diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 17:32:43 +0000 |
commit | 6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/jpeg-xl/lib/jxl/enc_heuristics.cc | |
parent | Initial commit. (diff) | |
download | thunderbird-upstream.tar.xz thunderbird-upstream.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/enc_heuristics.cc')
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/enc_heuristics.cc | 948 |
1 files changed, 948 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/enc_heuristics.cc b/third_party/jpeg-xl/lib/jxl/enc_heuristics.cc new file mode 100644 index 0000000000..18122fa769 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/enc_heuristics.cc @@ -0,0 +1,948 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/enc_heuristics.h" + +#include <stddef.h> +#include <stdint.h> + +#include <algorithm> +#include <numeric> +#include <string> + +#include "lib/jxl/enc_ac_strategy.h" +#include "lib/jxl/enc_adaptive_quantization.h" +#include "lib/jxl/enc_ar_control_field.h" +#include "lib/jxl/enc_cache.h" +#include "lib/jxl/enc_chroma_from_luma.h" +#include "lib/jxl/enc_gaborish.h" +#include "lib/jxl/enc_modular.h" +#include "lib/jxl/enc_noise.h" +#include "lib/jxl/enc_patch_dictionary.h" +#include "lib/jxl/enc_photon_noise.h" +#include "lib/jxl/enc_quant_weights.h" +#include "lib/jxl/enc_splines.h" +#include "lib/jxl/enc_xyb.h" + +namespace jxl { + +struct AuxOut; + +namespace { +void FindBestBlockEntropyModel(PassesEncoderState& enc_state) { + if (enc_state.cparams.decoding_speed_tier >= 1) { + static constexpr uint8_t kSimpleCtxMap[] = { + // Cluster all blocks together + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // + }; + static_assert( + 3 * kNumOrders == sizeof(kSimpleCtxMap) / sizeof *kSimpleCtxMap, + "Update simple context map"); + + auto bcm = enc_state.shared.block_ctx_map; + bcm.ctx_map.assign(std::begin(kSimpleCtxMap), std::end(kSimpleCtxMap)); + bcm.num_ctxs = 2; + bcm.num_dc_ctxs = 1; + return; + } + if (enc_state.cparams.speed_tier >= SpeedTier::kFalcon) { + return; + } + const ImageI& rqf = enc_state.shared.raw_quant_field; + // No need to change context modeling for small images. + size_t tot = rqf.xsize() * rqf.ysize(); + size_t size_for_ctx_model = + (1 << 10) * enc_state.cparams.butteraugli_distance; + if (tot < size_for_ctx_model) return; + + struct OccCounters { + // count the occurrences of each qf value and each strategy type. + OccCounters(const ImageI& rqf, const AcStrategyImage& ac_strategy) { + for (size_t y = 0; y < rqf.ysize(); y++) { + const int32_t* qf_row = rqf.Row(y); + AcStrategyRow acs_row = ac_strategy.ConstRow(y); + for (size_t x = 0; x < rqf.xsize(); x++) { + int ord = kStrategyOrder[acs_row[x].RawStrategy()]; + int qf = qf_row[x] - 1; + qf_counts[qf]++; + qf_ord_counts[ord][qf]++; + ord_counts[ord]++; + } + } + } + + size_t qf_counts[256] = {}; + size_t qf_ord_counts[kNumOrders][256] = {}; + size_t ord_counts[kNumOrders] = {}; + }; + // The OccCounters struct is too big to allocate on the stack. + std::unique_ptr<OccCounters> counters( + new OccCounters(rqf, enc_state.shared.ac_strategy)); + + // Splitting the context model according to the quantization field seems to + // mostly benefit only large images. + size_t size_for_qf_split = (1 << 13) * enc_state.cparams.butteraugli_distance; + size_t num_qf_segments = tot < size_for_qf_split ? 1 : 2; + std::vector<uint32_t>& qft = enc_state.shared.block_ctx_map.qf_thresholds; + qft.clear(); + // Divide the quant field in up to num_qf_segments segments. + size_t cumsum = 0; + size_t next = 1; + size_t last_cut = 256; + size_t cut = tot * next / num_qf_segments; + for (uint32_t j = 0; j < 256; j++) { + cumsum += counters->qf_counts[j]; + if (cumsum > cut) { + if (j != 0) { + qft.push_back(j); + } + last_cut = j; + while (cumsum > cut) { + next++; + cut = tot * next / num_qf_segments; + } + } else if (next > qft.size() + 1) { + if (j - 1 == last_cut && j != 0) { + qft.push_back(j); + } + } + } + + // Count the occurrences of each segment. + std::vector<size_t> counts(kNumOrders * (qft.size() + 1)); + size_t qft_pos = 0; + for (size_t j = 0; j < 256; j++) { + if (qft_pos < qft.size() && j == qft[qft_pos]) { + qft_pos++; + } + for (size_t i = 0; i < kNumOrders; i++) { + counts[qft_pos + i * (qft.size() + 1)] += counters->qf_ord_counts[i][j]; + } + } + + // Repeatedly merge the lowest-count pair. + std::vector<uint8_t> remap((qft.size() + 1) * kNumOrders); + std::iota(remap.begin(), remap.end(), 0); + std::vector<uint8_t> clusters(remap); + size_t nb_clusters = Clamp1((int)(tot / size_for_ctx_model / 2), 2, 9); + size_t nb_clusters_chroma = Clamp1((int)(tot / size_for_ctx_model / 3), 1, 5); + // This is O(n^2 log n), but n is small. + while (clusters.size() > nb_clusters) { + std::sort(clusters.begin(), clusters.end(), + [&](int a, int b) { return counts[a] > counts[b]; }); + counts[clusters[clusters.size() - 2]] += counts[clusters.back()]; + counts[clusters.back()] = 0; + remap[clusters.back()] = clusters[clusters.size() - 2]; + clusters.pop_back(); + } + for (size_t i = 0; i < remap.size(); i++) { + while (remap[remap[i]] != remap[i]) { + remap[i] = remap[remap[i]]; + } + } + // Relabel starting from 0. + std::vector<uint8_t> remap_remap(remap.size(), remap.size()); + size_t num = 0; + for (size_t i = 0; i < remap.size(); i++) { + if (remap_remap[remap[i]] == remap.size()) { + remap_remap[remap[i]] = num++; + } + remap[i] = remap_remap[remap[i]]; + } + // Write the block context map. + auto& ctx_map = enc_state.shared.block_ctx_map.ctx_map; + ctx_map = remap; + ctx_map.resize(remap.size() * 3); + // for chroma, only use up to nb_clusters_chroma separate block contexts + // (those for the biggest clusters) + for (size_t i = remap.size(); i < remap.size() * 3; i++) { + ctx_map[i] = num + Clamp1((int)remap[i % remap.size()], 0, + (int)nb_clusters_chroma - 1); + } + enc_state.shared.block_ctx_map.num_ctxs = + *std::max_element(ctx_map.begin(), ctx_map.end()) + 1; +} + +} // namespace + +void FindBestDequantMatrices(const CompressParams& cparams, + const Image3F& opsin, + ModularFrameEncoder* modular_frame_encoder, + DequantMatrices* dequant_matrices) { + // TODO(veluca): quant matrices for no-gaborish. + // TODO(veluca): heuristics for in-bitstream quant tables. + *dequant_matrices = DequantMatrices(); + if (cparams.max_error_mode) { + // Set numerators of all quantization matrices to constant values. + float weights[3][1] = {{1.0f / cparams.max_error[0]}, + {1.0f / cparams.max_error[1]}, + {1.0f / cparams.max_error[2]}}; + DctQuantWeightParams dct_params(weights); + std::vector<QuantEncoding> encodings(DequantMatrices::kNum, + QuantEncoding::DCT(dct_params)); + DequantMatricesSetCustom(dequant_matrices, encodings, + modular_frame_encoder); + float dc_weights[3] = {1.0f / cparams.max_error[0], + 1.0f / cparams.max_error[1], + 1.0f / cparams.max_error[2]}; + DequantMatricesSetCustomDC(dequant_matrices, dc_weights); + } +} + +bool DefaultEncoderHeuristics::HandlesColorConversion( + const CompressParams& cparams, const ImageBundle& ib) { + return cparams.noise != Override::kOn && cparams.patches != Override::kOn && + cparams.speed_tier >= SpeedTier::kWombat && cparams.resampling == 1 && + cparams.color_transform == ColorTransform::kXYB && + !cparams.modular_mode && !ib.HasAlpha(); +} + +namespace { + +void StoreMin2(const float v, float& min1, float& min2) { + if (v < min2) { + if (v < min1) { + min2 = min1; + min1 = v; + } else { + min2 = v; + } + } +} + +void CreateMask(const ImageF& image, ImageF& mask) { + for (size_t y = 0; y < image.ysize(); y++) { + auto* row_n = y > 0 ? image.Row(y - 1) : image.Row(y); + auto* row_in = image.Row(y); + auto* row_s = y + 1 < image.ysize() ? image.Row(y + 1) : image.Row(y); + auto* row_out = mask.Row(y); + for (size_t x = 0; x < image.xsize(); x++) { + // Center, west, east, north, south values and their absolute difference + float c = row_in[x]; + float w = x > 0 ? row_in[x - 1] : row_in[x]; + float e = x + 1 < image.xsize() ? row_in[x + 1] : row_in[x]; + float n = row_n[x]; + float s = row_s[x]; + float dw = std::abs(c - w); + float de = std::abs(c - e); + float dn = std::abs(c - n); + float ds = std::abs(c - s); + float min = std::numeric_limits<float>::max(); + float min2 = std::numeric_limits<float>::max(); + StoreMin2(dw, min, min2); + StoreMin2(de, min, min2); + StoreMin2(dn, min, min2); + StoreMin2(ds, min, min2); + row_out[x] = min2; + } + } +} + +// Downsamples the image by a factor of 2 with a kernel that's sharper than +// the standard 2x2 box kernel used by DownsampleImage. +// The kernel is optimized against the result of the 2x2 upsampling kernel used +// by the decoder. Ringing is slightly reduced by clamping the values of the +// resulting pixels within certain bounds of a small region in the original +// image. +void DownsampleImage2_Sharper(const ImageF& input, ImageF* output) { + const int64_t kernelx = 12; + const int64_t kernely = 12; + + static const float kernel[144] = { + -0.000314256996835, -0.000314256996835, -0.000897597057705, + -0.000562751488849, -0.000176807273646, 0.001864627368902, + 0.001864627368902, -0.000176807273646, -0.000562751488849, + -0.000897597057705, -0.000314256996835, -0.000314256996835, + -0.000314256996835, -0.001527942804748, -0.000121760530512, + 0.000191123989093, 0.010193185932466, 0.058637519197110, + 0.058637519197110, 0.010193185932466, 0.000191123989093, + -0.000121760530512, -0.001527942804748, -0.000314256996835, + -0.000897597057705, -0.000121760530512, 0.000946363683751, + 0.007113577630288, 0.000437956841058, -0.000372823835211, + -0.000372823835211, 0.000437956841058, 0.007113577630288, + 0.000946363683751, -0.000121760530512, -0.000897597057705, + -0.000562751488849, 0.000191123989093, 0.007113577630288, + 0.044592622228814, 0.000222278879007, -0.162864473015945, + -0.162864473015945, 0.000222278879007, 0.044592622228814, + 0.007113577630288, 0.000191123989093, -0.000562751488849, + -0.000176807273646, 0.010193185932466, 0.000437956841058, + 0.000222278879007, -0.000913092543974, -0.017071696107902, + -0.017071696107902, -0.000913092543974, 0.000222278879007, + 0.000437956841058, 0.010193185932466, -0.000176807273646, + 0.001864627368902, 0.058637519197110, -0.000372823835211, + -0.162864473015945, -0.017071696107902, 0.414660099370354, + 0.414660099370354, -0.017071696107902, -0.162864473015945, + -0.000372823835211, 0.058637519197110, 0.001864627368902, + 0.001864627368902, 0.058637519197110, -0.000372823835211, + -0.162864473015945, -0.017071696107902, 0.414660099370354, + 0.414660099370354, -0.017071696107902, -0.162864473015945, + -0.000372823835211, 0.058637519197110, 0.001864627368902, + -0.000176807273646, 0.010193185932466, 0.000437956841058, + 0.000222278879007, -0.000913092543974, -0.017071696107902, + -0.017071696107902, -0.000913092543974, 0.000222278879007, + 0.000437956841058, 0.010193185932466, -0.000176807273646, + -0.000562751488849, 0.000191123989093, 0.007113577630288, + 0.044592622228814, 0.000222278879007, -0.162864473015945, + -0.162864473015945, 0.000222278879007, 0.044592622228814, + 0.007113577630288, 0.000191123989093, -0.000562751488849, + -0.000897597057705, -0.000121760530512, 0.000946363683751, + 0.007113577630288, 0.000437956841058, -0.000372823835211, + -0.000372823835211, 0.000437956841058, 0.007113577630288, + 0.000946363683751, -0.000121760530512, -0.000897597057705, + -0.000314256996835, -0.001527942804748, -0.000121760530512, + 0.000191123989093, 0.010193185932466, 0.058637519197110, + 0.058637519197110, 0.010193185932466, 0.000191123989093, + -0.000121760530512, -0.001527942804748, -0.000314256996835, + -0.000314256996835, -0.000314256996835, -0.000897597057705, + -0.000562751488849, -0.000176807273646, 0.001864627368902, + 0.001864627368902, -0.000176807273646, -0.000562751488849, + -0.000897597057705, -0.000314256996835, -0.000314256996835}; + + int64_t xsize = input.xsize(); + int64_t ysize = input.ysize(); + + ImageF box_downsample = CopyImage(input); + DownsampleImage(&box_downsample, 2); + + ImageF mask(box_downsample.xsize(), box_downsample.ysize()); + CreateMask(box_downsample, mask); + + for (size_t y = 0; y < output->ysize(); y++) { + float* row_out = output->Row(y); + const float* row_in[kernely]; + const float* row_mask = mask.Row(y); + // get the rows in the support + for (size_t ky = 0; ky < kernely; ky++) { + int64_t iy = y * 2 + ky - (kernely - 1) / 2; + if (iy < 0) iy = 0; + if (iy >= ysize) iy = ysize - 1; + row_in[ky] = input.Row(iy); + } + + for (size_t x = 0; x < output->xsize(); x++) { + // get min and max values of the original image in the support + float min = std::numeric_limits<float>::max(); + float max = std::numeric_limits<float>::min(); + // kernelx - R and kernely - R are the radius of a rectangular region in + // which the values of a pixel are bounded to reduce ringing. + static constexpr int64_t R = 5; + for (int64_t ky = R; ky + R < kernely; ky++) { + for (int64_t kx = R; kx + R < kernelx; kx++) { + int64_t ix = x * 2 + kx - (kernelx - 1) / 2; + if (ix < 0) ix = 0; + if (ix >= xsize) ix = xsize - 1; + min = std::min<float>(min, row_in[ky][ix]); + max = std::max<float>(max, row_in[ky][ix]); + } + } + + float sum = 0; + for (int64_t ky = 0; ky < kernely; ky++) { + for (int64_t kx = 0; kx < kernelx; kx++) { + int64_t ix = x * 2 + kx - (kernelx - 1) / 2; + if (ix < 0) ix = 0; + if (ix >= xsize) ix = xsize - 1; + sum += row_in[ky][ix] * kernel[ky * kernelx + kx]; + } + } + + row_out[x] = sum; + + // Clamp the pixel within the value of a small area to prevent ringning. + // The mask determines how much to clamp, clamp more to reduce more + // ringing in smooth areas, clamp less in noisy areas to get more + // sharpness. Higher mask_multiplier gives less clamping, so less + // ringing reduction. + const constexpr float mask_multiplier = 1; + float a = row_mask[x] * mask_multiplier; + float clip_min = min - a; + float clip_max = max + a; + if (row_out[x] < clip_min) { + row_out[x] = clip_min; + } else if (row_out[x] > clip_max) { + row_out[x] = clip_max; + } + } + } +} + +void DownsampleImage2_Sharper(Image3F* opsin) { + // Allocate extra space to avoid a reallocation when padding. + Image3F downsampled(DivCeil(opsin->xsize(), 2) + kBlockDim, + DivCeil(opsin->ysize(), 2) + kBlockDim); + downsampled.ShrinkTo(downsampled.xsize() - kBlockDim, + downsampled.ysize() - kBlockDim); + + for (size_t c = 0; c < 3; c++) { + DownsampleImage2_Sharper(opsin->Plane(c), &downsampled.Plane(c)); + } + *opsin = std::move(downsampled); +} + +// The default upsampling kernels used by Upsampler in the decoder. +static const constexpr int64_t kSize = 5; + +static const float kernel00[25] = { + -0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f, + -0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f, + -0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f, + -0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f, + -0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f, +}; +static const float kernel01[25] = { + -0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f, + -0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f, + -0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f, + -0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f, + -0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f, +}; +static const float kernel10[25] = { + -0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f, + -0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f, + -0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f, + -0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f, + -0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f, +}; +static const float kernel11[25] = { + -0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f, + -0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f, + -0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f, + -0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f, + -0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f, +}; + +// Does exactly the same as the Upsampler in dec_upsampler for 2x2 pixels, with +// default CustomTransformData. +// TODO(lode): use Upsampler instead. However, it requires pre-initialization +// and padding on the left side of the image which requires refactoring the +// other code using this. +static void UpsampleImage(const ImageF& input, ImageF* output) { + int64_t xsize = input.xsize(); + int64_t ysize = input.ysize(); + int64_t xsize2 = output->xsize(); + int64_t ysize2 = output->ysize(); + for (int64_t y = 0; y < ysize2; y++) { + for (int64_t x = 0; x < xsize2; x++) { + auto kernel = kernel00; + if ((x & 1) && (y & 1)) { + kernel = kernel11; + } else if (x & 1) { + kernel = kernel10; + } else if (y & 1) { + kernel = kernel01; + } + float sum = 0; + int64_t x2 = x / 2; + int64_t y2 = y / 2; + + // get min and max values of the original image in the support + float min = std::numeric_limits<float>::max(); + float max = std::numeric_limits<float>::min(); + + for (int64_t ky = 0; ky < kSize; ky++) { + for (int64_t kx = 0; kx < kSize; kx++) { + int64_t xi = x2 - kSize / 2 + kx; + int64_t yi = y2 - kSize / 2 + ky; + if (xi < 0) xi = 0; + if (xi >= xsize) xi = input.xsize() - 1; + if (yi < 0) yi = 0; + if (yi >= ysize) yi = input.ysize() - 1; + min = std::min<float>(min, input.Row(yi)[xi]); + max = std::max<float>(max, input.Row(yi)[xi]); + } + } + + for (int64_t ky = 0; ky < kSize; ky++) { + for (int64_t kx = 0; kx < kSize; kx++) { + int64_t xi = x2 - kSize / 2 + kx; + int64_t yi = y2 - kSize / 2 + ky; + if (xi < 0) xi = 0; + if (xi >= xsize) xi = input.xsize() - 1; + if (yi < 0) yi = 0; + if (yi >= ysize) yi = input.ysize() - 1; + sum += input.Row(yi)[xi] * kernel[ky * kSize + kx]; + } + } + output->Row(y)[x] = sum; + if (output->Row(y)[x] < min) output->Row(y)[x] = min; + if (output->Row(y)[x] > max) output->Row(y)[x] = max; + } + } +} + +// Returns the derivative of Upsampler, with respect to input pixel x2, y2, to +// output pixel x, y (ignoring the clamping). +float UpsamplerDeriv(int64_t x2, int64_t y2, int64_t x, int64_t y) { + auto kernel = kernel00; + if ((x & 1) && (y & 1)) { + kernel = kernel11; + } else if (x & 1) { + kernel = kernel10; + } else if (y & 1) { + kernel = kernel01; + } + + int64_t ix = x / 2; + int64_t iy = y / 2; + int64_t kx = x2 - ix + kSize / 2; + int64_t ky = y2 - iy + kSize / 2; + + // This should not happen. + if (kx < 0 || kx >= kSize || ky < 0 || ky >= kSize) return 0; + + return kernel[ky * kSize + kx]; +} + +// Apply the derivative of the Upsampler to the input, reversing the effect of +// its coefficients. The output image is 2x2 times smaller than the input. +void AntiUpsample(const ImageF& input, ImageF* d) { + int64_t xsize = input.xsize(); + int64_t ysize = input.ysize(); + int64_t xsize2 = d->xsize(); + int64_t ysize2 = d->ysize(); + int64_t k0 = kSize - 1; + int64_t k1 = kSize; + for (int64_t y2 = 0; y2 < ysize2; ++y2) { + auto* row = d->Row(y2); + for (int64_t x2 = 0; x2 < xsize2; ++x2) { + int64_t x0 = x2 * 2 - k0; + if (x0 < 0) x0 = 0; + int64_t x1 = x2 * 2 + k1 + 1; + if (x1 > xsize) x1 = xsize; + int64_t y0 = y2 * 2 - k0; + if (y0 < 0) y0 = 0; + int64_t y1 = y2 * 2 + k1 + 1; + if (y1 > ysize) y1 = ysize; + + float sum = 0; + for (int64_t y = y0; y < y1; ++y) { + const auto* row_in = input.Row(y); + for (int64_t x = x0; x < x1; ++x) { + double deriv = UpsamplerDeriv(x2, y2, x, y); + sum += deriv * row_in[x]; + } + } + row[x2] = sum; + } + } +} + +// Element-wise multiplies two images. +template <typename T> +void ElwiseMul(const Plane<T>& image1, const Plane<T>& image2, Plane<T>* out) { + const size_t xsize = image1.xsize(); + const size_t ysize = image1.ysize(); + JXL_CHECK(xsize == image2.xsize()); + JXL_CHECK(ysize == image2.ysize()); + JXL_CHECK(xsize == out->xsize()); + JXL_CHECK(ysize == out->ysize()); + for (size_t y = 0; y < ysize; ++y) { + const T* const JXL_RESTRICT row1 = image1.Row(y); + const T* const JXL_RESTRICT row2 = image2.Row(y); + T* const JXL_RESTRICT row_out = out->Row(y); + for (size_t x = 0; x < xsize; ++x) { + row_out[x] = row1[x] * row2[x]; + } + } +} + +// Element-wise divides two images. +template <typename T> +void ElwiseDiv(const Plane<T>& image1, const Plane<T>& image2, Plane<T>* out) { + const size_t xsize = image1.xsize(); + const size_t ysize = image1.ysize(); + JXL_CHECK(xsize == image2.xsize()); + JXL_CHECK(ysize == image2.ysize()); + JXL_CHECK(xsize == out->xsize()); + JXL_CHECK(ysize == out->ysize()); + for (size_t y = 0; y < ysize; ++y) { + const T* const JXL_RESTRICT row1 = image1.Row(y); + const T* const JXL_RESTRICT row2 = image2.Row(y); + T* const JXL_RESTRICT row_out = out->Row(y); + for (size_t x = 0; x < xsize; ++x) { + row_out[x] = row1[x] / row2[x]; + } + } +} + +void ReduceRinging(const ImageF& initial, const ImageF& mask, ImageF& down) { + int64_t xsize2 = down.xsize(); + int64_t ysize2 = down.ysize(); + + for (size_t y = 0; y < down.ysize(); y++) { + const float* row_mask = mask.Row(y); + float* row_out = down.Row(y); + for (size_t x = 0; x < down.xsize(); x++) { + float v = down.Row(y)[x]; + float min = initial.Row(y)[x]; + float max = initial.Row(y)[x]; + for (int64_t yi = -1; yi < 2; yi++) { + for (int64_t xi = -1; xi < 2; xi++) { + int64_t x2 = (int64_t)x + xi; + int64_t y2 = (int64_t)y + yi; + if (x2 < 0 || y2 < 0 || x2 >= (int64_t)xsize2 || + y2 >= (int64_t)ysize2) + continue; + min = std::min<float>(min, initial.Row(y2)[x2]); + max = std::max<float>(max, initial.Row(y2)[x2]); + } + } + + row_out[x] = v; + + // Clamp the pixel within the value of a small area to prevent ringning. + // The mask determines how much to clamp, clamp more to reduce more + // ringing in smooth areas, clamp less in noisy areas to get more + // sharpness. Higher mask_multiplier gives less clamping, so less + // ringing reduction. + const constexpr float mask_multiplier = 2; + float a = row_mask[x] * mask_multiplier; + float clip_min = min - a; + float clip_max = max + a; + if (row_out[x] < clip_min) row_out[x] = clip_min; + if (row_out[x] > clip_max) row_out[x] = clip_max; + } + } +} + +// TODO(lode): move this to a separate file enc_downsample.cc +void DownsampleImage2_Iterative(const ImageF& orig, ImageF* output) { + int64_t xsize = orig.xsize(); + int64_t ysize = orig.ysize(); + int64_t xsize2 = DivCeil(orig.xsize(), 2); + int64_t ysize2 = DivCeil(orig.ysize(), 2); + + ImageF box_downsample = CopyImage(orig); + DownsampleImage(&box_downsample, 2); + ImageF mask(box_downsample.xsize(), box_downsample.ysize()); + CreateMask(box_downsample, mask); + + output->ShrinkTo(xsize2, ysize2); + + // Initial result image using the sharper downsampling. + // Allocate extra space to avoid a reallocation when padding. + ImageF initial(DivCeil(orig.xsize(), 2) + kBlockDim, + DivCeil(orig.ysize(), 2) + kBlockDim); + initial.ShrinkTo(initial.xsize() - kBlockDim, initial.ysize() - kBlockDim); + DownsampleImage2_Sharper(orig, &initial); + + ImageF down = CopyImage(initial); + ImageF up(xsize, ysize); + ImageF corr(xsize, ysize); + ImageF corr2(xsize2, ysize2); + + // In the weights map, relatively higher values will allow less ringing but + // also less sharpness. With all constant values, it optimizes equally + // everywhere. Even in this case, the weights2 computed from + // this is still used and differs at the borders of the image. + // TODO(lode): Make use of the weights field for anti-ringing and clamping, + // the values are all set to 1 for now, but it is intended to be used for + // reducing ringing based on the mask, and taking clamping into account. + ImageF weights(xsize, ysize); + for (size_t y = 0; y < weights.ysize(); y++) { + auto* row = weights.Row(y); + for (size_t x = 0; x < weights.xsize(); x++) { + row[x] = 1; + } + } + ImageF weights2(xsize2, ysize2); + AntiUpsample(weights, &weights2); + + const size_t num_it = 3; + for (size_t it = 0; it < num_it; ++it) { + UpsampleImage(down, &up); + corr = LinComb<float>(1, orig, -1, up); + ElwiseMul(corr, weights, &corr); + AntiUpsample(corr, &corr2); + ElwiseDiv(corr2, weights2, &corr2); + + down = LinComb<float>(1, down, 1, corr2); + } + + ReduceRinging(initial, mask, down); + + // can't just use CopyImage, because the output image was prepared with + // padding. + for (size_t y = 0; y < down.ysize(); y++) { + for (size_t x = 0; x < down.xsize(); x++) { + float v = down.Row(y)[x]; + output->Row(y)[x] = v; + } + } +} + +void DownsampleImage2_Iterative(Image3F* opsin) { + // Allocate extra space to avoid a reallocation when padding. + Image3F downsampled(DivCeil(opsin->xsize(), 2) + kBlockDim, + DivCeil(opsin->ysize(), 2) + kBlockDim); + downsampled.ShrinkTo(downsampled.xsize() - kBlockDim, + downsampled.ysize() - kBlockDim); + + Image3F rgb(opsin->xsize(), opsin->ysize()); + OpsinParams opsin_params; // TODO: use the ones that are actually used + opsin_params.Init(kDefaultIntensityTarget); + OpsinToLinear(*opsin, Rect(rgb), nullptr, &rgb, opsin_params); + + ImageF mask(opsin->xsize(), opsin->ysize()); + ButteraugliParams butter_params; + ButteraugliComparator butter(rgb, butter_params); + butter.Mask(&mask); + ImageF mask_fuzzy(opsin->xsize(), opsin->ysize()); + + for (size_t c = 0; c < 3; c++) { + DownsampleImage2_Iterative(opsin->Plane(c), &downsampled.Plane(c)); + } + *opsin = std::move(downsampled); +} +} // namespace + +Status DefaultEncoderHeuristics::LossyFrameHeuristics( + PassesEncoderState* enc_state, ModularFrameEncoder* modular_frame_encoder, + const ImageBundle* original_pixels, Image3F* opsin, + const JxlCmsInterface& cms, ThreadPool* pool, AuxOut* aux_out) { + PROFILER_ZONE("JxlLossyFrameHeuristics uninstrumented"); + + CompressParams& cparams = enc_state->cparams; + PassesSharedState& shared = enc_state->shared; + + // Compute parameters for noise synthesis. + if (shared.frame_header.flags & FrameHeader::kNoise) { + PROFILER_ZONE("enc GetNoiseParam"); + if (cparams.photon_noise_iso == 0) { + // Don't start at zero amplitude since adding noise is expensive -- it + // significantly slows down decoding, and this is unlikely to + // completely go away even with advanced optimizations. After the + // kNoiseModelingRampUpDistanceRange we have reached the full level, + // i.e. noise is no longer represented by the compressed image, so we + // can add full noise by the noise modeling itself. + static const float kNoiseModelingRampUpDistanceRange = 0.6; + static const float kNoiseLevelAtStartOfRampUp = 0.25; + static const float kNoiseRampupStart = 1.0; + // TODO(user) test and properly select quality_coef with smooth + // filter + float quality_coef = 1.0f; + const float rampup = (cparams.butteraugli_distance - kNoiseRampupStart) / + kNoiseModelingRampUpDistanceRange; + if (rampup < 1.0f) { + quality_coef = kNoiseLevelAtStartOfRampUp + + (1.0f - kNoiseLevelAtStartOfRampUp) * rampup; + } + if (rampup < 0.0f) { + quality_coef = kNoiseRampupStart; + } + if (!GetNoiseParameter(*opsin, &shared.image_features.noise_params, + quality_coef)) { + shared.frame_header.flags &= ~FrameHeader::kNoise; + } + } + } + if (enc_state->shared.frame_header.upsampling != 1 && + !cparams.already_downsampled) { + // In VarDCT mode, LossyFrameHeuristics takes care of running downsampling + // after noise, if necessary. + if (cparams.resampling == 2) { + // TODO(lode): use the regular DownsampleImage, or adapt to the custom + // coefficients, if there is are custom upscaling coefficients in + // CustomTransformData + if (cparams.speed_tier <= SpeedTier::kSquirrel) { + // TODO(lode): DownsampleImage2_Iterative is currently too slow to + // be used for squirrel, make it faster, and / or enable it only for + // kitten. + DownsampleImage2_Iterative(opsin); + } else { + DownsampleImage2_Sharper(opsin); + } + } else { + DownsampleImage(opsin, cparams.resampling); + } + PadImageToBlockMultipleInPlace(opsin); + } + + if (cparams.butteraugli_distance < 0) { + return JXL_FAILURE("Expected non-negative distance"); + } + + // Find and subtract splines. + if (cparams.speed_tier <= SpeedTier::kSquirrel) { + // If we do already have them, they were passed upstream to EncodeFile. + if (!shared.image_features.splines.HasAny()) { + shared.image_features.splines = FindSplines(*opsin); + } + JXL_RETURN_IF_ERROR(shared.image_features.splines.InitializeDrawCache( + opsin->xsize(), opsin->ysize(), shared.cmap)); + shared.image_features.splines.SubtractFrom(opsin); + } + + // Find and subtract patches/dots. + if (ApplyOverride(cparams.patches, + cparams.speed_tier <= SpeedTier::kSquirrel)) { + FindBestPatchDictionary(*opsin, enc_state, cms, pool, aux_out); + PatchDictionaryEncoder::SubtractFrom(shared.image_features.patches, opsin); + } + + static const float kAcQuant = 0.79f; + const float quant_dc = InitialQuantDC(cparams.butteraugli_distance); + Quantizer& quantizer = enc_state->shared.quantizer; + // We don't know the quant field yet, but for computing the global scale + // assuming that it will be the same as for Falcon mode is good enough. + quantizer.ComputeGlobalScaleAndQuant( + quant_dc, kAcQuant / cparams.butteraugli_distance, 0); + + // TODO(veluca): we can now run all the code from here to FindBestQuantizer + // (excluded) one rect at a time. Do that. + + // Dependency graph: + // + // input: either XYB or input image + // + // input image -> XYB [optional] + // XYB -> initial quant field + // XYB -> Gaborished XYB + // Gaborished XYB -> CfL1 + // initial quant field, Gaborished XYB, CfL1 -> ACS + // initial quant field, ACS, Gaborished XYB -> EPF control field + // initial quant field -> adjusted initial quant field + // adjusted initial quant field, ACS -> raw quant field + // raw quant field, ACS, Gaborished XYB -> CfL2 + // + // output: Gaborished XYB, CfL, ACS, raw quant field, EPF control field. + + ArControlFieldHeuristics ar_heuristics; + AcStrategyHeuristics acs_heuristics; + CfLHeuristics cfl_heuristics; + + if (!opsin->xsize()) { + JXL_ASSERT(HandlesColorConversion(cparams, *original_pixels)); + *opsin = Image3F(RoundUpToBlockDim(original_pixels->xsize()), + RoundUpToBlockDim(original_pixels->ysize())); + opsin->ShrinkTo(original_pixels->xsize(), original_pixels->ysize()); + ToXYB(*original_pixels, pool, opsin, cms, /*linear=*/nullptr); + PadImageToBlockMultipleInPlace(opsin); + } + + // Compute an initial estimate of the quantization field. + // Call InitialQuantField only in Hare mode or slower. Otherwise, rely + // on simple heuristics in FindBestAcStrategy, or set a constant for Falcon + // mode. + if (cparams.speed_tier > SpeedTier::kHare || cparams.uniform_quant > 0) { + enc_state->initial_quant_field = + ImageF(shared.frame_dim.xsize_blocks, shared.frame_dim.ysize_blocks); + enc_state->initial_quant_masking = + ImageF(shared.frame_dim.xsize_blocks, shared.frame_dim.ysize_blocks); + float q = cparams.uniform_quant > 0 + ? cparams.uniform_quant + : kAcQuant / cparams.butteraugli_distance; + FillImage(q, &enc_state->initial_quant_field); + FillImage(1.0f / (q + 0.001f), &enc_state->initial_quant_masking); + } else { + // Call this here, as it relies on pre-gaborish values. + float butteraugli_distance_for_iqf = cparams.butteraugli_distance; + if (!shared.frame_header.loop_filter.gab) { + butteraugli_distance_for_iqf *= 0.73f; + } + enc_state->initial_quant_field = InitialQuantField( + butteraugli_distance_for_iqf, *opsin, shared.frame_dim, pool, 1.0f, + &enc_state->initial_quant_masking); + quantizer.SetQuantField(quant_dc, enc_state->initial_quant_field, nullptr); + } + + // TODO(veluca): do something about animations. + + // Apply inverse-gaborish. + if (shared.frame_header.loop_filter.gab) { + // Unsure why better to do some more gaborish on X and B than Y. + float weight[3] = { + 1.0036278514398933f, + 0.99406123118127299f, + 0.99719338015886894f, + }; + GaborishInverse(opsin, weight, pool); + } + + FindBestDequantMatrices(cparams, *opsin, modular_frame_encoder, + &enc_state->shared.matrices); + + cfl_heuristics.Init(*opsin); + acs_heuristics.Init(*opsin, enc_state); + + auto process_tile = [&](const uint32_t tid, const size_t thread) { + size_t n_enc_tiles = + DivCeil(enc_state->shared.frame_dim.xsize_blocks, kEncTileDimInBlocks); + size_t tx = tid % n_enc_tiles; + size_t ty = tid / n_enc_tiles; + size_t by0 = ty * kEncTileDimInBlocks; + size_t by1 = std::min((ty + 1) * kEncTileDimInBlocks, + enc_state->shared.frame_dim.ysize_blocks); + size_t bx0 = tx * kEncTileDimInBlocks; + size_t bx1 = std::min((tx + 1) * kEncTileDimInBlocks, + enc_state->shared.frame_dim.xsize_blocks); + Rect r(bx0, by0, bx1 - bx0, by1 - by0); + + // For speeds up to Wombat, we only compute the color correlation map + // once we know the transform type and the quantization map. + if (cparams.speed_tier <= SpeedTier::kSquirrel) { + cfl_heuristics.ComputeTile(r, *opsin, enc_state->shared.matrices, + /*ac_strategy=*/nullptr, + /*raw_quant_field=*/nullptr, + /*quantizer=*/nullptr, /*fast=*/false, thread, + &enc_state->shared.cmap); + } + + // Choose block sizes. + acs_heuristics.ProcessRect(r); + + // Choose amount of post-processing smoothing. + // TODO(veluca): should this go *after* AdjustQuantField? + ar_heuristics.RunRect(r, *opsin, enc_state, thread); + + // Always set the initial quant field, so we can compute the CfL map with + // more accuracy. The initial quant field might change in slower modes, but + // adjusting the quant field with butteraugli when all the other encoding + // parameters are fixed is likely a more reliable choice anyway. + AdjustQuantField(enc_state->shared.ac_strategy, r, + &enc_state->initial_quant_field); + quantizer.SetQuantFieldRect(enc_state->initial_quant_field, r, + &enc_state->shared.raw_quant_field); + + // Compute a non-default CfL map if we are at Hare speed, or slower. + if (cparams.speed_tier <= SpeedTier::kHare) { + cfl_heuristics.ComputeTile( + r, *opsin, enc_state->shared.matrices, &enc_state->shared.ac_strategy, + &enc_state->shared.raw_quant_field, &enc_state->shared.quantizer, + /*fast=*/cparams.speed_tier >= SpeedTier::kWombat, thread, + &enc_state->shared.cmap); + } + }; + JXL_RETURN_IF_ERROR(RunOnPool( + pool, 0, + DivCeil(enc_state->shared.frame_dim.xsize_blocks, kEncTileDimInBlocks) * + DivCeil(enc_state->shared.frame_dim.ysize_blocks, + kEncTileDimInBlocks), + [&](const size_t num_threads) { + ar_heuristics.PrepareForThreads(num_threads); + cfl_heuristics.PrepareForThreads(num_threads); + return true; + }, + process_tile, "Enc Heuristics")); + + acs_heuristics.Finalize(aux_out); + if (cparams.speed_tier <= SpeedTier::kHare) { + cfl_heuristics.ComputeDC(/*fast=*/cparams.speed_tier >= SpeedTier::kWombat, + &enc_state->shared.cmap); + } + + // Refine quantization levels. + FindBestQuantizer(original_pixels, *opsin, enc_state, cms, pool, aux_out); + + // Choose a context model that depends on the amount of quantization for AC. + if (cparams.speed_tier < SpeedTier::kFalcon) { + FindBestBlockEntropyModel(*enc_state); + } + return true; +} + +} // namespace jxl |