diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
commit | 6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /media/libwebp/src/dec/vp8l_dec.c | |
parent | Initial commit. (diff) | |
download | thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libwebp/src/dec/vp8l_dec.c')
-rw-r--r-- | media/libwebp/src/dec/vp8l_dec.c | 1757 |
1 files changed, 1757 insertions, 0 deletions
diff --git a/media/libwebp/src/dec/vp8l_dec.c b/media/libwebp/src/dec/vp8l_dec.c new file mode 100644 index 0000000000..1a6c0a8980 --- /dev/null +++ b/media/libwebp/src/dec/vp8l_dec.c @@ -0,0 +1,1757 @@ +// Copyright 2012 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// main entry for the decoder +// +// Authors: Vikas Arora (vikaas.arora@gmail.com) +// Jyrki Alakuijala (jyrki@google.com) + +#include <stdlib.h> + +#include "src/dec/alphai_dec.h" +#include "src/dec/vp8li_dec.h" +#include "src/dsp/dsp.h" +#include "src/dsp/lossless.h" +#include "src/dsp/lossless_common.h" +#include "src/dsp/yuv.h" +#include "src/utils/endian_inl_utils.h" +#include "src/utils/huffman_utils.h" +#include "src/utils/utils.h" + +#define NUM_ARGB_CACHE_ROWS 16 + +static const int kCodeLengthLiterals = 16; +static const int kCodeLengthRepeatCode = 16; +static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 }; +static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 }; + +// ----------------------------------------------------------------------------- +// Five Huffman codes are used at each meta code: +// 1. green + length prefix codes + color cache codes, +// 2. alpha, +// 3. red, +// 4. blue, and, +// 5. distance prefix codes. +typedef enum { + GREEN = 0, + RED = 1, + BLUE = 2, + ALPHA = 3, + DIST = 4 +} HuffIndex; + +static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = { + NUM_LITERAL_CODES + NUM_LENGTH_CODES, + NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES, + NUM_DISTANCE_CODES +}; + +static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = { + 0, 1, 1, 1, 0 +}; + +#define NUM_CODE_LENGTH_CODES 19 +static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = { + 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 +}; + +#define CODE_TO_PLANE_CODES 120 +static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = { + 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a, + 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a, + 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b, + 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03, + 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c, + 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e, + 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b, + 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f, + 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b, + 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41, + 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f, + 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70 +}; + +// Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha +// and distance alphabets are constant (256 for red, blue and alpha, 40 for +// distance) and lookup table sizes for them in worst case are 630 and 410 +// respectively. Size of green alphabet depends on color cache size and is equal +// to 256 (green component values) + 24 (length prefix values) +// + color_cache_size (between 0 and 2048). +// All values computed for 8-bit first level lookup with Mark Adler's tool: +// https://github.com/madler/zlib/blob/v1.2.5/examples/enough.c +#define FIXED_TABLE_SIZE (630 * 3 + 410) +static const uint16_t kTableSize[12] = { + FIXED_TABLE_SIZE + 654, + FIXED_TABLE_SIZE + 656, + FIXED_TABLE_SIZE + 658, + FIXED_TABLE_SIZE + 662, + FIXED_TABLE_SIZE + 670, + FIXED_TABLE_SIZE + 686, + FIXED_TABLE_SIZE + 718, + FIXED_TABLE_SIZE + 782, + FIXED_TABLE_SIZE + 912, + FIXED_TABLE_SIZE + 1168, + FIXED_TABLE_SIZE + 1680, + FIXED_TABLE_SIZE + 2704 +}; + +static int DecodeImageStream(int xsize, int ysize, + int is_level0, + VP8LDecoder* const dec, + uint32_t** const decoded_data); + +//------------------------------------------------------------------------------ + +int VP8LCheckSignature(const uint8_t* const data, size_t size) { + return (size >= VP8L_FRAME_HEADER_SIZE && + data[0] == VP8L_MAGIC_BYTE && + (data[4] >> 5) == 0); // version +} + +static int ReadImageInfo(VP8LBitReader* const br, + int* const width, int* const height, + int* const has_alpha) { + if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0; + *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; + *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; + *has_alpha = VP8LReadBits(br, 1); + if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0; + return !br->eos_; +} + +int VP8LGetInfo(const uint8_t* data, size_t data_size, + int* const width, int* const height, int* const has_alpha) { + if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) { + return 0; // not enough data + } else if (!VP8LCheckSignature(data, data_size)) { + return 0; // bad signature + } else { + int w, h, a; + VP8LBitReader br; + VP8LInitBitReader(&br, data, data_size); + if (!ReadImageInfo(&br, &w, &h, &a)) { + return 0; + } + if (width != NULL) *width = w; + if (height != NULL) *height = h; + if (has_alpha != NULL) *has_alpha = a; + return 1; + } +} + +//------------------------------------------------------------------------------ + +static WEBP_INLINE int GetCopyDistance(int distance_symbol, + VP8LBitReader* const br) { + int extra_bits, offset; + if (distance_symbol < 4) { + return distance_symbol + 1; + } + extra_bits = (distance_symbol - 2) >> 1; + offset = (2 + (distance_symbol & 1)) << extra_bits; + return offset + VP8LReadBits(br, extra_bits) + 1; +} + +static WEBP_INLINE int GetCopyLength(int length_symbol, + VP8LBitReader* const br) { + // Length and distance prefixes are encoded the same way. + return GetCopyDistance(length_symbol, br); +} + +static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) { + if (plane_code > CODE_TO_PLANE_CODES) { + return plane_code - CODE_TO_PLANE_CODES; + } else { + const int dist_code = kCodeToPlane[plane_code - 1]; + const int yoffset = dist_code >> 4; + const int xoffset = 8 - (dist_code & 0xf); + const int dist = yoffset * xsize + xoffset; + return (dist >= 1) ? dist : 1; // dist<1 can happen if xsize is very small + } +} + +//------------------------------------------------------------------------------ +// Decodes the next Huffman code from bit-stream. +// VP8LFillBitWindow(br) needs to be called at minimum every second call +// to ReadSymbol, in order to pre-fetch enough bits. +static WEBP_INLINE int ReadSymbol(const HuffmanCode* table, + VP8LBitReader* const br) { + int nbits; + uint32_t val = VP8LPrefetchBits(br); + table += val & HUFFMAN_TABLE_MASK; + nbits = table->bits - HUFFMAN_TABLE_BITS; + if (nbits > 0) { + VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS); + val = VP8LPrefetchBits(br); + table += table->value; + table += val & ((1 << nbits) - 1); + } + VP8LSetBitPos(br, br->bit_pos_ + table->bits); + return table->value; +} + +// Reads packed symbol depending on GREEN channel +#define BITS_SPECIAL_MARKER 0x100 // something large enough (and a bit-mask) +#define PACKED_NON_LITERAL_CODE 0 // must be < NUM_LITERAL_CODES +static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group, + VP8LBitReader* const br, + uint32_t* const dst) { + const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1); + const HuffmanCode32 code = group->packed_table[val]; + assert(group->use_packed_table); + if (code.bits < BITS_SPECIAL_MARKER) { + VP8LSetBitPos(br, br->bit_pos_ + code.bits); + *dst = code.value; + return PACKED_NON_LITERAL_CODE; + } else { + VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER); + assert(code.value >= NUM_LITERAL_CODES); + return code.value; + } +} + +static int AccumulateHCode(HuffmanCode hcode, int shift, + HuffmanCode32* const huff) { + huff->bits += hcode.bits; + huff->value |= (uint32_t)hcode.value << shift; + assert(huff->bits <= HUFFMAN_TABLE_BITS); + return hcode.bits; +} + +static void BuildPackedTable(HTreeGroup* const htree_group) { + uint32_t code; + for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) { + uint32_t bits = code; + HuffmanCode32* const huff = &htree_group->packed_table[bits]; + HuffmanCode hcode = htree_group->htrees[GREEN][bits]; + if (hcode.value >= NUM_LITERAL_CODES) { + huff->bits = hcode.bits + BITS_SPECIAL_MARKER; + huff->value = hcode.value; + } else { + huff->bits = 0; + huff->value = 0; + bits >>= AccumulateHCode(hcode, 8, huff); + bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff); + bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff); + bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff); + (void)bits; + } + } +} + +static int ReadHuffmanCodeLengths( + VP8LDecoder* const dec, const int* const code_length_code_lengths, + int num_symbols, int* const code_lengths) { + int ok = 0; + VP8LBitReader* const br = &dec->br_; + int symbol; + int max_symbol; + int prev_code_len = DEFAULT_CODE_LENGTH; + HuffmanTables tables; + + if (!VP8LHuffmanTablesAllocate(1 << LENGTHS_TABLE_BITS, &tables) || + !VP8LBuildHuffmanTable(&tables, LENGTHS_TABLE_BITS, + code_length_code_lengths, NUM_CODE_LENGTH_CODES)) { + goto End; + } + + if (VP8LReadBits(br, 1)) { // use length + const int length_nbits = 2 + 2 * VP8LReadBits(br, 3); + max_symbol = 2 + VP8LReadBits(br, length_nbits); + if (max_symbol > num_symbols) { + goto End; + } + } else { + max_symbol = num_symbols; + } + + symbol = 0; + while (symbol < num_symbols) { + const HuffmanCode* p; + int code_len; + if (max_symbol-- == 0) break; + VP8LFillBitWindow(br); + p = &tables.curr_segment->start[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK]; + VP8LSetBitPos(br, br->bit_pos_ + p->bits); + code_len = p->value; + if (code_len < kCodeLengthLiterals) { + code_lengths[symbol++] = code_len; + if (code_len != 0) prev_code_len = code_len; + } else { + const int use_prev = (code_len == kCodeLengthRepeatCode); + const int slot = code_len - kCodeLengthLiterals; + const int extra_bits = kCodeLengthExtraBits[slot]; + const int repeat_offset = kCodeLengthRepeatOffsets[slot]; + int repeat = VP8LReadBits(br, extra_bits) + repeat_offset; + if (symbol + repeat > num_symbols) { + goto End; + } else { + const int length = use_prev ? prev_code_len : 0; + while (repeat-- > 0) code_lengths[symbol++] = length; + } + } + } + ok = 1; + + End: + VP8LHuffmanTablesDeallocate(&tables); + if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR; + return ok; +} + +// 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman +// tree. +static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec, + int* const code_lengths, + HuffmanTables* const table) { + int ok = 0; + int size = 0; + VP8LBitReader* const br = &dec->br_; + const int simple_code = VP8LReadBits(br, 1); + + memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths)); + + if (simple_code) { // Read symbols, codes & code lengths directly. + const int num_symbols = VP8LReadBits(br, 1) + 1; + const int first_symbol_len_code = VP8LReadBits(br, 1); + // The first code is either 1 bit or 8 bit code. + int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8); + code_lengths[symbol] = 1; + // The second code (if present), is always 8 bits long. + if (num_symbols == 2) { + symbol = VP8LReadBits(br, 8); + code_lengths[symbol] = 1; + } + ok = 1; + } else { // Decode Huffman-coded code lengths. + int i; + int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 }; + const int num_codes = VP8LReadBits(br, 4) + 4; + if (num_codes > NUM_CODE_LENGTH_CODES) { + dec->status_ = VP8_STATUS_BITSTREAM_ERROR; + return 0; + } + + for (i = 0; i < num_codes; ++i) { + code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3); + } + ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size, + code_lengths); + } + + ok = ok && !br->eos_; + if (ok) { + size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS, + code_lengths, alphabet_size); + } + if (!ok || size == 0) { + dec->status_ = VP8_STATUS_BITSTREAM_ERROR; + return 0; + } + return size; +} + +static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize, + int color_cache_bits, int allow_recursion) { + int i, j; + VP8LBitReader* const br = &dec->br_; + VP8LMetadata* const hdr = &dec->hdr_; + uint32_t* huffman_image = NULL; + HTreeGroup* htree_groups = NULL; + HuffmanTables* huffman_tables = &hdr->huffman_tables_; + int num_htree_groups = 1; + int num_htree_groups_max = 1; + int max_alphabet_size = 0; + int* code_lengths = NULL; + const int table_size = kTableSize[color_cache_bits]; + int* mapping = NULL; + int ok = 0; + + // Check the table has been 0 initialized (through InitMetadata). + assert(huffman_tables->root.start == NULL); + assert(huffman_tables->curr_segment == NULL); + + if (allow_recursion && VP8LReadBits(br, 1)) { + // use meta Huffman codes. + const int huffman_precision = VP8LReadBits(br, 3) + 2; + const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision); + const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision); + const int huffman_pixs = huffman_xsize * huffman_ysize; + if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec, + &huffman_image)) { + goto Error; + } + hdr->huffman_subsample_bits_ = huffman_precision; + for (i = 0; i < huffman_pixs; ++i) { + // The huffman data is stored in red and green bytes. + const int group = (huffman_image[i] >> 8) & 0xffff; + huffman_image[i] = group; + if (group >= num_htree_groups_max) { + num_htree_groups_max = group + 1; + } + } + // Check the validity of num_htree_groups_max. If it seems too big, use a + // smaller value for later. This will prevent big memory allocations to end + // up with a bad bitstream anyway. + // The value of 1000 is totally arbitrary. We know that num_htree_groups_max + // is smaller than (1 << 16) and should be smaller than the number of pixels + // (though the format allows it to be bigger). + if (num_htree_groups_max > 1000 || num_htree_groups_max > xsize * ysize) { + // Create a mapping from the used indices to the minimal set of used + // values [0, num_htree_groups) + mapping = (int*)WebPSafeMalloc(num_htree_groups_max, sizeof(*mapping)); + if (mapping == NULL) { + dec->status_ = VP8_STATUS_OUT_OF_MEMORY; + goto Error; + } + // -1 means a value is unmapped, and therefore unused in the Huffman + // image. + memset(mapping, 0xff, num_htree_groups_max * sizeof(*mapping)); + for (num_htree_groups = 0, i = 0; i < huffman_pixs; ++i) { + // Get the current mapping for the group and remap the Huffman image. + int* const mapped_group = &mapping[huffman_image[i]]; + if (*mapped_group == -1) *mapped_group = num_htree_groups++; + huffman_image[i] = *mapped_group; + } + } else { + num_htree_groups = num_htree_groups_max; + } + } + + if (br->eos_) goto Error; + + // Find maximum alphabet size for the htree group. + for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { + int alphabet_size = kAlphabetSize[j]; + if (j == 0 && color_cache_bits > 0) { + alphabet_size += 1 << color_cache_bits; + } + if (max_alphabet_size < alphabet_size) { + max_alphabet_size = alphabet_size; + } + } + + code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size, + sizeof(*code_lengths)); + htree_groups = VP8LHtreeGroupsNew(num_htree_groups); + + if (htree_groups == NULL || code_lengths == NULL || + !VP8LHuffmanTablesAllocate(num_htree_groups * table_size, + huffman_tables)) { + dec->status_ = VP8_STATUS_OUT_OF_MEMORY; + goto Error; + } + + for (i = 0; i < num_htree_groups_max; ++i) { + // If the index "i" is unused in the Huffman image, just make sure the + // coefficients are valid but do not store them. + if (mapping != NULL && mapping[i] == -1) { + for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { + int alphabet_size = kAlphabetSize[j]; + if (j == 0 && color_cache_bits > 0) { + alphabet_size += (1 << color_cache_bits); + } + // Passing in NULL so that nothing gets filled. + if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, NULL)) { + goto Error; + } + } + } else { + HTreeGroup* const htree_group = + &htree_groups[(mapping == NULL) ? i : mapping[i]]; + HuffmanCode** const htrees = htree_group->htrees; + int size; + int total_size = 0; + int is_trivial_literal = 1; + int max_bits = 0; + for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { + int alphabet_size = kAlphabetSize[j]; + if (j == 0 && color_cache_bits > 0) { + alphabet_size += (1 << color_cache_bits); + } + size = + ReadHuffmanCode(alphabet_size, dec, code_lengths, huffman_tables); + htrees[j] = huffman_tables->curr_segment->curr_table; + if (size == 0) { + goto Error; + } + if (is_trivial_literal && kLiteralMap[j] == 1) { + is_trivial_literal = (htrees[j]->bits == 0); + } + total_size += htrees[j]->bits; + huffman_tables->curr_segment->curr_table += size; + if (j <= ALPHA) { + int local_max_bits = code_lengths[0]; + int k; + for (k = 1; k < alphabet_size; ++k) { + if (code_lengths[k] > local_max_bits) { + local_max_bits = code_lengths[k]; + } + } + max_bits += local_max_bits; + } + } + htree_group->is_trivial_literal = is_trivial_literal; + htree_group->is_trivial_code = 0; + if (is_trivial_literal) { + const int red = htrees[RED][0].value; + const int blue = htrees[BLUE][0].value; + const int alpha = htrees[ALPHA][0].value; + htree_group->literal_arb = ((uint32_t)alpha << 24) | (red << 16) | blue; + if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) { + htree_group->is_trivial_code = 1; + htree_group->literal_arb |= htrees[GREEN][0].value << 8; + } + } + htree_group->use_packed_table = + !htree_group->is_trivial_code && (max_bits < HUFFMAN_PACKED_BITS); + if (htree_group->use_packed_table) BuildPackedTable(htree_group); + } + } + ok = 1; + + // All OK. Finalize pointers. + hdr->huffman_image_ = huffman_image; + hdr->num_htree_groups_ = num_htree_groups; + hdr->htree_groups_ = htree_groups; + + Error: + WebPSafeFree(code_lengths); + WebPSafeFree(mapping); + if (!ok) { + WebPSafeFree(huffman_image); + VP8LHuffmanTablesDeallocate(huffman_tables); + VP8LHtreeGroupsFree(htree_groups); + } + return ok; +} + +//------------------------------------------------------------------------------ +// Scaling. + +#if !defined(WEBP_REDUCE_SIZE) +static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) { + const int num_channels = 4; + const int in_width = io->mb_w; + const int out_width = io->scaled_width; + const int in_height = io->mb_h; + const int out_height = io->scaled_height; + const uint64_t work_size = 2 * num_channels * (uint64_t)out_width; + rescaler_t* work; // Rescaler work area. + const uint64_t scaled_data_size = (uint64_t)out_width; + uint32_t* scaled_data; // Temporary storage for scaled BGRA data. + const uint64_t memory_size = sizeof(*dec->rescaler) + + work_size * sizeof(*work) + + scaled_data_size * sizeof(*scaled_data); + uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory)); + if (memory == NULL) { + dec->status_ = VP8_STATUS_OUT_OF_MEMORY; + return 0; + } + assert(dec->rescaler_memory == NULL); + dec->rescaler_memory = memory; + + dec->rescaler = (WebPRescaler*)memory; + memory += sizeof(*dec->rescaler); + work = (rescaler_t*)memory; + memory += work_size * sizeof(*work); + scaled_data = (uint32_t*)memory; + + if (!WebPRescalerInit(dec->rescaler, in_width, in_height, + (uint8_t*)scaled_data, out_width, out_height, + 0, num_channels, work)) { + return 0; + } + return 1; +} +#endif // WEBP_REDUCE_SIZE + +//------------------------------------------------------------------------------ +// Export to ARGB + +#if !defined(WEBP_REDUCE_SIZE) + +// We have special "export" function since we need to convert from BGRA +static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace, + int rgba_stride, uint8_t* const rgba) { + uint32_t* const src = (uint32_t*)rescaler->dst; + uint8_t* dst = rgba; + const int dst_width = rescaler->dst_width; + int num_lines_out = 0; + while (WebPRescalerHasPendingOutput(rescaler)) { + WebPRescalerExportRow(rescaler); + WebPMultARGBRow(src, dst_width, 1); + VP8LConvertFromBGRA(src, dst_width, colorspace, dst); + dst += rgba_stride; + ++num_lines_out; + } + return num_lines_out; +} + +// Emit scaled rows. +static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec, + uint8_t* in, int in_stride, int mb_h, + uint8_t* const out, int out_stride) { + const WEBP_CSP_MODE colorspace = dec->output_->colorspace; + int num_lines_in = 0; + int num_lines_out = 0; + while (num_lines_in < mb_h) { + uint8_t* const row_in = in + (uint64_t)num_lines_in * in_stride; + uint8_t* const row_out = out + (uint64_t)num_lines_out * out_stride; + const int lines_left = mb_h - num_lines_in; + const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); + int lines_imported; + assert(needed_lines > 0 && needed_lines <= lines_left); + WebPMultARGBRows(row_in, in_stride, + dec->rescaler->src_width, needed_lines, 0); + lines_imported = + WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride); + assert(lines_imported == needed_lines); + num_lines_in += lines_imported; + num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out); + } + return num_lines_out; +} + +#endif // WEBP_REDUCE_SIZE + +// Emit rows without any scaling. +static int EmitRows(WEBP_CSP_MODE colorspace, + const uint8_t* row_in, int in_stride, + int mb_w, int mb_h, + uint8_t* const out, int out_stride) { + int lines = mb_h; + uint8_t* row_out = out; + while (lines-- > 0) { + VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out); + row_in += in_stride; + row_out += out_stride; + } + return mb_h; // Num rows out == num rows in. +} + +//------------------------------------------------------------------------------ +// Export to YUVA + +static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos, + const WebPDecBuffer* const output) { + const WebPYUVABuffer* const buf = &output->u.YUVA; + + // first, the luma plane + WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width); + + // then U/V planes + { + uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride; + uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride; + // even lines: store values + // odd lines: average with previous values + WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1)); + } + // Lastly, store alpha if needed. + if (buf->a != NULL) { + uint8_t* const a = buf->a + y_pos * buf->a_stride; +#if defined(WORDS_BIGENDIAN) + WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0); +#else + WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0); +#endif + } +} + +static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) { + WebPRescaler* const rescaler = dec->rescaler; + uint32_t* const src = (uint32_t*)rescaler->dst; + const int dst_width = rescaler->dst_width; + int num_lines_out = 0; + while (WebPRescalerHasPendingOutput(rescaler)) { + WebPRescalerExportRow(rescaler); + WebPMultARGBRow(src, dst_width, 1); + ConvertToYUVA(src, dst_width, y_pos, dec->output_); + ++y_pos; + ++num_lines_out; + } + return num_lines_out; +} + +static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec, + uint8_t* in, int in_stride, int mb_h) { + int num_lines_in = 0; + int y_pos = dec->last_out_row_; + while (num_lines_in < mb_h) { + const int lines_left = mb_h - num_lines_in; + const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); + int lines_imported; + WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0); + lines_imported = + WebPRescalerImport(dec->rescaler, lines_left, in, in_stride); + assert(lines_imported == needed_lines); + num_lines_in += lines_imported; + in += needed_lines * in_stride; + y_pos += ExportYUVA(dec, y_pos); + } + return y_pos; +} + +static int EmitRowsYUVA(const VP8LDecoder* const dec, + const uint8_t* in, int in_stride, + int mb_w, int num_rows) { + int y_pos = dec->last_out_row_; + while (num_rows-- > 0) { + ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_); + in += in_stride; + ++y_pos; + } + return y_pos; +} + +//------------------------------------------------------------------------------ +// Cropping. + +// Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and +// crop options. Also updates the input data pointer, so that it points to the +// start of the cropped window. Note that pixels are in ARGB format even if +// 'in_data' is uint8_t*. +// Returns true if the crop window is not empty. +static int SetCropWindow(VP8Io* const io, int y_start, int y_end, + uint8_t** const in_data, int pixel_stride) { + assert(y_start < y_end); + assert(io->crop_left < io->crop_right); + if (y_end > io->crop_bottom) { + y_end = io->crop_bottom; // make sure we don't overflow on last row. + } + if (y_start < io->crop_top) { + const int delta = io->crop_top - y_start; + y_start = io->crop_top; + *in_data += delta * pixel_stride; + } + if (y_start >= y_end) return 0; // Crop window is empty. + + *in_data += io->crop_left * sizeof(uint32_t); + + io->mb_y = y_start - io->crop_top; + io->mb_w = io->crop_right - io->crop_left; + io->mb_h = y_end - y_start; + return 1; // Non-empty crop window. +} + +//------------------------------------------------------------------------------ + +static WEBP_INLINE int GetMetaIndex( + const uint32_t* const image, int xsize, int bits, int x, int y) { + if (bits == 0) return 0; + return image[xsize * (y >> bits) + (x >> bits)]; +} + +static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr, + int x, int y) { + const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_, + hdr->huffman_subsample_bits_, x, y); + assert(meta_index < hdr->num_htree_groups_); + return hdr->htree_groups_ + meta_index; +} + +//------------------------------------------------------------------------------ +// Main loop, with custom row-processing function + +typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row); + +static void ApplyInverseTransforms(VP8LDecoder* const dec, + int start_row, int num_rows, + const uint32_t* const rows) { + int n = dec->next_transform_; + const int cache_pixs = dec->width_ * num_rows; + const int end_row = start_row + num_rows; + const uint32_t* rows_in = rows; + uint32_t* const rows_out = dec->argb_cache_; + + // Inverse transforms. + while (n-- > 0) { + VP8LTransform* const transform = &dec->transforms_[n]; + VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out); + rows_in = rows_out; + } + if (rows_in != rows_out) { + // No transform called, hence just copy. + memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out)); + } +} + +// Processes (transforms, scales & color-converts) the rows decoded after the +// last call. +static void ProcessRows(VP8LDecoder* const dec, int row) { + const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_; + const int num_rows = row - dec->last_row_; + + assert(row <= dec->io_->crop_bottom); + // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size + // of argb_cache_), but we currently don't need more than that. + assert(num_rows <= NUM_ARGB_CACHE_ROWS); + if (num_rows > 0) { // Emit output. + VP8Io* const io = dec->io_; + uint8_t* rows_data = (uint8_t*)dec->argb_cache_; + const int in_stride = io->width * sizeof(uint32_t); // in unit of RGBA + ApplyInverseTransforms(dec, dec->last_row_, num_rows, rows); + if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) { + // Nothing to output (this time). + } else { + const WebPDecBuffer* const output = dec->output_; + if (WebPIsRGBMode(output->colorspace)) { // convert to RGBA + const WebPRGBABuffer* const buf = &output->u.RGBA; + uint8_t* const rgba = + buf->rgba + (int64_t)dec->last_out_row_ * buf->stride; + const int num_rows_out = +#if !defined(WEBP_REDUCE_SIZE) + io->use_scaling ? + EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h, + rgba, buf->stride) : +#endif // WEBP_REDUCE_SIZE + EmitRows(output->colorspace, rows_data, in_stride, + io->mb_w, io->mb_h, rgba, buf->stride); + // Update 'last_out_row_'. + dec->last_out_row_ += num_rows_out; + } else { // convert to YUVA + dec->last_out_row_ = io->use_scaling ? + EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) : + EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h); + } + assert(dec->last_out_row_ <= output->height); + } + } + + // Update 'last_row_'. + dec->last_row_ = row; + assert(dec->last_row_ <= dec->height_); +} + +// Row-processing for the special case when alpha data contains only one +// transform (color indexing), and trivial non-green literals. +static int Is8bOptimizable(const VP8LMetadata* const hdr) { + int i; + if (hdr->color_cache_size_ > 0) return 0; + // When the Huffman tree contains only one symbol, we can skip the + // call to ReadSymbol() for red/blue/alpha channels. + for (i = 0; i < hdr->num_htree_groups_; ++i) { + HuffmanCode** const htrees = hdr->htree_groups_[i].htrees; + if (htrees[RED][0].bits > 0) return 0; + if (htrees[BLUE][0].bits > 0) return 0; + if (htrees[ALPHA][0].bits > 0) return 0; + } + return 1; +} + +static void AlphaApplyFilter(ALPHDecoder* const alph_dec, + int first_row, int last_row, + uint8_t* out, int stride) { + if (alph_dec->filter_ != WEBP_FILTER_NONE) { + int y; + const uint8_t* prev_line = alph_dec->prev_line_; + assert(WebPUnfilters[alph_dec->filter_] != NULL); + for (y = first_row; y < last_row; ++y) { + WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride); + prev_line = out; + out += stride; + } + alph_dec->prev_line_ = prev_line; + } +} + +static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) { + // For vertical and gradient filtering, we need to decode the part above the + // crop_top row, in order to have the correct spatial predictors. + ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque; + const int top_row = + (alph_dec->filter_ == WEBP_FILTER_NONE || + alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top + : dec->last_row_; + const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_; + assert(last_row <= dec->io_->crop_bottom); + if (last_row > first_row) { + // Special method for paletted alpha data. We only process the cropped area. + const int width = dec->io_->width; + uint8_t* out = alph_dec->output_ + width * first_row; + const uint8_t* const in = + (uint8_t*)dec->pixels_ + dec->width_ * first_row; + VP8LTransform* const transform = &dec->transforms_[0]; + assert(dec->next_transform_ == 1); + assert(transform->type_ == COLOR_INDEXING_TRANSFORM); + VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row, + in, out); + AlphaApplyFilter(alph_dec, first_row, last_row, out, width); + } + dec->last_row_ = dec->last_out_row_ = last_row; +} + +//------------------------------------------------------------------------------ +// Helper functions for fast pattern copy (8b and 32b) + +// cyclic rotation of pattern word +static WEBP_INLINE uint32_t Rotate8b(uint32_t V) { +#if defined(WORDS_BIGENDIAN) + return ((V & 0xff000000u) >> 24) | (V << 8); +#else + return ((V & 0xffu) << 24) | (V >> 8); +#endif +} + +// copy 1, 2 or 4-bytes pattern +static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst, + int length, uint32_t pattern) { + int i; + // align 'dst' to 4-bytes boundary. Adjust the pattern along the way. + while ((uintptr_t)dst & 3) { + *dst++ = *src++; + pattern = Rotate8b(pattern); + --length; + } + // Copy the pattern 4 bytes at a time. + for (i = 0; i < (length >> 2); ++i) { + ((uint32_t*)dst)[i] = pattern; + } + // Finish with left-overs. 'pattern' is still correctly positioned, + // so no Rotate8b() call is needed. + for (i <<= 2; i < length; ++i) { + dst[i] = src[i]; + } +} + +static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) { + const uint8_t* src = dst - dist; + if (length >= 8) { + uint32_t pattern = 0; + switch (dist) { + case 1: + pattern = src[0]; +#if defined(__arm__) || defined(_M_ARM) // arm doesn't like multiply that much + pattern |= pattern << 8; + pattern |= pattern << 16; +#elif defined(WEBP_USE_MIPS_DSP_R2) + __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern)); +#else + pattern = 0x01010101u * pattern; +#endif + break; + case 2: +#if !defined(WORDS_BIGENDIAN) + memcpy(&pattern, src, sizeof(uint16_t)); +#else + pattern = ((uint32_t)src[0] << 8) | src[1]; +#endif +#if defined(__arm__) || defined(_M_ARM) + pattern |= pattern << 16; +#elif defined(WEBP_USE_MIPS_DSP_R2) + __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern)); +#else + pattern = 0x00010001u * pattern; +#endif + break; + case 4: + memcpy(&pattern, src, sizeof(uint32_t)); + break; + default: + goto Copy; + } + CopySmallPattern8b(src, dst, length, pattern); + return; + } + Copy: + if (dist >= length) { // no overlap -> use memcpy() + memcpy(dst, src, length * sizeof(*dst)); + } else { + int i; + for (i = 0; i < length; ++i) dst[i] = src[i]; + } +} + +// copy pattern of 1 or 2 uint32_t's +static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src, + uint32_t* dst, + int length, uint64_t pattern) { + int i; + if ((uintptr_t)dst & 4) { // Align 'dst' to 8-bytes boundary. + *dst++ = *src++; + pattern = (pattern >> 32) | (pattern << 32); + --length; + } + assert(0 == ((uintptr_t)dst & 7)); + for (i = 0; i < (length >> 1); ++i) { + ((uint64_t*)dst)[i] = pattern; // Copy the pattern 8 bytes at a time. + } + if (length & 1) { // Finish with left-over. + dst[i << 1] = src[i << 1]; + } +} + +static WEBP_INLINE void CopyBlock32b(uint32_t* const dst, + int dist, int length) { + const uint32_t* const src = dst - dist; + if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) { + uint64_t pattern; + if (dist == 1) { + pattern = (uint64_t)src[0]; + pattern |= pattern << 32; + } else { + memcpy(&pattern, src, sizeof(pattern)); + } + CopySmallPattern32b(src, dst, length, pattern); + } else if (dist >= length) { // no overlap + memcpy(dst, src, length * sizeof(*dst)); + } else { + int i; + for (i = 0; i < length; ++i) dst[i] = src[i]; + } +} + +//------------------------------------------------------------------------------ + +static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data, + int width, int height, int last_row) { + int ok = 1; + int row = dec->last_pixel_ / width; + int col = dec->last_pixel_ % width; + VP8LBitReader* const br = &dec->br_; + VP8LMetadata* const hdr = &dec->hdr_; + int pos = dec->last_pixel_; // current position + const int end = width * height; // End of data + const int last = width * last_row; // Last pixel to decode + const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; + const int mask = hdr->huffman_mask_; + const HTreeGroup* htree_group = + (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL; + assert(pos <= end); + assert(last_row <= height); + assert(Is8bOptimizable(hdr)); + + while (!br->eos_ && pos < last) { + int code; + // Only update when changing tile. + if ((col & mask) == 0) { + htree_group = GetHtreeGroupForPos(hdr, col, row); + } + assert(htree_group != NULL); + VP8LFillBitWindow(br); + code = ReadSymbol(htree_group->htrees[GREEN], br); + if (code < NUM_LITERAL_CODES) { // Literal + data[pos] = code; + ++pos; + ++col; + if (col >= width) { + col = 0; + ++row; + if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) { + ExtractPalettedAlphaRows(dec, row); + } + } + } else if (code < len_code_limit) { // Backward reference + int dist_code, dist; + const int length_sym = code - NUM_LITERAL_CODES; + const int length = GetCopyLength(length_sym, br); + const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br); + VP8LFillBitWindow(br); + dist_code = GetCopyDistance(dist_symbol, br); + dist = PlaneCodeToDistance(width, dist_code); + if (pos >= dist && end - pos >= length) { + CopyBlock8b(data + pos, dist, length); + } else { + ok = 0; + goto End; + } + pos += length; + col += length; + while (col >= width) { + col -= width; + ++row; + if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) { + ExtractPalettedAlphaRows(dec, row); + } + } + if (pos < last && (col & mask)) { + htree_group = GetHtreeGroupForPos(hdr, col, row); + } + } else { // Not reached + ok = 0; + goto End; + } + br->eos_ = VP8LIsEndOfStream(br); + } + // Process the remaining rows corresponding to last row-block. + ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row); + + End: + br->eos_ = VP8LIsEndOfStream(br); + if (!ok || (br->eos_ && pos < end)) { + ok = 0; + dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED + : VP8_STATUS_BITSTREAM_ERROR; + } else { + dec->last_pixel_ = pos; + } + return ok; +} + +static void SaveState(VP8LDecoder* const dec, int last_pixel) { + assert(dec->incremental_); + dec->saved_br_ = dec->br_; + dec->saved_last_pixel_ = last_pixel; + if (dec->hdr_.color_cache_size_ > 0) { + VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_); + } +} + +static void RestoreState(VP8LDecoder* const dec) { + assert(dec->br_.eos_); + dec->status_ = VP8_STATUS_SUSPENDED; + dec->br_ = dec->saved_br_; + dec->last_pixel_ = dec->saved_last_pixel_; + if (dec->hdr_.color_cache_size_ > 0) { + VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_); + } +} + +#define SYNC_EVERY_N_ROWS 8 // minimum number of rows between check-points +static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data, + int width, int height, int last_row, + ProcessRowsFunc process_func) { + int row = dec->last_pixel_ / width; + int col = dec->last_pixel_ % width; + VP8LBitReader* const br = &dec->br_; + VP8LMetadata* const hdr = &dec->hdr_; + uint32_t* src = data + dec->last_pixel_; + uint32_t* last_cached = src; + uint32_t* const src_end = data + width * height; // End of data + uint32_t* const src_last = data + width * last_row; // Last pixel to decode + const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; + const int color_cache_limit = len_code_limit + hdr->color_cache_size_; + int next_sync_row = dec->incremental_ ? row : 1 << 24; + VP8LColorCache* const color_cache = + (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL; + const int mask = hdr->huffman_mask_; + const HTreeGroup* htree_group = + (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL; + assert(dec->last_row_ < last_row); + assert(src_last <= src_end); + + while (src < src_last) { + int code; + if (row >= next_sync_row) { + SaveState(dec, (int)(src - data)); + next_sync_row = row + SYNC_EVERY_N_ROWS; + } + // Only update when changing tile. Note we could use this test: + // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed + // but that's actually slower and needs storing the previous col/row. + if ((col & mask) == 0) { + htree_group = GetHtreeGroupForPos(hdr, col, row); + } + assert(htree_group != NULL); + if (htree_group->is_trivial_code) { + *src = htree_group->literal_arb; + goto AdvanceByOne; + } + VP8LFillBitWindow(br); + if (htree_group->use_packed_table) { + code = ReadPackedSymbols(htree_group, br, src); + if (VP8LIsEndOfStream(br)) break; + if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne; + } else { + code = ReadSymbol(htree_group->htrees[GREEN], br); + } + if (VP8LIsEndOfStream(br)) break; + if (code < NUM_LITERAL_CODES) { // Literal + if (htree_group->is_trivial_literal) { + *src = htree_group->literal_arb | (code << 8); + } else { + int red, blue, alpha; + red = ReadSymbol(htree_group->htrees[RED], br); + VP8LFillBitWindow(br); + blue = ReadSymbol(htree_group->htrees[BLUE], br); + alpha = ReadSymbol(htree_group->htrees[ALPHA], br); + if (VP8LIsEndOfStream(br)) break; + *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue; + } + AdvanceByOne: + ++src; + ++col; + if (col >= width) { + col = 0; + ++row; + if (process_func != NULL) { + if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) { + process_func(dec, row); + } + } + if (color_cache != NULL) { + while (last_cached < src) { + VP8LColorCacheInsert(color_cache, *last_cached++); + } + } + } + } else if (code < len_code_limit) { // Backward reference + int dist_code, dist; + const int length_sym = code - NUM_LITERAL_CODES; + const int length = GetCopyLength(length_sym, br); + const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br); + VP8LFillBitWindow(br); + dist_code = GetCopyDistance(dist_symbol, br); + dist = PlaneCodeToDistance(width, dist_code); + + if (VP8LIsEndOfStream(br)) break; + if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) { + goto Error; + } else { + CopyBlock32b(src, dist, length); + } + src += length; + col += length; + while (col >= width) { + col -= width; + ++row; + if (process_func != NULL) { + if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) { + process_func(dec, row); + } + } + } + // Because of the check done above (before 'src' was incremented by + // 'length'), the following holds true. + assert(src <= src_end); + if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row); + if (color_cache != NULL) { + while (last_cached < src) { + VP8LColorCacheInsert(color_cache, *last_cached++); + } + } + } else if (code < color_cache_limit) { // Color cache + const int key = code - len_code_limit; + assert(color_cache != NULL); + while (last_cached < src) { + VP8LColorCacheInsert(color_cache, *last_cached++); + } + *src = VP8LColorCacheLookup(color_cache, key); + goto AdvanceByOne; + } else { // Not reached + goto Error; + } + } + + br->eos_ = VP8LIsEndOfStream(br); + // In incremental decoding: + // br->eos_ && src < src_last: if 'br' reached the end of the buffer and + // 'src_last' has not been reached yet, there is not enough data. 'dec' has to + // be reset until there is more data. + // !br->eos_ && src < src_last: this cannot happen as either the buffer is + // fully read, either enough has been read to reach 'src_last'. + // src >= src_last: 'src_last' is reached, all is fine. 'src' can actually go + // beyond 'src_last' in case the image is cropped and an LZ77 goes further. + // The buffer might have been enough or there is some left. 'br->eos_' does + // not matter. + assert(!dec->incremental_ || (br->eos_ && src < src_last) || src >= src_last); + if (dec->incremental_ && br->eos_ && src < src_last) { + RestoreState(dec); + } else if ((dec->incremental_ && src >= src_last) || !br->eos_) { + // Process the remaining rows corresponding to last row-block. + if (process_func != NULL) { + process_func(dec, row > last_row ? last_row : row); + } + dec->status_ = VP8_STATUS_OK; + dec->last_pixel_ = (int)(src - data); // end-of-scan marker + } else { + // if not incremental, and we are past the end of buffer (eos_=1), then this + // is a real bitstream error. + goto Error; + } + return 1; + + Error: + dec->status_ = VP8_STATUS_BITSTREAM_ERROR; + return 0; +} + +// ----------------------------------------------------------------------------- +// VP8LTransform + +static void ClearTransform(VP8LTransform* const transform) { + WebPSafeFree(transform->data_); + transform->data_ = NULL; +} + +// For security reason, we need to remap the color map to span +// the total possible bundled values, and not just the num_colors. +static int ExpandColorMap(int num_colors, VP8LTransform* const transform) { + int i; + const int final_num_colors = 1 << (8 >> transform->bits_); + uint32_t* const new_color_map = + (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors, + sizeof(*new_color_map)); + if (new_color_map == NULL) { + return 0; + } else { + uint8_t* const data = (uint8_t*)transform->data_; + uint8_t* const new_data = (uint8_t*)new_color_map; + new_color_map[0] = transform->data_[0]; + for (i = 4; i < 4 * num_colors; ++i) { + // Equivalent to VP8LAddPixels(), on a byte-basis. + new_data[i] = (data[i] + new_data[i - 4]) & 0xff; + } + for (; i < 4 * final_num_colors; ++i) { + new_data[i] = 0; // black tail. + } + WebPSafeFree(transform->data_); + transform->data_ = new_color_map; + } + return 1; +} + +static int ReadTransform(int* const xsize, int const* ysize, + VP8LDecoder* const dec) { + int ok = 1; + VP8LBitReader* const br = &dec->br_; + VP8LTransform* transform = &dec->transforms_[dec->next_transform_]; + const VP8LImageTransformType type = + (VP8LImageTransformType)VP8LReadBits(br, 2); + + // Each transform type can only be present once in the stream. + if (dec->transforms_seen_ & (1U << type)) { + return 0; // Already there, let's not accept the second same transform. + } + dec->transforms_seen_ |= (1U << type); + + transform->type_ = type; + transform->xsize_ = *xsize; + transform->ysize_ = *ysize; + transform->data_ = NULL; + ++dec->next_transform_; + assert(dec->next_transform_ <= NUM_TRANSFORMS); + + switch (type) { + case PREDICTOR_TRANSFORM: + case CROSS_COLOR_TRANSFORM: + transform->bits_ = VP8LReadBits(br, 3) + 2; + ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_, + transform->bits_), + VP8LSubSampleSize(transform->ysize_, + transform->bits_), + 0, dec, &transform->data_); + break; + case COLOR_INDEXING_TRANSFORM: { + const int num_colors = VP8LReadBits(br, 8) + 1; + const int bits = (num_colors > 16) ? 0 + : (num_colors > 4) ? 1 + : (num_colors > 2) ? 2 + : 3; + *xsize = VP8LSubSampleSize(transform->xsize_, bits); + transform->bits_ = bits; + ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_); + ok = ok && ExpandColorMap(num_colors, transform); + break; + } + case SUBTRACT_GREEN_TRANSFORM: + break; + default: + assert(0); // can't happen + break; + } + + return ok; +} + +// ----------------------------------------------------------------------------- +// VP8LMetadata + +static void InitMetadata(VP8LMetadata* const hdr) { + assert(hdr != NULL); + memset(hdr, 0, sizeof(*hdr)); +} + +static void ClearMetadata(VP8LMetadata* const hdr) { + assert(hdr != NULL); + + WebPSafeFree(hdr->huffman_image_); + VP8LHuffmanTablesDeallocate(&hdr->huffman_tables_); + VP8LHtreeGroupsFree(hdr->htree_groups_); + VP8LColorCacheClear(&hdr->color_cache_); + VP8LColorCacheClear(&hdr->saved_color_cache_); + InitMetadata(hdr); +} + +// ----------------------------------------------------------------------------- +// VP8LDecoder + +VP8LDecoder* VP8LNew(void) { + VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec)); + if (dec == NULL) return NULL; + dec->status_ = VP8_STATUS_OK; + dec->state_ = READ_DIM; + + VP8LDspInit(); // Init critical function pointers. + + return dec; +} + +void VP8LClear(VP8LDecoder* const dec) { + int i; + if (dec == NULL) return; + ClearMetadata(&dec->hdr_); + + WebPSafeFree(dec->pixels_); + dec->pixels_ = NULL; + for (i = 0; i < dec->next_transform_; ++i) { + ClearTransform(&dec->transforms_[i]); + } + dec->next_transform_ = 0; + dec->transforms_seen_ = 0; + + WebPSafeFree(dec->rescaler_memory); + dec->rescaler_memory = NULL; + + dec->output_ = NULL; // leave no trace behind +} + +void VP8LDelete(VP8LDecoder* const dec) { + if (dec != NULL) { + VP8LClear(dec); + WebPSafeFree(dec); + } +} + +static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) { + VP8LMetadata* const hdr = &dec->hdr_; + const int num_bits = hdr->huffman_subsample_bits_; + dec->width_ = width; + dec->height_ = height; + + hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits); + hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1; +} + +static int DecodeImageStream(int xsize, int ysize, + int is_level0, + VP8LDecoder* const dec, + uint32_t** const decoded_data) { + int ok = 1; + int transform_xsize = xsize; + int transform_ysize = ysize; + VP8LBitReader* const br = &dec->br_; + VP8LMetadata* const hdr = &dec->hdr_; + uint32_t* data = NULL; + int color_cache_bits = 0; + + // Read the transforms (may recurse). + if (is_level0) { + while (ok && VP8LReadBits(br, 1)) { + ok = ReadTransform(&transform_xsize, &transform_ysize, dec); + } + } + + // Color cache + if (ok && VP8LReadBits(br, 1)) { + color_cache_bits = VP8LReadBits(br, 4); + ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS); + if (!ok) { + dec->status_ = VP8_STATUS_BITSTREAM_ERROR; + goto End; + } + } + + // Read the Huffman codes (may recurse). + ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize, + color_cache_bits, is_level0); + if (!ok) { + dec->status_ = VP8_STATUS_BITSTREAM_ERROR; + goto End; + } + + // Finish setting up the color-cache + if (color_cache_bits > 0) { + hdr->color_cache_size_ = 1 << color_cache_bits; + if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) { + dec->status_ = VP8_STATUS_OUT_OF_MEMORY; + ok = 0; + goto End; + } + } else { + hdr->color_cache_size_ = 0; + } + UpdateDecoder(dec, transform_xsize, transform_ysize); + + if (is_level0) { // level 0 complete + dec->state_ = READ_HDR; + goto End; + } + + { + const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize; + data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data)); + if (data == NULL) { + dec->status_ = VP8_STATUS_OUT_OF_MEMORY; + ok = 0; + goto End; + } + } + + // Use the Huffman trees to decode the LZ77 encoded data. + ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, + transform_ysize, NULL); + ok = ok && !br->eos_; + + End: + if (!ok) { + WebPSafeFree(data); + ClearMetadata(hdr); + } else { + if (decoded_data != NULL) { + *decoded_data = data; + } else { + // We allocate image data in this function only for transforms. At level 0 + // (that is: not the transforms), we shouldn't have allocated anything. + assert(data == NULL); + assert(is_level0); + } + dec->last_pixel_ = 0; // Reset for future DECODE_DATA_FUNC() calls. + if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind. + } + return ok; +} + +//------------------------------------------------------------------------------ +// Allocate internal buffers dec->pixels_ and dec->argb_cache_. +static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) { + const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_; + // Scratch buffer corresponding to top-prediction row for transforming the + // first row in the row-blocks. Not needed for paletted alpha. + const uint64_t cache_top_pixels = (uint16_t)final_width; + // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha. + const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS; + const uint64_t total_num_pixels = + num_pixels + cache_top_pixels + cache_pixels; + + assert(dec->width_ <= final_width); + dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t)); + if (dec->pixels_ == NULL) { + dec->argb_cache_ = NULL; // for soundness + dec->status_ = VP8_STATUS_OUT_OF_MEMORY; + return 0; + } + dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels; + return 1; +} + +static int AllocateInternalBuffers8b(VP8LDecoder* const dec) { + const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_; + dec->argb_cache_ = NULL; // for soundness + dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t)); + if (dec->pixels_ == NULL) { + dec->status_ = VP8_STATUS_OUT_OF_MEMORY; + return 0; + } + return 1; +} + +//------------------------------------------------------------------------------ + +// Special row-processing that only stores the alpha data. +static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) { + int cur_row = dec->last_row_; + int num_rows = last_row - cur_row; + const uint32_t* in = dec->pixels_ + dec->width_ * cur_row; + + assert(last_row <= dec->io_->crop_bottom); + while (num_rows > 0) { + const int num_rows_to_process = + (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows; + // Extract alpha (which is stored in the green plane). + ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque; + uint8_t* const output = alph_dec->output_; + const int width = dec->io_->width; // the final width (!= dec->width_) + const int cache_pixs = width * num_rows_to_process; + uint8_t* const dst = output + width * cur_row; + const uint32_t* const src = dec->argb_cache_; + ApplyInverseTransforms(dec, cur_row, num_rows_to_process, in); + WebPExtractGreen(src, dst, cache_pixs); + AlphaApplyFilter(alph_dec, + cur_row, cur_row + num_rows_to_process, dst, width); + num_rows -= num_rows_to_process; + in += num_rows_to_process * dec->width_; + cur_row += num_rows_to_process; + } + assert(cur_row == last_row); + dec->last_row_ = dec->last_out_row_ = last_row; +} + +int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec, + const uint8_t* const data, size_t data_size) { + int ok = 0; + VP8LDecoder* dec = VP8LNew(); + + if (dec == NULL) return 0; + + assert(alph_dec != NULL); + + dec->width_ = alph_dec->width_; + dec->height_ = alph_dec->height_; + dec->io_ = &alph_dec->io_; + dec->io_->opaque = alph_dec; + dec->io_->width = alph_dec->width_; + dec->io_->height = alph_dec->height_; + + dec->status_ = VP8_STATUS_OK; + VP8LInitBitReader(&dec->br_, data, data_size); + + if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) { + goto Err; + } + + // Special case: if alpha data uses only the color indexing transform and + // doesn't use color cache (a frequent case), we will use DecodeAlphaData() + // method that only needs allocation of 1 byte per pixel (alpha channel). + if (dec->next_transform_ == 1 && + dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM && + Is8bOptimizable(&dec->hdr_)) { + alph_dec->use_8b_decode_ = 1; + ok = AllocateInternalBuffers8b(dec); + } else { + // Allocate internal buffers (note that dec->width_ may have changed here). + alph_dec->use_8b_decode_ = 0; + ok = AllocateInternalBuffers32b(dec, alph_dec->width_); + } + + if (!ok) goto Err; + + // Only set here, once we are sure it is valid (to avoid thread races). + alph_dec->vp8l_dec_ = dec; + return 1; + + Err: + VP8LDelete(dec); + return 0; +} + +int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) { + VP8LDecoder* const dec = alph_dec->vp8l_dec_; + assert(dec != NULL); + assert(last_row <= dec->height_); + + if (dec->last_row_ >= last_row) { + return 1; // done + } + + if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing(); + + // Decode (with special row processing). + return alph_dec->use_8b_decode_ ? + DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_, + last_row) : + DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, + last_row, ExtractAlphaRows); +} + +//------------------------------------------------------------------------------ + +int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) { + int width, height, has_alpha; + + if (dec == NULL) return 0; + if (io == NULL) { + dec->status_ = VP8_STATUS_INVALID_PARAM; + return 0; + } + + dec->io_ = io; + dec->status_ = VP8_STATUS_OK; + VP8LInitBitReader(&dec->br_, io->data, io->data_size); + if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) { + dec->status_ = VP8_STATUS_BITSTREAM_ERROR; + goto Error; + } + dec->state_ = READ_DIM; + io->width = width; + io->height = height; + + if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error; + return 1; + + Error: + VP8LClear(dec); + assert(dec->status_ != VP8_STATUS_OK); + return 0; +} + +int VP8LDecodeImage(VP8LDecoder* const dec) { + VP8Io* io = NULL; + WebPDecParams* params = NULL; + + if (dec == NULL) return 0; + + assert(dec->hdr_.huffman_tables_.root.start != NULL); + assert(dec->hdr_.htree_groups_ != NULL); + assert(dec->hdr_.num_htree_groups_ > 0); + + io = dec->io_; + assert(io != NULL); + params = (WebPDecParams*)io->opaque; + assert(params != NULL); + + // Initialization. + if (dec->state_ != READ_DATA) { + dec->output_ = params->output; + assert(dec->output_ != NULL); + + if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) { + dec->status_ = VP8_STATUS_INVALID_PARAM; + goto Err; + } + + if (!AllocateInternalBuffers32b(dec, io->width)) goto Err; + +#if !defined(WEBP_REDUCE_SIZE) + if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err; +#else + if (io->use_scaling) { + dec->status_ = VP8_STATUS_INVALID_PARAM; + goto Err; + } +#endif + if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) { + // need the alpha-multiply functions for premultiplied output or rescaling + WebPInitAlphaProcessing(); + } + + if (!WebPIsRGBMode(dec->output_->colorspace)) { + WebPInitConvertARGBToYUV(); + if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing(); + } + if (dec->incremental_) { + if (dec->hdr_.color_cache_size_ > 0 && + dec->hdr_.saved_color_cache_.colors_ == NULL) { + if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_, + dec->hdr_.color_cache_.hash_bits_)) { + dec->status_ = VP8_STATUS_OUT_OF_MEMORY; + goto Err; + } + } + } + dec->state_ = READ_DATA; + } + + // Decode. + if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, + io->crop_bottom, ProcessRows)) { + goto Err; + } + + params->last_y = dec->last_out_row_; + return 1; + + Err: + VP8LClear(dec); + assert(dec->status_ != VP8_STATUS_OK); + return 0; +} + +//------------------------------------------------------------------------------ |