summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/butteraugli/butteraugli.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/jpeg-xl/lib/jxl/butteraugli/butteraugli.cc
parentInitial commit. (diff)
downloadthunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz
thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/butteraugli/butteraugli.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/butteraugli/butteraugli.cc1988
1 files changed, 1988 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/butteraugli/butteraugli.cc b/third_party/jpeg-xl/lib/jxl/butteraugli/butteraugli.cc
new file mode 100644
index 0000000000..a412becd0d
--- /dev/null
+++ b/third_party/jpeg-xl/lib/jxl/butteraugli/butteraugli.cc
@@ -0,0 +1,1988 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+//
+// Author: Jyrki Alakuijala (jyrki.alakuijala@gmail.com)
+//
+// The physical architecture of butteraugli is based on the following naming
+// convention:
+// * Opsin - dynamics of the photosensitive chemicals in the retina
+// with their immediate electrical processing
+// * Xyb - hybrid opponent/trichromatic color space
+// x is roughly red-subtract-green.
+// y is yellow.
+// b is blue.
+// Xyb values are computed from Opsin mixing, not directly from rgb.
+// * Mask - for visual masking
+// * Hf - color modeling for spatially high-frequency features
+// * Lf - color modeling for spatially low-frequency features
+// * Diffmap - to cluster and build an image of error between the images
+// * Blur - to hold the smoothing code
+
+#include "lib/jxl/butteraugli/butteraugli.h"
+
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <algorithm>
+#include <array>
+#include <cmath>
+#include <new>
+#include <vector>
+
+#if JXL_PROFILER_ENABLED
+#include <chrono>
+#endif // JXL_PROFILER_ENABLED
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "lib/jxl/butteraugli/butteraugli.cc"
+#include <hwy/foreach_target.h>
+
+#include "lib/jxl/base/printf_macros.h"
+#include "lib/jxl/base/profiler.h"
+#include "lib/jxl/base/status.h"
+#include "lib/jxl/convolve.h"
+#include "lib/jxl/fast_math-inl.h"
+#include "lib/jxl/gauss_blur.h"
+#include "lib/jxl/image_ops.h"
+
+#ifndef JXL_BUTTERAUGLI_ONCE
+#define JXL_BUTTERAUGLI_ONCE
+
+namespace jxl {
+
+std::vector<float> ComputeKernel(float sigma) {
+ const float m = 2.25; // Accuracy increases when m is increased.
+ const double scaler = -1.0 / (2.0 * sigma * sigma);
+ const int diff = std::max<int>(1, m * std::fabs(sigma));
+ std::vector<float> kernel(2 * diff + 1);
+ for (int i = -diff; i <= diff; ++i) {
+ kernel[i + diff] = std::exp(scaler * i * i);
+ }
+ return kernel;
+}
+
+void ConvolveBorderColumn(const ImageF& in, const std::vector<float>& kernel,
+ const size_t x, float* BUTTERAUGLI_RESTRICT row_out) {
+ const size_t offset = kernel.size() / 2;
+ int minx = x < offset ? 0 : x - offset;
+ int maxx = std::min<int>(in.xsize() - 1, x + offset);
+ float weight = 0.0f;
+ for (int j = minx; j <= maxx; ++j) {
+ weight += kernel[j - x + offset];
+ }
+ float scale = 1.0f / weight;
+ for (size_t y = 0; y < in.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y);
+ float sum = 0.0f;
+ for (int j = minx; j <= maxx; ++j) {
+ sum += row_in[j] * kernel[j - x + offset];
+ }
+ row_out[y] = sum * scale;
+ }
+}
+
+// Computes a horizontal convolution and transposes the result.
+void ConvolutionWithTranspose(const ImageF& in,
+ const std::vector<float>& kernel,
+ ImageF* BUTTERAUGLI_RESTRICT out) {
+ PROFILER_FUNC;
+ JXL_CHECK(out->xsize() == in.ysize());
+ JXL_CHECK(out->ysize() == in.xsize());
+ const size_t len = kernel.size();
+ const size_t offset = len / 2;
+ float weight_no_border = 0.0f;
+ for (size_t j = 0; j < len; ++j) {
+ weight_no_border += kernel[j];
+ }
+ const float scale_no_border = 1.0f / weight_no_border;
+ const size_t border1 = std::min(in.xsize(), offset);
+ const size_t border2 = in.xsize() > offset ? in.xsize() - offset : 0;
+ std::vector<float> scaled_kernel(len / 2 + 1);
+ for (size_t i = 0; i <= len / 2; ++i) {
+ scaled_kernel[i] = kernel[i] * scale_no_border;
+ }
+
+ // middle
+ switch (len) {
+ case 7: {
+ PROFILER_ZONE("conv7");
+ const float sk0 = scaled_kernel[0];
+ const float sk1 = scaled_kernel[1];
+ const float sk2 = scaled_kernel[2];
+ const float sk3 = scaled_kernel[3];
+ for (size_t y = 0; y < in.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
+ for (size_t x = border1; x < border2; ++x, ++row_in) {
+ const float sum0 = (row_in[0] + row_in[6]) * sk0;
+ const float sum1 = (row_in[1] + row_in[5]) * sk1;
+ const float sum2 = (row_in[2] + row_in[4]) * sk2;
+ const float sum = (row_in[3]) * sk3 + sum0 + sum1 + sum2;
+ float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
+ row_out[y] = sum;
+ }
+ }
+ } break;
+ case 13: {
+ PROFILER_ZONE("conv15");
+ for (size_t y = 0; y < in.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
+ for (size_t x = border1; x < border2; ++x, ++row_in) {
+ float sum0 = (row_in[0] + row_in[12]) * scaled_kernel[0];
+ float sum1 = (row_in[1] + row_in[11]) * scaled_kernel[1];
+ float sum2 = (row_in[2] + row_in[10]) * scaled_kernel[2];
+ float sum3 = (row_in[3] + row_in[9]) * scaled_kernel[3];
+ sum0 += (row_in[4] + row_in[8]) * scaled_kernel[4];
+ sum1 += (row_in[5] + row_in[7]) * scaled_kernel[5];
+ const float sum = (row_in[6]) * scaled_kernel[6];
+ float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
+ row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
+ }
+ }
+ break;
+ }
+ case 15: {
+ PROFILER_ZONE("conv15");
+ for (size_t y = 0; y < in.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
+ for (size_t x = border1; x < border2; ++x, ++row_in) {
+ float sum0 = (row_in[0] + row_in[14]) * scaled_kernel[0];
+ float sum1 = (row_in[1] + row_in[13]) * scaled_kernel[1];
+ float sum2 = (row_in[2] + row_in[12]) * scaled_kernel[2];
+ float sum3 = (row_in[3] + row_in[11]) * scaled_kernel[3];
+ sum0 += (row_in[4] + row_in[10]) * scaled_kernel[4];
+ sum1 += (row_in[5] + row_in[9]) * scaled_kernel[5];
+ sum2 += (row_in[6] + row_in[8]) * scaled_kernel[6];
+ const float sum = (row_in[7]) * scaled_kernel[7];
+ float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
+ row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
+ }
+ }
+ break;
+ }
+ case 33: {
+ PROFILER_ZONE("conv33");
+ for (size_t y = 0; y < in.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset;
+ for (size_t x = border1; x < border2; ++x, ++row_in) {
+ float sum0 = (row_in[0] + row_in[32]) * scaled_kernel[0];
+ float sum1 = (row_in[1] + row_in[31]) * scaled_kernel[1];
+ float sum2 = (row_in[2] + row_in[30]) * scaled_kernel[2];
+ float sum3 = (row_in[3] + row_in[29]) * scaled_kernel[3];
+ sum0 += (row_in[4] + row_in[28]) * scaled_kernel[4];
+ sum1 += (row_in[5] + row_in[27]) * scaled_kernel[5];
+ sum2 += (row_in[6] + row_in[26]) * scaled_kernel[6];
+ sum3 += (row_in[7] + row_in[25]) * scaled_kernel[7];
+ sum0 += (row_in[8] + row_in[24]) * scaled_kernel[8];
+ sum1 += (row_in[9] + row_in[23]) * scaled_kernel[9];
+ sum2 += (row_in[10] + row_in[22]) * scaled_kernel[10];
+ sum3 += (row_in[11] + row_in[21]) * scaled_kernel[11];
+ sum0 += (row_in[12] + row_in[20]) * scaled_kernel[12];
+ sum1 += (row_in[13] + row_in[19]) * scaled_kernel[13];
+ sum2 += (row_in[14] + row_in[18]) * scaled_kernel[14];
+ sum3 += (row_in[15] + row_in[17]) * scaled_kernel[15];
+ const float sum = (row_in[16]) * scaled_kernel[16];
+ float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
+ row_out[y] = sum + sum0 + sum1 + sum2 + sum3;
+ }
+ }
+ break;
+ }
+ default:
+ printf("Warning: Unexpected kernel size! %" PRIuS "\n", len);
+ for (size_t y = 0; y < in.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y);
+ for (size_t x = border1; x < border2; ++x) {
+ const int d = x - offset;
+ float* BUTTERAUGLI_RESTRICT row_out = out->Row(x);
+ float sum = 0.0f;
+ size_t j;
+ for (j = 0; j <= len / 2; ++j) {
+ sum += row_in[d + j] * scaled_kernel[j];
+ }
+ for (; j < len; ++j) {
+ sum += row_in[d + j] * scaled_kernel[len - 1 - j];
+ }
+ row_out[y] = sum;
+ }
+ }
+ }
+ // left border
+ for (size_t x = 0; x < border1; ++x) {
+ ConvolveBorderColumn(in, kernel, x, out->Row(x));
+ }
+
+ // right border
+ for (size_t x = border2; x < in.xsize(); ++x) {
+ ConvolveBorderColumn(in, kernel, x, out->Row(x));
+ }
+}
+
+// A blur somewhat similar to a 2D Gaussian blur.
+// See: https://en.wikipedia.org/wiki/Gaussian_blur
+//
+// This is a bottleneck because the sigma can be quite large (>7). We can use
+// gauss_blur.cc (runtime independent of sigma, closer to a 4*sigma truncated
+// Gaussian and our 2.25 in ComputeKernel), but its boundary conditions are
+// zero-valued. This leads to noticeable differences at the edges of diffmaps.
+// We retain a special case for 5x5 kernels (even faster than gauss_blur),
+// optionally use gauss_blur followed by fixup of the borders for large images,
+// or fall back to the previous truncated FIR followed by a transpose.
+void Blur(const ImageF& in, float sigma, const ButteraugliParams& params,
+ BlurTemp* temp, ImageF* out) {
+ std::vector<float> kernel = ComputeKernel(sigma);
+ // Separable5 does an in-place convolution, so this fast path is not safe if
+ // in aliases out.
+ if (kernel.size() == 5 && &in != out) {
+ float sum_weights = 0.0f;
+ for (const float w : kernel) {
+ sum_weights += w;
+ }
+ const float scale = 1.0f / sum_weights;
+ const float w0 = kernel[2] * scale;
+ const float w1 = kernel[1] * scale;
+ const float w2 = kernel[0] * scale;
+ const WeightsSeparable5 weights = {
+ {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)},
+ {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)},
+ };
+ Separable5(in, Rect(in), weights, /*pool=*/nullptr, out);
+ return;
+ }
+
+ ImageF* JXL_RESTRICT temp_t = temp->GetTransposed(in);
+ ConvolutionWithTranspose(in, kernel, temp_t);
+ ConvolutionWithTranspose(*temp_t, kernel, out);
+}
+
+// Allows PaddedMaltaUnit to call either function via overloading.
+struct MaltaTagLF {};
+struct MaltaTag {};
+
+} // namespace jxl
+
+#endif // JXL_BUTTERAUGLI_ONCE
+
+#include <hwy/highway.h>
+HWY_BEFORE_NAMESPACE();
+namespace jxl {
+namespace HWY_NAMESPACE {
+
+// These templates are not found via ADL.
+using hwy::HWY_NAMESPACE::Abs;
+using hwy::HWY_NAMESPACE::Div;
+using hwy::HWY_NAMESPACE::Gt;
+using hwy::HWY_NAMESPACE::IfThenElse;
+using hwy::HWY_NAMESPACE::IfThenElseZero;
+using hwy::HWY_NAMESPACE::Lt;
+using hwy::HWY_NAMESPACE::Max;
+using hwy::HWY_NAMESPACE::Mul;
+using hwy::HWY_NAMESPACE::MulAdd;
+using hwy::HWY_NAMESPACE::MulSub;
+using hwy::HWY_NAMESPACE::Neg;
+using hwy::HWY_NAMESPACE::Sub;
+using hwy::HWY_NAMESPACE::Vec;
+using hwy::HWY_NAMESPACE::ZeroIfNegative;
+
+template <class D, class V>
+HWY_INLINE V MaximumClamp(D d, V v, double kMaxVal) {
+ static const double kMul = 0.724216145665;
+ const V mul = Set(d, kMul);
+ const V maxval = Set(d, kMaxVal);
+ // If greater than maxval or less than -maxval, replace with if_*.
+ const V if_pos = MulAdd(Sub(v, maxval), mul, maxval);
+ const V if_neg = MulSub(Add(v, maxval), mul, maxval);
+ const V pos_or_v = IfThenElse(Ge(v, maxval), if_pos, v);
+ return IfThenElse(Lt(v, Neg(maxval)), if_neg, pos_or_v);
+}
+
+// Make area around zero less important (remove it).
+template <class D, class V>
+HWY_INLINE V RemoveRangeAroundZero(const D d, const double kw, const V x) {
+ const auto w = Set(d, kw);
+ return IfThenElse(Gt(x, w), Sub(x, w),
+ IfThenElseZero(Lt(x, Neg(w)), Add(x, w)));
+}
+
+// Make area around zero more important (2x it until the limit).
+template <class D, class V>
+HWY_INLINE V AmplifyRangeAroundZero(const D d, const double kw, const V x) {
+ const auto w = Set(d, kw);
+ return IfThenElse(Gt(x, w), Add(x, w),
+ IfThenElse(Lt(x, Neg(w)), Sub(x, w), Add(x, x)));
+}
+
+// XybLowFreqToVals converts from low-frequency XYB space to the 'vals' space.
+// Vals space can be converted to L2-norm space (Euclidean and normalized)
+// through visual masking.
+template <class D, class V>
+HWY_INLINE void XybLowFreqToVals(const D d, const V& x, const V& y,
+ const V& b_arg, V* HWY_RESTRICT valx,
+ V* HWY_RESTRICT valy, V* HWY_RESTRICT valb) {
+ static const double xmul_scalar = 33.832837186260;
+ static const double ymul_scalar = 14.458268100570;
+ static const double bmul_scalar = 49.87984651440;
+ static const double y_to_b_mul_scalar = -0.362267051518;
+ const V xmul = Set(d, xmul_scalar);
+ const V ymul = Set(d, ymul_scalar);
+ const V bmul = Set(d, bmul_scalar);
+ const V y_to_b_mul = Set(d, y_to_b_mul_scalar);
+ const V b = MulAdd(y_to_b_mul, y, b_arg);
+ *valb = Mul(b, bmul);
+ *valx = Mul(x, xmul);
+ *valy = Mul(y, ymul);
+}
+
+void SuppressXByY(const ImageF& in_x, const ImageF& in_y, const double yw,
+ ImageF* HWY_RESTRICT out) {
+ JXL_DASSERT(SameSize(in_x, in_y) && SameSize(in_x, *out));
+ const size_t xsize = in_x.xsize();
+ const size_t ysize = in_x.ysize();
+
+ const HWY_FULL(float) d;
+ static const double s = 0.653020556257;
+ const auto sv = Set(d, s);
+ const auto one_minus_s = Set(d, 1.0 - s);
+ const auto ywv = Set(d, yw);
+
+ for (size_t y = 0; y < ysize; ++y) {
+ const float* HWY_RESTRICT row_x = in_x.ConstRow(y);
+ const float* HWY_RESTRICT row_y = in_y.ConstRow(y);
+ float* HWY_RESTRICT row_out = out->Row(y);
+
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ const auto vx = Load(d, row_x + x);
+ const auto vy = Load(d, row_y + x);
+ const auto scaler =
+ MulAdd(Div(ywv, MulAdd(vy, vy, ywv)), one_minus_s, sv);
+ Store(Mul(scaler, vx), d, row_out + x);
+ }
+ }
+}
+
+static void SeparateFrequencies(size_t xsize, size_t ysize,
+ const ButteraugliParams& params,
+ BlurTemp* blur_temp, const Image3F& xyb,
+ PsychoImage& ps) {
+ PROFILER_FUNC;
+ const HWY_FULL(float) d;
+
+ // Extract lf ...
+ static const double kSigmaLf = 7.15593339443;
+ static const double kSigmaHf = 3.22489901262;
+ static const double kSigmaUhf = 1.56416327805;
+ ps.mf = Image3F(xsize, ysize);
+ ps.hf[0] = ImageF(xsize, ysize);
+ ps.hf[1] = ImageF(xsize, ysize);
+ ps.lf = Image3F(xyb.xsize(), xyb.ysize());
+ ps.mf = Image3F(xyb.xsize(), xyb.ysize());
+ for (int i = 0; i < 3; ++i) {
+ Blur(xyb.Plane(i), kSigmaLf, params, blur_temp, &ps.lf.Plane(i));
+
+ // ... and keep everything else in mf.
+ for (size_t y = 0; y < ysize; ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_xyb = xyb.PlaneRow(i, y);
+ const float* BUTTERAUGLI_RESTRICT row_lf = ps.lf.ConstPlaneRow(i, y);
+ float* BUTTERAUGLI_RESTRICT row_mf = ps.mf.PlaneRow(i, y);
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ const auto mf = Sub(Load(d, row_xyb + x), Load(d, row_lf + x));
+ Store(mf, d, row_mf + x);
+ }
+ }
+ if (i == 2) {
+ Blur(ps.mf.Plane(i), kSigmaHf, params, blur_temp, &ps.mf.Plane(i));
+ break;
+ }
+ // Divide mf into mf and hf.
+ for (size_t y = 0; y < ysize; ++y) {
+ float* BUTTERAUGLI_RESTRICT row_mf = ps.mf.PlaneRow(i, y);
+ float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[i].Row(y);
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ Store(Load(d, row_mf + x), d, row_hf + x);
+ }
+ }
+ Blur(ps.mf.Plane(i), kSigmaHf, params, blur_temp, &ps.mf.Plane(i));
+ static const double kRemoveMfRange = 0.29;
+ static const double kAddMfRange = 0.1;
+ if (i == 0) {
+ for (size_t y = 0; y < ysize; ++y) {
+ float* BUTTERAUGLI_RESTRICT row_mf = ps.mf.PlaneRow(0, y);
+ float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[0].Row(y);
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ auto mf = Load(d, row_mf + x);
+ auto hf = Sub(Load(d, row_hf + x), mf);
+ mf = RemoveRangeAroundZero(d, kRemoveMfRange, mf);
+ Store(mf, d, row_mf + x);
+ Store(hf, d, row_hf + x);
+ }
+ }
+ } else {
+ for (size_t y = 0; y < ysize; ++y) {
+ float* BUTTERAUGLI_RESTRICT row_mf = ps.mf.PlaneRow(1, y);
+ float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[1].Row(y);
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ auto mf = Load(d, row_mf + x);
+ auto hf = Sub(Load(d, row_hf + x), mf);
+
+ mf = AmplifyRangeAroundZero(d, kAddMfRange, mf);
+ Store(mf, d, row_mf + x);
+ Store(hf, d, row_hf + x);
+ }
+ }
+ }
+ }
+
+ // Temporarily used as output of SuppressXByY
+ ps.uhf[0] = ImageF(xsize, ysize);
+ ps.uhf[1] = ImageF(xsize, ysize);
+
+ // Suppress red-green by intensity change in the high freq channels.
+ static const double suppress = 46.0;
+ SuppressXByY(ps.hf[0], ps.hf[1], suppress, &ps.uhf[0]);
+ // hf is the SuppressXByY output, uhf will be written below.
+ ps.hf[0].Swap(ps.uhf[0]);
+
+ for (int i = 0; i < 2; ++i) {
+ // Divide hf into hf and uhf.
+ for (size_t y = 0; y < ysize; ++y) {
+ float* BUTTERAUGLI_RESTRICT row_uhf = ps.uhf[i].Row(y);
+ float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[i].Row(y);
+ for (size_t x = 0; x < xsize; ++x) {
+ row_uhf[x] = row_hf[x];
+ }
+ }
+ Blur(ps.hf[i], kSigmaUhf, params, blur_temp, &ps.hf[i]);
+ static const double kRemoveHfRange = 1.5;
+ static const double kAddHfRange = 0.132;
+ static const double kRemoveUhfRange = 0.04;
+ static const double kMaxclampHf = 28.4691806922;
+ static const double kMaxclampUhf = 5.19175294647;
+ static double kMulYHf = 2.155;
+ static double kMulYUhf = 2.69313763794;
+ if (i == 0) {
+ for (size_t y = 0; y < ysize; ++y) {
+ float* BUTTERAUGLI_RESTRICT row_uhf = ps.uhf[0].Row(y);
+ float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[0].Row(y);
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ auto hf = Load(d, row_hf + x);
+ auto uhf = Sub(Load(d, row_uhf + x), hf);
+ hf = RemoveRangeAroundZero(d, kRemoveHfRange, hf);
+ uhf = RemoveRangeAroundZero(d, kRemoveUhfRange, uhf);
+ Store(hf, d, row_hf + x);
+ Store(uhf, d, row_uhf + x);
+ }
+ }
+ } else {
+ for (size_t y = 0; y < ysize; ++y) {
+ float* BUTTERAUGLI_RESTRICT row_uhf = ps.uhf[1].Row(y);
+ float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[1].Row(y);
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ auto hf = Load(d, row_hf + x);
+ hf = MaximumClamp(d, hf, kMaxclampHf);
+
+ auto uhf = Sub(Load(d, row_uhf + x), hf);
+ uhf = MaximumClamp(d, uhf, kMaxclampUhf);
+ uhf = Mul(uhf, Set(d, kMulYUhf));
+ Store(uhf, d, row_uhf + x);
+
+ hf = Mul(hf, Set(d, kMulYHf));
+ hf = AmplifyRangeAroundZero(d, kAddHfRange, hf);
+ Store(hf, d, row_hf + x);
+ }
+ }
+ }
+ }
+ // Modify range around zero code only concerns the high frequency
+ // planes and only the X and Y channels.
+ // Convert low freq xyb to vals space so that we can do a simple squared sum
+ // diff on the low frequencies later.
+ for (size_t y = 0; y < ysize; ++y) {
+ float* BUTTERAUGLI_RESTRICT row_x = ps.lf.PlaneRow(0, y);
+ float* BUTTERAUGLI_RESTRICT row_y = ps.lf.PlaneRow(1, y);
+ float* BUTTERAUGLI_RESTRICT row_b = ps.lf.PlaneRow(2, y);
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ auto valx = Undefined(d);
+ auto valy = Undefined(d);
+ auto valb = Undefined(d);
+ XybLowFreqToVals(d, Load(d, row_x + x), Load(d, row_y + x),
+ Load(d, row_b + x), &valx, &valy, &valb);
+ Store(valx, d, row_x + x);
+ Store(valy, d, row_y + x);
+ Store(valb, d, row_b + x);
+ }
+ }
+}
+
+namespace {
+template <typename V>
+BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d) {
+ return Add(Add(a, b), Add(c, d));
+}
+template <typename V>
+BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e) {
+ return Sum(a, b, c, Add(d, e));
+}
+template <typename V>
+BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e, V f, V g) {
+ return Sum(a, b, c, Sum(d, e, f, g));
+}
+template <typename V>
+BUTTERAUGLI_INLINE V Sum(V a, V b, V c, V d, V e, V f, V g, V h, V i) {
+ return Add(Add(Sum(a, b, c, d), Sum(e, f, g, h)), i);
+}
+} // namespace
+
+template <class D>
+Vec<D> MaltaUnit(MaltaTagLF /*tag*/, const D df,
+ const float* BUTTERAUGLI_RESTRICT d, const intptr_t xs) {
+ const intptr_t xs3 = 3 * xs;
+
+ const auto center = LoadU(df, d);
+
+ // x grows, y constant
+ const auto sum_yconst = Sum(LoadU(df, d - 4), LoadU(df, d - 2), center,
+ LoadU(df, d + 2), LoadU(df, d + 4));
+ // Will return this, sum of all line kernels
+ auto retval = Mul(sum_yconst, sum_yconst);
+ {
+ // y grows, x constant
+ auto sum = Sum(LoadU(df, d - xs3 - xs), LoadU(df, d - xs - xs), center,
+ LoadU(df, d + xs + xs), LoadU(df, d + xs3 + xs));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // both grow
+ auto sum = Sum(LoadU(df, d - xs3 - 3), LoadU(df, d - xs - xs - 2), center,
+ LoadU(df, d + xs + xs + 2), LoadU(df, d + xs3 + 3));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // y grows, x shrinks
+ auto sum = Sum(LoadU(df, d - xs3 + 3), LoadU(df, d - xs - xs + 2), center,
+ LoadU(df, d + xs + xs - 2), LoadU(df, d + xs3 - 3));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // y grows -4 to 4, x shrinks 1 -> -1
+ auto sum =
+ Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs - xs + 1), center,
+ LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 + xs - 1));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // y grows -4 to 4, x grows -1 -> 1
+ auto sum =
+ Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs - xs - 1), center,
+ LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + xs + 1));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // x grows -4 to 4, y grows -1 to 1
+ auto sum = Sum(LoadU(df, d - 4 - xs), LoadU(df, d - 2 - xs), center,
+ LoadU(df, d + 2 + xs), LoadU(df, d + 4 + xs));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // x grows -4 to 4, y shrinks 1 to -1
+ auto sum = Sum(LoadU(df, d - 4 + xs), LoadU(df, d - 2 + xs), center,
+ LoadU(df, d + 2 - xs), LoadU(df, d + 4 - xs));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1__*______
+ 2___*_____
+ 3_________
+ 4____0____
+ 5_________
+ 6_____*___
+ 7______*__
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs3 - 2), LoadU(df, d - xs - xs - 1), center,
+ LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + 2));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1______*__
+ 2_____*___
+ 3_________
+ 4____0____
+ 5_________
+ 6___*_____
+ 7__*______
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs3 + 2), LoadU(df, d - xs - xs + 1), center,
+ LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 - 2));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1_________
+ 2_*_______
+ 3__*______
+ 4____0____
+ 5______*__
+ 6_______*_
+ 7_________
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs - xs - 3), LoadU(df, d - xs - 2), center,
+ LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 3));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1_________
+ 2_______*_
+ 3______*__
+ 4____0____
+ 5__*______
+ 6_*_______
+ 7_________
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs - xs + 3), LoadU(df, d - xs + 2), center,
+ LoadU(df, d + xs - 2), LoadU(df, d + xs + xs - 3));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1_________
+ 2________*
+ 3______*__
+ 4____0____
+ 5__*______
+ 6*________
+ 7_________
+ 8_________ */
+
+ auto sum = Sum(LoadU(df, d + xs + xs - 4), LoadU(df, d + xs - 2), center,
+ LoadU(df, d - xs + 2), LoadU(df, d - xs - xs + 4));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1_________
+ 2*________
+ 3__*______
+ 4____0____
+ 5______*__
+ 6________*
+ 7_________
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs - xs - 4), LoadU(df, d - xs - 2), center,
+ LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 4));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0__*______
+ 1_________
+ 2___*_____
+ 3_________
+ 4____0____
+ 5_________
+ 6_____*___
+ 7_________
+ 8______*__ */
+ auto sum =
+ Sum(LoadU(df, d - xs3 - xs - 2), LoadU(df, d - xs - xs - 1), center,
+ LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + xs + 2));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0______*__
+ 1_________
+ 2_____*___
+ 3_________
+ 4____0____
+ 5_________
+ 6___*_____
+ 7_________
+ 8__*______ */
+ auto sum =
+ Sum(LoadU(df, d - xs3 - xs + 2), LoadU(df, d - xs - xs + 1), center,
+ LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 + xs - 2));
+ retval = MulAdd(sum, sum, retval);
+ }
+ return retval;
+}
+
+template <class D>
+Vec<D> MaltaUnit(MaltaTag /*tag*/, const D df,
+ const float* BUTTERAUGLI_RESTRICT d, const intptr_t xs) {
+ const intptr_t xs3 = 3 * xs;
+
+ const auto center = LoadU(df, d);
+
+ // x grows, y constant
+ const auto sum_yconst =
+ Sum(LoadU(df, d - 4), LoadU(df, d - 3), LoadU(df, d - 2),
+ LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2),
+ LoadU(df, d + 3), LoadU(df, d + 4));
+ // Will return this, sum of all line kernels
+ auto retval = Mul(sum_yconst, sum_yconst);
+
+ {
+ // y grows, x constant
+ auto sum = Sum(LoadU(df, d - xs3 - xs), LoadU(df, d - xs3),
+ LoadU(df, d - xs - xs), LoadU(df, d - xs), center,
+ LoadU(df, d + xs), LoadU(df, d + xs + xs),
+ LoadU(df, d + xs3), LoadU(df, d + xs3 + xs));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // both grow
+ auto sum = Sum(LoadU(df, d - xs3 - 3), LoadU(df, d - xs - xs - 2),
+ LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
+ LoadU(df, d + xs + xs + 2), LoadU(df, d + xs3 + 3));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // y grows, x shrinks
+ auto sum = Sum(LoadU(df, d - xs3 + 3), LoadU(df, d - xs - xs + 2),
+ LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
+ LoadU(df, d + xs + xs - 2), LoadU(df, d + xs3 - 3));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // y grows -4 to 4, x shrinks 1 -> -1
+ auto sum = Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs3 + 1),
+ LoadU(df, d - xs - xs + 1), LoadU(df, d - xs), center,
+ LoadU(df, d + xs), LoadU(df, d + xs + xs - 1),
+ LoadU(df, d + xs3 - 1), LoadU(df, d + xs3 + xs - 1));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // y grows -4 to 4, x grows -1 -> 1
+ auto sum = Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs3 - 1),
+ LoadU(df, d - xs - xs - 1), LoadU(df, d - xs), center,
+ LoadU(df, d + xs), LoadU(df, d + xs + xs + 1),
+ LoadU(df, d + xs3 + 1), LoadU(df, d + xs3 + xs + 1));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // x grows -4 to 4, y grows -1 to 1
+ auto sum =
+ Sum(LoadU(df, d - 4 - xs), LoadU(df, d - 3 - xs), LoadU(df, d - 2 - xs),
+ LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2 + xs),
+ LoadU(df, d + 3 + xs), LoadU(df, d + 4 + xs));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ // x grows -4 to 4, y shrinks 1 to -1
+ auto sum =
+ Sum(LoadU(df, d - 4 + xs), LoadU(df, d - 3 + xs), LoadU(df, d - 2 + xs),
+ LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + 2 - xs),
+ LoadU(df, d + 3 - xs), LoadU(df, d + 4 - xs));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1__*______
+ 2___*_____
+ 3___*_____
+ 4____0____
+ 5_____*___
+ 6_____*___
+ 7______*__
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs3 - 2), LoadU(df, d - xs - xs - 1),
+ LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
+ LoadU(df, d + xs + xs + 1), LoadU(df, d + xs3 + 2));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1______*__
+ 2_____*___
+ 3_____*___
+ 4____0____
+ 5___*_____
+ 6___*_____
+ 7__*______
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs3 + 2), LoadU(df, d - xs - xs + 1),
+ LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
+ LoadU(df, d + xs + xs - 1), LoadU(df, d + xs3 - 2));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1_________
+ 2_*_______
+ 3__**_____
+ 4____0____
+ 5_____**__
+ 6_______*_
+ 7_________
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs - xs - 3), LoadU(df, d - xs - 2),
+ LoadU(df, d - xs - 1), center, LoadU(df, d + xs + 1),
+ LoadU(df, d + xs + 2), LoadU(df, d + xs + xs + 3));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1_________
+ 2_______*_
+ 3_____**__
+ 4____0____
+ 5__**_____
+ 6_*_______
+ 7_________
+ 8_________ */
+ auto sum = Sum(LoadU(df, d - xs - xs + 3), LoadU(df, d - xs + 2),
+ LoadU(df, d - xs + 1), center, LoadU(df, d + xs - 1),
+ LoadU(df, d + xs - 2), LoadU(df, d + xs + xs - 3));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1_________
+ 2_________
+ 3______***
+ 4___*0*___
+ 5***______
+ 6_________
+ 7_________
+ 8_________ */
+
+ auto sum =
+ Sum(LoadU(df, d + xs - 4), LoadU(df, d + xs - 3), LoadU(df, d + xs - 2),
+ LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d - xs + 2),
+ LoadU(df, d - xs + 3), LoadU(df, d - xs + 4));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_________
+ 1_________
+ 2_________
+ 3***______
+ 4___*0*___
+ 5______***
+ 6_________
+ 7_________
+ 8_________ */
+ auto sum =
+ Sum(LoadU(df, d - xs - 4), LoadU(df, d - xs - 3), LoadU(df, d - xs - 2),
+ LoadU(df, d - 1), center, LoadU(df, d + 1), LoadU(df, d + xs + 2),
+ LoadU(df, d + xs + 3), LoadU(df, d + xs + 4));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0___*_____
+ 1___*_____
+ 2___*_____
+ 3____*____
+ 4____0____
+ 5____*____
+ 6_____*___
+ 7_____*___
+ 8_____*___ */
+ auto sum = Sum(LoadU(df, d - xs3 - xs - 1), LoadU(df, d - xs3 - 1),
+ LoadU(df, d - xs - xs - 1), LoadU(df, d - xs), center,
+ LoadU(df, d + xs), LoadU(df, d + xs + xs + 1),
+ LoadU(df, d + xs3 + 1), LoadU(df, d + xs3 + xs + 1));
+ retval = MulAdd(sum, sum, retval);
+ }
+ {
+ /* 0_____*___
+ 1_____*___
+ 2____ *___
+ 3____*____
+ 4____0____
+ 5____*____
+ 6___*_____
+ 7___*_____
+ 8___*_____ */
+ auto sum = Sum(LoadU(df, d - xs3 - xs + 1), LoadU(df, d - xs3 + 1),
+ LoadU(df, d - xs - xs + 1), LoadU(df, d - xs), center,
+ LoadU(df, d + xs), LoadU(df, d + xs + xs - 1),
+ LoadU(df, d + xs3 - 1), LoadU(df, d + xs3 + xs - 1));
+ retval = MulAdd(sum, sum, retval);
+ }
+ return retval;
+}
+
+// Returns MaltaUnit. Avoids bounds-checks when x0 and y0 are known
+// to be far enough from the image borders. "diffs" is a packed image.
+template <class Tag>
+static BUTTERAUGLI_INLINE float PaddedMaltaUnit(const ImageF& diffs,
+ const size_t x0,
+ const size_t y0) {
+ const float* BUTTERAUGLI_RESTRICT d = diffs.ConstRow(y0) + x0;
+ const HWY_CAPPED(float, 1) df;
+ if ((x0 >= 4 && y0 >= 4 && x0 < (diffs.xsize() - 4) &&
+ y0 < (diffs.ysize() - 4))) {
+ return GetLane(MaltaUnit(Tag(), df, d, diffs.PixelsPerRow()));
+ }
+
+ PROFILER_ZONE("Padded Malta");
+ float borderimage[12 * 9]; // round up to 4
+ for (int dy = 0; dy < 9; ++dy) {
+ int y = y0 + dy - 4;
+ if (y < 0 || static_cast<size_t>(y) >= diffs.ysize()) {
+ for (int dx = 0; dx < 12; ++dx) {
+ borderimage[dy * 12 + dx] = 0.0f;
+ }
+ continue;
+ }
+
+ const float* row_diffs = diffs.ConstRow(y);
+ for (int dx = 0; dx < 9; ++dx) {
+ int x = x0 + dx - 4;
+ if (x < 0 || static_cast<size_t>(x) >= diffs.xsize()) {
+ borderimage[dy * 12 + dx] = 0.0f;
+ } else {
+ borderimage[dy * 12 + dx] = row_diffs[x];
+ }
+ }
+ std::fill(borderimage + dy * 12 + 9, borderimage + dy * 12 + 12, 0.0f);
+ }
+ return GetLane(MaltaUnit(Tag(), df, &borderimage[4 * 12 + 4], 12));
+}
+
+template <class Tag>
+static void MaltaDiffMapT(const Tag tag, const ImageF& lum0, const ImageF& lum1,
+ const double w_0gt1, const double w_0lt1,
+ const double norm1, const double len,
+ const double mulli, ImageF* HWY_RESTRICT diffs,
+ Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
+ JXL_DASSERT(SameSize(lum0, lum1) && SameSize(lum0, *diffs));
+ const size_t xsize_ = lum0.xsize();
+ const size_t ysize_ = lum0.ysize();
+
+ const float kWeight0 = 0.5;
+ const float kWeight1 = 0.33;
+
+ const double w_pre0gt1 = mulli * std::sqrt(kWeight0 * w_0gt1) / (len * 2 + 1);
+ const double w_pre0lt1 = mulli * std::sqrt(kWeight1 * w_0lt1) / (len * 2 + 1);
+ const float norm2_0gt1 = w_pre0gt1 * norm1;
+ const float norm2_0lt1 = w_pre0lt1 * norm1;
+
+ for (size_t y = 0; y < ysize_; ++y) {
+ const float* HWY_RESTRICT row0 = lum0.ConstRow(y);
+ const float* HWY_RESTRICT row1 = lum1.ConstRow(y);
+ float* HWY_RESTRICT row_diffs = diffs->Row(y);
+ for (size_t x = 0; x < xsize_; ++x) {
+ const float absval = 0.5f * (std::abs(row0[x]) + std::abs(row1[x]));
+ const float diff = row0[x] - row1[x];
+ const float scaler = norm2_0gt1 / (static_cast<float>(norm1) + absval);
+
+ // Primary symmetric quadratic objective.
+ row_diffs[x] = scaler * diff;
+
+ const float scaler2 = norm2_0lt1 / (static_cast<float>(norm1) + absval);
+ const double fabs0 = std::fabs(row0[x]);
+
+ // Secondary half-open quadratic objectives.
+ const double too_small = 0.55 * fabs0;
+ const double too_big = 1.05 * fabs0;
+
+ if (row0[x] < 0) {
+ if (row1[x] > -too_small) {
+ double impact = scaler2 * (row1[x] + too_small);
+ row_diffs[x] -= impact;
+ } else if (row1[x] < -too_big) {
+ double impact = scaler2 * (-row1[x] - too_big);
+ row_diffs[x] += impact;
+ }
+ } else {
+ if (row1[x] < too_small) {
+ double impact = scaler2 * (too_small - row1[x]);
+ row_diffs[x] += impact;
+ } else if (row1[x] > too_big) {
+ double impact = scaler2 * (row1[x] - too_big);
+ row_diffs[x] -= impact;
+ }
+ }
+ }
+ }
+
+ size_t y0 = 0;
+ // Top
+ for (; y0 < 4; ++y0) {
+ float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->PlaneRow(c, y0);
+ for (size_t x0 = 0; x0 < xsize_; ++x0) {
+ row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
+ }
+ }
+
+ const HWY_FULL(float) df;
+ const size_t aligned_x = std::max(size_t(4), Lanes(df));
+ const intptr_t stride = diffs->PixelsPerRow();
+
+ // Middle
+ for (; y0 < ysize_ - 4; ++y0) {
+ const float* BUTTERAUGLI_RESTRICT row_in = diffs->ConstRow(y0);
+ float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->PlaneRow(c, y0);
+ size_t x0 = 0;
+ for (; x0 < aligned_x; ++x0) {
+ row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
+ }
+ for (; x0 + Lanes(df) + 4 <= xsize_; x0 += Lanes(df)) {
+ auto diff = Load(df, row_diff + x0);
+ diff = Add(diff, MaltaUnit(Tag(), df, row_in + x0, stride));
+ Store(diff, df, row_diff + x0);
+ }
+
+ for (; x0 < xsize_; ++x0) {
+ row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
+ }
+ }
+
+ // Bottom
+ for (; y0 < ysize_; ++y0) {
+ float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->PlaneRow(c, y0);
+ for (size_t x0 = 0; x0 < xsize_; ++x0) {
+ row_diff[x0] += PaddedMaltaUnit<Tag>(*diffs, x0, y0);
+ }
+ }
+}
+
+// Need non-template wrapper functions for HWY_EXPORT.
+void MaltaDiffMap(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
+ const double w_0lt1, const double norm1, const double len,
+ const double mulli, ImageF* HWY_RESTRICT diffs,
+ Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
+ MaltaDiffMapT(MaltaTag(), lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli,
+ diffs, block_diff_ac, c);
+}
+
+void MaltaDiffMapLF(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
+ const double w_0lt1, const double norm1, const double len,
+ const double mulli, ImageF* HWY_RESTRICT diffs,
+ Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
+ MaltaDiffMapT(MaltaTagLF(), lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli,
+ diffs, block_diff_ac, c);
+}
+
+void DiffPrecompute(const ImageF& xyb, float mul, float bias_arg, ImageF* out) {
+ PROFILER_FUNC;
+ const size_t xsize = xyb.xsize();
+ const size_t ysize = xyb.ysize();
+ const float bias = mul * bias_arg;
+ const float sqrt_bias = sqrt(bias);
+ for (size_t y = 0; y < ysize; ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_in = xyb.Row(y);
+ float* BUTTERAUGLI_RESTRICT row_out = out->Row(y);
+ for (size_t x = 0; x < xsize; ++x) {
+ // kBias makes sqrt behave more linearly.
+ row_out[x] = sqrt(mul * std::abs(row_in[x]) + bias) - sqrt_bias;
+ }
+ }
+}
+
+// std::log(80.0) / std::log(255.0);
+constexpr float kIntensityTargetNormalizationHack = 0.79079917404f;
+static const float kInternalGoodQualityThreshold =
+ 17.83f * kIntensityTargetNormalizationHack;
+static const float kGlobalScale = 1.0 / kInternalGoodQualityThreshold;
+
+void StoreMin3(const float v, float& min0, float& min1, float& min2) {
+ if (v < min2) {
+ if (v < min0) {
+ min2 = min1;
+ min1 = min0;
+ min0 = v;
+ } else if (v < min1) {
+ min2 = min1;
+ min1 = v;
+ } else {
+ min2 = v;
+ }
+ }
+}
+
+// Look for smooth areas near the area of degradation.
+// If the areas area generally smooth, don't do masking.
+void FuzzyErosion(const ImageF& from, ImageF* to) {
+ const size_t xsize = from.xsize();
+ const size_t ysize = from.ysize();
+ static const int kStep = 3;
+ for (size_t y = 0; y < ysize; ++y) {
+ for (size_t x = 0; x < xsize; ++x) {
+ float min0 = from.Row(y)[x];
+ float min1 = 2 * min0;
+ float min2 = min1;
+ if (x >= kStep) {
+ float v = from.Row(y)[x - kStep];
+ StoreMin3(v, min0, min1, min2);
+ if (y >= kStep) {
+ float v = from.Row(y - kStep)[x - kStep];
+ StoreMin3(v, min0, min1, min2);
+ }
+ if (y < ysize - kStep) {
+ float v = from.Row(y + kStep)[x - kStep];
+ StoreMin3(v, min0, min1, min2);
+ }
+ }
+ if (x < xsize - kStep) {
+ float v = from.Row(y)[x + kStep];
+ StoreMin3(v, min0, min1, min2);
+ if (y >= kStep) {
+ float v = from.Row(y - kStep)[x + kStep];
+ StoreMin3(v, min0, min1, min2);
+ }
+ if (y < ysize - kStep) {
+ float v = from.Row(y + kStep)[x + kStep];
+ StoreMin3(v, min0, min1, min2);
+ }
+ }
+ if (y >= kStep) {
+ float v = from.Row(y - kStep)[x];
+ StoreMin3(v, min0, min1, min2);
+ }
+ if (y < ysize - kStep) {
+ float v = from.Row(y + kStep)[x];
+ StoreMin3(v, min0, min1, min2);
+ }
+ to->Row(y)[x] = (0.45f * min0 + 0.3f * min1 + 0.25f * min2);
+ }
+ }
+}
+
+// Compute values of local frequency and dc masking based on the activity
+// in the two images. img_diff_ac may be null.
+void Mask(const ImageF& mask0, const ImageF& mask1,
+ const ButteraugliParams& params, BlurTemp* blur_temp,
+ ImageF* BUTTERAUGLI_RESTRICT mask,
+ ImageF* BUTTERAUGLI_RESTRICT diff_ac) {
+ // Only X and Y components are involved in masking. B's influence
+ // is considered less important in the high frequency area, and we
+ // don't model masking from lower frequency signals.
+ PROFILER_FUNC;
+ const size_t xsize = mask0.xsize();
+ const size_t ysize = mask0.ysize();
+ *mask = ImageF(xsize, ysize);
+ static const float kMul = 6.19424080439;
+ static const float kBias = 12.61050594197;
+ static const float kRadius = 2.7;
+ ImageF diff0(xsize, ysize);
+ ImageF diff1(xsize, ysize);
+ ImageF blurred0(xsize, ysize);
+ ImageF blurred1(xsize, ysize);
+ DiffPrecompute(mask0, kMul, kBias, &diff0);
+ DiffPrecompute(mask1, kMul, kBias, &diff1);
+ Blur(diff0, kRadius, params, blur_temp, &blurred0);
+ FuzzyErosion(blurred0, &diff0);
+ Blur(diff1, kRadius, params, blur_temp, &blurred1);
+ FuzzyErosion(blurred1, &diff1);
+ for (size_t y = 0; y < ysize; ++y) {
+ for (size_t x = 0; x < xsize; ++x) {
+ mask->Row(y)[x] = diff0.Row(y)[x];
+ if (diff_ac != nullptr) {
+ static const float kMaskToErrorMul = 10.0;
+ float diff = blurred0.Row(y)[x] - blurred1.Row(y)[x];
+ diff_ac->Row(y)[x] += kMaskToErrorMul * diff * diff;
+ }
+ }
+ }
+}
+
+// `diff_ac` may be null.
+void MaskPsychoImage(const PsychoImage& pi0, const PsychoImage& pi1,
+ const size_t xsize, const size_t ysize,
+ const ButteraugliParams& params, Image3F* temp,
+ BlurTemp* blur_temp, ImageF* BUTTERAUGLI_RESTRICT mask,
+ ImageF* BUTTERAUGLI_RESTRICT diff_ac) {
+ ImageF mask0(xsize, ysize);
+ ImageF mask1(xsize, ysize);
+ static const float muls[3] = {
+ 2.5f,
+ 0.4f,
+ 0.4f,
+ };
+ // Silly and unoptimized approach here. TODO(jyrki): rework this.
+ for (size_t y = 0; y < ysize; ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_y_hf0 = pi0.hf[1].Row(y);
+ const float* BUTTERAUGLI_RESTRICT row_y_hf1 = pi1.hf[1].Row(y);
+ const float* BUTTERAUGLI_RESTRICT row_y_uhf0 = pi0.uhf[1].Row(y);
+ const float* BUTTERAUGLI_RESTRICT row_y_uhf1 = pi1.uhf[1].Row(y);
+ const float* BUTTERAUGLI_RESTRICT row_x_hf0 = pi0.hf[0].Row(y);
+ const float* BUTTERAUGLI_RESTRICT row_x_hf1 = pi1.hf[0].Row(y);
+ const float* BUTTERAUGLI_RESTRICT row_x_uhf0 = pi0.uhf[0].Row(y);
+ const float* BUTTERAUGLI_RESTRICT row_x_uhf1 = pi1.uhf[0].Row(y);
+ float* BUTTERAUGLI_RESTRICT row0 = mask0.Row(y);
+ float* BUTTERAUGLI_RESTRICT row1 = mask1.Row(y);
+ for (size_t x = 0; x < xsize; ++x) {
+ float xdiff0 = (row_x_uhf0[x] + row_x_hf0[x]) * muls[0];
+ float xdiff1 = (row_x_uhf1[x] + row_x_hf1[x]) * muls[0];
+ float ydiff0 = row_y_uhf0[x] * muls[1] + row_y_hf0[x] * muls[2];
+ float ydiff1 = row_y_uhf1[x] * muls[1] + row_y_hf1[x] * muls[2];
+ row0[x] = xdiff0 * xdiff0 + ydiff0 * ydiff0;
+ row0[x] = sqrt(row0[x]);
+ row1[x] = xdiff1 * xdiff1 + ydiff1 * ydiff1;
+ row1[x] = sqrt(row1[x]);
+ }
+ }
+ Mask(mask0, mask1, params, blur_temp, mask, diff_ac);
+}
+
+double MaskY(double delta) {
+ static const double offset = 0.829591754942;
+ static const double scaler = 0.451936922203;
+ static const double mul = 2.5485944793;
+ const double c = mul / ((scaler * delta) + offset);
+ const double retval = kGlobalScale * (1.0 + c);
+ return retval * retval;
+}
+
+double MaskDcY(double delta) {
+ static const double offset = 0.20025578522;
+ static const double scaler = 3.87449418804;
+ static const double mul = 0.505054525019;
+ const double c = mul / ((scaler * delta) + offset);
+ const double retval = kGlobalScale * (1.0 + c);
+ return retval * retval;
+}
+
+inline float MaskColor(const float color[3], const float mask) {
+ return color[0] * mask + color[1] * mask + color[2] * mask;
+}
+
+// Diffmap := sqrt of sum{diff images by multiplied by X and Y/B masks}
+void CombineChannelsToDiffmap(const ImageF& mask, const Image3F& block_diff_dc,
+ const Image3F& block_diff_ac, float xmul,
+ ImageF* result) {
+ PROFILER_FUNC;
+ JXL_CHECK(SameSize(mask, *result));
+ size_t xsize = mask.xsize();
+ size_t ysize = mask.ysize();
+ for (size_t y = 0; y < ysize; ++y) {
+ float* BUTTERAUGLI_RESTRICT row_out = result->Row(y);
+ for (size_t x = 0; x < xsize; ++x) {
+ float val = mask.Row(y)[x];
+ float maskval = MaskY(val);
+ float dc_maskval = MaskDcY(val);
+ float diff_dc[3];
+ float diff_ac[3];
+ for (int i = 0; i < 3; ++i) {
+ diff_dc[i] = block_diff_dc.PlaneRow(i, y)[x];
+ diff_ac[i] = block_diff_ac.PlaneRow(i, y)[x];
+ }
+ diff_ac[0] *= xmul;
+ diff_dc[0] *= xmul;
+ row_out[x] =
+ sqrt(MaskColor(diff_dc, dc_maskval) + MaskColor(diff_ac, maskval));
+ }
+ }
+}
+
+// Adds weighted L2 difference between i0 and i1 to diffmap.
+static void L2Diff(const ImageF& i0, const ImageF& i1, const float w,
+ Image3F* BUTTERAUGLI_RESTRICT diffmap, size_t c) {
+ if (w == 0) return;
+
+ const HWY_FULL(float) d;
+ const auto weight = Set(d, w);
+
+ for (size_t y = 0; y < i0.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row0 = i0.ConstRow(y);
+ const float* BUTTERAUGLI_RESTRICT row1 = i1.ConstRow(y);
+ float* BUTTERAUGLI_RESTRICT row_diff = diffmap->PlaneRow(c, y);
+
+ for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
+ const auto diff = Sub(Load(d, row0 + x), Load(d, row1 + x));
+ const auto diff2 = Mul(diff, diff);
+ const auto prev = Load(d, row_diff + x);
+ Store(MulAdd(diff2, weight, prev), d, row_diff + x);
+ }
+ }
+}
+
+// Initializes diffmap to the weighted L2 difference between i0 and i1.
+static void SetL2Diff(const ImageF& i0, const ImageF& i1, const float w,
+ Image3F* BUTTERAUGLI_RESTRICT diffmap, size_t c) {
+ if (w == 0) return;
+
+ const HWY_FULL(float) d;
+ const auto weight = Set(d, w);
+
+ for (size_t y = 0; y < i0.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row0 = i0.ConstRow(y);
+ const float* BUTTERAUGLI_RESTRICT row1 = i1.ConstRow(y);
+ float* BUTTERAUGLI_RESTRICT row_diff = diffmap->PlaneRow(c, y);
+
+ for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
+ const auto diff = Sub(Load(d, row0 + x), Load(d, row1 + x));
+ const auto diff2 = Mul(diff, diff);
+ Store(Mul(diff2, weight), d, row_diff + x);
+ }
+ }
+}
+
+// i0 is the original image.
+// i1 is the deformed copy.
+static void L2DiffAsymmetric(const ImageF& i0, const ImageF& i1, float w_0gt1,
+ float w_0lt1,
+ Image3F* BUTTERAUGLI_RESTRICT diffmap, size_t c) {
+ if (w_0gt1 == 0 && w_0lt1 == 0) {
+ return;
+ }
+
+ const HWY_FULL(float) d;
+ const auto vw_0gt1 = Set(d, w_0gt1 * 0.8);
+ const auto vw_0lt1 = Set(d, w_0lt1 * 0.8);
+
+ for (size_t y = 0; y < i0.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row0 = i0.Row(y);
+ const float* BUTTERAUGLI_RESTRICT row1 = i1.Row(y);
+ float* BUTTERAUGLI_RESTRICT row_diff = diffmap->PlaneRow(c, y);
+
+ for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) {
+ const auto val0 = Load(d, row0 + x);
+ const auto val1 = Load(d, row1 + x);
+
+ // Primary symmetric quadratic objective.
+ const auto diff = Sub(val0, val1);
+ auto total = MulAdd(Mul(diff, diff), vw_0gt1, Load(d, row_diff + x));
+
+ // Secondary half-open quadratic objectives.
+ const auto fabs0 = Abs(val0);
+ const auto too_small = Mul(Set(d, 0.4), fabs0);
+ const auto too_big = fabs0;
+
+ const auto if_neg = IfThenElse(
+ Gt(val1, Neg(too_small)), Add(val1, too_small),
+ IfThenElseZero(Lt(val1, Neg(too_big)), Sub(Neg(val1), too_big)));
+ const auto if_pos =
+ IfThenElse(Lt(val1, too_small), Sub(too_small, val1),
+ IfThenElseZero(Gt(val1, too_big), Sub(val1, too_big)));
+ const auto v = IfThenElse(Lt(val0, Zero(d)), if_neg, if_pos);
+ total = MulAdd(vw_0lt1, Mul(v, v), total);
+ Store(total, d, row_diff + x);
+ }
+ }
+}
+
+// A simple HDR compatible gamma function.
+template <class DF, class V>
+V Gamma(const DF df, V v) {
+ // ln(2) constant folded in because we want std::log but have FastLog2f.
+ const auto kRetMul = Set(df, 19.245013259874995f * 0.693147180559945f);
+ const auto kRetAdd = Set(df, -23.16046239805755);
+ // This should happen rarely, but may lead to a NaN in log, which is
+ // undesirable. Since negative photons don't exist we solve the NaNs by
+ // clamping here.
+ v = ZeroIfNegative(v);
+
+ const auto biased = Add(v, Set(df, 9.9710635769299145));
+ const auto log = FastLog2f(df, biased);
+ // We could fold this into a custom Log2 polynomial, but there would be
+ // relatively little gain.
+ return MulAdd(kRetMul, log, kRetAdd);
+}
+
+template <bool Clamp, class DF, class V>
+BUTTERAUGLI_INLINE void OpsinAbsorbance(const DF df, const V& in0, const V& in1,
+ const V& in2, V* JXL_RESTRICT out0,
+ V* JXL_RESTRICT out1,
+ V* JXL_RESTRICT out2) {
+ // https://en.wikipedia.org/wiki/Photopsin absorbance modeling.
+ static const double mixi0 = 0.29956550340058319;
+ static const double mixi1 = 0.63373087833825936;
+ static const double mixi2 = 0.077705617820981968;
+ static const double mixi3 = 1.7557483643287353;
+ static const double mixi4 = 0.22158691104574774;
+ static const double mixi5 = 0.69391388044116142;
+ static const double mixi6 = 0.0987313588422;
+ static const double mixi7 = 1.7557483643287353;
+ static const double mixi8 = 0.02;
+ static const double mixi9 = 0.02;
+ static const double mixi10 = 0.20480129041026129;
+ static const double mixi11 = 12.226454707163354;
+
+ const V mix0 = Set(df, mixi0);
+ const V mix1 = Set(df, mixi1);
+ const V mix2 = Set(df, mixi2);
+ const V mix3 = Set(df, mixi3);
+ const V mix4 = Set(df, mixi4);
+ const V mix5 = Set(df, mixi5);
+ const V mix6 = Set(df, mixi6);
+ const V mix7 = Set(df, mixi7);
+ const V mix8 = Set(df, mixi8);
+ const V mix9 = Set(df, mixi9);
+ const V mix10 = Set(df, mixi10);
+ const V mix11 = Set(df, mixi11);
+
+ *out0 = MulAdd(mix0, in0, MulAdd(mix1, in1, MulAdd(mix2, in2, mix3)));
+ *out1 = MulAdd(mix4, in0, MulAdd(mix5, in1, MulAdd(mix6, in2, mix7)));
+ *out2 = MulAdd(mix8, in0, MulAdd(mix9, in1, MulAdd(mix10, in2, mix11)));
+
+ if (Clamp) {
+ *out0 = Max(*out0, mix3);
+ *out1 = Max(*out1, mix7);
+ *out2 = Max(*out2, mix11);
+ }
+}
+
+// `blurred` is a temporary image used inside this function and not returned.
+Image3F OpsinDynamicsImage(const Image3F& rgb, const ButteraugliParams& params,
+ Image3F* blurred, BlurTemp* blur_temp) {
+ PROFILER_FUNC;
+ Image3F xyb(rgb.xsize(), rgb.ysize());
+ const double kSigma = 1.2;
+ Blur(rgb.Plane(0), kSigma, params, blur_temp, &blurred->Plane(0));
+ Blur(rgb.Plane(1), kSigma, params, blur_temp, &blurred->Plane(1));
+ Blur(rgb.Plane(2), kSigma, params, blur_temp, &blurred->Plane(2));
+ const HWY_FULL(float) df;
+ const auto intensity_target_multiplier = Set(df, params.intensity_target);
+ for (size_t y = 0; y < rgb.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_r = rgb.ConstPlaneRow(0, y);
+ const float* BUTTERAUGLI_RESTRICT row_g = rgb.ConstPlaneRow(1, y);
+ const float* BUTTERAUGLI_RESTRICT row_b = rgb.ConstPlaneRow(2, y);
+ const float* BUTTERAUGLI_RESTRICT row_blurred_r =
+ blurred->ConstPlaneRow(0, y);
+ const float* BUTTERAUGLI_RESTRICT row_blurred_g =
+ blurred->ConstPlaneRow(1, y);
+ const float* BUTTERAUGLI_RESTRICT row_blurred_b =
+ blurred->ConstPlaneRow(2, y);
+ float* BUTTERAUGLI_RESTRICT row_out_x = xyb.PlaneRow(0, y);
+ float* BUTTERAUGLI_RESTRICT row_out_y = xyb.PlaneRow(1, y);
+ float* BUTTERAUGLI_RESTRICT row_out_b = xyb.PlaneRow(2, y);
+ const auto min = Set(df, 1e-4f);
+ for (size_t x = 0; x < rgb.xsize(); x += Lanes(df)) {
+ auto sensitivity0 = Undefined(df);
+ auto sensitivity1 = Undefined(df);
+ auto sensitivity2 = Undefined(df);
+ {
+ // Calculate sensitivity based on the smoothed image gamma derivative.
+ auto pre_mixed0 = Undefined(df);
+ auto pre_mixed1 = Undefined(df);
+ auto pre_mixed2 = Undefined(df);
+ OpsinAbsorbance<true>(
+ df, Mul(Load(df, row_blurred_r + x), intensity_target_multiplier),
+ Mul(Load(df, row_blurred_g + x), intensity_target_multiplier),
+ Mul(Load(df, row_blurred_b + x), intensity_target_multiplier),
+ &pre_mixed0, &pre_mixed1, &pre_mixed2);
+ pre_mixed0 = Max(pre_mixed0, min);
+ pre_mixed1 = Max(pre_mixed1, min);
+ pre_mixed2 = Max(pre_mixed2, min);
+ sensitivity0 = Div(Gamma(df, pre_mixed0), pre_mixed0);
+ sensitivity1 = Div(Gamma(df, pre_mixed1), pre_mixed1);
+ sensitivity2 = Div(Gamma(df, pre_mixed2), pre_mixed2);
+ sensitivity0 = Max(sensitivity0, min);
+ sensitivity1 = Max(sensitivity1, min);
+ sensitivity2 = Max(sensitivity2, min);
+ }
+ auto cur_mixed0 = Undefined(df);
+ auto cur_mixed1 = Undefined(df);
+ auto cur_mixed2 = Undefined(df);
+ OpsinAbsorbance<false>(
+ df, Mul(Load(df, row_r + x), intensity_target_multiplier),
+ Mul(Load(df, row_g + x), intensity_target_multiplier),
+ Mul(Load(df, row_b + x), intensity_target_multiplier), &cur_mixed0,
+ &cur_mixed1, &cur_mixed2);
+ cur_mixed0 = Mul(cur_mixed0, sensitivity0);
+ cur_mixed1 = Mul(cur_mixed1, sensitivity1);
+ cur_mixed2 = Mul(cur_mixed2, sensitivity2);
+ // This is a kludge. The negative values should be zeroed away before
+ // blurring. Ideally there would be no negative values in the first place.
+ const auto min01 = Set(df, 1.7557483643287353f);
+ const auto min2 = Set(df, 12.226454707163354f);
+ cur_mixed0 = Max(cur_mixed0, min01);
+ cur_mixed1 = Max(cur_mixed1, min01);
+ cur_mixed2 = Max(cur_mixed2, min2);
+
+ Store(Sub(cur_mixed0, cur_mixed1), df, row_out_x + x);
+ Store(Add(cur_mixed0, cur_mixed1), df, row_out_y + x);
+ Store(cur_mixed2, df, row_out_b + x);
+ }
+ }
+ return xyb;
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace jxl
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace jxl {
+
+HWY_EXPORT(SeparateFrequencies); // Local function.
+HWY_EXPORT(MaskPsychoImage); // Local function.
+HWY_EXPORT(L2DiffAsymmetric); // Local function.
+HWY_EXPORT(L2Diff); // Local function.
+HWY_EXPORT(SetL2Diff); // Local function.
+HWY_EXPORT(CombineChannelsToDiffmap); // Local function.
+HWY_EXPORT(MaltaDiffMap); // Local function.
+HWY_EXPORT(MaltaDiffMapLF); // Local function.
+HWY_EXPORT(OpsinDynamicsImage); // Local function.
+
+#if BUTTERAUGLI_ENABLE_CHECKS
+
+static inline bool IsNan(const float x) {
+ uint32_t bits;
+ memcpy(&bits, &x, sizeof(bits));
+ const uint32_t bitmask_exp = 0x7F800000;
+ return (bits & bitmask_exp) == bitmask_exp && (bits & 0x7FFFFF);
+}
+
+static inline bool IsNan(const double x) {
+ uint64_t bits;
+ memcpy(&bits, &x, sizeof(bits));
+ return (0x7ff0000000000001ULL <= bits && bits <= 0x7fffffffffffffffULL) ||
+ (0xfff0000000000001ULL <= bits && bits <= 0xffffffffffffffffULL);
+}
+
+static inline void CheckImage(const ImageF& image, const char* name) {
+ PROFILER_FUNC;
+ for (size_t y = 0; y < image.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row = image.Row(y);
+ for (size_t x = 0; x < image.xsize(); ++x) {
+ if (IsNan(row[x])) {
+ printf("NAN: Image %s @ %" PRIuS ",%" PRIuS " (of %" PRIuS ",%" PRIuS
+ ")\n",
+ name, x, y, image.xsize(), image.ysize());
+ exit(1);
+ }
+ }
+ }
+}
+
+#define CHECK_NAN(x, str) \
+ do { \
+ if (IsNan(x)) { \
+ printf("%d: %s\n", __LINE__, str); \
+ abort(); \
+ } \
+ } while (0)
+
+#define CHECK_IMAGE(image, name) CheckImage(image, name)
+
+#else // BUTTERAUGLI_ENABLE_CHECKS
+
+#define CHECK_NAN(x, str)
+#define CHECK_IMAGE(image, name)
+
+#endif // BUTTERAUGLI_ENABLE_CHECKS
+
+// Calculate a 2x2 subsampled image for purposes of recursive butteraugli at
+// multiresolution.
+static Image3F SubSample2x(const Image3F& in) {
+ size_t xs = (in.xsize() + 1) / 2;
+ size_t ys = (in.ysize() + 1) / 2;
+ Image3F retval(xs, ys);
+ for (size_t c = 0; c < 3; ++c) {
+ for (size_t y = 0; y < ys; ++y) {
+ for (size_t x = 0; x < xs; ++x) {
+ retval.PlaneRow(c, y)[x] = 0;
+ }
+ }
+ }
+ for (size_t c = 0; c < 3; ++c) {
+ for (size_t y = 0; y < in.ysize(); ++y) {
+ for (size_t x = 0; x < in.xsize(); ++x) {
+ retval.PlaneRow(c, y / 2)[x / 2] += 0.25f * in.PlaneRow(c, y)[x];
+ }
+ }
+ if ((in.xsize() & 1) != 0) {
+ for (size_t y = 0; y < retval.ysize(); ++y) {
+ size_t last_column = retval.xsize() - 1;
+ retval.PlaneRow(c, y)[last_column] *= 2.0f;
+ }
+ }
+ if ((in.ysize() & 1) != 0) {
+ for (size_t x = 0; x < retval.xsize(); ++x) {
+ size_t last_row = retval.ysize() - 1;
+ retval.PlaneRow(c, last_row)[x] *= 2.0f;
+ }
+ }
+ }
+ return retval;
+}
+
+// Supersample src by 2x and add it to dest.
+static void AddSupersampled2x(const ImageF& src, float w, ImageF& dest) {
+ for (size_t y = 0; y < dest.ysize(); ++y) {
+ for (size_t x = 0; x < dest.xsize(); ++x) {
+ // There will be less errors from the more averaged images.
+ // We take it into account to some extent using a scaler.
+ static const double kHeuristicMixingValue = 0.3;
+ dest.Row(y)[x] *= 1.0 - kHeuristicMixingValue * w;
+ dest.Row(y)[x] += w * src.Row(y / 2)[x / 2];
+ }
+ }
+}
+
+Image3F* ButteraugliComparator::Temp() const {
+ bool was_in_use = temp_in_use_.test_and_set(std::memory_order_acq_rel);
+ JXL_ASSERT(!was_in_use);
+ (void)was_in_use;
+ return &temp_;
+}
+
+void ButteraugliComparator::ReleaseTemp() const { temp_in_use_.clear(); }
+
+ButteraugliComparator::ButteraugliComparator(const Image3F& rgb0,
+ const ButteraugliParams& params)
+ : xsize_(rgb0.xsize()),
+ ysize_(rgb0.ysize()),
+ params_(params),
+ temp_(xsize_, ysize_) {
+ if (xsize_ < 8 || ysize_ < 8) {
+ return;
+ }
+
+ Image3F xyb0 = HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(rgb0, params, Temp(),
+ &blur_temp_);
+ ReleaseTemp();
+ HWY_DYNAMIC_DISPATCH(SeparateFrequencies)
+ (xsize_, ysize_, params_, &blur_temp_, xyb0, pi0_);
+
+ // Awful recursive construction of samples of different resolution.
+ // This is an after-thought and possibly somewhat parallel in
+ // functionality with the PsychoImage multi-resolution approach.
+ sub_.reset(new ButteraugliComparator(SubSample2x(rgb0), params));
+}
+
+void ButteraugliComparator::Mask(ImageF* BUTTERAUGLI_RESTRICT mask) const {
+ HWY_DYNAMIC_DISPATCH(MaskPsychoImage)
+ (pi0_, pi0_, xsize_, ysize_, params_, Temp(), &blur_temp_, mask, nullptr);
+ ReleaseTemp();
+}
+
+void ButteraugliComparator::Diffmap(const Image3F& rgb1, ImageF& result) const {
+ PROFILER_FUNC;
+ if (xsize_ < 8 || ysize_ < 8) {
+ ZeroFillImage(&result);
+ return;
+ }
+ const Image3F xyb1 = HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(
+ rgb1, params_, Temp(), &blur_temp_);
+ ReleaseTemp();
+ DiffmapOpsinDynamicsImage(xyb1, result);
+ if (sub_) {
+ if (sub_->xsize_ < 8 || sub_->ysize_ < 8) {
+ return;
+ }
+ const Image3F sub_xyb = HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(
+ SubSample2x(rgb1), params_, sub_->Temp(), &sub_->blur_temp_);
+ sub_->ReleaseTemp();
+ ImageF subresult;
+ sub_->DiffmapOpsinDynamicsImage(sub_xyb, subresult);
+ AddSupersampled2x(subresult, 0.5, result);
+ }
+}
+
+void ButteraugliComparator::DiffmapOpsinDynamicsImage(const Image3F& xyb1,
+ ImageF& result) const {
+ PROFILER_FUNC;
+ if (xsize_ < 8 || ysize_ < 8) {
+ ZeroFillImage(&result);
+ return;
+ }
+ PsychoImage pi1;
+ HWY_DYNAMIC_DISPATCH(SeparateFrequencies)
+ (xsize_, ysize_, params_, &blur_temp_, xyb1, pi1);
+ result = ImageF(xsize_, ysize_);
+ DiffmapPsychoImage(pi1, result);
+}
+
+namespace {
+
+void MaltaDiffMap(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
+ const double w_0lt1, const double norm1,
+ ImageF* HWY_RESTRICT diffs,
+ Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
+ PROFILER_FUNC;
+ const double len = 3.75;
+ static const double mulli = 0.39905817637;
+ HWY_DYNAMIC_DISPATCH(MaltaDiffMap)
+ (lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli, diffs, block_diff_ac, c);
+}
+
+void MaltaDiffMapLF(const ImageF& lum0, const ImageF& lum1, const double w_0gt1,
+ const double w_0lt1, const double norm1,
+ ImageF* HWY_RESTRICT diffs,
+ Image3F* HWY_RESTRICT block_diff_ac, size_t c) {
+ PROFILER_FUNC;
+ const double len = 3.75;
+ static const double mulli = 0.611612573796;
+ HWY_DYNAMIC_DISPATCH(MaltaDiffMapLF)
+ (lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli, diffs, block_diff_ac, c);
+}
+
+} // namespace
+
+void ButteraugliComparator::DiffmapPsychoImage(const PsychoImage& pi1,
+ ImageF& diffmap) const {
+ PROFILER_FUNC;
+ if (xsize_ < 8 || ysize_ < 8) {
+ ZeroFillImage(&diffmap);
+ return;
+ }
+
+ const float hf_asymmetry_ = params_.hf_asymmetry;
+ const float xmul_ = params_.xmul;
+
+ ImageF diffs(xsize_, ysize_);
+ Image3F block_diff_ac(xsize_, ysize_);
+ ZeroFillImage(&block_diff_ac);
+ static const double wUhfMalta = 1.10039032555;
+ static const double norm1Uhf = 71.7800275169;
+ MaltaDiffMap(pi0_.uhf[1], pi1.uhf[1], wUhfMalta * hf_asymmetry_,
+ wUhfMalta / hf_asymmetry_, norm1Uhf, &diffs, &block_diff_ac, 1);
+
+ static const double wUhfMaltaX = 173.5;
+ static const double norm1UhfX = 5.0;
+ MaltaDiffMap(pi0_.uhf[0], pi1.uhf[0], wUhfMaltaX * hf_asymmetry_,
+ wUhfMaltaX / hf_asymmetry_, norm1UhfX, &diffs, &block_diff_ac,
+ 0);
+
+ static const double wHfMalta = 18.7237414387;
+ static const double norm1Hf = 4498534.45232;
+ MaltaDiffMapLF(pi0_.hf[1], pi1.hf[1], wHfMalta * std::sqrt(hf_asymmetry_),
+ wHfMalta / std::sqrt(hf_asymmetry_), norm1Hf, &diffs,
+ &block_diff_ac, 1);
+
+ static const double wHfMaltaX = 6923.99476109;
+ static const double norm1HfX = 8051.15833247;
+ MaltaDiffMapLF(pi0_.hf[0], pi1.hf[0], wHfMaltaX * std::sqrt(hf_asymmetry_),
+ wHfMaltaX / std::sqrt(hf_asymmetry_), norm1HfX, &diffs,
+ &block_diff_ac, 0);
+
+ static const double wMfMalta = 37.0819870399;
+ static const double norm1Mf = 130262059.556;
+ MaltaDiffMapLF(pi0_.mf.Plane(1), pi1.mf.Plane(1), wMfMalta, wMfMalta, norm1Mf,
+ &diffs, &block_diff_ac, 1);
+
+ static const double wMfMaltaX = 8246.75321353;
+ static const double norm1MfX = 1009002.70582;
+ MaltaDiffMapLF(pi0_.mf.Plane(0), pi1.mf.Plane(0), wMfMaltaX, wMfMaltaX,
+ norm1MfX, &diffs, &block_diff_ac, 0);
+
+ static const double wmul[9] = {
+ 400.0, 1.50815703118, 0,
+ 2150.0, 10.6195433239, 16.2176043152,
+ 29.2353797994, 0.844626970982, 0.703646627719,
+ };
+ Image3F block_diff_dc(xsize_, ysize_);
+ for (size_t c = 0; c < 3; ++c) {
+ if (c < 2) { // No blue channel error accumulated at HF.
+ HWY_DYNAMIC_DISPATCH(L2DiffAsymmetric)
+ (pi0_.hf[c], pi1.hf[c], wmul[c] * hf_asymmetry_, wmul[c] / hf_asymmetry_,
+ &block_diff_ac, c);
+ }
+ HWY_DYNAMIC_DISPATCH(L2Diff)
+ (pi0_.mf.Plane(c), pi1.mf.Plane(c), wmul[3 + c], &block_diff_ac, c);
+ HWY_DYNAMIC_DISPATCH(SetL2Diff)
+ (pi0_.lf.Plane(c), pi1.lf.Plane(c), wmul[6 + c], &block_diff_dc, c);
+ }
+
+ ImageF mask;
+ HWY_DYNAMIC_DISPATCH(MaskPsychoImage)
+ (pi0_, pi1, xsize_, ysize_, params_, Temp(), &blur_temp_, &mask,
+ &block_diff_ac.Plane(1));
+ ReleaseTemp();
+
+ HWY_DYNAMIC_DISPATCH(CombineChannelsToDiffmap)
+ (mask, block_diff_dc, block_diff_ac, xmul_, &diffmap);
+}
+
+double ButteraugliScoreFromDiffmap(const ImageF& diffmap,
+ const ButteraugliParams* params) {
+ PROFILER_FUNC;
+ float retval = 0.0f;
+ for (size_t y = 0; y < diffmap.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row = diffmap.ConstRow(y);
+ for (size_t x = 0; x < diffmap.xsize(); ++x) {
+ retval = std::max(retval, row[x]);
+ }
+ }
+ return retval;
+}
+
+bool ButteraugliDiffmap(const Image3F& rgb0, const Image3F& rgb1,
+ double hf_asymmetry, double xmul, ImageF& diffmap) {
+ ButteraugliParams params;
+ params.hf_asymmetry = hf_asymmetry;
+ params.xmul = xmul;
+ return ButteraugliDiffmap(rgb0, rgb1, params, diffmap);
+}
+
+bool ButteraugliDiffmap(const Image3F& rgb0, const Image3F& rgb1,
+ const ButteraugliParams& params, ImageF& diffmap) {
+ PROFILER_FUNC;
+ const size_t xsize = rgb0.xsize();
+ const size_t ysize = rgb0.ysize();
+ if (xsize < 1 || ysize < 1) {
+ return JXL_FAILURE("Zero-sized image");
+ }
+ if (!SameSize(rgb0, rgb1)) {
+ return JXL_FAILURE("Size mismatch");
+ }
+ static const int kMax = 8;
+ if (xsize < kMax || ysize < kMax) {
+ // Butteraugli values for small (where xsize or ysize is smaller
+ // than 8 pixels) images are non-sensical, but most likely it is
+ // less disruptive to try to compute something than just give up.
+ // Temporarily extend the borders of the image to fit 8 x 8 size.
+ size_t xborder = xsize < kMax ? (kMax - xsize) / 2 : 0;
+ size_t yborder = ysize < kMax ? (kMax - ysize) / 2 : 0;
+ size_t xscaled = std::max<size_t>(kMax, xsize);
+ size_t yscaled = std::max<size_t>(kMax, ysize);
+ Image3F scaled0(xscaled, yscaled);
+ Image3F scaled1(xscaled, yscaled);
+ for (int i = 0; i < 3; ++i) {
+ for (size_t y = 0; y < yscaled; ++y) {
+ for (size_t x = 0; x < xscaled; ++x) {
+ size_t x2 =
+ std::min<size_t>(xsize - 1, x > xborder ? x - xborder : 0);
+ size_t y2 =
+ std::min<size_t>(ysize - 1, y > yborder ? y - yborder : 0);
+ scaled0.PlaneRow(i, y)[x] = rgb0.PlaneRow(i, y2)[x2];
+ scaled1.PlaneRow(i, y)[x] = rgb1.PlaneRow(i, y2)[x2];
+ }
+ }
+ }
+ ImageF diffmap_scaled;
+ const bool ok =
+ ButteraugliDiffmap(scaled0, scaled1, params, diffmap_scaled);
+ diffmap = ImageF(xsize, ysize);
+ for (size_t y = 0; y < ysize; ++y) {
+ for (size_t x = 0; x < xsize; ++x) {
+ diffmap.Row(y)[x] = diffmap_scaled.Row(y + yborder)[x + xborder];
+ }
+ }
+ return ok;
+ }
+ ButteraugliComparator butteraugli(rgb0, params);
+ butteraugli.Diffmap(rgb1, diffmap);
+ return true;
+}
+
+bool ButteraugliInterface(const Image3F& rgb0, const Image3F& rgb1,
+ float hf_asymmetry, float xmul, ImageF& diffmap,
+ double& diffvalue) {
+ ButteraugliParams params;
+ params.hf_asymmetry = hf_asymmetry;
+ params.xmul = xmul;
+ return ButteraugliInterface(rgb0, rgb1, params, diffmap, diffvalue);
+}
+
+bool ButteraugliInterface(const Image3F& rgb0, const Image3F& rgb1,
+ const ButteraugliParams& params, ImageF& diffmap,
+ double& diffvalue) {
+#if JXL_PROFILER_ENABLED
+ auto trace_start = std::chrono::steady_clock::now();
+#endif
+ if (!ButteraugliDiffmap(rgb0, rgb1, params, diffmap)) {
+ return false;
+ }
+#if JXL_PROFILER_ENABLED
+ auto trace_end = std::chrono::steady_clock::now();
+ std::chrono::duration<double> elapsed = trace_end - trace_start;
+ const size_t mp = rgb0.xsize() * rgb0.ysize();
+ printf("diff MP/s %f\n", mp / elapsed.count() * 1E-6);
+#endif
+ diffvalue = ButteraugliScoreFromDiffmap(diffmap, &params);
+ return true;
+}
+
+double ButteraugliFuzzyClass(double score) {
+ static const double fuzzy_width_up = 4.8;
+ static const double fuzzy_width_down = 4.8;
+ static const double m0 = 2.0;
+ static const double scaler = 0.7777;
+ double val;
+ if (score < 1.0) {
+ // val in [scaler .. 2.0]
+ val = m0 / (1.0 + exp((score - 1.0) * fuzzy_width_down));
+ val -= 1.0; // from [1 .. 2] to [0 .. 1]
+ val *= 2.0 - scaler; // from [0 .. 1] to [0 .. 2.0 - scaler]
+ val += scaler; // from [0 .. 2.0 - scaler] to [scaler .. 2.0]
+ } else {
+ // val in [0 .. scaler]
+ val = m0 / (1.0 + exp((score - 1.0) * fuzzy_width_up));
+ val *= scaler;
+ }
+ return val;
+}
+
+// #define PRINT_OUT_NORMALIZATION
+
+double ButteraugliFuzzyInverse(double seek) {
+ double pos = 0;
+ // NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter)
+ for (double range = 1.0; range >= 1e-10; range *= 0.5) {
+ double cur = ButteraugliFuzzyClass(pos);
+ if (cur < seek) {
+ pos -= range;
+ } else {
+ pos += range;
+ }
+ }
+#ifdef PRINT_OUT_NORMALIZATION
+ if (seek == 1.0) {
+ fprintf(stderr, "Fuzzy inverse %g\n", pos);
+ }
+#endif
+ return pos;
+}
+
+#ifdef PRINT_OUT_NORMALIZATION
+static double print_out_normalization = ButteraugliFuzzyInverse(1.0);
+#endif
+
+namespace {
+
+void ScoreToRgb(double score, double good_threshold, double bad_threshold,
+ float rgb[3]) {
+ double heatmap[12][3] = {
+ {0, 0, 0}, {0, 0, 1},
+ {0, 1, 1}, {0, 1, 0}, // Good level
+ {1, 1, 0}, {1, 0, 0}, // Bad level
+ {1, 0, 1}, {0.5, 0.5, 1.0},
+ {1.0, 0.5, 0.5}, // Pastel colors for the very bad quality range.
+ {1.0, 1.0, 0.5}, {1, 1, 1},
+ {1, 1, 1}, // Last color repeated to have a solid range of white.
+ };
+ if (score < good_threshold) {
+ score = (score / good_threshold) * 0.3;
+ } else if (score < bad_threshold) {
+ score = 0.3 +
+ (score - good_threshold) / (bad_threshold - good_threshold) * 0.15;
+ } else {
+ score = 0.45 + (score - bad_threshold) / (bad_threshold * 12) * 0.5;
+ }
+ static const int kTableSize = sizeof(heatmap) / sizeof(heatmap[0]);
+ score = std::min<double>(std::max<double>(score * (kTableSize - 1), 0.0),
+ kTableSize - 2);
+ int ix = static_cast<int>(score);
+ ix = std::min(std::max(0, ix), kTableSize - 2); // Handle NaN
+ double mix = score - ix;
+ for (int i = 0; i < 3; ++i) {
+ double v = mix * heatmap[ix + 1][i] + (1 - mix) * heatmap[ix][i];
+ rgb[i] = pow(v, 0.5);
+ }
+}
+
+} // namespace
+
+Image3F CreateHeatMapImage(const ImageF& distmap, double good_threshold,
+ double bad_threshold) {
+ Image3F heatmap(distmap.xsize(), distmap.ysize());
+ for (size_t y = 0; y < distmap.ysize(); ++y) {
+ const float* BUTTERAUGLI_RESTRICT row_distmap = distmap.ConstRow(y);
+ float* BUTTERAUGLI_RESTRICT row_h0 = heatmap.PlaneRow(0, y);
+ float* BUTTERAUGLI_RESTRICT row_h1 = heatmap.PlaneRow(1, y);
+ float* BUTTERAUGLI_RESTRICT row_h2 = heatmap.PlaneRow(2, y);
+ for (size_t x = 0; x < distmap.xsize(); ++x) {
+ const float d = row_distmap[x];
+ float rgb[3];
+ ScoreToRgb(d, good_threshold, bad_threshold, rgb);
+ row_h0[x] = rgb[0];
+ row_h1[x] = rgb[1];
+ row_h2[x] = rgb[2];
+ }
+ }
+ return heatmap;
+}
+
+} // namespace jxl
+#endif // HWY_ONCE