summaryrefslogtreecommitdiffstats
path: root/dom/media/webaudio/blink/IIRFilter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'dom/media/webaudio/blink/IIRFilter.cpp')
-rw-r--r--dom/media/webaudio/blink/IIRFilter.cpp178
1 files changed, 178 insertions, 0 deletions
diff --git a/dom/media/webaudio/blink/IIRFilter.cpp b/dom/media/webaudio/blink/IIRFilter.cpp
new file mode 100644
index 0000000000..8eaa461bc3
--- /dev/null
+++ b/dom/media/webaudio/blink/IIRFilter.cpp
@@ -0,0 +1,178 @@
+// Copyright 2016 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "IIRFilter.h"
+
+#include "DenormalDisabler.h"
+#include "mozilla/FloatingPoint.h"
+
+#include <mozilla/Assertions.h>
+
+#include <complex>
+
+namespace blink {
+
+// The length of the memory buffers for the IIR filter. This MUST be a power of
+// two and must be greater than the possible length of the filter coefficients.
+const int kBufferLength = 32;
+static_assert(kBufferLength >= IIRFilter::kMaxOrder + 1,
+ "Internal IIR buffer length must be greater than maximum IIR "
+ "Filter order.");
+
+IIRFilter::IIRFilter(const AudioDoubleArray* feedforwardCoef,
+ const AudioDoubleArray* feedbackCoef)
+ : m_bufferIndex(0),
+ m_feedback(feedbackCoef),
+ m_feedforward(feedforwardCoef) {
+ m_xBuffer.SetLength(kBufferLength);
+ m_yBuffer.SetLength(kBufferLength);
+ reset();
+}
+
+IIRFilter::~IIRFilter() = default;
+
+void IIRFilter::reset() {
+ memset(m_xBuffer.Elements(), 0, m_xBuffer.Length() * sizeof(double));
+ memset(m_yBuffer.Elements(), 0, m_yBuffer.Length() * sizeof(double));
+}
+
+static std::complex<double> evaluatePolynomial(const double* coef,
+ std::complex<double> z,
+ int order) {
+ // Use Horner's method to evaluate the polynomial P(z) = sum(coef[k]*z^k, k,
+ // 0, order);
+ std::complex<double> result = 0;
+
+ for (int k = order; k >= 0; --k)
+ result = result * z + std::complex<double>(coef[k]);
+
+ return result;
+}
+
+void IIRFilter::process(const float* sourceP, float* destP,
+ size_t framesToProcess) {
+ // Compute
+ //
+ // y[n] = sum(b[k] * x[n - k], k = 0, M) - sum(a[k] * y[n - k], k = 1, N)
+ //
+ // where b[k] are the feedforward coefficients and a[k] are the feedback
+ // coefficients of the filter.
+
+ // This is a Direct Form I implementation of an IIR Filter. Should we
+ // consider doing a different implementation such as Transposed Direct Form
+ // II?
+ const double* feedback = m_feedback->Elements();
+ const double* feedforward = m_feedforward->Elements();
+
+ MOZ_ASSERT(feedback);
+ MOZ_ASSERT(feedforward);
+
+ // Sanity check to see if the feedback coefficients have been scaled
+ // appropriately. It must be EXACTLY 1!
+ MOZ_ASSERT(feedback[0] == 1);
+
+ int feedbackLength = m_feedback->Length();
+ int feedforwardLength = m_feedforward->Length();
+ int minLength = std::min(feedbackLength, feedforwardLength);
+
+ double* xBuffer = m_xBuffer.Elements();
+ double* yBuffer = m_yBuffer.Elements();
+
+ for (size_t n = 0; n < framesToProcess; ++n) {
+ // To help minimize roundoff, we compute using double's, even though the
+ // filter coefficients only have single precision values.
+ double yn = feedforward[0] * sourceP[n];
+
+ // Run both the feedforward and feedback terms together, when possible.
+ for (int k = 1; k < minLength; ++k) {
+ int n = (m_bufferIndex - k) & (kBufferLength - 1);
+ yn += feedforward[k] * xBuffer[n];
+ yn -= feedback[k] * yBuffer[n];
+ }
+
+ // Handle any remaining feedforward or feedback terms.
+ for (int k = minLength; k < feedforwardLength; ++k)
+ yn += feedforward[k] * xBuffer[(m_bufferIndex - k) & (kBufferLength - 1)];
+
+ for (int k = minLength; k < feedbackLength; ++k)
+ yn -= feedback[k] * yBuffer[(m_bufferIndex - k) & (kBufferLength - 1)];
+
+ // Save the current input and output values in the memory buffers for the
+ // next output.
+ m_xBuffer[m_bufferIndex] = sourceP[n];
+ m_yBuffer[m_bufferIndex] = yn;
+
+ m_bufferIndex = (m_bufferIndex + 1) & (kBufferLength - 1);
+
+ // Avoid introducing a stream of subnormals
+ destP[n] = WebCore::DenormalDisabler::flushDenormalFloatToZero(yn);
+ MOZ_ASSERT(destP[n] == 0.0 || std::fabs(destP[n]) > FLT_MIN ||
+ std::isnan(destP[n]),
+ "output should not be subnormal, but can be NaN");
+ }
+}
+
+void IIRFilter::getFrequencyResponse(int nFrequencies, const float* frequency,
+ float* magResponse, float* phaseResponse) {
+ // Evaluate the z-transform of the filter at the given normalized frequencies
+ // from 0 to 1. (One corresponds to the Nyquist frequency.)
+ //
+ // The z-tranform of the filter is
+ //
+ // H(z) = sum(b[k]*z^(-k), k, 0, M) / sum(a[k]*z^(-k), k, 0, N);
+ //
+ // The desired frequency response is H(exp(j*omega)), where omega is in
+ // [0, 1).
+ //
+ // Let P(x) = sum(c[k]*x^k, k, 0, P) be a polynomial of order P. Then each of
+ // the sums in H(z) is equivalent to evaluating a polynomial at the point 1/z.
+
+ for (int k = 0; k < nFrequencies; ++k) {
+ // zRecip = 1/z = exp(-j*frequency)
+ double omega = -M_PI * frequency[k];
+ std::complex<double> zRecip = std::complex<double>(cos(omega), sin(omega));
+
+ std::complex<double> numerator = evaluatePolynomial(
+ m_feedforward->Elements(), zRecip, m_feedforward->Length() - 1);
+ std::complex<double> denominator = evaluatePolynomial(
+ m_feedback->Elements(), zRecip, m_feedback->Length() - 1);
+ // Strangely enough, using complex division:
+ // e.g. Complex response = numerator / denominator;
+ // fails on our test machines, yielding infinities and NaNs, so we do
+ // things the long way here.
+ double n = norm(denominator);
+ double r = (real(numerator) * real(denominator) +
+ imag(numerator) * imag(denominator)) /
+ n;
+ double i = (imag(numerator) * real(denominator) -
+ real(numerator) * imag(denominator)) /
+ n;
+ std::complex<double> response = std::complex<double>(r, i);
+
+ magResponse[k] = static_cast<float>(abs(response));
+ phaseResponse[k] =
+ static_cast<float>(atan2(imag(response), real(response)));
+ }
+}
+
+bool IIRFilter::buffersAreZero() {
+ double* xBuffer = m_xBuffer.Elements();
+ double* yBuffer = m_yBuffer.Elements();
+
+ for (size_t k = 0; k < m_feedforward->Length(); ++k) {
+ if (xBuffer[(m_bufferIndex - k) & (kBufferLength - 1)] != 0.0) {
+ return false;
+ }
+ }
+
+ for (size_t k = 0; k < m_feedback->Length(); ++k) {
+ if (fabs(yBuffer[(m_bufferIndex - k) & (kBufferLength - 1)]) >= FLT_MIN) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+} // namespace blink