summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/CodeGenerator-arm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm/CodeGenerator-arm.cpp')
-rw-r--r--js/src/jit/arm/CodeGenerator-arm.cpp3154
1 files changed, 3154 insertions, 0 deletions
diff --git a/js/src/jit/arm/CodeGenerator-arm.cpp b/js/src/jit/arm/CodeGenerator-arm.cpp
new file mode 100644
index 0000000000..1526be81c9
--- /dev/null
+++ b/js/src/jit/arm/CodeGenerator-arm.cpp
@@ -0,0 +1,3154 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/arm/CodeGenerator-arm.h"
+
+#include "mozilla/DebugOnly.h"
+#include "mozilla/MathAlgorithms.h"
+#include "mozilla/Maybe.h"
+
+#include <iterator>
+
+#include "jsnum.h"
+
+#include "jit/CodeGenerator.h"
+#include "jit/InlineScriptTree.h"
+#include "jit/JitRuntime.h"
+#include "jit/MIR.h"
+#include "jit/MIRGraph.h"
+#include "js/Conversions.h"
+#include "js/ScalarType.h" // js::Scalar::Type
+#include "vm/JSContext.h"
+#include "vm/Realm.h"
+#include "vm/Shape.h"
+
+#include "jit/MacroAssembler-inl.h"
+#include "jit/shared/CodeGenerator-shared-inl.h"
+#include "vm/JSScript-inl.h"
+
+using namespace js;
+using namespace js::jit;
+
+using JS::GenericNaN;
+using JS::ToInt32;
+using mozilla::DebugOnly;
+using mozilla::FloorLog2;
+using mozilla::NegativeInfinity;
+
+// shared
+CodeGeneratorARM::CodeGeneratorARM(MIRGenerator* gen, LIRGraph* graph,
+ MacroAssembler* masm)
+ : CodeGeneratorShared(gen, graph, masm) {}
+
+Register64 CodeGeneratorARM::ToOperandOrRegister64(
+ const LInt64Allocation input) {
+ return ToRegister64(input);
+}
+
+void CodeGeneratorARM::emitBranch(Assembler::Condition cond,
+ MBasicBlock* mirTrue, MBasicBlock* mirFalse) {
+ if (isNextBlock(mirFalse->lir())) {
+ jumpToBlock(mirTrue, cond);
+ } else {
+ jumpToBlock(mirFalse, Assembler::InvertCondition(cond));
+ jumpToBlock(mirTrue);
+ }
+}
+
+void OutOfLineBailout::accept(CodeGeneratorARM* codegen) {
+ codegen->visitOutOfLineBailout(this);
+}
+
+void CodeGenerator::visitTestIAndBranch(LTestIAndBranch* test) {
+ const LAllocation* opd = test->getOperand(0);
+ MBasicBlock* ifTrue = test->ifTrue();
+ MBasicBlock* ifFalse = test->ifFalse();
+
+ // Test the operand
+ masm.as_cmp(ToRegister(opd), Imm8(0));
+
+ if (isNextBlock(ifFalse->lir())) {
+ jumpToBlock(ifTrue, Assembler::NonZero);
+ } else if (isNextBlock(ifTrue->lir())) {
+ jumpToBlock(ifFalse, Assembler::Zero);
+ } else {
+ jumpToBlock(ifFalse, Assembler::Zero);
+ jumpToBlock(ifTrue);
+ }
+}
+
+void CodeGenerator::visitCompare(LCompare* comp) {
+ Assembler::Condition cond =
+ JSOpToCondition(comp->mir()->compareType(), comp->jsop());
+ const LAllocation* left = comp->getOperand(0);
+ const LAllocation* right = comp->getOperand(1);
+ const LDefinition* def = comp->getDef(0);
+
+ ScratchRegisterScope scratch(masm);
+
+ if (right->isConstant()) {
+ masm.ma_cmp(ToRegister(left), Imm32(ToInt32(right)), scratch);
+ } else if (right->isRegister()) {
+ masm.ma_cmp(ToRegister(left), ToRegister(right));
+ } else {
+ SecondScratchRegisterScope scratch2(masm);
+ masm.ma_cmp(ToRegister(left), Operand(ToAddress(right)), scratch, scratch2);
+ }
+ masm.ma_mov(Imm32(0), ToRegister(def));
+ masm.ma_mov(Imm32(1), ToRegister(def), cond);
+}
+
+void CodeGenerator::visitCompareAndBranch(LCompareAndBranch* comp) {
+ Assembler::Condition cond =
+ JSOpToCondition(comp->cmpMir()->compareType(), comp->jsop());
+ const LAllocation* left = comp->left();
+ const LAllocation* right = comp->right();
+
+ ScratchRegisterScope scratch(masm);
+
+ if (right->isConstant()) {
+ masm.ma_cmp(ToRegister(left), Imm32(ToInt32(right)), scratch);
+ } else if (right->isRegister()) {
+ masm.ma_cmp(ToRegister(left), ToRegister(right));
+ } else {
+ SecondScratchRegisterScope scratch2(masm);
+ masm.ma_cmp(ToRegister(left), Operand(ToAddress(right)), scratch, scratch2);
+ }
+ emitBranch(cond, comp->ifTrue(), comp->ifFalse());
+}
+
+bool CodeGeneratorARM::generateOutOfLineCode() {
+ if (!CodeGeneratorShared::generateOutOfLineCode()) {
+ return false;
+ }
+
+ if (deoptLabel_.used()) {
+ // All non-table-based bailouts will go here.
+ masm.bind(&deoptLabel_);
+
+ // Push the frame size, so the handler can recover the IonScript.
+ masm.push(Imm32(frameSize()));
+
+ TrampolinePtr handler = gen->jitRuntime()->getGenericBailoutHandler();
+ masm.jump(handler);
+ }
+
+ return !masm.oom();
+}
+
+void CodeGeneratorARM::bailoutIf(Assembler::Condition condition,
+ LSnapshot* snapshot) {
+ encode(snapshot);
+
+ InlineScriptTree* tree = snapshot->mir()->block()->trackedTree();
+ OutOfLineBailout* ool =
+ new (alloc()) OutOfLineBailout(snapshot, masm.framePushed());
+
+ // All bailout code is associated with the bytecodeSite of the block we are
+ // bailing out from.
+ addOutOfLineCode(ool,
+ new (alloc()) BytecodeSite(tree, tree->script()->code()));
+
+ masm.ma_b(ool->entry(), condition);
+}
+
+void CodeGeneratorARM::bailoutFrom(Label* label, LSnapshot* snapshot) {
+ MOZ_ASSERT_IF(!masm.oom(), label->used());
+ MOZ_ASSERT_IF(!masm.oom(), !label->bound());
+
+ encode(snapshot);
+
+ InlineScriptTree* tree = snapshot->mir()->block()->trackedTree();
+ OutOfLineBailout* ool =
+ new (alloc()) OutOfLineBailout(snapshot, masm.framePushed());
+
+ // All bailout code is associated with the bytecodeSite of the block we are
+ // bailing out from.
+ addOutOfLineCode(ool,
+ new (alloc()) BytecodeSite(tree, tree->script()->code()));
+
+ masm.retarget(label, ool->entry());
+}
+
+void CodeGeneratorARM::bailout(LSnapshot* snapshot) {
+ Label label;
+ masm.ma_b(&label);
+ bailoutFrom(&label, snapshot);
+}
+
+void CodeGeneratorARM::visitOutOfLineBailout(OutOfLineBailout* ool) {
+ masm.push(Imm32(ool->snapshot()->snapshotOffset()));
+ masm.ma_b(&deoptLabel_);
+}
+
+void CodeGenerator::visitMinMaxD(LMinMaxD* ins) {
+ FloatRegister first = ToFloatRegister(ins->first());
+ FloatRegister second = ToFloatRegister(ins->second());
+
+ MOZ_ASSERT(first == ToFloatRegister(ins->output()));
+
+ if (ins->mir()->isMax()) {
+ masm.maxDouble(second, first, true);
+ } else {
+ masm.minDouble(second, first, true);
+ }
+}
+
+void CodeGenerator::visitMinMaxF(LMinMaxF* ins) {
+ FloatRegister first = ToFloatRegister(ins->first());
+ FloatRegister second = ToFloatRegister(ins->second());
+
+ MOZ_ASSERT(first == ToFloatRegister(ins->output()));
+
+ if (ins->mir()->isMax()) {
+ masm.maxFloat32(second, first, true);
+ } else {
+ masm.minFloat32(second, first, true);
+ }
+}
+
+void CodeGenerator::visitAddI(LAddI* ins) {
+ const LAllocation* lhs = ins->getOperand(0);
+ const LAllocation* rhs = ins->getOperand(1);
+ const LDefinition* dest = ins->getDef(0);
+
+ ScratchRegisterScope scratch(masm);
+
+ if (rhs->isConstant()) {
+ masm.ma_add(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), scratch,
+ SetCC);
+ } else if (rhs->isRegister()) {
+ masm.ma_add(ToRegister(lhs), ToRegister(rhs), ToRegister(dest), SetCC);
+ } else {
+ masm.ma_add(ToRegister(lhs), Operand(ToAddress(rhs)), ToRegister(dest),
+ SetCC);
+ }
+
+ if (ins->snapshot()) {
+ bailoutIf(Assembler::Overflow, ins->snapshot());
+ }
+}
+
+void CodeGenerator::visitAddI64(LAddI64* lir) {
+ const LInt64Allocation lhs = lir->getInt64Operand(LAddI64::Lhs);
+ const LInt64Allocation rhs = lir->getInt64Operand(LAddI64::Rhs);
+
+ MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs));
+
+ if (IsConstant(rhs)) {
+ masm.add64(Imm64(ToInt64(rhs)), ToRegister64(lhs));
+ return;
+ }
+
+ masm.add64(ToOperandOrRegister64(rhs), ToRegister64(lhs));
+}
+
+void CodeGenerator::visitSubI(LSubI* ins) {
+ const LAllocation* lhs = ins->getOperand(0);
+ const LAllocation* rhs = ins->getOperand(1);
+ const LDefinition* dest = ins->getDef(0);
+
+ ScratchRegisterScope scratch(masm);
+
+ if (rhs->isConstant()) {
+ masm.ma_sub(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), scratch,
+ SetCC);
+ } else if (rhs->isRegister()) {
+ masm.ma_sub(ToRegister(lhs), ToRegister(rhs), ToRegister(dest), SetCC);
+ } else {
+ masm.ma_sub(ToRegister(lhs), Operand(ToAddress(rhs)), ToRegister(dest),
+ SetCC);
+ }
+
+ if (ins->snapshot()) {
+ bailoutIf(Assembler::Overflow, ins->snapshot());
+ }
+}
+
+void CodeGenerator::visitSubI64(LSubI64* lir) {
+ const LInt64Allocation lhs = lir->getInt64Operand(LSubI64::Lhs);
+ const LInt64Allocation rhs = lir->getInt64Operand(LSubI64::Rhs);
+
+ MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs));
+
+ if (IsConstant(rhs)) {
+ masm.sub64(Imm64(ToInt64(rhs)), ToRegister64(lhs));
+ return;
+ }
+
+ masm.sub64(ToOperandOrRegister64(rhs), ToRegister64(lhs));
+}
+
+void CodeGenerator::visitMulI(LMulI* ins) {
+ const LAllocation* lhs = ins->getOperand(0);
+ const LAllocation* rhs = ins->getOperand(1);
+ const LDefinition* dest = ins->getDef(0);
+ MMul* mul = ins->mir();
+ MOZ_ASSERT_IF(mul->mode() == MMul::Integer,
+ !mul->canBeNegativeZero() && !mul->canOverflow());
+
+ if (rhs->isConstant()) {
+ // Bailout when this condition is met.
+ Assembler::Condition c = Assembler::Overflow;
+ // Bailout on -0.0
+ int32_t constant = ToInt32(rhs);
+ if (mul->canBeNegativeZero() && constant <= 0) {
+ Assembler::Condition bailoutCond =
+ (constant == 0) ? Assembler::LessThan : Assembler::Equal;
+ masm.as_cmp(ToRegister(lhs), Imm8(0));
+ bailoutIf(bailoutCond, ins->snapshot());
+ }
+ // TODO: move these to ma_mul.
+ switch (constant) {
+ case -1:
+ masm.as_rsb(ToRegister(dest), ToRegister(lhs), Imm8(0), SetCC);
+ break;
+ case 0:
+ masm.ma_mov(Imm32(0), ToRegister(dest));
+ return; // Escape overflow check;
+ case 1:
+ // Nop
+ masm.ma_mov(ToRegister(lhs), ToRegister(dest));
+ return; // Escape overflow check;
+ case 2:
+ masm.ma_add(ToRegister(lhs), ToRegister(lhs), ToRegister(dest), SetCC);
+ // Overflow is handled later.
+ break;
+ default: {
+ bool handled = false;
+ if (constant > 0) {
+ // Try shift and add sequences for a positive constant.
+ if (!mul->canOverflow()) {
+ // If it cannot overflow, we can do lots of optimizations.
+ Register src = ToRegister(lhs);
+ uint32_t shift = FloorLog2(constant);
+ uint32_t rest = constant - (1 << shift);
+ // See if the constant has one bit set, meaning it can be
+ // encoded as a bitshift.
+ if ((1 << shift) == constant) {
+ masm.ma_lsl(Imm32(shift), src, ToRegister(dest));
+ handled = true;
+ } else {
+ // If the constant cannot be encoded as (1 << C1), see
+ // if it can be encoded as (1 << C1) | (1 << C2), which
+ // can be computed using an add and a shift.
+ uint32_t shift_rest = FloorLog2(rest);
+ if ((1u << shift_rest) == rest) {
+ masm.as_add(ToRegister(dest), src,
+ lsl(src, shift - shift_rest));
+ if (shift_rest != 0) {
+ masm.ma_lsl(Imm32(shift_rest), ToRegister(dest),
+ ToRegister(dest));
+ }
+ handled = true;
+ }
+ }
+ } else if (ToRegister(lhs) != ToRegister(dest)) {
+ // To stay on the safe side, only optimize things that are a
+ // power of 2.
+
+ uint32_t shift = FloorLog2(constant);
+ if ((1 << shift) == constant) {
+ // dest = lhs * pow(2,shift)
+ masm.ma_lsl(Imm32(shift), ToRegister(lhs), ToRegister(dest));
+ // At runtime, check (lhs == dest >> shift), if this
+ // does not hold, some bits were lost due to overflow,
+ // and the computation should be resumed as a double.
+ masm.as_cmp(ToRegister(lhs), asr(ToRegister(dest), shift));
+ c = Assembler::NotEqual;
+ handled = true;
+ }
+ }
+ }
+
+ if (!handled) {
+ ScratchRegisterScope scratch(masm);
+ if (mul->canOverflow()) {
+ c = masm.ma_check_mul(ToRegister(lhs), Imm32(ToInt32(rhs)),
+ ToRegister(dest), scratch, c);
+ } else {
+ masm.ma_mul(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest),
+ scratch);
+ }
+ }
+ }
+ }
+ // Bailout on overflow.
+ if (mul->canOverflow()) {
+ bailoutIf(c, ins->snapshot());
+ }
+ } else {
+ Assembler::Condition c = Assembler::Overflow;
+
+ if (mul->canOverflow()) {
+ ScratchRegisterScope scratch(masm);
+ c = masm.ma_check_mul(ToRegister(lhs), ToRegister(rhs), ToRegister(dest),
+ scratch, c);
+ } else {
+ masm.ma_mul(ToRegister(lhs), ToRegister(rhs), ToRegister(dest));
+ }
+
+ // Bailout on overflow.
+ if (mul->canOverflow()) {
+ bailoutIf(c, ins->snapshot());
+ }
+
+ if (mul->canBeNegativeZero()) {
+ Label done;
+ masm.as_cmp(ToRegister(dest), Imm8(0));
+ masm.ma_b(&done, Assembler::NotEqual);
+
+ // Result is -0 if lhs or rhs is negative.
+ masm.ma_cmn(ToRegister(lhs), ToRegister(rhs));
+ bailoutIf(Assembler::Signed, ins->snapshot());
+
+ masm.bind(&done);
+ }
+ }
+}
+
+void CodeGenerator::visitMulI64(LMulI64* lir) {
+ const LInt64Allocation lhs = lir->getInt64Operand(LMulI64::Lhs);
+ const LInt64Allocation rhs = lir->getInt64Operand(LMulI64::Rhs);
+
+ MOZ_ASSERT(ToRegister64(lhs) == ToOutRegister64(lir));
+
+ if (IsConstant(rhs)) {
+ int64_t constant = ToInt64(rhs);
+ switch (constant) {
+ case -1:
+ masm.neg64(ToRegister64(lhs));
+ return;
+ case 0:
+ masm.xor64(ToRegister64(lhs), ToRegister64(lhs));
+ return;
+ case 1:
+ // nop
+ return;
+ case 2:
+ masm.add64(ToRegister64(lhs), ToRegister64(lhs));
+ return;
+ default:
+ if (constant > 0) {
+ // Use shift if constant is power of 2.
+ int32_t shift = mozilla::FloorLog2(constant);
+ if (int64_t(1) << shift == constant) {
+ masm.lshift64(Imm32(shift), ToRegister64(lhs));
+ return;
+ }
+ }
+ Register temp = ToTempRegisterOrInvalid(lir->temp());
+ masm.mul64(Imm64(constant), ToRegister64(lhs), temp);
+ }
+ } else {
+ Register temp = ToTempRegisterOrInvalid(lir->temp());
+ masm.mul64(ToOperandOrRegister64(rhs), ToRegister64(lhs), temp);
+ }
+}
+
+void CodeGeneratorARM::divICommon(MDiv* mir, Register lhs, Register rhs,
+ Register output, LSnapshot* snapshot,
+ Label& done) {
+ ScratchRegisterScope scratch(masm);
+
+ if (mir->canBeNegativeOverflow()) {
+ // Handle INT32_MIN / -1;
+ // The integer division will give INT32_MIN, but we want -(double)INT32_MIN.
+
+ // Sets EQ if lhs == INT32_MIN.
+ masm.ma_cmp(lhs, Imm32(INT32_MIN), scratch);
+ // If EQ (LHS == INT32_MIN), sets EQ if rhs == -1.
+ masm.ma_cmp(rhs, Imm32(-1), scratch, Assembler::Equal);
+ if (mir->canTruncateOverflow()) {
+ if (mir->trapOnError()) {
+ Label ok;
+ masm.ma_b(&ok, Assembler::NotEqual);
+ masm.wasmTrap(wasm::Trap::IntegerOverflow, mir->bytecodeOffset());
+ masm.bind(&ok);
+ } else {
+ // (-INT32_MIN)|0 = INT32_MIN
+ Label skip;
+ masm.ma_b(&skip, Assembler::NotEqual);
+ masm.ma_mov(Imm32(INT32_MIN), output);
+ masm.ma_b(&done);
+ masm.bind(&skip);
+ }
+ } else {
+ MOZ_ASSERT(mir->fallible());
+ bailoutIf(Assembler::Equal, snapshot);
+ }
+ }
+
+ // Handle divide by zero.
+ if (mir->canBeDivideByZero()) {
+ masm.as_cmp(rhs, Imm8(0));
+ if (mir->canTruncateInfinities()) {
+ if (mir->trapOnError()) {
+ Label nonZero;
+ masm.ma_b(&nonZero, Assembler::NotEqual);
+ masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
+ masm.bind(&nonZero);
+ } else {
+ // Infinity|0 == 0
+ Label skip;
+ masm.ma_b(&skip, Assembler::NotEqual);
+ masm.ma_mov(Imm32(0), output);
+ masm.ma_b(&done);
+ masm.bind(&skip);
+ }
+ } else {
+ MOZ_ASSERT(mir->fallible());
+ bailoutIf(Assembler::Equal, snapshot);
+ }
+ }
+
+ // Handle negative 0.
+ if (!mir->canTruncateNegativeZero() && mir->canBeNegativeZero()) {
+ Label nonzero;
+ masm.as_cmp(lhs, Imm8(0));
+ masm.ma_b(&nonzero, Assembler::NotEqual);
+ masm.as_cmp(rhs, Imm8(0));
+ MOZ_ASSERT(mir->fallible());
+ bailoutIf(Assembler::LessThan, snapshot);
+ masm.bind(&nonzero);
+ }
+}
+
+void CodeGenerator::visitDivI(LDivI* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp = ToRegister(ins->getTemp(0));
+ Register output = ToRegister(ins->output());
+ MDiv* mir = ins->mir();
+
+ Label done;
+ divICommon(mir, lhs, rhs, output, ins->snapshot(), done);
+
+ if (mir->canTruncateRemainder()) {
+ masm.ma_sdiv(lhs, rhs, output);
+ } else {
+ {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_sdiv(lhs, rhs, temp);
+ masm.ma_mul(temp, rhs, scratch);
+ masm.ma_cmp(lhs, scratch);
+ }
+ bailoutIf(Assembler::NotEqual, ins->snapshot());
+ masm.ma_mov(temp, output);
+ }
+
+ masm.bind(&done);
+}
+
+extern "C" {
+extern MOZ_EXPORT int64_t __aeabi_idivmod(int, int);
+extern MOZ_EXPORT int64_t __aeabi_uidivmod(int, int);
+}
+
+void CodeGenerator::visitSoftDivI(LSoftDivI* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register output = ToRegister(ins->output());
+ MDiv* mir = ins->mir();
+
+ Label done;
+ divICommon(mir, lhs, rhs, output, ins->snapshot(), done);
+
+ if (gen->compilingWasm()) {
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+ masm.setupWasmABICall();
+ masm.passABIArg(lhs);
+ masm.passABIArg(rhs);
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ masm.callWithABI(mir->bytecodeOffset(),
+ wasm::SymbolicAddress::aeabi_idivmod,
+ mozilla::Some(instanceOffset));
+ masm.Pop(InstanceReg);
+ } else {
+ using Fn = int64_t (*)(int, int);
+ masm.setupAlignedABICall();
+ masm.passABIArg(lhs);
+ masm.passABIArg(rhs);
+ masm.callWithABI<Fn, __aeabi_idivmod>(
+ MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);
+ }
+
+ // idivmod returns the quotient in r0, and the remainder in r1.
+ if (!mir->canTruncateRemainder()) {
+ MOZ_ASSERT(mir->fallible());
+ masm.as_cmp(r1, Imm8(0));
+ bailoutIf(Assembler::NonZero, ins->snapshot());
+ }
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitDivPowTwoI(LDivPowTwoI* ins) {
+ MDiv* mir = ins->mir();
+ Register lhs = ToRegister(ins->numerator());
+ Register output = ToRegister(ins->output());
+ int32_t shift = ins->shift();
+
+ if (shift == 0) {
+ masm.ma_mov(lhs, output);
+ return;
+ }
+
+ if (!mir->isTruncated()) {
+ // If the remainder is != 0, bailout since this must be a double.
+ {
+ // The bailout code also needs the scratch register.
+ // Here it is only used as a dummy target to set CC flags.
+ ScratchRegisterScope scratch(masm);
+ masm.as_mov(scratch, lsl(lhs, 32 - shift), SetCC);
+ }
+ bailoutIf(Assembler::NonZero, ins->snapshot());
+ }
+
+ if (!mir->canBeNegativeDividend()) {
+ // Numerator is unsigned, so needs no adjusting. Do the shift.
+ masm.as_mov(output, asr(lhs, shift));
+ return;
+ }
+
+ // Adjust the value so that shifting produces a correctly rounded result
+ // when the numerator is negative. See 10-1 "Signed Division by a Known
+ // Power of 2" in Henry S. Warren, Jr.'s Hacker's Delight.
+ ScratchRegisterScope scratch(masm);
+
+ if (shift > 1) {
+ masm.as_mov(scratch, asr(lhs, 31));
+ masm.as_add(scratch, lhs, lsr(scratch, 32 - shift));
+ } else {
+ masm.as_add(scratch, lhs, lsr(lhs, 32 - shift));
+ }
+
+ // Do the shift.
+ masm.as_mov(output, asr(scratch, shift));
+}
+
+void CodeGeneratorARM::modICommon(MMod* mir, Register lhs, Register rhs,
+ Register output, LSnapshot* snapshot,
+ Label& done) {
+ // X % 0 is bad because it will give garbage (or abort), when it should give
+ // NaN.
+
+ if (mir->canBeDivideByZero()) {
+ masm.as_cmp(rhs, Imm8(0));
+ if (mir->isTruncated()) {
+ Label nonZero;
+ masm.ma_b(&nonZero, Assembler::NotEqual);
+ if (mir->trapOnError()) {
+ masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
+ } else {
+ // NaN|0 == 0
+ masm.ma_mov(Imm32(0), output);
+ masm.ma_b(&done);
+ }
+ masm.bind(&nonZero);
+ } else {
+ MOZ_ASSERT(mir->fallible());
+ bailoutIf(Assembler::Equal, snapshot);
+ }
+ }
+}
+
+void CodeGenerator::visitModI(LModI* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register output = ToRegister(ins->output());
+ MMod* mir = ins->mir();
+
+ // Contrary to other architectures (notably x86) INT_MIN % -1 doesn't need to
+ // be handled separately. |ma_smod| computes the remainder using the |SDIV|
+ // and the |MLS| instructions. On overflow, |SDIV| truncates the result to
+ // 32-bit and returns INT_MIN, see ARM Architecture Reference Manual, SDIV
+ // instruction.
+ //
+ // mls(INT_MIN, sdiv(INT_MIN, -1), -1)
+ // = INT_MIN - (sdiv(INT_MIN, -1) * -1)
+ // = INT_MIN - (INT_MIN * -1)
+ // = INT_MIN - INT_MIN
+ // = 0
+ //
+ // And a zero remainder with a negative dividend is already handled below.
+
+ Label done;
+ modICommon(mir, lhs, rhs, output, ins->snapshot(), done);
+
+ {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_smod(lhs, rhs, output, scratch);
+ }
+
+ // If X%Y == 0 and X < 0, then we *actually* wanted to return -0.0.
+ if (mir->canBeNegativeDividend()) {
+ if (mir->isTruncated()) {
+ // -0.0|0 == 0
+ } else {
+ MOZ_ASSERT(mir->fallible());
+ // See if X < 0
+ masm.as_cmp(output, Imm8(0));
+ masm.ma_b(&done, Assembler::NotEqual);
+ masm.as_cmp(lhs, Imm8(0));
+ bailoutIf(Assembler::Signed, ins->snapshot());
+ }
+ }
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitSoftModI(LSoftModI* ins) {
+ // Extract the registers from this instruction.
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register output = ToRegister(ins->output());
+ Register callTemp = ToRegister(ins->callTemp());
+ MMod* mir = ins->mir();
+ Label done;
+
+ // Save the lhs in case we end up with a 0 that should be a -0.0 because lhs <
+ // 0.
+ MOZ_ASSERT(callTemp != lhs);
+ MOZ_ASSERT(callTemp != rhs);
+ masm.ma_mov(lhs, callTemp);
+
+ // Prevent INT_MIN % -1.
+ //
+ // |aeabi_idivmod| is allowed to return any arbitrary value when called with
+ // |(INT_MIN, -1)|, see "Run-time ABI for the ARM architecture manual". Most
+ // implementations perform a non-trapping signed integer division and
+ // return the expected result, i.e. INT_MIN. But since we can't rely on this
+ // behavior, handle this case separately here.
+ if (mir->canBeNegativeDividend()) {
+ {
+ ScratchRegisterScope scratch(masm);
+ // Sets EQ if lhs == INT_MIN
+ masm.ma_cmp(lhs, Imm32(INT_MIN), scratch);
+ // If EQ (LHS == INT_MIN), sets EQ if rhs == -1
+ masm.ma_cmp(rhs, Imm32(-1), scratch, Assembler::Equal);
+ }
+ if (mir->isTruncated()) {
+ // (INT_MIN % -1)|0 == 0
+ Label skip;
+ masm.ma_b(&skip, Assembler::NotEqual);
+ masm.ma_mov(Imm32(0), output);
+ masm.ma_b(&done);
+ masm.bind(&skip);
+ } else {
+ MOZ_ASSERT(mir->fallible());
+ bailoutIf(Assembler::Equal, ins->snapshot());
+ }
+ }
+
+ modICommon(mir, lhs, rhs, output, ins->snapshot(), done);
+
+ if (gen->compilingWasm()) {
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+ masm.setupWasmABICall();
+ masm.passABIArg(lhs);
+ masm.passABIArg(rhs);
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ masm.callWithABI(mir->bytecodeOffset(),
+ wasm::SymbolicAddress::aeabi_idivmod,
+ mozilla::Some(instanceOffset));
+ masm.Pop(InstanceReg);
+ } else {
+ using Fn = int64_t (*)(int, int);
+ masm.setupAlignedABICall();
+ masm.passABIArg(lhs);
+ masm.passABIArg(rhs);
+ masm.callWithABI<Fn, __aeabi_idivmod>(
+ MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);
+ }
+
+ MOZ_ASSERT(r1 != output);
+ masm.move32(r1, output);
+
+ // If X%Y == 0 and X < 0, then we *actually* wanted to return -0.0
+ if (mir->canBeNegativeDividend()) {
+ if (mir->isTruncated()) {
+ // -0.0|0 == 0
+ } else {
+ MOZ_ASSERT(mir->fallible());
+ // See if X < 0
+ masm.as_cmp(output, Imm8(0));
+ masm.ma_b(&done, Assembler::NotEqual);
+ masm.as_cmp(callTemp, Imm8(0));
+ bailoutIf(Assembler::Signed, ins->snapshot());
+ }
+ }
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitModPowTwoI(LModPowTwoI* ins) {
+ Register in = ToRegister(ins->getOperand(0));
+ Register out = ToRegister(ins->getDef(0));
+ MMod* mir = ins->mir();
+ Label fin;
+ // bug 739870, jbramley has a different sequence that may help with speed
+ // here.
+
+ masm.ma_mov(in, out, SetCC);
+ masm.ma_b(&fin, Assembler::Zero);
+ masm.as_rsb(out, out, Imm8(0), LeaveCC, Assembler::Signed);
+ {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_and(Imm32((1 << ins->shift()) - 1), out, scratch);
+ }
+ masm.as_rsb(out, out, Imm8(0), SetCC, Assembler::Signed);
+ if (mir->canBeNegativeDividend()) {
+ if (!mir->isTruncated()) {
+ MOZ_ASSERT(mir->fallible());
+ bailoutIf(Assembler::Zero, ins->snapshot());
+ } else {
+ // -0|0 == 0
+ }
+ }
+ masm.bind(&fin);
+}
+
+void CodeGenerator::visitModMaskI(LModMaskI* ins) {
+ Register src = ToRegister(ins->getOperand(0));
+ Register dest = ToRegister(ins->getDef(0));
+ Register tmp1 = ToRegister(ins->getTemp(0));
+ Register tmp2 = ToRegister(ins->getTemp(1));
+ MMod* mir = ins->mir();
+
+ ScratchRegisterScope scratch(masm);
+ SecondScratchRegisterScope scratch2(masm);
+
+ masm.ma_mod_mask(src, dest, tmp1, tmp2, scratch, scratch2, ins->shift());
+
+ if (mir->canBeNegativeDividend()) {
+ if (!mir->isTruncated()) {
+ MOZ_ASSERT(mir->fallible());
+ bailoutIf(Assembler::Zero, ins->snapshot());
+ } else {
+ // -0|0 == 0
+ }
+ }
+}
+
+void CodeGeneratorARM::emitBigIntDiv(LBigIntDiv* ins, Register dividend,
+ Register divisor, Register output,
+ Label* fail) {
+ // Callers handle division by zero and integer overflow.
+
+ if (HasIDIV()) {
+ masm.ma_sdiv(dividend, divisor, /* result= */ dividend);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, divisor, initialBigIntHeap(), fail);
+ masm.initializeBigInt(output, dividend);
+
+ return;
+ }
+
+ // idivmod returns the quotient in r0, and the remainder in r1.
+ MOZ_ASSERT(dividend == r0);
+ MOZ_ASSERT(divisor == r1);
+
+ LiveRegisterSet volatileRegs = liveVolatileRegs(ins);
+ volatileRegs.takeUnchecked(dividend);
+ volatileRegs.takeUnchecked(divisor);
+ volatileRegs.takeUnchecked(output);
+
+ masm.PushRegsInMask(volatileRegs);
+
+ using Fn = int64_t (*)(int, int);
+ masm.setupUnalignedABICall(output);
+ masm.passABIArg(dividend);
+ masm.passABIArg(divisor);
+ masm.callWithABI<Fn, __aeabi_idivmod>(MoveOp::GENERAL,
+ CheckUnsafeCallWithABI::DontCheckOther);
+
+ masm.PopRegsInMask(volatileRegs);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, divisor, initialBigIntHeap(), fail);
+ masm.initializeBigInt(output, dividend);
+}
+
+void CodeGeneratorARM::emitBigIntMod(LBigIntMod* ins, Register dividend,
+ Register divisor, Register output,
+ Label* fail) {
+ // Callers handle division by zero and integer overflow.
+
+ if (HasIDIV()) {
+ {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_smod(dividend, divisor, /* result= */ dividend, scratch);
+ }
+
+ // Create and return the result.
+ masm.newGCBigInt(output, divisor, initialBigIntHeap(), fail);
+ masm.initializeBigInt(output, dividend);
+
+ return;
+ }
+
+ // idivmod returns the quotient in r0, and the remainder in r1.
+ MOZ_ASSERT(dividend == r0);
+ MOZ_ASSERT(divisor == r1);
+
+ LiveRegisterSet volatileRegs = liveVolatileRegs(ins);
+ volatileRegs.takeUnchecked(dividend);
+ volatileRegs.takeUnchecked(divisor);
+ volatileRegs.takeUnchecked(output);
+
+ masm.PushRegsInMask(volatileRegs);
+
+ using Fn = int64_t (*)(int, int);
+ masm.setupUnalignedABICall(output);
+ masm.passABIArg(dividend);
+ masm.passABIArg(divisor);
+ masm.callWithABI<Fn, __aeabi_idivmod>(MoveOp::GENERAL,
+ CheckUnsafeCallWithABI::DontCheckOther);
+
+ masm.PopRegsInMask(volatileRegs);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, dividend, initialBigIntHeap(), fail);
+ masm.initializeBigInt(output, divisor);
+}
+
+void CodeGenerator::visitBitNotI(LBitNotI* ins) {
+ const LAllocation* input = ins->getOperand(0);
+ const LDefinition* dest = ins->getDef(0);
+ // This will not actually be true on arm. We can not an imm8m in order to
+ // get a wider range of numbers
+ MOZ_ASSERT(!input->isConstant());
+
+ masm.ma_mvn(ToRegister(input), ToRegister(dest));
+}
+
+void CodeGenerator::visitBitOpI(LBitOpI* ins) {
+ const LAllocation* lhs = ins->getOperand(0);
+ const LAllocation* rhs = ins->getOperand(1);
+ const LDefinition* dest = ins->getDef(0);
+
+ ScratchRegisterScope scratch(masm);
+
+ // All of these bitops should be either imm32's, or integer registers.
+ switch (ins->bitop()) {
+ case JSOp::BitOr:
+ if (rhs->isConstant()) {
+ masm.ma_orr(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest),
+ scratch);
+ } else {
+ masm.ma_orr(ToRegister(rhs), ToRegister(lhs), ToRegister(dest));
+ }
+ break;
+ case JSOp::BitXor:
+ if (rhs->isConstant()) {
+ masm.ma_eor(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest),
+ scratch);
+ } else {
+ masm.ma_eor(ToRegister(rhs), ToRegister(lhs), ToRegister(dest));
+ }
+ break;
+ case JSOp::BitAnd:
+ if (rhs->isConstant()) {
+ masm.ma_and(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest),
+ scratch);
+ } else {
+ masm.ma_and(ToRegister(rhs), ToRegister(lhs), ToRegister(dest));
+ }
+ break;
+ default:
+ MOZ_CRASH("unexpected binary opcode");
+ }
+}
+
+void CodeGenerator::visitShiftI(LShiftI* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ const LAllocation* rhs = ins->rhs();
+ Register dest = ToRegister(ins->output());
+
+ if (rhs->isConstant()) {
+ int32_t shift = ToInt32(rhs) & 0x1F;
+ switch (ins->bitop()) {
+ case JSOp::Lsh:
+ if (shift) {
+ masm.ma_lsl(Imm32(shift), lhs, dest);
+ } else {
+ masm.ma_mov(lhs, dest);
+ }
+ break;
+ case JSOp::Rsh:
+ if (shift) {
+ masm.ma_asr(Imm32(shift), lhs, dest);
+ } else {
+ masm.ma_mov(lhs, dest);
+ }
+ break;
+ case JSOp::Ursh:
+ if (shift) {
+ masm.ma_lsr(Imm32(shift), lhs, dest);
+ } else {
+ // x >>> 0 can overflow.
+ masm.ma_mov(lhs, dest);
+ if (ins->mir()->toUrsh()->fallible()) {
+ masm.as_cmp(dest, Imm8(0));
+ bailoutIf(Assembler::LessThan, ins->snapshot());
+ }
+ }
+ break;
+ default:
+ MOZ_CRASH("Unexpected shift op");
+ }
+ } else {
+ // The shift amounts should be AND'ed into the 0-31 range since arm
+ // shifts by the lower byte of the register (it will attempt to shift by
+ // 250 if you ask it to).
+ masm.as_and(dest, ToRegister(rhs), Imm8(0x1F));
+
+ switch (ins->bitop()) {
+ case JSOp::Lsh:
+ masm.ma_lsl(dest, lhs, dest);
+ break;
+ case JSOp::Rsh:
+ masm.ma_asr(dest, lhs, dest);
+ break;
+ case JSOp::Ursh:
+ masm.ma_lsr(dest, lhs, dest);
+ if (ins->mir()->toUrsh()->fallible()) {
+ // x >>> 0 can overflow.
+ masm.as_cmp(dest, Imm8(0));
+ bailoutIf(Assembler::LessThan, ins->snapshot());
+ }
+ break;
+ default:
+ MOZ_CRASH("Unexpected shift op");
+ }
+ }
+}
+
+void CodeGenerator::visitUrshD(LUrshD* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register temp = ToRegister(ins->temp());
+
+ const LAllocation* rhs = ins->rhs();
+ FloatRegister out = ToFloatRegister(ins->output());
+
+ if (rhs->isConstant()) {
+ int32_t shift = ToInt32(rhs) & 0x1F;
+ if (shift) {
+ masm.ma_lsr(Imm32(shift), lhs, temp);
+ } else {
+ masm.ma_mov(lhs, temp);
+ }
+ } else {
+ masm.as_and(temp, ToRegister(rhs), Imm8(0x1F));
+ masm.ma_lsr(temp, lhs, temp);
+ }
+
+ masm.convertUInt32ToDouble(temp, out);
+}
+
+void CodeGenerator::visitClzI(LClzI* ins) {
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ masm.clz32(input, output, /* knownNotZero = */ false);
+}
+
+void CodeGenerator::visitCtzI(LCtzI* ins) {
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ masm.ctz32(input, output, /* knownNotZero = */ false);
+}
+
+void CodeGenerator::visitPopcntI(LPopcntI* ins) {
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ Register tmp = ToRegister(ins->temp0());
+
+ masm.popcnt32(input, output, tmp);
+}
+
+void CodeGenerator::visitPowHalfD(LPowHalfD* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ FloatRegister output = ToFloatRegister(ins->output());
+ ScratchDoubleScope scratch(masm);
+
+ Label done;
+
+ // Masm.pow(-Infinity, 0.5) == Infinity.
+ masm.loadConstantDouble(NegativeInfinity<double>(), scratch);
+ masm.compareDouble(input, scratch);
+ masm.ma_vneg(scratch, output, Assembler::Equal);
+ masm.ma_b(&done, Assembler::Equal);
+
+ // Math.pow(-0, 0.5) == 0 == Math.pow(0, 0.5).
+ // Adding 0 converts any -0 to 0.
+ masm.loadConstantDouble(0.0, scratch);
+ masm.ma_vadd(scratch, input, output);
+ masm.ma_vsqrt(output, output);
+
+ masm.bind(&done);
+}
+
+MoveOperand CodeGeneratorARM::toMoveOperand(LAllocation a) const {
+ if (a.isGeneralReg()) {
+ return MoveOperand(ToRegister(a));
+ }
+ if (a.isFloatReg()) {
+ return MoveOperand(ToFloatRegister(a));
+ }
+ MoveOperand::Kind kind = a.isStackArea() ? MoveOperand::Kind::EffectiveAddress
+ : MoveOperand::Kind::Memory;
+ Address addr = ToAddress(a);
+ MOZ_ASSERT((addr.offset & 3) == 0);
+ return MoveOperand(addr, kind);
+}
+
+class js::jit::OutOfLineTableSwitch
+ : public OutOfLineCodeBase<CodeGeneratorARM> {
+ MTableSwitch* mir_;
+ Vector<CodeLabel, 8, JitAllocPolicy> codeLabels_;
+
+ void accept(CodeGeneratorARM* codegen) override {
+ codegen->visitOutOfLineTableSwitch(this);
+ }
+
+ public:
+ OutOfLineTableSwitch(TempAllocator& alloc, MTableSwitch* mir)
+ : mir_(mir), codeLabels_(alloc) {}
+
+ MTableSwitch* mir() const { return mir_; }
+
+ bool addCodeLabel(CodeLabel label) { return codeLabels_.append(label); }
+ CodeLabel codeLabel(unsigned i) { return codeLabels_[i]; }
+};
+
+void CodeGeneratorARM::visitOutOfLineTableSwitch(OutOfLineTableSwitch* ool) {
+ MTableSwitch* mir = ool->mir();
+
+ size_t numCases = mir->numCases();
+ for (size_t i = 0; i < numCases; i++) {
+ LBlock* caseblock =
+ skipTrivialBlocks(mir->getCase(numCases - 1 - i))->lir();
+ Label* caseheader = caseblock->label();
+ uint32_t caseoffset = caseheader->offset();
+
+ // The entries of the jump table need to be absolute addresses and thus
+ // must be patched after codegen is finished.
+ CodeLabel cl = ool->codeLabel(i);
+ cl.target()->bind(caseoffset);
+ masm.addCodeLabel(cl);
+ }
+}
+
+void CodeGeneratorARM::emitTableSwitchDispatch(MTableSwitch* mir,
+ Register index, Register base) {
+ // The code generated by this is utter hax.
+ // The end result looks something like:
+ // SUBS index, input, #base
+ // RSBSPL index, index, #max
+ // LDRPL pc, pc, index lsl 2
+ // B default
+
+ // If the range of targets in N through M, we first subtract off the lowest
+ // case (N), which both shifts the arguments into the range 0 to (M - N)
+ // with and sets the MInus flag if the argument was out of range on the low
+ // end.
+
+ // Then we a reverse subtract with the size of the jump table, which will
+ // reverse the order of range (It is size through 0, rather than 0 through
+ // size). The main purpose of this is that we set the same flag as the lower
+ // bound check for the upper bound check. Lastly, we do this conditionally
+ // on the previous check succeeding.
+
+ // Then we conditionally load the pc offset by the (reversed) index (times
+ // the address size) into the pc, which branches to the correct case. NOTE:
+ // when we go to read the pc, the value that we get back is the pc of the
+ // current instruction *PLUS 8*. This means that ldr foo, [pc, +0] reads
+ // $pc+8. In other words, there is an empty word after the branch into the
+ // switch table before the table actually starts. Since the only other
+ // unhandled case is the default case (both out of range high and out of
+ // range low) I then insert a branch to default case into the extra slot,
+ // which ensures we don't attempt to execute the address table.
+ Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label();
+
+ ScratchRegisterScope scratch(masm);
+
+ int32_t cases = mir->numCases();
+ // Lower value with low value.
+ masm.ma_sub(index, Imm32(mir->low()), index, scratch, SetCC);
+ masm.ma_rsb(index, Imm32(cases - 1), index, scratch, SetCC,
+ Assembler::NotSigned);
+ // Inhibit pools within the following sequence because we are indexing into
+ // a pc relative table. The region will have one instruction for ma_ldr, one
+ // for ma_b, and each table case takes one word.
+ AutoForbidPoolsAndNops afp(&masm, 1 + 1 + cases);
+ masm.ma_ldr(DTRAddr(pc, DtrRegImmShift(index, LSL, 2)), pc, Offset,
+ Assembler::NotSigned);
+ masm.ma_b(defaultcase);
+
+ // To fill in the CodeLabels for the case entries, we need to first generate
+ // the case entries (we don't yet know their offsets in the instruction
+ // stream).
+ OutOfLineTableSwitch* ool = new (alloc()) OutOfLineTableSwitch(alloc(), mir);
+ for (int32_t i = 0; i < cases; i++) {
+ CodeLabel cl;
+ masm.writeCodePointer(&cl);
+ masm.propagateOOM(ool->addCodeLabel(cl));
+ }
+ addOutOfLineCode(ool, mir);
+}
+
+void CodeGenerator::visitMathD(LMathD* math) {
+ FloatRegister src1 = ToFloatRegister(math->getOperand(0));
+ FloatRegister src2 = ToFloatRegister(math->getOperand(1));
+ FloatRegister output = ToFloatRegister(math->getDef(0));
+
+ switch (math->jsop()) {
+ case JSOp::Add:
+ masm.ma_vadd(src1, src2, output);
+ break;
+ case JSOp::Sub:
+ masm.ma_vsub(src1, src2, output);
+ break;
+ case JSOp::Mul:
+ masm.ma_vmul(src1, src2, output);
+ break;
+ case JSOp::Div:
+ masm.ma_vdiv(src1, src2, output);
+ break;
+ default:
+ MOZ_CRASH("unexpected opcode");
+ }
+}
+
+void CodeGenerator::visitMathF(LMathF* math) {
+ FloatRegister src1 = ToFloatRegister(math->getOperand(0));
+ FloatRegister src2 = ToFloatRegister(math->getOperand(1));
+ FloatRegister output = ToFloatRegister(math->getDef(0));
+
+ switch (math->jsop()) {
+ case JSOp::Add:
+ masm.ma_vadd_f32(src1, src2, output);
+ break;
+ case JSOp::Sub:
+ masm.ma_vsub_f32(src1, src2, output);
+ break;
+ case JSOp::Mul:
+ masm.ma_vmul_f32(src1, src2, output);
+ break;
+ case JSOp::Div:
+ masm.ma_vdiv_f32(src1, src2, output);
+ break;
+ default:
+ MOZ_CRASH("unexpected opcode");
+ }
+}
+
+void CodeGenerator::visitTruncateDToInt32(LTruncateDToInt32* ins) {
+ emitTruncateDouble(ToFloatRegister(ins->input()), ToRegister(ins->output()),
+ ins->mir());
+}
+
+void CodeGenerator::visitWasmBuiltinTruncateDToInt32(
+ LWasmBuiltinTruncateDToInt32* ins) {
+ emitTruncateDouble(ToFloatRegister(ins->getOperand(0)),
+ ToRegister(ins->getDef(0)), ins->mir());
+}
+
+void CodeGenerator::visitTruncateFToInt32(LTruncateFToInt32* ins) {
+ emitTruncateFloat32(ToFloatRegister(ins->input()), ToRegister(ins->output()),
+ ins->mir());
+}
+
+void CodeGenerator::visitWasmBuiltinTruncateFToInt32(
+ LWasmBuiltinTruncateFToInt32* ins) {
+ emitTruncateFloat32(ToFloatRegister(ins->getOperand(0)),
+ ToRegister(ins->getDef(0)), ins->mir());
+}
+
+ValueOperand CodeGeneratorARM::ToValue(LInstruction* ins, size_t pos) {
+ Register typeReg = ToRegister(ins->getOperand(pos + TYPE_INDEX));
+ Register payloadReg = ToRegister(ins->getOperand(pos + PAYLOAD_INDEX));
+ return ValueOperand(typeReg, payloadReg);
+}
+
+ValueOperand CodeGeneratorARM::ToTempValue(LInstruction* ins, size_t pos) {
+ Register typeReg = ToRegister(ins->getTemp(pos + TYPE_INDEX));
+ Register payloadReg = ToRegister(ins->getTemp(pos + PAYLOAD_INDEX));
+ return ValueOperand(typeReg, payloadReg);
+}
+
+void CodeGenerator::visitValue(LValue* value) {
+ const ValueOperand out = ToOutValue(value);
+
+ masm.moveValue(value->value(), out);
+}
+
+void CodeGenerator::visitBox(LBox* box) {
+ const LDefinition* type = box->getDef(TYPE_INDEX);
+
+ MOZ_ASSERT(!box->getOperand(0)->isConstant());
+
+ // On arm, the input operand and the output payload have the same virtual
+ // register. All that needs to be written is the type tag for the type
+ // definition.
+ masm.ma_mov(Imm32(MIRTypeToTag(box->type())), ToRegister(type));
+}
+
+void CodeGenerator::visitBoxFloatingPoint(LBoxFloatingPoint* box) {
+ const AnyRegister in = ToAnyRegister(box->getOperand(0));
+ const ValueOperand out = ToOutValue(box);
+
+ masm.moveValue(TypedOrValueRegister(box->type(), in), out);
+}
+
+void CodeGenerator::visitUnbox(LUnbox* unbox) {
+ // Note that for unbox, the type and payload indexes are switched on the
+ // inputs.
+ MUnbox* mir = unbox->mir();
+ Register type = ToRegister(unbox->type());
+ Register payload = ToRegister(unbox->payload());
+ Register output = ToRegister(unbox->output());
+
+ mozilla::Maybe<ScratchRegisterScope> scratch;
+ scratch.emplace(masm);
+
+ JSValueTag tag = MIRTypeToTag(mir->type());
+ if (mir->fallible()) {
+ masm.ma_cmp(type, Imm32(tag), *scratch);
+ bailoutIf(Assembler::NotEqual, unbox->snapshot());
+ } else {
+#ifdef DEBUG
+ Label ok;
+ masm.ma_cmp(type, Imm32(tag), *scratch);
+ masm.ma_b(&ok, Assembler::Equal);
+ scratch.reset();
+ masm.assumeUnreachable("Infallible unbox type mismatch");
+ masm.bind(&ok);
+#endif
+ }
+
+ // Note: If spectreValueMasking is disabled, then this instruction will
+ // default to a no-op as long as the lowering allocate the same register for
+ // the output and the payload.
+ masm.unboxNonDouble(ValueOperand(type, payload), output,
+ ValueTypeFromMIRType(mir->type()));
+}
+
+void CodeGenerator::visitDouble(LDouble* ins) {
+ const LDefinition* out = ins->getDef(0);
+ masm.loadConstantDouble(ins->value(), ToFloatRegister(out));
+}
+
+void CodeGenerator::visitFloat32(LFloat32* ins) {
+ const LDefinition* out = ins->getDef(0);
+ masm.loadConstantFloat32(ins->value(), ToFloatRegister(out));
+}
+
+void CodeGeneratorARM::splitTagForTest(const ValueOperand& value,
+ ScratchTagScope& tag) {
+ MOZ_ASSERT(value.typeReg() == tag);
+}
+
+void CodeGenerator::visitTestDAndBranch(LTestDAndBranch* test) {
+ const LAllocation* opd = test->input();
+ masm.ma_vcmpz(ToFloatRegister(opd));
+ masm.as_vmrs(pc);
+
+ MBasicBlock* ifTrue = test->ifTrue();
+ MBasicBlock* ifFalse = test->ifFalse();
+ // If the compare set the 0 bit, then the result is definitely false.
+ jumpToBlock(ifFalse, Assembler::Zero);
+ // It is also false if one of the operands is NAN, which is shown as
+ // Overflow.
+ jumpToBlock(ifFalse, Assembler::Overflow);
+ jumpToBlock(ifTrue);
+}
+
+void CodeGenerator::visitTestFAndBranch(LTestFAndBranch* test) {
+ const LAllocation* opd = test->input();
+ masm.ma_vcmpz_f32(ToFloatRegister(opd));
+ masm.as_vmrs(pc);
+
+ MBasicBlock* ifTrue = test->ifTrue();
+ MBasicBlock* ifFalse = test->ifFalse();
+ // If the compare set the 0 bit, then the result is definitely false.
+ jumpToBlock(ifFalse, Assembler::Zero);
+ // It is also false if one of the operands is NAN, which is shown as
+ // Overflow.
+ jumpToBlock(ifFalse, Assembler::Overflow);
+ jumpToBlock(ifTrue);
+}
+
+void CodeGenerator::visitCompareD(LCompareD* comp) {
+ FloatRegister lhs = ToFloatRegister(comp->left());
+ FloatRegister rhs = ToFloatRegister(comp->right());
+
+ Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop());
+ masm.compareDouble(lhs, rhs);
+ masm.emitSet(Assembler::ConditionFromDoubleCondition(cond),
+ ToRegister(comp->output()));
+}
+
+void CodeGenerator::visitCompareF(LCompareF* comp) {
+ FloatRegister lhs = ToFloatRegister(comp->left());
+ FloatRegister rhs = ToFloatRegister(comp->right());
+
+ Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop());
+ masm.compareFloat(lhs, rhs);
+ masm.emitSet(Assembler::ConditionFromDoubleCondition(cond),
+ ToRegister(comp->output()));
+}
+
+void CodeGenerator::visitCompareDAndBranch(LCompareDAndBranch* comp) {
+ FloatRegister lhs = ToFloatRegister(comp->left());
+ FloatRegister rhs = ToFloatRegister(comp->right());
+
+ Assembler::DoubleCondition cond =
+ JSOpToDoubleCondition(comp->cmpMir()->jsop());
+ masm.compareDouble(lhs, rhs);
+ emitBranch(Assembler::ConditionFromDoubleCondition(cond), comp->ifTrue(),
+ comp->ifFalse());
+}
+
+void CodeGenerator::visitCompareFAndBranch(LCompareFAndBranch* comp) {
+ FloatRegister lhs = ToFloatRegister(comp->left());
+ FloatRegister rhs = ToFloatRegister(comp->right());
+
+ Assembler::DoubleCondition cond =
+ JSOpToDoubleCondition(comp->cmpMir()->jsop());
+ masm.compareFloat(lhs, rhs);
+ emitBranch(Assembler::ConditionFromDoubleCondition(cond), comp->ifTrue(),
+ comp->ifFalse());
+}
+
+void CodeGenerator::visitBitAndAndBranch(LBitAndAndBranch* baab) {
+ // LBitAndAndBranch only represents single-word ANDs, hence it can't be
+ // 64-bit here.
+ MOZ_ASSERT(!baab->is64());
+ Register regL = ToRegister(baab->left());
+ if (baab->right()->isConstant()) {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_tst(regL, Imm32(ToInt32(baab->right())), scratch);
+ } else {
+ masm.ma_tst(regL, ToRegister(baab->right()));
+ }
+ emitBranch(baab->cond(), baab->ifTrue(), baab->ifFalse());
+}
+
+void CodeGenerator::visitWasmUint32ToDouble(LWasmUint32ToDouble* lir) {
+ masm.convertUInt32ToDouble(ToRegister(lir->input()),
+ ToFloatRegister(lir->output()));
+}
+
+void CodeGenerator::visitWasmUint32ToFloat32(LWasmUint32ToFloat32* lir) {
+ masm.convertUInt32ToFloat32(ToRegister(lir->input()),
+ ToFloatRegister(lir->output()));
+}
+
+void CodeGenerator::visitNotI(LNotI* ins) {
+ // It is hard to optimize !x, so just do it the basic way for now.
+ masm.as_cmp(ToRegister(ins->input()), Imm8(0));
+ masm.emitSet(Assembler::Equal, ToRegister(ins->output()));
+}
+
+void CodeGenerator::visitNotI64(LNotI64* lir) {
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+ Register output = ToRegister(lir->output());
+
+ masm.ma_orr(input.low, input.high, output);
+ masm.as_cmp(output, Imm8(0));
+ masm.emitSet(Assembler::Equal, output);
+}
+
+void CodeGenerator::visitNotD(LNotD* ins) {
+ // Since this operation is not, we want to set a bit if the double is
+ // falsey, which means 0.0, -0.0 or NaN. When comparing with 0, an input of
+ // 0 will set the Z bit (30) and NaN will set the V bit (28) of the APSR.
+ FloatRegister opd = ToFloatRegister(ins->input());
+ Register dest = ToRegister(ins->output());
+
+ // Do the compare.
+ masm.ma_vcmpz(opd);
+ // TODO There are three variations here to compare performance-wise.
+ bool nocond = true;
+ if (nocond) {
+ // Load the value into the dest register.
+ masm.as_vmrs(dest);
+ masm.ma_lsr(Imm32(28), dest, dest);
+ // 28 + 2 = 30
+ masm.ma_alu(dest, lsr(dest, 2), dest, OpOrr);
+ masm.as_and(dest, dest, Imm8(1));
+ } else {
+ masm.as_vmrs(pc);
+ masm.ma_mov(Imm32(0), dest);
+ masm.ma_mov(Imm32(1), dest, Assembler::Equal);
+ masm.ma_mov(Imm32(1), dest, Assembler::Overflow);
+ }
+}
+
+void CodeGenerator::visitNotF(LNotF* ins) {
+ // Since this operation is not, we want to set a bit if the double is
+ // falsey, which means 0.0, -0.0 or NaN. When comparing with 0, an input of
+ // 0 will set the Z bit (30) and NaN will set the V bit (28) of the APSR.
+ FloatRegister opd = ToFloatRegister(ins->input());
+ Register dest = ToRegister(ins->output());
+
+ // Do the compare.
+ masm.ma_vcmpz_f32(opd);
+ // TODO There are three variations here to compare performance-wise.
+ bool nocond = true;
+ if (nocond) {
+ // Load the value into the dest register.
+ masm.as_vmrs(dest);
+ masm.ma_lsr(Imm32(28), dest, dest);
+ // 28 + 2 = 30
+ masm.ma_alu(dest, lsr(dest, 2), dest, OpOrr);
+ masm.as_and(dest, dest, Imm8(1));
+ } else {
+ masm.as_vmrs(pc);
+ masm.ma_mov(Imm32(0), dest);
+ masm.ma_mov(Imm32(1), dest, Assembler::Equal);
+ masm.ma_mov(Imm32(1), dest, Assembler::Overflow);
+ }
+}
+
+void CodeGeneratorARM::generateInvalidateEpilogue() {
+ // Ensure that there is enough space in the buffer for the OsiPoint patching
+ // to occur. Otherwise, we could overwrite the invalidation epilogue.
+ for (size_t i = 0; i < sizeof(void*); i += Assembler::NopSize()) {
+ masm.nop();
+ }
+
+ masm.bind(&invalidate_);
+
+ // Push the return address of the point that we bailed out at onto the stack.
+ masm.Push(lr);
+
+ // Push the Ion script onto the stack (when we determine what that pointer
+ // is).
+ invalidateEpilogueData_ = masm.pushWithPatch(ImmWord(uintptr_t(-1)));
+
+ // Jump to the invalidator which will replace the current frame.
+ TrampolinePtr thunk = gen->jitRuntime()->getInvalidationThunk();
+ masm.jump(thunk);
+}
+
+void CodeGenerator::visitCompareExchangeTypedArrayElement(
+ LCompareExchangeTypedArrayElement* lir) {
+ Register elements = ToRegister(lir->elements());
+ AnyRegister output = ToAnyRegister(lir->output());
+ Register temp =
+ lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp());
+
+ Register oldval = ToRegister(lir->oldval());
+ Register newval = ToRegister(lir->newval());
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), arrayType);
+ masm.compareExchangeJS(arrayType, Synchronization::Full(), dest, oldval,
+ newval, temp, output);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(arrayType));
+ masm.compareExchangeJS(arrayType, Synchronization::Full(), dest, oldval,
+ newval, temp, output);
+ }
+}
+
+void CodeGenerator::visitAtomicExchangeTypedArrayElement(
+ LAtomicExchangeTypedArrayElement* lir) {
+ Register elements = ToRegister(lir->elements());
+ AnyRegister output = ToAnyRegister(lir->output());
+ Register temp =
+ lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp());
+
+ Register value = ToRegister(lir->value());
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), arrayType);
+ masm.atomicExchangeJS(arrayType, Synchronization::Full(), dest, value, temp,
+ output);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(arrayType));
+ masm.atomicExchangeJS(arrayType, Synchronization::Full(), dest, value, temp,
+ output);
+ }
+}
+
+void CodeGenerator::visitAtomicTypedArrayElementBinop(
+ LAtomicTypedArrayElementBinop* lir) {
+ MOZ_ASSERT(!lir->mir()->isForEffect());
+
+ AnyRegister output = ToAnyRegister(lir->output());
+ Register elements = ToRegister(lir->elements());
+ Register flagTemp = ToRegister(lir->temp1());
+ Register outTemp =
+ lir->temp2()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp2());
+ Register value = ToRegister(lir->value());
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+
+ if (lir->index()->isConstant()) {
+ Address mem = ToAddress(elements, lir->index(), arrayType);
+ masm.atomicFetchOpJS(arrayType, Synchronization::Full(),
+ lir->mir()->operation(), value, mem, flagTemp, outTemp,
+ output);
+ } else {
+ BaseIndex mem(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(arrayType));
+ masm.atomicFetchOpJS(arrayType, Synchronization::Full(),
+ lir->mir()->operation(), value, mem, flagTemp, outTemp,
+ output);
+ }
+}
+
+void CodeGenerator::visitAtomicTypedArrayElementBinopForEffect(
+ LAtomicTypedArrayElementBinopForEffect* lir) {
+ MOZ_ASSERT(lir->mir()->isForEffect());
+
+ Register elements = ToRegister(lir->elements());
+ Register flagTemp = ToRegister(lir->flagTemp());
+ Register value = ToRegister(lir->value());
+ Scalar::Type arrayType = lir->mir()->arrayType();
+
+ if (lir->index()->isConstant()) {
+ Address mem = ToAddress(elements, lir->index(), arrayType);
+ masm.atomicEffectOpJS(arrayType, Synchronization::Full(),
+ lir->mir()->operation(), value, mem, flagTemp);
+ } else {
+ BaseIndex mem(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(arrayType));
+ masm.atomicEffectOpJS(arrayType, Synchronization::Full(),
+ lir->mir()->operation(), value, mem, flagTemp);
+ }
+}
+
+void CodeGenerator::visitAtomicLoad64(LAtomicLoad64* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register temp = ToRegister(lir->temp());
+ Register64 temp64 = ToRegister64(lir->temp64());
+ Register out = ToRegister(lir->output());
+
+ const MLoadUnboxedScalar* mir = lir->mir();
+
+ Scalar::Type storageType = mir->storageType();
+
+ if (lir->index()->isConstant()) {
+ Address source =
+ ToAddress(elements, lir->index(), storageType, mir->offsetAdjustment());
+ masm.atomicLoad64(Synchronization::Load(), source, temp64);
+ } else {
+ BaseIndex source(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(storageType), mir->offsetAdjustment());
+ masm.atomicLoad64(Synchronization::Load(), source, temp64);
+ }
+
+ emitCreateBigInt(lir, storageType, temp64, out, temp);
+}
+
+void CodeGenerator::visitAtomicStore64(LAtomicStore64* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register value = ToRegister(lir->value());
+ Register64 temp1 = ToRegister64(lir->temp1());
+ Register64 temp2 = ToRegister64(lir->temp2());
+
+ Scalar::Type writeType = lir->mir()->writeType();
+
+ masm.loadBigInt64(value, temp1);
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), writeType);
+ masm.atomicStore64(Synchronization::Store(), dest, temp1, temp2);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(writeType));
+ masm.atomicStore64(Synchronization::Store(), dest, temp1, temp2);
+ }
+}
+
+void CodeGenerator::visitCompareExchangeTypedArrayElement64(
+ LCompareExchangeTypedArrayElement64* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register oldval = ToRegister(lir->oldval());
+ Register newval = ToRegister(lir->newval());
+ Register64 temp1 = ToRegister64(lir->temp1());
+ Register64 temp2 = ToRegister64(lir->temp2());
+ Register64 temp3 = ToRegister64(lir->temp3());
+ Register out = ToRegister(lir->output());
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+
+ masm.loadBigInt64(oldval, temp1);
+ masm.loadBigInt64(newval, temp2);
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), arrayType);
+ masm.compareExchange64(Synchronization::Full(), dest, temp1, temp2, temp3);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(arrayType));
+ masm.compareExchange64(Synchronization::Full(), dest, temp1, temp2, temp3);
+ }
+
+ emitCreateBigInt(lir, arrayType, temp3, out, temp1.scratchReg());
+}
+
+void CodeGenerator::visitAtomicExchangeTypedArrayElement64(
+ LAtomicExchangeTypedArrayElement64* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register value = ToRegister(lir->value());
+ Register64 temp1 = ToRegister64(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+ Register out = ToRegister(lir->output());
+ Register64 temp64 = Register64(temp2, out);
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+
+ masm.loadBigInt64(value, temp64);
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), arrayType);
+ masm.atomicExchange64(Synchronization::Full(), dest, temp64, temp1);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(arrayType));
+ masm.atomicExchange64(Synchronization::Full(), dest, temp64, temp1);
+ }
+
+ emitCreateBigInt(lir, arrayType, temp1, out, temp2);
+}
+
+void CodeGenerator::visitAtomicTypedArrayElementBinop64(
+ LAtomicTypedArrayElementBinop64* lir) {
+ MOZ_ASSERT(!lir->mir()->isForEffect());
+
+ Register elements = ToRegister(lir->elements());
+ Register value = ToRegister(lir->value());
+ Register64 temp1 = ToRegister64(lir->temp1());
+ Register64 temp2 = ToRegister64(lir->temp2());
+ Register64 temp3 = ToRegister64(lir->temp3());
+ Register out = ToRegister(lir->output());
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+ AtomicOp atomicOp = lir->mir()->operation();
+
+ masm.loadBigInt64(value, temp1);
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), arrayType);
+ masm.atomicFetchOp64(Synchronization::Full(), atomicOp, temp1, dest, temp2,
+ temp3);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(arrayType));
+ masm.atomicFetchOp64(Synchronization::Full(), atomicOp, temp1, dest, temp2,
+ temp3);
+ }
+
+ emitCreateBigInt(lir, arrayType, temp3, out, temp2.scratchReg());
+}
+
+void CodeGenerator::visitAtomicTypedArrayElementBinopForEffect64(
+ LAtomicTypedArrayElementBinopForEffect64* lir) {
+ MOZ_ASSERT(lir->mir()->isForEffect());
+
+ Register elements = ToRegister(lir->elements());
+ Register value = ToRegister(lir->value());
+ Register64 temp1 = ToRegister64(lir->temp1());
+ Register64 temp2 = ToRegister64(lir->temp2());
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+ AtomicOp atomicOp = lir->mir()->operation();
+
+ masm.loadBigInt64(value, temp1);
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), arrayType);
+ masm.atomicEffectOp64(Synchronization::Full(), atomicOp, temp1, dest,
+ temp2);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(arrayType));
+ masm.atomicEffectOp64(Synchronization::Full(), atomicOp, temp1, dest,
+ temp2);
+ }
+}
+
+void CodeGenerator::visitWasmSelect(LWasmSelect* ins) {
+ MIRType mirType = ins->mir()->type();
+
+ Register cond = ToRegister(ins->condExpr());
+ masm.as_cmp(cond, Imm8(0));
+
+ if (mirType == MIRType::Int32 || mirType == MIRType::RefOrNull) {
+ Register falseExpr = ToRegister(ins->falseExpr());
+ Register out = ToRegister(ins->output());
+ MOZ_ASSERT(ToRegister(ins->trueExpr()) == out,
+ "true expr input is reused for output");
+ masm.ma_mov(falseExpr, out, LeaveCC, Assembler::Zero);
+ return;
+ }
+
+ FloatRegister out = ToFloatRegister(ins->output());
+ MOZ_ASSERT(ToFloatRegister(ins->trueExpr()) == out,
+ "true expr input is reused for output");
+
+ FloatRegister falseExpr = ToFloatRegister(ins->falseExpr());
+
+ if (mirType == MIRType::Double) {
+ masm.moveDouble(falseExpr, out, Assembler::Zero);
+ } else if (mirType == MIRType::Float32) {
+ masm.moveFloat32(falseExpr, out, Assembler::Zero);
+ } else {
+ MOZ_CRASH("unhandled type in visitWasmSelect!");
+ }
+}
+
+// We expect to handle only the case where compare is {U,}Int32 and select is
+// {U,}Int32, and the "true" input is reused for the output.
+void CodeGenerator::visitWasmCompareAndSelect(LWasmCompareAndSelect* ins) {
+ bool cmpIs32bit = ins->compareType() == MCompare::Compare_Int32 ||
+ ins->compareType() == MCompare::Compare_UInt32;
+ bool selIs32bit = ins->mir()->type() == MIRType::Int32;
+
+ MOZ_RELEASE_ASSERT(
+ cmpIs32bit && selIs32bit,
+ "CodeGenerator::visitWasmCompareAndSelect: unexpected types");
+
+ Register trueExprAndDest = ToRegister(ins->output());
+ MOZ_ASSERT(ToRegister(ins->ifTrueExpr()) == trueExprAndDest,
+ "true expr input is reused for output");
+
+ Assembler::Condition cond = Assembler::InvertCondition(
+ JSOpToCondition(ins->compareType(), ins->jsop()));
+ const LAllocation* rhs = ins->rightExpr();
+ const LAllocation* falseExpr = ins->ifFalseExpr();
+ Register lhs = ToRegister(ins->leftExpr());
+
+ masm.cmp32Move32(cond, lhs, ToRegister(rhs), ToRegister(falseExpr),
+ trueExprAndDest);
+}
+
+void CodeGenerator::visitWasmReinterpret(LWasmReinterpret* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+ MWasmReinterpret* ins = lir->mir();
+
+ MIRType to = ins->type();
+ DebugOnly<MIRType> from = ins->input()->type();
+
+ switch (to) {
+ case MIRType::Int32:
+ MOZ_ASSERT(static_cast<MIRType>(from) == MIRType::Float32);
+ masm.ma_vxfer(ToFloatRegister(lir->input()), ToRegister(lir->output()));
+ break;
+ case MIRType::Float32:
+ MOZ_ASSERT(static_cast<MIRType>(from) == MIRType::Int32);
+ masm.ma_vxfer(ToRegister(lir->input()), ToFloatRegister(lir->output()));
+ break;
+ case MIRType::Double:
+ case MIRType::Int64:
+ MOZ_CRASH("not handled by this LIR opcode");
+ default:
+ MOZ_CRASH("unexpected WasmReinterpret");
+ }
+}
+
+void CodeGenerator::visitAsmJSLoadHeap(LAsmJSLoadHeap* ins) {
+ const MAsmJSLoadHeap* mir = ins->mir();
+
+ const LAllocation* ptr = ins->ptr();
+ const LAllocation* boundsCheckLimit = ins->boundsCheckLimit();
+
+ bool isSigned;
+ int size;
+ bool isFloat = false;
+ switch (mir->accessType()) {
+ case Scalar::Int8:
+ isSigned = true;
+ size = 8;
+ break;
+ case Scalar::Uint8:
+ isSigned = false;
+ size = 8;
+ break;
+ case Scalar::Int16:
+ isSigned = true;
+ size = 16;
+ break;
+ case Scalar::Uint16:
+ isSigned = false;
+ size = 16;
+ break;
+ case Scalar::Int32:
+ case Scalar::Uint32:
+ isSigned = true;
+ size = 32;
+ break;
+ case Scalar::Float64:
+ isFloat = true;
+ size = 64;
+ break;
+ case Scalar::Float32:
+ isFloat = true;
+ size = 32;
+ break;
+ default:
+ MOZ_CRASH("unexpected array type");
+ }
+
+ if (ptr->isConstant()) {
+ MOZ_ASSERT(!mir->needsBoundsCheck());
+ int32_t ptrImm = ptr->toConstant()->toInt32();
+ MOZ_ASSERT(ptrImm >= 0);
+ if (isFloat) {
+ ScratchRegisterScope scratch(masm);
+ VFPRegister vd(ToFloatRegister(ins->output()));
+ if (size == 32) {
+ masm.ma_vldr(Address(HeapReg, ptrImm), vd.singleOverlay(), scratch,
+ Assembler::Always);
+ } else {
+ masm.ma_vldr(Address(HeapReg, ptrImm), vd, scratch, Assembler::Always);
+ }
+ } else {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_dataTransferN(IsLoad, size, isSigned, HeapReg, Imm32(ptrImm),
+ ToRegister(ins->output()), scratch, Offset,
+ Assembler::Always);
+ }
+ } else {
+ Register ptrReg = ToRegister(ptr);
+ if (isFloat) {
+ FloatRegister output = ToFloatRegister(ins->output());
+ if (size == 32) {
+ output = output.singleOverlay();
+ }
+
+ Assembler::Condition cond = Assembler::Always;
+ if (mir->needsBoundsCheck()) {
+ Register boundsCheckLimitReg = ToRegister(boundsCheckLimit);
+ masm.as_cmp(ptrReg, O2Reg(boundsCheckLimitReg));
+ if (size == 32) {
+ masm.ma_vimm_f32(GenericNaN(), output, Assembler::AboveOrEqual);
+ } else {
+ masm.ma_vimm(GenericNaN(), output, Assembler::AboveOrEqual);
+ }
+ cond = Assembler::Below;
+ }
+
+ ScratchRegisterScope scratch(masm);
+ masm.ma_vldr(output, HeapReg, ptrReg, scratch, 0, cond);
+ } else {
+ Register output = ToRegister(ins->output());
+
+ Assembler::Condition cond = Assembler::Always;
+ if (mir->needsBoundsCheck()) {
+ Register boundsCheckLimitReg = ToRegister(boundsCheckLimit);
+ masm.as_cmp(ptrReg, O2Reg(boundsCheckLimitReg));
+ masm.ma_mov(Imm32(0), output, Assembler::AboveOrEqual);
+ cond = Assembler::Below;
+ }
+
+ ScratchRegisterScope scratch(masm);
+ masm.ma_dataTransferN(IsLoad, size, isSigned, HeapReg, ptrReg, output,
+ scratch, Offset, cond);
+ }
+ }
+}
+
+void CodeGenerator::visitWasmHeapBase(LWasmHeapBase* ins) {
+ MOZ_ASSERT(ins->instance()->isBogus());
+ masm.movePtr(HeapReg, ToRegister(ins->output()));
+}
+
+template <typename T>
+void CodeGeneratorARM::emitWasmLoad(T* lir) {
+ const MWasmLoad* mir = lir->mir();
+ MIRType resultType = mir->type();
+ Register ptr;
+
+ if (mir->access().offset() || mir->access().type() == Scalar::Int64) {
+ ptr = ToRegister(lir->ptrCopy());
+ } else {
+ MOZ_ASSERT(lir->ptrCopy()->isBogusTemp());
+ ptr = ToRegister(lir->ptr());
+ }
+
+ if (resultType == MIRType::Int64) {
+ masm.wasmLoadI64(mir->access(), HeapReg, ptr, ptr, ToOutRegister64(lir));
+ } else {
+ masm.wasmLoad(mir->access(), HeapReg, ptr, ptr,
+ ToAnyRegister(lir->output()));
+ }
+}
+
+void CodeGenerator::visitWasmLoad(LWasmLoad* lir) { emitWasmLoad(lir); }
+
+void CodeGenerator::visitWasmLoadI64(LWasmLoadI64* lir) { emitWasmLoad(lir); }
+
+void CodeGenerator::visitWasmAddOffset(LWasmAddOffset* lir) {
+ MWasmAddOffset* mir = lir->mir();
+ Register base = ToRegister(lir->base());
+ Register out = ToRegister(lir->output());
+
+ ScratchRegisterScope scratch(masm);
+ masm.ma_add(base, Imm32(mir->offset()), out, scratch, SetCC);
+ OutOfLineAbortingWasmTrap* ool = new (alloc())
+ OutOfLineAbortingWasmTrap(mir->bytecodeOffset(), wasm::Trap::OutOfBounds);
+ addOutOfLineCode(ool, mir);
+ masm.ma_b(ool->entry(), Assembler::CarrySet);
+}
+
+void CodeGenerator::visitWasmAddOffset64(LWasmAddOffset64* lir) {
+ MWasmAddOffset* mir = lir->mir();
+ Register64 base = ToRegister64(lir->base());
+ Register64 out = ToOutRegister64(lir);
+ MOZ_ASSERT(base.low != out.high && base.high != out.low);
+
+ ScratchRegisterScope scratch(masm);
+ masm.ma_add(base.low, Imm32(mir->offset()), out.low, scratch, SetCC);
+ masm.ma_adc(base.high, Imm32(mir->offset() >> 32), out.high, scratch, SetCC);
+ OutOfLineAbortingWasmTrap* ool = new (alloc())
+ OutOfLineAbortingWasmTrap(mir->bytecodeOffset(), wasm::Trap::OutOfBounds);
+ addOutOfLineCode(ool, mir);
+ masm.ma_b(ool->entry(), Assembler::CarrySet);
+}
+
+template <typename T>
+void CodeGeneratorARM::emitWasmStore(T* lir) {
+ const MWasmStore* mir = lir->mir();
+ Scalar::Type accessType = mir->access().type();
+ Register ptr;
+
+ // Maybe add the offset.
+ if (mir->access().offset() || accessType == Scalar::Int64) {
+ ptr = ToRegister(lir->ptrCopy());
+ } else {
+ MOZ_ASSERT(lir->ptrCopy()->isBogusTemp());
+ ptr = ToRegister(lir->ptr());
+ }
+
+ if (accessType == Scalar::Int64) {
+ masm.wasmStoreI64(mir->access(),
+ ToRegister64(lir->getInt64Operand(lir->ValueIndex)),
+ HeapReg, ptr, ptr);
+ } else {
+ masm.wasmStore(mir->access(),
+ ToAnyRegister(lir->getOperand(lir->ValueIndex)), HeapReg,
+ ptr, ptr);
+ }
+}
+
+void CodeGenerator::visitWasmStore(LWasmStore* lir) { emitWasmStore(lir); }
+
+void CodeGenerator::visitWasmStoreI64(LWasmStoreI64* lir) {
+ emitWasmStore(lir);
+}
+
+void CodeGenerator::visitAsmJSStoreHeap(LAsmJSStoreHeap* ins) {
+ const MAsmJSStoreHeap* mir = ins->mir();
+
+ const LAllocation* ptr = ins->ptr();
+ const LAllocation* boundsCheckLimit = ins->boundsCheckLimit();
+
+ bool isSigned;
+ int size;
+ bool isFloat = false;
+ switch (mir->accessType()) {
+ case Scalar::Int8:
+ case Scalar::Uint8:
+ isSigned = false;
+ size = 8;
+ break;
+ case Scalar::Int16:
+ case Scalar::Uint16:
+ isSigned = false;
+ size = 16;
+ break;
+ case Scalar::Int32:
+ case Scalar::Uint32:
+ isSigned = true;
+ size = 32;
+ break;
+ case Scalar::Float64:
+ isFloat = true;
+ size = 64;
+ break;
+ case Scalar::Float32:
+ isFloat = true;
+ size = 32;
+ break;
+ default:
+ MOZ_CRASH("unexpected array type");
+ }
+
+ if (ptr->isConstant()) {
+ MOZ_ASSERT(!mir->needsBoundsCheck());
+ int32_t ptrImm = ptr->toConstant()->toInt32();
+ MOZ_ASSERT(ptrImm >= 0);
+ if (isFloat) {
+ VFPRegister vd(ToFloatRegister(ins->value()));
+ Address addr(HeapReg, ptrImm);
+ if (size == 32) {
+ masm.storeFloat32(vd, addr);
+ } else {
+ masm.storeDouble(vd, addr);
+ }
+ } else {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_dataTransferN(IsStore, size, isSigned, HeapReg, Imm32(ptrImm),
+ ToRegister(ins->value()), scratch, Offset,
+ Assembler::Always);
+ }
+ } else {
+ Register ptrReg = ToRegister(ptr);
+
+ Assembler::Condition cond = Assembler::Always;
+ if (mir->needsBoundsCheck()) {
+ Register boundsCheckLimitReg = ToRegister(boundsCheckLimit);
+ masm.as_cmp(ptrReg, O2Reg(boundsCheckLimitReg));
+ cond = Assembler::Below;
+ }
+
+ if (isFloat) {
+ ScratchRegisterScope scratch(masm);
+ FloatRegister value = ToFloatRegister(ins->value());
+ if (size == 32) {
+ value = value.singleOverlay();
+ }
+
+ masm.ma_vstr(value, HeapReg, ptrReg, scratch, 0, Assembler::Below);
+ } else {
+ ScratchRegisterScope scratch(masm);
+ Register value = ToRegister(ins->value());
+ masm.ma_dataTransferN(IsStore, size, isSigned, HeapReg, ptrReg, value,
+ scratch, Offset, cond);
+ }
+ }
+}
+
+void CodeGenerator::visitWasmCompareExchangeHeap(
+ LWasmCompareExchangeHeap* ins) {
+ MWasmCompareExchangeHeap* mir = ins->mir();
+
+ const LAllocation* ptr = ins->ptr();
+ Register ptrReg = ToRegister(ptr);
+ BaseIndex srcAddr(HeapReg, ptrReg, TimesOne, mir->access().offset());
+
+ MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
+
+ Register oldval = ToRegister(ins->oldValue());
+ Register newval = ToRegister(ins->newValue());
+ Register out = ToRegister(ins->output());
+
+ masm.wasmCompareExchange(mir->access(), srcAddr, oldval, newval, out);
+}
+
+void CodeGenerator::visitWasmAtomicExchangeHeap(LWasmAtomicExchangeHeap* ins) {
+ MWasmAtomicExchangeHeap* mir = ins->mir();
+
+ Register ptrReg = ToRegister(ins->ptr());
+ Register value = ToRegister(ins->value());
+ Register output = ToRegister(ins->output());
+ BaseIndex srcAddr(HeapReg, ptrReg, TimesOne, mir->access().offset());
+ MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
+
+ masm.wasmAtomicExchange(mir->access(), srcAddr, value, output);
+}
+
+void CodeGenerator::visitWasmAtomicBinopHeap(LWasmAtomicBinopHeap* ins) {
+ MWasmAtomicBinopHeap* mir = ins->mir();
+ MOZ_ASSERT(mir->hasUses());
+
+ Register ptrReg = ToRegister(ins->ptr());
+ Register flagTemp = ToRegister(ins->flagTemp());
+ Register output = ToRegister(ins->output());
+ const LAllocation* value = ins->value();
+ AtomicOp op = mir->operation();
+ MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
+
+ BaseIndex srcAddr(HeapReg, ptrReg, TimesOne, mir->access().offset());
+ masm.wasmAtomicFetchOp(mir->access(), op, ToRegister(value), srcAddr,
+ flagTemp, output);
+}
+
+void CodeGenerator::visitWasmAtomicBinopHeapForEffect(
+ LWasmAtomicBinopHeapForEffect* ins) {
+ MWasmAtomicBinopHeap* mir = ins->mir();
+ MOZ_ASSERT(!mir->hasUses());
+
+ Register ptrReg = ToRegister(ins->ptr());
+ Register flagTemp = ToRegister(ins->flagTemp());
+ const LAllocation* value = ins->value();
+ AtomicOp op = mir->operation();
+ MOZ_ASSERT(ins->addrTemp()->isBogusTemp());
+
+ BaseIndex srcAddr(HeapReg, ptrReg, TimesOne, mir->access().offset());
+ masm.wasmAtomicEffectOp(mir->access(), op, ToRegister(value), srcAddr,
+ flagTemp);
+}
+
+void CodeGenerator::visitWasmStackArg(LWasmStackArg* ins) {
+ const MWasmStackArg* mir = ins->mir();
+ Address dst(StackPointer, mir->spOffset());
+ ScratchRegisterScope scratch(masm);
+ SecondScratchRegisterScope scratch2(masm);
+
+ if (ins->arg()->isConstant()) {
+ masm.ma_mov(Imm32(ToInt32(ins->arg())), scratch);
+ masm.ma_str(scratch, dst, scratch2);
+ } else {
+ if (ins->arg()->isGeneralReg()) {
+ masm.ma_str(ToRegister(ins->arg()), dst, scratch);
+ } else {
+ masm.ma_vstr(ToFloatRegister(ins->arg()), dst, scratch);
+ }
+ }
+}
+
+void CodeGenerator::visitUDiv(LUDiv* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register output = ToRegister(ins->output());
+
+ Label done;
+ generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), ins->mir());
+
+ masm.ma_udiv(lhs, rhs, output);
+
+ // Check for large unsigned result - represent as double.
+ if (!ins->mir()->isTruncated()) {
+ MOZ_ASSERT(ins->mir()->fallible());
+ masm.as_cmp(output, Imm8(0));
+ bailoutIf(Assembler::LessThan, ins->snapshot());
+ }
+
+ // Check for non-zero remainder if not truncating to int.
+ if (!ins->mir()->canTruncateRemainder()) {
+ MOZ_ASSERT(ins->mir()->fallible());
+ {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_mul(rhs, output, scratch);
+ masm.ma_cmp(scratch, lhs);
+ }
+ bailoutIf(Assembler::NotEqual, ins->snapshot());
+ }
+
+ if (done.used()) {
+ masm.bind(&done);
+ }
+}
+
+void CodeGenerator::visitUMod(LUMod* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register output = ToRegister(ins->output());
+
+ Label done;
+ generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), ins->mir());
+
+ {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_umod(lhs, rhs, output, scratch);
+ }
+
+ // Check for large unsigned result - represent as double.
+ if (!ins->mir()->isTruncated()) {
+ MOZ_ASSERT(ins->mir()->fallible());
+ masm.as_cmp(output, Imm8(0));
+ bailoutIf(Assembler::LessThan, ins->snapshot());
+ }
+
+ if (done.used()) {
+ masm.bind(&done);
+ }
+}
+
+template <class T>
+void CodeGeneratorARM::generateUDivModZeroCheck(Register rhs, Register output,
+ Label* done,
+ LSnapshot* snapshot, T* mir) {
+ if (!mir) {
+ return;
+ }
+ if (mir->canBeDivideByZero()) {
+ masm.as_cmp(rhs, Imm8(0));
+ if (mir->isTruncated()) {
+ if (mir->trapOnError()) {
+ Label nonZero;
+ masm.ma_b(&nonZero, Assembler::NotEqual);
+ masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
+ masm.bind(&nonZero);
+ } else {
+ Label skip;
+ masm.ma_b(&skip, Assembler::NotEqual);
+ // Infinity|0 == 0
+ masm.ma_mov(Imm32(0), output);
+ masm.ma_b(done);
+ masm.bind(&skip);
+ }
+ } else {
+ // Bailout for divide by zero
+ MOZ_ASSERT(mir->fallible());
+ bailoutIf(Assembler::Equal, snapshot);
+ }
+ }
+}
+
+void CodeGenerator::visitSoftUDivOrMod(LSoftUDivOrMod* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register output = ToRegister(ins->output());
+
+ MOZ_ASSERT(lhs == r0);
+ MOZ_ASSERT(rhs == r1);
+ MOZ_ASSERT(output == r0);
+
+ Label done;
+ MDiv* div = ins->mir()->isDiv() ? ins->mir()->toDiv() : nullptr;
+ MMod* mod = !div ? ins->mir()->toMod() : nullptr;
+
+ generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), div);
+ generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), mod);
+
+ if (gen->compilingWasm()) {
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+ masm.setupWasmABICall();
+ masm.passABIArg(lhs);
+ masm.passABIArg(rhs);
+ wasm::BytecodeOffset bytecodeOffset =
+ (div ? div->bytecodeOffset() : mod->bytecodeOffset());
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ masm.callWithABI(bytecodeOffset, wasm::SymbolicAddress::aeabi_uidivmod,
+ mozilla::Some(instanceOffset));
+ masm.Pop(InstanceReg);
+ } else {
+ using Fn = int64_t (*)(int, int);
+ masm.setupAlignedABICall();
+ masm.passABIArg(lhs);
+ masm.passABIArg(rhs);
+ masm.callWithABI<Fn, __aeabi_uidivmod>(
+ MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);
+ }
+
+ if (mod) {
+ MOZ_ASSERT(output == r0, "output should not be r1 for mod");
+ masm.move32(r1, output);
+ }
+
+ // uidivmod returns the quotient in r0, and the remainder in r1.
+ if (div && !div->canTruncateRemainder()) {
+ MOZ_ASSERT(div->fallible());
+ masm.as_cmp(r1, Imm8(0));
+ bailoutIf(Assembler::NonZero, ins->snapshot());
+ }
+
+ // Bailout for big unsigned results
+ if ((div && !div->isTruncated()) || (mod && !mod->isTruncated())) {
+ DebugOnly<bool> isFallible =
+ (div && div->fallible()) || (mod && mod->fallible());
+ MOZ_ASSERT(isFallible);
+ masm.as_cmp(output, Imm8(0));
+ bailoutIf(Assembler::LessThan, ins->snapshot());
+ }
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitEffectiveAddress(LEffectiveAddress* ins) {
+ const MEffectiveAddress* mir = ins->mir();
+ Register base = ToRegister(ins->base());
+ Register index = ToRegister(ins->index());
+ Register output = ToRegister(ins->output());
+
+ ScratchRegisterScope scratch(masm);
+
+ masm.as_add(output, base, lsl(index, mir->scale()));
+ masm.ma_add(Imm32(mir->displacement()), output, scratch);
+}
+
+void CodeGenerator::visitNegI(LNegI* ins) {
+ Register input = ToRegister(ins->input());
+ masm.ma_neg(input, ToRegister(ins->output()));
+}
+
+void CodeGenerator::visitNegI64(LNegI64* ins) {
+ Register64 input = ToRegister64(ins->getInt64Operand(0));
+ MOZ_ASSERT(input == ToOutRegister64(ins));
+ masm.neg64(input);
+}
+
+void CodeGenerator::visitNegD(LNegD* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ masm.ma_vneg(input, ToFloatRegister(ins->output()));
+}
+
+void CodeGenerator::visitNegF(LNegF* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ masm.ma_vneg_f32(input, ToFloatRegister(ins->output()));
+}
+
+void CodeGenerator::visitMemoryBarrier(LMemoryBarrier* ins) {
+ masm.memoryBarrier(ins->type());
+}
+
+void CodeGenerator::visitWasmTruncateToInt32(LWasmTruncateToInt32* lir) {
+ auto input = ToFloatRegister(lir->input());
+ auto output = ToRegister(lir->output());
+
+ MWasmTruncateToInt32* mir = lir->mir();
+ MIRType fromType = mir->input()->type();
+
+ OutOfLineWasmTruncateCheck* ool = nullptr;
+ Label* oolEntry = nullptr;
+ if (!lir->mir()->isSaturating()) {
+ ool = new (alloc())
+ OutOfLineWasmTruncateCheck(mir, input, Register::Invalid());
+ addOutOfLineCode(ool, mir);
+ oolEntry = ool->entry();
+ }
+
+ masm.wasmTruncateToInt32(input, output, fromType, mir->isUnsigned(),
+ mir->isSaturating(), oolEntry);
+
+ if (!lir->mir()->isSaturating()) {
+ masm.bind(ool->rejoin());
+ }
+}
+
+void CodeGenerator::visitWasmTruncateToInt64(LWasmTruncateToInt64* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+ MOZ_ASSERT(ToRegister(lir->instance()) == InstanceReg);
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+
+ FloatRegister input = ToFloatRegister(lir->input());
+ FloatRegister inputDouble = input;
+ Register64 output = ToOutRegister64(lir);
+
+ MWasmBuiltinTruncateToInt64* mir = lir->mir();
+ MIRType fromType = mir->input()->type();
+
+ OutOfLineWasmTruncateCheck* ool = nullptr;
+ if (!lir->mir()->isSaturating()) {
+ ool = new (alloc())
+ OutOfLineWasmTruncateCheck(mir, input, Register64::Invalid());
+ addOutOfLineCode(ool, mir);
+ }
+
+ ScratchDoubleScope fpscratch(masm);
+ if (fromType == MIRType::Float32) {
+ inputDouble = fpscratch;
+ masm.convertFloat32ToDouble(input, inputDouble);
+ }
+
+ masm.Push(input);
+
+ masm.setupWasmABICall();
+ masm.passABIArg(inputDouble, MoveOp::DOUBLE);
+
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ if (lir->mir()->isSaturating()) {
+ if (lir->mir()->isUnsigned()) {
+ masm.callWithABI(mir->bytecodeOffset(),
+ wasm::SymbolicAddress::SaturatingTruncateDoubleToUint64,
+ mozilla::Some(instanceOffset));
+ } else {
+ masm.callWithABI(mir->bytecodeOffset(),
+ wasm::SymbolicAddress::SaturatingTruncateDoubleToInt64,
+ mozilla::Some(instanceOffset));
+ }
+ } else {
+ if (lir->mir()->isUnsigned()) {
+ masm.callWithABI(mir->bytecodeOffset(),
+ wasm::SymbolicAddress::TruncateDoubleToUint64,
+ mozilla::Some(instanceOffset));
+ } else {
+ masm.callWithABI(mir->bytecodeOffset(),
+ wasm::SymbolicAddress::TruncateDoubleToInt64,
+ mozilla::Some(instanceOffset));
+ }
+ }
+
+ masm.Pop(input);
+ masm.Pop(InstanceReg);
+
+ // TruncateDoubleTo{UI,I}nt64 returns 0x8000000000000000 to indicate
+ // exceptional results, so check for that and produce the appropriate
+ // traps. The Saturating form always returns a normal value and never
+ // needs traps.
+ if (!lir->mir()->isSaturating()) {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_cmp(output.high, Imm32(0x80000000), scratch);
+ masm.as_cmp(output.low, Imm8(0x00000000), Assembler::Equal);
+ masm.ma_b(ool->entry(), Assembler::Equal);
+
+ masm.bind(ool->rejoin());
+ }
+
+ MOZ_ASSERT(ReturnReg64 == output);
+}
+
+void CodeGeneratorARM::visitOutOfLineWasmTruncateCheck(
+ OutOfLineWasmTruncateCheck* ool) {
+ // On ARM, saturating truncation codegen handles saturating itself rather than
+ // relying on out-of-line fixup code.
+ if (ool->isSaturating()) {
+ return;
+ }
+
+ masm.outOfLineWasmTruncateToIntCheck(ool->input(), ool->fromType(),
+ ool->toType(), ool->isUnsigned(),
+ ool->rejoin(), ool->bytecodeOffset());
+}
+
+void CodeGenerator::visitInt64ToFloatingPointCall(
+ LInt64ToFloatingPointCall* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+ MOZ_ASSERT(ToRegister(lir->getOperand(LInt64ToFloatingPointCall::Instance)) ==
+ InstanceReg);
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+
+ MBuiltinInt64ToFloatingPoint* mir = lir->mir();
+ MIRType toType = mir->type();
+
+ masm.setupWasmABICall();
+ masm.passABIArg(input.high);
+ masm.passABIArg(input.low);
+
+ bool isUnsigned = mir->isUnsigned();
+ wasm::SymbolicAddress callee =
+ toType == MIRType::Float32
+ ? (isUnsigned ? wasm::SymbolicAddress::Uint64ToFloat32
+ : wasm::SymbolicAddress::Int64ToFloat32)
+ : (isUnsigned ? wasm::SymbolicAddress::Uint64ToDouble
+ : wasm::SymbolicAddress::Int64ToDouble);
+
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ MoveOp::Type result =
+ toType == MIRType::Float32 ? MoveOp::FLOAT32 : MoveOp::DOUBLE;
+ masm.callWithABI(mir->bytecodeOffset(), callee, mozilla::Some(instanceOffset),
+ result);
+
+ DebugOnly<FloatRegister> output(ToFloatRegister(lir->output()));
+ MOZ_ASSERT_IF(toType == MIRType::Double, output.value == ReturnDoubleReg);
+ MOZ_ASSERT_IF(toType == MIRType::Float32, output.value == ReturnFloat32Reg);
+
+ masm.Pop(InstanceReg);
+}
+
+void CodeGenerator::visitCopySignF(LCopySignF* ins) {
+ FloatRegister lhs = ToFloatRegister(ins->getOperand(0));
+ FloatRegister rhs = ToFloatRegister(ins->getOperand(1));
+ FloatRegister output = ToFloatRegister(ins->getDef(0));
+
+ Register lhsi = ToRegister(ins->getTemp(0));
+ Register rhsi = ToRegister(ins->getTemp(1));
+
+ masm.ma_vxfer(lhs, lhsi);
+ masm.ma_vxfer(rhs, rhsi);
+
+ ScratchRegisterScope scratch(masm);
+
+ // Clear lhs's sign.
+ masm.ma_and(Imm32(INT32_MAX), lhsi, lhsi, scratch);
+
+ // Keep rhs's sign.
+ masm.ma_and(Imm32(INT32_MIN), rhsi, rhsi, scratch);
+
+ // Combine.
+ masm.ma_orr(lhsi, rhsi, rhsi);
+
+ masm.ma_vxfer(rhsi, output);
+}
+
+void CodeGenerator::visitCopySignD(LCopySignD* ins) {
+ FloatRegister lhs = ToFloatRegister(ins->getOperand(0));
+ FloatRegister rhs = ToFloatRegister(ins->getOperand(1));
+ FloatRegister output = ToFloatRegister(ins->getDef(0));
+
+ Register lhsi = ToRegister(ins->getTemp(0));
+ Register rhsi = ToRegister(ins->getTemp(1));
+
+ // Manipulate high words of double inputs.
+ masm.as_vxfer(lhsi, InvalidReg, lhs, Assembler::FloatToCore,
+ Assembler::Always, 1);
+ masm.as_vxfer(rhsi, InvalidReg, rhs, Assembler::FloatToCore,
+ Assembler::Always, 1);
+
+ ScratchRegisterScope scratch(masm);
+
+ // Clear lhs's sign.
+ masm.ma_and(Imm32(INT32_MAX), lhsi, lhsi, scratch);
+
+ // Keep rhs's sign.
+ masm.ma_and(Imm32(INT32_MIN), rhsi, rhsi, scratch);
+
+ // Combine.
+ masm.ma_orr(lhsi, rhsi, rhsi);
+
+ // Reconstruct the output.
+ masm.as_vxfer(lhsi, InvalidReg, lhs, Assembler::FloatToCore,
+ Assembler::Always, 0);
+ masm.ma_vxfer(lhsi, rhsi, output);
+}
+
+void CodeGenerator::visitWrapInt64ToInt32(LWrapInt64ToInt32* lir) {
+ const LInt64Allocation& input = lir->getInt64Operand(0);
+ Register output = ToRegister(lir->output());
+
+ if (lir->mir()->bottomHalf()) {
+ masm.move32(ToRegister(input.low()), output);
+ } else {
+ masm.move32(ToRegister(input.high()), output);
+ }
+}
+
+void CodeGenerator::visitExtendInt32ToInt64(LExtendInt32ToInt64* lir) {
+ Register64 output = ToOutRegister64(lir);
+ MOZ_ASSERT(ToRegister(lir->input()) == output.low);
+
+ if (lir->mir()->isUnsigned()) {
+ masm.ma_mov(Imm32(0), output.high);
+ } else {
+ masm.ma_asr(Imm32(31), output.low, output.high);
+ }
+}
+
+void CodeGenerator::visitSignExtendInt64(LSignExtendInt64* lir) {
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+ Register64 output = ToOutRegister64(lir);
+ switch (lir->mode()) {
+ case MSignExtendInt64::Byte:
+ masm.move8SignExtend(input.low, output.low);
+ break;
+ case MSignExtendInt64::Half:
+ masm.move16SignExtend(input.low, output.low);
+ break;
+ case MSignExtendInt64::Word:
+ masm.move32(input.low, output.low);
+ break;
+ }
+ masm.ma_asr(Imm32(31), output.low, output.high);
+}
+
+void CodeGenerator::visitWasmExtendU32Index(LWasmExtendU32Index*) {
+ MOZ_CRASH("64-bit only");
+}
+
+void CodeGenerator::visitWasmWrapU32Index(LWasmWrapU32Index* lir) {
+ // Generates no code on this platform because we just return the low part of
+ // the input register pair.
+ MOZ_ASSERT(ToRegister(lir->input()) == ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitDivOrModI64(LDivOrModI64* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+ MOZ_ASSERT(ToRegister(lir->getOperand(LDivOrModI64::Instance)) ==
+ InstanceReg);
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+
+ Register64 lhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Lhs));
+ Register64 rhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Rhs));
+ Register64 output = ToOutRegister64(lir);
+
+ MOZ_ASSERT(output == ReturnReg64);
+
+ Label done;
+
+ // Handle divide by zero.
+ if (lir->canBeDivideByZero()) {
+ Label nonZero;
+ // We can use InstanceReg as temp register because we preserved it
+ // before.
+ masm.branchTest64(Assembler::NonZero, rhs, rhs, InstanceReg, &nonZero);
+ masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset());
+ masm.bind(&nonZero);
+ }
+
+ auto* mir = lir->mir();
+
+ // Handle an integer overflow exception from INT64_MIN / -1.
+ if (lir->canBeNegativeOverflow()) {
+ Label notmin;
+ masm.branch64(Assembler::NotEqual, lhs, Imm64(INT64_MIN), &notmin);
+ masm.branch64(Assembler::NotEqual, rhs, Imm64(-1), &notmin);
+ if (mir->isWasmBuiltinModI64()) {
+ masm.xor64(output, output);
+ } else {
+ masm.wasmTrap(wasm::Trap::IntegerOverflow, lir->bytecodeOffset());
+ }
+ masm.jump(&done);
+ masm.bind(&notmin);
+ }
+
+ masm.setupWasmABICall();
+ masm.passABIArg(lhs.high);
+ masm.passABIArg(lhs.low);
+ masm.passABIArg(rhs.high);
+ masm.passABIArg(rhs.low);
+
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ if (mir->isWasmBuiltinModI64()) {
+ masm.callWithABI(lir->bytecodeOffset(), wasm::SymbolicAddress::ModI64,
+ mozilla::Some(instanceOffset));
+ } else {
+ masm.callWithABI(lir->bytecodeOffset(), wasm::SymbolicAddress::DivI64,
+ mozilla::Some(instanceOffset));
+ }
+
+ MOZ_ASSERT(ReturnReg64 == output);
+
+ masm.bind(&done);
+ masm.Pop(InstanceReg);
+}
+
+void CodeGenerator::visitUDivOrModI64(LUDivOrModI64* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+ MOZ_ASSERT(ToRegister(lir->getOperand(LDivOrModI64::Instance)) ==
+ InstanceReg);
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+
+ Register64 lhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Lhs));
+ Register64 rhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Rhs));
+
+ MOZ_ASSERT(ToOutRegister64(lir) == ReturnReg64);
+
+ // Prevent divide by zero.
+ if (lir->canBeDivideByZero()) {
+ Label nonZero;
+ // We can use InstanceReg as temp register because we preserved it
+ // before.
+ masm.branchTest64(Assembler::NonZero, rhs, rhs, InstanceReg, &nonZero);
+ masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset());
+ masm.bind(&nonZero);
+ }
+
+ masm.setupWasmABICall();
+ masm.passABIArg(lhs.high);
+ masm.passABIArg(lhs.low);
+ masm.passABIArg(rhs.high);
+ masm.passABIArg(rhs.low);
+
+ MDefinition* mir = lir->mir();
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ if (mir->isWasmBuiltinModI64()) {
+ masm.callWithABI(lir->bytecodeOffset(), wasm::SymbolicAddress::UModI64,
+ mozilla::Some(instanceOffset));
+ } else {
+ masm.callWithABI(lir->bytecodeOffset(), wasm::SymbolicAddress::UDivI64,
+ mozilla::Some(instanceOffset));
+ }
+ masm.Pop(InstanceReg);
+}
+
+void CodeGenerator::visitCompareI64(LCompareI64* lir) {
+ MCompare* mir = lir->mir();
+ MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 ||
+ mir->compareType() == MCompare::Compare_UInt64);
+
+ const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs);
+ const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs);
+ Register64 lhsRegs = ToRegister64(lhs);
+ Register output = ToRegister(lir->output());
+
+ bool isSigned = mir->compareType() == MCompare::Compare_Int64;
+ Assembler::Condition condition = JSOpToCondition(lir->jsop(), isSigned);
+ Label done;
+
+ masm.move32(Imm32(1), output);
+
+ if (IsConstant(rhs)) {
+ Imm64 imm = Imm64(ToInt64(rhs));
+ masm.branch64(condition, lhsRegs, imm, &done);
+ } else {
+ Register64 rhsRegs = ToRegister64(rhs);
+ masm.branch64(condition, lhsRegs, rhsRegs, &done);
+ }
+
+ masm.move32(Imm32(0), output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitCompareI64AndBranch(LCompareI64AndBranch* lir) {
+ MCompare* mir = lir->cmpMir();
+ MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 ||
+ mir->compareType() == MCompare::Compare_UInt64);
+
+ const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs);
+ const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs);
+ Register64 lhsRegs = ToRegister64(lhs);
+
+ bool isSigned = mir->compareType() == MCompare::Compare_Int64;
+ Assembler::Condition condition = JSOpToCondition(lir->jsop(), isSigned);
+
+ Label* trueLabel = getJumpLabelForBranch(lir->ifTrue());
+ Label* falseLabel = getJumpLabelForBranch(lir->ifFalse());
+
+ if (isNextBlock(lir->ifFalse()->lir())) {
+ falseLabel = nullptr;
+ } else if (isNextBlock(lir->ifTrue()->lir())) {
+ condition = Assembler::InvertCondition(condition);
+ trueLabel = falseLabel;
+ falseLabel = nullptr;
+ }
+
+ if (IsConstant(rhs)) {
+ Imm64 imm = Imm64(ToInt64(rhs));
+ masm.branch64(condition, lhsRegs, imm, trueLabel, falseLabel);
+ } else {
+ Register64 rhsRegs = ToRegister64(rhs);
+ masm.branch64(condition, lhsRegs, rhsRegs, trueLabel, falseLabel);
+ }
+}
+
+void CodeGenerator::visitShiftI64(LShiftI64* lir) {
+ const LInt64Allocation lhs = lir->getInt64Operand(LShiftI64::Lhs);
+ LAllocation* rhs = lir->getOperand(LShiftI64::Rhs);
+
+ MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs));
+
+ if (rhs->isConstant()) {
+ int32_t shift = int32_t(rhs->toConstant()->toInt64() & 0x3F);
+ switch (lir->bitop()) {
+ case JSOp::Lsh:
+ if (shift) {
+ masm.lshift64(Imm32(shift), ToRegister64(lhs));
+ }
+ break;
+ case JSOp::Rsh:
+ if (shift) {
+ masm.rshift64Arithmetic(Imm32(shift), ToRegister64(lhs));
+ }
+ break;
+ case JSOp::Ursh:
+ if (shift) {
+ masm.rshift64(Imm32(shift), ToRegister64(lhs));
+ }
+ break;
+ default:
+ MOZ_CRASH("Unexpected shift op");
+ }
+ return;
+ }
+
+ switch (lir->bitop()) {
+ case JSOp::Lsh:
+ masm.lshift64(ToRegister(rhs), ToRegister64(lhs));
+ break;
+ case JSOp::Rsh:
+ masm.rshift64Arithmetic(ToRegister(rhs), ToRegister64(lhs));
+ break;
+ case JSOp::Ursh:
+ masm.rshift64(ToRegister(rhs), ToRegister64(lhs));
+ break;
+ default:
+ MOZ_CRASH("Unexpected shift op");
+ }
+}
+
+void CodeGenerator::visitBitOpI64(LBitOpI64* lir) {
+ const LInt64Allocation lhs = lir->getInt64Operand(LBitOpI64::Lhs);
+ const LInt64Allocation rhs = lir->getInt64Operand(LBitOpI64::Rhs);
+
+ MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs));
+
+ switch (lir->bitop()) {
+ case JSOp::BitOr:
+ if (IsConstant(rhs)) {
+ masm.or64(Imm64(ToInt64(rhs)), ToRegister64(lhs));
+ } else {
+ masm.or64(ToOperandOrRegister64(rhs), ToRegister64(lhs));
+ }
+ break;
+ case JSOp::BitXor:
+ if (IsConstant(rhs)) {
+ masm.xor64(Imm64(ToInt64(rhs)), ToRegister64(lhs));
+ } else {
+ masm.xor64(ToOperandOrRegister64(rhs), ToRegister64(lhs));
+ }
+ break;
+ case JSOp::BitAnd:
+ if (IsConstant(rhs)) {
+ masm.and64(Imm64(ToInt64(rhs)), ToRegister64(lhs));
+ } else {
+ masm.and64(ToOperandOrRegister64(rhs), ToRegister64(lhs));
+ }
+ break;
+ default:
+ MOZ_CRASH("unexpected binary opcode");
+ }
+}
+
+void CodeGenerator::visitRotateI64(LRotateI64* lir) {
+ MRotate* mir = lir->mir();
+ LAllocation* count = lir->count();
+
+ Register64 input = ToRegister64(lir->input());
+ Register64 output = ToOutRegister64(lir);
+ Register temp = ToTempRegisterOrInvalid(lir->temp());
+
+ if (count->isConstant()) {
+ int32_t c = int32_t(count->toConstant()->toInt64() & 0x3F);
+ if (!c) {
+ masm.move64(input, output);
+ return;
+ }
+ if (mir->isLeftRotate()) {
+ masm.rotateLeft64(Imm32(c), input, output, temp);
+ } else {
+ masm.rotateRight64(Imm32(c), input, output, temp);
+ }
+ } else {
+ if (mir->isLeftRotate()) {
+ masm.rotateLeft64(ToRegister(count), input, output, temp);
+ } else {
+ masm.rotateRight64(ToRegister(count), input, output, temp);
+ }
+ }
+}
+
+void CodeGenerator::visitWasmStackArgI64(LWasmStackArgI64* ins) {
+ const MWasmStackArg* mir = ins->mir();
+ Address dst(StackPointer, mir->spOffset());
+ if (IsConstant(ins->arg())) {
+ masm.store64(Imm64(ToInt64(ins->arg())), dst);
+ } else {
+ masm.store64(ToRegister64(ins->arg()), dst);
+ }
+}
+
+void CodeGenerator::visitWasmSelectI64(LWasmSelectI64* lir) {
+ Register cond = ToRegister(lir->condExpr());
+ const LInt64Allocation falseExpr = lir->falseExpr();
+
+ Register64 out = ToOutRegister64(lir);
+ MOZ_ASSERT(ToRegister64(lir->trueExpr()) == out,
+ "true expr is reused for input");
+
+ masm.as_cmp(cond, Imm8(0));
+ if (falseExpr.low().isRegister()) {
+ masm.ma_mov(ToRegister(falseExpr.low()), out.low, LeaveCC,
+ Assembler::Equal);
+ masm.ma_mov(ToRegister(falseExpr.high()), out.high, LeaveCC,
+ Assembler::Equal);
+ } else {
+ ScratchRegisterScope scratch(masm);
+ masm.ma_ldr(ToAddress(falseExpr.low()), out.low, scratch, Offset,
+ Assembler::Equal);
+ masm.ma_ldr(ToAddress(falseExpr.high()), out.high, scratch, Offset,
+ Assembler::Equal);
+ }
+}
+
+void CodeGenerator::visitWasmReinterpretFromI64(LWasmReinterpretFromI64* lir) {
+ MOZ_ASSERT(lir->mir()->type() == MIRType::Double);
+ MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Int64);
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+ FloatRegister output = ToFloatRegister(lir->output());
+
+ masm.ma_vxfer(input.low, input.high, output);
+}
+
+void CodeGenerator::visitWasmReinterpretToI64(LWasmReinterpretToI64* lir) {
+ MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
+ MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Double);
+ FloatRegister input = ToFloatRegister(lir->getOperand(0));
+ Register64 output = ToOutRegister64(lir);
+
+ masm.ma_vxfer(input, output.low, output.high);
+}
+
+void CodeGenerator::visitPopcntI64(LPopcntI64* lir) {
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+ Register64 output = ToOutRegister64(lir);
+ Register temp = ToRegister(lir->getTemp(0));
+
+ masm.popcnt64(input, output, temp);
+}
+
+void CodeGenerator::visitClzI64(LClzI64* lir) {
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+ Register64 output = ToOutRegister64(lir);
+
+ masm.clz64(input, output.low);
+ masm.move32(Imm32(0), output.high);
+}
+
+void CodeGenerator::visitCtzI64(LCtzI64* lir) {
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+ Register64 output = ToOutRegister64(lir);
+
+ masm.ctz64(input, output.low);
+ masm.move32(Imm32(0), output.high);
+}
+
+void CodeGenerator::visitBitNotI64(LBitNotI64* lir) {
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+ MOZ_ASSERT(input == ToOutRegister64(lir));
+ masm.ma_mvn(input.high, input.high);
+ masm.ma_mvn(input.low, input.low);
+}
+
+void CodeGenerator::visitTestI64AndBranch(LTestI64AndBranch* lir) {
+ Register64 input = ToRegister64(lir->getInt64Operand(0));
+
+ masm.as_cmp(input.high, Imm8(0));
+ jumpToBlock(lir->ifTrue(), Assembler::NonZero);
+ masm.as_cmp(input.low, Imm8(0));
+ emitBranch(Assembler::NonZero, lir->ifTrue(), lir->ifFalse());
+}
+
+void CodeGenerator::visitWasmAtomicLoadI64(LWasmAtomicLoadI64* lir) {
+ Register ptr = ToRegister(lir->ptr());
+ Register64 output = ToOutRegister64(lir);
+ Register64 tmp(InvalidReg, InvalidReg);
+
+ BaseIndex addr(HeapReg, ptr, TimesOne, lir->mir()->access().offset());
+ masm.wasmAtomicLoad64(lir->mir()->access(), addr, tmp, output);
+}
+
+void CodeGenerator::visitWasmAtomicStoreI64(LWasmAtomicStoreI64* lir) {
+ Register ptr = ToRegister(lir->ptr());
+ Register64 value = ToRegister64(lir->value());
+ Register64 tmp(ToRegister(lir->tmpHigh()), ToRegister(lir->tmpLow()));
+
+ BaseIndex addr(HeapReg, ptr, TimesOne, lir->mir()->access().offset());
+ masm.wasmAtomicExchange64(lir->mir()->access(), addr, value, tmp);
+}
+
+void CodeGenerator::visitWasmCompareExchangeI64(LWasmCompareExchangeI64* lir) {
+ Register ptr = ToRegister(lir->ptr());
+ Register64 expected = ToRegister64(lir->expected());
+ Register64 replacement = ToRegister64(lir->replacement());
+ Register64 out = ToOutRegister64(lir);
+
+ BaseIndex addr(HeapReg, ptr, TimesOne, lir->mir()->access().offset());
+ masm.wasmCompareExchange64(lir->mir()->access(), addr, expected, replacement,
+ out);
+}
+
+void CodeGenerator::visitWasmAtomicBinopI64(LWasmAtomicBinopI64* lir) {
+ Register ptr = ToRegister(lir->ptr());
+ Register64 value = ToRegister64(lir->value());
+ Register64 out = ToOutRegister64(lir);
+
+ BaseIndex addr(HeapReg, ptr, TimesOne, lir->access().offset());
+ Register64 tmp(ToRegister(lir->tmpHigh()), ToRegister(lir->tmpLow()));
+ masm.wasmAtomicFetchOp64(lir->access(), lir->operation(), value, addr, tmp,
+ out);
+}
+
+void CodeGenerator::visitWasmAtomicExchangeI64(LWasmAtomicExchangeI64* lir) {
+ Register ptr = ToRegister(lir->ptr());
+ Register64 value = ToRegister64(lir->value());
+ Register64 out = ToOutRegister64(lir);
+
+ BaseIndex addr(HeapReg, ptr, TimesOne, lir->access().offset());
+ masm.wasmAtomicExchange64(lir->access(), addr, value, out);
+}
+
+void CodeGenerator::visitNearbyInt(LNearbyInt*) { MOZ_CRASH("NYI"); }
+
+void CodeGenerator::visitNearbyIntF(LNearbyIntF*) { MOZ_CRASH("NYI"); }
+
+void CodeGenerator::visitSimd128(LSimd128* ins) { MOZ_CRASH("No SIMD"); }
+
+void CodeGenerator::visitWasmTernarySimd128(LWasmTernarySimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmBinarySimd128(LWasmBinarySimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmBinarySimd128WithConstant(
+ LWasmBinarySimd128WithConstant* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmVariableShiftSimd128(
+ LWasmVariableShiftSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmConstantShiftSimd128(
+ LWasmConstantShiftSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmSignReplicationSimd128(
+ LWasmSignReplicationSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmShuffleSimd128(LWasmShuffleSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmPermuteSimd128(LWasmPermuteSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmReplaceLaneSimd128(LWasmReplaceLaneSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmReplaceInt64LaneSimd128(
+ LWasmReplaceInt64LaneSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmScalarToSimd128(LWasmScalarToSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmInt64ToSimd128(LWasmInt64ToSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmUnarySimd128(LWasmUnarySimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmReduceSimd128(LWasmReduceSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmReduceAndBranchSimd128(
+ LWasmReduceAndBranchSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmReduceSimd128ToInt64(
+ LWasmReduceSimd128ToInt64* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmLoadLaneSimd128(LWasmLoadLaneSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}
+
+void CodeGenerator::visitWasmStoreLaneSimd128(LWasmStoreLaneSimd128* ins) {
+ MOZ_CRASH("No SIMD");
+}