diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
commit | 6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /js/src/octane/crypto.js | |
parent | Initial commit. (diff) | |
download | thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/octane/crypto.js')
-rw-r--r-- | js/src/octane/crypto.js | 1698 |
1 files changed, 1698 insertions, 0 deletions
diff --git a/js/src/octane/crypto.js b/js/src/octane/crypto.js new file mode 100644 index 0000000000..cdc207888c --- /dev/null +++ b/js/src/octane/crypto.js @@ -0,0 +1,1698 @@ +/* + * Copyright (c) 2003-2005 Tom Wu + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, + * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY + * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. + * + * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, + * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER + * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF + * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT + * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + * In addition, the following condition applies: + * + * All redistributions must retain an intact copy of this copyright notice + * and disclaimer. + */ + + +// The code has been adapted for use as a benchmark by Google. +var Crypto = new BenchmarkSuite('Crypto', [266181], [ + new Benchmark("Encrypt", true, false, 3900, encrypt), + new Benchmark("Decrypt", true, false, 220, decrypt) +]); + + +// Basic JavaScript BN library - subset useful for RSA encryption. + +// Bits per digit +var dbits; +var BI_DB; +var BI_DM; +var BI_DV; + +var BI_FP; +var BI_FV; +var BI_F1; +var BI_F2; + +// JavaScript engine analysis +var canary = 0xdeadbeefcafe; +var j_lm = ((canary&0xffffff)==0xefcafe); + +// (public) Constructor +function BigInteger(a,b,c) { + this.array = new Array(); + if(a != null) + if("number" == typeof a) this.fromNumber(a,b,c); + else if(b == null && "string" != typeof a) this.fromString(a,256); + else this.fromString(a,b); +} + +// return new, unset BigInteger +function nbi() { return new BigInteger(null); } + +// am: Compute w_j += (x*this_i), propagate carries, +// c is initial carry, returns final carry. +// c < 3*dvalue, x < 2*dvalue, this_i < dvalue +// We need to select the fastest one that works in this environment. + +// am1: use a single mult and divide to get the high bits, +// max digit bits should be 26 because +// max internal value = 2*dvalue^2-2*dvalue (< 2^53) +function am1(i,x,w,j,c,n) { + var this_array = this.array; + var w_array = w.array; + while(--n >= 0) { + var v = x*this_array[i++]+w_array[j]+c; + c = Math.floor(v/0x4000000); + w_array[j++] = v&0x3ffffff; + } + return c; +} + +// am2 avoids a big mult-and-extract completely. +// Max digit bits should be <= 30 because we do bitwise ops +// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) +function am2(i,x,w,j,c,n) { + var this_array = this.array; + var w_array = w.array; + var xl = x&0x7fff, xh = x>>15; + while(--n >= 0) { + var l = this_array[i]&0x7fff; + var h = this_array[i++]>>15; + var m = xh*l+h*xl; + l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff); + c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); + w_array[j++] = l&0x3fffffff; + } + return c; +} + +// Alternately, set max digit bits to 28 since some +// browsers slow down when dealing with 32-bit numbers. +function am3(i,x,w,j,c,n) { + var this_array = this.array; + var w_array = w.array; + + var xl = x&0x3fff, xh = x>>14; + while(--n >= 0) { + var l = this_array[i]&0x3fff; + var h = this_array[i++]>>14; + var m = xh*l+h*xl; + l = xl*l+((m&0x3fff)<<14)+w_array[j]+c; + c = (l>>28)+(m>>14)+xh*h; + w_array[j++] = l&0xfffffff; + } + return c; +} + +// This is tailored to VMs with 2-bit tagging. It makes sure +// that all the computations stay within the 29 bits available. +function am4(i,x,w,j,c,n) { + var this_array = this.array; + var w_array = w.array; + + var xl = x&0x1fff, xh = x>>13; + while(--n >= 0) { + var l = this_array[i]&0x1fff; + var h = this_array[i++]>>13; + var m = xh*l+h*xl; + l = xl*l+((m&0x1fff)<<13)+w_array[j]+c; + c = (l>>26)+(m>>13)+xh*h; + w_array[j++] = l&0x3ffffff; + } + return c; +} + +// am3/28 is best for SM, Rhino, but am4/26 is best for v8. +// Kestrel (Opera 9.5) gets its best result with am4/26. +// IE7 does 9% better with am3/28 than with am4/26. +// Firefox (SM) gets 10% faster with am3/28 than with am4/26. + +setupEngine = function(fn, bits) { + BigInteger.prototype.am = fn; + dbits = bits; + + BI_DB = dbits; + BI_DM = ((1<<dbits)-1); + BI_DV = (1<<dbits); + + BI_FP = 52; + BI_FV = Math.pow(2,BI_FP); + BI_F1 = BI_FP-dbits; + BI_F2 = 2*dbits-BI_FP; +} + + +// Digit conversions +var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; +var BI_RC = new Array(); +var rr,vv; +rr = "0".charCodeAt(0); +for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; +rr = "a".charCodeAt(0); +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; +rr = "A".charCodeAt(0); +for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; + +function int2char(n) { return BI_RM.charAt(n); } +function intAt(s,i) { + var c = BI_RC[s.charCodeAt(i)]; + return (c==null)?-1:c; +} + +// (protected) copy this to r +function bnpCopyTo(r) { + var this_array = this.array; + var r_array = r.array; + + for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i]; + r.t = this.t; + r.s = this.s; +} + +// (protected) set from integer value x, -DV <= x < DV +function bnpFromInt(x) { + var this_array = this.array; + this.t = 1; + this.s = (x<0)?-1:0; + if(x > 0) this_array[0] = x; + else if(x < -1) this_array[0] = x+DV; + else this.t = 0; +} + +// return bigint initialized to value +function nbv(i) { var r = nbi(); r.fromInt(i); return r; } + +// (protected) set from string and radix +function bnpFromString(s,b) { + var this_array = this.array; + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 256) k = 8; // byte array + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else { this.fromRadix(s,b); return; } + this.t = 0; + this.s = 0; + var i = s.length, mi = false, sh = 0; + while(--i >= 0) { + var x = (k==8)?s[i]&0xff:intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-") mi = true; + continue; + } + mi = false; + if(sh == 0) + this_array[this.t++] = x; + else if(sh+k > BI_DB) { + this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh; + this_array[this.t++] = (x>>(BI_DB-sh)); + } + else + this_array[this.t-1] |= x<<sh; + sh += k; + if(sh >= BI_DB) sh -= BI_DB; + } + if(k == 8 && (s[0]&0x80) != 0) { + this.s = -1; + if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh; + } + this.clamp(); + if(mi) BigInteger.ZERO.subTo(this,this); +} + +// (protected) clamp off excess high words +function bnpClamp() { + var this_array = this.array; + var c = this.s&BI_DM; + while(this.t > 0 && this_array[this.t-1] == c) --this.t; +} + +// (public) return string representation in given radix +function bnToString(b) { + var this_array = this.array; + if(this.s < 0) return "-"+this.negate().toString(b); + var k; + if(b == 16) k = 4; + else if(b == 8) k = 3; + else if(b == 2) k = 1; + else if(b == 32) k = 5; + else if(b == 4) k = 2; + else return this.toRadix(b); + var km = (1<<k)-1, d, m = false, r = "", i = this.t; + var p = BI_DB-(i*BI_DB)%k; + if(i-- > 0) { + if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); } + while(i >= 0) { + if(p < k) { + d = (this_array[i]&((1<<p)-1))<<(k-p); + d |= this_array[--i]>>(p+=BI_DB-k); + } + else { + d = (this_array[i]>>(p-=k))&km; + if(p <= 0) { p += BI_DB; --i; } + } + if(d > 0) m = true; + if(m) r += int2char(d); + } + } + return m?r:"0"; +} + +// (public) -this +function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } + +// (public) |this| +function bnAbs() { return (this.s<0)?this.negate():this; } + +// (public) return + if this > a, - if this < a, 0 if equal +function bnCompareTo(a) { + var this_array = this.array; + var a_array = a.array; + + var r = this.s-a.s; + if(r != 0) return r; + var i = this.t; + r = i-a.t; + if(r != 0) return r; + while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r; + return 0; +} + +// returns bit length of the integer x +function nbits(x) { + var r = 1, t; + if((t=x>>>16) != 0) { x = t; r += 16; } + if((t=x>>8) != 0) { x = t; r += 8; } + if((t=x>>4) != 0) { x = t; r += 4; } + if((t=x>>2) != 0) { x = t; r += 2; } + if((t=x>>1) != 0) { x = t; r += 1; } + return r; +} + +// (public) return the number of bits in "this" +function bnBitLength() { + var this_array = this.array; + if(this.t <= 0) return 0; + return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM)); +} + +// (protected) r = this << n*DB +function bnpDLShiftTo(n,r) { + var this_array = this.array; + var r_array = r.array; + var i; + for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i]; + for(i = n-1; i >= 0; --i) r_array[i] = 0; + r.t = this.t+n; + r.s = this.s; +} + +// (protected) r = this >> n*DB +function bnpDRShiftTo(n,r) { + var this_array = this.array; + var r_array = r.array; + for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i]; + r.t = Math.max(this.t-n,0); + r.s = this.s; +} + +// (protected) r = this << n +function bnpLShiftTo(n,r) { + var this_array = this.array; + var r_array = r.array; + var bs = n%BI_DB; + var cbs = BI_DB-bs; + var bm = (1<<cbs)-1; + var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i; + for(i = this.t-1; i >= 0; --i) { + r_array[i+ds+1] = (this_array[i]>>cbs)|c; + c = (this_array[i]&bm)<<bs; + } + for(i = ds-1; i >= 0; --i) r_array[i] = 0; + r_array[ds] = c; + r.t = this.t+ds+1; + r.s = this.s; + r.clamp(); +} + +// (protected) r = this >> n +function bnpRShiftTo(n,r) { + var this_array = this.array; + var r_array = r.array; + r.s = this.s; + var ds = Math.floor(n/BI_DB); + if(ds >= this.t) { r.t = 0; return; } + var bs = n%BI_DB; + var cbs = BI_DB-bs; + var bm = (1<<bs)-1; + r_array[0] = this_array[ds]>>bs; + for(var i = ds+1; i < this.t; ++i) { + r_array[i-ds-1] |= (this_array[i]&bm)<<cbs; + r_array[i-ds] = this_array[i]>>bs; + } + if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs; + r.t = this.t-ds; + r.clamp(); +} + +// (protected) r = this - a +function bnpSubTo(a,r) { + var this_array = this.array; + var r_array = r.array; + var a_array = a.array; + var i = 0, c = 0, m = Math.min(a.t,this.t); + while(i < m) { + c += this_array[i]-a_array[i]; + r_array[i++] = c&BI_DM; + c >>= BI_DB; + } + if(a.t < this.t) { + c -= a.s; + while(i < this.t) { + c += this_array[i]; + r_array[i++] = c&BI_DM; + c >>= BI_DB; + } + c += this.s; + } + else { + c += this.s; + while(i < a.t) { + c -= a_array[i]; + r_array[i++] = c&BI_DM; + c >>= BI_DB; + } + c -= a.s; + } + r.s = (c<0)?-1:0; + if(c < -1) r_array[i++] = BI_DV+c; + else if(c > 0) r_array[i++] = c; + r.t = i; + r.clamp(); +} + +// (protected) r = this * a, r != this,a (HAC 14.12) +// "this" should be the larger one if appropriate. +function bnpMultiplyTo(a,r) { + var this_array = this.array; + var r_array = r.array; + var x = this.abs(), y = a.abs(); + var y_array = y.array; + + var i = x.t; + r.t = i+y.t; + while(--i >= 0) r_array[i] = 0; + for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t); + r.s = 0; + r.clamp(); + if(this.s != a.s) BigInteger.ZERO.subTo(r,r); +} + +// (protected) r = this^2, r != this (HAC 14.16) +function bnpSquareTo(r) { + var x = this.abs(); + var x_array = x.array; + var r_array = r.array; + + var i = r.t = 2*x.t; + while(--i >= 0) r_array[i] = 0; + for(i = 0; i < x.t-1; ++i) { + var c = x.am(i,x_array[i],r,2*i,0,1); + if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) { + r_array[i+x.t] -= BI_DV; + r_array[i+x.t+1] = 1; + } + } + if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1); + r.s = 0; + r.clamp(); +} + +// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) +// r != q, this != m. q or r may be null. +function bnpDivRemTo(m,q,r) { + var pm = m.abs(); + if(pm.t <= 0) return; + var pt = this.abs(); + if(pt.t < pm.t) { + if(q != null) q.fromInt(0); + if(r != null) this.copyTo(r); + return; + } + if(r == null) r = nbi(); + var y = nbi(), ts = this.s, ms = m.s; + var pm_array = pm.array; + var nsh = BI_DB-nbits(pm_array[pm.t-1]); // normalize modulus + if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } + else { pm.copyTo(y); pt.copyTo(r); } + var ys = y.t; + + var y_array = y.array; + var y0 = y_array[ys-1]; + if(y0 == 0) return; + var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0); + var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2; + var i = r.t, j = i-ys, t = (q==null)?nbi():q; + y.dlShiftTo(j,t); + + var r_array = r.array; + if(r.compareTo(t) >= 0) { + r_array[r.t++] = 1; + r.subTo(t,r); + } + BigInteger.ONE.dlShiftTo(ys,t); + t.subTo(y,y); // "negative" y so we can replace sub with am later + while(y.t < ys) y_array[y.t++] = 0; + while(--j >= 0) { + // Estimate quotient digit + var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2); + if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out + y.dlShiftTo(j,t); + r.subTo(t,r); + while(r_array[i] < --qd) r.subTo(t,r); + } + } + if(q != null) { + r.drShiftTo(ys,q); + if(ts != ms) BigInteger.ZERO.subTo(q,q); + } + r.t = ys; + r.clamp(); + if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder + if(ts < 0) BigInteger.ZERO.subTo(r,r); +} + +// (public) this mod a +function bnMod(a) { + var r = nbi(); + this.abs().divRemTo(a,null,r); + if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); + return r; +} + +// Modular reduction using "classic" algorithm +function Classic(m) { this.m = m; } +function cConvert(x) { + if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); + else return x; +} +function cRevert(x) { return x; } +function cReduce(x) { x.divRemTo(this.m,null,x); } +function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } +function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +Classic.prototype.convert = cConvert; +Classic.prototype.revert = cRevert; +Classic.prototype.reduce = cReduce; +Classic.prototype.mulTo = cMulTo; +Classic.prototype.sqrTo = cSqrTo; + +// (protected) return "-1/this % 2^DB"; useful for Mont. reduction +// justification: +// xy == 1 (mod m) +// xy = 1+km +// xy(2-xy) = (1+km)(1-km) +// x[y(2-xy)] = 1-k^2m^2 +// x[y(2-xy)] == 1 (mod m^2) +// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 +// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. +// JS multiply "overflows" differently from C/C++, so care is needed here. +function bnpInvDigit() { + var this_array = this.array; + if(this.t < 1) return 0; + var x = this_array[0]; + if((x&1) == 0) return 0; + var y = x&3; // y == 1/x mod 2^2 + y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 + y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 + y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 + // last step - calculate inverse mod DV directly; + // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints + y = (y*(2-x*y%BI_DV))%BI_DV; // y == 1/x mod 2^dbits + // we really want the negative inverse, and -DV < y < DV + return (y>0)?BI_DV-y:-y; +} + +// Montgomery reduction +function Montgomery(m) { + this.m = m; + this.mp = m.invDigit(); + this.mpl = this.mp&0x7fff; + this.mph = this.mp>>15; + this.um = (1<<(BI_DB-15))-1; + this.mt2 = 2*m.t; +} + +// xR mod m +function montConvert(x) { + var r = nbi(); + x.abs().dlShiftTo(this.m.t,r); + r.divRemTo(this.m,null,r); + if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); + return r; +} + +// x/R mod m +function montRevert(x) { + var r = nbi(); + x.copyTo(r); + this.reduce(r); + return r; +} + +// x = x/R mod m (HAC 14.32) +function montReduce(x) { + var x_array = x.array; + while(x.t <= this.mt2) // pad x so am has enough room later + x_array[x.t++] = 0; + for(var i = 0; i < this.m.t; ++i) { + // faster way of calculating u0 = x[i]*mp mod DV + var j = x_array[i]&0x7fff; + var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM; + // use am to combine the multiply-shift-add into one call + j = i+this.m.t; + x_array[j] += this.m.am(0,u0,x,i,0,this.m.t); + // propagate carry + while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; } + } + x.clamp(); + x.drShiftTo(this.m.t,x); + if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); +} + +// r = "x^2/R mod m"; x != r +function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +// r = "xy/R mod m"; x,y != r +function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } + +Montgomery.prototype.convert = montConvert; +Montgomery.prototype.revert = montRevert; +Montgomery.prototype.reduce = montReduce; +Montgomery.prototype.mulTo = montMulTo; +Montgomery.prototype.sqrTo = montSqrTo; + +// (protected) true iff this is even +function bnpIsEven() { + var this_array = this.array; + return ((this.t>0)?(this_array[0]&1):this.s) == 0; +} + +// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) +function bnpExp(e,z) { + if(e > 0xffffffff || e < 1) return BigInteger.ONE; + var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; + g.copyTo(r); + while(--i >= 0) { + z.sqrTo(r,r2); + if((e&(1<<i)) > 0) z.mulTo(r2,g,r); + else { var t = r; r = r2; r2 = t; } + } + return z.revert(r); +} + +// (public) this^e % m, 0 <= e < 2^32 +function bnModPowInt(e,m) { + var z; + if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); + return this.exp(e,z); +} + +// protected +BigInteger.prototype.copyTo = bnpCopyTo; +BigInteger.prototype.fromInt = bnpFromInt; +BigInteger.prototype.fromString = bnpFromString; +BigInteger.prototype.clamp = bnpClamp; +BigInteger.prototype.dlShiftTo = bnpDLShiftTo; +BigInteger.prototype.drShiftTo = bnpDRShiftTo; +BigInteger.prototype.lShiftTo = bnpLShiftTo; +BigInteger.prototype.rShiftTo = bnpRShiftTo; +BigInteger.prototype.subTo = bnpSubTo; +BigInteger.prototype.multiplyTo = bnpMultiplyTo; +BigInteger.prototype.squareTo = bnpSquareTo; +BigInteger.prototype.divRemTo = bnpDivRemTo; +BigInteger.prototype.invDigit = bnpInvDigit; +BigInteger.prototype.isEven = bnpIsEven; +BigInteger.prototype.exp = bnpExp; + +// public +BigInteger.prototype.toString = bnToString; +BigInteger.prototype.negate = bnNegate; +BigInteger.prototype.abs = bnAbs; +BigInteger.prototype.compareTo = bnCompareTo; +BigInteger.prototype.bitLength = bnBitLength; +BigInteger.prototype.mod = bnMod; +BigInteger.prototype.modPowInt = bnModPowInt; + +// "constants" +BigInteger.ZERO = nbv(0); +BigInteger.ONE = nbv(1); +// Copyright (c) 2005 Tom Wu +// All Rights Reserved. +// See "LICENSE" for details. + +// Extended JavaScript BN functions, required for RSA private ops. + +// (public) +function bnClone() { var r = nbi(); this.copyTo(r); return r; } + +// (public) return value as integer +function bnIntValue() { + var this_array = this.array; + if(this.s < 0) { + if(this.t == 1) return this_array[0]-BI_DV; + else if(this.t == 0) return -1; + } + else if(this.t == 1) return this_array[0]; + else if(this.t == 0) return 0; + // assumes 16 < DB < 32 + return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0]; +} + +// (public) return value as byte +function bnByteValue() { + var this_array = this.array; + return (this.t==0)?this.s:(this_array[0]<<24)>>24; +} + +// (public) return value as short (assumes DB>=16) +function bnShortValue() { + var this_array = this.array; + return (this.t==0)?this.s:(this_array[0]<<16)>>16; +} + +// (protected) return x s.t. r^x < DV +function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); } + +// (public) 0 if this == 0, 1 if this > 0 +function bnSigNum() { + var this_array = this.array; + if(this.s < 0) return -1; + else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0; + else return 1; +} + +// (protected) convert to radix string +function bnpToRadix(b) { + if(b == null) b = 10; + if(this.signum() == 0 || b < 2 || b > 36) return "0"; + var cs = this.chunkSize(b); + var a = Math.pow(b,cs); + var d = nbv(a), y = nbi(), z = nbi(), r = ""; + this.divRemTo(d,y,z); + while(y.signum() > 0) { + r = (a+z.intValue()).toString(b).substr(1) + r; + y.divRemTo(d,y,z); + } + return z.intValue().toString(b) + r; +} + +// (protected) convert from radix string +function bnpFromRadix(s,b) { + this.fromInt(0); + if(b == null) b = 10; + var cs = this.chunkSize(b); + var d = Math.pow(b,cs), mi = false, j = 0, w = 0; + for(var i = 0; i < s.length; ++i) { + var x = intAt(s,i); + if(x < 0) { + if(s.charAt(i) == "-" && this.signum() == 0) mi = true; + continue; + } + w = b*w+x; + if(++j >= cs) { + this.dMultiply(d); + this.dAddOffset(w,0); + j = 0; + w = 0; + } + } + if(j > 0) { + this.dMultiply(Math.pow(b,j)); + this.dAddOffset(w,0); + } + if(mi) BigInteger.ZERO.subTo(this,this); +} + +// (protected) alternate constructor +function bnpFromNumber(a,b,c) { + if("number" == typeof b) { + // new BigInteger(int,int,RNG) + if(a < 2) this.fromInt(1); + else { + this.fromNumber(a,c); + if(!this.testBit(a-1)) // force MSB set + this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); + if(this.isEven()) this.dAddOffset(1,0); // force odd + while(!this.isProbablePrime(b)) { + this.dAddOffset(2,0); + if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); + } + } + } + else { + // new BigInteger(int,RNG) + var x = new Array(), t = a&7; + x.length = (a>>3)+1; + b.nextBytes(x); + if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; + this.fromString(x,256); + } +} + +// (public) convert to bigendian byte array +function bnToByteArray() { + var this_array = this.array; + var i = this.t, r = new Array(); + r[0] = this.s; + var p = BI_DB-(i*BI_DB)%8, d, k = 0; + if(i-- > 0) { + if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p) + r[k++] = d|(this.s<<(BI_DB-p)); + while(i >= 0) { + if(p < 8) { + d = (this_array[i]&((1<<p)-1))<<(8-p); + d |= this_array[--i]>>(p+=BI_DB-8); + } + else { + d = (this_array[i]>>(p-=8))&0xff; + if(p <= 0) { p += BI_DB; --i; } + } + if((d&0x80) != 0) d |= -256; + if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; + if(k > 0 || d != this.s) r[k++] = d; + } + } + return r; +} + +function bnEquals(a) { return(this.compareTo(a)==0); } +function bnMin(a) { return(this.compareTo(a)<0)?this:a; } +function bnMax(a) { return(this.compareTo(a)>0)?this:a; } + +// (protected) r = this op a (bitwise) +function bnpBitwiseTo(a,op,r) { + var this_array = this.array; + var a_array = a.array; + var r_array = r.array; + var i, f, m = Math.min(a.t,this.t); + for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]); + if(a.t < this.t) { + f = a.s&BI_DM; + for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f); + r.t = this.t; + } + else { + f = this.s&BI_DM; + for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]); + r.t = a.t; + } + r.s = op(this.s,a.s); + r.clamp(); +} + +// (public) this & a +function op_and(x,y) { return x&y; } +function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } + +// (public) this | a +function op_or(x,y) { return x|y; } +function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } + +// (public) this ^ a +function op_xor(x,y) { return x^y; } +function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } + +// (public) this & ~a +function op_andnot(x,y) { return x&~y; } +function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } + +// (public) ~this +function bnNot() { + var this_array = this.array; + var r = nbi(); + var r_array = r.array; + + for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i]; + r.t = this.t; + r.s = ~this.s; + return r; +} + +// (public) this << n +function bnShiftLeft(n) { + var r = nbi(); + if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); + return r; +} + +// (public) this >> n +function bnShiftRight(n) { + var r = nbi(); + if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); + return r; +} + +// return index of lowest 1-bit in x, x < 2^31 +function lbit(x) { + if(x == 0) return -1; + var r = 0; + if((x&0xffff) == 0) { x >>= 16; r += 16; } + if((x&0xff) == 0) { x >>= 8; r += 8; } + if((x&0xf) == 0) { x >>= 4; r += 4; } + if((x&3) == 0) { x >>= 2; r += 2; } + if((x&1) == 0) ++r; + return r; +} + +// (public) returns index of lowest 1-bit (or -1 if none) +function bnGetLowestSetBit() { + var this_array = this.array; + for(var i = 0; i < this.t; ++i) + if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]); + if(this.s < 0) return this.t*BI_DB; + return -1; +} + +// return number of 1 bits in x +function cbit(x) { + var r = 0; + while(x != 0) { x &= x-1; ++r; } + return r; +} + +// (public) return number of set bits +function bnBitCount() { + var r = 0, x = this.s&BI_DM; + for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x); + return r; +} + +// (public) true iff nth bit is set +function bnTestBit(n) { + var this_array = this.array; + var j = Math.floor(n/BI_DB); + if(j >= this.t) return(this.s!=0); + return((this_array[j]&(1<<(n%BI_DB)))!=0); +} + +// (protected) this op (1<<n) +function bnpChangeBit(n,op) { + var r = BigInteger.ONE.shiftLeft(n); + this.bitwiseTo(r,op,r); + return r; +} + +// (public) this | (1<<n) +function bnSetBit(n) { return this.changeBit(n,op_or); } + +// (public) this & ~(1<<n) +function bnClearBit(n) { return this.changeBit(n,op_andnot); } + +// (public) this ^ (1<<n) +function bnFlipBit(n) { return this.changeBit(n,op_xor); } + +// (protected) r = this + a +function bnpAddTo(a,r) { + var this_array = this.array; + var a_array = a.array; + var r_array = r.array; + var i = 0, c = 0, m = Math.min(a.t,this.t); + while(i < m) { + c += this_array[i]+a_array[i]; + r_array[i++] = c&BI_DM; + c >>= BI_DB; + } + if(a.t < this.t) { + c += a.s; + while(i < this.t) { + c += this_array[i]; + r_array[i++] = c&BI_DM; + c >>= BI_DB; + } + c += this.s; + } + else { + c += this.s; + while(i < a.t) { + c += a_array[i]; + r_array[i++] = c&BI_DM; + c >>= BI_DB; + } + c += a.s; + } + r.s = (c<0)?-1:0; + if(c > 0) r_array[i++] = c; + else if(c < -1) r_array[i++] = BI_DV+c; + r.t = i; + r.clamp(); +} + +// (public) this + a +function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } + +// (public) this - a +function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } + +// (public) this * a +function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } + +// (public) this / a +function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } + +// (public) this % a +function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } + +// (public) [this/a,this%a] +function bnDivideAndRemainder(a) { + var q = nbi(), r = nbi(); + this.divRemTo(a,q,r); + return new Array(q,r); +} + +// (protected) this *= n, this >= 0, 1 < n < DV +function bnpDMultiply(n) { + var this_array = this.array; + this_array[this.t] = this.am(0,n-1,this,0,0,this.t); + ++this.t; + this.clamp(); +} + +// (protected) this += n << w words, this >= 0 +function bnpDAddOffset(n,w) { + var this_array = this.array; + while(this.t <= w) this_array[this.t++] = 0; + this_array[w] += n; + while(this_array[w] >= BI_DV) { + this_array[w] -= BI_DV; + if(++w >= this.t) this_array[this.t++] = 0; + ++this_array[w]; + } +} + +// A "null" reducer +function NullExp() {} +function nNop(x) { return x; } +function nMulTo(x,y,r) { x.multiplyTo(y,r); } +function nSqrTo(x,r) { x.squareTo(r); } + +NullExp.prototype.convert = nNop; +NullExp.prototype.revert = nNop; +NullExp.prototype.mulTo = nMulTo; +NullExp.prototype.sqrTo = nSqrTo; + +// (public) this^e +function bnPow(e) { return this.exp(e,new NullExp()); } + +// (protected) r = lower n words of "this * a", a.t <= n +// "this" should be the larger one if appropriate. +function bnpMultiplyLowerTo(a,n,r) { + var r_array = r.array; + var a_array = a.array; + var i = Math.min(this.t+a.t,n); + r.s = 0; // assumes a,this >= 0 + r.t = i; + while(i > 0) r_array[--i] = 0; + var j; + for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t); + for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i); + r.clamp(); +} + +// (protected) r = "this * a" without lower n words, n > 0 +// "this" should be the larger one if appropriate. +function bnpMultiplyUpperTo(a,n,r) { + var r_array = r.array; + var a_array = a.array; + --n; + var i = r.t = this.t+a.t-n; + r.s = 0; // assumes a,this >= 0 + while(--i >= 0) r_array[i] = 0; + for(i = Math.max(n-this.t,0); i < a.t; ++i) + r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n); + r.clamp(); + r.drShiftTo(1,r); +} + +// Barrett modular reduction +function Barrett(m) { + // setup Barrett + this.r2 = nbi(); + this.q3 = nbi(); + BigInteger.ONE.dlShiftTo(2*m.t,this.r2); + this.mu = this.r2.divide(m); + this.m = m; +} + +function barrettConvert(x) { + if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); + else if(x.compareTo(this.m) < 0) return x; + else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } +} + +function barrettRevert(x) { return x; } + +// x = x mod m (HAC 14.42) +function barrettReduce(x) { + x.drShiftTo(this.m.t-1,this.r2); + if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } + this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); + this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); + while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); + x.subTo(this.r2,x); + while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); +} + +// r = x^2 mod m; x != r +function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } + +// r = x*y mod m; x,y != r +function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } + +Barrett.prototype.convert = barrettConvert; +Barrett.prototype.revert = barrettRevert; +Barrett.prototype.reduce = barrettReduce; +Barrett.prototype.mulTo = barrettMulTo; +Barrett.prototype.sqrTo = barrettSqrTo; + +// (public) this^e % m (HAC 14.85) +function bnModPow(e,m) { + var e_array = e.array; + var i = e.bitLength(), k, r = nbv(1), z; + if(i <= 0) return r; + else if(i < 18) k = 1; + else if(i < 48) k = 3; + else if(i < 144) k = 4; + else if(i < 768) k = 5; + else k = 6; + if(i < 8) + z = new Classic(m); + else if(m.isEven()) + z = new Barrett(m); + else + z = new Montgomery(m); + + // precomputation + var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; + g[1] = z.convert(this); + if(k > 1) { + var g2 = nbi(); + z.sqrTo(g[1],g2); + while(n <= km) { + g[n] = nbi(); + z.mulTo(g2,g[n-2],g[n]); + n += 2; + } + } + + var j = e.t-1, w, is1 = true, r2 = nbi(), t; + i = nbits(e_array[j])-1; + while(j >= 0) { + if(i >= k1) w = (e_array[j]>>(i-k1))&km; + else { + w = (e_array[j]&((1<<(i+1))-1))<<(k1-i); + if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1); + } + + n = k; + while((w&1) == 0) { w >>= 1; --n; } + if((i -= n) < 0) { i += BI_DB; --j; } + if(is1) { // ret == 1, don't bother squaring or multiplying it + g[w].copyTo(r); + is1 = false; + } + else { + while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } + if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } + z.mulTo(r2,g[w],r); + } + + while(j >= 0 && (e_array[j]&(1<<i)) == 0) { + z.sqrTo(r,r2); t = r; r = r2; r2 = t; + if(--i < 0) { i = BI_DB-1; --j; } + } + } + return z.revert(r); +} + +// (public) gcd(this,a) (HAC 14.54) +function bnGCD(a) { + var x = (this.s<0)?this.negate():this.clone(); + var y = (a.s<0)?a.negate():a.clone(); + if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } + var i = x.getLowestSetBit(), g = y.getLowestSetBit(); + if(g < 0) return x; + if(i < g) g = i; + if(g > 0) { + x.rShiftTo(g,x); + y.rShiftTo(g,y); + } + while(x.signum() > 0) { + if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); + if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); + if(x.compareTo(y) >= 0) { + x.subTo(y,x); + x.rShiftTo(1,x); + } + else { + y.subTo(x,y); + y.rShiftTo(1,y); + } + } + if(g > 0) y.lShiftTo(g,y); + return y; +} + +// (protected) this % n, n < 2^26 +function bnpModInt(n) { + var this_array = this.array; + if(n <= 0) return 0; + var d = BI_DV%n, r = (this.s<0)?n-1:0; + if(this.t > 0) + if(d == 0) r = this_array[0]%n; + else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n; + return r; +} + +// (public) 1/this % m (HAC 14.61) +function bnModInverse(m) { + var ac = m.isEven(); + if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; + var u = m.clone(), v = this.clone(); + var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); + while(u.signum() != 0) { + while(u.isEven()) { + u.rShiftTo(1,u); + if(ac) { + if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } + a.rShiftTo(1,a); + } + else if(!b.isEven()) b.subTo(m,b); + b.rShiftTo(1,b); + } + while(v.isEven()) { + v.rShiftTo(1,v); + if(ac) { + if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } + c.rShiftTo(1,c); + } + else if(!d.isEven()) d.subTo(m,d); + d.rShiftTo(1,d); + } + if(u.compareTo(v) >= 0) { + u.subTo(v,u); + if(ac) a.subTo(c,a); + b.subTo(d,b); + } + else { + v.subTo(u,v); + if(ac) c.subTo(a,c); + d.subTo(b,d); + } + } + if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; + if(d.compareTo(m) >= 0) return d.subtract(m); + if(d.signum() < 0) d.addTo(m,d); else return d; + if(d.signum() < 0) return d.add(m); else return d; +} + +var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; +var lplim = (1<<26)/lowprimes[lowprimes.length-1]; + +// (public) test primality with certainty >= 1-.5^t +function bnIsProbablePrime(t) { + var i, x = this.abs(); + var x_array = x.array; + if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) { + for(i = 0; i < lowprimes.length; ++i) + if(x_array[0] == lowprimes[i]) return true; + return false; + } + if(x.isEven()) return false; + i = 1; + while(i < lowprimes.length) { + var m = lowprimes[i], j = i+1; + while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; + m = x.modInt(m); + while(i < j) if(m%lowprimes[i++] == 0) return false; + } + return x.millerRabin(t); +} + +// (protected) true if probably prime (HAC 4.24, Miller-Rabin) +function bnpMillerRabin(t) { + var n1 = this.subtract(BigInteger.ONE); + var k = n1.getLowestSetBit(); + if(k <= 0) return false; + var r = n1.shiftRight(k); + t = (t+1)>>1; + if(t > lowprimes.length) t = lowprimes.length; + var a = nbi(); + for(var i = 0; i < t; ++i) { + a.fromInt(lowprimes[i]); + var y = a.modPow(r,this); + if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { + var j = 1; + while(j++ < k && y.compareTo(n1) != 0) { + y = y.modPowInt(2,this); + if(y.compareTo(BigInteger.ONE) == 0) return false; + } + if(y.compareTo(n1) != 0) return false; + } + } + return true; +} + +// protected +BigInteger.prototype.chunkSize = bnpChunkSize; +BigInteger.prototype.toRadix = bnpToRadix; +BigInteger.prototype.fromRadix = bnpFromRadix; +BigInteger.prototype.fromNumber = bnpFromNumber; +BigInteger.prototype.bitwiseTo = bnpBitwiseTo; +BigInteger.prototype.changeBit = bnpChangeBit; +BigInteger.prototype.addTo = bnpAddTo; +BigInteger.prototype.dMultiply = bnpDMultiply; +BigInteger.prototype.dAddOffset = bnpDAddOffset; +BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; +BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; +BigInteger.prototype.modInt = bnpModInt; +BigInteger.prototype.millerRabin = bnpMillerRabin; + +// public +BigInteger.prototype.clone = bnClone; +BigInteger.prototype.intValue = bnIntValue; +BigInteger.prototype.byteValue = bnByteValue; +BigInteger.prototype.shortValue = bnShortValue; +BigInteger.prototype.signum = bnSigNum; +BigInteger.prototype.toByteArray = bnToByteArray; +BigInteger.prototype.equals = bnEquals; +BigInteger.prototype.min = bnMin; +BigInteger.prototype.max = bnMax; +BigInteger.prototype.and = bnAnd; +BigInteger.prototype.or = bnOr; +BigInteger.prototype.xor = bnXor; +BigInteger.prototype.andNot = bnAndNot; +BigInteger.prototype.not = bnNot; +BigInteger.prototype.shiftLeft = bnShiftLeft; +BigInteger.prototype.shiftRight = bnShiftRight; +BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; +BigInteger.prototype.bitCount = bnBitCount; +BigInteger.prototype.testBit = bnTestBit; +BigInteger.prototype.setBit = bnSetBit; +BigInteger.prototype.clearBit = bnClearBit; +BigInteger.prototype.flipBit = bnFlipBit; +BigInteger.prototype.add = bnAdd; +BigInteger.prototype.subtract = bnSubtract; +BigInteger.prototype.multiply = bnMultiply; +BigInteger.prototype.divide = bnDivide; +BigInteger.prototype.remainder = bnRemainder; +BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; +BigInteger.prototype.modPow = bnModPow; +BigInteger.prototype.modInverse = bnModInverse; +BigInteger.prototype.pow = bnPow; +BigInteger.prototype.gcd = bnGCD; +BigInteger.prototype.isProbablePrime = bnIsProbablePrime; + +// BigInteger interfaces not implemented in jsbn: + +// BigInteger(int signum, byte[] magnitude) +// double doubleValue() +// float floatValue() +// int hashCode() +// long longValue() +// static BigInteger valueOf(long val) +// prng4.js - uses Arcfour as a PRNG + +function Arcfour() { + this.i = 0; + this.j = 0; + this.S = new Array(); +} + +// Initialize arcfour context from key, an array of ints, each from [0..255] +function ARC4init(key) { + var i, j, t; + for(i = 0; i < 256; ++i) + this.S[i] = i; + j = 0; + for(i = 0; i < 256; ++i) { + j = (j + this.S[i] + key[i % key.length]) & 255; + t = this.S[i]; + this.S[i] = this.S[j]; + this.S[j] = t; + } + this.i = 0; + this.j = 0; +} + +function ARC4next() { + var t; + this.i = (this.i + 1) & 255; + this.j = (this.j + this.S[this.i]) & 255; + t = this.S[this.i]; + this.S[this.i] = this.S[this.j]; + this.S[this.j] = t; + return this.S[(t + this.S[this.i]) & 255]; +} + +Arcfour.prototype.init = ARC4init; +Arcfour.prototype.next = ARC4next; + +// Plug in your RNG constructor here +function prng_newstate() { + return new Arcfour(); +} + +// Pool size must be a multiple of 4 and greater than 32. +// An array of bytes the size of the pool will be passed to init() +var rng_psize = 256; +// Random number generator - requires a PRNG backend, e.g. prng4.js + +// For best results, put code like +// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> +// in your main HTML document. + +var rng_state; +var rng_pool; +var rng_pptr; + +// Mix in a 32-bit integer into the pool +function rng_seed_int(x) { + rng_pool[rng_pptr++] ^= x & 255; + rng_pool[rng_pptr++] ^= (x >> 8) & 255; + rng_pool[rng_pptr++] ^= (x >> 16) & 255; + rng_pool[rng_pptr++] ^= (x >> 24) & 255; + if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; +} + +// Mix in the current time (w/milliseconds) into the pool +function rng_seed_time() { + // Use pre-computed date to avoid making the benchmark + // results dependent on the current date. + rng_seed_int(1122926989487); +} + +// Initialize the pool with junk if needed. +if(rng_pool == null) { + rng_pool = new Array(); + rng_pptr = 0; + var t; + while(rng_pptr < rng_psize) { // extract some randomness from Math.random() + t = Math.floor(65536 * Math.random()); + rng_pool[rng_pptr++] = t >>> 8; + rng_pool[rng_pptr++] = t & 255; + } + rng_pptr = 0; + rng_seed_time(); + //rng_seed_int(window.screenX); + //rng_seed_int(window.screenY); +} + +function rng_get_byte() { + if(rng_state == null) { + rng_seed_time(); + rng_state = prng_newstate(); + rng_state.init(rng_pool); + for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) + rng_pool[rng_pptr] = 0; + rng_pptr = 0; + //rng_pool = null; + } + // TODO: allow reseeding after first request + return rng_state.next(); +} + +function rng_get_bytes(ba) { + var i; + for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); +} + +function SecureRandom() {} + +SecureRandom.prototype.nextBytes = rng_get_bytes; +// Depends on jsbn.js and rng.js + +// convert a (hex) string to a bignum object +function parseBigInt(str,r) { + return new BigInteger(str,r); +} + +function linebrk(s,n) { + var ret = ""; + var i = 0; + while(i + n < s.length) { + ret += s.substring(i,i+n) + "\n"; + i += n; + } + return ret + s.substring(i,s.length); +} + +function byte2Hex(b) { + if(b < 0x10) + return "0" + b.toString(16); + else + return b.toString(16); +} + +// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint +function pkcs1pad2(s,n) { + if(n < s.length + 11) { + alert("Message too long for RSA"); + return null; + } + var ba = new Array(); + var i = s.length - 1; + while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--); + ba[--n] = 0; + var rng = new SecureRandom(); + var x = new Array(); + while(n > 2) { // random non-zero pad + x[0] = 0; + while(x[0] == 0) rng.nextBytes(x); + ba[--n] = x[0]; + } + ba[--n] = 2; + ba[--n] = 0; + return new BigInteger(ba); +} + +// "empty" RSA key constructor +function RSAKey() { + this.n = null; + this.e = 0; + this.d = null; + this.p = null; + this.q = null; + this.dmp1 = null; + this.dmq1 = null; + this.coeff = null; +} + +// Set the public key fields N and e from hex strings +function RSASetPublic(N,E) { + if(N != null && E != null && N.length > 0 && E.length > 0) { + this.n = parseBigInt(N,16); + this.e = parseInt(E,16); + } + else + alert("Invalid RSA public key"); +} + +// Perform raw public operation on "x": return x^e (mod n) +function RSADoPublic(x) { + return x.modPowInt(this.e, this.n); +} + +// Return the PKCS#1 RSA encryption of "text" as an even-length hex string +function RSAEncrypt(text) { + var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); + if(m == null) return null; + var c = this.doPublic(m); + if(c == null) return null; + var h = c.toString(16); + if((h.length & 1) == 0) return h; else return "0" + h; +} + +// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string +//function RSAEncryptB64(text) { +// var h = this.encrypt(text); +// if(h) return hex2b64(h); else return null; +//} + +// protected +RSAKey.prototype.doPublic = RSADoPublic; + +// public +RSAKey.prototype.setPublic = RSASetPublic; +RSAKey.prototype.encrypt = RSAEncrypt; +//RSAKey.prototype.encrypt_b64 = RSAEncryptB64; +// Depends on rsa.js and jsbn2.js + +// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext +function pkcs1unpad2(d,n) { + var b = d.toByteArray(); + var i = 0; + while(i < b.length && b[i] == 0) ++i; + if(b.length-i != n-1 || b[i] != 2) + return null; + ++i; + while(b[i] != 0) + if(++i >= b.length) return null; + var ret = ""; + while(++i < b.length) + ret += String.fromCharCode(b[i]); + return ret; +} + +// Set the private key fields N, e, and d from hex strings +function RSASetPrivate(N,E,D) { + if(N != null && E != null && N.length > 0 && E.length > 0) { + this.n = parseBigInt(N,16); + this.e = parseInt(E,16); + this.d = parseBigInt(D,16); + } + else + alert("Invalid RSA private key"); +} + +// Set the private key fields N, e, d and CRT params from hex strings +function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { + if(N != null && E != null && N.length > 0 && E.length > 0) { + this.n = parseBigInt(N,16); + this.e = parseInt(E,16); + this.d = parseBigInt(D,16); + this.p = parseBigInt(P,16); + this.q = parseBigInt(Q,16); + this.dmp1 = parseBigInt(DP,16); + this.dmq1 = parseBigInt(DQ,16); + this.coeff = parseBigInt(C,16); + } + else + alert("Invalid RSA private key"); +} + +// Generate a new random private key B bits long, using public expt E +function RSAGenerate(B,E) { + var rng = new SecureRandom(); + var qs = B>>1; + this.e = parseInt(E,16); + var ee = new BigInteger(E,16); + for(;;) { + for(;;) { + this.p = new BigInteger(B-qs,1,rng); + if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; + } + for(;;) { + this.q = new BigInteger(qs,1,rng); + if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; + } + if(this.p.compareTo(this.q) <= 0) { + var t = this.p; + this.p = this.q; + this.q = t; + } + var p1 = this.p.subtract(BigInteger.ONE); + var q1 = this.q.subtract(BigInteger.ONE); + var phi = p1.multiply(q1); + if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { + this.n = this.p.multiply(this.q); + this.d = ee.modInverse(phi); + this.dmp1 = this.d.mod(p1); + this.dmq1 = this.d.mod(q1); + this.coeff = this.q.modInverse(this.p); + break; + } + } +} + +// Perform raw private operation on "x": return x^d (mod n) +function RSADoPrivate(x) { + if(this.p == null || this.q == null) + return x.modPow(this.d, this.n); + + // TODO: re-calculate any missing CRT params + var xp = x.mod(this.p).modPow(this.dmp1, this.p); + var xq = x.mod(this.q).modPow(this.dmq1, this.q); + + while(xp.compareTo(xq) < 0) + xp = xp.add(this.p); + return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); +} + +// Return the PKCS#1 RSA decryption of "ctext". +// "ctext" is an even-length hex string and the output is a plain string. +function RSADecrypt(ctext) { + var c = parseBigInt(ctext, 16); + var m = this.doPrivate(c); + if(m == null) return null; + return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); +} + +// Return the PKCS#1 RSA decryption of "ctext". +// "ctext" is a Base64-encoded string and the output is a plain string. +//function RSAB64Decrypt(ctext) { +// var h = b64tohex(ctext); +// if(h) return this.decrypt(h); else return null; +//} + +// protected +RSAKey.prototype.doPrivate = RSADoPrivate; + +// public +RSAKey.prototype.setPrivate = RSASetPrivate; +RSAKey.prototype.setPrivateEx = RSASetPrivateEx; +RSAKey.prototype.generate = RSAGenerate; +RSAKey.prototype.decrypt = RSADecrypt; +//RSAKey.prototype.b64_decrypt = RSAB64Decrypt; + + +nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3"; +eValue="10001"; +dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161"; +pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d"; +qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f"; +dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25"; +dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd"; +coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250"; + +setupEngine(am3, 28); + +var TEXT = "The quick brown fox jumped over the extremely lazy frog! " + + "Now is the time for all good men to come to the party."; +var encrypted; + +function encrypt() { + var RSA = new RSAKey(); + RSA.setPublic(nValue, eValue); + RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); + encrypted = RSA.encrypt(TEXT); +} + +function decrypt() { + var RSA = new RSAKey(); + RSA.setPublic(nValue, eValue); + RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue); + var decrypted = RSA.decrypt(encrypted); + if (decrypted != TEXT) { + throw new Error("Crypto operation failed"); + } +} |