summaryrefslogtreecommitdiffstats
path: root/gfx/angle/checkout/src/compiler/translator/ParseContext.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /gfx/angle/checkout/src/compiler/translator/ParseContext.cpp
parentInitial commit. (diff)
downloadthunderbird-upstream.tar.xz
thunderbird-upstream.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/angle/checkout/src/compiler/translator/ParseContext.cpp')
-rw-r--r--gfx/angle/checkout/src/compiler/translator/ParseContext.cpp7538
1 files changed, 7538 insertions, 0 deletions
diff --git a/gfx/angle/checkout/src/compiler/translator/ParseContext.cpp b/gfx/angle/checkout/src/compiler/translator/ParseContext.cpp
new file mode 100644
index 0000000000..4312c2c966
--- /dev/null
+++ b/gfx/angle/checkout/src/compiler/translator/ParseContext.cpp
@@ -0,0 +1,7538 @@
+//
+// Copyright 2002 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/ParseContext.h"
+
+#include <stdarg.h>
+#include <stdio.h>
+
+#include "common/mathutil.h"
+#include "common/utilities.h"
+#include "compiler/preprocessor/SourceLocation.h"
+#include "compiler/translator/Declarator.h"
+#include "compiler/translator/StaticType.h"
+#include "compiler/translator/ValidateGlobalInitializer.h"
+#include "compiler/translator/ValidateSwitch.h"
+#include "compiler/translator/glslang.h"
+#include "compiler/translator/tree_util/IntermNode_util.h"
+#include "compiler/translator/util.h"
+
+namespace sh
+{
+
+///////////////////////////////////////////////////////////////////////
+//
+// Sub- vector and matrix fields
+//
+////////////////////////////////////////////////////////////////////////
+
+namespace
+{
+
+const int kWebGLMaxStructNesting = 4;
+
+bool ContainsSampler(const TStructure *structType);
+
+bool ContainsSampler(const TType &type)
+{
+ if (IsSampler(type.getBasicType()))
+ {
+ return true;
+ }
+ if (type.getBasicType() == EbtStruct)
+ {
+ return ContainsSampler(type.getStruct());
+ }
+
+ return false;
+}
+
+bool ContainsSampler(const TStructure *structType)
+{
+ for (const auto &field : structType->fields())
+ {
+ if (ContainsSampler(*field->type()))
+ return true;
+ }
+ return false;
+}
+
+// Get a token from an image argument to use as an error message token.
+const char *GetImageArgumentToken(TIntermTyped *imageNode)
+{
+ ASSERT(IsImage(imageNode->getBasicType()));
+ while (imageNode->getAsBinaryNode() &&
+ (imageNode->getAsBinaryNode()->getOp() == EOpIndexIndirect ||
+ imageNode->getAsBinaryNode()->getOp() == EOpIndexDirect))
+ {
+ imageNode = imageNode->getAsBinaryNode()->getLeft();
+ }
+ TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode();
+ if (imageSymbol)
+ {
+ return imageSymbol->getName().data();
+ }
+ return "image";
+}
+
+bool CanSetDefaultPrecisionOnType(const TPublicType &type)
+{
+ if (!SupportsPrecision(type.getBasicType()))
+ {
+ return false;
+ }
+ if (type.getBasicType() == EbtUInt)
+ {
+ // ESSL 3.00.4 section 4.5.4
+ return false;
+ }
+ if (type.isAggregate())
+ {
+ // Not allowed to set for aggregate types
+ return false;
+ }
+ return true;
+}
+
+// Map input primitive types to input array sizes in a geometry shader.
+GLuint GetGeometryShaderInputArraySize(TLayoutPrimitiveType primitiveType)
+{
+ switch (primitiveType)
+ {
+ case EptPoints:
+ return 1u;
+ case EptLines:
+ return 2u;
+ case EptTriangles:
+ return 3u;
+ case EptLinesAdjacency:
+ return 4u;
+ case EptTrianglesAdjacency:
+ return 6u;
+ default:
+ UNREACHABLE();
+ return 0u;
+ }
+}
+
+bool IsBufferOrSharedVariable(TIntermTyped *var)
+{
+ if (var->isInterfaceBlock() || var->getQualifier() == EvqBuffer ||
+ var->getQualifier() == EvqShared)
+ {
+ return true;
+ }
+ return false;
+}
+
+TIntermTyped *FindLValueBase(TIntermTyped *node)
+{
+ do
+ {
+ const TIntermBinary *binary = node->getAsBinaryNode();
+ if (binary == nullptr)
+ {
+ return node;
+ }
+
+ TOperator op = binary->getOp();
+ if (op != EOpIndexDirect && op != EOpIndexIndirect)
+ {
+ return static_cast<TIntermTyped *>(nullptr);
+ }
+
+ node = binary->getLeft();
+ } while (true);
+}
+
+void AddAdvancedBlendEquation(gl::BlendEquationType eq, TLayoutQualifier *qualifier)
+{
+ qualifier->advancedBlendEquations.set(static_cast<uint32_t>(eq));
+}
+
+constexpr bool IsValidWithPixelLocalStorage(TLayoutImageInternalFormat internalFormat)
+{
+ switch (internalFormat)
+ {
+ case EiifRGBA8:
+ case EiifRGBA8I:
+ case EiifRGBA8UI:
+ case EiifR32F:
+ case EiifR32UI:
+ return true;
+ default:
+ return false;
+ }
+}
+} // namespace
+
+// This tracks each binding point's current default offset for inheritance of subsequent
+// variables using the same binding, and keeps offsets unique and non overlapping.
+// See GLSL ES 3.1, section 4.4.6.
+class TParseContext::AtomicCounterBindingState
+{
+ public:
+ AtomicCounterBindingState() : mDefaultOffset(0) {}
+ // Inserts a new span and returns -1 if overlapping, else returns the starting offset of
+ // newly inserted span.
+ int insertSpan(int start, size_t length)
+ {
+ gl::RangeI newSpan(start, start + static_cast<int>(length));
+ for (const auto &span : mSpans)
+ {
+ if (newSpan.intersects(span))
+ {
+ return -1;
+ }
+ }
+ mSpans.push_back(newSpan);
+ mDefaultOffset = newSpan.high();
+ return start;
+ }
+ // Inserts a new span starting from the default offset.
+ int appendSpan(size_t length) { return insertSpan(mDefaultOffset, length); }
+ void setDefaultOffset(int offset) { mDefaultOffset = offset; }
+
+ private:
+ int mDefaultOffset;
+ std::vector<gl::RangeI> mSpans;
+};
+
+TParseContext::TParseContext(TSymbolTable &symt,
+ TExtensionBehavior &ext,
+ sh::GLenum type,
+ ShShaderSpec spec,
+ const ShCompileOptions &options,
+ bool checksPrecErrors,
+ TDiagnostics *diagnostics,
+ const ShBuiltInResources &resources,
+ ShShaderOutput outputType)
+ : symbolTable(symt),
+ mDeferredNonEmptyDeclarationErrorCheck(false),
+ mShaderType(type),
+ mShaderSpec(spec),
+ mCompileOptions(options),
+ mShaderVersion(100),
+ mTreeRoot(nullptr),
+ mLoopNestingLevel(0),
+ mStructNestingLevel(0),
+ mSwitchNestingLevel(0),
+ mCurrentFunctionType(nullptr),
+ mFunctionReturnsValue(false),
+ mChecksPrecisionErrors(checksPrecErrors),
+ mFragmentPrecisionHighOnESSL1(false),
+ mEarlyFragmentTestsSpecified(false),
+ mHasDiscard(false),
+ mSampleQualifierSpecified(false),
+ mDefaultUniformMatrixPacking(EmpColumnMajor),
+ mDefaultUniformBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared),
+ mDefaultBufferMatrixPacking(EmpColumnMajor),
+ mDefaultBufferBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared),
+ mDiagnostics(diagnostics),
+ mDirectiveHandler(ext, *mDiagnostics, mShaderVersion, mShaderType),
+ mPreprocessor(mDiagnostics, &mDirectiveHandler, angle::pp::PreprocessorSettings(spec)),
+ mScanner(nullptr),
+ mMinProgramTexelOffset(resources.MinProgramTexelOffset),
+ mMaxProgramTexelOffset(resources.MaxProgramTexelOffset),
+ mMinProgramTextureGatherOffset(resources.MinProgramTextureGatherOffset),
+ mMaxProgramTextureGatherOffset(resources.MaxProgramTextureGatherOffset),
+ mComputeShaderLocalSizeDeclared(false),
+ mComputeShaderLocalSize(-1),
+ mNumViews(-1),
+ mMaxNumViews(resources.MaxViewsOVR),
+ mMaxImageUnits(resources.MaxImageUnits),
+ mMaxCombinedTextureImageUnits(resources.MaxCombinedTextureImageUnits),
+ mMaxUniformLocations(resources.MaxUniformLocations),
+ mMaxUniformBufferBindings(resources.MaxUniformBufferBindings),
+ mMaxVertexAttribs(resources.MaxVertexAttribs),
+ mMaxAtomicCounterBindings(resources.MaxAtomicCounterBindings),
+ mMaxShaderStorageBufferBindings(resources.MaxShaderStorageBufferBindings),
+ mDeclaringFunction(false),
+ mGeometryShaderInputPrimitiveType(EptUndefined),
+ mGeometryShaderOutputPrimitiveType(EptUndefined),
+ mGeometryShaderInvocations(0),
+ mGeometryShaderMaxVertices(-1),
+ mMaxGeometryShaderInvocations(resources.MaxGeometryShaderInvocations),
+ mMaxGeometryShaderMaxVertices(resources.MaxGeometryOutputVertices),
+ mGeometryInputArraySize(0),
+ mMaxPatchVertices(resources.MaxPatchVertices),
+ mTessControlShaderOutputVertices(0),
+ mTessEvaluationShaderInputPrimitiveType(EtetUndefined),
+ mTessEvaluationShaderInputVertexSpacingType(EtetUndefined),
+ mTessEvaluationShaderInputOrderingType(EtetUndefined),
+ mTessEvaluationShaderInputPointType(EtetUndefined),
+ mHasAnyPreciseType(false),
+ mAdvancedBlendEquations(0),
+ mFunctionBodyNewScope(false),
+ mOutputType(outputType)
+{}
+
+TParseContext::~TParseContext() {}
+
+bool TParseContext::anyMultiviewExtensionAvailable()
+{
+ return isExtensionEnabled(TExtension::OVR_multiview) ||
+ isExtensionEnabled(TExtension::OVR_multiview2);
+}
+
+bool TParseContext::parseVectorFields(const TSourceLoc &line,
+ const ImmutableString &compString,
+ int vecSize,
+ TVector<int> *fieldOffsets)
+{
+ ASSERT(fieldOffsets);
+ size_t fieldCount = compString.length();
+ if (fieldCount > 4u)
+ {
+ error(line, "illegal vector field selection", compString);
+ return false;
+ }
+ fieldOffsets->resize(fieldCount);
+
+ enum
+ {
+ exyzw,
+ ergba,
+ estpq
+ } fieldSet[4];
+
+ for (unsigned int i = 0u; i < fieldOffsets->size(); ++i)
+ {
+ switch (compString[i])
+ {
+ case 'x':
+ (*fieldOffsets)[i] = 0;
+ fieldSet[i] = exyzw;
+ break;
+ case 'r':
+ (*fieldOffsets)[i] = 0;
+ fieldSet[i] = ergba;
+ break;
+ case 's':
+ (*fieldOffsets)[i] = 0;
+ fieldSet[i] = estpq;
+ break;
+ case 'y':
+ (*fieldOffsets)[i] = 1;
+ fieldSet[i] = exyzw;
+ break;
+ case 'g':
+ (*fieldOffsets)[i] = 1;
+ fieldSet[i] = ergba;
+ break;
+ case 't':
+ (*fieldOffsets)[i] = 1;
+ fieldSet[i] = estpq;
+ break;
+ case 'z':
+ (*fieldOffsets)[i] = 2;
+ fieldSet[i] = exyzw;
+ break;
+ case 'b':
+ (*fieldOffsets)[i] = 2;
+ fieldSet[i] = ergba;
+ break;
+ case 'p':
+ (*fieldOffsets)[i] = 2;
+ fieldSet[i] = estpq;
+ break;
+
+ case 'w':
+ (*fieldOffsets)[i] = 3;
+ fieldSet[i] = exyzw;
+ break;
+ case 'a':
+ (*fieldOffsets)[i] = 3;
+ fieldSet[i] = ergba;
+ break;
+ case 'q':
+ (*fieldOffsets)[i] = 3;
+ fieldSet[i] = estpq;
+ break;
+ default:
+ error(line, "illegal vector field selection", compString);
+ return false;
+ }
+ }
+
+ for (unsigned int i = 0u; i < fieldOffsets->size(); ++i)
+ {
+ if ((*fieldOffsets)[i] >= vecSize)
+ {
+ error(line, "vector field selection out of range", compString);
+ return false;
+ }
+
+ if (i > 0)
+ {
+ if (fieldSet[i] != fieldSet[i - 1])
+ {
+ error(line, "illegal - vector component fields not from the same set", compString);
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////
+//
+// Errors
+//
+////////////////////////////////////////////////////////////////////////
+
+//
+// Used by flex/bison to output all syntax and parsing errors.
+//
+void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token)
+{
+ mDiagnostics->error(loc, reason, token);
+}
+
+void TParseContext::error(const TSourceLoc &loc, const char *reason, const ImmutableString &token)
+{
+ mDiagnostics->error(loc, reason, token.data());
+}
+
+void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token)
+{
+ mDiagnostics->warning(loc, reason, token);
+}
+
+void TParseContext::errorIfPLSDeclared(const TSourceLoc &loc, PLSIllegalOperations op)
+{
+ if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
+ {
+ return;
+ }
+ if (mPLSBindings.empty())
+ {
+ // No pixel local storage uniforms have been declared yet. Remember this potential error in
+ // case PLS gets declared later.
+ mPLSPotentialErrors.emplace_back(loc, op);
+ return;
+ }
+ switch (op)
+ {
+ case PLSIllegalOperations::Discard:
+ error(loc, "illegal discard when pixel local storage is declared", "discard");
+ break;
+ case PLSIllegalOperations::ReturnFromMain:
+ error(loc, "illegal return from main when pixel local storage is declared", "return");
+ break;
+ case PLSIllegalOperations::AssignFragDepth:
+ error(loc, "value not assignable when pixel local storage is declared", "gl_FragDepth");
+ break;
+ case PLSIllegalOperations::AssignSampleMask:
+ error(loc, "value not assignable when pixel local storage is declared",
+ "gl_SampleMask");
+ break;
+ }
+}
+
+void TParseContext::outOfRangeError(bool isError,
+ const TSourceLoc &loc,
+ const char *reason,
+ const char *token)
+{
+ if (isError)
+ {
+ error(loc, reason, token);
+ }
+ else
+ {
+ warning(loc, reason, token);
+ }
+}
+
+void TParseContext::setTreeRoot(TIntermBlock *treeRoot)
+{
+ mTreeRoot = treeRoot;
+ mTreeRoot->setIsTreeRoot();
+}
+
+//
+// Same error message for all places assignments don't work.
+//
+void TParseContext::assignError(const TSourceLoc &line,
+ const char *op,
+ const TType &left,
+ const TType &right)
+{
+ TInfoSinkBase reasonStream;
+ reasonStream << "cannot convert from '" << right << "' to '" << left << "'";
+ error(line, reasonStream.c_str(), op);
+}
+
+//
+// Same error message for all places unary operations don't work.
+//
+void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, const TType &operand)
+{
+ TInfoSinkBase reasonStream;
+ reasonStream << "wrong operand type - no operation '" << op
+ << "' exists that takes an operand of type " << operand
+ << " (or there is no acceptable conversion)";
+ error(line, reasonStream.c_str(), op);
+}
+
+//
+// Same error message for all binary operations don't work.
+//
+void TParseContext::binaryOpError(const TSourceLoc &line,
+ const char *op,
+ const TType &left,
+ const TType &right)
+{
+ TInfoSinkBase reasonStream;
+ reasonStream << "wrong operand types - no operation '" << op
+ << "' exists that takes a left-hand operand of type '" << left
+ << "' and a right operand of type '" << right
+ << "' (or there is no acceptable conversion)";
+ error(line, reasonStream.c_str(), op);
+}
+
+void TParseContext::checkPrecisionSpecified(const TSourceLoc &line,
+ TPrecision precision,
+ TBasicType type)
+{
+ if (!mChecksPrecisionErrors)
+ return;
+
+ if (precision != EbpUndefined && !SupportsPrecision(type))
+ {
+ error(line, "illegal type for precision qualifier", getBasicString(type));
+ }
+
+ if (precision == EbpUndefined)
+ {
+ switch (type)
+ {
+ case EbtFloat:
+ error(line, "No precision specified for (float)", "");
+ return;
+ case EbtInt:
+ case EbtUInt:
+ UNREACHABLE(); // there's always a predeclared qualifier
+ error(line, "No precision specified (int)", "");
+ return;
+ default:
+ if (IsOpaqueType(type))
+ {
+ error(line, "No precision specified", getBasicString(type));
+ return;
+ }
+ }
+ }
+}
+
+void TParseContext::markStaticReadIfSymbol(TIntermNode *node)
+{
+ TIntermSwizzle *swizzleNode = node->getAsSwizzleNode();
+ if (swizzleNode)
+ {
+ markStaticReadIfSymbol(swizzleNode->getOperand());
+ return;
+ }
+ TIntermBinary *binaryNode = node->getAsBinaryNode();
+ if (binaryNode)
+ {
+ switch (binaryNode->getOp())
+ {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ case EOpIndexDirectInterfaceBlock:
+ markStaticReadIfSymbol(binaryNode->getLeft());
+ return;
+ default:
+ return;
+ }
+ }
+ TIntermSymbol *symbolNode = node->getAsSymbolNode();
+ if (symbolNode)
+ {
+ symbolTable.markStaticRead(symbolNode->variable());
+ }
+}
+
+// Both test and if necessary, spit out an error, to see if the node is really
+// an l-value that can be operated on this way.
+bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node)
+{
+ TIntermSwizzle *swizzleNode = node->getAsSwizzleNode();
+ if (swizzleNode)
+ {
+ bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand());
+ if (ok && swizzleNode->hasDuplicateOffsets())
+ {
+ error(line, " l-value of swizzle cannot have duplicate components", op);
+ return false;
+ }
+ return ok;
+ }
+
+ TIntermBinary *binaryNode = node->getAsBinaryNode();
+ if (binaryNode)
+ {
+ switch (binaryNode->getOp())
+ {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ case EOpIndexDirectInterfaceBlock:
+ if (node->getMemoryQualifier().readonly)
+ {
+ error(line, "can't modify a readonly variable", op);
+ return false;
+ }
+ return checkCanBeLValue(line, op, binaryNode->getLeft());
+ default:
+ break;
+ }
+ error(line, " l-value required", op);
+ return false;
+ }
+
+ std::string message;
+ switch (node->getQualifier())
+ {
+ case EvqConst:
+ message = "can't modify a const";
+ break;
+ case EvqParamConst:
+ message = "can't modify a const";
+ break;
+ case EvqAttribute:
+ message = "can't modify an attribute";
+ break;
+ case EvqFragmentIn:
+ case EvqVertexIn:
+ case EvqGeometryIn:
+ case EvqTessControlIn:
+ case EvqTessEvaluationIn:
+ case EvqFlatIn:
+ case EvqNoPerspectiveIn:
+ case EvqSmoothIn:
+ case EvqCentroidIn:
+ case EvqSampleIn:
+ message = "can't modify an input";
+ break;
+ case EvqUniform:
+ message = "can't modify a uniform";
+ break;
+ case EvqVaryingIn:
+ message = "can't modify a varying";
+ break;
+ case EvqFragCoord:
+ message = "can't modify gl_FragCoord";
+ break;
+ case EvqFrontFacing:
+ message = "can't modify gl_FrontFacing";
+ break;
+ case EvqHelperInvocation:
+ message = "can't modify gl_HelperInvocation";
+ break;
+ case EvqPointCoord:
+ message = "can't modify gl_PointCoord";
+ break;
+ case EvqNumWorkGroups:
+ message = "can't modify gl_NumWorkGroups";
+ break;
+ case EvqWorkGroupSize:
+ message = "can't modify gl_WorkGroupSize";
+ break;
+ case EvqWorkGroupID:
+ message = "can't modify gl_WorkGroupID";
+ break;
+ case EvqLocalInvocationID:
+ message = "can't modify gl_LocalInvocationID";
+ break;
+ case EvqGlobalInvocationID:
+ message = "can't modify gl_GlobalInvocationID";
+ break;
+ case EvqLocalInvocationIndex:
+ message = "can't modify gl_LocalInvocationIndex";
+ break;
+ case EvqViewIDOVR:
+ message = "can't modify gl_ViewID_OVR";
+ break;
+ case EvqComputeIn:
+ message = "can't modify work group size variable";
+ break;
+ case EvqPerVertexIn:
+ message = "can't modify any member in gl_in";
+ break;
+ case EvqPrimitiveIDIn:
+ message = "can't modify gl_PrimitiveIDIn";
+ break;
+ case EvqInvocationID:
+ message = "can't modify gl_InvocationID";
+ break;
+ case EvqPrimitiveID:
+ if (mShaderType == GL_FRAGMENT_SHADER)
+ {
+ message = "can't modify gl_PrimitiveID in a fragment shader";
+ }
+ break;
+ case EvqLayerIn:
+ message = "can't modify gl_Layer in a fragment shader";
+ break;
+ case EvqSampleID:
+ message = "can't modify gl_SampleID";
+ break;
+ case EvqSampleMaskIn:
+ message = "can't modify gl_SampleMaskIn";
+ break;
+ case EvqSamplePosition:
+ message = "can't modify gl_SamplePosition";
+ break;
+ case EvqClipDistance:
+ if (mShaderType == GL_FRAGMENT_SHADER)
+ {
+ message = "can't modify gl_ClipDistance in a fragment shader";
+ }
+ break;
+ case EvqCullDistance:
+ if (mShaderType == GL_FRAGMENT_SHADER)
+ {
+ message = "can't modify gl_CullDistance in a fragment shader";
+ }
+ break;
+ case EvqFragDepth:
+ errorIfPLSDeclared(line, PLSIllegalOperations::AssignFragDepth);
+ break;
+ case EvqSampleMask:
+ errorIfPLSDeclared(line, PLSIllegalOperations::AssignSampleMask);
+ break;
+ default:
+ //
+ // Type that can't be written to?
+ //
+ if (node->getBasicType() == EbtVoid)
+ {
+ message = "can't modify void";
+ }
+ if (IsOpaqueType(node->getBasicType()))
+ {
+ message = "can't modify a variable with type ";
+ message += getBasicString(node->getBasicType());
+ }
+ else if (node->getMemoryQualifier().readonly)
+ {
+ message = "can't modify a readonly variable";
+ }
+ }
+
+ ASSERT(binaryNode == nullptr && swizzleNode == nullptr);
+ TIntermSymbol *symNode = node->getAsSymbolNode();
+ if (message.empty() && symNode != nullptr)
+ {
+ symbolTable.markStaticWrite(symNode->variable());
+ return true;
+ }
+
+ std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
+ reasonStream << "l-value required";
+ if (!message.empty())
+ {
+ if (symNode)
+ {
+ // Symbol inside an expression can't be nameless.
+ ASSERT(symNode->variable().symbolType() != SymbolType::Empty);
+ const ImmutableString &symbol = symNode->getName();
+ reasonStream << " (" << message << " \"" << symbol << "\")";
+ }
+ else
+ {
+ reasonStream << " (" << message << ")";
+ }
+ }
+ std::string reason = reasonStream.str();
+ error(line, reason.c_str(), op);
+
+ return false;
+}
+
+// Both test, and if necessary spit out an error, to see if the node is really
+// a constant.
+void TParseContext::checkIsConst(TIntermTyped *node)
+{
+ if (node->getQualifier() != EvqConst)
+ {
+ error(node->getLine(), "constant expression required", "");
+ }
+}
+
+// Both test, and if necessary spit out an error, to see if the node is really
+// an integer.
+void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token)
+{
+ if (!node->isScalarInt())
+ {
+ error(node->getLine(), "integer expression required", token);
+ }
+}
+
+// Both test, and if necessary spit out an error, to see if we are currently
+// globally scoped.
+bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token)
+{
+ if (!symbolTable.atGlobalLevel())
+ {
+ error(line, "only allowed at global scope", token);
+ return false;
+ }
+ return true;
+}
+
+// ESSL 3.00.5 sections 3.8 and 3.9.
+// If it starts "gl_" or contains two consecutive underscores, it's reserved.
+// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a webgl shader.
+bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const ImmutableString &identifier)
+{
+ static const char *reservedErrMsg = "reserved built-in name";
+ if (gl::IsBuiltInName(identifier.data()))
+ {
+ error(line, reservedErrMsg, "gl_");
+ return false;
+ }
+ if (sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ if (identifier.beginsWith("webgl_"))
+ {
+ error(line, reservedErrMsg, "webgl_");
+ return false;
+ }
+ if (identifier.beginsWith("_webgl_"))
+ {
+ error(line, reservedErrMsg, "_webgl_");
+ return false;
+ }
+ }
+ if (identifier.contains("__"))
+ {
+ if (sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ error(line,
+ "identifiers containing two consecutive underscores (__) are reserved as "
+ "possible future keywords",
+ identifier);
+ return false;
+ }
+ else
+ {
+ // Using double underscores is allowed, but may result in unintended behaviors, so a
+ // warning is issued.
+ // OpenGL ES Shader Language 3.2 specification:
+ // > 3.7. Keywords
+ // > ...
+ // > In addition, all identifiers containing two consecutive underscores (__) are
+ // > reserved for use by underlying software layers. Defining such a name in a shader
+ // > does not itself result in an error, but may result in unintended behaviors that
+ // > stem from having multiple definitions of the same name.
+ warning(line,
+ "all identifiers containing two consecutive underscores (__) are reserved - "
+ "unintented behaviors are possible",
+ identifier.data());
+ }
+ }
+ return true;
+}
+
+// Make sure the argument types are correct for constructing a specific type.
+bool TParseContext::checkConstructorArguments(const TSourceLoc &line,
+ const TIntermSequence &arguments,
+ const TType &type)
+{
+ if (arguments.empty())
+ {
+ error(line, "constructor does not have any arguments", "constructor");
+ return false;
+ }
+
+ for (TIntermNode *arg : arguments)
+ {
+ markStaticReadIfSymbol(arg);
+ const TIntermTyped *argTyped = arg->getAsTyped();
+ ASSERT(argTyped != nullptr);
+ if (type.getBasicType() != EbtStruct && IsOpaqueType(argTyped->getBasicType()))
+ {
+ std::string reason("cannot convert a variable with type ");
+ reason += getBasicString(argTyped->getBasicType());
+ error(line, reason.c_str(), "constructor");
+ return false;
+ }
+ else if (argTyped->getMemoryQualifier().writeonly)
+ {
+ error(line, "cannot convert a variable with writeonly", "constructor");
+ return false;
+ }
+ if (argTyped->getBasicType() == EbtVoid)
+ {
+ error(line, "cannot convert a void", "constructor");
+ return false;
+ }
+ }
+
+ if (type.isArray())
+ {
+ // The size of an unsized constructor should already have been determined.
+ ASSERT(!type.isUnsizedArray());
+ if (static_cast<size_t>(type.getOutermostArraySize()) != arguments.size())
+ {
+ error(line, "array constructor needs one argument per array element", "constructor");
+ return false;
+ }
+ // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
+ // the array.
+ for (TIntermNode *const &argNode : arguments)
+ {
+ const TType &argType = argNode->getAsTyped()->getType();
+ if (mShaderVersion < 310 && argType.isArray())
+ {
+ error(line, "constructing from a non-dereferenced array", "constructor");
+ return false;
+ }
+ if (!argType.isElementTypeOf(type))
+ {
+ error(line, "Array constructor argument has an incorrect type", "constructor");
+ return false;
+ }
+ }
+ }
+ else if (type.getBasicType() == EbtStruct)
+ {
+ const TFieldList &fields = type.getStruct()->fields();
+ if (fields.size() != arguments.size())
+ {
+ error(line,
+ "Number of constructor parameters does not match the number of structure fields",
+ "constructor");
+ return false;
+ }
+
+ for (size_t i = 0; i < fields.size(); i++)
+ {
+ if (i >= arguments.size() ||
+ arguments[i]->getAsTyped()->getType() != *fields[i]->type())
+ {
+ error(line, "Structure constructor arguments do not match structure fields",
+ "constructor");
+ return false;
+ }
+ }
+ }
+ else
+ {
+ // We're constructing a scalar, vector, or matrix.
+
+ // Note: It's okay to have too many components available, but not okay to have unused
+ // arguments. 'full' will go to true when enough args have been seen. If we loop again,
+ // there is an extra argument, so 'overFull' will become true.
+
+ size_t size = 0;
+ bool full = false;
+ bool overFull = false;
+ bool matrixArg = false;
+ for (TIntermNode *arg : arguments)
+ {
+ const TIntermTyped *argTyped = arg->getAsTyped();
+ ASSERT(argTyped != nullptr);
+
+ if (argTyped->getBasicType() == EbtStruct)
+ {
+ error(line, "a struct cannot be used as a constructor argument for this type",
+ "constructor");
+ return false;
+ }
+ if (argTyped->getType().isArray())
+ {
+ error(line, "constructing from a non-dereferenced array", "constructor");
+ return false;
+ }
+ if (argTyped->getType().isMatrix())
+ {
+ matrixArg = true;
+ }
+
+ size += argTyped->getType().getObjectSize();
+ if (full)
+ {
+ overFull = true;
+ }
+ if (size >= type.getObjectSize())
+ {
+ full = true;
+ }
+ }
+
+ if (type.isMatrix() && matrixArg)
+ {
+ if (arguments.size() != 1)
+ {
+ error(line, "constructing matrix from matrix can only take one argument",
+ "constructor");
+ return false;
+ }
+ }
+ else
+ {
+ if (size != 1 && size < type.getObjectSize())
+ {
+ error(line, "not enough data provided for construction", "constructor");
+ return false;
+ }
+ if (overFull)
+ {
+ error(line, "too many arguments", "constructor");
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+// This function checks to see if a void variable has been declared and raise an error message for
+// such a case
+//
+// returns true in case of an error
+//
+bool TParseContext::checkIsNonVoid(const TSourceLoc &line,
+ const ImmutableString &identifier,
+ const TBasicType &type)
+{
+ if (type == EbtVoid)
+ {
+ error(line, "illegal use of type 'void'", identifier);
+ return false;
+ }
+
+ return true;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression
+// or not.
+bool TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type)
+{
+ if (type->getBasicType() != EbtBool || !type->isScalar())
+ {
+ error(line, "boolean expression expected", "");
+ return false;
+ }
+ return true;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression
+// or not.
+void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType)
+{
+ if (pType.getBasicType() != EbtBool || pType.isAggregate())
+ {
+ error(line, "boolean expression expected", "");
+ }
+}
+
+bool TParseContext::checkIsNotOpaqueType(const TSourceLoc &line,
+ const TTypeSpecifierNonArray &pType,
+ const char *reason)
+{
+ if (pType.type == EbtStruct)
+ {
+ if (ContainsSampler(pType.userDef))
+ {
+ std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
+ reasonStream << reason << " (structure contains a sampler)";
+ std::string reasonStr = reasonStream.str();
+ error(line, reasonStr.c_str(), getBasicString(pType.type));
+ return false;
+ }
+ // only samplers need to be checked from structs, since other opaque types can't be struct
+ // members.
+ return true;
+ }
+ else if (IsOpaqueType(pType.type))
+ {
+ error(line, reason, getBasicString(pType.type));
+ return false;
+ }
+
+ return true;
+}
+
+void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line,
+ const TPublicType &pType)
+{
+ if (pType.layoutQualifier.location != -1)
+ {
+ error(line, "location must only be specified for a single input or output variable",
+ "location");
+ }
+}
+
+void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location,
+ const TLayoutQualifier &layoutQualifier)
+{
+ if (layoutQualifier.location != -1)
+ {
+ const char *errorMsg = "invalid layout qualifier: only valid on program inputs and outputs";
+ if (mShaderVersion >= 310)
+ {
+ errorMsg =
+ "invalid layout qualifier: only valid on shader inputs, outputs, and uniforms";
+ }
+ error(location, errorMsg, "location");
+ }
+}
+
+void TParseContext::checkStd430IsForShaderStorageBlock(const TSourceLoc &location,
+ const TLayoutBlockStorage &blockStorage,
+ const TQualifier &qualifier)
+{
+ if (blockStorage == EbsStd430 && qualifier != EvqBuffer)
+ {
+ error(location, "The std430 layout is supported only for shader storage blocks.", "std430");
+ }
+}
+
+void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line,
+ TQualifier qualifier,
+ const TType &type)
+{
+ ASSERT(qualifier == EvqParamOut || qualifier == EvqParamInOut);
+ if (IsOpaqueType(type.getBasicType()))
+ {
+ error(line, "opaque types cannot be output parameters", type.getBasicString());
+ }
+}
+
+// Do size checking for an array type's size.
+unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr)
+{
+ TIntermConstantUnion *constant = expr->getAsConstantUnion();
+
+ // ANGLE should be able to fold any EvqConst expressions resulting in an integer - but to be
+ // safe against corner cases we still check for constant folding. Some interpretations of the
+ // spec have allowed constant expressions with side effects - like array length() method on a
+ // non-constant array.
+ if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt())
+ {
+ error(line, "array size must be a constant integer expression", "");
+ return 1u;
+ }
+
+ unsigned int size = 0u;
+
+ if (constant->getBasicType() == EbtUInt)
+ {
+ size = constant->getUConst(0);
+ }
+ else
+ {
+ int signedSize = constant->getIConst(0);
+
+ if (signedSize < 0)
+ {
+ error(line, "array size must be non-negative", "");
+ return 1u;
+ }
+
+ size = static_cast<unsigned int>(signedSize);
+ }
+
+ if (size == 0u)
+ {
+ error(line, "array size must be greater than zero", "");
+ return 1u;
+ }
+
+ if (IsOutputHLSL(getOutputType()))
+ {
+ // The size of arrays is restricted here to prevent issues further down the
+ // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
+ // 4096 registers so this should be reasonable even for aggressively optimizable code.
+ const unsigned int sizeLimit = 65536;
+
+ if (size > sizeLimit)
+ {
+ error(line, "array size too large", "");
+ return 1u;
+ }
+ }
+
+ return size;
+}
+
+// See if this qualifier can be an array.
+bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line,
+ const TPublicType &elementQualifier)
+{
+ if ((elementQualifier.qualifier == EvqAttribute) ||
+ (elementQualifier.qualifier == EvqVertexIn) ||
+ (elementQualifier.qualifier == EvqConst && mShaderVersion < 300))
+ {
+ error(line, "cannot declare arrays of this qualifier",
+ TType(elementQualifier).getQualifierString());
+ return false;
+ }
+
+ return true;
+}
+
+// See if this element type can be formed into an array.
+bool TParseContext::checkArrayElementIsNotArray(const TSourceLoc &line,
+ const TPublicType &elementType)
+{
+ if (mShaderVersion < 310 && elementType.isArray())
+ {
+ TInfoSinkBase typeString;
+ typeString << TType(elementType);
+ error(line, "cannot declare arrays of arrays", typeString.c_str());
+ return false;
+ }
+ return true;
+}
+
+// Check for array-of-arrays being used as non-allowed shader inputs/outputs.
+bool TParseContext::checkArrayOfArraysInOut(const TSourceLoc &line,
+ const TPublicType &elementType,
+ const TType &arrayType)
+{
+ if (arrayType.isArrayOfArrays())
+ {
+ if (elementType.qualifier == EvqVertexOut)
+ {
+ error(line, "vertex shader output cannot be an array of arrays",
+ TType(elementType).getQualifierString());
+ return false;
+ }
+ if (elementType.qualifier == EvqFragmentIn)
+ {
+ error(line, "fragment shader input cannot be an array of arrays",
+ TType(elementType).getQualifierString());
+ return false;
+ }
+ if (elementType.qualifier == EvqFragmentOut || elementType.qualifier == EvqFragmentInOut)
+ {
+ error(line, "fragment shader output cannot be an array of arrays",
+ TType(elementType).getQualifierString());
+ return false;
+ }
+ }
+ return true;
+}
+
+// Check if this qualified element type can be formed into an array. This is only called when array
+// brackets are associated with an identifier in a declaration, like this:
+// float a[2];
+// Similar checks are done in addFullySpecifiedType for array declarations where the array brackets
+// are associated with the type, like this:
+// float[2] a;
+bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation,
+ const TPublicType &elementType)
+{
+ if (!checkArrayElementIsNotArray(indexLocation, elementType))
+ {
+ return false;
+ }
+ // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
+ // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section
+ // 4.3.4).
+ // Geometry shader requires each user-defined input be declared as arrays or inside input
+ // blocks declared as arrays (GL_EXT_geometry_shader section 11.1gs.4.3). For the purposes of
+ // interface matching, such variables and blocks are treated as though they were not declared
+ // as arrays (GL_EXT_geometry_shader section 7.4.1).
+ if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct &&
+ sh::IsVarying(elementType.qualifier) &&
+ !IsGeometryShaderInput(mShaderType, elementType.qualifier) &&
+ !IsTessellationControlShaderInput(mShaderType, elementType.qualifier) &&
+ !IsTessellationEvaluationShaderInput(mShaderType, elementType.qualifier) &&
+ !IsTessellationControlShaderOutput(mShaderType, elementType.qualifier))
+ {
+ TInfoSinkBase typeString;
+ typeString << TType(elementType);
+ error(indexLocation, "cannot declare arrays of structs of this qualifier",
+ typeString.c_str());
+ return false;
+ }
+ return checkIsValidQualifierForArray(indexLocation, elementType);
+}
+
+// Enforce non-initializer type/qualifier rules.
+void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line,
+ const ImmutableString &identifier,
+ TType *type)
+{
+ ASSERT(type != nullptr);
+ if (type->getQualifier() == EvqConst)
+ {
+ // Make the qualifier make sense.
+ type->setQualifier(EvqTemporary);
+
+ // Generate informative error messages for ESSL1.
+ // In ESSL3 arrays and structures containing arrays can be constant.
+ if (mShaderVersion < 300 && type->isStructureContainingArrays())
+ {
+ error(line,
+ "structures containing arrays may not be declared constant since they cannot be "
+ "initialized",
+ identifier);
+ }
+ else
+ {
+ error(line, "variables with qualifier 'const' must be initialized", identifier);
+ }
+ }
+
+ // Implicitly declared arrays are only allowed with tessellation or geometry shader inputs
+ if (type->isArray() &&
+ ((mShaderType != GL_TESS_CONTROL_SHADER && mShaderType != GL_TESS_EVALUATION_SHADER &&
+ mShaderType != GL_GEOMETRY_SHADER) ||
+ (mShaderType == GL_GEOMETRY_SHADER && type->getQualifier() == EvqGeometryOut)))
+ {
+ const TSpan<const unsigned int> &arraySizes = type->getArraySizes();
+ for (unsigned int size : arraySizes)
+ {
+ if (size == 0)
+ {
+ error(line,
+ "implicitly sized arrays only allowed for tessellation shaders "
+ "or geometry shader inputs",
+ identifier);
+ }
+ }
+ }
+}
+
+// Do some simple checks that are shared between all variable declarations,
+// and update the symbol table.
+//
+// Returns true if declaring the variable succeeded.
+//
+bool TParseContext::declareVariable(const TSourceLoc &line,
+ const ImmutableString &identifier,
+ const TType *type,
+ TVariable **variable)
+{
+ ASSERT((*variable) == nullptr);
+
+ SymbolType symbolType = SymbolType::UserDefined;
+ switch (type->getQualifier())
+ {
+ case EvqClipDistance:
+ case EvqCullDistance:
+ case EvqLastFragData:
+ symbolType = SymbolType::BuiltIn;
+ break;
+ default:
+ break;
+ }
+
+ (*variable) = new TVariable(&symbolTable, identifier, type, symbolType);
+
+ ASSERT(type->getLayoutQualifier().index == -1 ||
+ (isExtensionEnabled(TExtension::EXT_blend_func_extended) &&
+ mShaderType == GL_FRAGMENT_SHADER && mShaderVersion >= 300));
+ if (type->getQualifier() == EvqFragmentOut)
+ {
+ if (type->getLayoutQualifier().index != -1 && type->getLayoutQualifier().location == -1)
+ {
+ error(line,
+ "If index layout qualifier is specified for a fragment output, location must "
+ "also be specified.",
+ "index");
+ return false;
+ }
+ }
+ else
+ {
+ checkIndexIsNotSpecified(line, type->getLayoutQualifier().index);
+ }
+
+ if (!((identifier.beginsWith("gl_LastFragData") || type->getQualifier() == EvqFragmentInOut) &&
+ (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) ||
+ isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent))))
+ {
+ checkNoncoherentIsNotSpecified(line, type->getLayoutQualifier().noncoherent);
+ }
+ else if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent) &&
+ !isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch))
+ {
+ checkNoncoherentIsSpecified(line, type->getLayoutQualifier().noncoherent);
+ }
+
+ checkBindingIsValid(line, *type);
+
+ bool needsReservedCheck = true;
+
+ // gl_LastFragData may be redeclared with a new precision qualifier
+ if (type->isArray() && identifier.beginsWith("gl_LastFragData"))
+ {
+ const TVariable *maxDrawBuffers = static_cast<const TVariable *>(
+ symbolTable.findBuiltIn(ImmutableString("gl_MaxDrawBuffers"), mShaderVersion));
+ if (type->isArrayOfArrays())
+ {
+ error(line, "redeclaration of gl_LastFragData as an array of arrays", identifier);
+ return false;
+ }
+ else if (static_cast<int>(type->getOutermostArraySize()) ==
+ maxDrawBuffers->getConstPointer()->getIConst())
+ {
+ if (const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
+ {
+ needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions());
+ }
+ }
+ else
+ {
+ error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers",
+ identifier);
+ return false;
+ }
+ }
+ else if (type->isArray() && identifier == "gl_ClipDistance")
+ {
+ // gl_ClipDistance can be redeclared with smaller size than gl_MaxClipDistances
+ const TVariable *maxClipDistances = static_cast<const TVariable *>(
+ symbolTable.findBuiltIn(ImmutableString("gl_MaxClipDistances"), mShaderVersion));
+ if (!maxClipDistances)
+ {
+ // Unsupported extension
+ needsReservedCheck = true;
+ }
+ else if (type->isArrayOfArrays())
+ {
+ error(line, "redeclaration of gl_ClipDistance as an array of arrays", identifier);
+ return false;
+ }
+ else if (static_cast<int>(type->getOutermostArraySize()) <=
+ maxClipDistances->getConstPointer()->getIConst())
+ {
+ const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion);
+ if (builtInSymbol)
+ {
+ needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions());
+ }
+ }
+ else
+ {
+ error(line, "redeclaration of gl_ClipDistance with size > gl_MaxClipDistances",
+ identifier);
+ return false;
+ }
+ }
+ else if (type->isArray() && identifier == "gl_CullDistance")
+ {
+ // gl_CullDistance can be redeclared with smaller size than gl_MaxCullDistances
+ const TVariable *maxCullDistances = static_cast<const TVariable *>(
+ symbolTable.findBuiltIn(ImmutableString("gl_MaxCullDistances"), mShaderVersion));
+ if (!maxCullDistances)
+ {
+ // Unsupported extension
+ needsReservedCheck = true;
+ }
+ else if (type->isArrayOfArrays())
+ {
+ error(line, "redeclaration of gl_CullDistance as an array of arrays", identifier);
+ return false;
+ }
+ else if (static_cast<int>(type->getOutermostArraySize()) <=
+ maxCullDistances->getConstPointer()->getIConst())
+ {
+ if (const TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
+ {
+ needsReservedCheck = !checkCanUseOneOfExtensions(line, builtInSymbol->extensions());
+ }
+ }
+ else
+ {
+ error(line, "redeclaration of gl_CullDistance with size > gl_MaxCullDistances",
+ identifier);
+ return false;
+ }
+ }
+
+ if (needsReservedCheck && !checkIsNotReserved(line, identifier))
+ return false;
+
+ if (!symbolTable.declare(*variable))
+ {
+ error(line, "redefinition", identifier);
+ return false;
+ }
+
+ if (!checkIsNonVoid(line, identifier, type->getBasicType()))
+ return false;
+
+ return true;
+}
+
+void TParseContext::checkIsParameterQualifierValid(
+ const TSourceLoc &line,
+ const TTypeQualifierBuilder &typeQualifierBuilder,
+ TType *type)
+{
+ // The only parameter qualifiers a parameter can have are in, out, inout or const.
+ TTypeQualifier typeQualifier =
+ typeQualifierBuilder.getParameterTypeQualifier(type->getBasicType(), mDiagnostics);
+
+ if (typeQualifier.qualifier == EvqParamOut || typeQualifier.qualifier == EvqParamInOut)
+ {
+ checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type);
+ }
+
+ if (!IsImage(type->getBasicType()))
+ {
+ checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, line);
+ }
+ else
+ {
+ type->setMemoryQualifier(typeQualifier.memoryQualifier);
+ }
+
+ type->setQualifier(typeQualifier.qualifier);
+
+ if (typeQualifier.precision != EbpUndefined)
+ {
+ type->setPrecision(typeQualifier.precision);
+ }
+
+ if (typeQualifier.precise)
+ {
+ type->setPrecise(true);
+ }
+}
+
+template <size_t size>
+bool TParseContext::checkCanUseOneOfExtensions(const TSourceLoc &line,
+ const std::array<TExtension, size> &extensions)
+{
+ ASSERT(!extensions.empty());
+ const TExtensionBehavior &extBehavior = extensionBehavior();
+
+ bool canUseWithWarning = false;
+ bool canUseWithoutWarning = false;
+
+ const char *errorMsgString = "";
+ TExtension errorMsgExtension = TExtension::UNDEFINED;
+
+ for (TExtension extension : extensions)
+ {
+ auto extIter = extBehavior.find(extension);
+ if (canUseWithWarning)
+ {
+ // We already have an extension that we can use, but with a warning.
+ // See if we can use the alternative extension without a warning.
+ if (extIter == extBehavior.end())
+ {
+ continue;
+ }
+ if (extIter->second == EBhEnable || extIter->second == EBhRequire)
+ {
+ canUseWithoutWarning = true;
+ break;
+ }
+ continue;
+ }
+ if (extension == TExtension::UNDEFINED)
+ {
+ continue;
+ }
+ else if (extIter == extBehavior.end())
+ {
+ errorMsgString = "extension is not supported";
+ errorMsgExtension = extension;
+ }
+ else if (extIter->second == EBhUndefined || extIter->second == EBhDisable)
+ {
+ errorMsgString = "extension is disabled";
+ errorMsgExtension = extension;
+ }
+ else if (extIter->second == EBhWarn)
+ {
+ errorMsgExtension = extension;
+ canUseWithWarning = true;
+ }
+ else
+ {
+ ASSERT(extIter->second == EBhEnable || extIter->second == EBhRequire);
+ canUseWithoutWarning = true;
+ break;
+ }
+ }
+
+ if (canUseWithoutWarning)
+ {
+ return true;
+ }
+ if (canUseWithWarning)
+ {
+ warning(line, "extension is being used", GetExtensionNameString(errorMsgExtension));
+ return true;
+ }
+ error(line, errorMsgString, GetExtensionNameString(errorMsgExtension));
+ return false;
+}
+
+template bool TParseContext::checkCanUseOneOfExtensions(
+ const TSourceLoc &line,
+ const std::array<TExtension, 1> &extensions);
+template bool TParseContext::checkCanUseOneOfExtensions(
+ const TSourceLoc &line,
+ const std::array<TExtension, 2> &extensions);
+template bool TParseContext::checkCanUseOneOfExtensions(
+ const TSourceLoc &line,
+ const std::array<TExtension, 3> &extensions);
+
+bool TParseContext::checkCanUseExtension(const TSourceLoc &line, TExtension extension)
+{
+ ASSERT(extension != TExtension::UNDEFINED);
+ return checkCanUseOneOfExtensions(line, std::array<TExtension, 1u>{{extension}});
+}
+
+// ESSL 3.00.6 section 4.8 Empty Declarations: "The combinations of qualifiers that cause
+// compile-time or link-time errors are the same whether or not the declaration is empty".
+// This function implements all the checks that are done on qualifiers regardless of if the
+// declaration is empty.
+void TParseContext::declarationQualifierErrorCheck(const sh::TQualifier qualifier,
+ const sh::TLayoutQualifier &layoutQualifier,
+ const TSourceLoc &location)
+{
+ if (qualifier == EvqShared && !layoutQualifier.isEmpty())
+ {
+ error(location, "Shared memory declarations cannot have layout specified", "layout");
+ }
+
+ if (layoutQualifier.matrixPacking != EmpUnspecified)
+ {
+ error(location, "layout qualifier only valid for interface blocks",
+ getMatrixPackingString(layoutQualifier.matrixPacking));
+ return;
+ }
+
+ if (layoutQualifier.blockStorage != EbsUnspecified)
+ {
+ error(location, "layout qualifier only valid for interface blocks",
+ getBlockStorageString(layoutQualifier.blockStorage));
+ return;
+ }
+
+ if (qualifier == EvqFragmentOut)
+ {
+ if (layoutQualifier.location != -1 && layoutQualifier.yuv == true)
+ {
+ error(location, "invalid layout qualifier combination", "yuv");
+ return;
+ }
+ }
+ else
+ {
+ checkYuvIsNotSpecified(location, layoutQualifier.yuv);
+ }
+
+ if (qualifier != EvqFragmentIn)
+ {
+ checkEarlyFragmentTestsIsNotSpecified(location, layoutQualifier.earlyFragmentTests);
+ }
+
+ // If multiview extension is enabled, "in" qualifier is allowed in the vertex shader in previous
+ // parsing steps. So it needs to be checked here.
+ if (anyMultiviewExtensionAvailable() && mShaderVersion < 300 && qualifier == EvqVertexIn)
+ {
+ error(location, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
+ }
+
+ bool canHaveLocation = qualifier == EvqVertexIn || qualifier == EvqFragmentOut;
+ if (mShaderVersion >= 300 &&
+ (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) ||
+ isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent)))
+ {
+ // In the case of EXT_shader_framebuffer_fetch or EXT_shader_framebuffer_fetch_non_coherent
+ // extension, the location of inout qualifier is used to set the input attachment index
+ canHaveLocation = canHaveLocation || qualifier == EvqFragmentInOut;
+ }
+ if (mShaderVersion >= 310)
+ {
+ canHaveLocation = canHaveLocation || qualifier == EvqUniform || IsVarying(qualifier);
+ // We're not checking whether the uniform location is in range here since that depends on
+ // the type of the variable.
+ // The type can only be fully determined for non-empty declarations.
+ }
+ if (!canHaveLocation)
+ {
+ checkLocationIsNotSpecified(location, layoutQualifier);
+ }
+}
+
+void TParseContext::atomicCounterQualifierErrorCheck(const TPublicType &publicType,
+ const TSourceLoc &location)
+{
+ if (publicType.precision != EbpHigh)
+ {
+ error(location, "Can only be highp", "atomic counter");
+ }
+ // dEQP enforces compile error if location is specified. See uniform_location.test.
+ if (publicType.layoutQualifier.location != -1)
+ {
+ error(location, "location must not be set for atomic_uint", "layout");
+ }
+ if (publicType.layoutQualifier.binding == -1)
+ {
+ error(location, "no binding specified", "atomic counter");
+ }
+}
+
+void TParseContext::emptyDeclarationErrorCheck(const TType &type, const TSourceLoc &location)
+{
+ if (type.isUnsizedArray())
+ {
+ // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an
+ // error. It is assumed that this applies to empty declarations as well.
+ error(location, "empty array declaration needs to specify a size", "");
+ }
+
+ if (type.getQualifier() != EvqFragmentOut)
+ {
+ checkIndexIsNotSpecified(location, type.getLayoutQualifier().index);
+ }
+}
+
+// These checks are done for all declarations that are non-empty. They're done for non-empty
+// declarations starting a declarator list, and declarators that follow an empty declaration.
+void TParseContext::nonEmptyDeclarationErrorCheck(const TPublicType &publicType,
+ const TSourceLoc &identifierLocation)
+{
+ switch (publicType.qualifier)
+ {
+ case EvqVaryingIn:
+ case EvqVaryingOut:
+ case EvqAttribute:
+ case EvqVertexIn:
+ case EvqFragmentOut:
+ case EvqFragmentInOut:
+ case EvqComputeIn:
+ if (publicType.getBasicType() == EbtStruct)
+ {
+ error(identifierLocation, "cannot be used with a structure",
+ getQualifierString(publicType.qualifier));
+ return;
+ }
+ break;
+ case EvqBuffer:
+ if (publicType.getBasicType() != EbtInterfaceBlock)
+ {
+ error(identifierLocation,
+ "cannot declare buffer variables at global scope(outside a block)",
+ getQualifierString(publicType.qualifier));
+ return;
+ }
+ break;
+ default:
+ break;
+ }
+ std::string reason(getBasicString(publicType.getBasicType()));
+ reason += "s must be uniform";
+ if (publicType.qualifier != EvqUniform &&
+ !checkIsNotOpaqueType(identifierLocation, publicType.typeSpecifierNonArray, reason.c_str()))
+ {
+ return;
+ }
+
+ if ((publicType.qualifier != EvqTemporary && publicType.qualifier != EvqGlobal &&
+ publicType.qualifier != EvqConst) &&
+ publicType.getBasicType() == EbtYuvCscStandardEXT)
+ {
+ error(identifierLocation, "cannot be used with a yuvCscStandardEXT",
+ getQualifierString(publicType.qualifier));
+ return;
+ }
+
+ if (mShaderVersion >= 310 && publicType.qualifier == EvqUniform)
+ {
+ // Valid uniform declarations can't be unsized arrays since uniforms can't be initialized.
+ // But invalid shaders may still reach here with an unsized array declaration.
+ TType type(publicType);
+ if (!type.isUnsizedArray())
+ {
+ checkUniformLocationInRange(identifierLocation, type.getLocationCount(),
+ publicType.layoutQualifier);
+ }
+ }
+
+ if (mShaderVersion >= 300 && publicType.qualifier == EvqVertexIn)
+ {
+ // Valid vertex input declarations can't be unsized arrays since they can't be initialized.
+ // But invalid shaders may still reach here with an unsized array declaration.
+ TType type(publicType);
+ if (!type.isUnsizedArray())
+ {
+ checkAttributeLocationInRange(identifierLocation, type.getLocationCount(),
+ publicType.layoutQualifier);
+ }
+ }
+
+ // check for layout qualifier issues
+ const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
+
+ if (IsImage(publicType.getBasicType()))
+ {
+
+ switch (layoutQualifier.imageInternalFormat)
+ {
+ case EiifRGBA32F:
+ case EiifRGBA16F:
+ case EiifR32F:
+ case EiifRGBA8:
+ case EiifRGBA8_SNORM:
+ if (!IsFloatImage(publicType.getBasicType()))
+ {
+ error(identifierLocation,
+ "internal image format requires a floating image type",
+ getBasicString(publicType.getBasicType()));
+ return;
+ }
+ break;
+ case EiifRGBA32I:
+ case EiifRGBA16I:
+ case EiifRGBA8I:
+ case EiifR32I:
+ if (!IsIntegerImage(publicType.getBasicType()))
+ {
+ error(identifierLocation,
+ "internal image format requires an integer image type",
+ getBasicString(publicType.getBasicType()));
+ return;
+ }
+ break;
+ case EiifRGBA32UI:
+ case EiifRGBA16UI:
+ case EiifRGBA8UI:
+ case EiifR32UI:
+ if (!IsUnsignedImage(publicType.getBasicType()))
+ {
+ error(identifierLocation,
+ "internal image format requires an unsigned image type",
+ getBasicString(publicType.getBasicType()));
+ return;
+ }
+ break;
+ case EiifUnspecified:
+ error(identifierLocation, "layout qualifier", "No image internal format specified");
+ return;
+ default:
+ error(identifierLocation, "layout qualifier", "unrecognized token");
+ return;
+ }
+
+ // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
+ switch (layoutQualifier.imageInternalFormat)
+ {
+ case EiifR32F:
+ case EiifR32I:
+ case EiifR32UI:
+ break;
+ default:
+ if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly)
+ {
+ error(identifierLocation, "layout qualifier",
+ "Except for images with the r32f, r32i and r32ui format qualifiers, "
+ "image variables must be qualified readonly and/or writeonly");
+ return;
+ }
+ break;
+ }
+ }
+ else if (IsPixelLocal(publicType.getBasicType()))
+ {
+ if (getShaderType() != GL_FRAGMENT_SHADER)
+ {
+ error(identifierLocation,
+ "undefined use of pixel local storage outside a fragment shader",
+ getBasicString(publicType.getBasicType()));
+ return;
+ }
+ switch (layoutQualifier.imageInternalFormat)
+ {
+ case EiifR32F:
+ case EiifRGBA8:
+ if (publicType.getBasicType() != EbtPixelLocalANGLE)
+ {
+ error(identifierLocation, "pixel local storage format requires pixelLocalANGLE",
+ getImageInternalFormatString(layoutQualifier.imageInternalFormat));
+ }
+ break;
+ case EiifRGBA8I:
+ if (publicType.getBasicType() != EbtIPixelLocalANGLE)
+ {
+ error(identifierLocation,
+ "pixel local storage format requires ipixelLocalANGLE",
+ getImageInternalFormatString(layoutQualifier.imageInternalFormat));
+ }
+ break;
+ case EiifR32UI:
+ case EiifRGBA8UI:
+ if (publicType.getBasicType() != EbtUPixelLocalANGLE)
+ {
+ error(identifierLocation,
+ "pixel local storage format requires upixelLocalANGLE",
+ getImageInternalFormatString(layoutQualifier.imageInternalFormat));
+ }
+ break;
+ case EiifR32I:
+ case EiifRGBA8_SNORM:
+ case EiifRGBA16F:
+ case EiifRGBA32F:
+ case EiifRGBA16I:
+ case EiifRGBA32I:
+ case EiifRGBA16UI:
+ case EiifRGBA32UI:
+ default:
+ ASSERT(!IsValidWithPixelLocalStorage(layoutQualifier.imageInternalFormat));
+ error(identifierLocation, "illegal pixel local storage format",
+ getImageInternalFormatString(layoutQualifier.imageInternalFormat));
+ break;
+ case EiifUnspecified:
+ error(identifierLocation, "pixel local storage requires a format specifier",
+ "layout qualifier");
+ break;
+ }
+ checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation);
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
+ }
+ else
+ {
+ checkInternalFormatIsNotSpecified(identifierLocation, layoutQualifier.imageInternalFormat);
+ checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation);
+ }
+
+ if (IsAtomicCounter(publicType.getBasicType()))
+ {
+ atomicCounterQualifierErrorCheck(publicType, identifierLocation);
+ }
+ else
+ {
+ checkOffsetIsNotSpecified(identifierLocation, layoutQualifier.offset);
+ }
+}
+
+void TParseContext::checkBindingIsValid(const TSourceLoc &identifierLocation, const TType &type)
+{
+ TLayoutQualifier layoutQualifier = type.getLayoutQualifier();
+ // Note that the ESSL 3.10 section 4.4.5 is not particularly clear on how the binding qualifier
+ // on arrays of arrays should be handled. We interpret the spec so that the binding value is
+ // incremented for each element of the innermost nested arrays. This is in line with how arrays
+ // of arrays of blocks are specified to behave in GLSL 4.50 and a conservative interpretation
+ // when it comes to which shaders are accepted by the compiler.
+ int arrayTotalElementCount = type.getArraySizeProduct();
+ if (IsPixelLocal(type.getBasicType()))
+ {
+ checkPixelLocalStorageBindingIsValid(identifierLocation, type);
+ }
+ else if (mShaderVersion < 310)
+ {
+ checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding);
+ }
+ else if (IsImage(type.getBasicType()))
+ {
+ checkImageBindingIsValid(identifierLocation, layoutQualifier.binding,
+ arrayTotalElementCount);
+ }
+ else if (IsSampler(type.getBasicType()))
+ {
+ checkSamplerBindingIsValid(identifierLocation, layoutQualifier.binding,
+ arrayTotalElementCount);
+ }
+ else if (IsAtomicCounter(type.getBasicType()))
+ {
+ checkAtomicCounterBindingIsValid(identifierLocation, layoutQualifier.binding);
+ }
+ else
+ {
+ ASSERT(!IsOpaqueType(type.getBasicType()));
+ checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding);
+ }
+}
+
+void TParseContext::checkCanUseLayoutQualifier(const TSourceLoc &location)
+{
+ constexpr std::array<TExtension, 4u> extensions{
+ {TExtension::EXT_shader_framebuffer_fetch,
+ TExtension::EXT_shader_framebuffer_fetch_non_coherent,
+ TExtension::KHR_blend_equation_advanced, TExtension::ANGLE_shader_pixel_local_storage}};
+ if (getShaderVersion() < 300 && !checkCanUseOneOfExtensions(location, extensions))
+ {
+ error(location, "qualifier supported in GLSL ES 3.00 and above only", "layout");
+ }
+}
+
+bool TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location,
+ const ImmutableString &layoutQualifierName,
+ int versionRequired)
+{
+
+ if (mShaderVersion < versionRequired)
+ {
+ error(location, "invalid layout qualifier: not supported", layoutQualifierName);
+ return false;
+ }
+ return true;
+}
+
+bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location,
+ const TLayoutQualifier &layoutQualifier)
+{
+ const sh::WorkGroupSize &localSize = layoutQualifier.localSize;
+ for (size_t i = 0u; i < localSize.size(); ++i)
+ {
+ if (localSize[i] != -1)
+ {
+ error(location,
+ "invalid layout qualifier: only valid when used with 'in' in a compute shader "
+ "global layout declaration",
+ getWorkGroupSizeString(i));
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location,
+ TLayoutImageInternalFormat internalFormat)
+{
+ if (internalFormat != EiifUnspecified)
+ {
+ if (mShaderVersion < 310)
+ {
+ if (IsValidWithPixelLocalStorage(internalFormat))
+ {
+ error(location,
+ "invalid layout qualifier: not supported before GLSL ES 3.10, except pixel "
+ "local storage",
+ getImageInternalFormatString(internalFormat));
+ }
+ else
+ {
+ error(location, "invalid layout qualifier: not supported before GLSL ES 3.10",
+ getImageInternalFormatString(internalFormat));
+ }
+ }
+ else
+ {
+ if (IsValidWithPixelLocalStorage(internalFormat))
+ {
+ error(location,
+ "invalid layout qualifier: only valid when used with images or pixel local "
+ "storage ",
+ getImageInternalFormatString(internalFormat));
+ }
+ else
+ {
+ error(location, "invalid layout qualifier: only valid when used with images",
+ getImageInternalFormatString(internalFormat));
+ }
+ }
+ }
+}
+
+void TParseContext::checkIndexIsNotSpecified(const TSourceLoc &location, int index)
+{
+ if (index != -1)
+ {
+ error(location,
+ "invalid layout qualifier: only valid when used with a fragment shader output in "
+ "ESSL version >= 3.00 and EXT_blend_func_extended is enabled",
+ "index");
+ }
+}
+
+void TParseContext::checkBindingIsNotSpecified(const TSourceLoc &location, int binding)
+{
+ if (binding != -1)
+ {
+ if (mShaderVersion < 310)
+ {
+ error(location,
+ "invalid layout qualifier: only valid when used with pixel local storage",
+ "binding");
+ }
+ else
+ {
+ error(location,
+ "invalid layout qualifier: only valid when used with opaque types or blocks",
+ "binding");
+ }
+ }
+}
+
+void TParseContext::checkOffsetIsNotSpecified(const TSourceLoc &location, int offset)
+{
+ if (offset != -1)
+ {
+ error(location, "invalid layout qualifier: only valid when used with atomic counters",
+ "offset");
+ }
+}
+
+void TParseContext::checkImageBindingIsValid(const TSourceLoc &location,
+ int binding,
+ int arrayTotalElementCount)
+{
+ // Expects arraySize to be 1 when setting binding for only a single variable.
+ if (binding >= 0 && binding + arrayTotalElementCount > mMaxImageUnits)
+ {
+ error(location, "image binding greater than gl_MaxImageUnits", "binding");
+ }
+}
+
+void TParseContext::checkSamplerBindingIsValid(const TSourceLoc &location,
+ int binding,
+ int arrayTotalElementCount)
+{
+ // Expects arraySize to be 1 when setting binding for only a single variable.
+ if (binding >= 0 && binding + arrayTotalElementCount > mMaxCombinedTextureImageUnits)
+ {
+ error(location, "sampler binding greater than maximum texture units", "binding");
+ }
+}
+
+void TParseContext::checkBlockBindingIsValid(const TSourceLoc &location,
+ const TQualifier &qualifier,
+ int binding,
+ int arraySize)
+{
+ int size = (arraySize == 0 ? 1 : arraySize);
+ if (qualifier == EvqUniform)
+ {
+ if (binding + size > mMaxUniformBufferBindings)
+ {
+ error(location, "uniform block binding greater than MAX_UNIFORM_BUFFER_BINDINGS",
+ "binding");
+ }
+ }
+ else if (qualifier == EvqBuffer)
+ {
+ if (binding + size > mMaxShaderStorageBufferBindings)
+ {
+ error(location,
+ "shader storage block binding greater than MAX_SHADER_STORAGE_BUFFER_BINDINGS",
+ "binding");
+ }
+ }
+}
+void TParseContext::checkAtomicCounterBindingIsValid(const TSourceLoc &location, int binding)
+{
+ if (binding >= mMaxAtomicCounterBindings)
+ {
+ error(location, "atomic counter binding greater than gl_MaxAtomicCounterBindings",
+ "binding");
+ }
+}
+
+void TParseContext::checkPixelLocalStorageBindingIsValid(const TSourceLoc &location,
+ const TType &type)
+{
+ TLayoutQualifier layoutQualifier = type.getLayoutQualifier();
+ if (type.isArray())
+ {
+ // PLS is not allowed in arrays.
+ // TODO(anglebug.com/7279): Consider allowing this once more backends are implemented.
+ error(location, "pixel local storage handles cannot be aggregated in arrays", "array");
+ }
+ else if (layoutQualifier.binding < 0)
+ {
+ error(location, "pixel local storage requires a binding index", "layout qualifier");
+ }
+ // TODO(anglebug.com/7279):
+ // else if (binding >= GL_MAX_LOCAL_STORAGE_PLANES_ANGLE)
+ // {
+ // }
+ else if (mPLSBindings.find(layoutQualifier.binding) != mPLSBindings.end())
+ {
+ error(location, "duplicate pixel local storage binding index",
+ std::to_string(layoutQualifier.binding).c_str());
+ }
+ else
+ {
+ mPLSBindings[layoutQualifier.binding] = layoutQualifier.imageInternalFormat;
+ // "mPLSBindings" is how we know whether pixel local storage uniforms have been declared, so
+ // flush the queue of potential errors once mPLSBindings isn't empty.
+ if (!mPLSPotentialErrors.empty())
+ {
+ for (const auto &[loc, op] : mPLSPotentialErrors)
+ {
+ errorIfPLSDeclared(loc, op);
+ }
+ mPLSPotentialErrors.clear();
+ }
+ }
+}
+
+void TParseContext::checkUniformLocationInRange(const TSourceLoc &location,
+ int objectLocationCount,
+ const TLayoutQualifier &layoutQualifier)
+{
+ int loc = layoutQualifier.location;
+ if (loc >= 0) // Shader-specified location
+ {
+ if (loc >= mMaxUniformLocations || objectLocationCount > mMaxUniformLocations ||
+ static_cast<unsigned int>(loc) + static_cast<unsigned int>(objectLocationCount) >
+ static_cast<unsigned int>(mMaxUniformLocations))
+ {
+ error(location, "Uniform location out of range", "location");
+ }
+ }
+}
+
+void TParseContext::checkAttributeLocationInRange(const TSourceLoc &location,
+ int objectLocationCount,
+ const TLayoutQualifier &layoutQualifier)
+{
+ int loc = layoutQualifier.location;
+ if (loc >= 0) // Shader-specified location
+ {
+ if (loc >= mMaxVertexAttribs || objectLocationCount > mMaxVertexAttribs ||
+ static_cast<unsigned int>(loc) + static_cast<unsigned int>(objectLocationCount) >
+ static_cast<unsigned int>(mMaxVertexAttribs))
+ {
+ error(location, "Attribute location out of range", "location");
+ }
+ }
+}
+
+void TParseContext::checkYuvIsNotSpecified(const TSourceLoc &location, bool yuv)
+{
+ if (yuv != false)
+ {
+ error(location, "invalid layout qualifier: only valid on program outputs", "yuv");
+ }
+}
+
+void TParseContext::checkEarlyFragmentTestsIsNotSpecified(const TSourceLoc &location,
+ bool earlyFragmentTests)
+{
+ if (earlyFragmentTests != false)
+ {
+ error(location,
+ "invalid layout qualifier: only valid when used with 'in' in a fragment shader",
+ "early_fragment_tests");
+ }
+}
+
+void TParseContext::checkNoncoherentIsSpecified(const TSourceLoc &location, bool noncoherent)
+{
+ if (noncoherent == false)
+ {
+ error(location,
+ "'noncoherent' qualifier must be used when "
+ "GL_EXT_shader_framebuffer_fetch_non_coherent extension is used",
+ "noncoherent");
+ }
+}
+
+void TParseContext::checkNoncoherentIsNotSpecified(const TSourceLoc &location, bool noncoherent)
+{
+ if (noncoherent != false)
+ {
+ error(location,
+ "invalid layout qualifier: only valid when used with 'gl_LastFragData' or the "
+ "variable decorated with 'inout' in a fragment shader",
+ "noncoherent");
+ }
+}
+
+void TParseContext::checkTCSOutVarIndexIsValid(TIntermBinary *binaryExpression,
+ const TSourceLoc &location)
+{
+ ASSERT(binaryExpression->getOp() == EOpIndexIndirect ||
+ binaryExpression->getOp() == EOpIndexDirect);
+ const TIntermSymbol *intermSymbol = binaryExpression->getRight()->getAsSymbolNode();
+ if ((intermSymbol == nullptr) || (intermSymbol->getName() != "gl_InvocationID"))
+ {
+ error(location,
+ "tessellation-control per-vertex output l-value must be indexed with "
+ "gl_InvocationID",
+ "[");
+ }
+}
+
+void TParseContext::functionCallRValueLValueErrorCheck(const TFunction *fnCandidate,
+ TIntermAggregate *fnCall)
+{
+ for (size_t i = 0; i < fnCandidate->getParamCount(); ++i)
+ {
+ TQualifier qual = fnCandidate->getParam(i)->getType().getQualifier();
+ TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped();
+ bool argumentIsRead = (IsQualifierUnspecified(qual) || qual == EvqParamIn ||
+ qual == EvqParamInOut || qual == EvqParamConst);
+ if (argumentIsRead)
+ {
+ markStaticReadIfSymbol(argument);
+ if (!IsImage(argument->getBasicType()))
+ {
+ if (argument->getMemoryQualifier().writeonly)
+ {
+ error(argument->getLine(),
+ "Writeonly value cannot be passed for 'in' or 'inout' parameters.",
+ fnCall->functionName());
+ return;
+ }
+ }
+ }
+ if (qual == EvqParamOut || qual == EvqParamInOut)
+ {
+ if (!checkCanBeLValue(argument->getLine(), "assign", argument))
+ {
+ error(argument->getLine(),
+ "Constant value cannot be passed for 'out' or 'inout' parameters.",
+ fnCall->functionName());
+ return;
+ }
+ }
+ }
+}
+
+void TParseContext::checkInvariantVariableQualifier(bool invariant,
+ const TQualifier qualifier,
+ const TSourceLoc &invariantLocation)
+{
+ if (!invariant)
+ return;
+
+ if (mShaderVersion < 300)
+ {
+ // input variables in the fragment shader can be also qualified as invariant
+ if (!sh::CanBeInvariantESSL1(qualifier))
+ {
+ error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
+ }
+ }
+ else
+ {
+ if (!sh::CanBeInvariantESSL3OrGreater(qualifier))
+ {
+ error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
+ }
+ }
+}
+
+void TParseContext::checkAdvancedBlendEquationsNotSpecified(
+ const TSourceLoc &location,
+ const AdvancedBlendEquations &advancedBlendEquations,
+ const TQualifier &qualifier)
+{
+ if (advancedBlendEquations.any() && qualifier != EvqFragmentOut)
+ {
+ error(location,
+ "invalid layout qualifier: blending equation qualifiers are only permitted on the "
+ "fragment 'out' qualifier ",
+ "blend_support_qualifier");
+ }
+}
+
+bool TParseContext::isExtensionEnabled(TExtension extension) const
+{
+ return IsExtensionEnabled(extensionBehavior(), extension);
+}
+
+void TParseContext::handleExtensionDirective(const TSourceLoc &loc,
+ const char *extName,
+ const char *behavior)
+{
+ angle::pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ mDirectiveHandler.handleExtension(srcLoc, extName, behavior);
+}
+
+void TParseContext::handlePragmaDirective(const TSourceLoc &loc,
+ const char *name,
+ const char *value,
+ bool stdgl)
+{
+ angle::pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl);
+}
+
+sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const
+{
+ sh::WorkGroupSize result(-1);
+ for (size_t i = 0u; i < result.size(); ++i)
+ {
+ if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1)
+ {
+ result[i] = 1;
+ }
+ else
+ {
+ result[i] = mComputeShaderLocalSize[i];
+ }
+ }
+ return result;
+}
+
+TIntermConstantUnion *TParseContext::addScalarLiteral(const TConstantUnion *constantUnion,
+ const TSourceLoc &line)
+{
+ TIntermConstantUnion *node = new TIntermConstantUnion(
+ constantUnion, TType(constantUnion->getType(), EbpUndefined, EvqConst));
+ node->setLine(line);
+ return node;
+}
+
+/////////////////////////////////////////////////////////////////////////////////
+//
+// Non-Errors.
+//
+/////////////////////////////////////////////////////////////////////////////////
+
+const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
+ const ImmutableString &name,
+ const TSymbol *symbol)
+{
+ if (!symbol)
+ {
+ error(location, "undeclared identifier", name);
+ return nullptr;
+ }
+
+ if (!symbol->isVariable())
+ {
+ error(location, "variable expected", name);
+ return nullptr;
+ }
+
+ const TVariable *variable = static_cast<const TVariable *>(symbol);
+
+ if (!variable->extensions().empty() && variable->extensions()[0] != TExtension::UNDEFINED)
+ {
+ checkCanUseOneOfExtensions(location, variable->extensions());
+ }
+
+ // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables
+ if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared &&
+ variable->getType().getQualifier() == EvqWorkGroupSize)
+ {
+ error(location,
+ "It is an error to use gl_WorkGroupSize before declaring the local group size",
+ "gl_WorkGroupSize");
+ }
+
+ // If EXT_shader_framebuffer_fetch_non_coherent is used, gl_LastFragData should be decorated
+ // with 'layout(noncoherent)' EXT_shader_framebuffer_fetch_non_coherent spec: "Unless the
+ // GL_EXT_shader_framebuffer_fetch extension has been enabled in addition, it's an error to use
+ // gl_LastFragData if it hasn't been explicitly redeclared with layout(noncoherent)."
+ if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent) &&
+ !isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) &&
+ variable->getType().getQualifier() == EvqLastFragData)
+ {
+ checkNoncoherentIsSpecified(location, variable->getType().getLayoutQualifier().noncoherent);
+ }
+ return variable;
+}
+
+TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location,
+ const ImmutableString &name,
+ const TSymbol *symbol)
+{
+ const TVariable *variable = getNamedVariable(location, name, symbol);
+
+ if (!variable)
+ {
+ TIntermTyped *node = CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
+ node->setLine(location);
+ return node;
+ }
+
+ const TType &variableType = variable->getType();
+ TIntermTyped *node = nullptr;
+
+ if (variable->getConstPointer() && variableType.canReplaceWithConstantUnion())
+ {
+ const TConstantUnion *constArray = variable->getConstPointer();
+ node = new TIntermConstantUnion(constArray, variableType);
+ }
+ else if (variableType.getQualifier() == EvqWorkGroupSize && mComputeShaderLocalSizeDeclared)
+ {
+ // gl_WorkGroupSize can be used to size arrays according to the ESSL 3.10.4 spec, so it
+ // needs to be added to the AST as a constant and not as a symbol.
+ sh::WorkGroupSize workGroupSize = getComputeShaderLocalSize();
+ TConstantUnion *constArray = new TConstantUnion[3];
+ for (size_t i = 0; i < 3; ++i)
+ {
+ constArray[i].setUConst(static_cast<unsigned int>(workGroupSize[i]));
+ }
+
+ ASSERT(variableType.getBasicType() == EbtUInt);
+ ASSERT(variableType.getObjectSize() == 3);
+
+ TType type(variableType);
+ type.setQualifier(EvqConst);
+ node = new TIntermConstantUnion(constArray, type);
+ }
+ else if ((mGeometryShaderInputPrimitiveType != EptUndefined) &&
+ (variableType.getQualifier() == EvqPerVertexIn))
+ {
+ ASSERT(symbolTable.getGlInVariableWithArraySize() != nullptr);
+ node = new TIntermSymbol(symbolTable.getGlInVariableWithArraySize());
+ }
+ else
+ {
+ node = new TIntermSymbol(variable);
+ }
+ ASSERT(node != nullptr);
+ node->setLine(location);
+ return node;
+}
+
+void TParseContext::adjustRedeclaredBuiltInType(const ImmutableString &identifier, TType *type)
+{
+ if (identifier == "gl_ClipDistance")
+ {
+ type->setQualifier(EvqClipDistance);
+ }
+ else if (identifier == "gl_CullDistance")
+ {
+ type->setQualifier(EvqCullDistance);
+ }
+ else if (identifier == "gl_LastFragData")
+ {
+ type->setQualifier(EvqLastFragData);
+ }
+}
+
+// Initializers show up in several places in the grammar. Have one set of
+// code to handle them here.
+//
+// Returns true on success.
+bool TParseContext::executeInitializer(const TSourceLoc &line,
+ const ImmutableString &identifier,
+ TType *type,
+ TIntermTyped *initializer,
+ TIntermBinary **initNode)
+{
+ ASSERT(initNode != nullptr);
+ ASSERT(*initNode == nullptr);
+
+ if (type->isUnsizedArray())
+ {
+ // In case initializer is not an array or type has more dimensions than initializer, this
+ // will default to setting array sizes to 1. We have not checked yet whether the initializer
+ // actually is an array or not. Having a non-array initializer for an unsized array will
+ // result in an error later, so we don't generate an error message here.
+ type->sizeUnsizedArrays(initializer->getType().getArraySizes());
+ }
+
+ const TQualifier qualifier = type->getQualifier();
+
+ bool constError = false;
+ if (qualifier == EvqConst)
+ {
+ if (EvqConst != initializer->getType().getQualifier())
+ {
+ TInfoSinkBase reasonStream;
+ reasonStream << "assigning non-constant to '" << *type << "'";
+ error(line, reasonStream.c_str(), "=");
+
+ // We're still going to declare the variable to avoid extra error messages.
+ type->setQualifier(EvqTemporary);
+ constError = true;
+ }
+ }
+
+ TVariable *variable = nullptr;
+ if (!declareVariable(line, identifier, type, &variable))
+ {
+ return false;
+ }
+
+ if (constError)
+ {
+ return false;
+ }
+
+ bool nonConstGlobalInitializers =
+ IsExtensionEnabled(mDirectiveHandler.extensionBehavior(),
+ TExtension::EXT_shader_non_constant_global_initializers);
+ bool globalInitWarning = false;
+ if (symbolTable.atGlobalLevel() &&
+ !ValidateGlobalInitializer(initializer, mShaderVersion, sh::IsWebGLBasedSpec(mShaderSpec),
+ nonConstGlobalInitializers, &globalInitWarning))
+ {
+ // Error message does not completely match behavior with ESSL 1.00, but
+ // we want to steer developers towards only using constant expressions.
+ error(line, "global variable initializers must be constant expressions", "=");
+ return false;
+ }
+ if (globalInitWarning)
+ {
+ warning(
+ line,
+ "global variable initializers should be constant expressions "
+ "(uniforms and globals are allowed in global initializers for legacy compatibility)",
+ "=");
+ }
+
+ // identifier must be of type constant, a global, or a temporary
+ if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst))
+ {
+ error(line, " cannot initialize this type of qualifier ",
+ variable->getType().getQualifierString());
+ return false;
+ }
+
+ TIntermSymbol *intermSymbol = new TIntermSymbol(variable);
+ intermSymbol->setLine(line);
+
+ if (!binaryOpCommonCheck(EOpInitialize, intermSymbol, initializer, line))
+ {
+ assignError(line, "=", variable->getType(), initializer->getType());
+ return false;
+ }
+
+ if (qualifier == EvqConst)
+ {
+ // Save the constant folded value to the variable if possible.
+ const TConstantUnion *constArray = initializer->getConstantValue();
+ if (constArray)
+ {
+ variable->shareConstPointer(constArray);
+ if (initializer->getType().canReplaceWithConstantUnion())
+ {
+ ASSERT(*initNode == nullptr);
+ return true;
+ }
+ }
+ }
+
+ *initNode = new TIntermBinary(EOpInitialize, intermSymbol, initializer);
+ markStaticReadIfSymbol(initializer);
+ (*initNode)->setLine(line);
+ return true;
+}
+
+TIntermNode *TParseContext::addConditionInitializer(const TPublicType &pType,
+ const ImmutableString &identifier,
+ TIntermTyped *initializer,
+ const TSourceLoc &loc)
+{
+ checkIsScalarBool(loc, pType);
+ TIntermBinary *initNode = nullptr;
+ TType *type = new TType(pType);
+ if (executeInitializer(loc, identifier, type, initializer, &initNode))
+ {
+ // The initializer is valid. The init condition needs to have a node - either the
+ // initializer node, or a constant node in case the initialized variable is const and won't
+ // be recorded in the AST.
+ if (initNode == nullptr)
+ {
+ return initializer;
+ }
+ else
+ {
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->appendDeclarator(initNode);
+ return declaration;
+ }
+ }
+ return nullptr;
+}
+
+TIntermNode *TParseContext::addLoop(TLoopType type,
+ TIntermNode *init,
+ TIntermNode *cond,
+ TIntermTyped *expr,
+ TIntermNode *body,
+ const TSourceLoc &line)
+{
+ TIntermNode *node = nullptr;
+ TIntermTyped *typedCond = nullptr;
+ if (cond)
+ {
+ markStaticReadIfSymbol(cond);
+ typedCond = cond->getAsTyped();
+ }
+ if (expr)
+ {
+ markStaticReadIfSymbol(expr);
+ }
+ // In case the loop body was not parsed as a block and contains a statement that simply refers
+ // to a variable, we need to mark it as statically used.
+ if (body)
+ {
+ markStaticReadIfSymbol(body);
+ }
+ if (cond == nullptr || typedCond)
+ {
+ if (type == ELoopDoWhile && typedCond)
+ {
+ checkIsScalarBool(line, typedCond);
+ }
+ // In the case of other loops, it was checked before that the condition is a scalar boolean.
+ ASSERT(mDiagnostics->numErrors() > 0 || typedCond == nullptr ||
+ (typedCond->getBasicType() == EbtBool && !typedCond->isArray() &&
+ !typedCond->isVector()));
+
+ node = new TIntermLoop(type, init, typedCond, expr, EnsureBlock(body));
+ node->setLine(line);
+ return node;
+ }
+
+ ASSERT(type != ELoopDoWhile);
+
+ TIntermDeclaration *declaration = cond->getAsDeclarationNode();
+ ASSERT(declaration);
+ TIntermBinary *declarator = declaration->getSequence()->front()->getAsBinaryNode();
+ ASSERT(declarator->getLeft()->getAsSymbolNode());
+
+ // The condition is a declaration. In the AST representation we don't support declarations as
+ // loop conditions. Wrap the loop to a block that declares the condition variable and contains
+ // the loop.
+ TIntermBlock *block = new TIntermBlock();
+
+ TIntermDeclaration *declareCondition = new TIntermDeclaration();
+ declareCondition->appendDeclarator(declarator->getLeft()->deepCopy());
+ block->appendStatement(declareCondition);
+
+ TIntermBinary *conditionInit = new TIntermBinary(EOpAssign, declarator->getLeft()->deepCopy(),
+ declarator->getRight()->deepCopy());
+ TIntermLoop *loop = new TIntermLoop(type, init, conditionInit, expr, EnsureBlock(body));
+ block->appendStatement(loop);
+ loop->setLine(line);
+ block->setLine(line);
+ return block;
+}
+
+TIntermNode *TParseContext::addIfElse(TIntermTyped *cond,
+ TIntermNodePair code,
+ const TSourceLoc &loc)
+{
+ bool isScalarBool = checkIsScalarBool(loc, cond);
+ // In case the conditional statements were not parsed as blocks and contain a statement that
+ // simply refers to a variable, we need to mark them as statically used.
+ if (code.node1)
+ {
+ markStaticReadIfSymbol(code.node1);
+ }
+ if (code.node2)
+ {
+ markStaticReadIfSymbol(code.node2);
+ }
+
+ // For compile time constant conditions, prune the code now.
+ if (isScalarBool && cond->getAsConstantUnion())
+ {
+ if (cond->getAsConstantUnion()->getBConst(0) == true)
+ {
+ return EnsureBlock(code.node1);
+ }
+ else
+ {
+ return EnsureBlock(code.node2);
+ }
+ }
+
+ TIntermIfElse *node = new TIntermIfElse(cond, EnsureBlock(code.node1), EnsureBlock(code.node2));
+ markStaticReadIfSymbol(cond);
+ node->setLine(loc);
+
+ return node;
+}
+
+void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier)
+{
+ checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision,
+ typeSpecifier->getBasicType());
+
+ if (mShaderVersion < 300 && typeSpecifier->isArray())
+ {
+ error(typeSpecifier->getLine(), "not supported", "first-class array");
+ typeSpecifier->clearArrayness();
+ }
+}
+
+TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder,
+ const TPublicType &typeSpecifier)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
+
+ TPublicType returnType = typeSpecifier;
+ returnType.qualifier = typeQualifier.qualifier;
+ returnType.invariant = typeQualifier.invariant;
+ returnType.precise = typeQualifier.precise;
+ returnType.layoutQualifier = typeQualifier.layoutQualifier;
+ returnType.memoryQualifier = typeQualifier.memoryQualifier;
+ returnType.precision = typeSpecifier.precision;
+
+ if (typeQualifier.precision != EbpUndefined)
+ {
+ returnType.precision = typeQualifier.precision;
+ }
+
+ checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision,
+ typeSpecifier.getBasicType());
+
+ checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier,
+ typeSpecifier.getLine());
+
+ checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier);
+
+ checkEarlyFragmentTestsIsNotSpecified(typeSpecifier.getLine(),
+ returnType.layoutQualifier.earlyFragmentTests);
+
+ if (returnType.qualifier == EvqSampleIn || returnType.qualifier == EvqSampleOut)
+ {
+ mSampleQualifierSpecified = true;
+ }
+
+ if (mShaderVersion < 300)
+ {
+ if (typeSpecifier.isArray())
+ {
+ error(typeSpecifier.getLine(), "not supported", "first-class array");
+ returnType.clearArrayness();
+ }
+
+ if (returnType.qualifier == EvqAttribute &&
+ (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
+ {
+ error(typeSpecifier.getLine(), "cannot be bool or int",
+ getQualifierString(returnType.qualifier));
+ }
+
+ if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) &&
+ (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
+ {
+ error(typeSpecifier.getLine(), "cannot be bool or int",
+ getQualifierString(returnType.qualifier));
+ }
+ }
+ else
+ {
+ if (!returnType.layoutQualifier.isEmpty())
+ {
+ checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout");
+ }
+ if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn ||
+ returnType.qualifier == EvqFragmentOut || returnType.qualifier == EvqFragmentInOut)
+ {
+ checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier,
+ typeSpecifier.getLine());
+ }
+ if (returnType.qualifier == EvqComputeIn)
+ {
+ error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size",
+ "in");
+ }
+ }
+
+ return returnType;
+}
+
+void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
+ const TPublicType &type,
+ const TSourceLoc &qualifierLocation)
+{
+ // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
+ if (type.getBasicType() == EbtBool)
+ {
+ error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
+ }
+
+ // Specific restrictions apply for vertex shader inputs and fragment shader outputs.
+ switch (qualifier)
+ {
+ case EvqVertexIn:
+ // ESSL 3.00 section 4.3.4
+ if (type.isArray())
+ {
+ error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
+ }
+ // Vertex inputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck
+ return;
+ case EvqFragmentOut:
+ case EvqFragmentInOut:
+ // ESSL 3.00 section 4.3.6
+ if (type.typeSpecifierNonArray.isMatrix())
+ {
+ error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
+ }
+ // Fragment outputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck
+ return;
+ default:
+ break;
+ }
+
+ // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
+ // restrictions.
+ bool typeContainsIntegers =
+ (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt ||
+ type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt));
+ bool extendedShaderTypes = mShaderVersion >= 320 ||
+ isExtensionEnabled(TExtension::EXT_geometry_shader) ||
+ isExtensionEnabled(TExtension::OES_geometry_shader) ||
+ isExtensionEnabled(TExtension::EXT_tessellation_shader);
+ if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut &&
+ (!extendedShaderTypes || mShaderType == GL_FRAGMENT_SHADER))
+ {
+ error(qualifierLocation, "must use 'flat' interpolation here",
+ getQualifierString(qualifier));
+ }
+
+ if (type.getBasicType() == EbtStruct)
+ {
+ // ESSL 3.00 sections 4.3.4 and 4.3.6.
+ // These restrictions are only implied by the ESSL 3.00 spec, but
+ // the ESSL 3.10 spec lists these restrictions explicitly.
+ if (type.isArray())
+ {
+ error(qualifierLocation, "cannot be an array of structures",
+ getQualifierString(qualifier));
+ }
+ if (type.isStructureContainingArrays())
+ {
+ error(qualifierLocation, "cannot be a structure containing an array",
+ getQualifierString(qualifier));
+ }
+ if (type.isStructureContainingType(EbtStruct))
+ {
+ error(qualifierLocation, "cannot be a structure containing a structure",
+ getQualifierString(qualifier));
+ }
+ if (type.isStructureContainingType(EbtBool))
+ {
+ error(qualifierLocation, "cannot be a structure containing a bool",
+ getQualifierString(qualifier));
+ }
+ }
+}
+
+void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier)
+{
+ if (qualifier.getType() == QtStorage)
+ {
+ const TStorageQualifierWrapper &storageQualifier =
+ static_cast<const TStorageQualifierWrapper &>(qualifier);
+ if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst &&
+ !symbolTable.atGlobalLevel())
+ {
+ error(storageQualifier.getLine(),
+ "Local variables can only use the const storage qualifier.",
+ storageQualifier.getQualifierString());
+ }
+ }
+}
+
+void TParseContext::checkMemoryQualifierIsNotSpecified(const TMemoryQualifier &memoryQualifier,
+ const TSourceLoc &location)
+{
+ const std::string reason(
+ "Only allowed with shader storage blocks, variables declared within shader storage blocks "
+ "and variables declared as image types.");
+ if (memoryQualifier.readonly)
+ {
+ error(location, reason.c_str(), "readonly");
+ }
+ if (memoryQualifier.writeonly)
+ {
+ error(location, reason.c_str(), "writeonly");
+ }
+ if (memoryQualifier.coherent)
+ {
+ error(location, reason.c_str(), "coherent");
+ }
+ if (memoryQualifier.restrictQualifier)
+ {
+ error(location, reason.c_str(), "restrict");
+ }
+ if (memoryQualifier.volatileQualifier)
+ {
+ error(location, reason.c_str(), "volatile");
+ }
+}
+
+// Make sure there is no offset overlapping, and store the newly assigned offset to "type" in
+// intermediate tree.
+void TParseContext::checkAtomicCounterOffsetDoesNotOverlap(bool forceAppend,
+ const TSourceLoc &loc,
+ TType *type)
+{
+ const size_t size = type->isArray() ? kAtomicCounterArrayStride * type->getArraySizeProduct()
+ : kAtomicCounterSize;
+ TLayoutQualifier layoutQualifier = type->getLayoutQualifier();
+ auto &bindingState = mAtomicCounterBindingStates[layoutQualifier.binding];
+ int offset;
+ if (layoutQualifier.offset == -1 || forceAppend)
+ {
+ offset = bindingState.appendSpan(size);
+ }
+ else
+ {
+ offset = bindingState.insertSpan(layoutQualifier.offset, size);
+ }
+ if (offset == -1)
+ {
+ error(loc, "Offset overlapping", "atomic counter");
+ return;
+ }
+ layoutQualifier.offset = offset;
+ type->setLayoutQualifier(layoutQualifier);
+}
+
+void TParseContext::checkAtomicCounterOffsetAlignment(const TSourceLoc &location, const TType &type)
+{
+ TLayoutQualifier layoutQualifier = type.getLayoutQualifier();
+
+ // OpenGL ES 3.1 Table 6.5, Atomic counter offset must be a multiple of 4
+ if (layoutQualifier.offset % 4 != 0)
+ {
+ error(location, "Offset must be multiple of 4", "atomic counter");
+ }
+}
+
+void TParseContext::checkGeometryShaderInputAndSetArraySize(const TSourceLoc &location,
+ const ImmutableString &token,
+ TType *type)
+{
+ if (IsGeometryShaderInput(mShaderType, type->getQualifier()))
+ {
+ if (type->isArray() && type->getOutermostArraySize() == 0u)
+ {
+ // Set size for the unsized geometry shader inputs if they are declared after a valid
+ // input primitive declaration.
+ if (mGeometryShaderInputPrimitiveType != EptUndefined)
+ {
+ ASSERT(symbolTable.getGlInVariableWithArraySize() != nullptr);
+ type->sizeOutermostUnsizedArray(
+ symbolTable.getGlInVariableWithArraySize()->getType().getOutermostArraySize());
+ }
+ else
+ {
+ // [GLSL ES 3.2 SPEC Chapter 4.4.1.2]
+ // An input can be declared without an array size if there is a previous layout
+ // which specifies the size.
+ warning(location,
+ "Missing a valid input primitive declaration before declaring an unsized "
+ "array input",
+ "Deferred");
+ mDeferredArrayTypesToSize.push_back(type);
+ }
+ }
+ else if (type->isArray())
+ {
+ setGeometryShaderInputArraySize(type->getOutermostArraySize(), location);
+ }
+ else
+ {
+ error(location, "Geometry shader input variable must be declared as an array", token);
+ }
+ }
+}
+
+void TParseContext::checkTessellationShaderUnsizedArraysAndSetSize(const TSourceLoc &location,
+ const ImmutableString &token,
+ TType *type)
+{
+ TQualifier qualifier = type->getQualifier();
+ if (!IsTessellationControlShaderOutput(mShaderType, qualifier) &&
+ !IsTessellationControlShaderInput(mShaderType, qualifier) &&
+ !IsTessellationEvaluationShaderInput(mShaderType, qualifier))
+ {
+ return;
+ }
+
+ // Such variables must be declared as arrays or inside output blocks declared as arrays.
+ if (!type->isArray())
+ {
+ error(location, "Tessellation interface variables must be declared as an array", token);
+ return;
+ }
+
+ // If a size is specified, it must match the maximum patch size.
+ unsigned int outermostSize = type->getOutermostArraySize();
+ if (outermostSize == 0u)
+ {
+ switch (qualifier)
+ {
+ case EvqTessControlIn:
+ case EvqTessEvaluationIn:
+ case EvqFlatIn:
+ case EvqCentroidIn:
+ case EvqSmoothIn:
+ case EvqSampleIn:
+ // Declaring an array size is optional. If no size is specified, it will be taken
+ // from the implementation-dependent maximum patch size (gl_MaxPatchVertices).
+ ASSERT(mMaxPatchVertices > 0);
+ type->sizeOutermostUnsizedArray(mMaxPatchVertices);
+ break;
+ case EvqTessControlOut:
+ case EvqFlatOut:
+ case EvqCentroidOut:
+ case EvqSmoothOut:
+ case EvqSampleOut:
+ // Declaring an array size is optional. If no size is specified, it will be taken
+ // from output patch size declared in the shader. If the patch size is not yet
+ // declared, this is deferred until such time as it does.
+ if (mTessControlShaderOutputVertices == 0)
+ {
+ mDeferredArrayTypesToSize.push_back(type);
+ }
+ else
+ {
+ type->sizeOutermostUnsizedArray(mTessControlShaderOutputVertices);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ return;
+ }
+
+ if (IsTessellationControlShaderInput(mShaderType, qualifier) ||
+ IsTessellationEvaluationShaderInput(mShaderType, qualifier))
+ {
+ if (outermostSize != static_cast<unsigned int>(mMaxPatchVertices))
+ {
+ error(location,
+ "If a size is specified for a tessellation control or evaluation user-defined "
+ "input variable, it must match the maximum patch size (gl_MaxPatchVertices).",
+ token);
+ }
+ }
+ else if (IsTessellationControlShaderOutput(mShaderType, qualifier))
+ {
+ if (outermostSize != static_cast<unsigned int>(mTessControlShaderOutputVertices) &&
+ mTessControlShaderOutputVertices != 0)
+ {
+ error(location,
+ "If a size is specified for a tessellation control user-defined per-vertex "
+ "output variable, it must match the the number of vertices in the output "
+ "patch.",
+ token);
+ }
+ }
+}
+
+TIntermDeclaration *TParseContext::parseSingleDeclaration(
+ TPublicType &publicType,
+ const TSourceLoc &identifierOrTypeLocation,
+ const ImmutableString &identifier)
+{
+ TType *type = new TType(publicType);
+ if (mCompileOptions.flattenPragmaSTDGLInvariantAll &&
+ mDirectiveHandler.pragma().stdgl.invariantAll)
+ {
+ TQualifier qualifier = type->getQualifier();
+
+ // The directive handler has already taken care of rejecting invalid uses of this pragma
+ // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all
+ // affected variable declarations:
+ //
+ // 1. Built-in special variables which are inputs to the fragment shader. (These are handled
+ // elsewhere, in TranslatorGLSL.)
+ //
+ // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It
+ // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but
+ // the way this is currently implemented we have to enable this compiler option before
+ // parsing the shader and determining the shading language version it uses. If this were
+ // implemented as a post-pass, the workaround could be more targeted.
+ if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut)
+ {
+ type->setInvariant(true);
+ }
+ }
+
+ checkGeometryShaderInputAndSetArraySize(identifierOrTypeLocation, identifier, type);
+ checkTessellationShaderUnsizedArraysAndSetSize(identifierOrTypeLocation, identifier, type);
+
+ declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier,
+ identifierOrTypeLocation);
+
+ bool emptyDeclaration = (identifier == "");
+ mDeferredNonEmptyDeclarationErrorCheck = emptyDeclaration;
+
+ TIntermSymbol *symbol = nullptr;
+ if (emptyDeclaration)
+ {
+ emptyDeclarationErrorCheck(*type, identifierOrTypeLocation);
+ // In most cases we don't need to create a symbol node for an empty declaration.
+ // But if the empty declaration is declaring a struct type, the symbol node will store that.
+ if (type->getBasicType() == EbtStruct)
+ {
+ TVariable *emptyVariable =
+ new TVariable(&symbolTable, kEmptyImmutableString, type, SymbolType::Empty);
+ symbol = new TIntermSymbol(emptyVariable);
+ }
+ else if (IsAtomicCounter(publicType.getBasicType()))
+ {
+ setAtomicCounterBindingDefaultOffset(publicType, identifierOrTypeLocation);
+ }
+ }
+ else
+ {
+ nonEmptyDeclarationErrorCheck(publicType, identifierOrTypeLocation);
+
+ checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, type);
+
+ if (IsAtomicCounter(type->getBasicType()))
+ {
+ checkAtomicCounterOffsetDoesNotOverlap(false, identifierOrTypeLocation, type);
+
+ checkAtomicCounterOffsetAlignment(identifierOrTypeLocation, *type);
+ }
+
+ TVariable *variable = nullptr;
+ if (declareVariable(identifierOrTypeLocation, identifier, type, &variable))
+ {
+ symbol = new TIntermSymbol(variable);
+ }
+ }
+
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->setLine(identifierOrTypeLocation);
+ if (symbol)
+ {
+ symbol->setLine(identifierOrTypeLocation);
+ declaration->appendDeclarator(symbol);
+ }
+ return declaration;
+}
+
+TIntermDeclaration *TParseContext::parseSingleArrayDeclaration(
+ TPublicType &elementType,
+ const TSourceLoc &identifierLocation,
+ const ImmutableString &identifier,
+ const TSourceLoc &indexLocation,
+ const TVector<unsigned int> &arraySizes)
+{
+ mDeferredNonEmptyDeclarationErrorCheck = false;
+
+ declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier,
+ identifierLocation);
+
+ nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
+
+ checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
+
+ TType *arrayType = new TType(elementType);
+ arrayType->makeArrays(arraySizes);
+
+ checkArrayOfArraysInOut(indexLocation, elementType, *arrayType);
+
+ checkGeometryShaderInputAndSetArraySize(indexLocation, identifier, arrayType);
+ checkTessellationShaderUnsizedArraysAndSetSize(indexLocation, identifier, arrayType);
+
+ checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, arrayType);
+
+ if (IsAtomicCounter(arrayType->getBasicType()))
+ {
+ checkAtomicCounterOffsetDoesNotOverlap(false, identifierLocation, arrayType);
+
+ checkAtomicCounterOffsetAlignment(identifierLocation, *arrayType);
+ }
+
+ adjustRedeclaredBuiltInType(identifier, arrayType);
+
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->setLine(identifierLocation);
+
+ TVariable *variable = nullptr;
+ if (declareVariable(identifierLocation, identifier, arrayType, &variable))
+ {
+ TIntermSymbol *symbol = new TIntermSymbol(variable);
+ symbol->setLine(identifierLocation);
+ declaration->appendDeclarator(symbol);
+ }
+
+ return declaration;
+}
+
+TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const ImmutableString &identifier,
+ const TSourceLoc &initLocation,
+ TIntermTyped *initializer)
+{
+ mDeferredNonEmptyDeclarationErrorCheck = false;
+
+ declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier,
+ identifierLocation);
+
+ nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
+
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->setLine(identifierLocation);
+
+ TIntermBinary *initNode = nullptr;
+ TType *type = new TType(publicType);
+ if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode))
+ {
+ if (initNode)
+ {
+ declaration->appendDeclarator(initNode);
+ }
+ else if (publicType.isStructSpecifier())
+ {
+ // The initialization got constant folded. If it's a struct, declare the struct anyway.
+ TVariable *emptyVariable =
+ new TVariable(&symbolTable, kEmptyImmutableString, type, SymbolType::Empty);
+ TIntermSymbol *symbol = new TIntermSymbol(emptyVariable);
+ symbol->setLine(publicType.getLine());
+ declaration->appendDeclarator(symbol);
+ }
+ }
+ return declaration;
+}
+
+TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration(
+ TPublicType &elementType,
+ const TSourceLoc &identifierLocation,
+ const ImmutableString &identifier,
+ const TSourceLoc &indexLocation,
+ const TVector<unsigned int> &arraySizes,
+ const TSourceLoc &initLocation,
+ TIntermTyped *initializer)
+{
+ mDeferredNonEmptyDeclarationErrorCheck = false;
+
+ declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier,
+ identifierLocation);
+
+ nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
+
+ checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
+
+ TType *arrayType = new TType(elementType);
+ arrayType->makeArrays(arraySizes);
+
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->setLine(identifierLocation);
+
+ // initNode will correspond to the whole of "type b[n] = initializer".
+ TIntermBinary *initNode = nullptr;
+ if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
+ {
+ if (initNode)
+ {
+ declaration->appendDeclarator(initNode);
+ }
+ }
+
+ return declaration;
+}
+
+TIntermGlobalQualifierDeclaration *TParseContext::parseGlobalQualifierDeclaration(
+ const TTypeQualifierBuilder &typeQualifierBuilder,
+ const TSourceLoc &identifierLoc,
+ const ImmutableString &identifier,
+ const TSymbol *symbol)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
+
+ if (!typeQualifier.invariant && !typeQualifier.precise)
+ {
+ error(identifierLoc, "Expected invariant or precise", identifier);
+ return nullptr;
+ }
+ if (typeQualifier.invariant && !checkIsAtGlobalLevel(identifierLoc, "invariant varying"))
+ {
+ return nullptr;
+ }
+ if (!symbol)
+ {
+ error(identifierLoc, "undeclared identifier declared as invariant or precise", identifier);
+ return nullptr;
+ }
+ if (!IsQualifierUnspecified(typeQualifier.qualifier))
+ {
+ error(identifierLoc, "invariant or precise declaration specifies qualifier",
+ getQualifierString(typeQualifier.qualifier));
+ }
+ if (typeQualifier.precision != EbpUndefined)
+ {
+ error(identifierLoc, "invariant or precise declaration specifies precision",
+ getPrecisionString(typeQualifier.precision));
+ }
+ if (!typeQualifier.layoutQualifier.isEmpty())
+ {
+ error(identifierLoc, "invariant or precise declaration specifies layout", "'layout'");
+ }
+
+ const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
+ if (!variable)
+ {
+ return nullptr;
+ }
+ const TType &type = variable->getType();
+
+ checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(),
+ typeQualifier.line);
+ checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
+
+ symbolTable.addInvariantVarying(*variable);
+
+ TIntermSymbol *intermSymbol = new TIntermSymbol(variable);
+ intermSymbol->setLine(identifierLoc);
+
+ return new TIntermGlobalQualifierDeclaration(intermSymbol, typeQualifier.precise,
+ identifierLoc);
+}
+
+void TParseContext::parseDeclarator(TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const ImmutableString &identifier,
+ TIntermDeclaration *declarationOut)
+{
+ // If the declaration starting this declarator list was empty (example: int,), some checks were
+ // not performed.
+ if (mDeferredNonEmptyDeclarationErrorCheck)
+ {
+ nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
+ mDeferredNonEmptyDeclarationErrorCheck = false;
+ }
+
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
+
+ TType *type = new TType(publicType);
+
+ checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier, type);
+ checkTessellationShaderUnsizedArraysAndSetSize(identifierLocation, identifier, type);
+
+ checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, type);
+
+ if (IsAtomicCounter(type->getBasicType()))
+ {
+ checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, type);
+
+ checkAtomicCounterOffsetAlignment(identifierLocation, *type);
+ }
+
+ adjustRedeclaredBuiltInType(identifier, type);
+
+ TVariable *variable = nullptr;
+ if (declareVariable(identifierLocation, identifier, type, &variable))
+ {
+ TIntermSymbol *symbol = new TIntermSymbol(variable);
+ symbol->setLine(identifierLocation);
+ declarationOut->appendDeclarator(symbol);
+ }
+}
+
+void TParseContext::parseArrayDeclarator(TPublicType &elementType,
+ const TSourceLoc &identifierLocation,
+ const ImmutableString &identifier,
+ const TSourceLoc &arrayLocation,
+ const TVector<unsigned int> &arraySizes,
+ TIntermDeclaration *declarationOut)
+{
+ // If the declaration starting this declarator list was empty (example: int,), some checks were
+ // not performed.
+ if (mDeferredNonEmptyDeclarationErrorCheck)
+ {
+ nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
+ mDeferredNonEmptyDeclarationErrorCheck = false;
+ }
+
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType);
+
+ if (checkIsValidTypeAndQualifierForArray(arrayLocation, elementType))
+ {
+ TType *arrayType = new TType(elementType);
+ arrayType->makeArrays(arraySizes);
+
+ checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier, arrayType);
+ checkTessellationShaderUnsizedArraysAndSetSize(identifierLocation, identifier, arrayType);
+
+ checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, arrayType);
+
+ if (IsAtomicCounter(arrayType->getBasicType()))
+ {
+ checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, arrayType);
+
+ checkAtomicCounterOffsetAlignment(identifierLocation, *arrayType);
+ }
+
+ adjustRedeclaredBuiltInType(identifier, arrayType);
+
+ TVariable *variable = nullptr;
+ if (declareVariable(identifierLocation, identifier, arrayType, &variable))
+ {
+ TIntermSymbol *symbol = new TIntermSymbol(variable);
+ symbol->setLine(identifierLocation);
+ declarationOut->appendDeclarator(symbol);
+ }
+ }
+}
+
+void TParseContext::parseInitDeclarator(const TPublicType &publicType,
+ const TSourceLoc &identifierLocation,
+ const ImmutableString &identifier,
+ const TSourceLoc &initLocation,
+ TIntermTyped *initializer,
+ TIntermDeclaration *declarationOut)
+{
+ // If the declaration starting this declarator list was empty (example: int,), some checks were
+ // not performed.
+ if (mDeferredNonEmptyDeclarationErrorCheck)
+ {
+ nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
+ mDeferredNonEmptyDeclarationErrorCheck = false;
+ }
+
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
+
+ TIntermBinary *initNode = nullptr;
+ TType *type = new TType(publicType);
+ if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode))
+ {
+ //
+ // build the intermediate representation
+ //
+ if (initNode)
+ {
+ declarationOut->appendDeclarator(initNode);
+ }
+ }
+}
+
+void TParseContext::parseArrayInitDeclarator(const TPublicType &elementType,
+ const TSourceLoc &identifierLocation,
+ const ImmutableString &identifier,
+ const TSourceLoc &indexLocation,
+ const TVector<unsigned int> &arraySizes,
+ const TSourceLoc &initLocation,
+ TIntermTyped *initializer,
+ TIntermDeclaration *declarationOut)
+{
+ // If the declaration starting this declarator list was empty (example: int,), some checks were
+ // not performed.
+ if (mDeferredNonEmptyDeclarationErrorCheck)
+ {
+ nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
+ mDeferredNonEmptyDeclarationErrorCheck = false;
+ }
+
+ checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType);
+
+ checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
+
+ TType *arrayType = new TType(elementType);
+ arrayType->makeArrays(arraySizes);
+
+ // initNode will correspond to the whole of "b[n] = initializer".
+ TIntermBinary *initNode = nullptr;
+ if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
+ {
+ if (initNode)
+ {
+ declarationOut->appendDeclarator(initNode);
+ }
+ }
+}
+
+TIntermNode *TParseContext::addEmptyStatement(const TSourceLoc &location)
+{
+ // It's simpler to parse an empty statement as a constant expression rather than having a
+ // different type of node just for empty statements, that will be pruned from the AST anyway.
+ TIntermNode *node = CreateZeroNode(TType(EbtInt, EbpMedium));
+ node->setLine(location);
+ return node;
+}
+
+void TParseContext::setAtomicCounterBindingDefaultOffset(const TPublicType &publicType,
+ const TSourceLoc &location)
+{
+ const TLayoutQualifier &layoutQualifier = publicType.layoutQualifier;
+ checkAtomicCounterBindingIsValid(location, layoutQualifier.binding);
+ if (layoutQualifier.binding == -1 || layoutQualifier.offset == -1)
+ {
+ error(location, "Requires both binding and offset", "layout");
+ return;
+ }
+ mAtomicCounterBindingStates[layoutQualifier.binding].setDefaultOffset(layoutQualifier.offset);
+}
+
+void TParseContext::parseDefaultPrecisionQualifier(const TPrecision precision,
+ const TPublicType &type,
+ const TSourceLoc &loc)
+{
+ if ((precision == EbpHigh) && (getShaderType() == GL_FRAGMENT_SHADER) &&
+ !getFragmentPrecisionHigh())
+ {
+ error(loc, "precision is not supported in fragment shader", "highp");
+ }
+
+ if (!CanSetDefaultPrecisionOnType(type))
+ {
+ error(loc, "illegal type argument for default precision qualifier",
+ getBasicString(type.getBasicType()));
+ return;
+ }
+ symbolTable.setDefaultPrecision(type.getBasicType(), precision);
+}
+
+bool TParseContext::checkPrimitiveTypeMatchesTypeQualifier(const TTypeQualifier &typeQualifier)
+{
+ switch (typeQualifier.layoutQualifier.primitiveType)
+ {
+ case EptLines:
+ case EptLinesAdjacency:
+ case EptTriangles:
+ case EptTrianglesAdjacency:
+ return typeQualifier.qualifier == EvqGeometryIn;
+
+ case EptLineStrip:
+ case EptTriangleStrip:
+ return typeQualifier.qualifier == EvqGeometryOut;
+
+ case EptPoints:
+ return true;
+
+ default:
+ UNREACHABLE();
+ return false;
+ }
+}
+
+void TParseContext::setGeometryShaderInputArraySize(unsigned int inputArraySize,
+ const TSourceLoc &line)
+{
+ if (!symbolTable.setGlInArraySize(inputArraySize))
+ {
+ error(line,
+ "Array size or input primitive declaration doesn't match the size of earlier sized "
+ "array inputs.",
+ "layout");
+ }
+ mGeometryInputArraySize = inputArraySize;
+}
+
+bool TParseContext::parseGeometryShaderInputLayoutQualifier(const TTypeQualifier &typeQualifier)
+{
+ ASSERT(typeQualifier.qualifier == EvqGeometryIn);
+
+ const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
+
+ if (layoutQualifier.maxVertices != -1)
+ {
+ error(typeQualifier.line,
+ "max_vertices can only be declared in 'out' layout in a geometry shader", "layout");
+ return false;
+ }
+
+ // Set mGeometryInputPrimitiveType if exists
+ if (layoutQualifier.primitiveType != EptUndefined)
+ {
+ if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier))
+ {
+ error(typeQualifier.line, "invalid primitive type for 'in' layout", "layout");
+ return false;
+ }
+
+ if (mGeometryShaderInputPrimitiveType == EptUndefined)
+ {
+ mGeometryShaderInputPrimitiveType = layoutQualifier.primitiveType;
+ setGeometryShaderInputArraySize(
+ GetGeometryShaderInputArraySize(mGeometryShaderInputPrimitiveType),
+ typeQualifier.line);
+ }
+ else if (mGeometryShaderInputPrimitiveType != layoutQualifier.primitiveType)
+ {
+ error(typeQualifier.line, "primitive doesn't match earlier input primitive declaration",
+ "layout");
+ return false;
+ }
+
+ // Size any implicitly sized arrays that have already been declared.
+ for (TType *type : mDeferredArrayTypesToSize)
+ {
+ type->sizeOutermostUnsizedArray(
+ symbolTable.getGlInVariableWithArraySize()->getType().getOutermostArraySize());
+ }
+ mDeferredArrayTypesToSize.clear();
+ }
+
+ // Set mGeometryInvocations if exists
+ if (layoutQualifier.invocations > 0)
+ {
+ if (mGeometryShaderInvocations == 0)
+ {
+ mGeometryShaderInvocations = layoutQualifier.invocations;
+ }
+ else if (mGeometryShaderInvocations != layoutQualifier.invocations)
+ {
+ error(typeQualifier.line, "invocations contradicts to the earlier declaration",
+ "layout");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool TParseContext::parseGeometryShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier)
+{
+ ASSERT(typeQualifier.qualifier == EvqGeometryOut);
+
+ const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
+
+ if (layoutQualifier.invocations > 0)
+ {
+ error(typeQualifier.line,
+ "invocations can only be declared in 'in' layout in a geometry shader", "layout");
+ return false;
+ }
+
+ // Set mGeometryOutputPrimitiveType if exists
+ if (layoutQualifier.primitiveType != EptUndefined)
+ {
+ if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier))
+ {
+ error(typeQualifier.line, "invalid primitive type for 'out' layout", "layout");
+ return false;
+ }
+
+ if (mGeometryShaderOutputPrimitiveType == EptUndefined)
+ {
+ mGeometryShaderOutputPrimitiveType = layoutQualifier.primitiveType;
+ }
+ else if (mGeometryShaderOutputPrimitiveType != layoutQualifier.primitiveType)
+ {
+ error(typeQualifier.line,
+ "primitive doesn't match earlier output primitive declaration", "layout");
+ return false;
+ }
+ }
+
+ // Set mGeometryMaxVertices if exists
+ if (layoutQualifier.maxVertices > -1)
+ {
+ if (mGeometryShaderMaxVertices == -1)
+ {
+ mGeometryShaderMaxVertices = layoutQualifier.maxVertices;
+ }
+ else if (mGeometryShaderMaxVertices != layoutQualifier.maxVertices)
+ {
+ error(typeQualifier.line, "max_vertices contradicts to the earlier declaration",
+ "layout");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool TParseContext::parseTessControlShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier)
+{
+ ASSERT(typeQualifier.qualifier == EvqTessControlOut);
+
+ const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
+
+ if (layoutQualifier.vertices == 0)
+ {
+ error(typeQualifier.line, "No vertices specified", "layout");
+ return false;
+ }
+
+ // Set mTessControlShaderOutputVertices if exists
+ if (mTessControlShaderOutputVertices == 0)
+ {
+ mTessControlShaderOutputVertices = layoutQualifier.vertices;
+
+ // Size any implicitly sized arrays that have already been declared.
+ for (TType *type : mDeferredArrayTypesToSize)
+ {
+ type->sizeOutermostUnsizedArray(mTessControlShaderOutputVertices);
+ }
+ mDeferredArrayTypesToSize.clear();
+ }
+ else
+ {
+ error(typeQualifier.line, "Duplicated vertices specified", "layout");
+ }
+ return true;
+}
+
+bool TParseContext::parseTessEvaluationShaderInputLayoutQualifier(
+ const TTypeQualifier &typeQualifier)
+{
+ ASSERT(typeQualifier.qualifier == EvqTessEvaluationIn);
+
+ const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
+
+ // Set mTessEvaluationShaderInputPrimitiveType if exists
+ if (layoutQualifier.tesPrimitiveType != EtetUndefined)
+ {
+ if (mTessEvaluationShaderInputPrimitiveType == EtetUndefined)
+ {
+ mTessEvaluationShaderInputPrimitiveType = layoutQualifier.tesPrimitiveType;
+ }
+ else
+ {
+ error(typeQualifier.line, "Duplicated primitive type declaration", "layout");
+ }
+ }
+ // Set mTessEvaluationShaderVertexSpacingType if exists
+ if (layoutQualifier.tesVertexSpacingType != EtetUndefined)
+ {
+ if (mTessEvaluationShaderInputVertexSpacingType == EtetUndefined)
+ {
+ mTessEvaluationShaderInputVertexSpacingType = layoutQualifier.tesVertexSpacingType;
+ }
+ else
+ {
+ error(typeQualifier.line, "Duplicated vertex spacing declaration", "layout");
+ }
+ }
+ // Set mTessEvaluationShaderInputOrderingType if exists
+ if (layoutQualifier.tesOrderingType != EtetUndefined)
+ {
+ if (mTessEvaluationShaderInputOrderingType == EtetUndefined)
+ {
+ mTessEvaluationShaderInputOrderingType = layoutQualifier.tesOrderingType;
+ }
+ else
+ {
+ error(typeQualifier.line, "Duplicated ordering declaration", "layout");
+ }
+ }
+ // Set mTessEvaluationShaderInputPointType if exists
+ if (layoutQualifier.tesPointType != EtetUndefined)
+ {
+ if (mTessEvaluationShaderInputPointType == EtetUndefined)
+ {
+ mTessEvaluationShaderInputPointType = layoutQualifier.tesPointType;
+ }
+ else
+ {
+ error(typeQualifier.line, "Duplicated point type declaration", "layout");
+ }
+ }
+
+ return true;
+}
+
+void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
+ const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
+
+ checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier,
+ typeQualifier.line);
+
+ // It should never be the case, but some strange parser errors can send us here.
+ if (layoutQualifier.isEmpty())
+ {
+ error(typeQualifier.line, "Error during layout qualifier parsing.", "?");
+ return;
+ }
+
+ if (!layoutQualifier.isCombinationValid())
+ {
+ error(typeQualifier.line, "invalid layout qualifier combination", "layout");
+ return;
+ }
+
+ checkIndexIsNotSpecified(typeQualifier.line, layoutQualifier.index);
+
+ checkBindingIsNotSpecified(typeQualifier.line, layoutQualifier.binding);
+
+ checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
+
+ checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat);
+
+ checkYuvIsNotSpecified(typeQualifier.line, layoutQualifier.yuv);
+
+ checkOffsetIsNotSpecified(typeQualifier.line, layoutQualifier.offset);
+
+ checkStd430IsForShaderStorageBlock(typeQualifier.line, layoutQualifier.blockStorage,
+ typeQualifier.qualifier);
+
+ checkAdvancedBlendEquationsNotSpecified(
+ typeQualifier.line, layoutQualifier.advancedBlendEquations, typeQualifier.qualifier);
+
+ if (typeQualifier.qualifier != EvqFragmentIn)
+ {
+ checkEarlyFragmentTestsIsNotSpecified(typeQualifier.line,
+ layoutQualifier.earlyFragmentTests);
+ }
+
+ if (typeQualifier.qualifier == EvqComputeIn)
+ {
+ if (mComputeShaderLocalSizeDeclared &&
+ !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize))
+ {
+ error(typeQualifier.line, "Work group size does not match the previous declaration",
+ "layout");
+ return;
+ }
+
+ if (mShaderVersion < 310)
+ {
+ error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
+ return;
+ }
+
+ if (!layoutQualifier.localSize.isAnyValueSet())
+ {
+ error(typeQualifier.line, "No local work group size specified", "layout");
+ return;
+ }
+
+ const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>(
+ symbolTable.findBuiltIn(ImmutableString("gl_MaxComputeWorkGroupSize"), mShaderVersion));
+
+ const TConstantUnion *maxComputeWorkGroupSizeData =
+ maxComputeWorkGroupSize->getConstPointer();
+
+ for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i)
+ {
+ if (layoutQualifier.localSize[i] != -1)
+ {
+ mComputeShaderLocalSize[i] = layoutQualifier.localSize[i];
+ const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst();
+ if (mComputeShaderLocalSize[i] < 1 ||
+ mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue)
+ {
+ std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
+ reasonStream << "invalid value: Value must be at least 1 and no greater than "
+ << maxComputeWorkGroupSizeValue;
+ const std::string &reason = reasonStream.str();
+
+ error(typeQualifier.line, reason.c_str(), getWorkGroupSizeString(i));
+ return;
+ }
+ }
+ }
+
+ mComputeShaderLocalSizeDeclared = true;
+ }
+ else if (typeQualifier.qualifier == EvqGeometryIn)
+ {
+ if (mShaderVersion < 310)
+ {
+ error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
+ return;
+ }
+
+ if (!parseGeometryShaderInputLayoutQualifier(typeQualifier))
+ {
+ return;
+ }
+ }
+ else if (typeQualifier.qualifier == EvqGeometryOut)
+ {
+ if (mShaderVersion < 310)
+ {
+ error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 only",
+ "layout");
+ return;
+ }
+
+ if (!parseGeometryShaderOutputLayoutQualifier(typeQualifier))
+ {
+ return;
+ }
+ }
+ else if (anyMultiviewExtensionAvailable() && typeQualifier.qualifier == EvqVertexIn)
+ {
+ // This error is only specified in WebGL, but tightens unspecified behavior in the native
+ // specification.
+ if (mNumViews != -1 && layoutQualifier.numViews != mNumViews)
+ {
+ error(typeQualifier.line, "Number of views does not match the previous declaration",
+ "layout");
+ return;
+ }
+
+ if (layoutQualifier.numViews == -1)
+ {
+ error(typeQualifier.line, "No num_views specified", "layout");
+ return;
+ }
+
+ if (layoutQualifier.numViews > mMaxNumViews)
+ {
+ error(typeQualifier.line, "num_views greater than the value of GL_MAX_VIEWS_OVR",
+ "layout");
+ return;
+ }
+
+ mNumViews = layoutQualifier.numViews;
+ }
+ else if (typeQualifier.qualifier == EvqFragmentIn)
+ {
+ if (mShaderVersion < 310)
+ {
+ error(typeQualifier.line,
+ "in type qualifier without variable declaration supported in GLSL ES 3.10 and "
+ "after",
+ "layout");
+ return;
+ }
+
+ if (!layoutQualifier.earlyFragmentTests)
+ {
+ error(typeQualifier.line,
+ "only early_fragment_tests is allowed as layout qualifier when not declaring a "
+ "variable",
+ "layout");
+ return;
+ }
+
+ mEarlyFragmentTestsSpecified = true;
+ }
+ else if (typeQualifier.qualifier == EvqFragmentOut)
+ {
+ if (mShaderVersion < 320 && !isExtensionEnabled(TExtension::KHR_blend_equation_advanced))
+ {
+ error(typeQualifier.line,
+ "out type qualifier without variable declaration is supported in GLSL ES 3.20,"
+ " or if GL_KHR_blend_equation_advanced is enabled",
+ "layout");
+ return;
+ }
+
+ if (!layoutQualifier.advancedBlendEquations.any())
+ {
+ error(typeQualifier.line,
+ "only blend equations are allowed as layout qualifier when not declaring a "
+ "variable",
+ "layout");
+ return;
+ }
+
+ mAdvancedBlendEquations |= layoutQualifier.advancedBlendEquations;
+ }
+ else if (typeQualifier.qualifier == EvqTessControlOut)
+ {
+ if (mShaderVersion < 310)
+ {
+ error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 and after",
+ "layout");
+ return;
+ }
+
+ if (!parseTessControlShaderOutputLayoutQualifier(typeQualifier))
+ {
+ return;
+ }
+ }
+ else if (typeQualifier.qualifier == EvqTessEvaluationIn)
+ {
+ if (mShaderVersion < 310)
+ {
+ error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 and after",
+ "layout");
+ return;
+ }
+
+ if (!parseTessEvaluationShaderInputLayoutQualifier(typeQualifier))
+ {
+ return;
+ }
+ }
+ else
+ {
+ if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, layoutQualifier))
+ {
+ return;
+ }
+
+ if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer)
+ {
+ error(typeQualifier.line, "invalid qualifier: global layout can only be set for blocks",
+ getQualifierString(typeQualifier.qualifier));
+ return;
+ }
+
+ if (mShaderVersion < 300)
+ {
+ error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and after",
+ "layout");
+ return;
+ }
+
+ checkLocationIsNotSpecified(typeQualifier.line, layoutQualifier);
+
+ if (layoutQualifier.matrixPacking != EmpUnspecified)
+ {
+ if (typeQualifier.qualifier == EvqUniform)
+ {
+ mDefaultUniformMatrixPacking = layoutQualifier.matrixPacking;
+ }
+ else if (typeQualifier.qualifier == EvqBuffer)
+ {
+ mDefaultBufferMatrixPacking = layoutQualifier.matrixPacking;
+ }
+ }
+
+ if (layoutQualifier.blockStorage != EbsUnspecified)
+ {
+ if (typeQualifier.qualifier == EvqUniform)
+ {
+ mDefaultUniformBlockStorage = layoutQualifier.blockStorage;
+ }
+ else if (typeQualifier.qualifier == EvqBuffer)
+ {
+ mDefaultBufferBlockStorage = layoutQualifier.blockStorage;
+ }
+ }
+ }
+}
+
+TIntermFunctionPrototype *TParseContext::createPrototypeNodeFromFunction(
+ const TFunction &function,
+ const TSourceLoc &location,
+ bool insertParametersToSymbolTable)
+{
+ checkIsNotReserved(location, function.name());
+
+ TIntermFunctionPrototype *prototype = new TIntermFunctionPrototype(&function);
+ prototype->setLine(location);
+
+ for (size_t i = 0; i < function.getParamCount(); i++)
+ {
+ const TVariable *param = function.getParam(i);
+
+ // If the parameter has no name, it's not an error, just don't add it to symbol table (could
+ // be used for unused args).
+ if (param->symbolType() != SymbolType::Empty)
+ {
+ if (insertParametersToSymbolTable)
+ {
+ if (!symbolTable.declare(const_cast<TVariable *>(param)))
+ {
+ error(location, "redefinition", param->name());
+ }
+ }
+ // Unsized type of a named parameter should have already been checked and sanitized.
+ ASSERT(!param->getType().isUnsizedArray());
+ }
+ else
+ {
+ if (param->getType().isUnsizedArray())
+ {
+ error(location, "function parameter array must be sized at compile time", "[]");
+ // We don't need to size the arrays since the parameter is unnamed and hence
+ // inaccessible.
+ }
+ }
+ }
+ return prototype;
+}
+
+TIntermFunctionPrototype *TParseContext::addFunctionPrototypeDeclaration(
+ const TFunction &parsedFunction,
+ const TSourceLoc &location)
+{
+ // Note: function found from the symbol table could be the same as parsedFunction if this is the
+ // first declaration. Either way the instance in the symbol table is used to track whether the
+ // function is declared multiple times.
+ bool hadPrototypeDeclaration = false;
+ const TFunction *function = symbolTable.markFunctionHasPrototypeDeclaration(
+ parsedFunction.getMangledName(), &hadPrototypeDeclaration);
+
+ if (hadPrototypeDeclaration && mShaderVersion == 100)
+ {
+ // ESSL 1.00.17 section 4.2.7.
+ // Doesn't apply to ESSL 3.00.4: see section 4.2.3.
+ error(location, "duplicate function prototype declarations are not allowed", "function");
+ }
+
+ TIntermFunctionPrototype *prototype =
+ createPrototypeNodeFromFunction(*function, location, false);
+
+ symbolTable.pop();
+
+ if (!symbolTable.atGlobalLevel())
+ {
+ // ESSL 3.00.4 section 4.2.4.
+ error(location, "local function prototype declarations are not allowed", "function");
+ }
+
+ return prototype;
+}
+
+TIntermFunctionDefinition *TParseContext::addFunctionDefinition(
+ TIntermFunctionPrototype *functionPrototype,
+ TIntermBlock *functionBody,
+ const TSourceLoc &location)
+{
+ // Undo push at end of parseFunctionDefinitionHeader() below for ESSL1.00 case
+ if (mFunctionBodyNewScope)
+ {
+ mFunctionBodyNewScope = false;
+ symbolTable.pop();
+ }
+
+ // Check that non-void functions have at least one return statement.
+ if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
+ {
+ error(location,
+ "function does not return a value:", functionPrototype->getFunction()->name());
+ }
+
+ if (functionBody == nullptr)
+ {
+ functionBody = new TIntermBlock();
+ functionBody->setLine(location);
+ }
+ TIntermFunctionDefinition *functionNode =
+ new TIntermFunctionDefinition(functionPrototype, functionBody);
+ functionNode->setLine(location);
+
+ symbolTable.pop();
+ return functionNode;
+}
+
+void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location,
+ const TFunction *function,
+ TIntermFunctionPrototype **prototypeOut)
+{
+ ASSERT(function);
+
+ bool wasDefined = false;
+ function = symbolTable.setFunctionParameterNamesFromDefinition(function, &wasDefined);
+ if (wasDefined)
+ {
+ error(location, "function already has a body", function->name());
+ }
+
+ // Remember the return type for later checking for return statements.
+ mCurrentFunctionType = &(function->getReturnType());
+ mFunctionReturnsValue = false;
+
+ *prototypeOut = createPrototypeNodeFromFunction(*function, location, true);
+ setLoopNestingLevel(0);
+
+ // ESSL 1.00 spec allows for variable in function body to redefine parameter
+ if (IsSpecWithFunctionBodyNewScope(mShaderSpec, mShaderVersion))
+ {
+ mFunctionBodyNewScope = true;
+ symbolTable.push();
+ }
+}
+
+TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
+{
+ //
+ // We don't know at this point whether this is a function definition or a prototype.
+ // The definition production code will check for redefinitions.
+ // In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
+ //
+
+ for (size_t i = 0u; i < function->getParamCount(); ++i)
+ {
+ const TVariable *param = function->getParam(i);
+ const TType &paramType = param->getType();
+
+ if (paramType.isStructSpecifier())
+ {
+ // ESSL 3.00.6 section 12.10.
+ error(location, "Function parameter type cannot be a structure definition",
+ function->name());
+ }
+
+ checkPrecisionSpecified(location, paramType.getPrecision(), paramType.getBasicType());
+ }
+
+ if (getShaderVersion() >= 300)
+ {
+ if (symbolTable.isUnmangledBuiltInName(function->name(), getShaderVersion(),
+ extensionBehavior()))
+ {
+ // With ESSL 3.00 and above, names of built-in functions cannot be redeclared as
+ // functions. Therefore overloading or redefining builtin functions is an error.
+ error(location, "Name of a built-in function cannot be redeclared as function",
+ function->name());
+ }
+ }
+ else
+ {
+ // ESSL 1.00.17 section 4.2.6: built-ins can be overloaded but not redefined. We assume that
+ // this applies to redeclarations as well.
+ const TSymbol *builtIn =
+ symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion());
+ if (builtIn)
+ {
+ error(location, "built-in functions cannot be redefined", function->name());
+ }
+ }
+
+ // Return types and parameter qualifiers must match in all redeclarations, so those are checked
+ // here.
+ const TFunction *prevDec =
+ static_cast<const TFunction *>(symbolTable.findGlobal(function->getMangledName()));
+ if (prevDec)
+ {
+ if (prevDec->getReturnType() != function->getReturnType())
+ {
+ error(location, "function must have the same return type in all of its declarations",
+ function->getReturnType().getBasicString());
+ }
+ for (size_t i = 0; i < prevDec->getParamCount(); ++i)
+ {
+ if (prevDec->getParam(i)->getType().getQualifier() !=
+ function->getParam(i)->getType().getQualifier())
+ {
+ error(location,
+ "function must have the same parameter qualifiers in all of its declarations",
+ function->getParam(i)->getType().getQualifierString());
+ }
+ }
+ }
+
+ // Check for previously declared variables using the same name.
+ const TSymbol *prevSym = symbolTable.find(function->name(), getShaderVersion());
+ bool insertUnmangledName = true;
+ if (prevSym)
+ {
+ if (!prevSym->isFunction())
+ {
+ error(location, "redefinition of a function", function->name());
+ }
+ insertUnmangledName = false;
+ }
+ // Parsing is at the inner scope level of the function's arguments and body statement at this
+ // point, but declareUserDefinedFunction takes care of declaring the function at the global
+ // scope.
+ symbolTable.declareUserDefinedFunction(function, insertUnmangledName);
+
+ // Raise error message if main function takes any parameters or return anything other than void
+ if (function->isMain())
+ {
+ if (function->getParamCount() > 0)
+ {
+ error(location, "function cannot take any parameter(s)", "main");
+ }
+ if (function->getReturnType().getBasicType() != EbtVoid)
+ {
+ error(location, "main function cannot return a value",
+ function->getReturnType().getBasicString());
+ }
+ }
+
+ mDeclaringMain = function->isMain();
+
+ //
+ // If this is a redeclaration, it could also be a definition, in which case, we want to use the
+ // variable names from this one, and not the one that's
+ // being redeclared. So, pass back up this declaration, not the one in the symbol table.
+ //
+ return function;
+}
+
+TFunction *TParseContext::parseFunctionHeader(const TPublicType &type,
+ const ImmutableString &name,
+ const TSourceLoc &location)
+{
+ if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary)
+ {
+ error(location, "no qualifiers allowed for function return",
+ getQualifierString(type.qualifier));
+ }
+ if (!type.layoutQualifier.isEmpty())
+ {
+ error(location, "no qualifiers allowed for function return", "layout");
+ }
+ // make sure an opaque type is not involved as well...
+ std::string reason(getBasicString(type.getBasicType()));
+ reason += "s can't be function return values";
+ checkIsNotOpaqueType(location, type.typeSpecifierNonArray, reason.c_str());
+ if (mShaderVersion < 300)
+ {
+ // Array return values are forbidden, but there's also no valid syntax for declaring array
+ // return values in ESSL 1.00.
+ ASSERT(!type.isArray() || mDiagnostics->numErrors() > 0);
+
+ if (type.isStructureContainingArrays())
+ {
+ // ESSL 1.00.17 section 6.1 Function Definitions
+ TInfoSinkBase typeString;
+ typeString << TType(type);
+ error(location, "structures containing arrays can't be function return values",
+ typeString.c_str());
+ }
+ }
+
+ // Add the function as a prototype after parsing it (we do not support recursion)
+ return new TFunction(&symbolTable, name, SymbolType::UserDefined, new TType(type), false);
+}
+
+TFunctionLookup *TParseContext::addNonConstructorFunc(const ImmutableString &name,
+ const TSymbol *symbol)
+{
+ return TFunctionLookup::CreateFunctionCall(name, symbol);
+}
+
+TFunctionLookup *TParseContext::addConstructorFunc(const TPublicType &publicType)
+{
+ if (mShaderVersion < 300 && publicType.isArray())
+ {
+ error(publicType.getLine(), "array constructor supported in GLSL ES 3.00 and above only",
+ "[]");
+ }
+ if (publicType.isStructSpecifier())
+ {
+ error(publicType.getLine(), "constructor can't be a structure definition",
+ getBasicString(publicType.getBasicType()));
+ }
+
+ TType *type = new TType(publicType);
+ if (!type->canBeConstructed())
+ {
+ error(publicType.getLine(), "cannot construct this type",
+ getBasicString(publicType.getBasicType()));
+ type->setBasicType(EbtFloat);
+ }
+ return TFunctionLookup::CreateConstructor(type);
+}
+
+void TParseContext::checkIsNotUnsizedArray(const TSourceLoc &line,
+ const char *errorMessage,
+ const ImmutableString &token,
+ TType *arrayType)
+{
+ if (arrayType->isUnsizedArray())
+ {
+ error(line, errorMessage, token);
+ arrayType->sizeUnsizedArrays(TSpan<const unsigned int>());
+ }
+}
+
+TParameter TParseContext::parseParameterDeclarator(TType *type,
+ const ImmutableString &name,
+ const TSourceLoc &nameLoc)
+{
+ ASSERT(type);
+ checkIsNotUnsizedArray(nameLoc, "function parameter array must specify a size", name, type);
+ if (type->getBasicType() == EbtVoid)
+ {
+ error(nameLoc, "illegal use of type 'void'", name);
+ }
+ checkIsNotReserved(nameLoc, name);
+ TParameter param = {name.data(), type};
+ return param;
+}
+
+TParameter TParseContext::parseParameterDeclarator(const TPublicType &publicType,
+ const ImmutableString &name,
+ const TSourceLoc &nameLoc)
+{
+ TType *type = new TType(publicType);
+ return parseParameterDeclarator(type, name, nameLoc);
+}
+
+TParameter TParseContext::parseParameterArrayDeclarator(const ImmutableString &name,
+ const TSourceLoc &nameLoc,
+ const TVector<unsigned int> &arraySizes,
+ const TSourceLoc &arrayLoc,
+ TPublicType *elementType)
+{
+ checkArrayElementIsNotArray(arrayLoc, *elementType);
+ TType *arrayType = new TType(*elementType);
+ arrayType->makeArrays(arraySizes);
+ return parseParameterDeclarator(arrayType, name, nameLoc);
+}
+
+bool TParseContext::checkUnsizedArrayConstructorArgumentDimensionality(
+ const TIntermSequence &arguments,
+ TType type,
+ const TSourceLoc &line)
+{
+ if (arguments.empty())
+ {
+ error(line, "implicitly sized array constructor must have at least one argument", "[]");
+ return false;
+ }
+ for (TIntermNode *arg : arguments)
+ {
+ const TIntermTyped *element = arg->getAsTyped();
+ ASSERT(element);
+ size_t dimensionalityFromElement = element->getType().getNumArraySizes() + 1u;
+ if (dimensionalityFromElement > type.getNumArraySizes())
+ {
+ error(line, "constructing from a non-dereferenced array", "constructor");
+ return false;
+ }
+ else if (dimensionalityFromElement < type.getNumArraySizes())
+ {
+ if (dimensionalityFromElement == 1u)
+ {
+ error(line, "implicitly sized array of arrays constructor argument is not an array",
+ "constructor");
+ }
+ else
+ {
+ error(line,
+ "implicitly sized array of arrays constructor argument dimensionality is too "
+ "low",
+ "constructor");
+ }
+ return false;
+ }
+ }
+ return true;
+}
+
+// This function is used to test for the correctness of the parameters passed to various constructor
+// functions and also convert them to the right datatype if it is allowed and required.
+//
+// Returns a node to add to the tree regardless of if an error was generated or not.
+//
+TIntermTyped *TParseContext::addConstructor(TFunctionLookup *fnCall, const TSourceLoc &line)
+{
+ TType type = fnCall->constructorType();
+ TIntermSequence &arguments = fnCall->arguments();
+ if (type.isUnsizedArray())
+ {
+ if (!checkUnsizedArrayConstructorArgumentDimensionality(arguments, type, line))
+ {
+ type.sizeUnsizedArrays(TSpan<const unsigned int>());
+ return CreateZeroNode(type);
+ }
+ TIntermTyped *firstElement = arguments.at(0)->getAsTyped();
+ ASSERT(firstElement);
+ if (type.getOutermostArraySize() == 0u)
+ {
+ type.sizeOutermostUnsizedArray(static_cast<unsigned int>(arguments.size()));
+ }
+ for (size_t i = 0; i < firstElement->getType().getNumArraySizes(); ++i)
+ {
+ if (type.getArraySizes()[i] == 0u)
+ {
+ type.setArraySize(i, firstElement->getType().getArraySizes()[i]);
+ }
+ }
+ ASSERT(!type.isUnsizedArray());
+ }
+
+ if (!checkConstructorArguments(line, arguments, type))
+ {
+ return CreateZeroNode(type);
+ }
+
+ TIntermAggregate *constructorNode = TIntermAggregate::CreateConstructor(type, &arguments);
+ constructorNode->setLine(line);
+
+ return constructorNode->fold(mDiagnostics);
+}
+
+//
+// Interface/uniform blocks
+TIntermDeclaration *TParseContext::addInterfaceBlock(
+ const TTypeQualifierBuilder &typeQualifierBuilder,
+ const TSourceLoc &nameLine,
+ const ImmutableString &blockName,
+ TFieldList *fieldList,
+ const ImmutableString &instanceName,
+ const TSourceLoc &instanceLine,
+ const TVector<unsigned int> *arraySizes,
+ const TSourceLoc &arraySizesLine)
+{
+ const bool isGLPerVertex = blockName == "gl_PerVertex";
+ // gl_PerVertex is allowed to be redefined and therefore not reserved
+ if (!isGLPerVertex)
+ {
+ checkIsNotReserved(nameLine, blockName);
+ }
+
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
+
+ const bool isUniformOrBuffer =
+ typeQualifier.qualifier == EvqUniform || typeQualifier.qualifier == EvqBuffer;
+ const bool isShaderIoBlock = IsShaderIoBlock(typeQualifier.qualifier);
+
+ if (mShaderVersion < 310 && typeQualifier.qualifier != EvqUniform)
+ {
+ error(typeQualifier.line,
+ "invalid qualifier: interface blocks must be uniform in version lower than GLSL ES "
+ "3.10",
+ getQualifierString(typeQualifier.qualifier));
+ }
+ else if (typeQualifier.qualifier == EvqPatchOut)
+ {
+ if ((!isExtensionEnabled(TExtension::EXT_tessellation_shader) && mShaderVersion < 320) ||
+ mShaderType != GL_TESS_CONTROL_SHADER)
+ {
+ error(typeQualifier.line,
+ "invalid qualifier: 'patch out' requires a tessellation control shader",
+ getQualifierString(typeQualifier.qualifier));
+ }
+ }
+ else if (typeQualifier.qualifier == EvqPatchIn)
+ {
+ if ((!isExtensionEnabled(TExtension::EXT_tessellation_shader) && mShaderVersion < 320) ||
+ mShaderType != GL_TESS_EVALUATION_SHADER)
+ {
+ error(typeQualifier.line,
+ "invalid qualifier: 'patch in' requires a tessellation evaluation shader",
+ getQualifierString(typeQualifier.qualifier));
+ }
+ }
+ else if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer)
+ {
+ if (isShaderIoBlock)
+ {
+ if (!isExtensionEnabled(TExtension::OES_shader_io_blocks) &&
+ !isExtensionEnabled(TExtension::EXT_shader_io_blocks) &&
+ !isExtensionEnabled(TExtension::OES_geometry_shader) &&
+ !isExtensionEnabled(TExtension::EXT_geometry_shader) && mShaderVersion < 320)
+ {
+ error(typeQualifier.line,
+ "invalid qualifier: shader IO blocks need shader io block extension",
+ getQualifierString(typeQualifier.qualifier));
+ }
+
+ // Both inputs and outputs of tessellation control shaders must be arrays.
+ // For tessellation evaluation shaders, only inputs must necessarily be arrays.
+ const bool isTCS = mShaderType == GL_TESS_CONTROL_SHADER;
+ const bool isTESIn =
+ mShaderType == GL_TESS_EVALUATION_SHADER && IsShaderIn(typeQualifier.qualifier);
+ if (arraySizes == nullptr && (isTCS || isTESIn))
+ {
+ error(typeQualifier.line, "type must be an array", blockName);
+ }
+ }
+ else
+ {
+ error(typeQualifier.line,
+ "invalid qualifier: interface blocks must be uniform or buffer",
+ getQualifierString(typeQualifier.qualifier));
+ }
+ }
+
+ if (typeQualifier.invariant)
+ {
+ error(typeQualifier.line, "invalid qualifier on interface block", "invariant");
+ }
+
+ if (typeQualifier.qualifier != EvqBuffer)
+ {
+ checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
+ }
+
+ // Verify array sizes
+ if (arraySizes)
+ {
+ if (isUniformOrBuffer)
+ {
+ if (arraySizes->size() == 0)
+ {
+ error(arraySizesLine, "unsized arrays are not allowed with interface blocks", "");
+ }
+ if (arraySizes->size() > 1)
+ {
+ error(arraySizesLine, "array of arrays are not allowed with interface blocks", "");
+ }
+ }
+ else if (isShaderIoBlock)
+ {
+ size_t arrayDimensions = arraySizes->size();
+
+ // Geometry shader inputs have a level arrayness that must be ignored.
+ if (mShaderType == GL_GEOMETRY_SHADER_EXT && IsVaryingIn(typeQualifier.qualifier))
+ {
+ ASSERT(arrayDimensions > 0);
+ --arrayDimensions;
+
+ // Validate that the array size of input matches the geometry layout
+ // declaration, if not automatic (specified as []).
+ const unsigned int geometryDim = arraySizes->back();
+ if (geometryDim > 0 && geometryDim != mGeometryInputArraySize)
+ {
+ error(arraySizesLine,
+ "geometry shader input block array size inconsistent "
+ "with primitive",
+ "");
+ }
+ }
+
+ if (arrayDimensions > 1)
+ {
+ error(arraySizesLine, "array of arrays are not allowed with I/O blocks", "");
+ }
+ }
+ }
+ else if (isShaderIoBlock && mShaderType == GL_GEOMETRY_SHADER_EXT &&
+ IsVaryingIn(typeQualifier.qualifier))
+ {
+ error(arraySizesLine, "geometry shader input blocks must be an array", "");
+ }
+
+ checkIndexIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.index);
+
+ if (mShaderVersion < 310)
+ {
+ checkBindingIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.binding);
+ }
+ else
+ {
+ unsigned int arraySize =
+ arraySizes == nullptr || arraySizes->empty() ? 0 : (*arraySizes)[0];
+ checkBlockBindingIsValid(typeQualifier.line, typeQualifier.qualifier,
+ typeQualifier.layoutQualifier.binding, arraySize);
+ }
+
+ checkYuvIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.yuv);
+ checkEarlyFragmentTestsIsNotSpecified(typeQualifier.line,
+ typeQualifier.layoutQualifier.earlyFragmentTests);
+ checkNoncoherentIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.noncoherent);
+
+ TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
+ if (!IsShaderIoBlock(typeQualifier.qualifier) && typeQualifier.qualifier != EvqPatchIn &&
+ typeQualifier.qualifier != EvqPatchOut)
+ {
+ checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier);
+ }
+ checkStd430IsForShaderStorageBlock(typeQualifier.line, blockLayoutQualifier.blockStorage,
+ typeQualifier.qualifier);
+
+ if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
+ {
+ if (typeQualifier.qualifier == EvqUniform)
+ {
+ blockLayoutQualifier.matrixPacking = mDefaultUniformMatrixPacking;
+ }
+ else if (typeQualifier.qualifier == EvqBuffer)
+ {
+ blockLayoutQualifier.matrixPacking = mDefaultBufferMatrixPacking;
+ }
+ }
+
+ if (blockLayoutQualifier.blockStorage == EbsUnspecified)
+ {
+ if (typeQualifier.qualifier == EvqUniform)
+ {
+ blockLayoutQualifier.blockStorage = mDefaultUniformBlockStorage;
+ }
+ else if (typeQualifier.qualifier == EvqBuffer)
+ {
+ blockLayoutQualifier.blockStorage = mDefaultBufferBlockStorage;
+ }
+ }
+
+ checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier);
+
+ checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat);
+
+ // check for sampler types and apply layout qualifiers
+ for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
+ {
+ TField *field = (*fieldList)[memberIndex];
+ TType *fieldType = field->type();
+ if (IsOpaqueType(fieldType->getBasicType()))
+ {
+ std::string reason("unsupported type - ");
+ reason += fieldType->getBasicString();
+ reason += " types are not allowed in interface blocks";
+ error(field->line(), reason.c_str(), fieldType->getBasicString());
+ }
+
+ const TQualifier qualifier = fieldType->getQualifier();
+ switch (qualifier)
+ {
+ case EvqGlobal:
+ break;
+ case EvqUniform:
+ if (typeQualifier.qualifier == EvqBuffer)
+ {
+ error(field->line(), "invalid qualifier on shader storage block member",
+ getQualifierString(qualifier));
+ }
+ break;
+ case EvqBuffer:
+ if (typeQualifier.qualifier == EvqUniform)
+ {
+ error(field->line(), "invalid qualifier on uniform block member",
+ getQualifierString(qualifier));
+ }
+ break;
+ // a member variable in io block may have different interpolation.
+ case EvqFlatIn:
+ case EvqFlatOut:
+ case EvqNoPerspectiveIn:
+ case EvqNoPerspectiveOut:
+ case EvqSmoothIn:
+ case EvqSmoothOut:
+ case EvqCentroidIn:
+ case EvqCentroidOut:
+ break;
+ // a member variable can have an incomplete qualifier because shader io block has either
+ // in or out.
+ case EvqSmooth:
+ case EvqFlat:
+ case EvqNoPerspective:
+ case EvqCentroid:
+ case EvqGeometryIn:
+ case EvqGeometryOut:
+ if (!IsShaderIoBlock(typeQualifier.qualifier) &&
+ typeQualifier.qualifier != EvqPatchIn &&
+ typeQualifier.qualifier != EvqPatchOut &&
+ typeQualifier.qualifier != EvqGeometryIn &&
+ typeQualifier.qualifier != EvqGeometryOut)
+ {
+ error(field->line(), "invalid qualifier on interface block member",
+ getQualifierString(qualifier));
+ }
+ break;
+ default:
+ error(field->line(), "invalid qualifier on interface block member",
+ getQualifierString(qualifier));
+ break;
+ }
+
+ // On interface block members, invariant is only applicable to output I/O blocks.
+ const bool isOutputShaderIoBlock = isShaderIoBlock && IsShaderOut(typeQualifier.qualifier);
+ if (fieldType->isInvariant() && !isOutputShaderIoBlock)
+ {
+ error(field->line(), "invalid qualifier on interface block member", "invariant");
+ }
+
+ // check layout qualifiers
+ TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
+ checkIndexIsNotSpecified(field->line(), fieldLayoutQualifier.index);
+ checkBindingIsNotSpecified(field->line(), fieldLayoutQualifier.binding);
+
+ if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
+ {
+ error(field->line(), "invalid layout qualifier: cannot be used here",
+ getBlockStorageString(fieldLayoutQualifier.blockStorage));
+ }
+
+ if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
+ {
+ fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
+ }
+ else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct)
+ {
+ warning(field->line(),
+ "extraneous layout qualifier: only has an effect on matrix types",
+ getMatrixPackingString(fieldLayoutQualifier.matrixPacking));
+ }
+
+ fieldType->setLayoutQualifier(fieldLayoutQualifier);
+
+ if (mShaderVersion < 310 || memberIndex != fieldList->size() - 1u ||
+ typeQualifier.qualifier != EvqBuffer)
+ {
+ // ESSL 3.10 spec section 4.1.9 allows for runtime-sized arrays.
+ checkIsNotUnsizedArray(field->line(),
+ "array members of interface blocks must specify a size",
+ field->name(), field->type());
+ }
+
+ if (typeQualifier.qualifier == EvqBuffer)
+ {
+ // set memory qualifiers
+ // GLSL ES 3.10 session 4.9 [Memory Access Qualifiers]. When a block declaration is
+ // qualified with a memory qualifier, it is as if all of its members were declared with
+ // the same memory qualifier.
+ const TMemoryQualifier &blockMemoryQualifier = typeQualifier.memoryQualifier;
+ TMemoryQualifier fieldMemoryQualifier = fieldType->getMemoryQualifier();
+ fieldMemoryQualifier.readonly |= blockMemoryQualifier.readonly;
+ fieldMemoryQualifier.writeonly |= blockMemoryQualifier.writeonly;
+ fieldMemoryQualifier.coherent |= blockMemoryQualifier.coherent;
+ fieldMemoryQualifier.restrictQualifier |= blockMemoryQualifier.restrictQualifier;
+ fieldMemoryQualifier.volatileQualifier |= blockMemoryQualifier.volatileQualifier;
+ // TODO(jiajia.qin@intel.com): Decide whether if readonly and writeonly buffer variable
+ // is legal. See bug https://github.com/KhronosGroup/OpenGL-API/issues/7
+ fieldType->setMemoryQualifier(fieldMemoryQualifier);
+ }
+ }
+
+ SymbolType instanceSymbolType = SymbolType::UserDefined;
+ if (isGLPerVertex)
+ {
+ instanceSymbolType = SymbolType::BuiltIn;
+ }
+ TInterfaceBlock *interfaceBlock = new TInterfaceBlock(&symbolTable, blockName, fieldList,
+ blockLayoutQualifier, instanceSymbolType);
+ if (!symbolTable.declare(interfaceBlock) && isUniformOrBuffer)
+ {
+ error(nameLine, "redefinition of an interface block name", blockName);
+ }
+
+ TType *interfaceBlockType =
+ new TType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier);
+ if (arraySizes)
+ {
+ interfaceBlockType->makeArrays(*arraySizes);
+
+ checkGeometryShaderInputAndSetArraySize(instanceLine, instanceName, interfaceBlockType);
+ checkTessellationShaderUnsizedArraysAndSetSize(instanceLine, instanceName,
+ interfaceBlockType);
+ }
+
+ // The instance variable gets created to refer to the interface block type from the AST
+ // regardless of if there's an instance name. It's created as an empty symbol if there is no
+ // instance name.
+ TVariable *instanceVariable =
+ new TVariable(&symbolTable, instanceName, interfaceBlockType,
+ instanceName.empty() ? SymbolType::Empty : SymbolType::UserDefined);
+
+ if (instanceVariable->symbolType() == SymbolType::Empty)
+ {
+ // define symbols for the members of the interface block
+ for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
+ {
+ TField *field = (*fieldList)[memberIndex];
+ TType *fieldType = new TType(*field->type());
+
+ // set parent pointer of the field variable
+ fieldType->setInterfaceBlockField(interfaceBlock, memberIndex);
+
+ fieldType->setQualifier(typeQualifier.qualifier);
+
+ SymbolType symbolType = SymbolType::UserDefined;
+ if (field->name() == "gl_Position" || field->name() == "gl_PointSize" ||
+ field->name() == "gl_ClipDistance" || field->name() == "gl_CullDistance")
+ {
+ // These builtins can be redifined only when used within a redefiend gl_PerVertex
+ // block
+ if (interfaceBlock->name() != "gl_PerVertex")
+ {
+ error(field->line(), "redefinition in an invalid interface block",
+ field->name());
+ }
+ symbolType = SymbolType::BuiltIn;
+ }
+ TVariable *fieldVariable =
+ new TVariable(&symbolTable, field->name(), fieldType, symbolType);
+ if (!symbolTable.declare(fieldVariable))
+ {
+ error(field->line(), "redefinition of an interface block member name",
+ field->name());
+ }
+ }
+ }
+ else
+ {
+ checkIsNotReserved(instanceLine, instanceName);
+
+ // add a symbol for this interface block
+ if (!symbolTable.declare(instanceVariable))
+ {
+ error(instanceLine, "redefinition of an interface block instance name", instanceName);
+ }
+ }
+
+ TIntermSymbol *blockSymbol = new TIntermSymbol(instanceVariable);
+ blockSymbol->setLine(typeQualifier.line);
+ TIntermDeclaration *declaration = new TIntermDeclaration();
+ declaration->appendDeclarator(blockSymbol);
+ declaration->setLine(nameLine);
+
+ exitStructDeclaration();
+ return declaration;
+}
+
+void TParseContext::enterStructDeclaration(const TSourceLoc &line,
+ const ImmutableString &identifier)
+{
+ ++mStructNestingLevel;
+
+ // Embedded structure definitions are not supported per GLSL ES spec.
+ // ESSL 1.00.17 section 10.9. ESSL 3.00.6 section 12.11.
+ if (mStructNestingLevel > 1)
+ {
+ error(line, "Embedded struct definitions are not allowed", "struct");
+ }
+}
+
+void TParseContext::exitStructDeclaration()
+{
+ --mStructNestingLevel;
+}
+
+void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field)
+{
+ if (!sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ return;
+ }
+
+ if (field.type()->getBasicType() != EbtStruct)
+ {
+ return;
+ }
+
+ // We're already inside a structure definition at this point, so add
+ // one to the field's struct nesting.
+ if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
+ {
+ std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
+ if (field.type()->getStruct()->symbolType() == SymbolType::Empty)
+ {
+ // This may happen in case there are nested struct definitions. While they are also
+ // invalid GLSL, they don't cause a syntax error.
+ reasonStream << "Struct nesting";
+ }
+ else
+ {
+ reasonStream << "Reference of struct type " << field.type()->getStruct()->name();
+ }
+ reasonStream << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting;
+ std::string reason = reasonStream.str();
+ error(line, reason.c_str(), field.name());
+ return;
+ }
+}
+
+//
+// Parse an array index expression
+//
+TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression,
+ const TSourceLoc &location,
+ TIntermTyped *indexExpression)
+{
+ if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
+ {
+ if (baseExpression->getAsSymbolNode())
+ {
+ error(location, " left of '[' is not of type array, matrix, or vector ",
+ baseExpression->getAsSymbolNode()->getName());
+ }
+ else
+ {
+ error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
+ }
+
+ return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
+ }
+
+ if (baseExpression->getQualifier() == EvqPerVertexIn)
+ {
+ if (mGeometryShaderInputPrimitiveType == EptUndefined &&
+ mShaderType == GL_GEOMETRY_SHADER_EXT)
+ {
+ error(location, "missing input primitive declaration before indexing gl_in.", "[");
+ return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
+ }
+ }
+
+ TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
+
+ // ES3.2 or ES3.1's EXT_gpu_shader5 allow dynamically uniform expressions to be used as indices
+ // of opaque types (samplers and atomic counters) as well as UBOs, but not SSBOs and images.
+ bool allowUniformIndices =
+ mShaderVersion >= 320 || isExtensionEnabled(TExtension::EXT_gpu_shader5);
+
+ // ANGLE should be able to fold any constant expressions resulting in an integer - but to be
+ // safe we don't treat "EvqConst" that's evaluated according to the spec as being sufficient
+ // for constness. Some interpretations of the spec have allowed constant expressions with side
+ // effects - like array length() method on a non-constant array.
+ if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr)
+ {
+ if (baseExpression->isInterfaceBlock())
+ {
+ switch (baseExpression->getQualifier())
+ {
+ case EvqPerVertexIn:
+ break;
+ case EvqUniform:
+ if (!allowUniformIndices)
+ {
+ error(location,
+ "array indexes for uniform block arrays must be constant integral "
+ "expressions",
+ "[");
+ }
+ break;
+ case EvqBuffer:
+ error(location,
+ "array indexes for shader storage block arrays must be constant integral "
+ "expressions",
+ "[");
+ break;
+ default:
+ // It's ok for shader I/O blocks to be dynamically indexed
+ if (!IsShaderIoBlock(baseExpression->getQualifier()) &&
+ baseExpression->getQualifier() != EvqPatchIn &&
+ baseExpression->getQualifier() != EvqPatchOut)
+ {
+ // We can reach here only in error cases.
+ ASSERT(mDiagnostics->numErrors() > 0);
+ }
+ break;
+ }
+ }
+ else if (baseExpression->getQualifier() == EvqFragmentOut)
+ {
+ error(location,
+ "array indexes for fragment outputs must be constant integral expressions", "[");
+ }
+ else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData)
+ {
+ error(location, "array index for gl_FragData must be constant zero", "[");
+ }
+ else if (baseExpression->isArray())
+ {
+ TBasicType elementType = baseExpression->getType().getBasicType();
+
+ // Note: In Section 12.30 of the ESSL 3.00 spec on p143-144:
+ //
+ // Indexing of arrays of samplers by constant-index-expressions is
+ // supported in GLSL ES 1.00. A constant-index-expression is an
+ // expression formed from constant-expressions and certain loop indices,
+ // defined for a subset of loop constructs. Should this functionality be
+ // included in GLSL ES 3.00?
+ //
+ // RESOLUTION: No. Arrays of samplers may only be indexed by constant-
+ // integral-expressions.
+ if (IsSampler(elementType) && !allowUniformIndices && mShaderVersion > 100)
+ {
+ error(location, "array index for samplers must be constant integral expressions",
+ "[");
+ }
+ else if (IsImage(elementType))
+ {
+ error(location,
+ "array indexes for image arrays must be constant integral expressions", "[");
+ }
+ }
+ }
+
+ if (indexConstantUnion)
+ {
+ // If an out-of-range index is not qualified as constant, the behavior in the spec is
+ // undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may
+ // constant fold expressions that are not constant expressions). The most compatible way to
+ // handle this case is to report a warning instead of an error and force the index to be in
+ // the correct range.
+ bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst;
+ int index = 0;
+ if (indexConstantUnion->getBasicType() == EbtInt)
+ {
+ index = indexConstantUnion->getIConst(0);
+ }
+ else if (indexConstantUnion->getBasicType() == EbtUInt)
+ {
+ index = static_cast<int>(indexConstantUnion->getUConst(0));
+ }
+
+ int safeIndex = -1;
+
+ if (index < 0)
+ {
+ outOfRangeError(outOfRangeIndexIsError, location, "index expression is negative", "[]");
+ safeIndex = 0;
+ }
+
+ if (!baseExpression->getType().isUnsizedArray())
+ {
+ if (baseExpression->isArray())
+ {
+ if (baseExpression->getQualifier() == EvqFragData && index > 0)
+ {
+ if (!isExtensionEnabled(TExtension::EXT_draw_buffers))
+ {
+ outOfRangeError(outOfRangeIndexIsError, location,
+ "array index for gl_FragData must be zero when "
+ "GL_EXT_draw_buffers is disabled",
+ "[]");
+ safeIndex = 0;
+ }
+ }
+ }
+ // Only do generic out-of-range check if similar error hasn't already been reported.
+ if (safeIndex < 0)
+ {
+ if (baseExpression->isArray())
+ {
+ safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
+ baseExpression->getOutermostArraySize(),
+ "array index out of range");
+ }
+ else if (baseExpression->isMatrix())
+ {
+ safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
+ baseExpression->getType().getCols(),
+ "matrix field selection out of range");
+ }
+ else
+ {
+ ASSERT(baseExpression->isVector());
+ safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
+ baseExpression->getType().getNominalSize(),
+ "vector field selection out of range");
+ }
+ }
+
+ ASSERT(safeIndex >= 0);
+ // Data of constant unions can't be changed, because it may be shared with other
+ // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new
+ // sanitized object.
+ if (safeIndex != index || indexConstantUnion->getBasicType() != EbtInt)
+ {
+ TConstantUnion *safeConstantUnion = new TConstantUnion();
+ safeConstantUnion->setIConst(safeIndex);
+ indexExpression =
+ new TIntermConstantUnion(safeConstantUnion, TType(indexExpression->getType()));
+ }
+
+ TIntermBinary *node =
+ new TIntermBinary(EOpIndexDirect, baseExpression, indexExpression);
+ node->setLine(location);
+ return expressionOrFoldedResult(node);
+ }
+ }
+
+ markStaticReadIfSymbol(indexExpression);
+ TIntermBinary *node = new TIntermBinary(EOpIndexIndirect, baseExpression, indexExpression);
+ node->setLine(location);
+ // Indirect indexing can never be constant folded.
+ return node;
+}
+
+int TParseContext::checkIndexLessThan(bool outOfRangeIndexIsError,
+ const TSourceLoc &location,
+ int index,
+ int arraySize,
+ const char *reason)
+{
+ // Should not reach here with an unsized / runtime-sized array.
+ ASSERT(arraySize > 0);
+ // A negative index should already have been checked.
+ ASSERT(index >= 0);
+ if (index >= arraySize)
+ {
+ std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
+ reasonStream << reason << " '" << index << "'";
+ std::string token = reasonStream.str();
+ outOfRangeError(outOfRangeIndexIsError, location, reason, "[]");
+ return arraySize - 1;
+ }
+ return index;
+}
+
+TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression,
+ const TSourceLoc &dotLocation,
+ const ImmutableString &fieldString,
+ const TSourceLoc &fieldLocation)
+{
+ if (baseExpression->isArray())
+ {
+ error(fieldLocation, "cannot apply dot operator to an array", ".");
+ return baseExpression;
+ }
+
+ if (baseExpression->isVector())
+ {
+ TVector<int> fieldOffsets;
+ if (!parseVectorFields(fieldLocation, fieldString, baseExpression->getNominalSize(),
+ &fieldOffsets))
+ {
+ fieldOffsets.resize(1);
+ fieldOffsets[0] = 0;
+ }
+ TIntermSwizzle *node = new TIntermSwizzle(baseExpression, fieldOffsets);
+ node->setLine(dotLocation);
+
+ return node->fold(mDiagnostics);
+ }
+ else if (baseExpression->getBasicType() == EbtStruct)
+ {
+ const TFieldList &fields = baseExpression->getType().getStruct()->fields();
+ if (fields.empty())
+ {
+ error(dotLocation, "structure has no fields", "Internal Error");
+ return baseExpression;
+ }
+ else
+ {
+ bool fieldFound = false;
+ unsigned int i;
+ for (i = 0; i < fields.size(); ++i)
+ {
+ if (fields[i]->name() == fieldString)
+ {
+ fieldFound = true;
+ break;
+ }
+ }
+ if (fieldFound)
+ {
+ TIntermTyped *index = CreateIndexNode(i);
+ index->setLine(fieldLocation);
+ TIntermBinary *node =
+ new TIntermBinary(EOpIndexDirectStruct, baseExpression, index);
+ node->setLine(dotLocation);
+ return expressionOrFoldedResult(node);
+ }
+ else
+ {
+ error(dotLocation, " no such field in structure", fieldString);
+ return baseExpression;
+ }
+ }
+ }
+ else if (baseExpression->isInterfaceBlock())
+ {
+ const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
+ if (fields.empty())
+ {
+ error(dotLocation, "interface block has no fields", "Internal Error");
+ return baseExpression;
+ }
+ else
+ {
+ bool fieldFound = false;
+ unsigned int i;
+ for (i = 0; i < fields.size(); ++i)
+ {
+ if (fields[i]->name() == fieldString)
+ {
+ fieldFound = true;
+ break;
+ }
+ }
+ if (fieldFound)
+ {
+ TIntermTyped *index = CreateIndexNode(i);
+ index->setLine(fieldLocation);
+ TIntermBinary *node =
+ new TIntermBinary(EOpIndexDirectInterfaceBlock, baseExpression, index);
+ node->setLine(dotLocation);
+ // Indexing interface blocks can never be constant folded.
+ return node;
+ }
+ else
+ {
+ error(dotLocation, " no such field in interface block", fieldString);
+ return baseExpression;
+ }
+ }
+ }
+ else
+ {
+ if (mShaderVersion < 300)
+ {
+ error(dotLocation, " field selection requires structure or vector on left hand side",
+ fieldString);
+ }
+ else
+ {
+ error(dotLocation,
+ " field selection requires structure, vector, or interface block on left hand "
+ "side",
+ fieldString);
+ }
+ return baseExpression;
+ }
+}
+
+TLayoutQualifier TParseContext::parseLayoutQualifier(const ImmutableString &qualifierType,
+ const TSourceLoc &qualifierTypeLine)
+{
+ TLayoutQualifier qualifier = TLayoutQualifier::Create();
+
+ if (qualifierType == "shared")
+ {
+ if (sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared");
+ }
+ qualifier.blockStorage = EbsShared;
+ }
+ else if (qualifierType == "packed")
+ {
+ if (sh::IsWebGLBasedSpec(mShaderSpec))
+ {
+ error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed");
+ }
+ qualifier.blockStorage = EbsPacked;
+ }
+ else if (qualifierType == "std430")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.blockStorage = EbsStd430;
+ }
+ else if (qualifierType == "std140")
+ {
+ qualifier.blockStorage = EbsStd140;
+ }
+ else if (qualifierType == "row_major")
+ {
+ qualifier.matrixPacking = EmpRowMajor;
+ }
+ else if (qualifierType == "column_major")
+ {
+ qualifier.matrixPacking = EmpColumnMajor;
+ }
+ else if (qualifierType == "location")
+ {
+ error(qualifierTypeLine, "invalid layout qualifier: location requires an argument",
+ qualifierType);
+ }
+ else if (qualifierType == "yuv" && mShaderType == GL_FRAGMENT_SHADER)
+ {
+ if (checkCanUseExtension(qualifierTypeLine, TExtension::EXT_YUV_target))
+ {
+ qualifier.yuv = true;
+ }
+ }
+ else if (qualifierType == "early_fragment_tests")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.earlyFragmentTests = true;
+ }
+ else if (qualifierType == "rgba32f")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA32F;
+ }
+ else if (qualifierType == "rgba16f")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA16F;
+ }
+ else if (qualifierType == "r32f")
+ {
+ if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ }
+ qualifier.imageInternalFormat = EiifR32F;
+ }
+ else if (qualifierType == "rgba8")
+ {
+ if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ }
+ qualifier.imageInternalFormat = EiifRGBA8;
+ }
+ else if (qualifierType == "rgba8_snorm")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA8_SNORM;
+ }
+ else if (qualifierType == "rgba32i")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA32I;
+ }
+ else if (qualifierType == "rgba16i")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA16I;
+ }
+ else if (qualifierType == "rgba8i")
+ {
+ if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ }
+ qualifier.imageInternalFormat = EiifRGBA8I;
+ }
+ else if (qualifierType == "r32i")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifR32I;
+ }
+ else if (qualifierType == "rgba32ui")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA32UI;
+ }
+ else if (qualifierType == "rgba16ui")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ qualifier.imageInternalFormat = EiifRGBA16UI;
+ }
+ else if (qualifierType == "rgba8ui")
+ {
+ if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ }
+ qualifier.imageInternalFormat = EiifRGBA8UI;
+ }
+ else if (qualifierType == "r32ui")
+ {
+ if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ }
+ qualifier.imageInternalFormat = EiifR32UI;
+ }
+ else if (mShaderType == GL_GEOMETRY_SHADER_EXT &&
+ (mShaderVersion >= 320 ||
+ (checkCanUseOneOfExtensions(
+ qualifierTypeLine,
+ std::array<TExtension, 2u>{
+ {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}}) &&
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310))))
+ {
+ if (qualifierType == "points")
+ {
+ qualifier.primitiveType = EptPoints;
+ }
+ else if (qualifierType == "lines")
+ {
+ qualifier.primitiveType = EptLines;
+ }
+ else if (qualifierType == "lines_adjacency")
+ {
+ qualifier.primitiveType = EptLinesAdjacency;
+ }
+ else if (qualifierType == "triangles")
+ {
+ qualifier.primitiveType = EptTriangles;
+ }
+ else if (qualifierType == "triangles_adjacency")
+ {
+ qualifier.primitiveType = EptTrianglesAdjacency;
+ }
+ else if (qualifierType == "line_strip")
+ {
+ qualifier.primitiveType = EptLineStrip;
+ }
+ else if (qualifierType == "triangle_strip")
+ {
+ qualifier.primitiveType = EptTriangleStrip;
+ }
+ else
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
+ }
+ }
+ else if (mShaderType == GL_TESS_EVALUATION_SHADER_EXT &&
+ (mShaderVersion >= 320 ||
+ (checkCanUseExtension(qualifierTypeLine, TExtension::EXT_tessellation_shader) &&
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310))))
+ {
+ if (qualifierType == "triangles")
+ {
+ qualifier.tesPrimitiveType = EtetTriangles;
+ }
+ else if (qualifierType == "quads")
+ {
+ qualifier.tesPrimitiveType = EtetQuads;
+ }
+ else if (qualifierType == "isolines")
+ {
+ qualifier.tesPrimitiveType = EtetIsolines;
+ }
+ else if (qualifierType == "equal_spacing")
+ {
+ qualifier.tesVertexSpacingType = EtetEqualSpacing;
+ }
+ else if (qualifierType == "fractional_even_spacing")
+ {
+ qualifier.tesVertexSpacingType = EtetFractionalEvenSpacing;
+ }
+ else if (qualifierType == "fractional_odd_spacing")
+ {
+ qualifier.tesVertexSpacingType = EtetFractionalOddSpacing;
+ }
+ else if (qualifierType == "cw")
+ {
+ qualifier.tesOrderingType = EtetCw;
+ }
+ else if (qualifierType == "ccw")
+ {
+ qualifier.tesOrderingType = EtetCcw;
+ }
+ else if (qualifierType == "point_mode")
+ {
+ qualifier.tesPointType = EtetPointMode;
+ }
+ else
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
+ }
+ }
+ else if (mShaderType == GL_FRAGMENT_SHADER)
+ {
+ if (qualifierType == "noncoherent")
+ {
+ if (checkCanUseOneOfExtensions(
+ qualifierTypeLine,
+ std::array<TExtension, 2u>{
+ {TExtension::EXT_shader_framebuffer_fetch,
+ TExtension::EXT_shader_framebuffer_fetch_non_coherent}}))
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 100);
+ qualifier.noncoherent = true;
+ }
+ }
+ else if (qualifierType == "blend_support_multiply")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Multiply, &qualifier);
+ }
+ else if (qualifierType == "blend_support_screen")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Screen, &qualifier);
+ }
+ else if (qualifierType == "blend_support_overlay")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Overlay, &qualifier);
+ }
+ else if (qualifierType == "blend_support_darken")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Darken, &qualifier);
+ }
+ else if (qualifierType == "blend_support_lighten")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Lighten, &qualifier);
+ }
+ else if (qualifierType == "blend_support_colordodge")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Colordodge, &qualifier);
+ }
+ else if (qualifierType == "blend_support_colorburn")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Colorburn, &qualifier);
+ }
+ else if (qualifierType == "blend_support_hardlight")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Hardlight, &qualifier);
+ }
+ else if (qualifierType == "blend_support_softlight")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Softlight, &qualifier);
+ }
+ else if (qualifierType == "blend_support_difference")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Difference, &qualifier);
+ }
+ else if (qualifierType == "blend_support_exclusion")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::Exclusion, &qualifier);
+ }
+ else if (qualifierType == "blend_support_hsl_hue")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::HslHue, &qualifier);
+ }
+ else if (qualifierType == "blend_support_hsl_saturation")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::HslSaturation, &qualifier);
+ }
+ else if (qualifierType == "blend_support_hsl_color")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::HslColor, &qualifier);
+ }
+ else if (qualifierType == "blend_support_hsl_luminosity")
+ {
+ AddAdvancedBlendEquation(gl::BlendEquationType::HslLuminosity, &qualifier);
+ }
+ else if (qualifierType == "blend_support_all_equations")
+ {
+ qualifier.advancedBlendEquations.setAll();
+ }
+ else
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
+ }
+
+ if (qualifier.advancedBlendEquations.any() && mShaderVersion < 320)
+ {
+ if (!checkCanUseExtension(qualifierTypeLine, TExtension::KHR_blend_equation_advanced))
+ {
+ qualifier.advancedBlendEquations.reset();
+ }
+ }
+ }
+ else
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
+ }
+
+ return qualifier;
+}
+
+void TParseContext::parseLocalSize(const ImmutableString &qualifierType,
+ const TSourceLoc &qualifierTypeLine,
+ int intValue,
+ const TSourceLoc &intValueLine,
+ const std::string &intValueString,
+ size_t index,
+ sh::WorkGroupSize *localSize)
+{
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ if (intValue < 1)
+ {
+ std::stringstream reasonStream = sh::InitializeStream<std::stringstream>();
+ reasonStream << "out of range: " << getWorkGroupSizeString(index) << " must be positive";
+ std::string reason = reasonStream.str();
+ error(intValueLine, reason.c_str(), intValueString.c_str());
+ }
+ (*localSize)[index] = intValue;
+}
+
+void TParseContext::parseNumViews(int intValue,
+ const TSourceLoc &intValueLine,
+ const std::string &intValueString,
+ int *numViews)
+{
+ // This error is only specified in WebGL, but tightens unspecified behavior in the native
+ // specification.
+ if (intValue < 1)
+ {
+ error(intValueLine, "out of range: num_views must be positive", intValueString.c_str());
+ }
+ *numViews = intValue;
+}
+
+void TParseContext::parseInvocations(int intValue,
+ const TSourceLoc &intValueLine,
+ const std::string &intValueString,
+ int *numInvocations)
+{
+ // Although SPEC isn't clear whether invocations can be less than 1, we add this limit because
+ // it doesn't make sense to accept invocations <= 0.
+ if (intValue < 1 || intValue > mMaxGeometryShaderInvocations)
+ {
+ error(intValueLine,
+ "out of range: invocations must be in the range of [1, "
+ "MAX_GEOMETRY_SHADER_INVOCATIONS_OES]",
+ intValueString.c_str());
+ }
+ else
+ {
+ *numInvocations = intValue;
+ }
+}
+
+void TParseContext::parseMaxVertices(int intValue,
+ const TSourceLoc &intValueLine,
+ const std::string &intValueString,
+ int *maxVertices)
+{
+ // Although SPEC isn't clear whether max_vertices can be less than 0, we add this limit because
+ // it doesn't make sense to accept max_vertices < 0.
+ if (intValue < 0 || intValue > mMaxGeometryShaderMaxVertices)
+ {
+ error(
+ intValueLine,
+ "out of range: max_vertices must be in the range of [0, gl_MaxGeometryOutputVertices]",
+ intValueString.c_str());
+ }
+ else
+ {
+ *maxVertices = intValue;
+ }
+}
+
+void TParseContext::parseVertices(int intValue,
+ const TSourceLoc &intValueLine,
+ const std::string &intValueString,
+ int *vertices)
+{
+ if (intValue < 1 || intValue > mMaxPatchVertices)
+ {
+ error(intValueLine,
+ "out of range : vertices must be in the range of [1, gl_MaxPatchVertices]",
+ intValueString.c_str());
+ }
+ else
+ {
+ *vertices = intValue;
+ }
+}
+
+void TParseContext::parseIndexLayoutQualifier(int intValue,
+ const TSourceLoc &intValueLine,
+ const std::string &intValueString,
+ int *index)
+{
+ // EXT_blend_func_extended specifies that most validation should happen at link time, but since
+ // we're validating output variable locations at compile time, it makes sense to validate that
+ // index is 0 or 1 also at compile time. Also since we use "-1" as a placeholder for unspecified
+ // index, we can't accept it here.
+ if (intValue < 0 || intValue > 1)
+ {
+ error(intValueLine, "out of range: index layout qualifier can only be 0 or 1",
+ intValueString.c_str());
+ }
+ else
+ {
+ *index = intValue;
+ }
+}
+
+TLayoutQualifier TParseContext::parseLayoutQualifier(const ImmutableString &qualifierType,
+ const TSourceLoc &qualifierTypeLine,
+ int intValue,
+ const TSourceLoc &intValueLine)
+{
+ TLayoutQualifier qualifier = TLayoutQualifier::Create();
+
+ std::string intValueString = Str(intValue);
+
+ if (qualifierType == "location")
+ {
+ // must check that location is non-negative
+ if (intValue < 0)
+ {
+ error(intValueLine, "out of range: location must be non-negative",
+ intValueString.c_str());
+ }
+ else
+ {
+ qualifier.location = intValue;
+ qualifier.locationsSpecified = 1;
+ }
+ }
+ else if (qualifierType == "binding")
+ {
+ if (!isExtensionEnabled(TExtension::ANGLE_shader_pixel_local_storage))
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ }
+ if (intValue < 0)
+ {
+ error(intValueLine, "out of range: binding must be non-negative",
+ intValueString.c_str());
+ }
+ else
+ {
+ qualifier.binding = intValue;
+ }
+ }
+ else if (qualifierType == "offset")
+ {
+ checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
+ if (intValue < 0)
+ {
+ error(intValueLine, "out of range: offset must be non-negative",
+ intValueString.c_str());
+ }
+ else
+ {
+ qualifier.offset = intValue;
+ }
+ }
+ else if (qualifierType == "local_size_x")
+ {
+ parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u,
+ &qualifier.localSize);
+ }
+ else if (qualifierType == "local_size_y")
+ {
+ parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u,
+ &qualifier.localSize);
+ }
+ else if (qualifierType == "local_size_z")
+ {
+ parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u,
+ &qualifier.localSize);
+ }
+ else if (qualifierType == "num_views" && mShaderType == GL_VERTEX_SHADER)
+ {
+ if (checkCanUseOneOfExtensions(
+ qualifierTypeLine, std::array<TExtension, 2u>{
+ {TExtension::OVR_multiview, TExtension::OVR_multiview2}}))
+ {
+ parseNumViews(intValue, intValueLine, intValueString, &qualifier.numViews);
+ }
+ }
+ else if (qualifierType == "invocations" && mShaderType == GL_GEOMETRY_SHADER_EXT &&
+ (mShaderVersion >= 320 ||
+ checkCanUseOneOfExtensions(
+ qualifierTypeLine,
+ std::array<TExtension, 2u>{
+ {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}})))
+ {
+ parseInvocations(intValue, intValueLine, intValueString, &qualifier.invocations);
+ }
+ else if (qualifierType == "max_vertices" && mShaderType == GL_GEOMETRY_SHADER_EXT &&
+ (mShaderVersion >= 320 ||
+ checkCanUseOneOfExtensions(
+ qualifierTypeLine,
+ std::array<TExtension, 2u>{
+ {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}})))
+ {
+ parseMaxVertices(intValue, intValueLine, intValueString, &qualifier.maxVertices);
+ }
+ else if (qualifierType == "index" && mShaderType == GL_FRAGMENT_SHADER &&
+ checkCanUseExtension(qualifierTypeLine, TExtension::EXT_blend_func_extended))
+ {
+ parseIndexLayoutQualifier(intValue, intValueLine, intValueString, &qualifier.index);
+ }
+ else if (qualifierType == "vertices" && mShaderType == GL_TESS_CONTROL_SHADER_EXT &&
+ (mShaderVersion >= 320 ||
+ checkCanUseExtension(qualifierTypeLine, TExtension::EXT_tessellation_shader)))
+ {
+ parseVertices(intValue, intValueLine, intValueString, &qualifier.vertices);
+ }
+ else
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType);
+ }
+
+ return qualifier;
+}
+
+TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc)
+{
+ return new TTypeQualifierBuilder(
+ new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc),
+ mShaderVersion);
+}
+
+TStorageQualifierWrapper *TParseContext::parseGlobalStorageQualifier(TQualifier qualifier,
+ const TSourceLoc &loc)
+{
+ checkIsAtGlobalLevel(loc, getQualifierString(qualifier));
+ return new TStorageQualifierWrapper(qualifier, loc);
+}
+
+TStorageQualifierWrapper *TParseContext::parseVaryingQualifier(const TSourceLoc &loc)
+{
+ if (getShaderType() == GL_VERTEX_SHADER)
+ {
+ return parseGlobalStorageQualifier(EvqVaryingOut, loc);
+ }
+ return parseGlobalStorageQualifier(EvqVaryingIn, loc);
+}
+
+TStorageQualifierWrapper *TParseContext::parseInQualifier(const TSourceLoc &loc)
+{
+ if (declaringFunction())
+ {
+ return new TStorageQualifierWrapper(EvqParamIn, loc);
+ }
+
+ switch (getShaderType())
+ {
+ case GL_VERTEX_SHADER:
+ {
+ if (mShaderVersion < 300 && !anyMultiviewExtensionAvailable() &&
+ !IsDesktopGLSpec(mShaderSpec))
+ {
+ error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
+ }
+ return new TStorageQualifierWrapper(EvqVertexIn, loc);
+ }
+ case GL_FRAGMENT_SHADER:
+ {
+ if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec))
+ {
+ error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
+ }
+ return new TStorageQualifierWrapper(EvqFragmentIn, loc);
+ }
+ case GL_COMPUTE_SHADER:
+ {
+ return new TStorageQualifierWrapper(EvqComputeIn, loc);
+ }
+ case GL_GEOMETRY_SHADER:
+ {
+ return new TStorageQualifierWrapper(EvqGeometryIn, loc);
+ }
+ case GL_TESS_CONTROL_SHADER:
+ {
+ return new TStorageQualifierWrapper(EvqTessControlIn, loc);
+ }
+ case GL_TESS_EVALUATION_SHADER:
+ {
+ return new TStorageQualifierWrapper(EvqTessEvaluationIn, loc);
+ }
+ default:
+ {
+ UNREACHABLE();
+ return new TStorageQualifierWrapper(EvqLast, loc);
+ }
+ }
+}
+
+TStorageQualifierWrapper *TParseContext::parseOutQualifier(const TSourceLoc &loc)
+{
+ if (declaringFunction())
+ {
+ return new TStorageQualifierWrapper(EvqParamOut, loc);
+ }
+ switch (getShaderType())
+ {
+ case GL_VERTEX_SHADER:
+ {
+ if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec))
+ {
+ error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out");
+ }
+ return new TStorageQualifierWrapper(EvqVertexOut, loc);
+ }
+ case GL_FRAGMENT_SHADER:
+ {
+ if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec))
+ {
+ error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out");
+ }
+ return new TStorageQualifierWrapper(EvqFragmentOut, loc);
+ }
+ case GL_COMPUTE_SHADER:
+ {
+ error(loc, "storage qualifier isn't supported in compute shaders", "out");
+ return new TStorageQualifierWrapper(EvqParamOut, loc);
+ }
+ case GL_GEOMETRY_SHADER_EXT:
+ {
+ return new TStorageQualifierWrapper(EvqGeometryOut, loc);
+ }
+ case GL_TESS_CONTROL_SHADER_EXT:
+ {
+ return new TStorageQualifierWrapper(EvqTessControlOut, loc);
+ }
+ case GL_TESS_EVALUATION_SHADER_EXT:
+ {
+ return new TStorageQualifierWrapper(EvqTessEvaluationOut, loc);
+ }
+ default:
+ {
+ UNREACHABLE();
+ return new TStorageQualifierWrapper(EvqLast, loc);
+ }
+ }
+}
+
+TStorageQualifierWrapper *TParseContext::parseInOutQualifier(const TSourceLoc &loc)
+{
+ if (!declaringFunction())
+ {
+ if (mShaderVersion < 300 && !IsDesktopGLSpec(mShaderSpec))
+ {
+ error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "inout");
+ }
+
+ if (getShaderType() != GL_FRAGMENT_SHADER)
+ {
+ error(loc, "storage qualifier isn't supported in non-fragment shaders", "inout");
+ }
+
+ if (isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch) ||
+ isExtensionEnabled(TExtension::EXT_shader_framebuffer_fetch_non_coherent))
+ {
+ return new TStorageQualifierWrapper(EvqFragmentInOut, loc);
+ }
+
+ error(loc,
+ "invalid qualifier: can be used with either function parameters or the variables for "
+ "fetching input attachment data",
+ "inout");
+ }
+ return new TStorageQualifierWrapper(EvqParamInOut, loc);
+}
+
+TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier,
+ TLayoutQualifier rightQualifier,
+ const TSourceLoc &rightQualifierLocation)
+{
+ return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation,
+ mDiagnostics);
+}
+
+TDeclarator *TParseContext::parseStructDeclarator(const ImmutableString &identifier,
+ const TSourceLoc &loc)
+{
+ return new TDeclarator(identifier, loc);
+}
+
+TDeclarator *TParseContext::parseStructArrayDeclarator(const ImmutableString &identifier,
+ const TSourceLoc &loc,
+ const TVector<unsigned int> *arraySizes)
+{
+ return new TDeclarator(identifier, arraySizes, loc);
+}
+
+void TParseContext::checkDoesNotHaveDuplicateFieldName(const TFieldList::const_iterator begin,
+ const TFieldList::const_iterator end,
+ const ImmutableString &name,
+ const TSourceLoc &location)
+{
+ for (auto fieldIter = begin; fieldIter != end; ++fieldIter)
+ {
+ if ((*fieldIter)->name() == name)
+ {
+ error(location, "duplicate field name in structure", name);
+ }
+ }
+}
+
+TFieldList *TParseContext::addStructFieldList(TFieldList *fields, const TSourceLoc &location)
+{
+ for (TFieldList::const_iterator fieldIter = fields->begin(); fieldIter != fields->end();
+ ++fieldIter)
+ {
+ checkDoesNotHaveDuplicateFieldName(fields->begin(), fieldIter, (*fieldIter)->name(),
+ location);
+ }
+ return fields;
+}
+
+TFieldList *TParseContext::combineStructFieldLists(TFieldList *processedFields,
+ const TFieldList *newlyAddedFields,
+ const TSourceLoc &location)
+{
+ for (TField *field : *newlyAddedFields)
+ {
+ checkDoesNotHaveDuplicateFieldName(processedFields->begin(), processedFields->end(),
+ field->name(), location);
+ processedFields->push_back(field);
+ }
+ return processedFields;
+}
+
+TFieldList *TParseContext::addStructDeclaratorListWithQualifiers(
+ const TTypeQualifierBuilder &typeQualifierBuilder,
+ TPublicType *typeSpecifier,
+ const TDeclaratorList *declaratorList)
+{
+ TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
+
+ typeSpecifier->qualifier = typeQualifier.qualifier;
+ typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier;
+ typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier;
+ typeSpecifier->invariant = typeQualifier.invariant;
+ typeSpecifier->precise = typeQualifier.precise;
+ if (typeQualifier.precision != EbpUndefined)
+ {
+ typeSpecifier->precision = typeQualifier.precision;
+ }
+ return addStructDeclaratorList(*typeSpecifier, declaratorList);
+}
+
+TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier,
+ const TDeclaratorList *declaratorList)
+{
+ checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision,
+ typeSpecifier.getBasicType());
+
+ checkIsNonVoid(typeSpecifier.getLine(), (*declaratorList)[0]->name(),
+ typeSpecifier.getBasicType());
+
+ checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier);
+ checkEarlyFragmentTestsIsNotSpecified(typeSpecifier.getLine(),
+ typeSpecifier.layoutQualifier.earlyFragmentTests);
+ checkNoncoherentIsNotSpecified(typeSpecifier.getLine(),
+ typeSpecifier.layoutQualifier.noncoherent);
+
+ TFieldList *fieldList = new TFieldList();
+
+ for (const TDeclarator *declarator : *declaratorList)
+ {
+ TType *type = new TType(typeSpecifier);
+ if (declarator->isArray())
+ {
+ // Don't allow arrays of arrays in ESSL < 3.10.
+ checkArrayElementIsNotArray(typeSpecifier.getLine(), typeSpecifier);
+ type->makeArrays(*declarator->arraySizes());
+ }
+
+ SymbolType symbolType = SymbolType::UserDefined;
+ if (declarator->name() == "gl_Position" || declarator->name() == "gl_PointSize" ||
+ declarator->name() == "gl_ClipDistance" || declarator->name() == "gl_CullDistance")
+ {
+ symbolType = SymbolType::BuiltIn;
+ }
+ else
+ {
+ checkIsNotReserved(typeSpecifier.getLine(), declarator->name());
+ }
+ TField *field = new TField(type, declarator->name(), declarator->line(), symbolType);
+ checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *field);
+ fieldList->push_back(field);
+ }
+
+ return fieldList;
+}
+
+TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine,
+ const TSourceLoc &nameLine,
+ const ImmutableString &structName,
+ TFieldList *fieldList)
+{
+ SymbolType structSymbolType = SymbolType::UserDefined;
+ if (structName.empty())
+ {
+ structSymbolType = SymbolType::Empty;
+ }
+ TStructure *structure = new TStructure(&symbolTable, structName, fieldList, structSymbolType);
+
+ // Store a bool in the struct if we're at global scope, to allow us to
+ // skip the local struct scoping workaround in HLSL.
+ structure->setAtGlobalScope(symbolTable.atGlobalLevel());
+
+ if (structSymbolType != SymbolType::Empty)
+ {
+ checkIsNotReserved(nameLine, structName);
+ if (!symbolTable.declare(structure))
+ {
+ error(nameLine, "redefinition of a struct", structName);
+ }
+ }
+
+ // ensure we do not specify any storage qualifiers on the struct members
+ for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
+ {
+ TField &field = *(*fieldList)[typeListIndex];
+ const TQualifier qualifier = field.type()->getQualifier();
+ switch (qualifier)
+ {
+ case EvqGlobal:
+ case EvqTemporary:
+ break;
+ default:
+ error(field.line(), "invalid qualifier on struct member",
+ getQualifierString(qualifier));
+ break;
+ }
+ if (field.type()->isInvariant())
+ {
+ error(field.line(), "invalid qualifier on struct member", "invariant");
+ }
+ // ESSL 3.10 section 4.1.8 -- atomic_uint or images are not allowed as structure member.
+ // ANGLE_shader_pixel_local_storage also disallows PLS as struct members.
+ if (IsImage(field.type()->getBasicType()) ||
+ IsAtomicCounter(field.type()->getBasicType()) ||
+ IsPixelLocal(field.type()->getBasicType()))
+ {
+ error(field.line(), "disallowed type in struct", field.type()->getBasicString());
+ }
+
+ checkIsNotUnsizedArray(field.line(), "array members of structs must specify a size",
+ field.name(), field.type());
+
+ checkMemoryQualifierIsNotSpecified(field.type()->getMemoryQualifier(), field.line());
+
+ checkIndexIsNotSpecified(field.line(), field.type()->getLayoutQualifier().index);
+
+ checkBindingIsNotSpecified(field.line(), field.type()->getLayoutQualifier().binding);
+
+ checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier());
+ }
+
+ TTypeSpecifierNonArray typeSpecifierNonArray;
+ typeSpecifierNonArray.initializeStruct(structure, true, structLine);
+ exitStructDeclaration();
+
+ return typeSpecifierNonArray;
+}
+
+TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init,
+ TIntermBlock *statementList,
+ const TSourceLoc &loc)
+{
+ TBasicType switchType = init->getBasicType();
+ if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() ||
+ init->isVector())
+ {
+ error(init->getLine(), "init-expression in a switch statement must be a scalar integer",
+ "switch");
+ return nullptr;
+ }
+
+ ASSERT(statementList);
+ if (!ValidateSwitchStatementList(switchType, mDiagnostics, statementList, loc))
+ {
+ ASSERT(mDiagnostics->numErrors() > 0);
+ return nullptr;
+ }
+
+ markStaticReadIfSymbol(init);
+ TIntermSwitch *node = new TIntermSwitch(init, statementList);
+ node->setLine(loc);
+ return node;
+}
+
+TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
+{
+ if (mSwitchNestingLevel == 0)
+ {
+ error(loc, "case labels need to be inside switch statements", "case");
+ return nullptr;
+ }
+ if (condition == nullptr)
+ {
+ error(loc, "case label must have a condition", "case");
+ return nullptr;
+ }
+ if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
+ condition->isMatrix() || condition->isArray() || condition->isVector())
+ {
+ error(condition->getLine(), "case label must be a scalar integer", "case");
+ }
+ TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
+ // ANGLE should be able to fold any EvqConst expressions resulting in an integer - but to be
+ // safe against corner cases we still check for conditionConst. Some interpretations of the
+ // spec have allowed constant expressions with side effects - like array length() method on a
+ // non-constant array.
+ if (condition->getQualifier() != EvqConst || conditionConst == nullptr)
+ {
+ error(condition->getLine(), "case label must be constant", "case");
+ }
+ TIntermCase *node = new TIntermCase(condition);
+ node->setLine(loc);
+ return node;
+}
+
+TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
+{
+ if (mSwitchNestingLevel == 0)
+ {
+ error(loc, "default labels need to be inside switch statements", "default");
+ return nullptr;
+ }
+ TIntermCase *node = new TIntermCase(nullptr);
+ node->setLine(loc);
+ return node;
+}
+
+TIntermTyped *TParseContext::createUnaryMath(TOperator op,
+ TIntermTyped *child,
+ const TSourceLoc &loc,
+ const TFunction *func)
+{
+ ASSERT(child != nullptr);
+
+ switch (op)
+ {
+ case EOpLogicalNot:
+ if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() ||
+ child->isVector())
+ {
+ unaryOpError(loc, GetOperatorString(op), child->getType());
+ return nullptr;
+ }
+ break;
+ case EOpBitwiseNot:
+ if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
+ child->isMatrix() || child->isArray())
+ {
+ unaryOpError(loc, GetOperatorString(op), child->getType());
+ return nullptr;
+ }
+ break;
+ case EOpPostIncrement:
+ case EOpPreIncrement:
+ case EOpPostDecrement:
+ case EOpPreDecrement:
+ case EOpNegative:
+ case EOpPositive:
+ if (child->getBasicType() == EbtStruct || child->isInterfaceBlock() ||
+ child->getBasicType() == EbtBool || child->isArray() ||
+ child->getBasicType() == EbtVoid || IsOpaqueType(child->getBasicType()))
+ {
+ unaryOpError(loc, GetOperatorString(op), child->getType());
+ return nullptr;
+ }
+ break;
+ // Operators for math built-ins are already type checked against their prototype.
+ default:
+ break;
+ }
+
+ if (child->getMemoryQualifier().writeonly)
+ {
+ const char *opStr =
+ BuiltInGroup::IsBuiltIn(op) ? func->name().data() : GetOperatorString(op);
+ unaryOpError(loc, opStr, child->getType());
+ return nullptr;
+ }
+
+ markStaticReadIfSymbol(child);
+ TIntermUnary *node = new TIntermUnary(op, child, func);
+ node->setLine(loc);
+
+ return node->fold(mDiagnostics);
+}
+
+TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
+{
+ ASSERT(op != EOpNull);
+ TIntermTyped *node = createUnaryMath(op, child, loc, nullptr);
+ if (node == nullptr)
+ {
+ return child;
+ }
+ return node;
+}
+
+TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op,
+ TIntermTyped *child,
+ const TSourceLoc &loc)
+{
+ checkCanBeLValue(loc, GetOperatorString(op), child);
+ return addUnaryMath(op, child, loc);
+}
+
+TIntermTyped *TParseContext::expressionOrFoldedResult(TIntermTyped *expression)
+{
+ // If we can, we should return the folded version of the expression for subsequent parsing. This
+ // enables folding the containing expression during parsing as well, instead of the separate
+ // FoldExpressions() step where folding nested expressions requires multiple full AST
+ // traversals.
+
+ // Even if folding fails the fold() functions return some node representing the expression,
+ // typically the original node. So "folded" can be assumed to be non-null.
+ TIntermTyped *folded = expression->fold(mDiagnostics);
+ ASSERT(folded != nullptr);
+ if (folded->getQualifier() == expression->getQualifier())
+ {
+ // We need this expression to have the correct qualifier when validating the consuming
+ // expression. So we can only return the folded node from here in case it has the same
+ // qualifier as the original expression. In this kind of a cases the qualifier of the folded
+ // node is EvqConst, whereas the qualifier of the expression is EvqTemporary:
+ // 1. (true ? 1.0 : non_constant)
+ // 2. (non_constant, 1.0)
+ return folded;
+ }
+ return expression;
+}
+
+bool TParseContext::binaryOpCommonCheck(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ // Check opaque types are not allowed to be operands in expressions other than array indexing
+ // and structure member selection.
+ if (IsOpaqueType(left->getBasicType()) || IsOpaqueType(right->getBasicType()))
+ {
+ switch (op)
+ {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ break;
+
+ default:
+ ASSERT(op != EOpIndexDirectStruct);
+ error(loc, "Invalid operation for variables with an opaque type",
+ GetOperatorString(op));
+ return false;
+ }
+ }
+
+ if (right->getMemoryQualifier().writeonly)
+ {
+ error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op));
+ return false;
+ }
+
+ if (left->getMemoryQualifier().writeonly)
+ {
+ switch (op)
+ {
+ case EOpAssign:
+ case EOpInitialize:
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ case EOpIndexDirectInterfaceBlock:
+ break;
+ default:
+ error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op));
+ return false;
+ }
+ }
+
+ if (left->getType().getStruct() || right->getType().getStruct())
+ {
+ switch (op)
+ {
+ case EOpIndexDirectStruct:
+ ASSERT(left->getType().getStruct());
+ break;
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpAssign:
+ case EOpInitialize:
+ if (left->getType() != right->getType())
+ {
+ return false;
+ }
+ break;
+ default:
+ error(loc, "Invalid operation for structs", GetOperatorString(op));
+ return false;
+ }
+ }
+
+ if (left->isInterfaceBlock() || right->isInterfaceBlock())
+ {
+ switch (op)
+ {
+ case EOpIndexDirectInterfaceBlock:
+ ASSERT(left->getType().getInterfaceBlock());
+ break;
+ default:
+ error(loc, "Invalid operation for interface blocks", GetOperatorString(op));
+ return false;
+ }
+ }
+
+ if (left->isArray() != right->isArray())
+ {
+ error(loc, "array / non-array mismatch", GetOperatorString(op));
+ return false;
+ }
+
+ if (left->isArray())
+ {
+ ASSERT(right->isArray());
+ if (mShaderVersion < 300)
+ {
+ error(loc, "Invalid operation for arrays", GetOperatorString(op));
+ return false;
+ }
+
+ switch (op)
+ {
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpAssign:
+ case EOpInitialize:
+ break;
+ default:
+ error(loc, "Invalid operation for arrays", GetOperatorString(op));
+ return false;
+ }
+ // At this point, size of implicitly sized arrays should be resolved.
+ if (left->getType().getArraySizes() != right->getType().getArraySizes())
+ {
+ error(loc, "array size mismatch", GetOperatorString(op));
+ return false;
+ }
+ }
+
+ // Check ops which require integer / ivec parameters
+ bool isBitShift = false;
+ switch (op)
+ {
+ case EOpBitShiftLeft:
+ case EOpBitShiftRight:
+ case EOpBitShiftLeftAssign:
+ case EOpBitShiftRightAssign:
+ // Unsigned can be bit-shifted by signed and vice versa, but we need to
+ // check that the basic type is an integer type.
+ isBitShift = true;
+ if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
+ {
+ return false;
+ }
+ break;
+ case EOpBitwiseAnd:
+ case EOpBitwiseXor:
+ case EOpBitwiseOr:
+ case EOpBitwiseAndAssign:
+ case EOpBitwiseXorAssign:
+ case EOpBitwiseOrAssign:
+ // It is enough to check the type of only one operand, since later it
+ // is checked that the operand types match.
+ if (!IsInteger(left->getBasicType()))
+ {
+ return false;
+ }
+ break;
+ default:
+ break;
+ }
+
+ ImplicitTypeConversion conversion = GetConversion(left->getBasicType(), right->getBasicType());
+
+ // Implicit type casting only supported for GL shaders
+ if (!isBitShift && conversion != ImplicitTypeConversion::Same &&
+ (!IsDesktopGLSpec(mShaderSpec) || !IsValidImplicitConversion(conversion, op)))
+ {
+ return false;
+ }
+
+ // Check that:
+ // 1. Type sizes match exactly on ops that require that.
+ // 2. Restrictions for structs that contain arrays or samplers are respected.
+ // 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected.
+ switch (op)
+ {
+ case EOpAssign:
+ case EOpInitialize:
+ case EOpEqual:
+ case EOpNotEqual:
+ // ESSL 1.00 sections 5.7, 5.8, 5.9
+ if (mShaderVersion < 300 && left->getType().isStructureContainingArrays())
+ {
+ error(loc, "undefined operation for structs containing arrays",
+ GetOperatorString(op));
+ return false;
+ }
+ // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
+ // we interpret the spec so that this extends to structs containing samplers,
+ // similarly to ESSL 1.00 spec.
+ if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
+ left->getType().isStructureContainingSamplers())
+ {
+ error(loc, "undefined operation for structs containing samplers",
+ GetOperatorString(op));
+ return false;
+ }
+
+ if ((left->getNominalSize() != right->getNominalSize()) ||
+ (left->getSecondarySize() != right->getSecondarySize()))
+ {
+ error(loc, "dimension mismatch", GetOperatorString(op));
+ return false;
+ }
+ break;
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ if (!left->isScalar() || !right->isScalar())
+ {
+ error(loc, "comparison operator only defined for scalars", GetOperatorString(op));
+ return false;
+ }
+ break;
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpIMod:
+ case EOpBitShiftLeft:
+ case EOpBitShiftRight:
+ case EOpBitwiseAnd:
+ case EOpBitwiseXor:
+ case EOpBitwiseOr:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpDivAssign:
+ case EOpIModAssign:
+ case EOpBitShiftLeftAssign:
+ case EOpBitShiftRightAssign:
+ case EOpBitwiseAndAssign:
+ case EOpBitwiseXorAssign:
+ case EOpBitwiseOrAssign:
+ if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
+ {
+ return false;
+ }
+
+ // Are the sizes compatible?
+ if (left->getNominalSize() != right->getNominalSize() ||
+ left->getSecondarySize() != right->getSecondarySize())
+ {
+ // If the nominal sizes of operands do not match:
+ // One of them must be a scalar.
+ if (!left->isScalar() && !right->isScalar())
+ return false;
+
+ // In the case of compound assignment other than multiply-assign,
+ // the right side needs to be a scalar. Otherwise a vector/matrix
+ // would be assigned to a scalar. A scalar can't be shifted by a
+ // vector either.
+ if (!right->isScalar() &&
+ (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
+ return false;
+ }
+ break;
+ default:
+ break;
+ }
+
+ return true;
+}
+
+bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op,
+ const TType &left,
+ const TType &right)
+{
+ switch (op)
+ {
+ case EOpMul:
+ case EOpMulAssign:
+ return left.getNominalSize() == right.getNominalSize() &&
+ left.getSecondarySize() == right.getSecondarySize();
+ case EOpVectorTimesScalar:
+ return true;
+ case EOpVectorTimesScalarAssign:
+ ASSERT(!left.isMatrix() && !right.isMatrix());
+ return left.isVector() && !right.isVector();
+ case EOpVectorTimesMatrix:
+ return left.getNominalSize() == right.getRows();
+ case EOpVectorTimesMatrixAssign:
+ ASSERT(!left.isMatrix() && right.isMatrix());
+ return left.isVector() && left.getNominalSize() == right.getRows() &&
+ left.getNominalSize() == right.getCols();
+ case EOpMatrixTimesVector:
+ return left.getCols() == right.getNominalSize();
+ case EOpMatrixTimesScalar:
+ return true;
+ case EOpMatrixTimesScalarAssign:
+ ASSERT(left.isMatrix() && !right.isMatrix());
+ return !right.isVector();
+ case EOpMatrixTimesMatrix:
+ return left.getCols() == right.getRows();
+ case EOpMatrixTimesMatrixAssign:
+ ASSERT(left.isMatrix() && right.isMatrix());
+ // We need to check two things:
+ // 1. The matrix multiplication step is valid.
+ // 2. The result will have the same number of columns as the lvalue.
+ return left.getCols() == right.getRows() && left.getCols() == right.getCols();
+
+ default:
+ UNREACHABLE();
+ return false;
+ }
+}
+
+TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ if (!binaryOpCommonCheck(op, left, right, loc))
+ return nullptr;
+
+ switch (op)
+ {
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ break;
+ case EOpLogicalOr:
+ case EOpLogicalXor:
+ case EOpLogicalAnd:
+ ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
+ !right->getType().getStruct());
+ if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar())
+ {
+ return nullptr;
+ }
+ // Basic types matching should have been already checked.
+ ASSERT(right->getBasicType() == EbtBool);
+ break;
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpMul:
+ ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
+ !right->getType().getStruct());
+ if (left->getBasicType() == EbtBool)
+ {
+ return nullptr;
+ }
+ break;
+ case EOpIMod:
+ ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
+ !right->getType().getStruct());
+ // Note that this is only for the % operator, not for mod()
+ if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat)
+ {
+ return nullptr;
+ }
+ break;
+ default:
+ break;
+ }
+
+ if (op == EOpMul)
+ {
+ op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType());
+ if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
+ {
+ return nullptr;
+ }
+ }
+
+ TIntermBinary *node = new TIntermBinary(op, left, right);
+ ASSERT(op != EOpAssign);
+ markStaticReadIfSymbol(left);
+ markStaticReadIfSymbol(right);
+ node->setLine(loc);
+ return expressionOrFoldedResult(node);
+}
+
+TIntermTyped *TParseContext::addBinaryMath(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
+ if (node == 0)
+ {
+ binaryOpError(loc, GetOperatorString(op), left->getType(), right->getType());
+ return left;
+ }
+ return node;
+}
+
+TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
+ if (node == nullptr)
+ {
+ binaryOpError(loc, GetOperatorString(op), left->getType(), right->getType());
+ node = CreateBoolNode(false);
+ node->setLine(loc);
+ }
+ return node;
+}
+
+TIntermTyped *TParseContext::addAssign(TOperator op,
+ TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ checkCanBeLValue(loc, "assign", left);
+ TIntermBinary *node = nullptr;
+ if (binaryOpCommonCheck(op, left, right, loc))
+ {
+ TIntermBinary *lValue = left->getAsBinaryNode();
+ if ((lValue != nullptr) &&
+ (lValue->getOp() == EOpIndexIndirect || lValue->getOp() == EOpIndexDirect) &&
+ IsTessellationControlShaderOutput(mShaderType, lValue->getLeft()->getQualifier()))
+ {
+ checkTCSOutVarIndexIsValid(lValue, loc);
+ }
+
+ if (op == EOpMulAssign)
+ {
+ op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType());
+ if (isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
+ {
+ node = new TIntermBinary(op, left, right);
+ }
+ }
+ else
+ {
+ node = new TIntermBinary(op, left, right);
+ }
+ }
+ if (node == nullptr)
+ {
+ assignError(loc, "assign", left->getType(), right->getType());
+ return left;
+ }
+ if (op != EOpAssign)
+ {
+ markStaticReadIfSymbol(left);
+ }
+ markStaticReadIfSymbol(right);
+ node->setLine(loc);
+ return node;
+}
+
+TIntermTyped *TParseContext::addComma(TIntermTyped *left,
+ TIntermTyped *right,
+ const TSourceLoc &loc)
+{
+ // WebGL2 section 5.26, the following results in an error:
+ // "Sequence operator applied to void, arrays, or structs containing arrays"
+ if (mShaderSpec == SH_WEBGL2_SPEC &&
+ (left->isArray() || left->getBasicType() == EbtVoid ||
+ left->getType().isStructureContainingArrays() || right->isArray() ||
+ right->getBasicType() == EbtVoid || right->getType().isStructureContainingArrays()))
+ {
+ error(loc,
+ "sequence operator is not allowed for void, arrays, or structs containing arrays",
+ ",");
+ }
+
+ TIntermBinary *commaNode = TIntermBinary::CreateComma(left, right, mShaderVersion);
+ markStaticReadIfSymbol(left);
+ markStaticReadIfSymbol(right);
+ commaNode->setLine(loc);
+
+ return expressionOrFoldedResult(commaNode);
+}
+
+TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
+{
+ switch (op)
+ {
+ case EOpContinue:
+ if (mLoopNestingLevel <= 0)
+ {
+ error(loc, "continue statement only allowed in loops", "");
+ }
+ break;
+ case EOpBreak:
+ if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
+ {
+ error(loc, "break statement only allowed in loops and switch statements", "");
+ }
+ break;
+ case EOpReturn:
+ if (mCurrentFunctionType->getBasicType() != EbtVoid)
+ {
+ error(loc, "non-void function must return a value", "return");
+ }
+ if (mDeclaringMain)
+ {
+ errorIfPLSDeclared(loc, PLSIllegalOperations::ReturnFromMain);
+ }
+ break;
+ case EOpKill:
+ if (mShaderType != GL_FRAGMENT_SHADER)
+ {
+ error(loc, "discard supported in fragment shaders only", "discard");
+ }
+ else
+ {
+ errorIfPLSDeclared(loc, PLSIllegalOperations::Discard);
+ }
+ mHasDiscard = true;
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ return addBranch(op, nullptr, loc);
+}
+
+TIntermBranch *TParseContext::addBranch(TOperator op,
+ TIntermTyped *expression,
+ const TSourceLoc &loc)
+{
+ if (expression != nullptr)
+ {
+ markStaticReadIfSymbol(expression);
+ ASSERT(op == EOpReturn);
+ mFunctionReturnsValue = true;
+ if (mCurrentFunctionType->getBasicType() == EbtVoid)
+ {
+ error(loc, "void function cannot return a value", "return");
+ }
+ else if (*mCurrentFunctionType != expression->getType())
+ {
+ error(loc, "function return is not matching type:", "return");
+ }
+ }
+ TIntermBranch *node = new TIntermBranch(op, expression);
+ node->setLine(loc);
+ return node;
+}
+
+void TParseContext::appendStatement(TIntermBlock *block, TIntermNode *statement)
+{
+ if (statement != nullptr)
+ {
+ markStaticReadIfSymbol(statement);
+ block->appendStatement(statement);
+ }
+}
+
+void TParseContext::checkTextureGather(TIntermAggregate *functionCall)
+{
+ const TOperator op = functionCall->getOp();
+ const TFunction *func = functionCall->getFunction();
+ if (BuiltInGroup::IsTextureGather(op))
+ {
+ bool isTextureGatherOffsetOrOffsets =
+ BuiltInGroup::IsTextureGatherOffset(op) || BuiltInGroup::IsTextureGatherOffsets(op);
+ TIntermNode *componentNode = nullptr;
+ TIntermSequence *arguments = functionCall->getSequence();
+ ASSERT(arguments->size() >= 2u && arguments->size() <= 4u);
+ const TIntermTyped *sampler = arguments->front()->getAsTyped();
+ ASSERT(sampler != nullptr);
+ switch (sampler->getBasicType())
+ {
+ case EbtSampler2D:
+ case EbtISampler2D:
+ case EbtUSampler2D:
+ case EbtSampler2DArray:
+ case EbtISampler2DArray:
+ case EbtUSampler2DArray:
+ if ((!isTextureGatherOffsetOrOffsets && arguments->size() == 3u) ||
+ (isTextureGatherOffsetOrOffsets && arguments->size() == 4u))
+ {
+ componentNode = arguments->back();
+ }
+ break;
+ case EbtSamplerCube:
+ case EbtISamplerCube:
+ case EbtUSamplerCube:
+ case EbtSamplerCubeArray:
+ case EbtISamplerCubeArray:
+ case EbtUSamplerCubeArray:
+ ASSERT(!isTextureGatherOffsetOrOffsets);
+ if (arguments->size() == 3u)
+ {
+ componentNode = arguments->back();
+ }
+ break;
+ case EbtSampler2DShadow:
+ case EbtSampler2DArrayShadow:
+ case EbtSamplerCubeShadow:
+ case EbtSamplerCubeArrayShadow:
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ if (componentNode)
+ {
+ const TIntermConstantUnion *componentConstantUnion =
+ componentNode->getAsConstantUnion();
+ if (componentNode->getAsTyped()->getQualifier() != EvqConst || !componentConstantUnion)
+ {
+ error(functionCall->getLine(), "Texture component must be a constant expression",
+ func->name());
+ }
+ else
+ {
+ int component = componentConstantUnion->getIConst(0);
+ if (component < 0 || component > 3)
+ {
+ error(functionCall->getLine(), "Component must be in the range [0;3]",
+ func->name());
+ }
+ }
+ }
+ }
+}
+
+void TParseContext::checkTextureOffset(TIntermAggregate *functionCall)
+{
+ const TOperator op = functionCall->getOp();
+ const TFunction *func = functionCall->getFunction();
+ TIntermNode *offset = nullptr;
+ TIntermSequence *arguments = functionCall->getSequence();
+
+ if (BuiltInGroup::IsTextureOffsetNoBias(op) || BuiltInGroup::IsTextureGatherOffsetNoComp(op) ||
+ BuiltInGroup::IsTextureGatherOffsetsNoComp(op))
+ {
+ offset = arguments->back();
+ }
+ else if (BuiltInGroup::IsTextureOffsetBias(op) || BuiltInGroup::IsTextureGatherOffsetComp(op) ||
+ BuiltInGroup::IsTextureGatherOffsetsComp(op))
+ {
+ // A bias or comp parameter follows the offset parameter.
+ ASSERT(arguments->size() >= 3);
+ offset = (*arguments)[2];
+ }
+
+ // If not one of the above built-ins, there's nothing to do here.
+ if (offset == nullptr)
+ {
+ return;
+ }
+
+ bool isTextureGatherOffset = BuiltInGroup::IsTextureGatherOffset(op);
+ bool isTextureGatherOffsets = BuiltInGroup::IsTextureGatherOffsets(op);
+ bool useTextureGatherOffsetConstraints = isTextureGatherOffset || isTextureGatherOffsets;
+
+ int minOffsetValue =
+ useTextureGatherOffsetConstraints ? mMinProgramTextureGatherOffset : mMinProgramTexelOffset;
+ int maxOffsetValue =
+ useTextureGatherOffsetConstraints ? mMaxProgramTextureGatherOffset : mMaxProgramTexelOffset;
+
+ if (isTextureGatherOffsets)
+ {
+ // If textureGatherOffsets, the offsets parameter is an array, which is expected as an
+ // aggregate constructor node or as a symbol node with a constant value.
+ TIntermAggregate *offsetAggregate = offset->getAsAggregate();
+ TIntermSymbol *offsetSymbol = offset->getAsSymbolNode();
+
+ const TConstantUnion *offsetValues = offsetAggregate ? offsetAggregate->getConstantValue()
+ : offsetSymbol ? offsetSymbol->getConstantValue()
+ : nullptr;
+
+ if (offsetValues == nullptr)
+ {
+ error(functionCall->getLine(), "Texture offsets must be a constant expression",
+ func->name());
+ return;
+ }
+
+ constexpr unsigned int kOffsetsCount = 4;
+ const TType &offsetType =
+ offsetAggregate != nullptr ? offsetAggregate->getType() : offsetSymbol->getType();
+ if (offsetType.getNumArraySizes() != 1 || offsetType.getArraySizes()[0] != kOffsetsCount)
+ {
+ error(functionCall->getLine(), "Texture offsets must be an array of 4 elements",
+ func->name());
+ return;
+ }
+
+ size_t size = offsetType.getObjectSize() / kOffsetsCount;
+ for (unsigned int i = 0; i < kOffsetsCount; ++i)
+ {
+ checkSingleTextureOffset(offset->getLine(), &offsetValues[i * size], size,
+ minOffsetValue, maxOffsetValue);
+ }
+ }
+ else
+ {
+ // If textureOffset or textureGatherOffset, the offset is expected to be found as a constant
+ // union.
+ TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion();
+
+ // ES3.2 or ES3.1's EXT_gpu_shader5 allow non-const offsets to be passed to
+ // textureGatherOffset.
+ bool textureGatherOffsetMustBeConst =
+ mShaderVersion <= 310 && !isExtensionEnabled(TExtension::EXT_gpu_shader5);
+
+ bool isOffsetConst =
+ offset->getAsTyped()->getQualifier() == EvqConst && offsetConstantUnion != nullptr;
+ bool offsetMustBeConst = !isTextureGatherOffset || textureGatherOffsetMustBeConst;
+
+ if (!isOffsetConst && offsetMustBeConst)
+ {
+ error(functionCall->getLine(), "Texture offset must be a constant expression",
+ func->name());
+ return;
+ }
+
+ // We cannot verify non-constant offsets to textureGatherOffset.
+ if (offsetConstantUnion == nullptr)
+ {
+ ASSERT(!offsetMustBeConst);
+ return;
+ }
+
+ size_t size = offsetConstantUnion->getType().getObjectSize();
+ const TConstantUnion *values = offsetConstantUnion->getConstantValue();
+ checkSingleTextureOffset(offset->getLine(), values, size, minOffsetValue, maxOffsetValue);
+ }
+}
+
+void TParseContext::checkSingleTextureOffset(const TSourceLoc &line,
+ const TConstantUnion *values,
+ size_t size,
+ int minOffsetValue,
+ int maxOffsetValue)
+{
+ for (size_t i = 0u; i < size; ++i)
+ {
+ ASSERT(values[i].getType() == EbtInt);
+ int offsetValue = values[i].getIConst();
+ if (offsetValue > maxOffsetValue || offsetValue < minOffsetValue)
+ {
+ std::stringstream tokenStream = sh::InitializeStream<std::stringstream>();
+ tokenStream << offsetValue;
+ std::string token = tokenStream.str();
+ error(line, "Texture offset value out of valid range", token.c_str());
+ }
+ }
+}
+
+void TParseContext::checkInterpolationFS(TIntermAggregate *functionCall)
+{
+ const TFunction *func = functionCall->getFunction();
+ if (!BuiltInGroup::IsInterpolationFS(functionCall->getOp()))
+ {
+ return;
+ }
+
+ TIntermTyped *arg0 = nullptr;
+
+ if (functionCall->getAsAggregate())
+ {
+ const TIntermSequence *argp = functionCall->getSequence();
+ if (argp->size() > 0)
+ arg0 = (*argp)[0]->getAsTyped();
+ }
+ else
+ {
+ assert(functionCall->getAsUnaryNode());
+ arg0 = functionCall->getAsUnaryNode()->getOperand();
+ }
+
+ // Make sure the first argument is an interpolant, or an array element of an interpolant
+ if (!IsVaryingIn(arg0->getType().getQualifier()))
+ {
+ // It might still be an array element.
+ const TIntermTyped *base = FindLValueBase(arg0);
+
+ if (base == nullptr || (!IsVaryingIn(base->getType().getQualifier())))
+ error(arg0->getLine(),
+ "first argument must be an interpolant, or interpolant-array element",
+ func->name());
+ }
+}
+
+void TParseContext::checkAtomicMemoryBuiltinFunctions(TIntermAggregate *functionCall)
+{
+ const TFunction *func = functionCall->getFunction();
+ if (BuiltInGroup::IsAtomicMemory(functionCall->getOp()))
+ {
+ TIntermSequence *arguments = functionCall->getSequence();
+ TIntermTyped *memNode = (*arguments)[0]->getAsTyped();
+
+ if (IsBufferOrSharedVariable(memNode))
+ {
+ return;
+ }
+
+ while (memNode->getAsBinaryNode() || memNode->getAsSwizzleNode())
+ {
+ // Child 0 is "left" if binary, and the expression being swizzled if swizzle.
+ // Note: we don't need to check that the binary operation is one of EOp*Index*, as any
+ // other operation will result in a temp value which cannot be passed to this
+ // out/inout parameter anyway.
+ memNode = memNode->getChildNode(0)->getAsTyped();
+ if (IsBufferOrSharedVariable(memNode))
+ {
+ return;
+ }
+ }
+
+ error(memNode->getLine(),
+ "The value passed to the mem argument of an atomic memory function does not "
+ "correspond to a buffer or shared variable.",
+ func->name());
+ }
+}
+
+// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
+void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall)
+{
+ const TOperator op = functionCall->getOp();
+
+ if (BuiltInGroup::IsImage(op))
+ {
+ TIntermSequence *arguments = functionCall->getSequence();
+ TIntermTyped *imageNode = (*arguments)[0]->getAsTyped();
+
+ const TMemoryQualifier &memoryQualifier = imageNode->getMemoryQualifier();
+
+ if (BuiltInGroup::IsImageStore(op))
+ {
+ if (memoryQualifier.readonly)
+ {
+ error(imageNode->getLine(),
+ "'imageStore' cannot be used with images qualified as 'readonly'",
+ GetImageArgumentToken(imageNode));
+ }
+ }
+ else if (BuiltInGroup::IsImageLoad(op))
+ {
+ if (memoryQualifier.writeonly)
+ {
+ error(imageNode->getLine(),
+ "'imageLoad' cannot be used with images qualified as 'writeonly'",
+ GetImageArgumentToken(imageNode));
+ }
+ }
+ else if (BuiltInGroup::IsImageAtomic(op))
+ {
+ if (memoryQualifier.readonly)
+ {
+ error(imageNode->getLine(),
+ "'imageAtomic' cannot be used with images qualified as 'readonly'",
+ GetImageArgumentToken(imageNode));
+ }
+ if (memoryQualifier.writeonly)
+ {
+ error(imageNode->getLine(),
+ "'imageAtomic' cannot be used with images qualified as 'writeonly'",
+ GetImageArgumentToken(imageNode));
+ }
+ }
+ }
+}
+
+// GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters
+void TParseContext::checkImageMemoryAccessForUserDefinedFunctions(
+ const TFunction *functionDefinition,
+ const TIntermAggregate *functionCall)
+{
+ ASSERT(functionCall->getOp() == EOpCallFunctionInAST);
+
+ const TIntermSequence &arguments = *functionCall->getSequence();
+
+ ASSERT(functionDefinition->getParamCount() == arguments.size());
+
+ for (size_t i = 0; i < arguments.size(); ++i)
+ {
+ TIntermTyped *typedArgument = arguments[i]->getAsTyped();
+ const TType &functionArgumentType = typedArgument->getType();
+ const TType &functionParameterType = functionDefinition->getParam(i)->getType();
+ ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType());
+
+ if (IsImage(functionArgumentType.getBasicType()))
+ {
+ const TMemoryQualifier &functionArgumentMemoryQualifier =
+ functionArgumentType.getMemoryQualifier();
+ const TMemoryQualifier &functionParameterMemoryQualifier =
+ functionParameterType.getMemoryQualifier();
+ if (functionArgumentMemoryQualifier.readonly &&
+ !functionParameterMemoryQualifier.readonly)
+ {
+ error(functionCall->getLine(),
+ "Function call discards the 'readonly' qualifier from image",
+ GetImageArgumentToken(typedArgument));
+ }
+
+ if (functionArgumentMemoryQualifier.writeonly &&
+ !functionParameterMemoryQualifier.writeonly)
+ {
+ error(functionCall->getLine(),
+ "Function call discards the 'writeonly' qualifier from image",
+ GetImageArgumentToken(typedArgument));
+ }
+
+ if (functionArgumentMemoryQualifier.coherent &&
+ !functionParameterMemoryQualifier.coherent)
+ {
+ error(functionCall->getLine(),
+ "Function call discards the 'coherent' qualifier from image",
+ GetImageArgumentToken(typedArgument));
+ }
+
+ if (functionArgumentMemoryQualifier.volatileQualifier &&
+ !functionParameterMemoryQualifier.volatileQualifier)
+ {
+ error(functionCall->getLine(),
+ "Function call discards the 'volatile' qualifier from image",
+ GetImageArgumentToken(typedArgument));
+ }
+ }
+ }
+}
+
+TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunctionLookup *fnCall, const TSourceLoc &loc)
+{
+ if (fnCall->thisNode() != nullptr)
+ {
+ return addMethod(fnCall, loc);
+ }
+ if (fnCall->isConstructor())
+ {
+ return addConstructor(fnCall, loc);
+ }
+ return addNonConstructorFunctionCall(fnCall, loc);
+}
+
+TIntermTyped *TParseContext::addMethod(TFunctionLookup *fnCall, const TSourceLoc &loc)
+{
+ TIntermTyped *thisNode = fnCall->thisNode();
+ // It's possible for the name pointer in the TFunction to be null in case it gets parsed as
+ // a constructor. But such a TFunction can't reach here, since the lexer goes into FIELDS
+ // mode after a dot, which makes type identifiers to be parsed as FIELD_SELECTION instead.
+ // So accessing fnCall->name() below is safe.
+ if (fnCall->name() != "length")
+ {
+ error(loc, "invalid method", fnCall->name());
+ }
+ else if (!fnCall->arguments().empty())
+ {
+ error(loc, "method takes no parameters", "length");
+ }
+ else if (!thisNode->isArray())
+ {
+ error(loc, "length can only be called on arrays", "length");
+ }
+ else if (thisNode->getQualifier() == EvqPerVertexIn &&
+ mGeometryShaderInputPrimitiveType == EptUndefined)
+ {
+ ASSERT(mShaderType == GL_GEOMETRY_SHADER_EXT);
+ error(loc, "missing input primitive declaration before calling length on gl_in", "length");
+ }
+ else
+ {
+ TIntermUnary *node = new TIntermUnary(EOpArrayLength, thisNode, nullptr);
+ markStaticReadIfSymbol(thisNode);
+ node->setLine(loc);
+ return node->fold(mDiagnostics);
+ }
+ return CreateZeroNode(TType(EbtInt, EbpUndefined, EvqConst));
+}
+
+TIntermTyped *TParseContext::addNonConstructorFunctionCall(TFunctionLookup *fnCall,
+ const TSourceLoc &loc)
+{
+ // First check whether the function has been hidden by a variable name or struct typename by
+ // using the symbol looked up in the lexical phase. If the function is not hidden, look for one
+ // with a matching argument list.
+ if (fnCall->symbol() != nullptr && !fnCall->symbol()->isFunction())
+ {
+ error(loc, "function name expected", fnCall->name());
+ }
+ else
+ {
+ // There are no inner functions, so it's enough to look for user-defined functions in the
+ // global scope.
+ const TSymbol *symbol = symbolTable.findGlobal(fnCall->getMangledName());
+
+ if (symbol == nullptr && IsDesktopGLSpec(mShaderSpec))
+ {
+ // If using Desktop GL spec, need to check for implicit conversion
+ symbol = symbolTable.findGlobalWithConversion(
+ fnCall->getMangledNamesForImplicitConversions());
+ }
+
+ if (symbol != nullptr)
+ {
+ // A user-defined function - could be an overloaded built-in as well.
+ ASSERT(symbol->symbolType() == SymbolType::UserDefined);
+ const TFunction *fnCandidate = static_cast<const TFunction *>(symbol);
+ TIntermAggregate *callNode =
+ TIntermAggregate::CreateFunctionCall(*fnCandidate, &fnCall->arguments());
+ callNode->setLine(loc);
+ checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, callNode);
+ functionCallRValueLValueErrorCheck(fnCandidate, callNode);
+ return callNode;
+ }
+
+ symbol = symbolTable.findBuiltIn(fnCall->getMangledName(), mShaderVersion);
+
+ if (symbol == nullptr && IsDesktopGLSpec(mShaderSpec))
+ {
+ // If using Desktop GL spec, need to check for implicit conversion
+ symbol = symbolTable.findBuiltInWithConversion(
+ fnCall->getMangledNamesForImplicitConversions(), mShaderVersion);
+ }
+
+ if (symbol != nullptr)
+ {
+ // A built-in function.
+ ASSERT(symbol->symbolType() == SymbolType::BuiltIn);
+ const TFunction *fnCandidate = static_cast<const TFunction *>(symbol);
+
+ if (!fnCandidate->extensions().empty() &&
+ fnCandidate->extensions()[0] != TExtension::UNDEFINED)
+ {
+ checkCanUseOneOfExtensions(loc, fnCandidate->extensions());
+ }
+
+ // All function calls are mapped to a built-in operation.
+ TOperator op = fnCandidate->getBuiltInOp();
+ if (BuiltInGroup::IsMath(op) && fnCandidate->getParamCount() == 1)
+ {
+ // Treat it like a built-in unary operator.
+ TIntermNode *unaryParamNode = fnCall->arguments().front();
+ TIntermTyped *callNode =
+ createUnaryMath(op, unaryParamNode->getAsTyped(), loc, fnCandidate);
+ ASSERT(callNode != nullptr);
+ return callNode;
+ }
+
+ TIntermAggregate *callNode =
+ TIntermAggregate::CreateBuiltInFunctionCall(*fnCandidate, &fnCall->arguments());
+ callNode->setLine(loc);
+
+ checkAtomicMemoryBuiltinFunctions(callNode);
+ checkTextureOffset(callNode);
+ checkTextureGather(callNode);
+ checkInterpolationFS(callNode);
+ checkImageMemoryAccessForBuiltinFunctions(callNode);
+
+ // Some built-in functions have out parameters too.
+ functionCallRValueLValueErrorCheck(fnCandidate, callNode);
+
+ // See if we can constant fold a built-in. Note that this may be possible
+ // even if it is not const-qualified.
+ return callNode->fold(mDiagnostics);
+ }
+ else
+ {
+ error(loc, "no matching overloaded function found", fnCall->name());
+ }
+ }
+
+ // Error message was already written. Put on an unused node for error recovery.
+ return CreateZeroNode(TType(EbtFloat, EbpMedium, EvqConst));
+}
+
+TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond,
+ TIntermTyped *trueExpression,
+ TIntermTyped *falseExpression,
+ const TSourceLoc &loc)
+{
+ if (!checkIsScalarBool(loc, cond))
+ {
+ return falseExpression;
+ }
+
+ if (trueExpression->getType() != falseExpression->getType())
+ {
+ TInfoSinkBase reasonStream;
+ reasonStream << "mismatching ternary operator operand types '" << trueExpression->getType()
+ << " and '" << falseExpression->getType() << "'";
+ error(loc, reasonStream.c_str(), "?:");
+ return falseExpression;
+ }
+ if (IsOpaqueType(trueExpression->getBasicType()))
+ {
+ // ESSL 1.00 section 4.1.7
+ // ESSL 3.00.6 section 4.1.7
+ // Opaque/sampler types are not allowed in most types of expressions, including ternary.
+ // Note that structs containing opaque types don't need to be checked as structs are
+ // forbidden below.
+ error(loc, "ternary operator is not allowed for opaque types", "?:");
+ return falseExpression;
+ }
+
+ if (cond->getMemoryQualifier().writeonly || trueExpression->getMemoryQualifier().writeonly ||
+ falseExpression->getMemoryQualifier().writeonly)
+ {
+ error(loc, "ternary operator is not allowed for variables with writeonly", "?:");
+ return falseExpression;
+ }
+
+ // ESSL 1.00.17 sections 5.2 and 5.7:
+ // Ternary operator is not among the operators allowed for structures/arrays.
+ // ESSL 3.00.6 section 5.7:
+ // Ternary operator support is optional for arrays. No certainty that it works across all
+ // devices with struct either, so we err on the side of caution here. TODO (oetuaho@nvidia.com):
+ // Would be nice to make the spec and implementation agree completely here.
+ if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct)
+ {
+ error(loc, "ternary operator is not allowed for structures or arrays", "?:");
+ return falseExpression;
+ }
+ if (trueExpression->getBasicType() == EbtInterfaceBlock)
+ {
+ error(loc, "ternary operator is not allowed for interface blocks", "?:");
+ return falseExpression;
+ }
+
+ // WebGL2 section 5.26, the following results in an error:
+ // "Ternary operator applied to void, arrays, or structs containing arrays"
+ if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid)
+ {
+ error(loc, "ternary operator is not allowed for void", "?:");
+ return falseExpression;
+ }
+
+ TIntermTernary *node = new TIntermTernary(cond, trueExpression, falseExpression);
+ markStaticReadIfSymbol(cond);
+ markStaticReadIfSymbol(trueExpression);
+ markStaticReadIfSymbol(falseExpression);
+ node->setLine(loc);
+ return expressionOrFoldedResult(node);
+}
+
+//
+// Parse an array of strings using yyparse.
+//
+// Returns 0 for success.
+//
+int PaParseStrings(size_t count,
+ const char *const string[],
+ const int length[],
+ TParseContext *context)
+{
+ if ((count == 0) || (string == nullptr))
+ return 1;
+
+ if (glslang_initialize(context))
+ return 1;
+
+ int error = glslang_scan(count, string, length, context);
+ if (!error)
+ error = glslang_parse(context);
+
+ glslang_finalize(context);
+
+ return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
+}
+
+} // namespace sh