summaryrefslogtreecommitdiffstats
path: root/third_party/rust/arrayvec/src/arrayvec.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/rust/arrayvec/src/arrayvec.rs
parentInitial commit. (diff)
downloadthunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz
thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/arrayvec/src/arrayvec.rs')
-rw-r--r--third_party/rust/arrayvec/src/arrayvec.rs1267
1 files changed, 1267 insertions, 0 deletions
diff --git a/third_party/rust/arrayvec/src/arrayvec.rs b/third_party/rust/arrayvec/src/arrayvec.rs
new file mode 100644
index 0000000000..e69e60c180
--- /dev/null
+++ b/third_party/rust/arrayvec/src/arrayvec.rs
@@ -0,0 +1,1267 @@
+
+use std::cmp;
+use std::iter;
+use std::mem;
+use std::ops::{Bound, Deref, DerefMut, RangeBounds};
+use std::ptr;
+use std::slice;
+
+// extra traits
+use std::borrow::{Borrow, BorrowMut};
+use std::hash::{Hash, Hasher};
+use std::fmt;
+
+#[cfg(feature="std")]
+use std::io;
+
+use std::mem::ManuallyDrop;
+use std::mem::MaybeUninit;
+
+#[cfg(feature="serde")]
+use serde::{Serialize, Deserialize, Serializer, Deserializer};
+
+use crate::LenUint;
+use crate::errors::CapacityError;
+use crate::arrayvec_impl::ArrayVecImpl;
+use crate::utils::MakeMaybeUninit;
+
+/// A vector with a fixed capacity.
+///
+/// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of
+/// the number of initialized elements. The `ArrayVec<T, CAP>` is parameterized
+/// by `T` for the element type and `CAP` for the maximum capacity.
+///
+/// `CAP` is of type `usize` but is range limited to `u32::MAX`; attempting to create larger
+/// arrayvecs with larger capacity will panic.
+///
+/// The vector is a contiguous value (storing the elements inline) that you can store directly on
+/// the stack if needed.
+///
+/// It offers a simple API but also dereferences to a slice, so that the full slice API is
+/// available. The ArrayVec can be converted into a by value iterator.
+pub struct ArrayVec<T, const CAP: usize> {
+ // the `len` first elements of the array are initialized
+ xs: [MaybeUninit<T>; CAP],
+ len: LenUint,
+}
+
+impl<T, const CAP: usize> Drop for ArrayVec<T, CAP> {
+ fn drop(&mut self) {
+ self.clear();
+
+ // MaybeUninit inhibits array's drop
+ }
+}
+
+macro_rules! panic_oob {
+ ($method_name:expr, $index:expr, $len:expr) => {
+ panic!(concat!("ArrayVec::", $method_name, ": index {} is out of bounds in vector of length {}"),
+ $index, $len)
+ }
+}
+
+impl<T, const CAP: usize> ArrayVec<T, CAP> {
+ /// Capacity
+ const CAPACITY: usize = CAP;
+
+ /// Create a new empty `ArrayVec`.
+ ///
+ /// The maximum capacity is given by the generic parameter `CAP`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::<_, 16>::new();
+ /// array.push(1);
+ /// array.push(2);
+ /// assert_eq!(&array[..], &[1, 2]);
+ /// assert_eq!(array.capacity(), 16);
+ /// ```
+ pub fn new() -> ArrayVec<T, CAP> {
+ assert_capacity_limit!(CAP);
+ unsafe {
+ ArrayVec { xs: MaybeUninit::uninit().assume_init(), len: 0 }
+ }
+ }
+
+ /// Create a new empty `ArrayVec` (const fn).
+ ///
+ /// The maximum capacity is given by the generic parameter `CAP`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// static ARRAY: ArrayVec<u8, 1024> = ArrayVec::new_const();
+ /// ```
+ pub const fn new_const() -> ArrayVec<T, CAP> {
+ assert_capacity_limit_const!(CAP);
+ ArrayVec { xs: MakeMaybeUninit::ARRAY, len: 0 }
+ }
+
+ /// Return the number of elements in the `ArrayVec`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1, 2, 3]);
+ /// array.pop();
+ /// assert_eq!(array.len(), 2);
+ /// ```
+ #[inline(always)]
+ pub const fn len(&self) -> usize { self.len as usize }
+
+ /// Returns whether the `ArrayVec` is empty.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1]);
+ /// array.pop();
+ /// assert_eq!(array.is_empty(), true);
+ /// ```
+ #[inline]
+ pub const fn is_empty(&self) -> bool { self.len() == 0 }
+
+ /// Return the capacity of the `ArrayVec`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let array = ArrayVec::from([1, 2, 3]);
+ /// assert_eq!(array.capacity(), 3);
+ /// ```
+ #[inline(always)]
+ pub const fn capacity(&self) -> usize { CAP }
+
+ /// Return true if the `ArrayVec` is completely filled to its capacity, false otherwise.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::<_, 1>::new();
+ /// assert!(!array.is_full());
+ /// array.push(1);
+ /// assert!(array.is_full());
+ /// ```
+ pub const fn is_full(&self) -> bool { self.len() == self.capacity() }
+
+ /// Returns the capacity left in the `ArrayVec`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1, 2, 3]);
+ /// array.pop();
+ /// assert_eq!(array.remaining_capacity(), 1);
+ /// ```
+ pub const fn remaining_capacity(&self) -> usize {
+ self.capacity() - self.len()
+ }
+
+ /// Push `element` to the end of the vector.
+ ///
+ /// ***Panics*** if the vector is already full.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::<_, 2>::new();
+ ///
+ /// array.push(1);
+ /// array.push(2);
+ ///
+ /// assert_eq!(&array[..], &[1, 2]);
+ /// ```
+ pub fn push(&mut self, element: T) {
+ ArrayVecImpl::push(self, element)
+ }
+
+ /// Push `element` to the end of the vector.
+ ///
+ /// Return `Ok` if the push succeeds, or return an error if the vector
+ /// is already full.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::<_, 2>::new();
+ ///
+ /// let push1 = array.try_push(1);
+ /// let push2 = array.try_push(2);
+ ///
+ /// assert!(push1.is_ok());
+ /// assert!(push2.is_ok());
+ ///
+ /// assert_eq!(&array[..], &[1, 2]);
+ ///
+ /// let overflow = array.try_push(3);
+ ///
+ /// assert!(overflow.is_err());
+ /// ```
+ pub fn try_push(&mut self, element: T) -> Result<(), CapacityError<T>> {
+ ArrayVecImpl::try_push(self, element)
+ }
+
+ /// Push `element` to the end of the vector without checking the capacity.
+ ///
+ /// It is up to the caller to ensure the capacity of the vector is
+ /// sufficiently large.
+ ///
+ /// This method uses *debug assertions* to check that the arrayvec is not full.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::<_, 2>::new();
+ ///
+ /// if array.len() + 2 <= array.capacity() {
+ /// unsafe {
+ /// array.push_unchecked(1);
+ /// array.push_unchecked(2);
+ /// }
+ /// }
+ ///
+ /// assert_eq!(&array[..], &[1, 2]);
+ /// ```
+ pub unsafe fn push_unchecked(&mut self, element: T) {
+ ArrayVecImpl::push_unchecked(self, element)
+ }
+
+ /// Shortens the vector, keeping the first `len` elements and dropping
+ /// the rest.
+ ///
+ /// If `len` is greater than the vector’s current length this has no
+ /// effect.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1, 2, 3, 4, 5]);
+ /// array.truncate(3);
+ /// assert_eq!(&array[..], &[1, 2, 3]);
+ /// array.truncate(4);
+ /// assert_eq!(&array[..], &[1, 2, 3]);
+ /// ```
+ pub fn truncate(&mut self, new_len: usize) {
+ ArrayVecImpl::truncate(self, new_len)
+ }
+
+ /// Remove all elements in the vector.
+ pub fn clear(&mut self) {
+ ArrayVecImpl::clear(self)
+ }
+
+
+ /// Get pointer to where element at `index` would be
+ unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut T {
+ self.as_mut_ptr().add(index)
+ }
+
+ /// Insert `element` at position `index`.
+ ///
+ /// Shift up all elements after `index`.
+ ///
+ /// It is an error if the index is greater than the length or if the
+ /// arrayvec is full.
+ ///
+ /// ***Panics*** if the array is full or the `index` is out of bounds. See
+ /// `try_insert` for fallible version.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::<_, 2>::new();
+ ///
+ /// array.insert(0, "x");
+ /// array.insert(0, "y");
+ /// assert_eq!(&array[..], &["y", "x"]);
+ ///
+ /// ```
+ pub fn insert(&mut self, index: usize, element: T) {
+ self.try_insert(index, element).unwrap()
+ }
+
+ /// Insert `element` at position `index`.
+ ///
+ /// Shift up all elements after `index`; the `index` must be less than
+ /// or equal to the length.
+ ///
+ /// Returns an error if vector is already at full capacity.
+ ///
+ /// ***Panics*** `index` is out of bounds.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::<_, 2>::new();
+ ///
+ /// assert!(array.try_insert(0, "x").is_ok());
+ /// assert!(array.try_insert(0, "y").is_ok());
+ /// assert!(array.try_insert(0, "z").is_err());
+ /// assert_eq!(&array[..], &["y", "x"]);
+ ///
+ /// ```
+ pub fn try_insert(&mut self, index: usize, element: T) -> Result<(), CapacityError<T>> {
+ if index > self.len() {
+ panic_oob!("try_insert", index, self.len())
+ }
+ if self.len() == self.capacity() {
+ return Err(CapacityError::new(element));
+ }
+ let len = self.len();
+
+ // follows is just like Vec<T>
+ unsafe { // infallible
+ // The spot to put the new value
+ {
+ let p: *mut _ = self.get_unchecked_ptr(index);
+ // Shift everything over to make space. (Duplicating the
+ // `index`th element into two consecutive places.)
+ ptr::copy(p, p.offset(1), len - index);
+ // Write it in, overwriting the first copy of the `index`th
+ // element.
+ ptr::write(p, element);
+ }
+ self.set_len(len + 1);
+ }
+ Ok(())
+ }
+
+ /// Remove the last element in the vector and return it.
+ ///
+ /// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::<_, 2>::new();
+ ///
+ /// array.push(1);
+ ///
+ /// assert_eq!(array.pop(), Some(1));
+ /// assert_eq!(array.pop(), None);
+ /// ```
+ pub fn pop(&mut self) -> Option<T> {
+ ArrayVecImpl::pop(self)
+ }
+
+ /// Remove the element at `index` and swap the last element into its place.
+ ///
+ /// This operation is O(1).
+ ///
+ /// Return the *element* if the index is in bounds, else panic.
+ ///
+ /// ***Panics*** if the `index` is out of bounds.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1, 2, 3]);
+ ///
+ /// assert_eq!(array.swap_remove(0), 1);
+ /// assert_eq!(&array[..], &[3, 2]);
+ ///
+ /// assert_eq!(array.swap_remove(1), 2);
+ /// assert_eq!(&array[..], &[3]);
+ /// ```
+ pub fn swap_remove(&mut self, index: usize) -> T {
+ self.swap_pop(index)
+ .unwrap_or_else(|| {
+ panic_oob!("swap_remove", index, self.len())
+ })
+ }
+
+ /// Remove the element at `index` and swap the last element into its place.
+ ///
+ /// This is a checked version of `.swap_remove`.
+ /// This operation is O(1).
+ ///
+ /// Return `Some(` *element* `)` if the index is in bounds, else `None`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1, 2, 3]);
+ ///
+ /// assert_eq!(array.swap_pop(0), Some(1));
+ /// assert_eq!(&array[..], &[3, 2]);
+ ///
+ /// assert_eq!(array.swap_pop(10), None);
+ /// ```
+ pub fn swap_pop(&mut self, index: usize) -> Option<T> {
+ let len = self.len();
+ if index >= len {
+ return None;
+ }
+ self.swap(index, len - 1);
+ self.pop()
+ }
+
+ /// Remove the element at `index` and shift down the following elements.
+ ///
+ /// The `index` must be strictly less than the length of the vector.
+ ///
+ /// ***Panics*** if the `index` is out of bounds.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1, 2, 3]);
+ ///
+ /// let removed_elt = array.remove(0);
+ /// assert_eq!(removed_elt, 1);
+ /// assert_eq!(&array[..], &[2, 3]);
+ /// ```
+ pub fn remove(&mut self, index: usize) -> T {
+ self.pop_at(index)
+ .unwrap_or_else(|| {
+ panic_oob!("remove", index, self.len())
+ })
+ }
+
+ /// Remove the element at `index` and shift down the following elements.
+ ///
+ /// This is a checked version of `.remove(index)`. Returns `None` if there
+ /// is no element at `index`. Otherwise, return the element inside `Some`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1, 2, 3]);
+ ///
+ /// assert!(array.pop_at(0).is_some());
+ /// assert_eq!(&array[..], &[2, 3]);
+ ///
+ /// assert!(array.pop_at(2).is_none());
+ /// assert!(array.pop_at(10).is_none());
+ /// ```
+ pub fn pop_at(&mut self, index: usize) -> Option<T> {
+ if index >= self.len() {
+ None
+ } else {
+ self.drain(index..index + 1).next()
+ }
+ }
+
+ /// Retains only the elements specified by the predicate.
+ ///
+ /// In other words, remove all elements `e` such that `f(&mut e)` returns false.
+ /// This method operates in place and preserves the order of the retained
+ /// elements.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut array = ArrayVec::from([1, 2, 3, 4]);
+ /// array.retain(|x| *x & 1 != 0 );
+ /// assert_eq!(&array[..], &[1, 3]);
+ /// ```
+ pub fn retain<F>(&mut self, mut f: F)
+ where F: FnMut(&mut T) -> bool
+ {
+ // Check the implementation of
+ // https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain
+ // for safety arguments (especially regarding panics in f and when
+ // dropping elements). Implementation closely mirrored here.
+
+ let original_len = self.len();
+ unsafe { self.set_len(0) };
+
+ struct BackshiftOnDrop<'a, T, const CAP: usize> {
+ v: &'a mut ArrayVec<T, CAP>,
+ processed_len: usize,
+ deleted_cnt: usize,
+ original_len: usize,
+ }
+
+ impl<T, const CAP: usize> Drop for BackshiftOnDrop<'_, T, CAP> {
+ fn drop(&mut self) {
+ if self.deleted_cnt > 0 {
+ unsafe {
+ ptr::copy(
+ self.v.as_ptr().add(self.processed_len),
+ self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
+ self.original_len - self.processed_len
+ );
+ }
+ }
+ unsafe {
+ self.v.set_len(self.original_len - self.deleted_cnt);
+ }
+ }
+ }
+
+ let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
+
+ #[inline(always)]
+ fn process_one<F: FnMut(&mut T) -> bool, T, const CAP: usize, const DELETED: bool>(
+ f: &mut F,
+ g: &mut BackshiftOnDrop<'_, T, CAP>
+ ) -> bool {
+ let cur = unsafe { g.v.as_mut_ptr().add(g.processed_len) };
+ if !f(unsafe { &mut *cur }) {
+ g.processed_len += 1;
+ g.deleted_cnt += 1;
+ unsafe { ptr::drop_in_place(cur) };
+ return false;
+ }
+ if DELETED {
+ unsafe {
+ let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
+ ptr::copy_nonoverlapping(cur, hole_slot, 1);
+ }
+ }
+ g.processed_len += 1;
+ true
+ }
+
+ // Stage 1: Nothing was deleted.
+ while g.processed_len != original_len {
+ if !process_one::<F, T, CAP, false>(&mut f, &mut g) {
+ break;
+ }
+ }
+
+ // Stage 2: Some elements were deleted.
+ while g.processed_len != original_len {
+ process_one::<F, T, CAP, true>(&mut f, &mut g);
+ }
+
+ drop(g);
+ }
+
+ /// Set the vector’s length without dropping or moving out elements
+ ///
+ /// This method is `unsafe` because it changes the notion of the
+ /// number of “valid” elements in the vector. Use with care.
+ ///
+ /// This method uses *debug assertions* to check that `length` is
+ /// not greater than the capacity.
+ pub unsafe fn set_len(&mut self, length: usize) {
+ // type invariant that capacity always fits in LenUint
+ debug_assert!(length <= self.capacity());
+ self.len = length as LenUint;
+ }
+
+ /// Copy all elements from the slice and append to the `ArrayVec`.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut vec: ArrayVec<usize, 10> = ArrayVec::new();
+ /// vec.push(1);
+ /// vec.try_extend_from_slice(&[2, 3]).unwrap();
+ /// assert_eq!(&vec[..], &[1, 2, 3]);
+ /// ```
+ ///
+ /// # Errors
+ ///
+ /// This method will return an error if the capacity left (see
+ /// [`remaining_capacity`]) is smaller then the length of the provided
+ /// slice.
+ ///
+ /// [`remaining_capacity`]: #method.remaining_capacity
+ pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), CapacityError>
+ where T: Copy,
+ {
+ if self.remaining_capacity() < other.len() {
+ return Err(CapacityError::new(()));
+ }
+
+ let self_len = self.len();
+ let other_len = other.len();
+
+ unsafe {
+ let dst = self.get_unchecked_ptr(self_len);
+ ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len);
+ self.set_len(self_len + other_len);
+ }
+ Ok(())
+ }
+
+ /// Create a draining iterator that removes the specified range in the vector
+ /// and yields the removed items from start to end. The element range is
+ /// removed even if the iterator is not consumed until the end.
+ ///
+ /// Note: It is unspecified how many elements are removed from the vector,
+ /// if the `Drain` value is leaked.
+ ///
+ /// **Panics** if the starting point is greater than the end point or if
+ /// the end point is greater than the length of the vector.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut v1 = ArrayVec::from([1, 2, 3]);
+ /// let v2: ArrayVec<_, 3> = v1.drain(0..2).collect();
+ /// assert_eq!(&v1[..], &[3]);
+ /// assert_eq!(&v2[..], &[1, 2]);
+ /// ```
+ pub fn drain<R>(&mut self, range: R) -> Drain<T, CAP>
+ where R: RangeBounds<usize>
+ {
+ // Memory safety
+ //
+ // When the Drain is first created, it shortens the length of
+ // the source vector to make sure no uninitialized or moved-from elements
+ // are accessible at all if the Drain's destructor never gets to run.
+ //
+ // Drain will ptr::read out the values to remove.
+ // When finished, remaining tail of the vec is copied back to cover
+ // the hole, and the vector length is restored to the new length.
+ //
+ let len = self.len();
+ let start = match range.start_bound() {
+ Bound::Unbounded => 0,
+ Bound::Included(&i) => i,
+ Bound::Excluded(&i) => i.saturating_add(1),
+ };
+ let end = match range.end_bound() {
+ Bound::Excluded(&j) => j,
+ Bound::Included(&j) => j.saturating_add(1),
+ Bound::Unbounded => len,
+ };
+ self.drain_range(start, end)
+ }
+
+ fn drain_range(&mut self, start: usize, end: usize) -> Drain<T, CAP>
+ {
+ let len = self.len();
+
+ // bounds check happens here (before length is changed!)
+ let range_slice: *const _ = &self[start..end];
+
+ // Calling `set_len` creates a fresh and thus unique mutable references, making all
+ // older aliases we created invalid. So we cannot call that function.
+ self.len = start as LenUint;
+
+ unsafe {
+ Drain {
+ tail_start: end,
+ tail_len: len - end,
+ iter: (*range_slice).iter(),
+ vec: self as *mut _,
+ }
+ }
+ }
+
+ /// Return the inner fixed size array, if it is full to its capacity.
+ ///
+ /// Return an `Ok` value with the array if length equals capacity,
+ /// return an `Err` with self otherwise.
+ pub fn into_inner(self) -> Result<[T; CAP], Self> {
+ if self.len() < self.capacity() {
+ Err(self)
+ } else {
+ unsafe { Ok(self.into_inner_unchecked()) }
+ }
+ }
+
+ /// Return the inner fixed size array.
+ ///
+ /// Safety:
+ /// This operation is safe if and only if length equals capacity.
+ pub unsafe fn into_inner_unchecked(self) -> [T; CAP] {
+ debug_assert_eq!(self.len(), self.capacity());
+ let self_ = ManuallyDrop::new(self);
+ let array = ptr::read(self_.as_ptr() as *const [T; CAP]);
+ array
+ }
+
+ /// Returns the ArrayVec, replacing the original with a new empty ArrayVec.
+ ///
+ /// ```
+ /// use arrayvec::ArrayVec;
+ ///
+ /// let mut v = ArrayVec::from([0, 1, 2, 3]);
+ /// assert_eq!([0, 1, 2, 3], v.take().into_inner().unwrap());
+ /// assert!(v.is_empty());
+ /// ```
+ pub fn take(&mut self) -> Self {
+ mem::replace(self, Self::new())
+ }
+
+ /// Return a slice containing all elements of the vector.
+ pub fn as_slice(&self) -> &[T] {
+ ArrayVecImpl::as_slice(self)
+ }
+
+ /// Return a mutable slice containing all elements of the vector.
+ pub fn as_mut_slice(&mut self) -> &mut [T] {
+ ArrayVecImpl::as_mut_slice(self)
+ }
+
+ /// Return a raw pointer to the vector's buffer.
+ pub fn as_ptr(&self) -> *const T {
+ ArrayVecImpl::as_ptr(self)
+ }
+
+ /// Return a raw mutable pointer to the vector's buffer.
+ pub fn as_mut_ptr(&mut self) -> *mut T {
+ ArrayVecImpl::as_mut_ptr(self)
+ }
+}
+
+impl<T, const CAP: usize> ArrayVecImpl for ArrayVec<T, CAP> {
+ type Item = T;
+ const CAPACITY: usize = CAP;
+
+ fn len(&self) -> usize { self.len() }
+
+ unsafe fn set_len(&mut self, length: usize) {
+ debug_assert!(length <= CAP);
+ self.len = length as LenUint;
+ }
+
+ fn as_ptr(&self) -> *const Self::Item {
+ self.xs.as_ptr() as _
+ }
+
+ fn as_mut_ptr(&mut self) -> *mut Self::Item {
+ self.xs.as_mut_ptr() as _
+ }
+}
+
+impl<T, const CAP: usize> Deref for ArrayVec<T, CAP> {
+ type Target = [T];
+ #[inline]
+ fn deref(&self) -> &Self::Target {
+ self.as_slice()
+ }
+}
+
+impl<T, const CAP: usize> DerefMut for ArrayVec<T, CAP> {
+ #[inline]
+ fn deref_mut(&mut self) -> &mut Self::Target {
+ self.as_mut_slice()
+ }
+}
+
+
+/// Create an `ArrayVec` from an array.
+///
+/// ```
+/// use arrayvec::ArrayVec;
+///
+/// let mut array = ArrayVec::from([1, 2, 3]);
+/// assert_eq!(array.len(), 3);
+/// assert_eq!(array.capacity(), 3);
+/// ```
+impl<T, const CAP: usize> From<[T; CAP]> for ArrayVec<T, CAP> {
+ fn from(array: [T; CAP]) -> Self {
+ let array = ManuallyDrop::new(array);
+ let mut vec = <ArrayVec<T, CAP>>::new();
+ unsafe {
+ (&*array as *const [T; CAP] as *const [MaybeUninit<T>; CAP])
+ .copy_to_nonoverlapping(&mut vec.xs as *mut [MaybeUninit<T>; CAP], 1);
+ vec.set_len(CAP);
+ }
+ vec
+ }
+}
+
+
+/// Try to create an `ArrayVec` from a slice. This will return an error if the slice was too big to
+/// fit.
+///
+/// ```
+/// use arrayvec::ArrayVec;
+/// use std::convert::TryInto as _;
+///
+/// let array: ArrayVec<_, 4> = (&[1, 2, 3] as &[_]).try_into().unwrap();
+/// assert_eq!(array.len(), 3);
+/// assert_eq!(array.capacity(), 4);
+/// ```
+impl<T, const CAP: usize> std::convert::TryFrom<&[T]> for ArrayVec<T, CAP>
+ where T: Clone,
+{
+ type Error = CapacityError;
+
+ fn try_from(slice: &[T]) -> Result<Self, Self::Error> {
+ if Self::CAPACITY < slice.len() {
+ Err(CapacityError::new(()))
+ } else {
+ let mut array = Self::new();
+ array.extend_from_slice(slice);
+ Ok(array)
+ }
+ }
+}
+
+
+/// Iterate the `ArrayVec` with references to each element.
+///
+/// ```
+/// use arrayvec::ArrayVec;
+///
+/// let array = ArrayVec::from([1, 2, 3]);
+///
+/// for elt in &array {
+/// // ...
+/// }
+/// ```
+impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a ArrayVec<T, CAP> {
+ type Item = &'a T;
+ type IntoIter = slice::Iter<'a, T>;
+ fn into_iter(self) -> Self::IntoIter { self.iter() }
+}
+
+/// Iterate the `ArrayVec` with mutable references to each element.
+///
+/// ```
+/// use arrayvec::ArrayVec;
+///
+/// let mut array = ArrayVec::from([1, 2, 3]);
+///
+/// for elt in &mut array {
+/// // ...
+/// }
+/// ```
+impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a mut ArrayVec<T, CAP> {
+ type Item = &'a mut T;
+ type IntoIter = slice::IterMut<'a, T>;
+ fn into_iter(self) -> Self::IntoIter { self.iter_mut() }
+}
+
+/// Iterate the `ArrayVec` with each element by value.
+///
+/// The vector is consumed by this operation.
+///
+/// ```
+/// use arrayvec::ArrayVec;
+///
+/// for elt in ArrayVec::from([1, 2, 3]) {
+/// // ...
+/// }
+/// ```
+impl<T, const CAP: usize> IntoIterator for ArrayVec<T, CAP> {
+ type Item = T;
+ type IntoIter = IntoIter<T, CAP>;
+ fn into_iter(self) -> IntoIter<T, CAP> {
+ IntoIter { index: 0, v: self, }
+ }
+}
+
+
+/// By-value iterator for `ArrayVec`.
+pub struct IntoIter<T, const CAP: usize> {
+ index: usize,
+ v: ArrayVec<T, CAP>,
+}
+
+impl<T, const CAP: usize> Iterator for IntoIter<T, CAP> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.index == self.v.len() {
+ None
+ } else {
+ unsafe {
+ let index = self.index;
+ self.index = index + 1;
+ Some(ptr::read(self.v.get_unchecked_ptr(index)))
+ }
+ }
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let len = self.v.len() - self.index;
+ (len, Some(len))
+ }
+}
+
+impl<T, const CAP: usize> DoubleEndedIterator for IntoIter<T, CAP> {
+ fn next_back(&mut self) -> Option<Self::Item> {
+ if self.index == self.v.len() {
+ None
+ } else {
+ unsafe {
+ let new_len = self.v.len() - 1;
+ self.v.set_len(new_len);
+ Some(ptr::read(self.v.get_unchecked_ptr(new_len)))
+ }
+ }
+ }
+}
+
+impl<T, const CAP: usize> ExactSizeIterator for IntoIter<T, CAP> { }
+
+impl<T, const CAP: usize> Drop for IntoIter<T, CAP> {
+ fn drop(&mut self) {
+ // panic safety: Set length to 0 before dropping elements.
+ let index = self.index;
+ let len = self.v.len();
+ unsafe {
+ self.v.set_len(0);
+ let elements = slice::from_raw_parts_mut(
+ self.v.get_unchecked_ptr(index),
+ len - index);
+ ptr::drop_in_place(elements);
+ }
+ }
+}
+
+impl<T, const CAP: usize> Clone for IntoIter<T, CAP>
+where T: Clone,
+{
+ fn clone(&self) -> IntoIter<T, CAP> {
+ let mut v = ArrayVec::new();
+ v.extend_from_slice(&self.v[self.index..]);
+ v.into_iter()
+ }
+}
+
+impl<T, const CAP: usize> fmt::Debug for IntoIter<T, CAP>
+where
+ T: fmt::Debug,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_list()
+ .entries(&self.v[self.index..])
+ .finish()
+ }
+}
+
+/// A draining iterator for `ArrayVec`.
+pub struct Drain<'a, T: 'a, const CAP: usize> {
+ /// Index of tail to preserve
+ tail_start: usize,
+ /// Length of tail
+ tail_len: usize,
+ /// Current remaining range to remove
+ iter: slice::Iter<'a, T>,
+ vec: *mut ArrayVec<T, CAP>,
+}
+
+unsafe impl<'a, T: Sync, const CAP: usize> Sync for Drain<'a, T, CAP> {}
+unsafe impl<'a, T: Send, const CAP: usize> Send for Drain<'a, T, CAP> {}
+
+impl<'a, T: 'a, const CAP: usize> Iterator for Drain<'a, T, CAP> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ self.iter.next().map(|elt|
+ unsafe {
+ ptr::read(elt as *const _)
+ }
+ )
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ self.iter.size_hint()
+ }
+}
+
+impl<'a, T: 'a, const CAP: usize> DoubleEndedIterator for Drain<'a, T, CAP>
+{
+ fn next_back(&mut self) -> Option<Self::Item> {
+ self.iter.next_back().map(|elt|
+ unsafe {
+ ptr::read(elt as *const _)
+ }
+ )
+ }
+}
+
+impl<'a, T: 'a, const CAP: usize> ExactSizeIterator for Drain<'a, T, CAP> {}
+
+impl<'a, T: 'a, const CAP: usize> Drop for Drain<'a, T, CAP> {
+ fn drop(&mut self) {
+ // len is currently 0 so panicking while dropping will not cause a double drop.
+
+ // exhaust self first
+ while let Some(_) = self.next() { }
+
+ if self.tail_len > 0 {
+ unsafe {
+ let source_vec = &mut *self.vec;
+ // memmove back untouched tail, update to new length
+ let start = source_vec.len();
+ let tail = self.tail_start;
+ let src = source_vec.as_ptr().add(tail);
+ let dst = source_vec.as_mut_ptr().add(start);
+ ptr::copy(src, dst, self.tail_len);
+ source_vec.set_len(start + self.tail_len);
+ }
+ }
+ }
+}
+
+struct ScopeExitGuard<T, Data, F>
+ where F: FnMut(&Data, &mut T)
+{
+ value: T,
+ data: Data,
+ f: F,
+}
+
+impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F>
+ where F: FnMut(&Data, &mut T)
+{
+ fn drop(&mut self) {
+ (self.f)(&self.data, &mut self.value)
+ }
+}
+
+
+
+/// Extend the `ArrayVec` with an iterator.
+///
+/// ***Panics*** if extending the vector exceeds its capacity.
+impl<T, const CAP: usize> Extend<T> for ArrayVec<T, CAP> {
+ /// Extend the `ArrayVec` with an iterator.
+ ///
+ /// ***Panics*** if extending the vector exceeds its capacity.
+ fn extend<I: IntoIterator<Item=T>>(&mut self, iter: I) {
+ unsafe {
+ self.extend_from_iter::<_, true>(iter)
+ }
+ }
+}
+
+#[inline(never)]
+#[cold]
+fn extend_panic() {
+ panic!("ArrayVec: capacity exceeded in extend/from_iter");
+}
+
+impl<T, const CAP: usize> ArrayVec<T, CAP> {
+ /// Extend the arrayvec from the iterable.
+ ///
+ /// ## Safety
+ ///
+ /// Unsafe because if CHECK is false, the length of the input is not checked.
+ /// The caller must ensure the length of the input fits in the capacity.
+ pub(crate) unsafe fn extend_from_iter<I, const CHECK: bool>(&mut self, iterable: I)
+ where I: IntoIterator<Item = T>
+ {
+ let take = self.capacity() - self.len();
+ let len = self.len();
+ let mut ptr = raw_ptr_add(self.as_mut_ptr(), len);
+ let end_ptr = raw_ptr_add(ptr, take);
+ // Keep the length in a separate variable, write it back on scope
+ // exit. To help the compiler with alias analysis and stuff.
+ // We update the length to handle panic in the iteration of the
+ // user's iterator, without dropping any elements on the floor.
+ let mut guard = ScopeExitGuard {
+ value: &mut self.len,
+ data: len,
+ f: move |&len, self_len| {
+ **self_len = len as LenUint;
+ }
+ };
+ let mut iter = iterable.into_iter();
+ loop {
+ if let Some(elt) = iter.next() {
+ if ptr == end_ptr && CHECK { extend_panic(); }
+ debug_assert_ne!(ptr, end_ptr);
+ ptr.write(elt);
+ ptr = raw_ptr_add(ptr, 1);
+ guard.data += 1;
+ } else {
+ return; // success
+ }
+ }
+ }
+
+ /// Extend the ArrayVec with clones of elements from the slice;
+ /// the length of the slice must be <= the remaining capacity in the arrayvec.
+ pub(crate) fn extend_from_slice(&mut self, slice: &[T])
+ where T: Clone
+ {
+ let take = self.capacity() - self.len();
+ debug_assert!(slice.len() <= take);
+ unsafe {
+ let slice = if take < slice.len() { &slice[..take] } else { slice };
+ self.extend_from_iter::<_, false>(slice.iter().cloned());
+ }
+ }
+}
+
+/// Rawptr add but uses arithmetic distance for ZST
+unsafe fn raw_ptr_add<T>(ptr: *mut T, offset: usize) -> *mut T {
+ if mem::size_of::<T>() == 0 {
+ // Special case for ZST
+ (ptr as usize).wrapping_add(offset) as _
+ } else {
+ ptr.add(offset)
+ }
+}
+
+/// Create an `ArrayVec` from an iterator.
+///
+/// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
+impl<T, const CAP: usize> iter::FromIterator<T> for ArrayVec<T, CAP> {
+ /// Create an `ArrayVec` from an iterator.
+ ///
+ /// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
+ fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> Self {
+ let mut array = ArrayVec::new();
+ array.extend(iter);
+ array
+ }
+}
+
+impl<T, const CAP: usize> Clone for ArrayVec<T, CAP>
+ where T: Clone
+{
+ fn clone(&self) -> Self {
+ self.iter().cloned().collect()
+ }
+
+ fn clone_from(&mut self, rhs: &Self) {
+ // recursive case for the common prefix
+ let prefix = cmp::min(self.len(), rhs.len());
+ self[..prefix].clone_from_slice(&rhs[..prefix]);
+
+ if prefix < self.len() {
+ // rhs was shorter
+ self.truncate(prefix);
+ } else {
+ let rhs_elems = &rhs[self.len()..];
+ self.extend_from_slice(rhs_elems);
+ }
+ }
+}
+
+impl<T, const CAP: usize> Hash for ArrayVec<T, CAP>
+ where T: Hash
+{
+ fn hash<H: Hasher>(&self, state: &mut H) {
+ Hash::hash(&**self, state)
+ }
+}
+
+impl<T, const CAP: usize> PartialEq for ArrayVec<T, CAP>
+ where T: PartialEq
+{
+ fn eq(&self, other: &Self) -> bool {
+ **self == **other
+ }
+}
+
+impl<T, const CAP: usize> PartialEq<[T]> for ArrayVec<T, CAP>
+ where T: PartialEq
+{
+ fn eq(&self, other: &[T]) -> bool {
+ **self == *other
+ }
+}
+
+impl<T, const CAP: usize> Eq for ArrayVec<T, CAP> where T: Eq { }
+
+impl<T, const CAP: usize> Borrow<[T]> for ArrayVec<T, CAP> {
+ fn borrow(&self) -> &[T] { self }
+}
+
+impl<T, const CAP: usize> BorrowMut<[T]> for ArrayVec<T, CAP> {
+ fn borrow_mut(&mut self) -> &mut [T] { self }
+}
+
+impl<T, const CAP: usize> AsRef<[T]> for ArrayVec<T, CAP> {
+ fn as_ref(&self) -> &[T] { self }
+}
+
+impl<T, const CAP: usize> AsMut<[T]> for ArrayVec<T, CAP> {
+ fn as_mut(&mut self) -> &mut [T] { self }
+}
+
+impl<T, const CAP: usize> fmt::Debug for ArrayVec<T, CAP> where T: fmt::Debug {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
+}
+
+impl<T, const CAP: usize> Default for ArrayVec<T, CAP> {
+ /// Return an empty array
+ fn default() -> ArrayVec<T, CAP> {
+ ArrayVec::new()
+ }
+}
+
+impl<T, const CAP: usize> PartialOrd for ArrayVec<T, CAP> where T: PartialOrd {
+ fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
+ (**self).partial_cmp(other)
+ }
+
+ fn lt(&self, other: &Self) -> bool {
+ (**self).lt(other)
+ }
+
+ fn le(&self, other: &Self) -> bool {
+ (**self).le(other)
+ }
+
+ fn ge(&self, other: &Self) -> bool {
+ (**self).ge(other)
+ }
+
+ fn gt(&self, other: &Self) -> bool {
+ (**self).gt(other)
+ }
+}
+
+impl<T, const CAP: usize> Ord for ArrayVec<T, CAP> where T: Ord {
+ fn cmp(&self, other: &Self) -> cmp::Ordering {
+ (**self).cmp(other)
+ }
+}
+
+#[cfg(feature="std")]
+/// `Write` appends written data to the end of the vector.
+///
+/// Requires `features="std"`.
+impl<const CAP: usize> io::Write for ArrayVec<u8, CAP> {
+ fn write(&mut self, data: &[u8]) -> io::Result<usize> {
+ let len = cmp::min(self.remaining_capacity(), data.len());
+ let _result = self.try_extend_from_slice(&data[..len]);
+ debug_assert!(_result.is_ok());
+ Ok(len)
+ }
+ fn flush(&mut self) -> io::Result<()> { Ok(()) }
+}
+
+#[cfg(feature="serde")]
+/// Requires crate feature `"serde"`
+impl<T: Serialize, const CAP: usize> Serialize for ArrayVec<T, CAP> {
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where S: Serializer
+ {
+ serializer.collect_seq(self)
+ }
+}
+
+#[cfg(feature="serde")]
+/// Requires crate feature `"serde"`
+impl<'de, T: Deserialize<'de>, const CAP: usize> Deserialize<'de> for ArrayVec<T, CAP> {
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where D: Deserializer<'de>
+ {
+ use serde::de::{Visitor, SeqAccess, Error};
+ use std::marker::PhantomData;
+
+ struct ArrayVecVisitor<'de, T: Deserialize<'de>, const CAP: usize>(PhantomData<(&'de (), [T; CAP])>);
+
+ impl<'de, T: Deserialize<'de>, const CAP: usize> Visitor<'de> for ArrayVecVisitor<'de, T, CAP> {
+ type Value = ArrayVec<T, CAP>;
+
+ fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+ write!(formatter, "an array with no more than {} items", CAP)
+ }
+
+ fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error>
+ where SA: SeqAccess<'de>,
+ {
+ let mut values = ArrayVec::<T, CAP>::new();
+
+ while let Some(value) = seq.next_element()? {
+ if let Err(_) = values.try_push(value) {
+ return Err(SA::Error::invalid_length(CAP + 1, &self));
+ }
+ }
+
+ Ok(values)
+ }
+ }
+
+ deserializer.deserialize_seq(ArrayVecVisitor::<T, CAP>(PhantomData))
+ }
+}