summaryrefslogtreecommitdiffstats
path: root/comm/third_party/botan/src/lib/pubkey/rsa/rsa.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'comm/third_party/botan/src/lib/pubkey/rsa/rsa.cpp')
-rw-r--r--comm/third_party/botan/src/lib/pubkey/rsa/rsa.cpp753
1 files changed, 753 insertions, 0 deletions
diff --git a/comm/third_party/botan/src/lib/pubkey/rsa/rsa.cpp b/comm/third_party/botan/src/lib/pubkey/rsa/rsa.cpp
new file mode 100644
index 0000000000..96f405892a
--- /dev/null
+++ b/comm/third_party/botan/src/lib/pubkey/rsa/rsa.cpp
@@ -0,0 +1,753 @@
+/*
+* RSA
+* (C) 1999-2010,2015,2016,2018,2019 Jack Lloyd
+*
+* Botan is released under the Simplified BSD License (see license.txt)
+*/
+
+#include <botan/rsa.h>
+#include <botan/internal/pk_ops_impl.h>
+#include <botan/keypair.h>
+#include <botan/blinding.h>
+#include <botan/reducer.h>
+#include <botan/workfactor.h>
+#include <botan/der_enc.h>
+#include <botan/ber_dec.h>
+#include <botan/monty.h>
+#include <botan/divide.h>
+#include <botan/internal/monty_exp.h>
+
+#if defined(BOTAN_HAS_OPENSSL)
+ #include <botan/internal/openssl.h>
+#endif
+
+#if defined(BOTAN_HAS_THREAD_UTILS)
+ #include <botan/internal/thread_pool.h>
+#endif
+
+namespace Botan {
+
+class RSA_Public_Data final
+ {
+ public:
+ RSA_Public_Data(BigInt&& n, BigInt&& e) :
+ m_n(n),
+ m_e(e),
+ m_monty_n(std::make_shared<Montgomery_Params>(m_n)),
+ m_public_modulus_bits(m_n.bits()),
+ m_public_modulus_bytes(m_n.bytes())
+ {}
+
+ BigInt public_op(const BigInt& m) const
+ {
+ const size_t powm_window = 1;
+ auto powm_m_n = monty_precompute(m_monty_n, m, powm_window, false);
+ return monty_execute_vartime(*powm_m_n, m_e);
+ }
+
+ const BigInt& get_n() const { return m_n; }
+ const BigInt& get_e() const { return m_e; }
+ size_t public_modulus_bits() const { return m_public_modulus_bits; }
+ size_t public_modulus_bytes() const { return m_public_modulus_bytes; }
+
+ private:
+ BigInt m_n;
+ BigInt m_e;
+ std::shared_ptr<const Montgomery_Params> m_monty_n;
+ size_t m_public_modulus_bits;
+ size_t m_public_modulus_bytes;
+ };
+
+class RSA_Private_Data final
+ {
+ public:
+ RSA_Private_Data(BigInt&& d, BigInt&& p, BigInt&& q,
+ BigInt&& d1, BigInt&& d2, BigInt&& c) :
+ m_d(d),
+ m_p(p),
+ m_q(q),
+ m_d1(d1),
+ m_d2(d2),
+ m_c(c),
+ m_mod_p(m_p),
+ m_mod_q(m_q),
+ m_monty_p(std::make_shared<Montgomery_Params>(m_p, m_mod_p)),
+ m_monty_q(std::make_shared<Montgomery_Params>(m_q, m_mod_q)),
+ m_p_bits(m_p.bits()),
+ m_q_bits(m_q.bits())
+ {}
+
+ const BigInt& get_d() const { return m_d; }
+ const BigInt& get_p() const { return m_p; }
+ const BigInt& get_q() const { return m_q; }
+ const BigInt& get_d1() const { return m_d1; }
+ const BigInt& get_d2() const { return m_d2; }
+ const BigInt& get_c() const { return m_c; }
+
+ //private:
+ BigInt m_d;
+ BigInt m_p;
+ BigInt m_q;
+ BigInt m_d1;
+ BigInt m_d2;
+ BigInt m_c;
+
+ Modular_Reducer m_mod_p;
+ Modular_Reducer m_mod_q;
+ std::shared_ptr<const Montgomery_Params> m_monty_p;
+ std::shared_ptr<const Montgomery_Params> m_monty_q;
+ size_t m_p_bits;
+ size_t m_q_bits;
+ };
+
+std::shared_ptr<const RSA_Public_Data> RSA_PublicKey::public_data() const
+ {
+ return m_public;
+ }
+
+const BigInt& RSA_PublicKey::get_n() const { return m_public->get_n(); }
+const BigInt& RSA_PublicKey::get_e() const { return m_public->get_e(); }
+
+void RSA_PublicKey::init(BigInt&& n, BigInt&& e)
+ {
+ if(n.is_negative() || n.is_even() || e.is_negative() || e.is_even())
+ throw Decoding_Error("Invalid RSA public key parameters");
+ m_public = std::make_shared<RSA_Public_Data>(std::move(n), std::move(e));
+ }
+
+RSA_PublicKey::RSA_PublicKey(const AlgorithmIdentifier&,
+ const std::vector<uint8_t>& key_bits)
+ {
+ BigInt n, e;
+ BER_Decoder(key_bits)
+ .start_cons(SEQUENCE)
+ .decode(n)
+ .decode(e)
+ .end_cons();
+
+ init(std::move(n), std::move(e));
+ }
+
+RSA_PublicKey::RSA_PublicKey(const BigInt& modulus, const BigInt& exponent)
+ {
+ BigInt n = modulus;
+ BigInt e = exponent;
+ init(std::move(n), std::move(e));
+ }
+
+size_t RSA_PublicKey::key_length() const
+ {
+ return m_public->public_modulus_bits();
+ }
+
+size_t RSA_PublicKey::estimated_strength() const
+ {
+ return if_work_factor(key_length());
+ }
+
+AlgorithmIdentifier RSA_PublicKey::algorithm_identifier() const
+ {
+ return AlgorithmIdentifier(get_oid(), AlgorithmIdentifier::USE_NULL_PARAM);
+ }
+
+std::vector<uint8_t> RSA_PublicKey::public_key_bits() const
+ {
+ std::vector<uint8_t> output;
+ DER_Encoder der(output);
+ der.start_cons(SEQUENCE)
+ .encode(get_n())
+ .encode(get_e())
+ .end_cons();
+
+ return output;
+ }
+
+/*
+* Check RSA Public Parameters
+*/
+bool RSA_PublicKey::check_key(RandomNumberGenerator&, bool) const
+ {
+ if(get_n() < 35 || get_n().is_even() || get_e() < 3 || get_e().is_even())
+ return false;
+ return true;
+ }
+
+std::shared_ptr<const RSA_Private_Data> RSA_PrivateKey::private_data() const
+ {
+ return m_private;
+ }
+
+secure_vector<uint8_t> RSA_PrivateKey::private_key_bits() const
+ {
+ return DER_Encoder()
+ .start_cons(SEQUENCE)
+ .encode(static_cast<size_t>(0))
+ .encode(get_n())
+ .encode(get_e())
+ .encode(get_d())
+ .encode(get_p())
+ .encode(get_q())
+ .encode(get_d1())
+ .encode(get_d2())
+ .encode(get_c())
+ .end_cons()
+ .get_contents();
+ }
+
+const BigInt& RSA_PrivateKey::get_p() const { return m_private->get_p(); }
+const BigInt& RSA_PrivateKey::get_q() const { return m_private->get_q(); }
+const BigInt& RSA_PrivateKey::get_d() const { return m_private->get_d(); }
+const BigInt& RSA_PrivateKey::get_c() const { return m_private->get_c(); }
+const BigInt& RSA_PrivateKey::get_d1() const { return m_private->get_d1(); }
+const BigInt& RSA_PrivateKey::get_d2() const { return m_private->get_d2(); }
+
+void RSA_PrivateKey::init(BigInt&& d, BigInt&& p, BigInt&& q,
+ BigInt&& d1, BigInt&& d2, BigInt&& c)
+ {
+ m_private = std::make_shared<RSA_Private_Data>(
+ std::move(d), std::move(p), std::move(q), std::move(d1), std::move(d2), std::move(c));
+ }
+
+RSA_PrivateKey::RSA_PrivateKey(const AlgorithmIdentifier&,
+ const secure_vector<uint8_t>& key_bits)
+ {
+ BigInt n, e, d, p, q, d1, d2, c;
+
+ BER_Decoder(key_bits)
+ .start_cons(SEQUENCE)
+ .decode_and_check<size_t>(0, "Unknown PKCS #1 key format version")
+ .decode(n)
+ .decode(e)
+ .decode(d)
+ .decode(p)
+ .decode(q)
+ .decode(d1)
+ .decode(d2)
+ .decode(c)
+ .end_cons();
+
+ RSA_PublicKey::init(std::move(n), std::move(e));
+
+ RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
+ std::move(d1), std::move(d2), std::move(c));
+ }
+
+RSA_PrivateKey::RSA_PrivateKey(const BigInt& prime1,
+ const BigInt& prime2,
+ const BigInt& exp,
+ const BigInt& d_exp,
+ const BigInt& mod)
+ {
+ BigInt p = prime1;
+ BigInt q = prime2;
+ BigInt n = mod;
+ if(n.is_zero())
+ n = p * q;
+
+ BigInt e = exp;
+
+ BigInt d = d_exp;
+
+ const BigInt p_minus_1 = p - 1;
+ const BigInt q_minus_1 = q - 1;
+
+ if(d.is_zero())
+ {
+ const BigInt phi_n = lcm(p_minus_1, q_minus_1);
+ d = inverse_mod(e, phi_n);
+ }
+
+ BigInt d1 = ct_modulo(d, p_minus_1);
+ BigInt d2 = ct_modulo(d, q_minus_1);
+ BigInt c = inverse_mod(q, p);
+
+ RSA_PublicKey::init(std::move(n), std::move(e));
+
+ RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
+ std::move(d1), std::move(d2), std::move(c));
+ }
+
+/*
+* Create a RSA private key
+*/
+RSA_PrivateKey::RSA_PrivateKey(RandomNumberGenerator& rng,
+ size_t bits, size_t exp)
+ {
+ if(bits < 1024)
+ throw Invalid_Argument(algo_name() + ": Can't make a key that is only " +
+ std::to_string(bits) + " bits long");
+ if(exp < 3 || exp % 2 == 0)
+ throw Invalid_Argument(algo_name() + ": Invalid encryption exponent");
+
+ BigInt n, e, d, p, q, d1, d2, c;
+
+ e = exp;
+
+ const size_t p_bits = (bits + 1) / 2;
+ const size_t q_bits = bits - p_bits;
+
+ do
+ {
+ // TODO could generate primes in thread pool
+ p = generate_rsa_prime(rng, rng, p_bits, e);
+ q = generate_rsa_prime(rng, rng, q_bits, e);
+
+ if(p == q)
+ throw Internal_Error("RNG failure during RSA key generation");
+
+ n = p * q;
+ } while(n.bits() != bits);
+
+ const BigInt p_minus_1 = p - 1;
+ const BigInt q_minus_1 = q - 1;
+
+ const BigInt phi_n = lcm(p_minus_1, q_minus_1);
+ d = inverse_mod(e, phi_n);
+ d1 = ct_modulo(d, p_minus_1);
+ d2 = ct_modulo(d, q_minus_1);
+ c = inverse_mod(q, p);
+
+ RSA_PublicKey::init(std::move(n), std::move(e));
+
+ RSA_PrivateKey::init(std::move(d), std::move(p), std::move(q),
+ std::move(d1), std::move(d2), std::move(c));
+ }
+
+/*
+* Check Private RSA Parameters
+*/
+bool RSA_PrivateKey::check_key(RandomNumberGenerator& rng, bool strong) const
+ {
+ if(get_n() < 35 || get_n().is_even() || get_e() < 3 || get_e().is_even())
+ return false;
+
+ if(get_d() < 2 || get_p() < 3 || get_q() < 3)
+ return false;
+
+ if(get_p() * get_q() != get_n())
+ return false;
+
+ if(get_p() == get_q())
+ return false;
+
+ if(get_d1() != ct_modulo(get_d(), get_p() - 1))
+ return false;
+ if(get_d2() != ct_modulo(get_d(), get_q() - 1))
+ return false;
+ if(get_c() != inverse_mod(get_q(), get_p()))
+ return false;
+
+ const size_t prob = (strong) ? 128 : 12;
+
+ if(!is_prime(get_p(), rng, prob))
+ return false;
+ if(!is_prime(get_q(), rng, prob))
+ return false;
+
+ if(strong)
+ {
+ if(ct_modulo(get_e() * get_d(), lcm(get_p() - 1, get_q() - 1)) != 1)
+ return false;
+
+ return KeyPair::signature_consistency_check(rng, *this, "EMSA4(SHA-256)");
+ }
+
+ return true;
+ }
+
+namespace {
+
+/**
+* RSA private (decrypt/sign) operation
+*/
+class RSA_Private_Operation
+ {
+ protected:
+ size_t public_modulus_bits() const { return m_public->public_modulus_bits(); }
+ size_t public_modulus_bytes() const { return m_public->public_modulus_bytes(); }
+
+ explicit RSA_Private_Operation(const RSA_PrivateKey& rsa, RandomNumberGenerator& rng) :
+ m_public(rsa.public_data()),
+ m_private(rsa.private_data()),
+ m_blinder(m_public->get_n(), rng,
+ [this](const BigInt& k) { return m_public->public_op(k); },
+ [this](const BigInt& k) { return inverse_mod(k, m_public->get_n()); }),
+ m_blinding_bits(64),
+ m_max_d1_bits(m_private->m_p_bits + m_blinding_bits),
+ m_max_d2_bits(m_private->m_q_bits + m_blinding_bits)
+ {
+ }
+
+ secure_vector<uint8_t> raw_op(const uint8_t input[], size_t input_len)
+ {
+ const BigInt input_bn(input, input_len);
+ if(input_bn >= m_public->get_n())
+ throw Invalid_Argument("RSA private op - input is too large");
+
+ // TODO: This should be a function on blinder
+ // BigInt Blinder::run_blinded_function(std::function<BigInt, BigInt> fn, const BigInt& input);
+
+ const BigInt recovered = m_blinder.unblind(rsa_private_op(m_blinder.blind(input_bn)));
+ BOTAN_ASSERT(input_bn == m_public->public_op(recovered), "RSA consistency check");
+ return BigInt::encode_1363(recovered, m_public->public_modulus_bytes());
+ }
+
+ private:
+
+ BigInt rsa_private_op(const BigInt& m) const
+ {
+ /*
+ TODO
+ Consider using Montgomery reduction instead of Barrett, using
+ the "Smooth RSA-CRT" method. https://eprint.iacr.org/2007/039.pdf
+ */
+
+ static constexpr size_t powm_window = 4;
+
+ // Compute this in main thread to avoid racing on the rng
+ const BigInt d1_mask(m_blinder.rng(), m_blinding_bits);
+
+#if defined(BOTAN_HAS_THREAD_UTILS) && !defined(BOTAN_HAS_VALGRIND)
+ #define BOTAN_RSA_USE_ASYNC
+#endif
+
+#if defined(BOTAN_RSA_USE_ASYNC)
+ /*
+ * Precompute m.sig_words in the main thread before calling async. Otherwise
+ * the two threads race (during Modular_Reducer::reduce) and while the output
+ * is correct in both threads, helgrind warns.
+ */
+ m.sig_words();
+
+ auto future_j1 = Thread_Pool::global_instance().run([this, &m, &d1_mask]() {
+#endif
+ const BigInt masked_d1 = m_private->get_d1() + (d1_mask * (m_private->get_p() - 1));
+ auto powm_d1_p = monty_precompute(m_private->m_monty_p, m_private->m_mod_p.reduce(m), powm_window);
+ BigInt j1 = monty_execute(*powm_d1_p, masked_d1, m_max_d1_bits);
+
+#if defined(BOTAN_RSA_USE_ASYNC)
+ return j1;
+ });
+#endif
+
+ const BigInt d2_mask(m_blinder.rng(), m_blinding_bits);
+ const BigInt masked_d2 = m_private->get_d2() + (d2_mask * (m_private->get_q() - 1));
+ auto powm_d2_q = monty_precompute(m_private->m_monty_q, m_private->m_mod_q.reduce(m), powm_window);
+ const BigInt j2 = monty_execute(*powm_d2_q, masked_d2, m_max_d2_bits);
+
+#if defined(BOTAN_RSA_USE_ASYNC)
+ BigInt j1 = future_j1.get();
+#endif
+
+ /*
+ * To recover the final value from the CRT representation (j1,j2)
+ * we use Garner's algorithm:
+ * c = q^-1 mod p (this is precomputed)
+ * h = c*(j1-j2) mod p
+ * m = j2 + h*q
+ *
+ * We must avoid leaking if j1 >= j2 or not, as doing so allows deriving
+ * information about the secret prime. Do this by first adding p to j1,
+ * which should ensure the subtraction of j2 does not underflow. But
+ * this may still underflow if p and q are imbalanced in size.
+ */
+
+ j1 = m_private->m_mod_p.multiply(m_private->m_mod_p.reduce((m_private->get_p() + j1) - j2), m_private->get_c());
+ return mul_add(j1, m_private->get_q(), j2);
+ }
+
+ std::shared_ptr<const RSA_Public_Data> m_public;
+ std::shared_ptr<const RSA_Private_Data> m_private;
+
+ // XXX could the blinder starting pair be shared?
+ Blinder m_blinder;
+ const size_t m_blinding_bits;
+ const size_t m_max_d1_bits;
+ const size_t m_max_d2_bits;
+ };
+
+class RSA_Signature_Operation final : public PK_Ops::Signature_with_EMSA,
+ private RSA_Private_Operation
+ {
+ public:
+ size_t max_input_bits() const override { return public_modulus_bits() - 1; }
+
+ size_t signature_length() const override { return public_modulus_bytes(); }
+
+ RSA_Signature_Operation(const RSA_PrivateKey& rsa, const std::string& emsa, RandomNumberGenerator& rng) :
+ PK_Ops::Signature_with_EMSA(emsa),
+ RSA_Private_Operation(rsa, rng)
+ {
+ }
+
+ secure_vector<uint8_t> raw_sign(const uint8_t input[], size_t input_len,
+ RandomNumberGenerator&) override
+ {
+ return raw_op(input, input_len);
+ }
+ };
+
+class RSA_Decryption_Operation final : public PK_Ops::Decryption_with_EME,
+ private RSA_Private_Operation
+ {
+ public:
+
+ RSA_Decryption_Operation(const RSA_PrivateKey& rsa, const std::string& eme, RandomNumberGenerator& rng) :
+ PK_Ops::Decryption_with_EME(eme),
+ RSA_Private_Operation(rsa, rng)
+ {
+ }
+
+ size_t plaintext_length(size_t) const override { return public_modulus_bytes(); }
+
+ secure_vector<uint8_t> raw_decrypt(const uint8_t input[], size_t input_len) override
+ {
+ return raw_op(input, input_len);
+ }
+ };
+
+class RSA_KEM_Decryption_Operation final : public PK_Ops::KEM_Decryption_with_KDF,
+ private RSA_Private_Operation
+ {
+ public:
+
+ RSA_KEM_Decryption_Operation(const RSA_PrivateKey& key,
+ const std::string& kdf,
+ RandomNumberGenerator& rng) :
+ PK_Ops::KEM_Decryption_with_KDF(kdf),
+ RSA_Private_Operation(key, rng)
+ {}
+
+ secure_vector<uint8_t>
+ raw_kem_decrypt(const uint8_t encap_key[], size_t len) override
+ {
+ return raw_op(encap_key, len);
+ }
+ };
+
+/**
+* RSA public (encrypt/verify) operation
+*/
+class RSA_Public_Operation
+ {
+ public:
+ explicit RSA_Public_Operation(const RSA_PublicKey& rsa) :
+ m_public(rsa.public_data())
+ {}
+
+ size_t get_max_input_bits() const
+ {
+ const size_t n_bits = m_public->public_modulus_bits();
+
+ /*
+ Make Coverity happy that n_bits - 1 won't underflow
+
+ 5 bit minimum: smallest possible RSA key is 3*5
+ */
+ BOTAN_ASSERT_NOMSG(n_bits >= 5);
+ return n_bits - 1;
+ }
+
+ protected:
+ BigInt public_op(const BigInt& m) const
+ {
+ if(m >= m_public->get_n())
+ throw Invalid_Argument("RSA public op - input is too large");
+
+ return m_public->public_op(m);
+ }
+
+ size_t public_modulus_bytes() const { return m_public->public_modulus_bytes(); }
+
+ const BigInt& get_n() const { return m_public->get_n(); }
+
+ std::shared_ptr<const RSA_Public_Data> m_public;
+ };
+
+class RSA_Encryption_Operation final : public PK_Ops::Encryption_with_EME,
+ private RSA_Public_Operation
+ {
+ public:
+
+ RSA_Encryption_Operation(const RSA_PublicKey& rsa, const std::string& eme) :
+ PK_Ops::Encryption_with_EME(eme),
+ RSA_Public_Operation(rsa)
+ {
+ }
+
+ size_t ciphertext_length(size_t) const override { return public_modulus_bytes(); }
+
+ size_t max_raw_input_bits() const override { return get_max_input_bits(); }
+
+ secure_vector<uint8_t> raw_encrypt(const uint8_t input[], size_t input_len,
+ RandomNumberGenerator&) override
+ {
+ BigInt input_bn(input, input_len);
+ return BigInt::encode_1363(public_op(input_bn), public_modulus_bytes());
+ }
+ };
+
+class RSA_Verify_Operation final : public PK_Ops::Verification_with_EMSA,
+ private RSA_Public_Operation
+ {
+ public:
+
+ size_t max_input_bits() const override { return get_max_input_bits(); }
+
+ RSA_Verify_Operation(const RSA_PublicKey& rsa, const std::string& emsa) :
+ PK_Ops::Verification_with_EMSA(emsa),
+ RSA_Public_Operation(rsa)
+ {
+ }
+
+ bool with_recovery() const override { return true; }
+
+ secure_vector<uint8_t> verify_mr(const uint8_t input[], size_t input_len) override
+ {
+ BigInt input_bn(input, input_len);
+ return BigInt::encode_locked(public_op(input_bn));
+ }
+ };
+
+class RSA_KEM_Encryption_Operation final : public PK_Ops::KEM_Encryption_with_KDF,
+ private RSA_Public_Operation
+ {
+ public:
+
+ RSA_KEM_Encryption_Operation(const RSA_PublicKey& key,
+ const std::string& kdf) :
+ PK_Ops::KEM_Encryption_with_KDF(kdf),
+ RSA_Public_Operation(key) {}
+
+ private:
+ void raw_kem_encrypt(secure_vector<uint8_t>& out_encapsulated_key,
+ secure_vector<uint8_t>& raw_shared_key,
+ Botan::RandomNumberGenerator& rng) override
+ {
+ const BigInt r = BigInt::random_integer(rng, 1, get_n());
+ const BigInt c = public_op(r);
+
+ out_encapsulated_key = BigInt::encode_locked(c);
+ raw_shared_key = BigInt::encode_locked(r);
+ }
+ };
+
+}
+
+std::unique_ptr<PK_Ops::Encryption>
+RSA_PublicKey::create_encryption_op(RandomNumberGenerator& /*rng*/,
+ const std::string& params,
+ const std::string& provider) const
+ {
+#if defined(BOTAN_HAS_OPENSSL)
+ if(provider == "openssl" || provider.empty())
+ {
+ try
+ {
+ return make_openssl_rsa_enc_op(*this, params);
+ }
+ catch(Exception& e)
+ {
+ /*
+ * If OpenSSL for some reason could not handle this (eg due to OAEP params),
+ * throw if openssl was specifically requested but otherwise just fall back
+ * to the normal version.
+ */
+ if(provider == "openssl")
+ throw Lookup_Error("OpenSSL RSA provider rejected key:" + std::string(e.what()));
+ }
+ }
+#endif
+
+ if(provider == "base" || provider.empty())
+ return std::unique_ptr<PK_Ops::Encryption>(new RSA_Encryption_Operation(*this, params));
+ throw Provider_Not_Found(algo_name(), provider);
+ }
+
+std::unique_ptr<PK_Ops::KEM_Encryption>
+RSA_PublicKey::create_kem_encryption_op(RandomNumberGenerator& /*rng*/,
+ const std::string& params,
+ const std::string& provider) const
+ {
+ if(provider == "base" || provider.empty())
+ return std::unique_ptr<PK_Ops::KEM_Encryption>(new RSA_KEM_Encryption_Operation(*this, params));
+ throw Provider_Not_Found(algo_name(), provider);
+ }
+
+std::unique_ptr<PK_Ops::Verification>
+RSA_PublicKey::create_verification_op(const std::string& params,
+ const std::string& provider) const
+ {
+#if defined(BOTAN_HAS_OPENSSL)
+ if(provider == "openssl" || provider.empty())
+ {
+ std::unique_ptr<PK_Ops::Verification> res = make_openssl_rsa_ver_op(*this, params);
+ if(res)
+ return res;
+ }
+#endif
+
+ if(provider == "base" || provider.empty())
+ return std::unique_ptr<PK_Ops::Verification>(new RSA_Verify_Operation(*this, params));
+
+ throw Provider_Not_Found(algo_name(), provider);
+ }
+
+std::unique_ptr<PK_Ops::Decryption>
+RSA_PrivateKey::create_decryption_op(RandomNumberGenerator& rng,
+ const std::string& params,
+ const std::string& provider) const
+ {
+#if defined(BOTAN_HAS_OPENSSL)
+ if(provider == "openssl" || provider.empty())
+ {
+ try
+ {
+ return make_openssl_rsa_dec_op(*this, params);
+ }
+ catch(Exception& e)
+ {
+ if(provider == "openssl")
+ throw Lookup_Error("OpenSSL RSA provider rejected key:" + std::string(e.what()));
+ }
+ }
+#endif
+
+ if(provider == "base" || provider.empty())
+ return std::unique_ptr<PK_Ops::Decryption>(new RSA_Decryption_Operation(*this, params, rng));
+
+ throw Provider_Not_Found(algo_name(), provider);
+ }
+
+std::unique_ptr<PK_Ops::KEM_Decryption>
+RSA_PrivateKey::create_kem_decryption_op(RandomNumberGenerator& rng,
+ const std::string& params,
+ const std::string& provider) const
+ {
+ if(provider == "base" || provider.empty())
+ return std::unique_ptr<PK_Ops::KEM_Decryption>(new RSA_KEM_Decryption_Operation(*this, params, rng));
+
+ throw Provider_Not_Found(algo_name(), provider);
+ }
+
+std::unique_ptr<PK_Ops::Signature>
+RSA_PrivateKey::create_signature_op(RandomNumberGenerator& rng,
+ const std::string& params,
+ const std::string& provider) const
+ {
+#if defined(BOTAN_HAS_OPENSSL)
+ if(provider == "openssl" || provider.empty())
+ {
+ std::unique_ptr<PK_Ops::Signature> res = make_openssl_rsa_sig_op(*this, params);
+ if(res)
+ return res;
+ }
+#endif
+
+ if(provider == "base" || provider.empty())
+ return std::unique_ptr<PK_Ops::Signature>(new RSA_Signature_Operation(*this, params, rng));
+
+ throw Provider_Not_Found(algo_name(), provider);
+ }
+
+}