summaryrefslogtreecommitdiffstats
path: root/comm/third_party/libgcrypt/cipher/rijndael-ssse3-amd64-asm.S
diff options
context:
space:
mode:
Diffstat (limited to 'comm/third_party/libgcrypt/cipher/rijndael-ssse3-amd64-asm.S')
-rw-r--r--comm/third_party/libgcrypt/cipher/rijndael-ssse3-amd64-asm.S874
1 files changed, 874 insertions, 0 deletions
diff --git a/comm/third_party/libgcrypt/cipher/rijndael-ssse3-amd64-asm.S b/comm/third_party/libgcrypt/cipher/rijndael-ssse3-amd64-asm.S
new file mode 100644
index 0000000000..8124eb2198
--- /dev/null
+++ b/comm/third_party/libgcrypt/cipher/rijndael-ssse3-amd64-asm.S
@@ -0,0 +1,874 @@
+/* SSSE3 vector permutation AES for Libgcrypt
+ * Copyright (C) 2014-2017 Jussi Kivilinna <jussi.kivilinna@iki.fi>
+ *
+ * This file is part of Libgcrypt.
+ *
+ * Libgcrypt is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * Libgcrypt is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, see <http://www.gnu.org/licenses/>.
+ *
+ *
+ * The code is based on the public domain library libvpaes version 0.5
+ * available at http://crypto.stanford.edu/vpaes/ and which carries
+ * this notice:
+ *
+ * libvpaes: constant-time SSSE3 AES encryption and decryption.
+ * version 0.5
+ *
+ * By Mike Hamburg, Stanford University, 2009. Public domain.
+ * I wrote essentially all of this code. I did not write the test
+ * vectors; they are the NIST known answer tests. I hereby release all
+ * the code and documentation here that I wrote into the public domain.
+ *
+ * This is an implementation of AES following my paper,
+ * "Accelerating AES with Vector Permute Instructions
+ * CHES 2009; http://shiftleft.org/papers/vector_aes/
+ */
+
+#if defined(__x86_64__)
+#include <config.h>
+#if defined(HAVE_GCC_INLINE_ASM_SSSE3) && \
+ (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
+ defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
+
+#include "asm-common-amd64.h"
+
+.text
+
+##
+## _gcry_aes_ssse3_enc_preload
+##
+ELF(.type _gcry_aes_ssse3_enc_preload,@function)
+.globl _gcry_aes_ssse3_enc_preload
+_gcry_aes_ssse3_enc_preload:
+ CFI_STARTPROC();
+ ENTER_SYSV_FUNC_PARAMS_0_4
+ lea .Laes_consts(%rip), %rax
+ movdqa (%rax), %xmm9 # 0F
+ movdqa .Lk_inv (%rax), %xmm10 # inv
+ movdqa .Lk_inv+16(%rax), %xmm11 # inva
+ movdqa .Lk_sb1 (%rax), %xmm13 # sb1u
+ movdqa .Lk_sb1+16(%rax), %xmm12 # sb1t
+ movdqa .Lk_sb2 (%rax), %xmm15 # sb2u
+ movdqa .Lk_sb2+16(%rax), %xmm14 # sb2t
+ EXIT_SYSV_FUNC
+ ret
+ CFI_ENDPROC();
+ELF(.size _gcry_aes_ssse3_enc_preload,.-_gcry_aes_ssse3_enc_preload)
+
+##
+## _gcry_aes_ssse3_dec_preload
+##
+ELF(.type _gcry_aes_ssse3_dec_preload,@function)
+.globl _gcry_aes_ssse3_dec_preload
+_gcry_aes_ssse3_dec_preload:
+ CFI_STARTPROC();
+ ENTER_SYSV_FUNC_PARAMS_0_4
+ lea .Laes_consts(%rip), %rax
+ movdqa (%rax), %xmm9 # 0F
+ movdqa .Lk_inv (%rax), %xmm10 # inv
+ movdqa .Lk_inv+16(%rax), %xmm11 # inva
+ movdqa .Lk_dsb9 (%rax), %xmm13 # sb9u
+ movdqa .Lk_dsb9+16(%rax), %xmm12 # sb9t
+ movdqa .Lk_dsbd (%rax), %xmm15 # sbdu
+ movdqa .Lk_dsbb (%rax), %xmm14 # sbbu
+ movdqa .Lk_dsbe (%rax), %xmm8 # sbeu
+ EXIT_SYSV_FUNC
+ ret
+ CFI_ENDPROC();
+ELF(.size _gcry_aes_ssse3_dec_preload,.-_gcry_aes_ssse3_dec_preload)
+
+##
+## Constant-time SSSE3 AES core implementation.
+##
+## By Mike Hamburg (Stanford University), 2009
+## Public domain.
+##
+
+##
+## _aes_encrypt_core
+##
+## AES-encrypt %xmm0.
+##
+## Inputs:
+## %xmm0 = input
+## %xmm9-%xmm15 as in .Laes_preheat
+## (%rdi) = scheduled keys
+## %rsi = nrounds
+##
+## Output in %xmm0
+## Clobbers %xmm1-%xmm4, %r9, %r11, %rax, %rcx, %rdx
+## Preserves %xmm6 - %xmm7 so you get some local vectors
+##
+##
+.align 16
+ELF(.type _gcry_aes_ssse3_encrypt_core,@function)
+.globl _gcry_aes_ssse3_encrypt_core
+_gcry_aes_ssse3_encrypt_core:
+_aes_encrypt_core:
+ CFI_STARTPROC();
+ ENTER_SYSV_FUNC_PARAMS_0_4
+ mov %rdi, %rdx
+ leaq -1(%rsi), %rax
+ lea .Laes_consts(%rip), %rcx
+ leaq .Lk_mc_backward(%rcx), %rdi
+ mov $16, %rsi
+ movdqa .Lk_ipt (%rcx), %xmm2 # iptlo
+ movdqa %xmm9, %xmm1
+ pandn %xmm0, %xmm1
+ psrld $4, %xmm1
+ pand %xmm9, %xmm0
+ pshufb %xmm0, %xmm2
+ movdqa .Lk_ipt+16(%rcx), %xmm0 # ipthi
+ pshufb %xmm1, %xmm0
+ pxor (%rdx),%xmm2
+ pxor %xmm2, %xmm0
+ add $16, %rdx
+ jmp .Laes_entry
+
+.align 8
+.Laes_loop:
+ # middle of middle round
+ movdqa %xmm13, %xmm4 # 4 : sb1u
+ pshufb %xmm2, %xmm4 # 4 = sb1u
+ pxor (%rdx), %xmm4 # 4 = sb1u + k
+ movdqa %xmm12, %xmm0 # 0 : sb1t
+ pshufb %xmm3, %xmm0 # 0 = sb1t
+ pxor %xmm4, %xmm0 # 0 = A
+ movdqa %xmm15, %xmm4 # 4 : sb2u
+ pshufb %xmm2, %xmm4 # 4 = sb2u
+ movdqa .Lk_mc_forward-.Lk_mc_backward(%rsi,%rdi), %xmm1
+ movdqa %xmm14, %xmm2 # 2 : sb2t
+ pshufb %xmm3, %xmm2 # 2 = sb2t
+ pxor %xmm4, %xmm2 # 2 = 2A
+ movdqa %xmm0, %xmm3 # 3 = A
+ pshufb %xmm1, %xmm0 # 0 = B
+ pxor %xmm2, %xmm0 # 0 = 2A+B
+ pshufb (%rsi,%rdi), %xmm3 # 3 = D
+ lea 16(%esi),%esi # next mc
+ pxor %xmm0, %xmm3 # 3 = 2A+B+D
+ lea 16(%rdx),%rdx # next key
+ pshufb %xmm1, %xmm0 # 0 = 2B+C
+ pxor %xmm3, %xmm0 # 0 = 2A+3B+C+D
+ and $48, %rsi # ... mod 4
+ dec %rax # nr--
+
+.Laes_entry:
+ # top of round
+ movdqa %xmm9, %xmm1 # 1 : i
+ pandn %xmm0, %xmm1 # 1 = i<<4
+ psrld $4, %xmm1 # 1 = i
+ pand %xmm9, %xmm0 # 0 = k
+ movdqa %xmm11, %xmm2 # 2 : a/k
+ pshufb %xmm0, %xmm2 # 2 = a/k
+ pxor %xmm1, %xmm0 # 0 = j
+ movdqa %xmm10, %xmm3 # 3 : 1/i
+ pshufb %xmm1, %xmm3 # 3 = 1/i
+ pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
+ movdqa %xmm10, %xmm4 # 4 : 1/j
+ pshufb %xmm0, %xmm4 # 4 = 1/j
+ pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
+ movdqa %xmm10, %xmm2 # 2 : 1/iak
+ pshufb %xmm3, %xmm2 # 2 = 1/iak
+ pxor %xmm0, %xmm2 # 2 = io
+ movdqa %xmm10, %xmm3 # 3 : 1/jak
+ pshufb %xmm4, %xmm3 # 3 = 1/jak
+ pxor %xmm1, %xmm3 # 3 = jo
+ jnz .Laes_loop
+
+ # middle of last round
+ movdqa .Lk_sbo(%rcx), %xmm4 # 3 : sbou
+ pshufb %xmm2, %xmm4 # 4 = sbou
+ pxor (%rdx), %xmm4 # 4 = sb1u + k
+ movdqa .Lk_sbo+16(%rcx), %xmm0 # 0 : sbot
+ pshufb %xmm3, %xmm0 # 0 = sb1t
+ pxor %xmm4, %xmm0 # 0 = A
+ pshufb .Lk_sr(%rsi,%rcx), %xmm0
+ EXIT_SYSV_FUNC
+ ret
+ CFI_ENDPROC();
+ELF(.size _aes_encrypt_core,.-_aes_encrypt_core)
+
+##
+## Decryption core
+##
+## Same API as encryption core.
+##
+.align 16
+.globl _gcry_aes_ssse3_decrypt_core
+ELF(.type _gcry_aes_ssse3_decrypt_core,@function)
+_gcry_aes_ssse3_decrypt_core:
+_aes_decrypt_core:
+ CFI_STARTPROC();
+ ENTER_SYSV_FUNC_PARAMS_0_4
+ mov %rdi, %rdx
+ lea .Laes_consts(%rip), %rcx
+ subl $1, %esi
+ movl %esi, %eax
+ shll $4, %esi
+ xorl $48, %esi
+ andl $48, %esi
+ movdqa .Lk_dipt (%rcx), %xmm2 # iptlo
+ movdqa %xmm9, %xmm1
+ pandn %xmm0, %xmm1
+ psrld $4, %xmm1
+ pand %xmm9, %xmm0
+ pshufb %xmm0, %xmm2
+ movdqa .Lk_dipt+16(%rcx), %xmm0 # ipthi
+ pshufb %xmm1, %xmm0
+ pxor (%rdx), %xmm2
+ pxor %xmm2, %xmm0
+ movdqa .Lk_mc_forward+48(%rcx), %xmm5
+ lea 16(%rdx), %rdx
+ neg %rax
+ jmp .Laes_dec_entry
+
+.align 16
+.Laes_dec_loop:
+##
+## Inverse mix columns
+##
+ movdqa %xmm13, %xmm4 # 4 : sb9u
+ pshufb %xmm2, %xmm4 # 4 = sb9u
+ pxor (%rdx), %xmm4
+ movdqa %xmm12, %xmm0 # 0 : sb9t
+ pshufb %xmm3, %xmm0 # 0 = sb9t
+ movdqa .Lk_dsbd+16(%rcx),%xmm1 # 1 : sbdt
+ pxor %xmm4, %xmm0 # 0 = ch
+ lea 16(%rdx), %rdx # next round key
+
+ pshufb %xmm5, %xmm0 # MC ch
+ movdqa %xmm15, %xmm4 # 4 : sbdu
+ pshufb %xmm2, %xmm4 # 4 = sbdu
+ pxor %xmm0, %xmm4 # 4 = ch
+ pshufb %xmm3, %xmm1 # 1 = sbdt
+ pxor %xmm4, %xmm1 # 1 = ch
+
+ pshufb %xmm5, %xmm1 # MC ch
+ movdqa %xmm14, %xmm4 # 4 : sbbu
+ pshufb %xmm2, %xmm4 # 4 = sbbu
+ inc %rax # nr--
+ pxor %xmm1, %xmm4 # 4 = ch
+ movdqa .Lk_dsbb+16(%rcx),%xmm0 # 0 : sbbt
+ pshufb %xmm3, %xmm0 # 0 = sbbt
+ pxor %xmm4, %xmm0 # 0 = ch
+
+ pshufb %xmm5, %xmm0 # MC ch
+ movdqa %xmm8, %xmm4 # 4 : sbeu
+ pshufb %xmm2, %xmm4 # 4 = sbeu
+ pshufd $0x93, %xmm5, %xmm5
+ pxor %xmm0, %xmm4 # 4 = ch
+ movdqa .Lk_dsbe+16(%rcx),%xmm0 # 0 : sbet
+ pshufb %xmm3, %xmm0 # 0 = sbet
+ pxor %xmm4, %xmm0 # 0 = ch
+
+.Laes_dec_entry:
+ # top of round
+ movdqa %xmm9, %xmm1 # 1 : i
+ pandn %xmm0, %xmm1 # 1 = i<<4
+ psrld $4, %xmm1 # 1 = i
+ pand %xmm9, %xmm0 # 0 = k
+ movdqa %xmm11, %xmm2 # 2 : a/k
+ pshufb %xmm0, %xmm2 # 2 = a/k
+ pxor %xmm1, %xmm0 # 0 = j
+ movdqa %xmm10, %xmm3 # 3 : 1/i
+ pshufb %xmm1, %xmm3 # 3 = 1/i
+ pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
+ movdqa %xmm10, %xmm4 # 4 : 1/j
+ pshufb %xmm0, %xmm4 # 4 = 1/j
+ pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
+ movdqa %xmm10, %xmm2 # 2 : 1/iak
+ pshufb %xmm3, %xmm2 # 2 = 1/iak
+ pxor %xmm0, %xmm2 # 2 = io
+ movdqa %xmm10, %xmm3 # 3 : 1/jak
+ pshufb %xmm4, %xmm3 # 3 = 1/jak
+ pxor %xmm1, %xmm3 # 3 = jo
+ jnz .Laes_dec_loop
+
+ # middle of last round
+ movdqa .Lk_dsbo(%rcx), %xmm4 # 3 : sbou
+ pshufb %xmm2, %xmm4 # 4 = sbou
+ pxor (%rdx), %xmm4 # 4 = sb1u + k
+ movdqa .Lk_dsbo+16(%rcx), %xmm0 # 0 : sbot
+ pshufb %xmm3, %xmm0 # 0 = sb1t
+ pxor %xmm4, %xmm0 # 0 = A
+ pshufb .Lk_sr(%rsi,%rcx), %xmm0
+ EXIT_SYSV_FUNC
+ ret
+ CFI_ENDPROC();
+ELF(.size _aes_decrypt_core,.-_aes_decrypt_core)
+
+########################################################
+## ##
+## AES key schedule ##
+## ##
+########################################################
+
+.align 16
+.globl _gcry_aes_ssse3_schedule_core
+ELF(.type _gcry_aes_ssse3_schedule_core,@function)
+_gcry_aes_ssse3_schedule_core:
+_aes_schedule_core:
+ # rdi = key
+ # rsi = size in bits
+ # rdx = buffer
+ # rcx = direction. 0=encrypt, 1=decrypt
+ # r8 = rotoffs
+ CFI_STARTPROC();
+ ENTER_SYSV_FUNC_PARAMS_5
+
+ # load the tables
+ lea .Laes_consts(%rip), %r10
+ movdqa (%r10), %xmm9 # 0F
+ movdqa .Lk_inv (%r10), %xmm10 # inv
+ movdqa .Lk_inv+16(%r10), %xmm11 # inva
+ movdqa .Lk_sb1 (%r10), %xmm13 # sb1u
+ movdqa .Lk_sb1+16(%r10), %xmm12 # sb1t
+ movdqa .Lk_sb2 (%r10), %xmm15 # sb2u
+ movdqa .Lk_sb2+16(%r10), %xmm14 # sb2t
+
+ movdqa .Lk_rcon(%r10), %xmm8 # load rcon
+ movdqu (%rdi), %xmm0 # load key (unaligned)
+
+ # input transform
+ movdqu %xmm0, %xmm3
+ lea .Lk_ipt(%r10), %r11
+ call .Laes_schedule_transform
+ movdqu %xmm0, %xmm7
+
+ test %rcx, %rcx
+ jnz .Laes_schedule_am_decrypting
+
+ # encrypting, output zeroth round key after transform
+ movdqa %xmm0, (%rdx)
+ jmp .Laes_schedule_go
+
+.Laes_schedule_am_decrypting:
+ # decrypting, output zeroth round key after shiftrows
+ pshufb .Lk_sr(%r8,%r10),%xmm3
+ movdqa %xmm3, (%rdx)
+ xor $48, %r8
+
+.Laes_schedule_go:
+ cmp $192, %rsi
+ je .Laes_schedule_192
+ cmp $256, %rsi
+ je .Laes_schedule_256
+ # 128: fall though
+
+##
+## .Laes_schedule_128
+##
+## 128-bit specific part of key schedule.
+##
+## This schedule is really simple, because all its parts
+## are accomplished by the subroutines.
+##
+.Laes_schedule_128:
+ mov $10, %rsi
+
+.Laes_schedule_128_L:
+ call .Laes_schedule_round
+ dec %rsi
+ jz .Laes_schedule_mangle_last
+ call .Laes_schedule_mangle # write output
+ jmp .Laes_schedule_128_L
+
+##
+## .Laes_schedule_192
+##
+## 192-bit specific part of key schedule.
+##
+## The main body of this schedule is the same as the 128-bit
+## schedule, but with more smearing. The long, high side is
+## stored in %xmm7 as before, and the short, low side is in
+## the high bits of %xmm6.
+##
+## This schedule is somewhat nastier, however, because each
+## round produces 192 bits of key material, or 1.5 round keys.
+## Therefore, on each cycle we do 2 rounds and produce 3 round
+## keys.
+##
+.Laes_schedule_192:
+ movdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
+ call .Laes_schedule_transform # input transform
+ pshufd $0x0E, %xmm0, %xmm6
+ pslldq $8, %xmm6 # clobber low side with zeros
+ mov $4, %rsi
+
+.Laes_schedule_192_L:
+ call .Laes_schedule_round
+ palignr $8,%xmm6,%xmm0
+ call .Laes_schedule_mangle # save key n
+ call .Laes_schedule_192_smear
+ call .Laes_schedule_mangle # save key n+1
+ call .Laes_schedule_round
+ dec %rsi
+ jz .Laes_schedule_mangle_last
+ call .Laes_schedule_mangle # save key n+2
+ call .Laes_schedule_192_smear
+ jmp .Laes_schedule_192_L
+
+##
+## .Laes_schedule_192_smear
+##
+## Smear the short, low side in the 192-bit key schedule.
+##
+## Inputs:
+## %xmm7: high side, b a x y
+## %xmm6: low side, d c 0 0
+## %xmm13: 0
+##
+## Outputs:
+## %xmm6: b+c+d b+c 0 0
+## %xmm0: b+c+d b+c b a
+##
+.Laes_schedule_192_smear:
+ pshufd $0x80, %xmm6, %xmm0 # d c 0 0 -> c 0 0 0
+ pxor %xmm0, %xmm6 # -> c+d c 0 0
+ pshufd $0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
+ pxor %xmm6, %xmm0 # -> b+c+d b+c b a
+ pshufd $0x0E, %xmm0, %xmm6
+ pslldq $8, %xmm6 # clobber low side with zeros
+ ret
+
+##
+## .Laes_schedule_256
+##
+## 256-bit specific part of key schedule.
+##
+## The structure here is very similar to the 128-bit
+## schedule, but with an additional 'low side' in
+## %xmm6. The low side's rounds are the same as the
+## high side's, except no rcon and no rotation.
+##
+.Laes_schedule_256:
+ movdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
+ call .Laes_schedule_transform # input transform
+ mov $7, %rsi
+
+.Laes_schedule_256_L:
+ call .Laes_schedule_mangle # output low result
+ movdqa %xmm0, %xmm6 # save cur_lo in xmm6
+
+ # high round
+ call .Laes_schedule_round
+ dec %rsi
+ jz .Laes_schedule_mangle_last
+ call .Laes_schedule_mangle
+
+ # low round. swap xmm7 and xmm6
+ pshufd $0xFF, %xmm0, %xmm0
+ movdqa %xmm7, %xmm5
+ movdqa %xmm6, %xmm7
+ call .Laes_schedule_low_round
+ movdqa %xmm5, %xmm7
+
+ jmp .Laes_schedule_256_L
+
+##
+## .Laes_schedule_round
+##
+## Runs one main round of the key schedule on %xmm0, %xmm7
+##
+## Specifically, runs subbytes on the high dword of %xmm0
+## then rotates it by one byte and xors into the low dword of
+## %xmm7.
+##
+## Adds rcon from low byte of %xmm8, then rotates %xmm8 for
+## next rcon.
+##
+## Smears the dwords of %xmm7 by xoring the low into the
+## second low, result into third, result into highest.
+##
+## Returns results in %xmm7 = %xmm0.
+## Clobbers %xmm1-%xmm4, %r11.
+##
+.Laes_schedule_round:
+ # extract rcon from xmm8
+ pxor %xmm1, %xmm1
+ palignr $15, %xmm8, %xmm1
+ palignr $15, %xmm8, %xmm8
+ pxor %xmm1, %xmm7
+
+ # rotate
+ pshufd $0xFF, %xmm0, %xmm0
+ palignr $1, %xmm0, %xmm0
+
+ # fall through...
+
+ # low round: same as high round, but no rotation and no rcon.
+.Laes_schedule_low_round:
+ # smear xmm7
+ movdqa %xmm7, %xmm1
+ pslldq $4, %xmm7
+ pxor %xmm1, %xmm7
+ movdqa %xmm7, %xmm1
+ pslldq $8, %xmm7
+ pxor %xmm1, %xmm7
+ pxor .Lk_s63(%r10), %xmm7
+
+ # subbytes
+ movdqa %xmm9, %xmm1
+ pandn %xmm0, %xmm1
+ psrld $4, %xmm1 # 1 = i
+ pand %xmm9, %xmm0 # 0 = k
+ movdqa %xmm11, %xmm2 # 2 : a/k
+ pshufb %xmm0, %xmm2 # 2 = a/k
+ pxor %xmm1, %xmm0 # 0 = j
+ movdqa %xmm10, %xmm3 # 3 : 1/i
+ pshufb %xmm1, %xmm3 # 3 = 1/i
+ pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
+ movdqa %xmm10, %xmm4 # 4 : 1/j
+ pshufb %xmm0, %xmm4 # 4 = 1/j
+ pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
+ movdqa %xmm10, %xmm2 # 2 : 1/iak
+ pshufb %xmm3, %xmm2 # 2 = 1/iak
+ pxor %xmm0, %xmm2 # 2 = io
+ movdqa %xmm10, %xmm3 # 3 : 1/jak
+ pshufb %xmm4, %xmm3 # 3 = 1/jak
+ pxor %xmm1, %xmm3 # 3 = jo
+ movdqa .Lk_sb1(%r10), %xmm4 # 4 : sbou
+ pshufb %xmm2, %xmm4 # 4 = sbou
+ movdqa .Lk_sb1+16(%r10), %xmm0 # 0 : sbot
+ pshufb %xmm3, %xmm0 # 0 = sb1t
+ pxor %xmm4, %xmm0 # 0 = sbox output
+
+ # add in smeared stuff
+ pxor %xmm7, %xmm0
+ movdqa %xmm0, %xmm7
+ ret
+
+##
+## .Laes_schedule_transform
+##
+## Linear-transform %xmm0 according to tables at (%r11)
+##
+## Requires that %xmm9 = 0x0F0F... as in preheat
+## Output in %xmm0
+## Clobbers %xmm1, %xmm2
+##
+.Laes_schedule_transform:
+ movdqa %xmm9, %xmm1
+ pandn %xmm0, %xmm1
+ psrld $4, %xmm1
+ pand %xmm9, %xmm0
+ movdqa (%r11), %xmm2 # lo
+ pshufb %xmm0, %xmm2
+ movdqa 16(%r11), %xmm0 # hi
+ pshufb %xmm1, %xmm0
+ pxor %xmm2, %xmm0
+ ret
+
+##
+## .Laes_schedule_mangle
+##
+## Mangle xmm0 from (basis-transformed) standard version
+## to our version.
+##
+## On encrypt,
+## xor with 0x63
+## multiply by circulant 0,1,1,1
+## apply shiftrows transform
+##
+## On decrypt,
+## xor with 0x63
+## multiply by 'inverse mixcolumns' circulant E,B,D,9
+## deskew
+## apply shiftrows transform
+##
+##
+## Writes out to (%rdx), and increments or decrements it
+## Keeps track of round number mod 4 in %r8
+## Preserves xmm0
+## Clobbers xmm1-xmm5
+##
+.Laes_schedule_mangle:
+ movdqa %xmm0, %xmm4 # save xmm0 for later
+ movdqa .Lk_mc_forward(%r10),%xmm5
+ test %rcx, %rcx
+ jnz .Laes_schedule_mangle_dec
+
+ # encrypting
+ add $16, %rdx
+ pxor .Lk_s63(%r10),%xmm4
+ pshufb %xmm5, %xmm4
+ movdqa %xmm4, %xmm3
+ pshufb %xmm5, %xmm4
+ pxor %xmm4, %xmm3
+ pshufb %xmm5, %xmm4
+ pxor %xmm4, %xmm3
+
+ jmp .Laes_schedule_mangle_both
+
+.Laes_schedule_mangle_dec:
+ lea .Lk_dks_1(%r10), %r11 # first table: *9
+ call .Laes_schedule_transform
+ movdqa %xmm0, %xmm3
+ pshufb %xmm5, %xmm3
+
+ add $32, %r11 # next table: *B
+ call .Laes_schedule_transform
+ pxor %xmm0, %xmm3
+ pshufb %xmm5, %xmm3
+
+ add $32, %r11 # next table: *D
+ call .Laes_schedule_transform
+ pxor %xmm0, %xmm3
+ pshufb %xmm5, %xmm3
+
+ add $32, %r11 # next table: *E
+ call .Laes_schedule_transform
+ pxor %xmm0, %xmm3
+ pshufb %xmm5, %xmm3
+
+ movdqa %xmm4, %xmm0 # restore %xmm0
+ add $-16, %rdx
+
+.Laes_schedule_mangle_both:
+ pshufb .Lk_sr(%r8,%r10),%xmm3
+ add $-16, %r8
+ and $48, %r8
+ movdqa %xmm3, (%rdx)
+ ret
+
+##
+## .Laes_schedule_mangle_last
+##
+## Mangler for last round of key schedule
+## Mangles %xmm0
+## when encrypting, outputs out(%xmm0) ^ 63
+## when decrypting, outputs unskew(%xmm0)
+##
+## Always called right before return... jumps to cleanup and exits
+##
+.Laes_schedule_mangle_last:
+ # schedule last round key from xmm0
+ lea .Lk_deskew(%r10),%r11 # prepare to deskew
+ test %rcx, %rcx
+ jnz .Laes_schedule_mangle_last_dec
+
+ # encrypting
+ pshufb .Lk_sr(%r8,%r10),%xmm0 # output permute
+ lea .Lk_opt(%r10), %r11 # prepare to output transform
+ add $32, %rdx
+
+.Laes_schedule_mangle_last_dec:
+ add $-16, %rdx
+ pxor .Lk_s63(%r10), %xmm0
+ call .Laes_schedule_transform # output transform
+ movdqa %xmm0, (%rdx) # save last key
+
+ #_aes_cleanup
+ pxor %xmm0, %xmm0
+ pxor %xmm1, %xmm1
+ pxor %xmm2, %xmm2
+ pxor %xmm3, %xmm3
+ pxor %xmm4, %xmm4
+ pxor %xmm5, %xmm5
+ pxor %xmm6, %xmm6
+ pxor %xmm7, %xmm7
+ pxor %xmm8, %xmm8
+ EXIT_SYSV_FUNC
+ ret
+ CFI_ENDPROC();
+ELF(.size _gcry_aes_ssse3_schedule_core,.-_gcry_aes_ssse3_schedule_core)
+
+########################################################
+## ##
+## Constants ##
+## ##
+########################################################
+
+.align 16
+ELF(.type _aes_consts,@object)
+.Laes_consts:
+_aes_consts:
+ # s0F
+ .Lk_s0F = .-.Laes_consts
+ .quad 0x0F0F0F0F0F0F0F0F
+ .quad 0x0F0F0F0F0F0F0F0F
+
+ # input transform (lo, hi)
+ .Lk_ipt = .-.Laes_consts
+ .quad 0xC2B2E8985A2A7000
+ .quad 0xCABAE09052227808
+ .quad 0x4C01307D317C4D00
+ .quad 0xCD80B1FCB0FDCC81
+
+ # inv, inva
+ .Lk_inv = .-.Laes_consts
+ .quad 0x0E05060F0D080180
+ .quad 0x040703090A0B0C02
+ .quad 0x01040A060F0B0780
+ .quad 0x030D0E0C02050809
+
+ # sb1u, sb1t
+ .Lk_sb1 = .-.Laes_consts
+ .quad 0xB19BE18FCB503E00
+ .quad 0xA5DF7A6E142AF544
+ .quad 0x3618D415FAE22300
+ .quad 0x3BF7CCC10D2ED9EF
+
+
+ # sb2u, sb2t
+ .Lk_sb2 = .-.Laes_consts
+ .quad 0xE27A93C60B712400
+ .quad 0x5EB7E955BC982FCD
+ .quad 0x69EB88400AE12900
+ .quad 0xC2A163C8AB82234A
+
+ # sbou, sbot
+ .Lk_sbo = .-.Laes_consts
+ .quad 0xD0D26D176FBDC700
+ .quad 0x15AABF7AC502A878
+ .quad 0xCFE474A55FBB6A00
+ .quad 0x8E1E90D1412B35FA
+
+ # mc_forward
+ .Lk_mc_forward = .-.Laes_consts
+ .quad 0x0407060500030201
+ .quad 0x0C0F0E0D080B0A09
+ .quad 0x080B0A0904070605
+ .quad 0x000302010C0F0E0D
+ .quad 0x0C0F0E0D080B0A09
+ .quad 0x0407060500030201
+ .quad 0x000302010C0F0E0D
+ .quad 0x080B0A0904070605
+
+ # mc_backward
+ .Lk_mc_backward = .-.Laes_consts
+ .quad 0x0605040702010003
+ .quad 0x0E0D0C0F0A09080B
+ .quad 0x020100030E0D0C0F
+ .quad 0x0A09080B06050407
+ .quad 0x0E0D0C0F0A09080B
+ .quad 0x0605040702010003
+ .quad 0x0A09080B06050407
+ .quad 0x020100030E0D0C0F
+
+ # sr
+ .Lk_sr = .-.Laes_consts
+ .quad 0x0706050403020100
+ .quad 0x0F0E0D0C0B0A0908
+ .quad 0x030E09040F0A0500
+ .quad 0x0B06010C07020D08
+ .quad 0x0F060D040B020900
+ .quad 0x070E050C030A0108
+ .quad 0x0B0E0104070A0D00
+ .quad 0x0306090C0F020508
+
+ # rcon
+ .Lk_rcon = .-.Laes_consts
+ .quad 0x1F8391B9AF9DEEB6
+ .quad 0x702A98084D7C7D81
+
+ # s63: all equal to 0x63 transformed
+ .Lk_s63 = .-.Laes_consts
+ .quad 0x5B5B5B5B5B5B5B5B
+ .quad 0x5B5B5B5B5B5B5B5B
+
+ # output transform
+ .Lk_opt = .-.Laes_consts
+ .quad 0xFF9F4929D6B66000
+ .quad 0xF7974121DEBE6808
+ .quad 0x01EDBD5150BCEC00
+ .quad 0xE10D5DB1B05C0CE0
+
+ # deskew tables: inverts the sbox's 'skew'
+ .Lk_deskew = .-.Laes_consts
+ .quad 0x07E4A34047A4E300
+ .quad 0x1DFEB95A5DBEF91A
+ .quad 0x5F36B5DC83EA6900
+ .quad 0x2841C2ABF49D1E77
+
+##
+## Decryption stuff
+## Key schedule constants
+##
+ # decryption key schedule: x -> invskew x*9
+ .Lk_dks_1 = .-.Laes_consts
+ .quad 0xB6116FC87ED9A700
+ .quad 0x4AED933482255BFC
+ .quad 0x4576516227143300
+ .quad 0x8BB89FACE9DAFDCE
+
+ # decryption key schedule: invskew x*9 -> invskew x*D
+ .Lk_dks_2 = .-.Laes_consts
+ .quad 0x27438FEBCCA86400
+ .quad 0x4622EE8AADC90561
+ .quad 0x815C13CE4F92DD00
+ .quad 0x73AEE13CBD602FF2
+
+ # decryption key schedule: invskew x*D -> invskew x*B
+ .Lk_dks_3 = .-.Laes_consts
+ .quad 0x03C4C50201C6C700
+ .quad 0xF83F3EF9FA3D3CFB
+ .quad 0xEE1921D638CFF700
+ .quad 0xA5526A9D7384BC4B
+
+ # decryption key schedule: invskew x*B -> invskew x*E + 0x63
+ .Lk_dks_4 = .-.Laes_consts
+ .quad 0xE3C390B053732000
+ .quad 0xA080D3F310306343
+ .quad 0xA0CA214B036982E8
+ .quad 0x2F45AEC48CE60D67
+
+##
+## Decryption stuff
+## Round function constants
+##
+ # decryption input transform
+ .Lk_dipt = .-.Laes_consts
+ .quad 0x0F505B040B545F00
+ .quad 0x154A411E114E451A
+ .quad 0x86E383E660056500
+ .quad 0x12771772F491F194
+
+ # decryption sbox output *9*u, *9*t
+ .Lk_dsb9 = .-.Laes_consts
+ .quad 0x851C03539A86D600
+ .quad 0xCAD51F504F994CC9
+ .quad 0xC03B1789ECD74900
+ .quad 0x725E2C9EB2FBA565
+
+ # decryption sbox output *D*u, *D*t
+ .Lk_dsbd = .-.Laes_consts
+ .quad 0x7D57CCDFE6B1A200
+ .quad 0xF56E9B13882A4439
+ .quad 0x3CE2FAF724C6CB00
+ .quad 0x2931180D15DEEFD3
+
+ # decryption sbox output *B*u, *B*t
+ .Lk_dsbb = .-.Laes_consts
+ .quad 0xD022649296B44200
+ .quad 0x602646F6B0F2D404
+ .quad 0xC19498A6CD596700
+ .quad 0xF3FF0C3E3255AA6B
+
+ # decryption sbox output *E*u, *E*t
+ .Lk_dsbe = .-.Laes_consts
+ .quad 0x46F2929626D4D000
+ .quad 0x2242600464B4F6B0
+ .quad 0x0C55A6CDFFAAC100
+ .quad 0x9467F36B98593E32
+
+ # decryption sbox final output
+ .Lk_dsbo = .-.Laes_consts
+ .quad 0x1387EA537EF94000
+ .quad 0xC7AA6DB9D4943E2D
+ .quad 0x12D7560F93441D00
+ .quad 0xCA4B8159D8C58E9C
+ELF(.size _aes_consts,.-_aes_consts)
+
+#endif
+#endif