summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/av1_convolve_scale_test.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/aom/test/av1_convolve_scale_test.cc
parentInitial commit. (diff)
downloadthunderbird-upstream.tar.xz
thunderbird-upstream.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/test/av1_convolve_scale_test.cc')
-rw-r--r--third_party/aom/test/av1_convolve_scale_test.cc529
1 files changed, 529 insertions, 0 deletions
diff --git a/third_party/aom/test/av1_convolve_scale_test.cc b/third_party/aom/test/av1_convolve_scale_test.cc
new file mode 100644
index 0000000000..3b1698eeb4
--- /dev/null
+++ b/third_party/aom/test/av1_convolve_scale_test.cc
@@ -0,0 +1,529 @@
+/*
+ * Copyright (c) 2017, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <vector>
+
+#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
+
+#include "config/av1_rtcd.h"
+
+#include "aom_ports/aom_timer.h"
+#include "test/acm_random.h"
+#include "test/clear_system_state.h"
+#include "test/register_state_check.h"
+#include "test/util.h"
+
+#include "av1/common/common_data.h"
+
+namespace {
+const int kTestIters = 10;
+const int kPerfIters = 1000;
+
+const int kVPad = 32;
+const int kHPad = 32;
+const int kXStepQn = 16;
+const int kYStepQn = 20;
+
+using ::testing::make_tuple;
+using ::testing::tuple;
+using libaom_test::ACMRandom;
+
+enum NTaps { EIGHT_TAP, TEN_TAP, TWELVE_TAP };
+int NTapsToInt(NTaps ntaps) { return 8 + static_cast<int>(ntaps) * 2; }
+
+// A 16-bit filter with a configurable number of taps.
+class TestFilter {
+ public:
+ void set(NTaps ntaps, bool backwards);
+
+ InterpFilterParams params_;
+
+ private:
+ std::vector<int16_t> coeffs_;
+};
+
+void TestFilter::set(NTaps ntaps, bool backwards) {
+ const int n = NTapsToInt(ntaps);
+ assert(n >= 8 && n <= 12);
+
+ // The filter has n * SUBPEL_SHIFTS proper elements and an extra 8 bogus
+ // elements at the end so that convolutions can read off the end safely.
+ coeffs_.resize(n * SUBPEL_SHIFTS + 8);
+
+ // The coefficients are pretty much arbitrary, but convolutions shouldn't
+ // over or underflow. For the first filter (subpels = 0), we use an
+ // increasing or decreasing ramp (depending on the backwards parameter). We
+ // don't want any zero coefficients, so we make it have an x-intercept at -1
+ // or n. To ensure absence of under/overflow, we normalise the area under the
+ // ramp to be I = 1 << FILTER_BITS (so that convolving a constant function
+ // gives the identity).
+ //
+ // When increasing, the function has the form:
+ //
+ // f(x) = A * (x + 1)
+ //
+ // Summing and rearranging for A gives A = 2 * I / (n * (n + 1)). If the
+ // filter is reversed, we have the same A but with formula
+ //
+ // g(x) = A * (n - x)
+ const int I = 1 << FILTER_BITS;
+ const float A = 2.f * I / (n * (n + 1.f));
+ for (int i = 0; i < n; ++i) {
+ coeffs_[i] = static_cast<int16_t>(A * (backwards ? (n - i) : (i + 1)));
+ }
+
+ // For the other filters, make them slightly different by swapping two
+ // columns. Filter k will have the columns (k % n) and (7 * k) % n swapped.
+ const size_t filter_size = sizeof(coeffs_[0] * n);
+ int16_t *const filter0 = &coeffs_[0];
+ for (int k = 1; k < SUBPEL_SHIFTS; ++k) {
+ int16_t *filterk = &coeffs_[k * n];
+ memcpy(filterk, filter0, filter_size);
+
+ const int idx0 = k % n;
+ const int idx1 = (7 * k) % n;
+
+ const int16_t tmp = filterk[idx0];
+ filterk[idx0] = filterk[idx1];
+ filterk[idx1] = tmp;
+ }
+
+ // Finally, write some rubbish at the end to make sure we don't use it.
+ for (int i = 0; i < 8; ++i) coeffs_[n * SUBPEL_SHIFTS + i] = 123 + i;
+
+ // Fill in params
+ params_.filter_ptr = &coeffs_[0];
+ params_.taps = n;
+ // These are ignored by the functions being tested. Set them to whatever.
+ params_.subpel_shifts = SUBPEL_SHIFTS;
+ params_.interp_filter = EIGHTTAP_REGULAR;
+}
+
+template <typename SrcPixel>
+class TestImage {
+ public:
+ TestImage(int w, int h, int bd) : w_(w), h_(h), bd_(bd) {
+ assert(bd < 16);
+ assert(bd <= 8 * static_cast<int>(sizeof(SrcPixel)));
+
+ // Pad width by 2*kHPad and then round up to the next multiple of 16
+ // to get src_stride_. Add another 16 for dst_stride_ (to make sure
+ // something goes wrong if we use the wrong one)
+ src_stride_ = (w_ + 2 * kHPad + 15) & ~15;
+ dst_stride_ = src_stride_ + 16;
+
+ // Allocate image data
+ src_data_.resize(2 * src_block_size());
+ dst_data_.resize(2 * dst_block_size());
+ dst_16_data_.resize(2 * dst_block_size());
+ }
+
+ void Initialize(ACMRandom *rnd);
+ void Check() const;
+
+ int src_stride() const { return src_stride_; }
+ int dst_stride() const { return dst_stride_; }
+
+ int src_block_size() const { return (h_ + 2 * kVPad) * src_stride(); }
+ int dst_block_size() const { return (h_ + 2 * kVPad) * dst_stride(); }
+
+ const SrcPixel *GetSrcData(bool ref, bool borders) const {
+ const SrcPixel *block = &src_data_[ref ? 0 : src_block_size()];
+ return borders ? block : block + kHPad + src_stride_ * kVPad;
+ }
+
+ SrcPixel *GetDstData(bool ref, bool borders) {
+ SrcPixel *block = &dst_data_[ref ? 0 : dst_block_size()];
+ return borders ? block : block + kHPad + dst_stride_ * kVPad;
+ }
+
+ CONV_BUF_TYPE *GetDst16Data(bool ref, bool borders) {
+ CONV_BUF_TYPE *block = &dst_16_data_[ref ? 0 : dst_block_size()];
+ return borders ? block : block + kHPad + dst_stride_ * kVPad;
+ }
+
+ private:
+ int w_, h_, bd_;
+ int src_stride_, dst_stride_;
+
+ std::vector<SrcPixel> src_data_;
+ std::vector<SrcPixel> dst_data_;
+ std::vector<CONV_BUF_TYPE> dst_16_data_;
+};
+
+template <typename Pixel>
+void FillEdge(ACMRandom *rnd, int num_pixels, int bd, bool trash, Pixel *data) {
+ if (!trash) {
+ memset(data, 0, sizeof(*data) * num_pixels);
+ return;
+ }
+ const Pixel mask = (1 << bd) - 1;
+ for (int i = 0; i < num_pixels; ++i) data[i] = rnd->Rand16() & mask;
+}
+
+template <typename Pixel>
+void PrepBuffers(ACMRandom *rnd, int w, int h, int stride, int bd,
+ bool trash_edges, Pixel *data) {
+ assert(rnd);
+ const Pixel mask = (1 << bd) - 1;
+
+ // Fill in the first buffer with random data
+ // Top border
+ FillEdge(rnd, stride * kVPad, bd, trash_edges, data);
+ for (int r = 0; r < h; ++r) {
+ Pixel *row_data = data + (kVPad + r) * stride;
+ // Left border, contents, right border
+ FillEdge(rnd, kHPad, bd, trash_edges, row_data);
+ for (int c = 0; c < w; ++c) row_data[kHPad + c] = rnd->Rand16() & mask;
+ FillEdge(rnd, kHPad, bd, trash_edges, row_data + kHPad + w);
+ }
+ // Bottom border
+ FillEdge(rnd, stride * kVPad, bd, trash_edges, data + stride * (kVPad + h));
+
+ const int bpp = sizeof(*data);
+ const int block_elts = stride * (h + 2 * kVPad);
+ const int block_size = bpp * block_elts;
+
+ // Now copy that to the second buffer
+ memcpy(data + block_elts, data, block_size);
+}
+
+template <typename SrcPixel>
+void TestImage<SrcPixel>::Initialize(ACMRandom *rnd) {
+ PrepBuffers(rnd, w_, h_, src_stride_, bd_, false, &src_data_[0]);
+ PrepBuffers(rnd, w_, h_, dst_stride_, bd_, true, &dst_data_[0]);
+ PrepBuffers(rnd, w_, h_, dst_stride_, bd_, true, &dst_16_data_[0]);
+}
+
+template <typename SrcPixel>
+void TestImage<SrcPixel>::Check() const {
+ // If memcmp returns 0, there's nothing to do.
+ const int num_pixels = dst_block_size();
+ const SrcPixel *ref_dst = &dst_data_[0];
+ const SrcPixel *tst_dst = &dst_data_[num_pixels];
+
+ const CONV_BUF_TYPE *ref_16_dst = &dst_16_data_[0];
+ const CONV_BUF_TYPE *tst_16_dst = &dst_16_data_[num_pixels];
+
+ if (0 == memcmp(ref_dst, tst_dst, sizeof(*ref_dst) * num_pixels)) {
+ if (0 == memcmp(ref_16_dst, tst_16_dst, sizeof(*ref_16_dst) * num_pixels))
+ return;
+ }
+ // Otherwise, iterate through the buffer looking for differences (including
+ // the edges)
+ const int stride = dst_stride_;
+ for (int r = 0; r < h_ + 2 * kVPad; ++r) {
+ for (int c = 0; c < w_ + 2 * kHPad; ++c) {
+ const int32_t ref_value = ref_dst[r * stride + c];
+ const int32_t tst_value = tst_dst[r * stride + c];
+
+ EXPECT_EQ(tst_value, ref_value)
+ << "Error at row: " << (r - kVPad) << ", col: " << (c - kHPad);
+ }
+ }
+
+ for (int r = 0; r < h_ + 2 * kVPad; ++r) {
+ for (int c = 0; c < w_ + 2 * kHPad; ++c) {
+ const int32_t ref_value = ref_16_dst[r * stride + c];
+ const int32_t tst_value = tst_16_dst[r * stride + c];
+
+ EXPECT_EQ(tst_value, ref_value)
+ << "Error in 16 bit buffer "
+ << "Error at row: " << (r - kVPad) << ", col: " << (c - kHPad);
+ }
+ }
+}
+
+typedef tuple<int, int> BlockDimension;
+
+struct BaseParams {
+ BaseParams(BlockDimension dims, NTaps ntaps_x, NTaps ntaps_y, bool avg)
+ : dims(dims), ntaps_x(ntaps_x), ntaps_y(ntaps_y), avg(avg) {}
+
+ BlockDimension dims;
+ NTaps ntaps_x, ntaps_y;
+ bool avg;
+};
+
+template <typename SrcPixel>
+class ConvolveScaleTestBase : public ::testing::Test {
+ public:
+ ConvolveScaleTestBase() : image_(NULL) {}
+ virtual ~ConvolveScaleTestBase() { delete image_; }
+ virtual void TearDown() { libaom_test::ClearSystemState(); }
+
+ // Implemented by subclasses (SetUp depends on the parameters passed
+ // in and RunOne depends on the function to be tested. These can't
+ // be templated for low/high bit depths because they have different
+ // numbers of parameters)
+ virtual void SetUp() = 0;
+ virtual void RunOne(bool ref) = 0;
+
+ protected:
+ void SetParams(const BaseParams &params, int bd) {
+ width_ = ::testing::get<0>(params.dims);
+ height_ = ::testing::get<1>(params.dims);
+ ntaps_x_ = params.ntaps_x;
+ ntaps_y_ = params.ntaps_y;
+ bd_ = bd;
+ avg_ = params.avg;
+
+ filter_x_.set(ntaps_x_, false);
+ filter_y_.set(ntaps_y_, true);
+ convolve_params_ =
+ get_conv_params_no_round(avg_ != false, 0, NULL, 0, 1, bd);
+
+ delete image_;
+ image_ = new TestImage<SrcPixel>(width_, height_, bd_);
+ }
+
+ void SetConvParamOffset(int i, int j, int is_compound, int do_average,
+ int use_jnt_comp_avg) {
+ if (i == -1 && j == -1) {
+ convolve_params_.use_jnt_comp_avg = use_jnt_comp_avg;
+ convolve_params_.is_compound = is_compound;
+ convolve_params_.do_average = do_average;
+ } else {
+ convolve_params_.use_jnt_comp_avg = use_jnt_comp_avg;
+ convolve_params_.fwd_offset = quant_dist_lookup_table[i][j][0];
+ convolve_params_.bck_offset = quant_dist_lookup_table[i][j][1];
+ convolve_params_.is_compound = is_compound;
+ convolve_params_.do_average = do_average;
+ }
+ }
+
+ void Run() {
+ ACMRandom rnd(ACMRandom::DeterministicSeed());
+ for (int i = 0; i < kTestIters; ++i) {
+ int is_compound = 0;
+ SetConvParamOffset(-1, -1, is_compound, 0, 0);
+ Prep(&rnd);
+ RunOne(true);
+ RunOne(false);
+ image_->Check();
+
+ is_compound = 1;
+ for (int do_average = 0; do_average < 2; do_average++) {
+ for (int use_jnt_comp_avg = 0; use_jnt_comp_avg < 2;
+ use_jnt_comp_avg++) {
+ for (int j = 0; j < 2; ++j) {
+ for (int k = 0; k < 4; ++k) {
+ SetConvParamOffset(j, k, is_compound, do_average,
+ use_jnt_comp_avg);
+ Prep(&rnd);
+ RunOne(true);
+ RunOne(false);
+ image_->Check();
+ }
+ }
+ }
+ }
+ }
+ }
+
+ void SpeedTest() {
+ ACMRandom rnd(ACMRandom::DeterministicSeed());
+ Prep(&rnd);
+
+ aom_usec_timer ref_timer;
+ aom_usec_timer_start(&ref_timer);
+ for (int i = 0; i < kPerfIters; ++i) RunOne(true);
+ aom_usec_timer_mark(&ref_timer);
+ const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer);
+
+ aom_usec_timer tst_timer;
+ aom_usec_timer_start(&tst_timer);
+ for (int i = 0; i < kPerfIters; ++i) RunOne(false);
+ aom_usec_timer_mark(&tst_timer);
+ const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer);
+
+ std::cout << "[ ] C time = " << ref_time / 1000
+ << " ms, SIMD time = " << tst_time / 1000 << " ms\n";
+
+ EXPECT_GT(ref_time, tst_time)
+ << "Error: CDEFSpeedTest, SIMD slower than C.\n"
+ << "C time: " << ref_time << " us\n"
+ << "SIMD time: " << tst_time << " us\n";
+ }
+
+ static int RandomSubpel(ACMRandom *rnd) {
+ const uint8_t subpel_mode = rnd->Rand8();
+ if ((subpel_mode & 7) == 0) {
+ return 0;
+ } else if ((subpel_mode & 7) == 1) {
+ return SCALE_SUBPEL_SHIFTS - 1;
+ } else {
+ return 1 + rnd->PseudoUniform(SCALE_SUBPEL_SHIFTS - 2);
+ }
+ }
+
+ void Prep(ACMRandom *rnd) {
+ assert(rnd);
+
+ // Choose subpel_x_ and subpel_y_. They should be less than
+ // SCALE_SUBPEL_SHIFTS; we also want to add extra weight to "interesting"
+ // values: 0 and SCALE_SUBPEL_SHIFTS - 1
+ subpel_x_ = RandomSubpel(rnd);
+ subpel_y_ = RandomSubpel(rnd);
+
+ image_->Initialize(rnd);
+ }
+
+ int width_, height_, bd_;
+ NTaps ntaps_x_, ntaps_y_;
+ bool avg_;
+ int subpel_x_, subpel_y_;
+ TestFilter filter_x_, filter_y_;
+ TestImage<SrcPixel> *image_;
+ ConvolveParams convolve_params_;
+};
+
+typedef tuple<int, int> BlockDimension;
+
+typedef void (*LowbdConvolveFunc)(const uint8_t *src, int src_stride,
+ uint8_t *dst, int dst_stride, int w, int h,
+ const InterpFilterParams *filter_params_x,
+ const InterpFilterParams *filter_params_y,
+ const int subpel_x_qn, const int x_step_qn,
+ const int subpel_y_qn, const int y_step_qn,
+ ConvolveParams *conv_params);
+
+// Test parameter list:
+// <tst_fun, dims, ntaps_x, ntaps_y, avg>
+typedef tuple<LowbdConvolveFunc, BlockDimension, NTaps, NTaps, bool>
+ LowBDParams;
+
+class LowBDConvolveScaleTest
+ : public ConvolveScaleTestBase<uint8_t>,
+ public ::testing::WithParamInterface<LowBDParams> {
+ public:
+ virtual ~LowBDConvolveScaleTest() {}
+
+ void SetUp() {
+ tst_fun_ = GET_PARAM(0);
+
+ const BlockDimension &block = GET_PARAM(1);
+ const NTaps ntaps_x = GET_PARAM(2);
+ const NTaps ntaps_y = GET_PARAM(3);
+ const int bd = 8;
+ const bool avg = GET_PARAM(4);
+
+ SetParams(BaseParams(block, ntaps_x, ntaps_y, avg), bd);
+ }
+
+ void RunOne(bool ref) {
+ const uint8_t *src = image_->GetSrcData(ref, false);
+ uint8_t *dst = image_->GetDstData(ref, false);
+ convolve_params_.dst = image_->GetDst16Data(ref, false);
+ const int src_stride = image_->src_stride();
+ const int dst_stride = image_->dst_stride();
+ if (ref) {
+ av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, width_, height_,
+ &filter_x_.params_, &filter_y_.params_, subpel_x_,
+ kXStepQn, subpel_y_, kYStepQn, &convolve_params_);
+ } else {
+ tst_fun_(src, src_stride, dst, dst_stride, width_, height_,
+ &filter_x_.params_, &filter_y_.params_, subpel_x_, kXStepQn,
+ subpel_y_, kYStepQn, &convolve_params_);
+ }
+ }
+
+ private:
+ LowbdConvolveFunc tst_fun_;
+};
+
+const BlockDimension kBlockDim[] = {
+ make_tuple(2, 2), make_tuple(2, 4), make_tuple(4, 4),
+ make_tuple(4, 8), make_tuple(8, 4), make_tuple(8, 8),
+ make_tuple(8, 16), make_tuple(16, 8), make_tuple(16, 16),
+ make_tuple(16, 32), make_tuple(32, 16), make_tuple(32, 32),
+ make_tuple(32, 64), make_tuple(64, 32), make_tuple(64, 64),
+ make_tuple(64, 128), make_tuple(128, 64), make_tuple(128, 128),
+};
+
+const NTaps kNTaps[] = { EIGHT_TAP };
+
+TEST_P(LowBDConvolveScaleTest, Check) { Run(); }
+TEST_P(LowBDConvolveScaleTest, DISABLED_Speed) { SpeedTest(); }
+
+INSTANTIATE_TEST_CASE_P(
+ SSE4_1, LowBDConvolveScaleTest,
+ ::testing::Combine(::testing::Values(av1_convolve_2d_scale_sse4_1),
+ ::testing::ValuesIn(kBlockDim),
+ ::testing::ValuesIn(kNTaps), ::testing::ValuesIn(kNTaps),
+ ::testing::Bool()));
+
+typedef void (*HighbdConvolveFunc)(const uint16_t *src, int src_stride,
+ uint16_t *dst, int dst_stride, int w, int h,
+ const InterpFilterParams *filter_params_x,
+ const InterpFilterParams *filter_params_y,
+ const int subpel_x_qn, const int x_step_qn,
+ const int subpel_y_qn, const int y_step_qn,
+ ConvolveParams *conv_params, int bd);
+
+// Test parameter list:
+// <tst_fun, dims, ntaps_x, ntaps_y, avg, bd>
+typedef tuple<HighbdConvolveFunc, BlockDimension, NTaps, NTaps, bool, int>
+ HighBDParams;
+
+class HighBDConvolveScaleTest
+ : public ConvolveScaleTestBase<uint16_t>,
+ public ::testing::WithParamInterface<HighBDParams> {
+ public:
+ virtual ~HighBDConvolveScaleTest() {}
+
+ void SetUp() {
+ tst_fun_ = GET_PARAM(0);
+
+ const BlockDimension &block = GET_PARAM(1);
+ const NTaps ntaps_x = GET_PARAM(2);
+ const NTaps ntaps_y = GET_PARAM(3);
+ const bool avg = GET_PARAM(4);
+ const int bd = GET_PARAM(5);
+
+ SetParams(BaseParams(block, ntaps_x, ntaps_y, avg), bd);
+ }
+
+ void RunOne(bool ref) {
+ const uint16_t *src = image_->GetSrcData(ref, false);
+ uint16_t *dst = image_->GetDstData(ref, false);
+ convolve_params_.dst = image_->GetDst16Data(ref, false);
+ const int src_stride = image_->src_stride();
+ const int dst_stride = image_->dst_stride();
+
+ if (ref) {
+ av1_highbd_convolve_2d_scale_c(
+ src, src_stride, dst, dst_stride, width_, height_, &filter_x_.params_,
+ &filter_y_.params_, subpel_x_, kXStepQn, subpel_y_, kYStepQn,
+ &convolve_params_, bd_);
+ } else {
+ tst_fun_(src, src_stride, dst, dst_stride, width_, height_,
+ &filter_x_.params_, &filter_y_.params_, subpel_x_, kXStepQn,
+ subpel_y_, kYStepQn, &convolve_params_, bd_);
+ }
+ }
+
+ private:
+ HighbdConvolveFunc tst_fun_;
+};
+
+const int kBDs[] = { 8, 10, 12 };
+
+TEST_P(HighBDConvolveScaleTest, Check) { Run(); }
+TEST_P(HighBDConvolveScaleTest, DISABLED_Speed) { SpeedTest(); }
+
+INSTANTIATE_TEST_CASE_P(
+ SSE4_1, HighBDConvolveScaleTest,
+ ::testing::Combine(::testing::Values(av1_highbd_convolve_2d_scale_sse4_1),
+ ::testing::ValuesIn(kBlockDim),
+ ::testing::ValuesIn(kNTaps), ::testing::ValuesIn(kNTaps),
+ ::testing::Bool(), ::testing::ValuesIn(kBDs)));
+} // namespace