summaryrefslogtreecommitdiffstats
path: root/third_party/webkit/PerformanceTests/MotionMark/resources/statistics.js
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 17:32:43 +0000
commit6bf0a5cb5034a7e684dcc3500e841785237ce2dd (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/webkit/PerformanceTests/MotionMark/resources/statistics.js
parentInitial commit. (diff)
downloadthunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.tar.xz
thunderbird-6bf0a5cb5034a7e684dcc3500e841785237ce2dd.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/webkit/PerformanceTests/MotionMark/resources/statistics.js')
-rw-r--r--third_party/webkit/PerformanceTests/MotionMark/resources/statistics.js397
1 files changed, 397 insertions, 0 deletions
diff --git a/third_party/webkit/PerformanceTests/MotionMark/resources/statistics.js b/third_party/webkit/PerformanceTests/MotionMark/resources/statistics.js
new file mode 100644
index 0000000000..9322a797b6
--- /dev/null
+++ b/third_party/webkit/PerformanceTests/MotionMark/resources/statistics.js
@@ -0,0 +1,397 @@
+Pseudo =
+{
+ initialRandomSeed: 49734321,
+ randomSeed: 49734321,
+
+ resetRandomSeed: function()
+ {
+ Pseudo.randomSeed = Pseudo.initialRandomSeed;
+ },
+
+ random: function()
+ {
+ var randomSeed = Pseudo.randomSeed;
+ randomSeed = ((randomSeed + 0x7ed55d16) + (randomSeed << 12)) & 0xffffffff;
+ randomSeed = ((randomSeed ^ 0xc761c23c) ^ (randomSeed >>> 19)) & 0xffffffff;
+ randomSeed = ((randomSeed + 0x165667b1) + (randomSeed << 5)) & 0xffffffff;
+ randomSeed = ((randomSeed + 0xd3a2646c) ^ (randomSeed << 9)) & 0xffffffff;
+ randomSeed = ((randomSeed + 0xfd7046c5) + (randomSeed << 3)) & 0xffffffff;
+ randomSeed = ((randomSeed ^ 0xb55a4f09) ^ (randomSeed >>> 16)) & 0xffffffff;
+ Pseudo.randomSeed = randomSeed;
+ return (randomSeed & 0xfffffff) / 0x10000000;
+ }
+};
+
+Statistics =
+{
+ sampleMean: function(numberOfSamples, sum)
+ {
+ if (numberOfSamples < 1)
+ return 0;
+ return sum / numberOfSamples;
+ },
+
+ // With sum and sum of squares, we can compute the sample standard deviation in O(1).
+ // See https://rniwa.com/2012-11-10/sample-standard-deviation-in-terms-of-sum-and-square-sum-of-samples/
+ unbiasedSampleStandardDeviation: function(numberOfSamples, sum, squareSum)
+ {
+ if (numberOfSamples < 2)
+ return 0;
+ return Math.sqrt((squareSum - sum * sum / numberOfSamples) / (numberOfSamples - 1));
+ },
+
+ geometricMean: function(values)
+ {
+ if (!values.length)
+ return 0;
+ var roots = values.map(function(value) { return Math.pow(value, 1 / values.length); })
+ return roots.reduce(function(a, b) { return a * b; });
+ },
+
+ // Cumulative distribution function
+ cdf: function(value, mean, standardDeviation)
+ {
+ return 0.5 * (1 + Statistics.erf((value - mean) / (Math.sqrt(2 * standardDeviation * standardDeviation))));
+ },
+
+ // Approximation of Gauss error function, Abramowitz and Stegun 7.1.26
+ erf: function(value)
+ {
+ var sign = (value >= 0) ? 1 : -1;
+ value = Math.abs(value);
+
+ var a1 = 0.254829592;
+ var a2 = -0.284496736;
+ var a3 = 1.421413741;
+ var a4 = -1.453152027;
+ var a5 = 1.061405429;
+ var p = 0.3275911;
+
+ var t = 1.0 / (1.0 + p * value);
+ var y = 1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * Math.exp(-value * value);
+ return sign * y;
+ },
+
+ largestDeviationPercentage: function(low, mean, high)
+ {
+ return Math.max(Math.abs(low / mean - 1), (high / mean - 1));
+ }
+};
+
+Experiment = Utilities.createClass(
+ function(includeConcern)
+ {
+ if (includeConcern)
+ this._maxHeap = Heap.createMaxHeap(Experiment.defaults.CONCERN_SIZE);
+ this.reset();
+ }, {
+
+ reset: function()
+ {
+ this._sum = 0;
+ this._squareSum = 0;
+ this._numberOfSamples = 0;
+ if (this._maxHeap)
+ this._maxHeap.init();
+ },
+
+ get sampleCount()
+ {
+ return this._numberOfSamples;
+ },
+
+ sample: function(value)
+ {
+ this._sum += value;
+ this._squareSum += value * value;
+ if (this._maxHeap)
+ this._maxHeap.push(value);
+ ++this._numberOfSamples;
+ },
+
+ mean: function()
+ {
+ return Statistics.sampleMean(this._numberOfSamples, this._sum);
+ },
+
+ standardDeviation: function()
+ {
+ return Statistics.unbiasedSampleStandardDeviation(this._numberOfSamples, this._sum, this._squareSum);
+ },
+
+ cdf: function(value)
+ {
+ return Statistics.cdf(value, this.mean(), this.standardDeviation());
+ },
+
+ percentage: function()
+ {
+ var mean = this.mean();
+ return mean ? this.standardDeviation() * 100 / mean : 0;
+ },
+
+ concern: function(percentage)
+ {
+ if (!this._maxHeap)
+ return this.mean();
+
+ var size = Math.ceil(this._numberOfSamples * percentage / 100);
+ var values = this._maxHeap.values(size);
+ return values.length ? values.reduce(function(a, b) { return a + b; }) / values.length : 0;
+ },
+
+ score: function(percentage)
+ {
+ return Statistics.geometricMean([this.mean(), Math.max(this.concern(percentage), 1)]);
+ }
+});
+
+Experiment.defaults =
+{
+ CONCERN: 5,
+ CONCERN_SIZE: 100,
+};
+
+Regression = Utilities.createClass(
+ function(samples, getComplexity, getFrameLength, startIndex, endIndex, options)
+ {
+ var desiredFrameLength = options.desiredFrameLength || 1000/60;
+ var bestProfile;
+
+ if (!options.preferredProfile || options.preferredProfile == Strings.json.profiles.slope) {
+ var slope = this._calculateRegression(samples, getComplexity, getFrameLength, startIndex, endIndex, {
+ shouldClip: true,
+ s1: desiredFrameLength,
+ t1: 0
+ });
+ if (!bestProfile || slope.error < bestProfile.error) {
+ bestProfile = slope;
+ this.profile = Strings.json.profiles.slope;
+ }
+ }
+ if (!options.preferredProfile || options.preferredProfile == Strings.json.profiles.flat) {
+ var flat = this._calculateRegression(samples, getComplexity, getFrameLength, startIndex, endIndex, {
+ shouldClip: true,
+ s1: desiredFrameLength,
+ t1: 0,
+ t2: 0
+ });
+
+ if (!bestProfile || flat.error < bestProfile.error) {
+ bestProfile = flat;
+ this.profile = Strings.json.profiles.flat;
+ }
+ }
+
+ this.startIndex = Math.min(startIndex, endIndex);
+ this.endIndex = Math.max(startIndex, endIndex);
+
+ this.complexity = bestProfile.complexity;
+ this.s1 = bestProfile.s1;
+ this.t1 = bestProfile.t1;
+ this.s2 = bestProfile.s2;
+ this.t2 = bestProfile.t2;
+ this.stdev1 = bestProfile.stdev1;
+ this.stdev2 = bestProfile.stdev2;
+ this.n1 = bestProfile.n1;
+ this.n2 = bestProfile.n2;
+ this.error = bestProfile.error;
+ }, {
+
+ valueAt: function(complexity)
+ {
+ if (this.n1 == 1 || complexity > this.complexity)
+ return this.s2 + this.t2 * complexity;
+ return this.s1 + this.t1 * complexity;
+ },
+
+ // A generic two-segment piecewise regression calculator. Based on Kundu/Ubhaya
+ //
+ // Minimize sum of (y - y')^2
+ // where y = s1 + t1*x
+ // y = s2 + t2*x
+ // y' = s1 + t1*x' = s2 + t2*x' if x_0 <= x' <= x_n
+ //
+ // Allows for fixing s1, t1, s2, t2
+ //
+ // x is assumed to be complexity, y is frame length. Can be used for pure complexity-FPS
+ // analysis or for ramp controllers since complexity monotonically decreases with time.
+ _calculateRegression: function(samples, getComplexity, getFrameLength, startIndex, endIndex, options)
+ {
+ if (startIndex == endIndex) {
+ // Only one sample point; we can't calculate any regression.
+ var x = getComplexity(samples, startIndex);
+ return {
+ complexity: x,
+ s1: x,
+ t1: 0,
+ s2: x,
+ t2: 0,
+ error1: 0,
+ error2: 0
+ };
+ }
+
+ // x is expected to increase in complexity
+ var iterationDirection = endIndex > startIndex ? 1 : -1;
+ var lowComplexity = getComplexity(samples, startIndex);
+ var highComplexity = getComplexity(samples, endIndex);
+ var a1 = 0, b1 = 0, c1 = 0, d1 = 0, h1 = 0, k1 = 0;
+ var a2 = 0, b2 = 0, c2 = 0, d2 = 0, h2 = 0, k2 = 0;
+
+ // Iterate from low to high complexity
+ for (var i = startIndex; iterationDirection * (endIndex - i) > -1; i += iterationDirection) {
+ var x = getComplexity(samples, i);
+ var y = getFrameLength(samples, i);
+ a2 += 1;
+ b2 += x;
+ c2 += x * x;
+ d2 += y;
+ h2 += y * x;
+ k2 += y * y;
+ }
+
+ var s1_best, t1_best, s2_best, t2_best, n1_best, n2_best, error1_best, error2_best, x_best, x_prime;
+
+ function setBest(s1, t1, error1, s2, t2, error2, splitIndex, x_prime, x)
+ {
+ s1_best = s1;
+ t1_best = t1;
+ error1_best = error1;
+ s2_best = s2;
+ t2_best = t2;
+ error2_best = error2;
+ // Number of samples included in the first segment, inclusive of splitIndex
+ n1_best = iterationDirection * (splitIndex - startIndex) + 1;
+ // Number of samples included in the second segment
+ n2_best = iterationDirection * (endIndex - splitIndex);
+ if (!options.shouldClip || (x_prime >= lowComplexity && x_prime <= highComplexity))
+ x_best = x_prime;
+ else {
+ // Discontinuous piecewise regression
+ x_best = x;
+ }
+ }
+
+ // Iterate from startIndex to endIndex - 1, inclusive
+ for (var i = startIndex; iterationDirection * (endIndex - i) > 0; i += iterationDirection) {
+ var x = getComplexity(samples, i);
+ var y = getFrameLength(samples, i);
+ var xx = x * x;
+ var yx = y * x;
+ var yy = y * y;
+ // a1, b1, etc. is sum from startIndex to i, inclusive
+ a1 += 1;
+ b1 += x;
+ c1 += xx;
+ d1 += y;
+ h1 += yx;
+ k1 += yy;
+ // a2, b2, etc. is sum from i+1 to endIndex, inclusive
+ a2 -= 1;
+ b2 -= x;
+ c2 -= xx;
+ d2 -= y;
+ h2 -= yx;
+ k2 -= yy;
+
+ var A = c1*d1 - b1*h1;
+ var B = a1*h1 - b1*d1;
+ var C = a1*c1 - b1*b1;
+ var D = c2*d2 - b2*h2;
+ var E = a2*h2 - b2*d2;
+ var F = a2*c2 - b2*b2;
+ var s1 = options.s1 !== undefined ? options.s1 : (A / C);
+ var t1 = options.t1 !== undefined ? options.t1 : (B / C);
+ var s2 = options.s2 !== undefined ? options.s2 : (D / F);
+ var t2 = options.t2 !== undefined ? options.t2 : (E / F);
+ // Assumes that the two segments meet
+ var x_prime = (s1 - s2) / (t2 - t1);
+
+ var error1 = (k1 + a1*s1*s1 + c1*t1*t1 - 2*d1*s1 - 2*h1*t1 + 2*b1*s1*t1) || Number.MAX_VALUE;
+ var error2 = (k2 + a2*s2*s2 + c2*t2*t2 - 2*d2*s2 - 2*h2*t2 + 2*b2*s2*t2) || Number.MAX_VALUE;
+
+ if (i == startIndex) {
+ setBest(s1, t1, error1, s2, t2, error2, i, x_prime, x);
+ continue;
+ }
+
+ if (C == 0 || F == 0)
+ continue;
+
+ // Projected point is not between this and the next sample
+ if (x_prime > getComplexity(samples, i + iterationDirection) || x_prime < x) {
+ // Calculate lambda, which divides the weight of this sample between the two lines
+
+ // These values remove the influence of this sample
+ var I = c1 - 2*b1*x + a1*xx;
+ var H = C - I;
+ var G = A + B*x - C*y;
+
+ var J = D + E*x - F*y;
+ var K = c2 - 2*b2*x + a2*xx;
+
+ var lambda = (G*F + G*K - H*J) / (I*J + G*K);
+ if (lambda > 0 && lambda < 1) {
+ var lambda1 = 1 - lambda;
+ s1 = options.s1 !== undefined ? options.s1 : ((A - lambda1*(-h1*x + d1*xx + c1*y - b1*yx)) / (C - lambda1*I));
+ t1 = options.t1 !== undefined ? options.t1 : ((B - lambda1*(h1 - d1*x - b1*y + a1*yx)) / (C - lambda1*I));
+ s2 = options.s2 !== undefined ? options.s2 : ((D + lambda1*(-h2*x + d2*xx + c2*y - b2*yx)) / (F + lambda1*K));
+ t2 = options.t2 !== undefined ? options.t2 : ((E + lambda1*(h2 - d2*x - b2*y + a2*yx)) / (F + lambda1*K));
+ x_prime = (s1 - s2) / (t2 - t1);
+
+ error1 = ((k1 + a1*s1*s1 + c1*t1*t1 - 2*d1*s1 - 2*h1*t1 + 2*b1*s1*t1) - lambda1 * Math.pow(y - (s1 + t1*x), 2)) || Number.MAX_VALUE;
+ error2 = ((k2 + a2*s2*s2 + c2*t2*t2 - 2*d2*s2 - 2*h2*t2 + 2*b2*s2*t2) + lambda1 * Math.pow(y - (s2 + t2*x), 2)) || Number.MAX_VALUE;
+ } else if (t1 != t2)
+ continue;
+ }
+
+ if (error1 + error2 < error1_best + error2_best)
+ setBest(s1, t1, error1, s2, t2, error2, i, x_prime, x);
+ }
+
+ return {
+ complexity: x_best,
+ s1: s1_best,
+ t1: t1_best,
+ stdev1: Math.sqrt(error1_best / n1_best),
+ s2: s2_best,
+ t2: t2_best,
+ stdev2: Math.sqrt(error2_best / n2_best),
+ error: error1_best + error2_best,
+ n1: n1_best,
+ n2: n2_best
+ };
+ }
+});
+
+Utilities.extendObject(Regression, {
+ bootstrap: function(samples, iterationCount, processResample, confidencePercentage)
+ {
+ var sampleLength = samples.length;
+ var resample = new Array(sampleLength);
+
+ var bootstrapEstimator = new Experiment;
+ var bootstrapData = new Array(iterationCount);
+
+ Pseudo.resetRandomSeed();
+ for (var i = 0; i < iterationCount; ++i) {
+ for (var j = 0; j < sampleLength; ++j)
+ resample[j] = samples[Math.floor(Pseudo.random() * sampleLength)];
+
+ var resampleResult = processResample(resample);
+ bootstrapEstimator.sample(resampleResult);
+ bootstrapData[i] = resampleResult;
+ }
+
+ bootstrapData.sort(function(a, b) { return a - b; });
+ return {
+ confidenceLow: bootstrapData[Math.round((iterationCount - 1) * (1 - confidencePercentage) / 2)],
+ confidenceHigh: bootstrapData[Math.round((iterationCount - 1) * (1 + confidencePercentage) / 2)],
+ median: bootstrapData[Math.round(iterationCount / 2)],
+ mean: bootstrapEstimator.mean(),
+ data: bootstrapData,
+ confidencePercentage: confidencePercentage
+ };
+ }
+});