summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/enc_detect_dots.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/jpeg-xl/lib/jxl/enc_detect_dots.cc
parentInitial commit. (diff)
downloadthunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz
thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/enc_detect_dots.cc')
-rw-r--r--third_party/jpeg-xl/lib/jxl/enc_detect_dots.cc626
1 files changed, 626 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/enc_detect_dots.cc b/third_party/jpeg-xl/lib/jxl/enc_detect_dots.cc
new file mode 100644
index 0000000000..5819036987
--- /dev/null
+++ b/third_party/jpeg-xl/lib/jxl/enc_detect_dots.cc
@@ -0,0 +1,626 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "lib/jxl/enc_detect_dots.h"
+
+#include <stdint.h>
+
+#include <algorithm>
+#include <array>
+#include <cmath>
+#include <cstdio>
+#include <utility>
+#include <vector>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "lib/jxl/enc_detect_dots.cc"
+#include <hwy/foreach_target.h>
+#include <hwy/highway.h>
+
+#include "lib/jxl/base/compiler_specific.h"
+#include "lib/jxl/base/data_parallel.h"
+#include "lib/jxl/base/printf_macros.h"
+#include "lib/jxl/base/profiler.h"
+#include "lib/jxl/base/status.h"
+#include "lib/jxl/common.h"
+#include "lib/jxl/convolve.h"
+#include "lib/jxl/enc_linalg.h"
+#include "lib/jxl/enc_optimize.h"
+#include "lib/jxl/image.h"
+#include "lib/jxl/image_ops.h"
+
+// Set JXL_DEBUG_DOT_DETECT to 1 to enable debugging.
+#ifndef JXL_DEBUG_DOT_DETECT
+#define JXL_DEBUG_DOT_DETECT 0
+#endif
+
+#if JXL_DEBUG_DOT_DETECT
+#include "lib/jxl/enc_aux_out.h"
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace jxl {
+namespace HWY_NAMESPACE {
+
+// These templates are not found via ADL.
+using hwy::HWY_NAMESPACE::Add;
+using hwy::HWY_NAMESPACE::Mul;
+using hwy::HWY_NAMESPACE::Sub;
+
+ImageF SumOfSquareDifferences(const Image3F& forig, const Image3F& smooth,
+ ThreadPool* pool) {
+ const HWY_FULL(float) d;
+ const auto color_coef0 = Set(d, 0.0f);
+ const auto color_coef1 = Set(d, 10.0f);
+ const auto color_coef2 = Set(d, 0.0f);
+
+ ImageF sum_of_squares(forig.xsize(), forig.ysize());
+ JXL_CHECK(RunOnPool(
+ pool, 0, forig.ysize(), ThreadPool::NoInit,
+ [&](const uint32_t task, size_t thread) {
+ const size_t y = static_cast<size_t>(task);
+ const float* JXL_RESTRICT orig_row0 = forig.Plane(0).ConstRow(y);
+ const float* JXL_RESTRICT orig_row1 = forig.Plane(1).ConstRow(y);
+ const float* JXL_RESTRICT orig_row2 = forig.Plane(2).ConstRow(y);
+ const float* JXL_RESTRICT smooth_row0 = smooth.Plane(0).ConstRow(y);
+ const float* JXL_RESTRICT smooth_row1 = smooth.Plane(1).ConstRow(y);
+ const float* JXL_RESTRICT smooth_row2 = smooth.Plane(2).ConstRow(y);
+ float* JXL_RESTRICT sos_row = sum_of_squares.Row(y);
+
+ for (size_t x = 0; x < forig.xsize(); x += Lanes(d)) {
+ auto v0 = Sub(Load(d, orig_row0 + x), Load(d, smooth_row0 + x));
+ auto v1 = Sub(Load(d, orig_row1 + x), Load(d, smooth_row1 + x));
+ auto v2 = Sub(Load(d, orig_row2 + x), Load(d, smooth_row2 + x));
+ v0 = Mul(Mul(v0, v0), color_coef0);
+ v1 = Mul(Mul(v1, v1), color_coef1);
+ v2 = Mul(Mul(v2, v2), color_coef2);
+ const auto sos =
+ Add(v0, Add(v1, v2)); // weighted sum of square diffs
+ Store(sos, d, sos_row + x);
+ }
+ },
+ "ComputeEnergyImage"));
+ return sum_of_squares;
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace jxl
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace jxl {
+HWY_EXPORT(SumOfSquareDifferences); // Local function
+
+const int kEllipseWindowSize = 5;
+
+namespace {
+struct GaussianEllipse {
+ double x; // position in x
+ double y; // position in y
+ double sigma_x; // scale in x
+ double sigma_y; // scale in y
+ double angle; // ellipse rotation in radians
+ std::array<double, 3> intensity; // intensity in each channel
+
+ // The following variables do not need to be encoded
+ double l2_loss; // error after the Gaussian was fit
+ double l1_loss;
+ double ridge_loss; // the l2_loss plus regularization term
+ double custom_loss; // experimental custom loss
+ std::array<double, 3> bgColor; // best background color
+ size_t neg_pixels; // number of negative pixels when subtracting dot
+ std::array<double, 3> neg_value; // debt due to channel truncation
+};
+double DotGaussianModel(double dx, double dy, double ct, double st,
+ double sigma_x, double sigma_y, double intensity) {
+ double rx = ct * dx + st * dy;
+ double ry = -st * dx + ct * dy;
+ double md = (rx * rx / sigma_x) + (ry * ry / sigma_y);
+ double value = intensity * exp(-0.5 * md);
+ return value;
+}
+
+constexpr bool kOptimizeBackground = true;
+
+// Gaussian that smooths noise but preserves dots
+const WeightsSeparable5& WeightsSeparable5Gaussian0_65() {
+ constexpr float w0 = 0.558311f;
+ constexpr float w1 = 0.210395f;
+ constexpr float w2 = 0.010449f;
+ static constexpr WeightsSeparable5 weights = {
+ {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)},
+ {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}};
+ return weights;
+}
+
+// (Iterated) Gaussian that removes dots.
+const WeightsSeparable5& WeightsSeparable5Gaussian3() {
+ constexpr float w0 = 0.222338f;
+ constexpr float w1 = 0.210431f;
+ constexpr float w2 = 0.1784f;
+ static constexpr WeightsSeparable5 weights = {
+ {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)},
+ {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}};
+ return weights;
+}
+
+ImageF ComputeEnergyImage(const Image3F& orig, Image3F* smooth,
+ ThreadPool* pool) {
+ PROFILER_FUNC;
+
+ // Prepare guidance images for dot selection.
+ Image3F forig(orig.xsize(), orig.ysize());
+ *smooth = Image3F(orig.xsize(), orig.ysize());
+ Rect rect(orig);
+
+ const auto& weights1 = WeightsSeparable5Gaussian0_65();
+ const auto& weights3 = WeightsSeparable5Gaussian3();
+
+ for (size_t c = 0; c < 3; ++c) {
+ // Use forig as temporary storage to reduce memory and keep it warmer.
+ Separable5(orig.Plane(c), rect, weights3, pool, &forig.Plane(c));
+ Separable5(forig.Plane(c), rect, weights3, pool, &smooth->Plane(c));
+ Separable5(orig.Plane(c), rect, weights1, pool, &forig.Plane(c));
+ }
+
+#if JXL_DEBUG_DOT_DETECT
+ AuxOut aux;
+ aux.debug_prefix = "/tmp/sebastian/";
+ aux.DumpImage("filtered", forig);
+ aux.DumpImage("sm", *smooth);
+#endif
+
+ return HWY_DYNAMIC_DISPATCH(SumOfSquareDifferences)(forig, *smooth, pool);
+}
+
+struct Pixel {
+ int x;
+ int y;
+};
+
+Pixel operator+(const Pixel& a, const Pixel& b) {
+ return Pixel{a.x + b.x, a.y + b.y};
+}
+
+// Maximum area in pixels of a ellipse
+const size_t kMaxCCSize = 1000;
+
+// Extracts a connected component from a Binary image where seed is part
+// of the component
+bool ExtractComponent(ImageF* img, std::vector<Pixel>* pixels,
+ const Pixel& seed, double threshold) {
+ PROFILER_FUNC;
+ static const std::vector<Pixel> neighbors{{1, -1}, {1, 0}, {1, 1}, {0, -1},
+ {0, 1}, {-1, -1}, {-1, 1}, {1, 0}};
+ std::vector<Pixel> q{seed};
+ while (!q.empty()) {
+ Pixel current = q.back();
+ q.pop_back();
+ pixels->push_back(current);
+ if (pixels->size() > kMaxCCSize) return false;
+ for (const Pixel& delta : neighbors) {
+ Pixel child = current + delta;
+ if (child.x >= 0 && static_cast<size_t>(child.x) < img->xsize() &&
+ child.y >= 0 && static_cast<size_t>(child.y) < img->ysize()) {
+ float* value = &img->Row(child.y)[child.x];
+ if (*value > threshold) {
+ *value = 0.0;
+ q.push_back(child);
+ }
+ }
+ }
+ }
+ return true;
+}
+
+inline bool PointInRect(const Rect& r, const Pixel& p) {
+ return (static_cast<size_t>(p.x) >= r.x0() &&
+ static_cast<size_t>(p.x) < (r.x0() + r.xsize()) &&
+ static_cast<size_t>(p.y) >= r.y0() &&
+ static_cast<size_t>(p.y) < (r.y0() + r.ysize()));
+}
+
+struct ConnectedComponent {
+ ConnectedComponent(const Rect& bounds, const std::vector<Pixel>&& pixels)
+ : bounds(bounds), pixels(pixels) {}
+ Rect bounds;
+ std::vector<Pixel> pixels;
+ float maxEnergy;
+ float meanEnergy;
+ float varEnergy;
+ float meanBg;
+ float varBg;
+ float score;
+ Pixel mode;
+
+ void CompStats(const ImageF& energy, int extra) {
+ PROFILER_FUNC;
+ maxEnergy = 0.0;
+ meanEnergy = 0.0;
+ varEnergy = 0.0;
+ meanBg = 0.0;
+ varBg = 0.0;
+ int nIn = 0;
+ int nOut = 0;
+ mode.x = 0;
+ mode.y = 0;
+ for (int sy = -extra; sy < (static_cast<int>(bounds.ysize()) + extra);
+ sy++) {
+ int y = sy + static_cast<int>(bounds.y0());
+ if (y < 0 || static_cast<size_t>(y) >= energy.ysize()) continue;
+ const float* JXL_RESTRICT erow = energy.ConstRow(y);
+ for (int sx = -extra; sx < (static_cast<int>(bounds.xsize()) + extra);
+ sx++) {
+ int x = sx + static_cast<int>(bounds.x0());
+ if (x < 0 || static_cast<size_t>(x) >= energy.xsize()) continue;
+ if (erow[x] > maxEnergy) {
+ maxEnergy = erow[x];
+ mode.x = x;
+ mode.y = y;
+ }
+ if (PointInRect(bounds, Pixel{x, y})) {
+ meanEnergy += erow[x];
+ varEnergy += erow[x] * erow[x];
+ nIn++;
+ } else {
+ meanBg += erow[x];
+ varBg += erow[x] * erow[x];
+ nOut++;
+ }
+ }
+ }
+ meanEnergy = meanEnergy / nIn;
+ meanBg = meanBg / nOut;
+ varEnergy = (varEnergy / nIn) - meanEnergy * meanEnergy;
+ varBg = (varBg / nOut) - meanBg * meanBg;
+ score = (meanEnergy - meanBg) / std::sqrt(varBg);
+ }
+};
+
+Rect BoundingRectangle(const std::vector<Pixel>& pixels) {
+ PROFILER_FUNC;
+ JXL_ASSERT(!pixels.empty());
+ int low_x, high_x, low_y, high_y;
+ low_x = high_x = pixels[0].x;
+ low_y = high_y = pixels[0].y;
+ for (const Pixel& p : pixels) {
+ low_x = std::min(low_x, p.x);
+ high_x = std::max(high_x, p.x);
+ low_y = std::min(low_y, p.y);
+ high_y = std::max(high_y, p.y);
+ }
+ return Rect(low_x, low_y, high_x - low_x + 1, high_y - low_y + 1);
+}
+
+std::vector<ConnectedComponent> FindCC(const ImageF& energy, double t_low,
+ double t_high, uint32_t maxWindow,
+ double minScore) {
+ PROFILER_FUNC;
+ const int kExtraRect = 4;
+ ImageF img = CopyImage(energy);
+ std::vector<ConnectedComponent> ans;
+ for (size_t y = 0; y < img.ysize(); y++) {
+ float* JXL_RESTRICT row = img.Row(y);
+ for (size_t x = 0; x < img.xsize(); x++) {
+ if (row[x] > t_high) {
+ std::vector<Pixel> pixels;
+ row[x] = 0.0;
+ bool success = ExtractComponent(
+ &img, &pixels, Pixel{static_cast<int>(x), static_cast<int>(y)},
+ t_low);
+ if (!success) continue;
+#if JXL_DEBUG_DOT_DETECT
+ for (size_t i = 0; i < pixels.size(); i++) {
+ fprintf(stderr, "(%d,%d) ", pixels[i].x, pixels[i].y);
+ }
+ fprintf(stderr, "\n");
+#endif // JXL_DEBUG_DOT_DETECT
+ Rect bounds = BoundingRectangle(pixels);
+ if (bounds.xsize() < maxWindow && bounds.ysize() < maxWindow) {
+ ConnectedComponent cc{bounds, std::move(pixels)};
+ cc.CompStats(energy, kExtraRect);
+ if (cc.score < minScore) continue;
+ JXL_DEBUG(JXL_DEBUG_DOT_DETECT,
+ "cc mode: (%d,%d), max: %f, bgMean: %f bgVar: "
+ "%f bound:(%" PRIuS ",%" PRIuS ",%" PRIuS ",%" PRIuS ")\n",
+ cc.mode.x, cc.mode.y, cc.maxEnergy, cc.meanEnergy,
+ cc.varEnergy, cc.bounds.x0(), cc.bounds.y0(),
+ cc.bounds.xsize(), cc.bounds.ysize());
+ ans.push_back(cc);
+ }
+ }
+ }
+ }
+ return ans;
+}
+
+// TODO (sggonzalez): Adapt this function for the different color spaces or
+// remove it if the color space with the best performance does not need it
+void ComputeDotLosses(GaussianEllipse* ellipse, const ConnectedComponent& cc,
+ const Image3F& img, const Image3F& background) {
+ PROFILER_FUNC;
+ const int rectBounds = 2;
+ const double kIntensityR = 0.0; // 0.015;
+ const double kSigmaR = 0.0; // 0.01;
+ const double kZeroEpsilon = 0.1; // Tolerance to consider a value negative
+ double ct = cos(ellipse->angle), st = sin(ellipse->angle);
+ const std::array<double, 3> channelGains{{1.0, 1.0, 1.0}};
+ int N = 0;
+ ellipse->l1_loss = 0.0;
+ ellipse->l2_loss = 0.0;
+ ellipse->neg_pixels = 0;
+ ellipse->neg_value.fill(0.0);
+ double distMeanModeSq = (cc.mode.x - ellipse->x) * (cc.mode.x - ellipse->x) +
+ (cc.mode.y - ellipse->y) * (cc.mode.y - ellipse->y);
+ ellipse->custom_loss = 0.0;
+ for (int c = 0; c < 3; c++) {
+ for (int sy = -rectBounds;
+ sy < (static_cast<int>(cc.bounds.ysize()) + rectBounds); sy++) {
+ int y = sy + cc.bounds.y0();
+ if (y < 0 || static_cast<size_t>(y) >= img.ysize()) continue;
+ const float* JXL_RESTRICT row = img.ConstPlaneRow(c, y);
+ // bgrow is only used if kOptimizeBackground is false.
+ // NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
+ const float* JXL_RESTRICT bgrow = background.ConstPlaneRow(c, y);
+ for (int sx = -rectBounds;
+ sx < (static_cast<int>(cc.bounds.xsize()) + rectBounds); sx++) {
+ int x = sx + cc.bounds.x0();
+ if (x < 0 || static_cast<size_t>(x) >= img.xsize()) continue;
+ double target = row[x];
+ double dotDelta = DotGaussianModel(
+ x - ellipse->x, y - ellipse->y, ct, st, ellipse->sigma_x,
+ ellipse->sigma_y, ellipse->intensity[c]);
+ if (dotDelta > target + kZeroEpsilon) {
+ ellipse->neg_pixels++;
+ ellipse->neg_value[c] += dotDelta - target;
+ }
+ double bkg = kOptimizeBackground ? ellipse->bgColor[c] : bgrow[x];
+ double pred = bkg + dotDelta;
+ double diff = target - pred;
+ double l2 = channelGains[c] * diff * diff;
+ double l1 = channelGains[c] * std::fabs(diff);
+ ellipse->l2_loss += l2;
+ ellipse->l1_loss += l1;
+ double w = DotGaussianModel(x - cc.mode.x, y - cc.mode.y, 1.0, 0.0,
+ 1.0 + ellipse->sigma_x,
+ 1.0 + ellipse->sigma_y, 1.0);
+ ellipse->custom_loss += w * l2;
+ N++;
+ }
+ }
+ }
+ ellipse->l2_loss /= N;
+ ellipse->custom_loss /= N;
+ ellipse->custom_loss += 20.0 * distMeanModeSq + ellipse->neg_value[1];
+ ellipse->l1_loss /= N;
+ double ridgeTerm = kSigmaR * ellipse->sigma_x + kSigmaR * ellipse->sigma_y;
+ for (int c = 0; c < 3; c++) {
+ ridgeTerm += kIntensityR * ellipse->intensity[c] * ellipse->intensity[c];
+ }
+ ellipse->ridge_loss = ellipse->l2_loss + ridgeTerm;
+}
+
+GaussianEllipse FitGaussianFast(const ConnectedComponent& cc,
+ const ImageF& energy, const Image3F& img,
+ const Image3F& background) {
+ PROFILER_FUNC;
+ constexpr bool leastSqIntensity = true;
+ constexpr double kEpsilon = 1e-6;
+ GaussianEllipse ans;
+ constexpr int kRectBounds = (kEllipseWindowSize >> 1);
+
+ // Compute the 1st and 2nd moments of the CC
+ double sum = 0.0;
+ int N = 0;
+ std::array<double, 3> m1{{0.0, 0.0, 0.0}};
+ std::array<double, 3> m2{{0.0, 0.0, 0.0}};
+ std::array<double, 3> color{{0.0, 0.0, 0.0}};
+ std::array<double, 3> bgColor{{0.0, 0.0, 0.0}};
+
+ JXL_DEBUG(JXL_DEBUG_DOT_DETECT,
+ "%" PRIuS " %" PRIuS " %" PRIuS " %" PRIuS "\n", cc.bounds.x0(),
+ cc.bounds.y0(), cc.bounds.xsize(), cc.bounds.ysize());
+ for (int c = 0; c < 3; c++) {
+ color[c] = img.ConstPlaneRow(c, cc.mode.y)[cc.mode.x] -
+ background.ConstPlaneRow(c, cc.mode.y)[cc.mode.x];
+ }
+ double sign = (color[1] > 0) ? 1 : -1;
+ for (int sy = -kRectBounds; sy <= kRectBounds; sy++) {
+ int y = sy + cc.mode.y;
+ if (y < 0 || static_cast<size_t>(y) >= energy.ysize()) continue;
+ const float* JXL_RESTRICT row = img.ConstPlaneRow(1, y);
+ const float* JXL_RESTRICT bgrow = background.ConstPlaneRow(1, y);
+ for (int sx = -kRectBounds; sx <= kRectBounds; sx++) {
+ int x = sx + cc.mode.x;
+ if (x < 0 || static_cast<size_t>(x) >= energy.xsize()) continue;
+ double w = std::max(kEpsilon, sign * (row[x] - bgrow[x]));
+ sum += w;
+
+ m1[0] += w * x;
+ m1[1] += w * y;
+ m2[0] += w * x * x;
+ m2[1] += w * x * y;
+ m2[2] += w * y * y;
+ for (int c = 0; c < 3; c++) {
+ bgColor[c] += background.ConstPlaneRow(c, y)[x];
+ }
+ N++;
+ }
+ }
+ JXL_CHECK(N > 0);
+
+ for (int i = 0; i < 3; i++) {
+ m1[i] /= sum;
+ m2[i] /= sum;
+ bgColor[i] /= N;
+ }
+
+ // Some magic constants
+ constexpr double kSigmaMult = 1.0;
+ constexpr std::array<double, 3> kScaleMult{{1.1, 1.1, 1.1}};
+
+ // Now set the parameters of the Gaussian
+ ans.x = m1[0];
+ ans.y = m1[1];
+ for (int j = 0; j < 3; j++) {
+ ans.intensity[j] = kScaleMult[j] * color[j];
+ }
+
+ ImageD Sigma(2, 2), D(1, 2), U(2, 2);
+ Sigma.Row(0)[0] = m2[0] - m1[0] * m1[0];
+ Sigma.Row(1)[1] = m2[2] - m1[1] * m1[1];
+ Sigma.Row(0)[1] = Sigma.Row(1)[0] = m2[1] - m1[0] * m1[1];
+ ConvertToDiagonal(Sigma, &D, &U);
+ const double* JXL_RESTRICT d = D.ConstRow(0);
+ const double* JXL_RESTRICT u = U.ConstRow(1);
+ int p1 = 0, p2 = 1;
+ if (d[0] < d[1]) std::swap(p1, p2);
+ ans.sigma_x = kSigmaMult * d[p1];
+ ans.sigma_y = kSigmaMult * d[p2];
+ ans.angle = std::atan2(u[p1], u[p2]);
+ ans.l2_loss = 0.0;
+ ans.bgColor = bgColor;
+ if (leastSqIntensity) {
+ GaussianEllipse* ellipse = &ans;
+ double ct = cos(ans.angle), st = sin(ans.angle);
+ // Estimate intensity with least squares (fixed background)
+ for (int c = 0; c < 3; c++) {
+ double gg = 0.0;
+ double gd = 0.0;
+ int yc = static_cast<int>(cc.mode.y);
+ int xc = static_cast<int>(cc.mode.x);
+ for (int y = yc - kRectBounds; y <= yc + kRectBounds; y++) {
+ if (y < 0 || static_cast<size_t>(y) >= img.ysize()) continue;
+ const float* JXL_RESTRICT row = img.ConstPlaneRow(c, y);
+ const float* JXL_RESTRICT bgrow = background.ConstPlaneRow(c, y);
+ for (int x = xc - kRectBounds; x <= xc + kRectBounds; x++) {
+ if (x < 0 || static_cast<size_t>(x) >= img.xsize()) continue;
+ double target = row[x] - bgrow[x];
+ double gaussian =
+ DotGaussianModel(x - ellipse->x, y - ellipse->y, ct, st,
+ ellipse->sigma_x, ellipse->sigma_y, 1.0);
+ gg += gaussian * gaussian;
+ gd += gaussian * target;
+ }
+ }
+ ans.intensity[c] = gd / (gg + 1e-6); // Regularized least squares
+ }
+ }
+ ComputeDotLosses(&ans, cc, img, background);
+ return ans;
+}
+
+GaussianEllipse FitGaussian(const ConnectedComponent& cc, const ImageF& energy,
+ const Image3F& img, const Image3F& background) {
+ auto ellipse = FitGaussianFast(cc, energy, img, background);
+ if (ellipse.sigma_x < ellipse.sigma_y) {
+ std::swap(ellipse.sigma_x, ellipse.sigma_y);
+ ellipse.angle += kPi / 2.0;
+ }
+ ellipse.angle -= kPi * std::floor(ellipse.angle / kPi);
+ if (fabs(ellipse.angle - kPi) < 1e-6 || fabs(ellipse.angle) < 1e-6) {
+ ellipse.angle = 0.0;
+ }
+ JXL_CHECK(ellipse.angle >= 0 && ellipse.angle <= kPi &&
+ ellipse.sigma_x >= ellipse.sigma_y);
+ JXL_DEBUG(JXL_DEBUG_DOT_DETECT,
+ "Ellipse mu=(%lf,%lf) sigma=(%lf,%lf) angle=%lf "
+ "intensity=(%lf,%lf,%lf) bg=(%lf,%lf,%lf) l2_loss=%lf "
+ "custom_loss=%lf, neg_pix=%" PRIuS ", neg_v=(%lf,%lf,%lf)\n",
+ ellipse.x, ellipse.y, ellipse.sigma_x, ellipse.sigma_y,
+ ellipse.angle, ellipse.intensity[0], ellipse.intensity[1],
+ ellipse.intensity[2], ellipse.bgColor[0], ellipse.bgColor[1],
+ ellipse.bgColor[2], ellipse.l2_loss, ellipse.custom_loss,
+ ellipse.neg_pixels, ellipse.neg_value[0], ellipse.neg_value[1],
+ ellipse.neg_value[2]);
+ return ellipse;
+}
+
+} // namespace
+
+std::vector<PatchInfo> DetectGaussianEllipses(
+ const Image3F& opsin, const GaussianDetectParams& params,
+ const EllipseQuantParams& qParams, ThreadPool* pool) {
+ PROFILER_FUNC;
+ std::vector<PatchInfo> dots;
+ Image3F smooth(opsin.xsize(), opsin.ysize());
+ ImageF energy = ComputeEnergyImage(opsin, &smooth, pool);
+#if JXL_DEBUG_DOT_DETECT
+ AuxOut aux;
+ aux.debug_prefix = "/tmp/sebastian/";
+ aux.DumpXybImage("smooth", smooth);
+ aux.DumpPlaneNormalized("energy", energy);
+#endif // JXL_DEBUG_DOT_DETECT
+ std::vector<ConnectedComponent> components = FindCC(
+ energy, params.t_low, params.t_high, params.maxWinSize, params.minScore);
+ size_t numCC =
+ std::min(params.maxCC, (components.size() * params.percCC) / 100);
+ if (components.size() > numCC) {
+ std::sort(
+ components.begin(), components.end(),
+ [](const ConnectedComponent& a, const ConnectedComponent& b) -> bool {
+ return a.score > b.score;
+ });
+ components.erase(components.begin() + numCC, components.end());
+ }
+ for (const auto& cc : components) {
+ GaussianEllipse ellipse = FitGaussian(cc, energy, opsin, smooth);
+ if (ellipse.x < 0.0 ||
+ std::ceil(ellipse.x) >= static_cast<double>(opsin.xsize()) ||
+ ellipse.y < 0.0 ||
+ std::ceil(ellipse.y) >= static_cast<double>(opsin.ysize())) {
+ continue;
+ }
+ if (ellipse.neg_pixels > params.maxNegPixels) continue;
+ double intensity = 0.21 * ellipse.intensity[0] +
+ 0.72 * ellipse.intensity[1] +
+ 0.07 * ellipse.intensity[2];
+ double intensitySq = intensity * intensity;
+ // for (int c = 0; c < 3; c++) {
+ // intensitySq += ellipse.intensity[c] * ellipse.intensity[c];
+ //}
+ double sqDistMeanMode = (ellipse.x - cc.mode.x) * (ellipse.x - cc.mode.x) +
+ (ellipse.y - cc.mode.y) * (ellipse.y - cc.mode.y);
+ if (ellipse.l2_loss < params.maxL2Loss &&
+ ellipse.custom_loss < params.maxCustomLoss &&
+ intensitySq > (params.minIntensity * params.minIntensity) &&
+ sqDistMeanMode < params.maxDistMeanMode * params.maxDistMeanMode) {
+ size_t x0 = cc.bounds.x0();
+ size_t y0 = cc.bounds.y0();
+ dots.emplace_back();
+ dots.back().second.emplace_back(x0, y0);
+ QuantizedPatch& patch = dots.back().first;
+ patch.xsize = cc.bounds.xsize();
+ patch.ysize = cc.bounds.ysize();
+ for (size_t y = 0; y < patch.ysize; y++) {
+ for (size_t x = 0; x < patch.xsize; x++) {
+ for (size_t c = 0; c < 3; c++) {
+ patch.fpixels[c][y * patch.xsize + x] =
+ opsin.ConstPlaneRow(c, y0 + y)[x0 + x] -
+ smooth.ConstPlaneRow(c, y0 + y)[x0 + x];
+ }
+ }
+ }
+ }
+ }
+#if JXL_DEBUG_DOT_DETECT
+ JXL_DEBUG(JXL_DEBUG_DOT_DETECT, "Candidates: %" PRIuS ", Dots: %" PRIuS "\n",
+ components.size(), dots.size());
+ ApplyGaussianEllipses(&smooth, dots, 1.0);
+ aux.DumpXybImage("draw", smooth);
+ ApplyGaussianEllipses(&smooth, dots, -1.0);
+
+ auto qdots = QuantizeGaussianEllipses(dots, qParams);
+ auto deq = DequantizeGaussianEllipses(qdots, qParams);
+ ApplyGaussianEllipses(&smooth, deq, 1.0);
+ aux.DumpXybImage("qdraw", smooth);
+ ApplyGaussianEllipses(&smooth, deq, -1.0);
+#endif // JXL_DEBUG_DOT_DETECT
+ return dots;
+}
+
+} // namespace jxl
+#endif // HWY_ONCE