) + { + error(instanceLine, "redefinition of an interface block instance name", instanceName); + } + } + + TIntermSymbol *blockSymbol = new TIntermSymbol(instanceVariable); + blockSymbol->setLine(typeQualifier.line); + TIntermDeclaration *declaration = new TIntermDeclaration(); + declaration->appendDeclarator(blockSymbol); + declaration->setLine(nameLine); + + exitStructDeclaration(); + return declaration; +} + +void TParseContext::enterStructDeclaration(const TSourceLoc &line, + const ImmutableString &identifier) +{ + ++mStructNestingLevel; + + // Embedded structure definitions are not supported per GLSL ES spec. + // ESSL 1.00.17 section 10.9. ESSL 3.00.6 section 12.11. + if (mStructNestingLevel > 1) + { + error(line, "Embedded struct definitions are not allowed", "struct"); + } +} + +void TParseContext::exitStructDeclaration() +{ + --mStructNestingLevel; +} + +void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field) +{ + if (!sh::IsWebGLBasedSpec(mShaderSpec)) + { + return; + } + + if (field.type()->getBasicType() != EbtStruct) + { + return; + } + + // We're already inside a structure definition at this point, so add + // one to the field's struct nesting. + if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) + { + std::stringstream reasonStream = sh::InitializeStream<std::stringstream>(); + if (field.type()->getStruct()->symbolType() == SymbolType::Empty) + { + // This may happen in case there are nested struct definitions. While they are also + // invalid GLSL, they don't cause a syntax error. + reasonStream << "Struct nesting"; + } + else + { + reasonStream << "Reference of struct type " << field.type()->getStruct()->name(); + } + reasonStream << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; + std::string reason = reasonStream.str(); + error(line, reason.c_str(), field.name()); + return; + } +} + +// +// Parse an array index expression +// +TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, + const TSourceLoc &location, + TIntermTyped *indexExpression) +{ + if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) + { + if (baseExpression->getAsSymbolNode()) + { + error(location, " left of '[' is not of type array, matrix, or vector ", + baseExpression->getAsSymbolNode()->getName()); + } + else + { + error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); + } + + return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); + } + + if (baseExpression->getQualifier() == EvqPerVertexIn) + { + if (mGeometryShaderInputPrimitiveType == EptUndefined && + mShaderType == GL_GEOMETRY_SHADER_EXT) + { + error(location, "missing input primitive declaration before indexing gl_in.", "["); + return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); + } + } + + TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); + + // ES3.2 or ES3.1's EXT_gpu_shader5 allow dynamically uniform expressions to be used as indices + // of opaque types (samplers and atomic counters) as well as UBOs, but not SSBOs and images. + bool allowUniformIndices = + mShaderVersion >= 320 || isExtensionEnabled(TExtension::EXT_gpu_shader5); + + // ANGLE should be able to fold any constant expressions resulting in an integer - but to be + // safe we don't treat "EvqConst" that's evaluated according to the spec as being sufficient + // for constness. Some interpretations of the spec have allowed constant expressions with side + // effects - like array length() method on a non-constant array. + if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr) + { + if (baseExpression->isInterfaceBlock()) + { + switch (baseExpression->getQualifier()) + { + case EvqPerVertexIn: + break; + case EvqUniform: + if (!allowUniformIndices) + { + error(location, + "array indexes for uniform block arrays must be constant integral " + "expressions", + "["); + } + break; + case EvqBuffer: + error(location, + "array indexes for shader storage block arrays must be constant integral " + "expressions", + "["); + break; + default: + // It's ok for shader I/O blocks to be dynamically indexed + if (!IsShaderIoBlock(baseExpression->getQualifier()) && + baseExpression->getQualifier() != EvqPatchIn && + baseExpression->getQualifier() != EvqPatchOut) + { + // We can reach here only in error cases. + ASSERT(mDiagnostics->numErrors() > 0); + } + break; + } + } + else if (baseExpression->getQualifier() == EvqFragmentOut) + { + error(location, + "array indexes for fragment outputs must be constant integral expressions", "["); + } + else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData) + { + error(location, "array index for gl_FragData must be constant zero", "["); + } + else if (baseExpression->isArray()) + { + TBasicType elementType = baseExpression->getType().getBasicType(); + + // Note: In Section 12.30 of the ESSL 3.00 spec on p143-144: + // + // Indexing of arrays of samplers by constant-index-expressions is + // supported in GLSL ES 1.00. A constant-index-expression is an + // expression formed from constant-expressions and certain loop indices, + // defined for a subset of loop constructs. Should this functionality be + // included in GLSL ES 3.00? + // + // RESOLUTION: No. Arrays of samplers may only be indexed by constant- + // integral-expressions. + if (IsSampler(elementType) && !allowUniformIndices && mShaderVersion > 100) + { + error(location, "array index for samplers must be constant integral expressions", + "["); + } + else if (IsImage(elementType)) + { + error(location, + "array indexes for image arrays must be constant integral expressions", "["); + } + } + } + + if (indexConstantUnion) + { + // If an out-of-range index is not qualified as constant, the behavior in the spec is + // undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may + // constant fold expressions that are not constant expressions). The most compatible way to + // handle this case is to report a warning instead of an error and force the index to be in + // the correct range. + bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst; + int index = 0; + if (indexConstantUnion->getBasicType() == EbtInt) + { + index = indexConstantUnion->getIConst(0); + } + else if (indexConstantUnion->getBasicType() == EbtUInt) + { + index = static_cast<int>(indexConstantUnion->getUConst(0)); + } + + int safeIndex = -1; + + if (index < 0) + { + outOfRangeError(outOfRangeIndexIsError, location, "index expression is negative", "[]"); + safeIndex = 0; + } + + if (!baseExpression->getType().isUnsizedArray()) + { + if (baseExpression->isArray()) + { + if (baseExpression->getQualifier() == EvqFragData && index > 0) + { + if (!isExtensionEnabled(TExtension::EXT_draw_buffers)) + { + outOfRangeError(outOfRangeIndexIsError, location, + "array index for gl_FragData must be zero when " + "GL_EXT_draw_buffers is disabled", + "[]"); + safeIndex = 0; + } + } + } + // Only do generic out-of-range check if similar error hasn't already been reported. + if (safeIndex < 0) + { + if (baseExpression->isArray()) + { + safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, + baseExpression->getOutermostArraySize(), + "array index out of range"); + } + else if (baseExpression->isMatrix()) + { + safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, + baseExpression->getType().getCols(), + "matrix field selection out of range"); + } + else + { + ASSERT(baseExpression->isVector()); + safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, + baseExpression->getType().getNominalSize(), + "vector field selection out of range"); + } + } + + ASSERT(safeIndex >= 0); + // Data of constant unions can't be changed, because it may be shared with other + // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new + // sanitized object. + if (safeIndex != index || indexConstantUnion->getBasicType() != EbtInt) + { + TConstantUnion *safeConstantUnion = new TConstantUnion(); + safeConstantUnion->setIConst(safeIndex); + indexExpression = + new TIntermConstantUnion(safeConstantUnion, TType(indexExpression->getType())); + } + + TIntermBinary *node = + new TIntermBinary(EOpIndexDirect, baseExpression, indexExpression); + node->setLine(location); + return expressionOrFoldedResult(node); + } + } + + markStaticReadIfSymbol(indexExpression); + TIntermBinary *node = new TIntermBinary(EOpIndexIndirect, baseExpression, indexExpression); + node->setLine(location); + // Indirect indexing can never be constant folded. + return node; +} + +int TParseContext::checkIndexLessThan(bool outOfRangeIndexIsError, + const TSourceLoc &location, + int index, + int arraySize, + const char *reason) +{ + // Should not reach here with an unsized / runtime-sized array. + ASSERT(arraySize > 0); + // A negative index should already have been checked. + ASSERT(index >= 0); + if (index >= arraySize) + { + std::stringstream reasonStream = sh::InitializeStream<std::stringstream>(); + reasonStream << reason << " '" << index << "'"; + std::string token = reasonStream.str(); + outOfRangeError(outOfRangeIndexIsError, location, reason, "[]"); + return arraySize - 1; + } + return index; +} + +TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, + const TSourceLoc &dotLocation, + const ImmutableString &fieldString, + const TSourceLoc &fieldLocation) +{ + if (baseExpression->isArray()) + { + error(fieldLocation, "cannot apply dot operator to an array", "."); + return baseExpression; + } + + if (baseExpression->isVector()) + { + TVector<int> fieldOffsets; + if (!parseVectorFields(fieldLocation, fieldString, baseExpression->getNominalSize(), + &fieldOffsets)) + { + fieldOffsets.resize(1); + fieldOffsets[0] = 0; + } + TIntermSwizzle *node = new TIntermSwizzle(baseExpression, fieldOffsets); + node->setLine(dotLocation); + + return node->fold(mDiagnostics); + } + else if (baseExpression->getBasicType() == EbtStruct) + { + const TFieldList &fields = baseExpression->getType().getStruct()->fields(); + if (fields.empty()) + { + error(dotLocation, "structure has no fields", "Internal Error"); + return baseExpression; + } + else + { + bool fieldFound = false; + unsigned int i; + for (i = 0; i < fields.size(); ++i) + { + if (fields[i]->name() == fieldString) + { + fieldFound = true; + break; + } + } + if (fieldFound) + { + TIntermTyped *index = CreateIndexNode(i); + index->setLine(fieldLocation); + TIntermBinary *node = + new TIntermBinary(EOpIndexDirectStruct, baseExpression, index); + node->setLine(dotLocation); + return expressionOrFoldedResult(node); + } + else + { + error(dotLocation, " no such field in structure", fieldString); + return baseExpression; + } + } + } + else if (baseExpression->isInterfaceBlock()) + { + const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); + if (fields.empty()) + { + error(dotLocation, "interface block has no fields", "Internal Error"); + return baseExpression; + } + else + { + bool fieldFound = false; + unsigned int i; + for (i = 0; i < fields.size(); ++i) + { + if (fields[i]->name() == fieldString) + { + fieldFound = true; + break; + } + } + if (fieldFound) + { + TIntermTyped *index = CreateIndexNode(i); + index->setLine(fieldLocation); + TIntermBinary *node = + new TIntermBinary(EOpIndexDirectInterfaceBlock, baseExpression, index); + node->setLine(dotLocation); + // Indexing interface blocks can never be constant folded. + return node; + } + else + { + error(dotLocation, " no such field in interface block", fieldString); + return baseExpression; + } + } + } + else + { + if (mShaderVersion < 300) + { + error(dotLocation, " field selection requires structure or vector on left hand side", + fieldString); + } + else + { + error(dotLocation, + " field selection requires structure, vector, or interface block on left hand " + "side", + fieldString); + } + return baseExpression; + } +} + +TLayoutQualifier TParseContext::parseLayoutQualifier(const ImmutableString &qualifierType, + const TSourceLoc &qualifierTypeLine) +{ + TLayoutQualifier qualifier = TLayoutQualifier::Create(); + + if (qualifierType == "shared") + { + if (sh::IsWebGLBasedSpec(mShaderSpec)) + { + error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared"); + } + qualifier.blockStorage = EbsShared; + } + else if (qualifierType == "packed") + { + if (sh::IsWebGLBasedSpec(mShaderSpec)) + { + error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed"); + } + qualifier.blockStorage = EbsPacked; + } + else if (qualifierType == "std430") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.blockStorage = EbsStd430; + } + else if (qualifierType == "std140") + { + qualifier.blockStorage = EbsStd140; + } + else if (qualifierType == "row_major") + { + qualifier.matrixPacking = EmpRowMajor; + } + else if (qualifierType == "column_major") + { + qualifier.matrixPacking = EmpColumnMajor; + } + else if (qualifierType == "location") + { + error(qualifierTypeLine, "invalid layout qualifier: location requires an argument", + qualifierType); + } + else if (qualifierType == "yuv" && mShaderType == GL_FRAGMENT_SHADER) + { + if (checkCanUseExtension(qualifierTypeLine, TExtension::EXT_YUV_target)) + { + qualifier.yuv = true; + } + } + else if (qualifierType == "early_fragment_tests") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.earlyFragmentTests = true; + } + else if (qualifierType == "rgba32f") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA32F; + } + else if (qualifierType == "rgba16f") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA16F; + } + else if (qualifierType == "r32f") + { + if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage)) + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + } + qualifier.imageInternalFormat = EiifR32F; + } + else if (qualifierType == "rgba8") + { + if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage)) + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + } + qualifier.imageInternalFormat = EiifRGBA8; + } + else if (qualifierType == "rgba8_snorm") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA8_SNORM; + } + else if (qualifierType == "rgba32i") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA32I; + } + else if (qualifierType == "rgba16i") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA16I; + } + else if (qualifierType == "rgba8i") + { + if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage)) + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + } + qualifier.imageInternalFormat = EiifRGBA8I; + } + else if (qualifierType == "r32i") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifR32I; + } + else if (qualifierType == "rgba32ui") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA32UI; + } + else if (qualifierType == "rgba16ui") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + qualifier.imageInternalFormat = EiifRGBA16UI; + } + else if (qualifierType == "rgba8ui") + { + if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage)) + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + } + qualifier.imageInternalFormat = EiifRGBA8UI; + } + else if (qualifierType == "r32ui") + { + if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage)) + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + } + qualifier.imageInternalFormat = EiifR32UI; + } + else if (mShaderType == GL_GEOMETRY_SHADER_EXT && + (mShaderVersion >= 320 || + (checkCanUseOneOfExtensions( + qualifierTypeLine, + std::array<TExtension, 2u>{ + {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}}) && + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310)))) + { + if (qualifierType == "points") + { + qualifier.primitiveType = EptPoints; + } + else if (qualifierType == "lines") + { + qualifier.primitiveType = EptLines; + } + else if (qualifierType == "lines_adjacency") + { + qualifier.primitiveType = EptLinesAdjacency; + } + else if (qualifierType == "triangles") + { + qualifier.primitiveType = EptTriangles; + } + else if (qualifierType == "triangles_adjacency") + { + qualifier.primitiveType = EptTrianglesAdjacency; + } + else if (qualifierType == "line_strip") + { + qualifier.primitiveType = EptLineStrip; + } + else if (qualifierType == "triangle_strip") + { + qualifier.primitiveType = EptTriangleStrip; + } + else + { + error(qualifierTypeLine, "invalid layout qualifier", qualifierType); + } + } + else if (mShaderType == GL_TESS_EVALUATION_SHADER_EXT && + (mShaderVersion >= 320 || + (checkCanUseExtension(qualifierTypeLine, TExtension::EXT_tessellation_shader) && + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310)))) + { + if (qualifierType == "triangles") + { + qualifier.tesPrimitiveType = EtetTriangles; + } + else if (qualifierType == "quads") + { + qualifier.tesPrimitiveType = EtetQuads; + } + else if (qualifierType == "isolines") + { + qualifier.tesPrimitiveType = EtetIsolines; + } + else if (qualifierType == "equal_spacing") + { + qualifier.tesVertexSpacingType = EtetEqualSpacing; + } + else if (qualifierType == "fractional_even_spacing") + { + qualifier.tesVertexSpacingType = EtetFractionalEvenSpacing; + } + else if (qualifierType == "fractional_odd_spacing") + { + qualifier.tesVertexSpacingType = EtetFractionalOddSpacing; + } + else if (qualifierType == "cw") + { + qualifier.tesOrderingType = EtetCw; + } + else if (qualifierType == "ccw") + { + qualifier.tesOrderingType = EtetCcw; + } + else if (qualifierType == "point_mode") + { + qualifier.tesPointType = EtetPointMode; + } + else + { + error(qualifierTypeLine, "invalid layout qualifier", qualifierType); + } + } + else if (mShaderType == GL_FRAGMENT_SHADER) + { + if (qualifierType == "noncoherent") + { + if (checkCanUseOneOfExtensions( + qualifierTypeLine, + std::array<TExtension, 2u>{ + {TExtension::EXT_shader_framebuffer_fetch, + TExtension::EXT_shader_framebuffer_fetch_non_coherent}})) + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 100); + qualifier.noncoherent = true; + } + } + else if (qualifierType == "blend_support_multiply") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Multiply, &qualifier); + } + else if (qualifierType == "blend_support_screen") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Screen, &qualifier); + } + else if (qualifierType == "blend_support_overlay") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Overlay, &qualifier); + } + else if (qualifierType == "blend_support_darken") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Darken, &qualifier); + } + else if (qualifierType == "blend_support_lighten") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Lighten, &qualifier); + } + else if (qualifierType == "blend_support_colordodge") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Colordodge, &qualifier); + } + else if (qualifierType == "blend_support_colorburn") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Colorburn, &qualifier); + } + else if (qualifierType == "blend_support_hardlight") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Hardlight, &qualifier); + } + else if (qualifierType == "blend_support_softlight") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Softlight, &qualifier); + } + else if (qualifierType == "blend_support_difference") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Difference, &qualifier); + } + else if (qualifierType == "blend_support_exclusion") + { + AddAdvancedBlendEquation(gl::BlendEquationType::Exclusion, &qualifier); + } + else if (qualifierType == "blend_support_hsl_hue") + { + AddAdvancedBlendEquation(gl::BlendEquationType::HslHue, &qualifier); + } + else if (qualifierType == "blend_support_hsl_saturation") + { + AddAdvancedBlendEquation(gl::BlendEquationType::HslSaturation, &qualifier); + } + else if (qualifierType == "blend_support_hsl_color") + { + AddAdvancedBlendEquation(gl::BlendEquationType::HslColor, &qualifier); + } + else if (qualifierType == "blend_support_hsl_luminosity") + { + AddAdvancedBlendEquation(gl::BlendEquationType::HslLuminosity, &qualifier); + } + else if (qualifierType == "blend_support_all_equations") + { + qualifier.advancedBlendEquations.setAll(); + } + else + { + error(qualifierTypeLine, "invalid layout qualifier", qualifierType); + } + + if (qualifier.advancedBlendEquations.any() && mShaderVersion < 320) + { + if (!checkCanUseExtension(qualifierTypeLine, TExtension::KHR_blend_equation_advanced)) + { + qualifier.advancedBlendEquations.reset(); + } + } + } + else + { + error(qualifierTypeLine, "invalid layout qualifier", qualifierType); + } + + return qualifier; +} + +void TParseContext::parseLocalSize(const ImmutableString &qualifierType, + const TSourceLoc &qualifierTypeLine, + int intValue, + const TSourceLoc &intValueLine, + const std::string &intValueString, + size_t index, + sh::WorkGroupSize *localSize) +{ + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + if (intValue < 1) + { + std::stringstream reasonStream = sh::InitializeStream<std::stringstream>(); + reasonStream << "out of range: " << getWorkGroupSizeString(index) << " must be positive"; + std::string reason = reasonStream.str(); + error(intValueLine, reason.c_str(), intValueString.c_str()); + } + (*localSize)[index] = intValue; +} + +void TParseContext::parseNumViews(int intValue, + const TSourceLoc &intValueLine, + const std::string &intValueString, + int *numViews) +{ + // This error is only specified in WebGL, but tightens unspecified behavior in the native + // specification. + if (intValue < 1) + { + error(intValueLine, "out of range: num_views must be positive", intValueString.c_str()); + } + *numViews = intValue; +} + +void TParseContext::parseInvocations(int intValue, + const TSourceLoc &intValueLine, + const std::string &intValueString, + int *numInvocations) +{ + // Although SPEC isn't clear whether invocations can be less than 1, we add this limit because + // it doesn't make sense to accept invocations <= 0. + if (intValue < 1 || intValue > mMaxGeometryShaderInvocations) + { + error(intValueLine, + "out of range: invocations must be in the range of [1, " + "MAX_GEOMETRY_SHADER_INVOCATIONS_OES]", + intValueString.c_str()); + } + else + { + *numInvocations = intValue; + } +} + +void TParseContext::parseMaxVertices(int intValue, + const TSourceLoc &intValueLine, + const std::string &intValueString, + int *maxVertices) +{ + // Although SPEC isn't clear whether max_vertices can be less than 0, we add this limit because + // it doesn't make sense to accept max_vertices < 0. + if (intValue < 0 || intValue > mMaxGeometryShaderMaxVertices) + { + error( + intValueLine, + "out of range: max_vertices must be in the range of [0, gl_MaxGeometryOutputVertices]", + intValueString.c_str()); + } + else + { + *maxVertices = intValue; + } +} + +void TParseContext::parseVertices(int intValue, + const TSourceLoc &intValueLine, + const std::string &intValueString, + int *vertices) +{ + if (intValue < 1 || intValue > mMaxPatchVertices) + { + error(intValueLine, + "out of range : vertices must be in the range of [1, gl_MaxPatchVertices]", + intValueString.c_str()); + } + else + { + *vertices = intValue; + } +} + +void TParseContext::parseIndexLayoutQualifier(int intValue, + const TSourceLoc &intValueLine, + const std::string &intValueString, + int *index) +{ + // EXT_blend_func_extended specifies that most validation should happen at link time, but since + // we're validating output variable locations at compile time, it makes sense to validate that + // index is 0 or 1 also at compile time. Also since we use "-1" as a placeholder for unspecified + // index, we can't accept it here. + if (intValue < 0 || intValue > 1) + { + error(intValueLine, "out of range: index layout qualifier can only be 0 or 1", + intValueString.c_str()); + } + else + { + *index = intValue; + } +} + +TLayoutQualifier TParseContext::parseLayoutQualifier(const ImmutableString &qualifierType, + const TSourceLoc &qualifierTypeLine, + int intValue, + const TSourceLoc &intValueLine) +{ + TLayoutQualifier qualifier = TLayoutQualifier::Create(); + + std::string intValueString = Str(intValue); + + if (qualifierType == "location") + { + // must check that location is non-negative + if (intValue < 0) + { + error(intValueLine, "out of range: location must be non-negative", + intValueString.c_str()); + } + else + { + qualifier.location = intValue; + qualifier.locationsSpecified = 1; + } + } + else if (qualifierType == "binding") + { + if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage)) + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + } + if (intValue < 0) + { + error(intValueLine, "out of range: binding must be non-negative", + intValueString.c_str()); + } + else + { + qualifier.binding = intValue; + } + } + else if (qualifierType == "offset") + { + checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); + if (intValue < 0) + { + error(intValueLine, "out of range: offset must be non-negative", + intValueString.c_str()); + } + else + { + qualifier.offset = intValue; + } + } + else if (qualifierType == "local_size_x") + { + parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u, + &qualifier.localSize); + } + else if (qualifierType == "local_size_y") + { + parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u, + &qualifier.localSize); + } + else if (qualifierType == "local_size_z") + { + parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u, + &qualifier.localSize); + } + else if (qualifierType == "num_views" && mShaderType == GL_VERTEX_SHADER) + { + if (checkCanUseOneOfExtensions( + qualifierTypeLine, std::array<TExtension, 2u>{ + {TExtension::OVR_multiview, TExtension::OVR_multiview2}})) + { + parseNumViews(intValue, intValueLine, intValueString, &qualifier.numViews); + } + } + else if (qualifierType == "invocations" && mShaderType == GL_GEOMETRY_SHADER_EXT && + (mShaderVersion >= 320 || + checkCanUseOneOfExtensions( + qualifierTypeLine, + std::array<TExtension, 2u>{ + {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}}))) + { + parseInvocations(intValue, intValueLine, intValueString, &qualifier.invocations); + } + else if (qualifierType == "max_vertices" && mShaderType == GL_GEOMETRY_SHADER_EXT && + (mShaderVersion >= 320 || + checkCanUseOneOfExtensions( + qualifierTypeLine, + std::array<TExtension, 2u>{ + {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}}))) + { + parseMaxVertices(intValue, intValueLine, intValueString, &qualifier.maxVertices); + } + else if (qualifierType == "index" && mShaderType == GL_FRAGMENT_SHADER && + checkCanUseExtension(qualifierTypeLine, TExtension::EXT_blend_func_extended)) + { + parseIndexLayoutQualifier(intValue, intValueLine, intValueString, &qualifier.index); + } + else if (qualifierType == "vertices" && mShaderType == GL_TESS_CONTROL_SHADER_EXT && + (mShaderVersion >= 320 || + checkCanUseExtension(qualifierTypeLine, TExtension::EXT_tessellation_shader))) + { + parseVertices(intValue, intValueLine, intValueString, &qualifier.vertices); + } + else + { + error(qualifierTypeLine, "invalid layout qualifier", qualifierType); + } + + return qualifier; +} + +TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc) +{ + return new TTypeQualifierBuilder( + new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc), + mShaderVersion); +} + +TStorageQualifierWrapper *TParseContext::parseGlobalStorageQualifier(TQualifier qualifier, + const TSourceLoc &loc) +{ + checkIsAtGlobalLevel(loc, getQualifierString(qualifier)); + return new TStorageQualifierWrapper(qualifier, loc); +} + +TStorageQualifierWrapper *TParseContext::parseVaryingQualifier(const TSourceLoc &loc) +{ + if (getShaderType() == GL_VERTEX_SHADER) + { + return parseGlobalStorageQualifier(EvqVaryingOut, loc); + } + return parseGlobalStorageQualifier(EvqVaryingIn, loc); +} + +TStorageQualifierWrapper *TParseContext::parseInQualifier(const TSourceLoc &loc) +{ + if (declaringFunction()) + { + return new TStorageQualifierWrapper(EvqParamIn, loc); + } + + switch (getShaderType()) + { + case GL_VERTEX_SHADER: + { + if (mShaderVersion < 300 && !anyMultiviewExtensionAvailable() && + !IsDesktopGLSpec(mShaderSpec)) + { + error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); + } + return new TStorageQualifierWrapper(EvqVertexIn, loc); + } + case GL_FRAGMENT_SHADER: + { + if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec)) + { + error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); + } + return new TStorageQualifierWrapper(EvqFragmentIn, loc); + } + case GL_COMPUTE_SHADER: + { + return new TStorageQualifierWrapper(EvqComputeIn, loc); + } + case GL_GEOMETRY_SHADER: + { + return new TStorageQualifierWrapper(EvqGeometryIn, loc); + } + case GL_TESS_CONTROL_SHADER: + { + return new TStorageQualifierWrapper(EvqTessControlIn, loc); + } + case GL_TESS_EVALUATION_SHADER: + { + return new TStorageQualifierWrapper(EvqTessEvaluationIn, loc); + } + default: + { + UNREACHABLE(); + return new TStorageQualifierWrapper(EvqLast, loc); + } + } +} + +TStorageQualifierWrapper *TParseContext::parseOutQualifier(const TSourceLoc &loc) +{ + if (declaringFunction()) + { + return new TStorageQualifierWrapper(EvqParamOut, loc); + } + switch (getShaderType()) + { + case GL_VERTEX_SHADER: + { + if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec)) + { + error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out"); + } + return new TStorageQualifierWrapper(EvqVertexOut, loc); + } + case GL_FRAGMENT_SHADER: + { + if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec)) + { + error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out"); + } + return new TStorageQualifierWrapper(EvqFragmentOut, loc); + } + case GL_COMPUTE_SHADER: + { + error(loc, "storage qualifier isn't supported in compute shaders", "out"); + return new TStorageQualifierWrapper(EvqParamOut, loc); + } + case GL_GEOMETRY_SHADER_EXT: + { + return new TStorageQualifierWrapper(EvqGeometryOut, loc); + } + case GL_TESS_CONTROL_SHADER_EXT: + { + return new TStorageQualifierWrapper(EvqTessControlOut, loc); + } + case GL_TESS_EVALUATION_SHADER_EXT: + { + return new TStorageQualifierWrapper(EvqTessEvaluationOut, loc); + } + default: + { + UNREACHABLE(); + return new TStorageQualifierWrapper(EvqLast, loc); + } + } +} + +TStorageQualifierWrapper *TParseContext::parseInOutQualifier(const TSourceLoc &loc) +{ + if (!declaringFunction()) + { + if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec)) + { + error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "inout"); + } + + if (getShaderType() != GL_FRAGMENT_SHADER) + { + error(loc, "storage qualifier isn't supported in non-fragment shaders", "inout"); + } + + if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) || + isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent)) + { + return new TStorageQualifierWrapper(EvqFragmentInOut, loc); + } + + error(loc, + "invalid qualifier: can be used with either function parameters or the variables for " + "fetching input attachment data", + "inout"); + } + return new TStorageQualifierWrapper(EvqParamInOut, loc); +} + +TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, + TLayoutQualifier rightQualifier, + const TSourceLoc &rightQualifierLocation) +{ + return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation, + mDiagnostics); +} + +TDeclarator *TParseContext::parseStructDeclarator(const ImmutableString &identifier, + const TSourceLoc &loc) +{ + return new TDeclarator(identifier, loc); +} + +TDeclarator *TParseContext::parseStructArrayDeclarator(const ImmutableString &identifier, + const TSourceLoc &loc, + const TVector<unsigned int> *arraySizes) +{ + return new TDeclarator(identifier, arraySizes, loc); +} + +void TParseContext::checkDoesNotHaveDuplicateFieldName(const TFieldList::const_iterator begin, + const TFieldList::const_iterator end, + const ImmutableString &name, + const TSourceLoc &location) +{ + for (auto fieldIter = begin; fieldIter != end; ++fieldIter) + { + if ((*fieldIter)->name() == name) + { + error(location, "duplicate field name in structure", name); + } + } +} + +TFieldList *TParseContext::addStructFieldList(TFieldList *fields, const TSourceLoc &location) +{ + for (TFieldList::const_iterator fieldIter = fields->begin(); fieldIter != fields->end(); + ++fieldIter) + { + checkDoesNotHaveDuplicateFieldName(fields->begin(), fieldIter, (*fieldIter)->name(), + location); + } + return fields; +} + +TFieldList *TParseContext::combineStructFieldLists(TFieldList *processedFields, + const TFieldList *newlyAddedFields, + const TSourceLoc &location) +{ + for (TField *field : *newlyAddedFields) + { + checkDoesNotHaveDuplicateFieldName(processedFields->begin(), processedFields->end(), + field->name(), location); + processedFields->push_back(field); + } + return processedFields; +} + +TFieldList *TParseContext::addStructDeclaratorListWithQualifiers( + const TTypeQualifierBuilder &typeQualifierBuilder, + TPublicType *typeSpecifier, + const TDeclaratorList *declaratorList) +{ + TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); + + typeSpecifier->qualifier = typeQualifier.qualifier; + typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier; + typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier; + typeSpecifier->invariant = typeQualifier.invariant; + typeSpecifier->precise = typeQualifier.precise; + if (typeQualifier.precision != EbpUndefined) + { + typeSpecifier->precision = typeQualifier.precision; + } + return addStructDeclaratorList(*typeSpecifier, declaratorList); +} + +TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, + const TDeclaratorList *declaratorList) +{ + checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision, + typeSpecifier.getBasicType()); + + checkIsNonVoid(typeSpecifier.getLine(), (*declaratorList)[0]->name(), + typeSpecifier.getBasicType()); + + checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier); + checkEarlyFragmentTestsIsNotSpecified(typeSpecifier.getLine(), + typeSpecifier.layoutQualifier.earlyFragmentTests); + checkNoncoherentIsNotSpecified(typeSpecifier.getLine(), + typeSpecifier.layoutQualifier.noncoherent); + + TFieldList *fieldList = new TFieldList(); + + for (const TDeclarator *declarator : *declaratorList) + { + TType *type = new TType(typeSpecifier); + if (declarator->isArray()) + { + // Don't allow arrays of arrays in ESSL < 3.10. + checkArrayElementIsNotArray(typeSpecifier.getLine(), typeSpecifier); + type->makeArrays(*declarator->arraySizes()); + } + + SymbolType symbolType = SymbolType::UserDefined; + if (declarator->name() == "gl_Position" || declarator->name() == "gl_PointSize" || + declarator->name() == "gl_ClipDistance" || declarator->name() == "gl_CullDistance") + { + symbolType = SymbolType::BuiltIn; + } + else + { + checkIsNotReserved(typeSpecifier.getLine(), declarator->name()); + } + TField *field = new TField(type, declarator->name(), declarator->line(), symbolType); + checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *field); + fieldList->push_back(field); + } + + return fieldList; +} + +TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine, + const TSourceLoc &nameLine, + const ImmutableString &structName, + TFieldList *fieldList) +{ + SymbolType structSymbolType = SymbolType::UserDefined; + if (structName.empty()) + { + structSymbolType = SymbolType::Empty; + } + TStructure *structure = new TStructure(&symbolTable, structName, fieldList, structSymbolType); + + // Store a bool in the struct if we're at global scope, to allow us to + // skip the local struct scoping workaround in HLSL. + structure->setAtGlobalScope(symbolTable.atGlobalLevel()); + + if (structSymbolType != SymbolType::Empty) + { + checkIsNotReserved(nameLine, structName); + if (!symbolTable.declare(structure)) + { + error(nameLine, "redefinition of a struct", structName); + } + } + + // ensure we do not specify any storage qualifiers on the struct members + for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) + { + TField &field = *(*fieldList)[typeListIndex]; + const TQualifier qualifier = field.type()->getQualifier(); + switch (qualifier) + { + case EvqGlobal: + case EvqTemporary: + break; + default: + error(field.line(), "invalid qualifier on struct member", + getQualifierString(qualifier)); + break; + } + if (field.type()->isInvariant()) + { + error(field.line(), "invalid qualifier on struct member", "invariant"); + } + // ESSL 3.10 section 4.1.8 -- atomic_uint or images are not allowed as structure member. + // ANGLE_shader_pixel_local_storage also disallows PLS as struct members. + if (IsImage(field.type()->getBasicType()) || + IsAtomicCounter(field.type()->getBasicType()) || + IsPixelLocal(field.type()->getBasicType())) + { + error(field.line(), "disallowed type in struct", field.type()->getBasicString()); + } + + checkIsNotUnsizedArray(field.line(), "array members of structs must specify a size", + field.name(), field.type()); + + checkMemoryQualifierIsNotSpecified(field.type()->getMemoryQualifier(), field.line()); + + checkIndexIsNotSpecified(field.line(), field.type()->getLayoutQualifier().index); + + checkBindingIsNotSpecified(field.line(), field.type()->getLayoutQualifier().binding); + + checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier()); + } + + TTypeSpecifierNonArray typeSpecifierNonArray; + typeSpecifierNonArray.initializeStruct(structure, true, structLine); + exitStructDeclaration(); + + return typeSpecifierNonArray; +} + +TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, + TIntermBlock *statementList, + const TSourceLoc &loc) +{ + TBasicType switchType = init->getBasicType(); + if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || + init->isVector()) + { + error(init->getLine(), "init-expression in a switch statement must be a scalar integer", + "switch"); + return nullptr; + } + + ASSERT(statementList); + if (!ValidateSwitchStatementList(switchType, mDiagnostics, statementList, loc)) + { + ASSERT(mDiagnostics->numErrors() > 0); + return nullptr; + } + + markStaticReadIfSymbol(init); + TIntermSwitch *node = new TIntermSwitch(init, statementList); + node->setLine(loc); + return node; +} + +TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) +{ + if (mSwitchNestingLevel == 0) + { + error(loc, "case labels need to be inside switch statements", "case"); + return nullptr; + } + if (condition == nullptr) + { + error(loc, "case label must have a condition", "case"); + return nullptr; + } + if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || + condition->isMatrix() || condition->isArray() || condition->isVector()) + { + error(condition->getLine(), "case label must be a scalar integer", "case"); + } + TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); + // ANGLE should be able to fold any EvqConst expressions resulting in an integer - but to be + // safe against corner cases we still check for conditionConst. Some interpretations of the + // spec have allowed constant expressions with side effects - like array length() method on a + // non-constant array. + if (condition->getQualifier() != EvqConst || conditionConst == nullptr) + { + error(condition->getLine(), "case label must be constant", "case"); + } + TIntermCase *node = new TIntermCase(condition); + node->setLine(loc); + return node; +} + +TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) +{ + if (mSwitchNestingLevel == 0) + { + error(loc, "default labels need to be inside switch statements", "default"); + return nullptr; + } + TIntermCase *node = new TIntermCase(nullptr); + node->setLine(loc); + return node; +} + +TIntermTyped *TParseContext::createUnaryMath(TOperator op, + TIntermTyped *child, + const TSourceLoc &loc, + const TFunction *func) +{ + ASSERT(child != nullptr); + + switch (op) + { + case EOpLogicalNot: + if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || + child->isVector()) + { + unaryOpError(loc, GetOperatorString(op), child->getType()); + return nullptr; + } + break; + case EOpBitwiseNot: + if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || + child->isMatrix() || child->isArray()) + { + unaryOpError(loc, GetOperatorString(op), child->getType()); + return nullptr; + } + break; + case EOpPostIncrement: + case EOpPreIncrement: + case EOpPostDecrement: + case EOpPreDecrement: + case EOpNegative: + case EOpPositive: + if (child->getBasicType() == EbtStruct || child->isInterfaceBlock() || + child->getBasicType() == EbtBool || child->isArray() || + child->getBasicType() == EbtVoid || IsOpaqueType(child->getBasicType())) + { + unaryOpError(loc, GetOperatorString(op), child->getType()); + return nullptr; + } + break; + // Operators for math built-ins are already type checked against their prototype. + default: + break; + } + + if (child->getMemoryQualifier().writeonly) + { + const char *opStr = + BuiltInGroup::IsBuiltIn(op) ? func->name().data() : GetOperatorString(op); + unaryOpError(loc, opStr, child->getType()); + return nullptr; + } + + markStaticReadIfSymbol(child); + TIntermUnary *node = new TIntermUnary(op, child, func); + node->setLine(loc); + + return node->fold(mDiagnostics); +} + +TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) +{ + ASSERT(op != EOpNull); + TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); + if (node == nullptr) + { + return child; + } + return node; +} + +TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, + TIntermTyped *child, + const TSourceLoc &loc) +{ + checkCanBeLValue(loc, GetOperatorString(op), child); + return addUnaryMath(op, child, loc); +} + +TIntermTyped *TParseContext::expressionOrFoldedResult(TIntermTyped *expression) +{ + // If we can, we should return the folded version of the expression for subsequent parsing. This + // enables folding the containing expression during parsing as well, instead of the separate + // FoldExpressions() step where folding nested expressions requires multiple full AST + // traversals. + + // Even if folding fails the fold() functions return some node representing the expression, + // typically the original node. So "folded" can be assumed to be non-null. + TIntermTyped *folded = expression->fold(mDiagnostics); + ASSERT(folded != nullptr); + if (folded->getQualifier() == expression->getQualifier()) + { + // We need this expression to have the correct qualifier when validating the consuming + // expression. So we can only return the folded node from here in case it has the same + // qualifier as the original expression. In this kind of a cases the qualifier of the folded + // node is EvqConst, whereas the qualifier of the expression is EvqTemporary: + // 1. (true ? 1.0 : non_constant) + // 2. (non_constant, 1.0) + return folded; + } + return expression; +} + +bool TParseContext::binaryOpCommonCheck(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + // Check opaque types are not allowed to be operands in expressions other than array indexing + // and structure member selection. + if (IsOpaqueType(left->getBasicType()) || IsOpaqueType(right->getBasicType())) + { + switch (op) + { + case EOpIndexDirect: + case EOpIndexIndirect: + break; + + default: + ASSERT(op != EOpIndexDirectStruct); + error(loc, "Invalid operation for variables with an opaque type", + GetOperatorString(op)); + return false; + } + } + + if (right->getMemoryQualifier().writeonly) + { + error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op)); + return false; + } + + if (left->getMemoryQualifier().writeonly) + { + switch (op) + { + case EOpAssign: + case EOpInitialize: + case EOpIndexDirect: + case EOpIndexIndirect: + case EOpIndexDirectStruct: + case EOpIndexDirectInterfaceBlock: + break; + default: + error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op)); + return false; + } + } + + if (left->getType().getStruct() || right->getType().getStruct()) + { + switch (op) + { + case EOpIndexDirectStruct: + ASSERT(left->getType().getStruct()); + break; + case EOpEqual: + case EOpNotEqual: + case EOpAssign: + case EOpInitialize: + if (left->getType() != right->getType()) + { + return false; + } + break; + default: + error(loc, "Invalid operation for structs", GetOperatorString(op)); + return false; + } + } + + if (left->isInterfaceBlock() || right->isInterfaceBlock()) + { + switch (op) + { + case EOpIndexDirectInterfaceBlock: + ASSERT(left->getType().getInterfaceBlock()); + break; + default: + error(loc, "Invalid operation for interface blocks", GetOperatorString(op)); + return false; + } + } + + if (left->isArray() != right->isArray()) + { + error(loc, "array / non-array mismatch", GetOperatorString(op)); + return false; + } + + if (left->isArray()) + { + ASSERT(right->isArray()); + if (mShaderVersion < 300) + { + error(loc, "Invalid operation for arrays", GetOperatorString(op)); + return false; + } + + switch (op) + { + case EOpEqual: + case EOpNotEqual: + case EOpAssign: + case EOpInitialize: + break; + default: + error(loc, "Invalid operation for arrays", GetOperatorString(op)); + return false; + } + // At this point, size of implicitly sized arrays should be resolved. + if (left->getType().getArraySizes() != right->getType().getArraySizes()) + { + error(loc, "array size mismatch", GetOperatorString(op)); + return false; + } + } + + // Check ops which require integer / ivec parameters + bool isBitShift = false; + switch (op) + { + case EOpBitShiftLeft: + case EOpBitShiftRight: + case EOpBitShiftLeftAssign: + case EOpBitShiftRightAssign: + // Unsigned can be bit-shifted by signed and vice versa, but we need to + // check that the basic type is an integer type. + isBitShift = true; + if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) + { + return false; + } + break; + case EOpBitwiseAnd: + case EOpBitwiseXor: + case EOpBitwiseOr: + case EOpBitwiseAndAssign: + case EOpBitwiseXorAssign: + case EOpBitwiseOrAssign: + // It is enough to check the type of only one operand, since later it + // is checked that the operand types match. + if (!IsInteger(left->getBasicType())) + { + return false; + } + break; + default: + break; + } + + ImplicitTypeConversion conversion = GetConversion(left->getBasicType(), right->getBasicType()); + + // Implicit type casting only supported for GL shaders + if (!isBitShift && conversion != ImplicitTypeConversion::Same && + (!IsDesktopGLSpec(mShaderSpec) || !IsValidImplicitConversion(conversion, op))) + { + return false; + } + + // Check that: + // 1. Type sizes match exactly on ops that require that. + // 2. Restrictions for structs that contain arrays or samplers are respected. + // 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected. + switch (op) + { + case EOpAssign: + case EOpInitialize: + case EOpEqual: + case EOpNotEqual: + // ESSL 1.00 sections 5.7, 5.8, 5.9 + if (mShaderVersion < 300 && left->getType().isStructureContainingArrays()) + { + error(loc, "undefined operation for structs containing arrays", + GetOperatorString(op)); + return false; + } + // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, + // we interpret the spec so that this extends to structs containing samplers, + // similarly to ESSL 1.00 spec. + if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && + left->getType().isStructureContainingSamplers()) + { + error(loc, "undefined operation for structs containing samplers", + GetOperatorString(op)); + return false; + } + + if ((left->getNominalSize() != right->getNominalSize()) || + (left->getSecondarySize() != right->getSecondarySize())) + { + error(loc, "dimension mismatch", GetOperatorString(op)); + return false; + } + break; + case EOpLessThan: + case EOpGreaterThan: + case EOpLessThanEqual: + case EOpGreaterThanEqual: + if (!left->isScalar() || !right->isScalar()) + { + error(loc, "comparison operator only defined for scalars", GetOperatorString(op)); + return false; + } + break; + case EOpAdd: + case EOpSub: + case EOpDiv: + case EOpIMod: + case EOpBitShiftLeft: + case EOpBitShiftRight: + case EOpBitwiseAnd: + case EOpBitwiseXor: + case EOpBitwiseOr: + case EOpAddAssign: + case EOpSubAssign: + case EOpDivAssign: + case EOpIModAssign: + case EOpBitShiftLeftAssign: + case EOpBitShiftRightAssign: + case EOpBitwiseAndAssign: + case EOpBitwiseXorAssign: + case EOpBitwiseOrAssign: + if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix())) + { + return false; + } + + // Are the sizes compatible? + if (left->getNominalSize() != right->getNominalSize() || + left->getSecondarySize() != right->getSecondarySize()) + { + // If the nominal sizes of operands do not match: + // One of them must be a scalar. + if (!left->isScalar() && !right->isScalar()) + return false; + + // In the case of compound assignment other than multiply-assign, + // the right side needs to be a scalar. Otherwise a vector/matrix + // would be assigned to a scalar. A scalar can't be shifted by a + // vector either. + if (!right->isScalar() && + (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight)) + return false; + } + break; + default: + break; + } + + return true; +} + +bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op, + const TType &left, + const TType &right) +{ + switch (op) + { + case EOpMul: + case EOpMulAssign: + return left.getNominalSize() == right.getNominalSize() && + left.getSecondarySize() == right.getSecondarySize(); + case EOpVectorTimesScalar: + return true; + case EOpVectorTimesScalarAssign: + ASSERT(!left.isMatrix() && !right.isMatrix()); + return left.isVector() && !right.isVector(); + case EOpVectorTimesMatrix: + return left.getNominalSize() == right.getRows(); + case EOpVectorTimesMatrixAssign: + ASSERT(!left.isMatrix() && right.isMatrix()); + return left.isVector() && left.getNominalSize() == right.getRows() && + left.getNominalSize() == right.getCols(); + case EOpMatrixTimesVector: + return left.getCols() == right.getNominalSize(); + case EOpMatrixTimesScalar: + return true; + case EOpMatrixTimesScalarAssign: + ASSERT(left.isMatrix() && !right.isMatrix()); + return !right.isVector(); + case EOpMatrixTimesMatrix: + return left.getCols() == right.getRows(); + case EOpMatrixTimesMatrixAssign: + ASSERT(left.isMatrix() && right.isMatrix()); + // We need to check two things: + // 1. The matrix multiplication step is valid. + // 2. The result will have the same number of columns as the lvalue. + return left.getCols() == right.getRows() && left.getCols() == right.getCols(); + + default: + UNREACHABLE(); + return false; + } +} + +TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + if (!binaryOpCommonCheck(op, left, right, loc)) + return nullptr; + + switch (op) + { + case EOpEqual: + case EOpNotEqual: + case EOpLessThan: + case EOpGreaterThan: + case EOpLessThanEqual: + case EOpGreaterThanEqual: + break; + case EOpLogicalOr: + case EOpLogicalXor: + case EOpLogicalAnd: + ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && + !right->getType().getStruct()); + if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar()) + { + return nullptr; + } + // Basic types matching should have been already checked. + ASSERT(right->getBasicType() == EbtBool); + break; + case EOpAdd: + case EOpSub: + case EOpDiv: + case EOpMul: + ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && + !right->getType().getStruct()); + if (left->getBasicType() == EbtBool) + { + return nullptr; + } + break; + case EOpIMod: + ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && + !right->getType().getStruct()); + // Note that this is only for the % operator, not for mod() + if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) + { + return nullptr; + } + break; + default: + break; + } + + if (op == EOpMul) + { + op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType()); + if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) + { + return nullptr; + } + } + + TIntermBinary *node = new TIntermBinary(op, left, right); + ASSERT(op != EOpAssign); + markStaticReadIfSymbol(left); + markStaticReadIfSymbol(right); + node->setLine(loc); + return expressionOrFoldedResult(node); +} + +TIntermTyped *TParseContext::addBinaryMath(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); + if (node == 0) + { + binaryOpError(loc, GetOperatorString(op), left->getType(), right->getType()); + return left; + } + return node; +} + +TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); + if (node == nullptr) + { + binaryOpError(loc, GetOperatorString(op), left->getType(), right->getType()); + node = CreateBoolNode(false); + node->setLine(loc); + } + return node; +} + +TIntermTyped *TParseContext::addAssign(TOperator op, + TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + checkCanBeLValue(loc, "assign", left); + TIntermBinary *node = nullptr; + if (binaryOpCommonCheck(op, left, right, loc)) + { + TIntermBinary *lValue = left->getAsBinaryNode(); + if ((lValue != nullptr) && + (lValue->getOp() == EOpIndexIndirect || lValue->getOp() == EOpIndexDirect) && + IsTessellationControlShaderOutput(mShaderType, lValue->getLeft()->getQualifier())) + { + checkTCSOutVarIndexIsValid(lValue, loc); + } + + if (op == EOpMulAssign) + { + op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType()); + if (isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) + { + node = new TIntermBinary(op, left, right); + } + } + else + { + node = new TIntermBinary(op, left, right); + } + } + if (node == nullptr) + { + assignError(loc, "assign", left->getType(), right->getType()); + return left; + } + if (op != EOpAssign) + { + markStaticReadIfSymbol(left); + } + markStaticReadIfSymbol(right); + node->setLine(loc); + return node; +} + +TIntermTyped *TParseContext::addComma(TIntermTyped *left, + TIntermTyped *right, + const TSourceLoc &loc) +{ + // WebGL2 section 5.26, the following results in an error: + // "Sequence operator applied to void, arrays, or structs containing arrays" + if (mShaderSpec == SH_WEBGL2_SPEC && + (left->isArray() || left->getBasicType() == EbtVoid || + left->getType().isStructureContainingArrays() || right->isArray() || + right->getBasicType() == EbtVoid || right->getType().isStructureContainingArrays())) + { + error(loc, + "sequence operator is not allowed for void, arrays, or structs containing arrays", + ","); + } + + TIntermBinary *commaNode = TIntermBinary::CreateComma(left, right, mShaderVersion); + markStaticReadIfSymbol(left); + markStaticReadIfSymbol(right); + commaNode->setLine(loc); + + return expressionOrFoldedResult(commaNode); +} + +TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) +{ + switch (op) + { + case EOpContinue: + if (mLoopNestingLevel <= 0) + { + error(loc, "continue statement only allowed in loops", ""); + } + break; + case EOpBreak: + if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) + { + error(loc, "break statement only allowed in loops and switch statements", ""); + } + break; + case EOpReturn: + if (mCurrentFunctionType->getBasicType() != EbtVoid) + { + error(loc, "non-void function must return a value", "return"); + } + if (mDeclaringMain) + { + errorIfPLSDeclared(loc, PLSIllegalOperations::ReturnFromMain); + } + break; + case EOpKill: + if (mShaderType != GL_FRAGMENT_SHADER) + { + error(loc, "discard supported in fragment shaders only", "discard"); + } + else + { + errorIfPLSDeclared(loc, PLSIllegalOperations::Discard); + } + mHasDiscard = true; + break; + default: + UNREACHABLE(); + break; + } + return addBranch(op, nullptr, loc); +} + +TIntermBranch *TParseContext::addBranch(TOperator op, + TIntermTyped *expression, + const TSourceLoc &loc) +{ + if (expression != nullptr) + { + markStaticReadIfSymbol(expression); + ASSERT(op == EOpReturn); + mFunctionReturnsValue = true; + if (mCurrentFunctionType->getBasicType() == EbtVoid) + { + error(loc, "void function cannot return a value", "return"); + } + else if (*mCurrentFunctionType != expression->getType()) + { + error(loc, "function return is not matching type:", "return"); + } + } + TIntermBranch *node = new TIntermBranch(op, expression); + node->setLine(loc); + return node; +} + +void TParseContext::appendStatement(TIntermBlock *block, TIntermNode *statement) +{ + if (statement != nullptr) + { + markStaticReadIfSymbol(statement); + block->appendStatement(statement); + } +} + +void TParseContext::checkTextureGather(TIntermAggregate *functionCall) +{ + const TOperator op = functionCall->getOp(); + const TFunction *func = functionCall->getFunction(); + if (BuiltInGroup::IsTextureGather(op)) + { + bool isTextureGatherOffsetOrOffsets = + BuiltInGroup::IsTextureGatherOffset(op) || BuiltInGroup::IsTextureGatherOffsets(op); + TIntermNode *componentNode = nullptr; + TIntermSequence *arguments = functionCall->getSequence(); + ASSERT(arguments->size() >= 2u && arguments->size() <= 4u); + const TIntermTyped *sampler = arguments->front()->getAsTyped(); + ASSERT(sampler != nullptr); + switch (sampler->getBasicType()) + { + case EbtSampler2D: + case EbtISampler2D: + case EbtUSampler2D: + case EbtSampler2DArray: + case EbtISampler2DArray: + case EbtUSampler2DArray: + if ((!isTextureGatherOffsetOrOffsets && arguments->size() == 3u) || + (isTextureGatherOffsetOrOffsets && arguments->size() == 4u)) + { + componentNode = arguments->back(); + } + break; + case EbtSamplerCube: + case EbtISamplerCube: + case EbtUSamplerCube: + case EbtSamplerCubeArray: + case EbtISamplerCubeArray: + case EbtUSamplerCubeArray: + ASSERT(!isTextureGatherOffsetOrOffsets); + if (arguments->size() == 3u) + { + componentNode = arguments->back(); + } + break; + case EbtSampler2DShadow: + case EbtSampler2DArrayShadow: + case EbtSamplerCubeShadow: + case EbtSamplerCubeArrayShadow: + break; + default: + UNREACHABLE(); + break; + } + if (componentNode) + { + const TIntermConstantUnion *componentConstantUnion = + componentNode->getAsConstantUnion(); + if (componentNode->getAsTyped()->getQualifier() != EvqConst || !componentConstantUnion) + { + error(functionCall->getLine(), "Texture component must be a constant expression", + func->name()); + } + else + { + int component = componentConstantUnion->getIConst(0); + if (component < 0 || component > 3) + { + error(functionCall->getLine(), "Component must be in the range [0;3]", + func->name()); + } + } + } + } +} + +void TParseContext::checkTextureOffset(TIntermAggregate *functionCall) +{ + const TOperator op = functionCall->getOp(); + const TFunction *func = functionCall->getFunction(); + TIntermNode *offset = nullptr; + TIntermSequence *arguments = functionCall->getSequence(); + + if (BuiltInGroup::IsTextureOffsetNoBias(op) || BuiltInGroup::IsTextureGatherOffsetNoComp(op) || + BuiltInGroup::IsTextureGatherOffsetsNoComp(op)) + { + offset = arguments->back(); + } + else if (BuiltInGroup::IsTextureOffsetBias(op) || BuiltInGroup::IsTextureGatherOffsetComp(op) || + BuiltInGroup::IsTextureGatherOffsetsComp(op)) + { + // A bias or comp parameter follows the offset parameter. + ASSERT(arguments->size() >= 3); + offset = (*arguments)[2]; + } + + // If not one of the above built-ins, there's nothing to do here. + if (offset == nullptr) + { + return; + } + + bool isTextureGatherOffset = BuiltInGroup::IsTextureGatherOffset(op); + bool isTextureGatherOffsets = BuiltInGroup::IsTextureGatherOffsets(op); + bool useTextureGatherOffsetConstraints = isTextureGatherOffset || isTextureGatherOffsets; + + int minOffsetValue = + useTextureGatherOffsetConstraints ? mMinProgramTextureGatherOffset : mMinProgramTexelOffset; + int maxOffsetValue = + useTextureGatherOffsetConstraints ? mMaxProgramTextureGatherOffset : mMaxProgramTexelOffset; + + if (isTextureGatherOffsets) + { + // If textureGatherOffsets, the offsets parameter is an array, which is expected as an + // aggregate constructor node or as a symbol node with a constant value. + TIntermAggregate *offsetAggregate = offset->getAsAggregate(); + TIntermSymbol *offsetSymbol = offset->getAsSymbolNode(); + + const TConstantUnion *offsetValues = offsetAggregate ? offsetAggregate->getConstantValue() + : offsetSymbol ? offsetSymbol->getConstantValue() + : nullptr; + + if (offsetValues == nullptr) + { + error(functionCall->getLine(), "Texture offsets must be a constant expression", + func->name()); + return; + } + + constexpr unsigned int kOffsetsCount = 4; + const TType &offsetType = + offsetAggregate != nullptr ? offsetAggregate->getType() : offsetSymbol->getType(); + if (offsetType.getNumArraySizes() != 1 || offsetType.getArraySizes()[0] != kOffsetsCount) + { + error(functionCall->getLine(), "Texture offsets must be an array of 4 elements", + func->name()); + return; + } + + size_t size = offsetType.getObjectSize() / kOffsetsCount; + for (unsigned int i = 0; i < kOffsetsCount; ++i) + { + checkSingleTextureOffset(offset->getLine(), &offsetValues[i * size], size, + minOffsetValue, maxOffsetValue); + } + } + else + { + // If textureOffset or textureGatherOffset, the offset is expected to be found as a constant + // union. + TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion(); + + // ES3.2 or ES3.1's EXT_gpu_shader5 allow non-const offsets to be passed to + // textureGatherOffset. + bool textureGatherOffsetMustBeConst = + mShaderVersion <= 310 && !isExtensionEnabled(TExtension::EXT_gpu_shader5); + + bool isOffsetConst = + offset->getAsTyped()->getQualifier() == EvqConst && offsetConstantUnion != nullptr; + bool offsetMustBeConst = !isTextureGatherOffset || textureGatherOffsetMustBeConst; + + if (!isOffsetConst && offsetMustBeConst) + { + error(functionCall->getLine(), "Texture offset must be a constant expression", + func->name()); + return; + } + + // We cannot verify non-constant offsets to textureGatherOffset. + if (offsetConstantUnion == nullptr) + { + ASSERT(!offsetMustBeConst); + return; + } + + size_t size = offsetConstantUnion->getType().getObjectSize(); + const TConstantUnion *values = offsetConstantUnion->getConstantValue(); + checkSingleTextureOffset(offset->getLine(), values, size, minOffsetValue, maxOffsetValue); + } +} + +void TParseContext::checkSingleTextureOffset(const TSourceLoc &line, + const TConstantUnion *values, + size_t size, + int minOffsetValue, + int maxOffsetValue) +{ + for (size_t i = 0u; i < size; ++i) + { + ASSERT(values[i].getType() == EbtInt); + int offsetValue = values[i].getIConst(); + if (offsetValue > maxOffsetValue || offsetValue < minOffsetValue) + { + std::stringstream tokenStream = sh::InitializeStream<std::stringstream>(); + tokenStream << offsetValue; + std::string token = tokenStream.str(); + error(line, "Texture offset value out of valid range", token.c_str()); + } + } +} + +void TParseContext::checkInterpolationFS(TIntermAggregate *functionCall) +{ + const TFunction *func = functionCall->getFunction(); + if (!BuiltInGroup::IsInterpolationFS(functionCall->getOp())) + { + return; + } + + TIntermTyped *arg0 = nullptr; + + if (functionCall->getAsAggregate()) + { + const TIntermSequence *argp = functionCall->getSequence(); + if (argp->size() > 0) + arg0 = (*argp)[0]->getAsTyped(); + } + else + { + assert(functionCall->getAsUnaryNode()); + arg0 = functionCall->getAsUnaryNode()->getOperand(); + } + + // Make sure the first argument is an interpolant, or an array element of an interpolant + if (!IsVaryingIn(arg0->getType().getQualifier())) + { + // It might still be an array element. + const TIntermTyped *base = FindLValueBase(arg0); + + if (base == nullptr || (!IsVaryingIn(base->getType().getQualifier()))) + error(arg0->getLine(), + "first argument must be an interpolant, or interpolant-array element", + func->name()); + } +} + +void TParseContext::checkAtomicMemoryBuiltinFunctions(TIntermAggregate *functionCall) +{ + const TFunction *func = functionCall->getFunction(); + if (BuiltInGroup::IsAtomicMemory(functionCall->getOp())) + { + TIntermSequence *arguments = functionCall->getSequence(); + TIntermTyped *memNode = (*arguments)[0]->getAsTyped(); + + if (IsBufferOrSharedVariable(memNode)) + { + return; + } + + while (memNode->getAsBinaryNode() || memNode->getAsSwizzleNode()) + { + // Child 0 is "left" if binary, and the expression being swizzled if swizzle. + // Note: we don't need to check that the binary operation is one of EOp*Index*, as any + // other operation will result in a temp value which cannot be passed to this + // out/inout parameter anyway. + memNode = memNode->getChildNode(0)->getAsTyped(); + if (IsBufferOrSharedVariable(memNode)) + { + return; + } + } + + error(memNode->getLine(), + "The value passed to the mem argument of an atomic memory function does not " + "correspond to a buffer or shared variable.", + func->name()); + } +} + +// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers +void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall) +{ + const TOperator op = functionCall->getOp(); + + if (BuiltInGroup::IsImage(op)) + { + TIntermSequence *arguments = functionCall->getSequence(); + TIntermTyped *imageNode = (*arguments)[0]->getAsTyped(); + + const TMemoryQualifier &memoryQualifier = imageNode->getMemoryQualifier(); + + if (BuiltInGroup::IsImageStore(op)) + { + if (memoryQualifier.readonly) + { + error(imageNode->getLine(), + "'imageStore' cannot be used with images qualified as 'readonly'", + GetImageArgumentToken(imageNode)); + } + } + else if (BuiltInGroup::IsImageLoad(op)) + { + if (memoryQualifier.writeonly) + { + error(imageNode->getLine(), + "'imageLoad' cannot be used with images qualified as 'writeonly'", + GetImageArgumentToken(imageNode)); + } + } + else if (BuiltInGroup::IsImageAtomic(op)) + { + if (memoryQualifier.readonly) + { + error(imageNode->getLine(), + "'imageAtomic' cannot be used with images qualified as 'readonly'", + GetImageArgumentToken(imageNode)); + } + if (memoryQualifier.writeonly) + { + error(imageNode->getLine(), + "'imageAtomic' cannot be used with images qualified as 'writeonly'", + GetImageArgumentToken(imageNode)); + } + } + } +} + +// GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters +void TParseContext::checkImageMemoryAccessForUserDefinedFunctions( + const TFunction *functionDefinition, + const TIntermAggregate *functionCall) +{ + ASSERT(functionCall->getOp() == EOpCallFunctionInAST); + + const TIntermSequence &arguments = *functionCall->getSequence(); + + ASSERT(functionDefinition->getParamCount() == arguments.size()); + + for (size_t i = 0; i < arguments.size(); ++i) + { + TIntermTyped *typedArgument = arguments[i]->getAsTyped(); + const TType &functionArgumentType = typedArgument->getType(); + const TType &functionParameterType = functionDefinition->getParam(i)->getType(); + ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType()); + + if (IsImage(functionArgumentType.getBasicType())) + { + const TMemoryQualifier &functionArgumentMemoryQualifier = + functionArgumentType.getMemoryQualifier(); + const TMemoryQualifier &functionParameterMemoryQualifier = + functionParameterType.getMemoryQualifier(); + if (functionArgumentMemoryQualifier.readonly && + !functionParameterMemoryQualifier.readonly) + { + error(functionCall->getLine(), + "Function call discards the 'readonly' qualifier from image", + GetImageArgumentToken(typedArgument)); + } + + if (functionArgumentMemoryQualifier.writeonly && + !functionParameterMemoryQualifier.writeonly) + { + error(functionCall->getLine(), + "Function call discards the 'writeonly' qualifier from image", + GetImageArgumentToken(typedArgument)); + } + + if (functionArgumentMemoryQualifier.coherent && + !functionParameterMemoryQualifier.coherent) + { + error(functionCall->getLine(), + "Function call discards the 'coherent' qualifier from image", + GetImageArgumentToken(typedArgument)); + } + + if (functionArgumentMemoryQualifier.volatileQualifier && + !functionParameterMemoryQualifier.volatileQualifier) + { + error(functionCall->getLine(), + "Function call discards the 'volatile' qualifier from image", + GetImageArgumentToken(typedArgument)); + } + } + } +} + +TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunctionLookup *fnCall, const TSourceLoc &loc) +{ + if (fnCall->thisNode() != nullptr) + { + return addMethod(fnCall, loc); + } + if (fnCall->isConstructor()) + { + return addConstructor(fnCall, loc); + } + return addNonConstructorFunctionCall(fnCall, loc); +} + +TIntermTyped *TParseContext::addMethod(TFunctionLookup *fnCall, const TSourceLoc &loc) +{ + TIntermTyped *thisNode = fnCall->thisNode(); + // It's possible for the name pointer in the TFunction to be null in case it gets parsed as + // a constructor. But such a TFunction can't reach here, since the lexer goes into FIELDS + // mode after a dot, which makes type identifiers to be parsed as FIELD_SELECTION instead. + // So accessing fnCall->name() below is safe. + if (fnCall->name() != "length") + { + error(loc, "invalid method", fnCall->name()); + } + else if (!fnCall->arguments().empty()) + { + error(loc, "method takes no parameters", "length"); + } + else if (!thisNode->isArray()) + { + error(loc, "length can only be called on arrays", "length"); + } + else if (thisNode->getQualifier() == EvqPerVertexIn && + mGeometryShaderInputPrimitiveType == EptUndefined) + { + ASSERT(mShaderType == GL_GEOMETRY_SHADER_EXT); + error(loc, "missing input primitive declaration before calling length on gl_in", "length"); + } + else + { + TIntermUnary *node = new TIntermUnary(EOpArrayLength, thisNode, nullptr); + markStaticReadIfSymbol(thisNode); + node->setLine(loc); + return node->fold(mDiagnostics); + } + return CreateZeroNode(TType(EbtInt, EbpUndefined, EvqConst)); +} + +TIntermTyped *TParseContext::addNonConstructorFunctionCall(TFunctionLookup *fnCall, + const TSourceLoc &loc) +{ + // First check whether the function has been hidden by a variable name or struct typename by + // using the symbol looked up in the lexical phase. If the function is not hidden, look for one + // with a matching argument list. + if (fnCall->symbol() != nullptr && !fnCall->symbol()->isFunction()) + { + error(loc, "function name expected", fnCall->name()); + } + else + { + // There are no inner functions, so it's enough to look for user-defined functions in the + // global scope. + const TSymbol *symbol = symbolTable.findGlobal(fnCall->getMangledName()); + + if (symbol == nullptr && IsDesktopGLSpec(mShaderSpec)) + { + // If using Desktop GL spec, need to check for implicit conversion + symbol = symbolTable.findGlobalWithConversion( + fnCall->getMangledNamesForImplicitConversions()); + } + + if (symbol != nullptr) + { + // A user-defined function - could be an overloaded built-in as well. + ASSERT(symbol->symbolType() == SymbolType::UserDefined); + const TFunction *fnCandidate = static_cast<const TFunction *>(symbol); + TIntermAggregate *callNode = + TIntermAggregate::CreateFunctionCall(*fnCandidate, &fnCall->arguments()); + callNode->setLine(loc); + checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, callNode); + functionCallRValueLValueErrorCheck(fnCandidate, callNode); + return callNode; + } + + symbol = symbolTable.findBuiltIn(fnCall->getMangledName(), mShaderVersion); + + if (symbol == nullptr && IsDesktopGLSpec(mShaderSpec)) + { + // If using Desktop GL spec, need to check for implicit conversion + symbol = symbolTable.findBuiltInWithConversion( + fnCall->getMangledNamesForImplicitConversions(), mShaderVersion); + } + + if (symbol != nullptr) + { + // A built-in function. + ASSERT(symbol->symbolType() == SymbolType::BuiltIn); + const TFunction *fnCandidate = static_cast<const TFunction *>(symbol); + + if (!fnCandidate->extensions().empty() && + fnCandidate->extensions()[0] != TExtension::UNDEFINED) + { + checkCanUseOneOfExtensions(loc, fnCandidate->extensions()); + } + + // All function calls are mapped to a built-in operation. + TOperator op = fnCandidate->getBuiltInOp(); + if (BuiltInGroup::IsMath(op) && fnCandidate->getParamCount() == 1) + { + // Treat it like a built-in unary operator. + TIntermNode *unaryParamNode = fnCall->arguments().front(); + TIntermTyped *callNode = + createUnaryMath(op, unaryParamNode->getAsTyped(), loc, fnCandidate); + ASSERT(callNode != nullptr); + return callNode; + } + + TIntermAggregate *callNode = + TIntermAggregate::CreateBuiltInFunctionCall(*fnCandidate, &fnCall->arguments()); + callNode->setLine(loc); + + checkAtomicMemoryBuiltinFunctions(callNode); + checkTextureOffset(callNode); + checkTextureGather(callNode); + checkInterpolationFS(callNode); + checkImageMemoryAccessForBuiltinFunctions(callNode); + + // Some built-in functions have out parameters too. + functionCallRValueLValueErrorCheck(fnCandidate, callNode); + + // See if we can constant fold a built-in. Note that this may be possible + // even if it is not const-qualified. + return callNode->fold(mDiagnostics); + } + else + { + error(loc, "no matching overloaded function found", fnCall->name()); + } + } + + // Error message was already written. Put on an unused node for error recovery. + return CreateZeroNode(TType(EbtFloat, EbpMedium, EvqConst)); +} + +TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, + TIntermTyped *trueExpression, + TIntermTyped *falseExpression, + const TSourceLoc &loc) +{ + if (!checkIsScalarBool(loc, cond)) + { + return falseExpression; + } + + if (trueExpression->getType() != falseExpression->getType()) + { + TInfoSinkBase reasonStream; + reasonStream << "mismatching ternary operator operand types '" << trueExpression->getType() + << " and '" << falseExpression->getType() << "'"; + error(loc, reasonStream.c_str(), "?:"); + return falseExpression; + } + if (IsOpaqueType(trueExpression->getBasicType())) + { + // ESSL 1.00 section 4.1.7 + // ESSL 3.00.6 section 4.1.7 + // Opaque/sampler types are not allowed in most types of expressions, including ternary. + // Note that structs containing opaque types don't need to be checked as structs are + // forbidden below. + error(loc, "ternary operator is not allowed for opaque types", "?:"); + return falseExpression; + } + + if (cond->getMemoryQualifier().writeonly || trueExpression->getMemoryQualifier().writeonly || + falseExpression->getMemoryQualifier().writeonly) + { + error(loc, "ternary operator is not allowed for variables with writeonly", "?:"); + return falseExpression; + } + + // ESSL 1.00.17 sections 5.2 and 5.7: + // Ternary operator is not among the operators allowed for structures/arrays. + // ESSL 3.00.6 section 5.7: + // Ternary operator support is optional for arrays. No certainty that it works across all + // devices with struct either, so we err on the side of caution here. TODO (oetuaho@nvidia.com): + // Would be nice to make the spec and implementation agree completely here. + if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct) + { + error(loc, "ternary operator is not allowed for structures or arrays", "?:"); + return falseExpression; + } + if (trueExpression->getBasicType() == EbtInterfaceBlock) + { + error(loc, "ternary operator is not allowed for interface blocks", "?:"); + return falseExpression; + } + + // WebGL2 section 5.26, the following results in an error: + // "Ternary operator applied to void, arrays, or structs containing arrays" + if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid) + { + error(loc, "ternary operator is not allowed for void", "?:"); + return falseExpression; + } + + TIntermTernary *node = new TIntermTernary(cond, trueExpression, falseExpression); + markStaticReadIfSymbol(cond); + markStaticReadIfSymbol(trueExpression); + markStaticReadIfSymbol(falseExpression); + node->setLine(loc); + return expressionOrFoldedResult(node); +} + +// +// Parse an array of strings using yyparse. +// +// Returns 0 for success. +// +int PaParseStrings(size_t count, + const char *const string[], + const int length[], + TParseContext *context) +{ + if ((count == 0) || (string == nullptr)) + return 1; + + if (glslang_initialize(context)) + return 1; + + int error = glslang_scan(count, string, length, context); + if (!error) + error = glslang_parse(context); + + glslang_finalize(context); + + return (error == 0) && (context->numErrors() == 0) ? 0 : 1; +} + +} // namespace sh |