summaryrefslogtreecommitdiffstats
path: root/comm/mailnews/extensions/bayesian-spam-filter/nsIncompleteGamma.h
diff options
context:
space:
mode:
Diffstat (limited to 'comm/mailnews/extensions/bayesian-spam-filter/nsIncompleteGamma.h')
-rw-r--r--comm/mailnews/extensions/bayesian-spam-filter/nsIncompleteGamma.h239
1 files changed, 239 insertions, 0 deletions
diff --git a/comm/mailnews/extensions/bayesian-spam-filter/nsIncompleteGamma.h b/comm/mailnews/extensions/bayesian-spam-filter/nsIncompleteGamma.h
new file mode 100644
index 0000000000..9b96459c7c
--- /dev/null
+++ b/comm/mailnews/extensions/bayesian-spam-filter/nsIncompleteGamma.h
@@ -0,0 +1,239 @@
+/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef nsIncompleteGamma_h__
+#define nsIncompleteGamma_h__
+
+/* An implementation of the incomplete gamma functions for real
+ arguments. P is defined as
+
+ x
+ /
+ 1 [ a - 1 - t
+ P(a, x) = -------- I t e dt
+ Gamma(a) ]
+ /
+ 0
+
+ and
+
+ infinity
+ /
+ 1 [ a - 1 - t
+ Q(a, x) = -------- I t e dt
+ Gamma(a) ]
+ /
+ x
+
+ so that P(a,x) + Q(a,x) = 1.
+
+ Both a series expansion and a continued fraction exist. This
+ implementation uses the more efficient method based on the arguments.
+
+ Either case involves calculating a multiplicative term:
+ e^(-x)*x^a/Gamma(a).
+ Here we calculate the log of this term. Most math libraries have a
+ "lgamma" function but it is not re-entrant. Some libraries have a
+ "lgamma_r" which is re-entrant. Use it if possible. I have included a
+ simple replacement but it is certainly not as accurate.
+
+ Relative errors are almost always < 1e-10 and usually < 1e-14. Very
+ small and very large arguments cause trouble.
+
+ The region where a < 0.5 and x < 0.5 has poor error properties and is
+ not too stable. Get a better routine if you need results in this
+ region.
+
+ The error argument will be set negative if there is a domain error or
+ positive for an internal calculation error, currently lack of
+ convergence. A value is always returned, though.
+
+ */
+
+#include <math.h>
+#include <float.h>
+
+// the main routine
+static double nsIncompleteGammaP(double a, double x, int* error);
+
+// nsLnGamma(z): either a wrapper around lgamma_r or the internal function.
+// C_m = B[2*m]/(2*m*(2*m-1)) where B is a Bernoulli number
+static const double C_1 = 1.0 / 12.0;
+static const double C_2 = -1.0 / 360.0;
+static const double C_3 = 1.0 / 1260.0;
+static const double C_4 = -1.0 / 1680.0;
+static const double C_5 = 1.0 / 1188.0;
+static const double C_6 = -691.0 / 360360.0;
+static const double C_7 = 1.0 / 156.0;
+static const double C_8 = -3617.0 / 122400.0;
+static const double C_9 = 43867.0 / 244188.0;
+static const double C_10 = -174611.0 / 125400.0;
+static const double C_11 = 77683.0 / 5796.0;
+
+// truncated asymptotic series in 1/z
+static inline double lngamma_asymp(double z) {
+ double w, w2, sum;
+ w = 1.0 / z;
+ w2 = w * w;
+ sum =
+ w *
+ (w2 * (w2 * (w2 * (w2 * (w2 * (w2 * (w2 * (w2 * (w2 * (C_11 * w2 + C_10) +
+ C_9) +
+ C_8) +
+ C_7) +
+ C_6) +
+ C_5) +
+ C_4) +
+ C_3) +
+ C_2) +
+ C_1);
+
+ return sum;
+}
+
+struct fact_table_s {
+ double fact;
+ double lnfact;
+};
+
+// for speed and accuracy
+static const struct fact_table_s FactTable[] = {
+ {1.000000000000000, 0.0000000000000000000000e+00},
+ {1.000000000000000, 0.0000000000000000000000e+00},
+ {2.000000000000000, 6.9314718055994530942869e-01},
+ {6.000000000000000, 1.7917594692280550007892e+00},
+ {24.00000000000000, 3.1780538303479456197550e+00},
+ {120.0000000000000, 4.7874917427820459941458e+00},
+ {720.0000000000000, 6.5792512120101009952602e+00},
+ {5040.000000000000, 8.5251613610654142999881e+00},
+ {40320.00000000000, 1.0604602902745250228925e+01},
+ {362880.0000000000, 1.2801827480081469610995e+01},
+ {3628800.000000000, 1.5104412573075515295248e+01},
+ {39916800.00000000, 1.7502307845873885839769e+01},
+ {479001600.0000000, 1.9987214495661886149228e+01},
+ {6227020800.000000, 2.2552163853123422886104e+01},
+ {87178291200.00000, 2.5191221182738681499610e+01},
+ {1307674368000.000, 2.7899271383840891566988e+01},
+ {20922789888000.00, 3.0671860106080672803835e+01},
+ {355687428096000.0, 3.3505073450136888885825e+01},
+ {6402373705728000., 3.6395445208033053576674e+01}};
+#define FactTableLength (int)(sizeof(FactTable) / sizeof(FactTable[0]))
+
+// for speed
+static const double ln_2pi_2 = 0.918938533204672741803; // log(2*PI)/2
+
+/* A simple lgamma function, not very robust.
+
+ Valid for z_in > 0 ONLY.
+
+ For z_in > 8 precision is quite good, relative errors < 1e-14 and
+ usually better. For z_in < 8 relative errors increase but are usually
+ < 1e-10. In two small regions, 1 +/- .001 and 2 +/- .001 errors
+ increase quickly.
+*/
+static double nsLnGamma(double z_in, int* gsign) {
+ double scale, z, sum, result;
+ *gsign = 1;
+
+ int zi = (int)z_in;
+ if (z_in == (double)zi) {
+ if (0 < zi && zi <= FactTableLength)
+ return FactTable[zi - 1].lnfact; // gamma(z) = (z-1)!
+ }
+
+ for (scale = 1.0, z = z_in; z < 8.0; ++z) scale *= z;
+
+ sum = lngamma_asymp(z);
+ result = (z - 0.5) * log(z) - z + ln_2pi_2 - log(scale);
+ result += sum;
+ return result;
+}
+
+// log( e^(-x)*x^a/Gamma(a) )
+static inline double lnPQfactor(double a, double x) {
+ int gsign; // ignored because a > 0
+ return a * log(x) - x - nsLnGamma(a, &gsign);
+}
+
+static double Pseries(double a, double x, int* error) {
+ double sum, term;
+ const double eps = 2.0 * DBL_EPSILON;
+ const int imax = 5000;
+ int i;
+
+ sum = term = 1.0 / a;
+ for (i = 1; i < imax; ++i) {
+ term *= x / (a + i);
+ sum += term;
+ if (fabs(term) < eps * fabs(sum)) break;
+ }
+
+ if (i >= imax) *error = 1;
+
+ return sum;
+}
+
+static double Qcontfrac(double a, double x, int* error) {
+ double result, D, C, e, f, term;
+ const double eps = 2.0 * DBL_EPSILON;
+ const double small = DBL_EPSILON * DBL_EPSILON * DBL_EPSILON * DBL_EPSILON;
+ const int imax = 5000;
+ int i;
+
+ // modified Lentz method
+ f = x - a + 1.0;
+ if (fabs(f) < small) f = small;
+ C = f + 1.0 / small;
+ D = 1.0 / f;
+ result = D;
+ for (i = 1; i < imax; ++i) {
+ e = i * (a - i);
+ f += 2.0;
+ D = f + e * D;
+ if (fabs(D) < small) D = small;
+ D = 1.0 / D;
+ C = f + e / C;
+ if (fabs(C) < small) C = small;
+ term = C * D;
+ result *= term;
+ if (fabs(term - 1.0) < eps) break;
+ }
+
+ if (i >= imax) *error = 1;
+ return result;
+}
+
+static double nsIncompleteGammaP(double a, double x, int* error) {
+ double result, dom, ldom;
+ // domain errors. the return values are meaningless but have
+ // to return something.
+ *error = -1;
+ if (a <= 0.0) return 1.0;
+ if (x < 0.0) return 0.0;
+ *error = 0;
+ if (x == 0.0) return 0.0;
+
+ ldom = lnPQfactor(a, x);
+ dom = exp(ldom);
+ // might need to adjust the crossover point
+ if (a <= 0.5) {
+ if (x < a + 1.0)
+ result = dom * Pseries(a, x, error);
+ else
+ result = 1.0 - dom * Qcontfrac(a, x, error);
+ } else {
+ if (x < a)
+ result = dom * Pseries(a, x, error);
+ else
+ result = 1.0 - dom * Qcontfrac(a, x, error);
+ }
+
+ // not clear if this can ever happen
+ if (result > 1.0) result = 1.0;
+ if (result < 0.0) result = 0.0;
+ return result;
+}
+
+#endif